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Abstract
1.	 In its invasive range in Australia, the European rabbit threatens the persistence 
of native flora and fauna and damages agricultural production. Understanding its 
distribution and ecological niche is critical for developing management plans to 
reduce populations and avoid further biodiversity and economic losses.

2.	 We developed an ensemble of species distribution models (SDMs) to determine 
the geographic range limits and habitat suitability of the rabbit in Australia. We ex‐
amined the advantage of incorporating data collected by citizens (separately and 
jointly with expert data) and explored issues of spatial biases in occurrence data 
by implementing different approaches to generate pseudo‐absences. We evalu‐
ated the skill of our model using three approaches: cross‐validation, out‐of‐region 
validation, and evaluation of the covariate response curves according to expert 
knowledge of rabbit ecology.

3.	 Combining citizen and expert occurrence data improved model skill based on 
cross‐validation, spatially reproduced important aspects of rabbit ecology, and 
reduced the need to extrapolate results beyond the studied areas.

4.	 Our ensemble model projects that rabbits are distributed across approximately 
two thirds of Australia. Annual maximum temperatures >25°C and annual mini‐
mum temperatures >10°C define, respectively, the southern and northern most 
range limits of its distribution. In the arid and central regions, close access to per‐
manent water (≤~ 0.4 km) and reduced clay soil composition (~20%–50%) were the 
major factors influencing the probability of occurrence of rabbits.

5.	 Synthesis and applications. Our results show that citizen science data can play an 
important role in managing invasive species by providing missing information on 
occurrences in regions not surveyed by experts because of logistics or financial 
constraints. The additional sampling effort provided by citizens can improve the 
capacity of SDMs to capture important elements of a species ecological niche, 
improving the capacity of statistical models to accurately predict the geographic 
range of invasive species.
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1  | INTRODUC TION

The spread of invasive species across the world is a major driver 
of current observed ecosystem changes (Lowry et al., 2013). Such 
changes include damage to native habitats (Simberloff et al., 2012) 
and biodiversity loss (Mollot, Pantel, & Romanuk, 2017), leading to 
important socioeconomic costs (McLeod, 2004). Many strategies are 
proposed to quantify the risk associated with the introduction and 
the spread of invasive species (e.g., Mack et al., 2000). Most suggest 
the use of species distribution models (SDMs) as a tool to model the 
habitat suitability of invasive species with an objective to predict and 
prevent invasion events (Thuiller et al., 2005).

Two main approaches are used for modeling the structure and 
dynamics of the geographic ranges of invasive species (Robertson, 
Peter, Villet, & Ripley, 2003). Mechanistic‐based distribution mod‐
els use inherent physiological and/or demographic characteristics 
to better capture the processes underpinning species distribu‐
tions (Fordham, Akçakaya, Araújo, Keith, & Brook, 2013; Kearney 
& Porter, 2004). Correlative‐based distribution models use a dif‐
ferent approach by linking invasive species observations to envi‐
ronmental conditions (e.g., climate and vegetation) using statistical 
techniques (Guisan & Thuiller, 2005). Correlative approaches (SDM 
herein) remain the most frequently used methods for exploring the 
determinants of the range of invasive species and their probability 
of occurrences due to simpler data requirements (Elith, Kearney, & 
Phillips, 2010).

Robust predictions from SDMs require the models to be trained 
using data (i.e., presence/absence field observations) obtained from 
the entire range of environmental conditions suitable for the per‐
sistence of the species (Elith et al., 2010). Gathering these data is 
challenging for invasive species since they (a) are often not in an 
equilibrium‐state with their host environment (Sutherst & Bourne, 
2009); (b) can exhibit opportunistic behaviors allowing them to 
survive and reproduce under conditions differing from their native 
ranges (Mellin et al., 2016); and (c) are often widely distributed in 
their nonnative range making the data collection process time‐
consuming, costly, and logistically challenging (Hauser, Pople, & 
Possingham, 2006). To overcome this difficulty, data collected by 
experts can be supplemented with data collected by volunteers 
commonly referred to as citizen scientists (Silvertown, 2009). Doing 
so broadens the sampling effort spatially and temporally, potentially 
improving the projections of invasive species' distributions in their 
novel habitat (Dickinson, Zuckerbert, & Bonter, 2010).

