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Abstract

Background: Deep learning (DL) has been widely used to solve problems with success in speech recognition, visual object
recognition, and object detection for drug discovery and genomics. Natural language processing has achieved noticeable progress
in artificial intelligence. This gives an opportunity to improve on the accuracy and human-computer interaction of clinical
informatics. However, due to difference of vocabularies and context between a clinical environment and generic English,
transplanting language models directly from up-to-date methods to real-world health care settings is not always satisfactory.
Moreover, the legal restriction on using privacy-sensitive patient records hinders the progress in applying machine learning (ML)
to clinical language processing.

Objective: The aim of this study was to investigate 2 ways to adapt state-of-the-art language models to extracting patient
information from free-form clinical narratives to populate a handover form at a nursing shift change automatically for proofing
and revising by hand: first, by using domain-specific word representations and second, by using transfer learning models to adapt
knowledge from general to clinical English. We have described the practical problem, composed it as an ML task known as
information extraction, proposed methods for solving the task, and evaluated their performance.

Methods: First, word representations trained from different domains served as the input of a DL system for information extraction.
Second, the transfer learning model was applied as a way to adapt the knowledge learned from general text sources to the task
domain. The goal was to gain improvements in the extraction performance, especially for the classes that were topically related
but did not have a sufficient amount of model solutions available for ML directly from the target domain. A total of 3 independent
datasets were generated for this task, and they were used as the training (101 patient reports), validation (100 patient reports),
and test (100 patient reports) sets in our experiments.

Results: Our system is now the state-of-the-art in this task. Domain-specific word representations improved the macroaveraged
F1 by 3.4%. Transferring the knowledge from general English corpora to the task-specific domain contributed a further 7.1%
improvement. The best performance in populating the handover form with 37 headings was the macroaveraged F1 of 41.6% and
F1 of 81.1% for filtering out irrelevant information. Performance differences between this system and its baseline were statistically
significant (P<.001; Wilcoxon test).

Conclusions: To our knowledge, our study is the first attempt to transfer models from general deep models to specific tasks in
health care and gain a significant improvement. As transfer learning shows its advantage over other methods, especially on classes
with a limited amount of training data, less experts’ time is needed to annotate data for ML, which may enable good results even
in resource-poor domains.
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Introduction

Background
Machine learning (ML) is being studied and used in a variety
of health informatics applications (eg, disease progression
prediction, therapy planning, medical diagnostic reasoning, and
automatic patient management) as a way to help clinical experts
to improve the efficiency and quality of medical care [1,2].

A clear majority of these applications use supervised learning,
which infers knowledge from labeled training data. However,
because of stringent restrictions on the use of clinical data [3],
data collections on real health care scenarios that are open for
research and development are very limited [4]. Moreover, the
few available sources have limitations such as research-only
use [5], nondisclosure of data [6], or limited commercial licenses
[7].

Zheng et al [8] proposed an information extraction (IE)
framework called IDEAL-X, which uses online learning
techniques to update the learning model based on user feedback.
Although the performance of their system looks very impressive,
the types of text this system is able to extract are limited to 5,
and these types such as age, gender, and medicine can be easily
retrieved with rule-based systems rather than ML systems. Leroy
introduced a rule-based automated IE system that extracts
diagnostic criteria from electronic health records for autism
spectrum disorders [9]. As the rules are manually generated
based on human observations of 1 specific data set, their system
cannot be generalized to other tasks.

In our previous study [4], we have already (1) discussed the
importance of comprehensive record keeping along with

information flow in health care in general and clinical handover
in particular, (2) developed and freely released a set of 101
synthetic clinical handover cases with verbatim conversations
and associated audio recordings constructed by a nurse with
over 12 years of experience in clinical practice to make sure the
cases are closely matched with the typical data found in a
nursing shift change, and (3) introduced and evaluated a
cascaded system that uses speech recognition (SR) to recognize
verbal clinical handover information and IE to fill in a handover
form for clinical proofing and sign-off (Figure 1).

Objectives
In this study, we have released another 2 datasets that follow
exactly the same format as our first release to supplement the
original dataset called the National Information and
Communications Technology Australia (NICTA) Synthetic
Nursing Handover Data. These 3 independent datasets target
researchers who are training, validating, and testing ML-based
SR and IE methods for the handover record-keeping task. A
description of our dataset is available in Multimedia Appendix
1.

More importantly, in this study, we have improved our IE
performance by using an ML method, which learns from other
data collections and transfers this knowledge to the handover
task. Processing correctness is crucial in medical informatics
applications; our benchmark results show that this task is very
challenging [4], and the previous state-of-the-art result on this
task was only 38.2% on macro F1 [10]. Even with our
supplementary data, the size of the in-domain training set is still
not adequate to train a traditional multilayer neural network
(NN) model for our IE task composed as a 50-class
classification.
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Figure 1. A processing pipeline that transforms verbal clinical handover information into electronic structured records automatically.