Integrating citizen science data into SDMs can generate meth‐
odological challenges. For instance, sampling biases may need to be 
explicitly accounted for in the models due to volunteers frequently 
collecting data in opportunistic and subjective ways (e.g., during 

recreational activities in areas easy to access and with important nat‐
ural attractions; Fourcade, Engler, Rödder, & Secondi, 2014). These 
sampling biases can both inflate the species' presence in localized 
areas and cause some environmental habitats to be overlooked (Crall 
et al., 2010; Fitzpatrick, Preisser, Ellison, & Elkinton, 2009), increas‐
ing the likelihood of type 1 errors from models (Hanspach, Kühn, 
Schweiger, Pompe, & Klotz, 2011), generating misleading predictions 
(Osborne & Leitão, 2009).

In this study, we asked whether citizen science data could be 
used in SDMs to generate robust predictions of the distributions of 
a wide‐ranging invasive species: the European rabbit (Oryctolagus 
cuniculus) in Australia. The species was introduced into the coun‐
try in 1788 and is listed as a Key Threatening Process under the 
Environment Protection and Biodiversity Conservation Act since 
1999 due to competition with the native fauna and flora and over‐
grazing activities (West, 2008). Over the last 50  years, rabbit oc‐
currence and abundance have been monitored by expert scientists 
under various governmental and local programs across the country 
(Roy‐Dufresne, Lurgi, et al., 2019; Roy‐Dufresne, Saltré, et al., 2019). 
In 2009, a citizen science initiative was launched to record sightings 
of rabbits across Australia (Feral Scan Data, 2016).

We (a) examined the advantages of incorporating data collected 
by citizens in SDMs (separately or jointly with expert data) to pin‐
point areas of high environmental suitability for rabbits in Australia; 
(b) explored potential issues of spatial biases in citizen and expert 
occurrence data, which we addressed by implementing different 
approaches to generate pseudo‐absences; and (c) produced a high‐
resolution map of habitat suitability in support of pest management 
activities. Our results show the important role that citizen science 
data can play in invasive species management by providing missing 
information on environmental–occurrence relationships in regions 
not surveyed by experts, improving the fit of SDMs.

2  | MATERIAL S AND METHODS

2.1 | Occurrence records and environmental 
covariates

Rabbit's occurrences by experts were collated from (a) the 
Tasmanian Natural Values Atlas (Department of Primary Industries, 
Parks, Water, & Environment, 2016), (b) the Victorian Biodiversity 
Atlas (Department of Environment, Land, Water, & Planning, 2016), 
(c) the Nature Map from Western Australia (Department of Parks 
& Wildlife, 2016), (d) the Fauna Atlas of the Northern Territory 
(Northern Territory Government, 2016), (e) the NSW Office of 
Environment Heritage Atlas of Wildlife (Department of Environment 
& Heritage, 2016), and (f) the Atlas of Living Australia (Atlas of Living 
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Australia, 2016). These records were supplemented using occurrence 
data from the national rabbit database (Roy‐Dufresne, Lurgi, et al., 
2019; Roy‐Dufresne, Saltré, et al., 2019) (total: 3,409 pts). Citizen oc‐
currences were obtained from the Feral Scan surveillance program 
on 05‐21‐2015 (Feral Scan Data, 2016; total: 1,842 pts). Combined 
occurrences were obtained by merging the citizen and expert data 
(total: 4,011 pts). Occurrence records were constrained to the period 
from 1970 to 2012 to match the temporal period covered by the 
environmental covariates (see below). All records were mapped at a 
1‐km2 grid cell resolution and verified using expert knowledge to re‐
move erroneous occurrences (i.e., those situated outside the known 
biophysical limits of the rabbit in Australia) as suggested by Drescher 
et al. (2013; Figure 1).

We used published literature to initially select 15 environmen‐
tal covariates (e.g., climate, vegetation, and soil) likely to influence 
the occurrence of rabbit in Australia (Supporting Information S1). 
Covariates were obtained in a grid format at 1‐km2 grid cell reso‐
lution for Australia and were projected to the same geographic ref‐
erence system (i.e., WGS84). Some covariates were transformed 
(Supporting Information S1) to better meet the assumptions of our 
statistical models (see below; Austin, 2002). We tested for collinear‐
ity (Zuur, Ieno, & Elphick&, 2010) using the Spearman rank correla‐
tion coefficient (Hmisc package in R; Harrell, 2016; R Development 
Core Team, 2017) and the variance of inflation factor (vif; using car 
Package in R; Fox & Weisberg, 2011). We excluded highly correlated 
(i.e., Spearman's Rank r ≥ ±0.7) and collinear (i.e., vif ≥ 3) covariates 
from further analysis in favor of covariates likely to be more ecolog‐
ically relevant in explaining the distribution of rabbits in Australia. 
This resulted in seven primary covariates being used in the analyses 
(Table 1).

2.2 | Spatial autocorrelation and pseudo‐absences

Because we only had access to occurrence records, we generated 
pseudo‐absences to calibrate the SDMs using two strategies and 
compared their statistical support. These strategies were as follows: 
(a) weighting the location of the pseudo‐absences according to the 
density of the occurrence data (Weighted Pts), and (b) generating 
pseudo‐absences randomly (Random Pts).

Pseudo‐absence strategy Weighted Pts accounted for potential 
sampling bias in rabbit occurrences by positively weighting their se‐
lection probability using a proxy of sampling effort (Syfert, Smith, 
& Coomes, 2013). More specifically, we generated the pseudo‐ab‐
sences using a similar sampling bias configuration to the occurrence 
data (Phillips & Dudík, 2008). A proxy for sampling effort was ob‐
tained from the density of the occurrence data at 1‐km2 grid cell res‐
olution (spatstat package in R; Baddeley, Rubak, & Turner, 2015). The 
robustness of the resulting grids was tested using Ripley's L‐func‐
tion (spatstat package in R; Baddeley et al., 2015), which assessed 
the spatial homogeneity of the data (i.e., random, dispersed, or 
clustered) in comparison with what would be expected from a ran‐
dom uniform distribution. The results from this analysis (Supporting 
Information S2) showed that we could simulate a similar level of 

sampling densities in our pseudo‐absence data as that observed 
from each occurrence dataset. For comparison, pseudo‐absences 
were also generated using a random strategy (i.e., without account‐
ing for sampling effort; Random Pts; Wisz & Guisan, 2009). The 
number of pseudo‐absences generated, for both strategies, was set 
to four times the number of occurrence points, providing maximal 
coverage of the study area as suggested by Barbet‐Massin, Jiguet, 
Albert, and Thuiller (2012).

F I G U R E  1  Distribution of Expert (a), Citizen (b), and Combined (c) 
rabbit occurrences (black dots) in Australia
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Spatial autocorrelation is a common issue in ecological data and 
can exaggerate the importance of explanatory covariates. We used 
a Moran's I index (Global Moran's I function in ArcMap 10.3.1; ESRI, 
2015) to test for spatial autocorrelation in each occurrence dataset. 
We determined the spatial resolution that minimized spatial auto‐
correlation without compromising the ecological relevance of each 
occurrence dataset (i.e., by choosing lower spatial resolution possi‐
ble; Dormann et al., 2007). We compared the distribution of a set of 
points randomly distributed over the study area (10 times the num‐
ber of occurrence data) with the distribution of our datasets aggre‐
gated at different resolutions (i.e., 1, 5, 10, 20, 30, 50, 70, 100, 150, 
and 200 km). The Moran's I analysis showed that spatial autocorrela‐
tion in the occurrence datasets was best controlled at a 20‐km res‐
olution (Supporting Information S3). We resampled the occurrence 
and pseudo‐absence datasets by taking one point per 20 km2 grid 
cell. We repeated the sampling exercise until every occurrence was 
selected at least once, giving a total of 105 replicates per dataset. To 
take into account different occurrence–environmental relationships, 
we ran all further analysis at the replicate level and then calculated 
the across replicate mean value (Araújo & Guisan, 2006).

2.3 | Model construction and evaluation

We used three common correlative SDM algorithms to model the 
distribution of rabbits in Australia: (a) general linear models (GLM; 
regression approach without interaction and including quadratic 
functions), (b) Boosted Regression Trees (BRT; ensemble of regres‐
sion trees), and (c) a Maximum Entropy algorithm (MaxEnt; machine 
learning approach). The GLMs were parameterized using a logit‐link 

function and a binomial error distribution. The BRT models were fit‐
ted using the gbm package in R (Ridgeway, 2017). We used a ten‐fold 
cross‐validation to identify the optimal settings by systematically 
altering the different combination of numbers of trees (100–10,000 
at a 100 interval), learning rates (0.0001, 0.005, 0.001, 0.005, 0.01), 
and tree complexities (1–5). Based on the difference between the 
observed and predicted values of those combinations, we selected 
the setting returning the smallest deviance, number of trees, and 
tree complexity (Elith, Leathwick, & Hastle, 2008). We fitted the 
MaxEnt models (package dismo in R; Hijmans, Phillips, Leathwick, & 
Elith, 2017) using all six data transformation features available within 
MaxEnt (i.e., linear, product, quadratic, hinge, threshold, and cate‐
gorical) and by specifying background data points using predefined 
pseudo‐absence datasets. The regularization coefficient values were 
maximized from a combination of values (0.2–5 at a 0.2 interval) 
based on a 5‐fold cross‐validation process.

To determine the “best” model and to avoid over‐parametri‐
zation, we first constructed a set of candidate models based on 
expert knowledge, representing different biological processes 
(and their combination) likely to define the rabbit distribution in 
Australia (Supporting Information S4). We used a two‐phased an‐
alytical approach to select the best model (e.g., Wadley, Austin, & 
Fordham, 2014). We first constructed a candidate set of models 
with only climatic and another with nonclimatic covariates and 
used multimodel inference to select the best models for each 
group. We ranked the models using the Akaike's information cri‐
terion corrected for small sample size (AICc) and assessed their 
probability relatively to the entire set of candidate models using 
the AICc weights (wAICc) and their corresponding percentage of 

Covariates name Description Range of value

TMina Mean annual minimum temperature (°C) between 
1976 and 2005

−5.5; 24.5

TWarmestMontha Mean annual temperature of the warmest month 
(°C) between 1976 and 2005

8.1; 33.3

PWetQuartera Mean total precipitation of the wettest quarter 
(mm; log‐transformed)

3.7; 8.0

VegeTypeb Thirteen categories of major vegetation groups 
(reclassification described in Supporting 
Information S1)

1; 13

DistAgriLandc Euclidean distance (km) to the nearest agricultural 
land margins (square root)

0; 31.8

DistPermWaterd Euclidean distance (km) to nearest permanent 
water features and surface hydrology points 
(square root)

0; 14.6

PercSoilClaye Median percentage of clay (log‐transformed) −1.7; 4.1

Note: See Supporting Information S1 for the ecological reasons.
aHutchinson, Kesteven, and Xu (2014), 
bDepartment of the Environment (2012), 
cLymburner et al. (2010), 
dGeoscience Australia (2006, 2015), 
eNorthcote et al. (1991). 

TA B L E  1  Name, description, and range 
of value of selected covariates to describe 
the distribution of the rabbits in Australia
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deviance explained (Burnham & Anderson, 2010). In step 2, we 
generated a separate candidate model set with all potential com‐
binations of covariates from the best‐ranked models (wAICc = 1) 
in step 1. We did this preliminary analysis only with the expert oc‐
currence data, which is more precise and reliable (Roy‐Dufresne, 
Lurgi, et al., 2019; Roy‐Dufresne, Saltré, et al., 2019) and, there‐
fore, provides a better reflection of the pattern of occurrence for 
the focal species.

We evaluated the models performance using two approaches: 
a cross‐validation analysis and an out‐of‐region validation analysis. 
The first approach evaluated the models predictive ability by re‐
peating 5‐fold cross‐validation in which the occurrence data were 
randomly partitioned into a training and test sets of respectively 
(80%/20% ratio; Fielding & Haworth, 1995). The out‐of‐region ap‐
proach allowed us to evaluate the models' transferability across 
regions (Randin et al., 2006). For this analysis, we selected the 
physiographic regions of Australia, which are geomorphological 
units coherent with the landform characteristics and the under‐
lying geology (Pain, Gregory, Wilson, & McKenzie, 2011). They 
provide a basic differentiation of soil types and natural vegeta‐
tion, which are important factors determining the availability of 
shelter and food resources for rabbits (Myers & Parker, 1975). 
Successively, we used the occurrence data from each region as 
the test set, while calibrating the models with the data from the 
remaining regions (i.e., training set).

We used the area under the receiver operating characteris‐
tics curve (AUC) (Jiménez‐Valverde, Acevedo, Barbosa, Lobo, & 
Real, 2012), and the Kappa statistic (Manel, Williams, & Ormerod, 
2001), as metrics of models' performance. To extract the Kappa 
score, we calculated a prevalence threshold by maximizing the 
sum of the sensitivity and specificity (Manel et al., 2001), while he 
AUC does not require a threshold to be defined (Jiménez‐Valverde 
et al., 2012).

We (G.M., B.D.C., and T.C.) visually evaluated the response curves 
of the models using our extensive knowledge of rabbit ecology in 
Australia (e.g., Syfert et al., 2013; Supporting Information S5). Values 
from 0 to 3 (i.e., poor to excellent representation of ecological real‐
ity) were assigned to each response curve (Supporting Information 
S5). We weighted these values by a standardized estimate (scaled 
between 0 and 100) of the importance of all covariates in the models 
and took the average result.

Covariate importance was calculated for each SDM algorithm 
using model‐specific approaches. For the GLMs, we used a paired 
t‐statistic to test for covariate importance before and after permut‐
ing the value of one covariate and keeping the values of the other 
covariates constant (Ridgeway, 2017). For the BRTs, we calculated 
the number of times covariates were selected for splitting the trees, 
weighted by the squared improvement of the models fit as a result 
of each split, averaged over all trees (Ridgeway, 2017). For MaxEnt 
models, we changed the values of each covariate across its range 
values obtained from the training occurrence set and measured the 
resulting decrease in the AUC value (Hijmans et al., 2017).

2.4 | Mapping probability of occurrence

To map the probability of rabbit occurrence in geographic space, we 
used an ensemble modeling approach. This is because evidence from 
various areas of numerical modeling suggests that multimodel av‐
erages often yield better predictions than a single model (Johnson 
& Omland, 2004). Weighted averaging of different SDM results is 
now widely used to account for model‐selection uncertainty under 
the assumption that this will lead to more robust estimates of model 
predictions of probability of occurrence (Araújo & New, 2007). We 
calculated the ensemble projection using the best‐ranked models for 
each of the three occurrence datasets. We calculated the average 
values of these models weighted according to their cross‐validation 
Kappa scores (Araújo & New, 2007). We used the Kappa scores to 
calculate the weighted ensemble projection because it is a more rig‐
orous test of model skill than AUC scores (Jiménez‐Valverde, 2011), 
resulting in more variability in model evaluation scores.

3  | RESULTS

3.1 | Model parameters and pseudo‐absences 
generation

The global model (i.e., with all environmental covariates based on 
a subset of good performing climatic and nonclimatic models; see 
Methods) had the greatest AICc support (wAICc  >  0.79, Mean 
Explained Deviance >27%; Supporting Information S4), irrespec‐
tively of the pseudo‐absences' strategy used. There was one notable 
exception: BRT with weighted pseudo‐absences supporting a sim‐
pler model that did not include vegetation type (wAICc = 0.66) com‐
pared to the global model (wAICc = 0.33), but the mean explained 
deviance was essentially the same (~27%).

Models built using pseudo‐absences generated with the Random 
Pts strategy had cross‐validated AUC and Kappa scores higher than 
models using the Weighted Pts strategy (max ΔAUC = 0.022 and max 
ΔKappa  =  0.045; Figure 2; Supporting Information S6). Likewise, 
based on out‐of‐region model validation, there was more support for 
the Random Pts method. Models with randomly generated pseudo‐
absences predicted well in 43 regions based on AUC values >0.7 
(across all algorithms and datasets), and in 4 regions based on Kappa 
values >0.4, indicating a “fair” model transferability in these regions 
(Figure 3; Landis & Koch, 1977; Thuiller et al., 2005). This is compared 
to 42 and three regions, respectively, for models with Weighted Pts 
methods (Supporting Information S6). Using the Weighted Pts strat‐
egy did not improve the ecological robustness of the response curves 
based on expert assessment when compared to the Random Pts 
strategy (mean Δscores for Expert model = 1.10, Citizen model = 0.7, 
and Combined model = 0.47; Supporting Information S6).

Since the results from the three different evaluation techniques 
provided consistent support for building models with randomly gen‐
erated pseudo‐absences (i.e., Random Pts), we focused only on the 
results from these models in the following sections. The Weighted 
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Pts results can be found, for comparative purposes in the supple‐
mentary material (Supporting Information S6).

3.2 | Expert versus citizen versus combined data

The cross‐validated analyses showed different results according to 
different evaluation metrics. There was little difference in AUC vali‐
dation scores regardless of the source of data (expert, citizen, com‐
bined) used to calibrate the model (Figure 2; Supporting Information 
S6). All models obtained a mean AUC score >0.82 indicating a “fair” 
fit to the occurrence data (see above). In contrast, Kappa scores indi‐
cated that models built with Combined datasets (mean Kappa = 0.51, 
SD = 0.03) had better cross‐validated predictive accuracy compared 
to models calibrated with Expert (mean Kappa = 0.47, SD = 0.03) or 
Citizen datasets (Kappa = 0.47, SD = 0.02; Figure 2).

The out‐of‐region analyses showed that models built with the 
Citizen occurrence data had more regions consistently with higher 
Kappa and AUC scores (Figure 3; Supporting Information S6). 
Predictions from models trained with the Combined data tended to 
have lower AUC and Kappa values. The scores obtained for each re‐
gion were, however, always in close proximity to the scores obtained 
from the better ranked models with Citizen data (mean ΔAUC = 0.05, 
SD ΔAUC = 0.11; mean ΔKappa = 0.06, SD ΔKappa = 0.13; Supporting 
Information S6). Larger differences between out‐of‐region validation 
scores were observed between models calibrated with Expert or Citizen 

datasets (mean ΔAUC = 0.14, SD ΔAUC = 0.11; mean ΔKappa = 0.13, 
SD ΔKappa = 0.14). Models using Citizen data predicted well into 18 
regions based on AUC (>0.7) and two regions based on Kappa (>0.4), 
while models using Expert and Combined data predicted well into 13 
and 12 regions based on AUC and 2 and 0 regions based on Kappa, 
respectively (Figure 3). More generally, models trained using Citizen 
data had better predictive capacity in the western and central regions 
of Australia, while for models trained with Combined and Expert data, 
predictions were better in the eastern regions (Figure 3).

The response curves from models trained using Expert or 
Combined data had similar ranks based on expert knowledge (from 
31.01 to 40.34 and 28.97 to 39.37, respectively), whereas models 
trained with Citizen data had lower rankings (scores 21.08–39.72; 
Supporting Information S6–S7).

3.3 | Important covariates

The most important covariate for determining rabbit occurrence was 
TMin (mean importance score of 32%), followed by either combina‐
tion of DistAgriLand (importance score of 19.85%) or TWarmestMonth 
(mean importance score of 13.64%; Figure 4). The next most impor‐
tant covariates were PWetQuarter and DistPermWater with mean im‐
portance scores of 10.91% and 10.90%, respectively. The covariates 
PercSoilClay and VegeType had the lowest contributions (importance 
score <10%). The variables are described in Table 1.

Models calibrated with Expert data assigned a stronger impor‐
tance to the covariate TWarmestMonth and lower importance to 
the covariate DistPermWater than models using Citizen or Combined 
data (Figure 4). Conversely, models with Citizen data gave greater 
importance to the covariate DistAgriLand and less to the covariate 
PWetQuarter then models with Expert or Combined data.

3.4 | Probability of occurrence across Australia

Our ensemble model (with combined occurrence data with Random 
Pts pseudo‐absence strategy; Supporting Information S8) showed 
that regions of Australia south of the 32nd parallel are suit‐
able for rabbit occupancy (scores >0.75; Figure 5), that is where 
TWarmestMonth <25°C. The deserts and regions above the Tropic of 
Capricorn (19th parallel south) are inadequate for rabbit occupancy 
(score <0.25; TMin > 10°C), with the exception of northern parts of 
Western Australia and the north‐eastern part of Queensland. In the 
arid and central regions of Australia, the probability of occurrence of 
the species ranges between 0.6 and 0.9 with higher scores in regions 
in close distance to permanent water (<~0.4  km) and with sandy 
loam soil substrate (20%–50%).

4  | DISCUSSION

4.1 | Including citizen data in SDMs

The use of citizen data in SDMs is often criticized due to uncertain‐
ties associated with underlying sampling processes (Mair & Ruete, 

F I G U R E  2  Boxplots of area under the receiver operating 
characteristics curve (AUC; a) and Kappa (b) cross‐validation 
scores for species distribution models based on Expert, Citizen, 
and Combined datasets and pseudo‐absences based on Random 
Pts and Weighted Pts. The central mark indicates the median, and 
the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme 
data points not considered outliers



     |  11059ROY‐DUFRESNE et al.

2016). Our results, however, highlight a number of important advan‐
tages of using citizen data in ecological models for wide‐ranging in‐
vasive species. Using Citizen data, in addition to Expert data, doubled 
the spatial coverage of our occurrence data (i.e., ~1/3 Australian land 

surface), providing (a) new and important information on the envi‐
ronmental conditions associated with the occurrence of rabbits in 
Australia; and (b) improved model predictions based on cross‐valida‐
tion and out‐of‐region validation.

F I G U R E  3  Area under the receiver 
operating characteristics curve (AUC) 
and Kappa results from the out‐of‐
regions analyses based on three different 
occurrence datasest (Expert, Citizen, and 
Combined) and pseudo‐absences based on 
Random Pts. The figures were obtained by 
taking the mean of the results across all 
algorithms. The land divisions represent 
the locations of the physiographic regions 
of Australia and the regions in gray were 
not evaluated due to too lower number 
of occurrence points (n < 25). The results 
for the Weighted Pts pseudo‐absence 
strategy are provided in the Supporting 
Information S6

F I G U R E  4  Mean covariates 
importance (%) and their corresponding 
standard deviations (line range) for the 
Random Pts pseudo‐absence strategy 
based on three different sources of 
dataset (Expert, Citizen, and Combined)
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The results obtained from the out‐of‐region transferability 
analyses showed distinct geographic differences in transferabil‐
ity between the data sets used to calibrate the model. Models 
calibrated with Citizen data were more skillful in projecting into 
the western and central physiographic regions, while models cali‐
brated with Expert and Combined data did better in Eastern regions 
of Australia. These contrasting results most probably reflect diffi‐
culties in extrapolating to novel conditions and bring attention and 
awareness to the underlying issues associated with model trans‐
ferability (Qiao et al., 2018). As the novelty of the environmen‐
tal conditions in the region being evaluated increases, the model 
transferability performance scores decrease (Sequeira et al., 2016) 
while the probability of obtaining erroneous predictions increases 
(Elith & Leathwick, 2009).

From Figure 1, we can see that the geographic variation in the 
out‐of‐region cross‐validation scores reflect the spatial variation in 
the locations of the Expert and Citizen data, that is regions attained 
better performance scores with models using Expert data where 
more Expert data were collated, and vice‐versa for the Citizen data. 
Since Citizen data were present in more regions than Expert data, 
models calibrated with those data were more transferable across the 
study area (Figure 3). These results highlight the importance of train‐
ing SDMs with data obtained from the entire species' range (Elith et 
al., 2010), which in this case, was achieved using Citizen data.

We would have expected models with Combined data to obtain 
the best scores for the out‐of‐regions analyses, since they require 
the least amount of extrapolation. However, they had slightly poorer 
transferability scores. This is because leave‐one‐region‐out valida‐
tion was used to assess model performance, and a larger number of 
occurrences in the Combined dataset in the validation region meant 
that the analytical test was more rigorous in most regions, by virtue 
of a greater number of validation points. Using a fixed number of 

independent occurrences for every region would have provided a 
better evaluation dataset for the comparative analysis, but we did 
not have such a dataset.

4.2 | Accounting for sampling bias in SDM training

Although issues regarding sampling processes are usually associ‐
ated with citizen science data (Reddy & Dávalos, 2003), in our study 
Expert data showed important spatial biases. The biases in the Expert 
data are likely due to many years of research around the same study 
sites, for which locations were selected to answer specific research 
questions (e.g., assessing benefits of rabbit control methods) or for 
logistical reasons (e.g., easy to access sites; and sites with sufficient 
numbers of rabbits for sampling).

Generating pseudo‐absences weighted positively to the density 
of the occurrence data (following Phillips & Dudík, 2008), did not im‐
prove the skill of the models. Similar results were obtained by Syfert 
et al. (2013) and Tye, McCleery, Fletcher, Greene, and Butryn (2016) 
and were attributed to the bootstrapping method used to evaluate 
model performance (Phillips et al., 2009). Since both the test and 
training datasets are sampled from the same initial set of data, they 
are similarly biased, resulting in evaluation scores indistinguishable 
from models with random pseudo‐absences. Using an independent 
set of occurrence data which do not suffer from sampling bias as test 
data would potentially provide a better assessment of the correction 
method proposed here (Loiselle et al., 2008), but again such a data‐
set was not available.

4.3 | Rabbit biogeography in Australia

Our ensemble model projects that the environmental conditions 
suitable for rabbit persistence covers more than two third of 

F I G U R E  5  Ensemble averaged 
probability of occurrence of rabbits across 
Australia. Gradient goes from dark blue 
(probability 0) to bright red (probability 
of 1). The white land divisions and the 
dotted lines represent the location of 
state boundaries in Australian. The light 
gray regions are NA value resulting from 
missing information for some of the 
covariates
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the country, with the highest levels of probability of occurrence 
being in the southern regions of Australia below the Tropic of 
Capricorn (23rd parallel south) except for areas such as north‐
eastern Queensland, where rabbits extend toward 19th parallel 
south. This wide spatial distribution is supported by other studies 
(Fordham, Akçakaya, Araújo, & Brook, 2012; West, 2008). Our ap‐
proach, however, provides more detailed descriptions of the rab‐
bit's distribution based on climatic and nonclimatic covariates and 
is modeled at a much finer spatial resolution more relevant to the 
species biology.

Mean temperature of the warmest month (TWarmestMonth) 
and mean annual minimum temperature (TMin) had the greatest 
influence on probability of occurrence, regardless of the data 
set used to calibrate the model. In southern regions of Australia, 
where TWarmestMonth is <25°C, the highest probabilities of oc‐
currence (i.e., >0.85) were observed, while the reverse trend was 
obtained for the arid northern regions of Western Australia in‐
cluding the deserts where TWarmestMonth >28°C (i.e., <0.6). 
Although the species biology is complex, temperatures >25°C are 
often reported to stress rabbits, causing reproductive rates to de‐
cline (Cooke, Brennan, & Elsworth, 2018). Similarly, regions with 
TMin >  10°C have low probabilities of occurrence (i.e., <0.4). In 
these regions rabbits are unlikely to escape the stress exerted by 
the heat and humidity even when hiding in warrens during the day 
(Myers & Parker, 1975).

In the arid and central regions of Australia, rabbit populations 
are more likely to be observed near landscape structures which 
could provide adequate food resources and sheltered protection 
against the heat (Figure 5). Although rabbits primarily rely on the 
water content of the plants they consume (Berman, Brennan, 
& Elsworth, 2011; Cooke, 1982), rabbits do drink during severe 
drought. Furthermore, permanent water may also be associated 
with surrounding vegetation with higher water content and there‐
fore aid survival during droughts (e.g., distance to permanent 
water <~0.4 km). Generally, the probability of occurrence of rab‐
bits is also influenced by soil‐type (e.g., 20%–50% of soil that is 
clay) which not only explains warren distribution (Myers & Parker, 
1975) but also the persistence of perennial food plants across the 
year (Berman et al., 2011).

Although the ensemble model overestimated the known cur‐
rent distribution of the rabbit in some regions of Australia, such as 
the north of the Northern Territory (e.g., Tanami desert and Barkly 
Tablelands) and some regions in South Australia (e.g., the Victoria 
Desert region and Pinkawillinie National Park), these same regions 
are characterized with occasional and widespread sightings of rab‐
bits by citizens (West, 2008). This raises concern about the low 
level of monitoring in areas where the species might establish more 
widely. Future monitoring activities in these areas could be provided 
by expert's surveillance programs but directing the activities of citi‐
zen scientists toward these areas may be more effective and quicker. 
Promoting actively the collaborations between expert and citizens 
scientist can lead to the development and implementation of more 
effective monitoring programs for invasive species at a national scale.
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