Generating or getting access to a large manually labeled training
corpus for this task is not easy. Fortunately, distributed word
representations, which can be learned from unlabeled data, have
recently been shown to have high utility in many natural
language processing (NLP) applications [11-14]. In this study,
we have investigated whether pretrained word embeddings
generated from general Web text could improve our system
performance in the IE task, even though it is relatively
domain-specific. Furthermore, we are also interested to discover
if training supplementary word embeddings based on a
domain-related corpus is more helpful than from a general
English corpus.

Transferring the knowledge learned from another domain to
our task is another way to cope with the problem of lack of
training instances. This method has shown its effectiveness in
previous studies [15,16]. In this study, we have implemented a
transfer learning–based approach to adapt weights of features

and labels from different source data corpora to gain an
improvement in the clinical handover IE task. More specifically,
if we define our current task as the target domain, then the
dataset that we want to adapt weights from is the source domain,
so we first train sequence labeling models on a source domain
training corpus and then learn the correlations between source
labels and the labels in our task. After this, we use the model
parameters of each related class in the source model to initialize
our conditional random field (CRF) model in our clinical
handover IE task. To extend the study, we have also explored
whether models learned from a source corpus, which is close
to a clinical domain, are more helpful than models trained on a
generic, large labeled corpus.

To summarize the contributions of this study, we have released
the data to study SR and IE and introduced a state-of-the-art IE
method for the handover task. The method is based on transfer
learning and compares with both the most recent deep learning
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(DL) approaches and more traditional CRFs for sequence
labeling.

Methods

NICTA Synthetic Nursing Handover Data
To fulfil the purpose of constructing systems to automatically
generate structuring of the narrative documents from nursing
shift change speech and handover, NICTA Synthetic Nursing
Handover Data [17-19] was created at NICTA/Data61 from
2012 to 2016. Their main author was a professional Registered
Nurse (RN), Maricel Angel, who has over 12 years of experience
in clinical nursing, based on general practice in medical wards.
Therefore, the text is very similar to real documents in typical
clinical scenarios.

This data collection of 301 records in total contained 3 disjoint
subsets for training (101 records), validation (100 records), and

testing (100 records; Figure 2). All 3 subsets were created under
a consistent practice with the same standards as used by
Suominen et al [4]. Each record contains a patient profile; a
written, free-form clinical handover for this profile; a voice
speech record of the handover; and, finally, a written, structured
document. To represent the most common chronic diseases and
national health priority areas in Australia [20], 4 kinds of
patients (ie, cardiovascular, neurological, renal, and respiratory
patients) were introduced into each subset and independently
followed a uniform distribution to provide a balanced
demographic sample. The structured document includes
annotation of 5 classes (PATIENT INTRODUCTION, MY
SHIFT, APPOINTMENTS, MEDICATION, and FUTURE
CARE), which were further divided into 37 subclasses,
supplemented by the category of not applicable (NA) for
irrelevant information.

Figure 2. Descriptive statistics of text snippets highlighted in the training, validation, and test set.

Word Representation
Word embedding is a vector matrix learned from an unlabeled
text corpus that maps vocabulary to a dense vector space. It
attempts to model the distributional hypothesis that words that
occur in similar contexts tend to be semantically similar. It has
been shown to contribute to a variety of NLP tasks even without
using any other features [21].

To capture word vector representations from large amounts of
unlabeled text, we adapted a skip-gram model [22] that uses
each current word to predict words in the neighboring context.
The training objective of the skip-gram model is to maximize
the averaged log probability over all training cases (T) of
appearance of the context word w_{t+j} given the current word
w_t, where j is the offset of the context word from the current
word in a context window size of c:

1 / T ∑ _ { T } ^ { t = 1 } ( ∑ _ { - c ≤ j ≤ c , j ≠ 0 } ( l o g
p(w_{t+j}|w_t)))

Then, applies softmax to each context word w_O of a given
occurrence of word w_I:

P(w_O|w_I)=exp(v’^{T}_{w_O}v_{w_I})/∑^W_{w=1}
exp(v’^T_w v_{w_I})

...where v_w is the input and v’_w is the output word embedding
of a word w, and W is the size of the training vocabulary.

Out of the 2 variations to optimize computational efficiency of
the skip-gram model, we have used negative sampling rather
than hierarchical softmax because, for sequence tagging tasks
in NLP, it can maintain more semantic information during the
training process [23] and obtain better results [24]. Rather than
calculating exp(v’^T_w v_{w_I}) for all w in the vocabulary
when calculating log p(w_{t+j}|w_t), negative sampling replaces
it with a logistic regression and distinguishes a context word
w_O from noise (negative samples):

log σ(v’^T_{w_O} v_{w_I}) + ∑^k_{i=1}
E_{w_i~U(w)} [log σ(-v’^T_{w_i} v_{w_I})],
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...where k is the amount of negative samples for each data
sample, and U(w) is a unigram distribution of words.

To integrate context information from a new domain-specific
corpus D_1 (eg, our clinical handover dataset), we need to
update our existing word embeddings that were learned from a
general large text collection D_0. However, this comes with a
significant challenge in that the original word embeddings were
trained on a very large corpus whereas our target domain
training data are normally much smaller in size. More
specifically, if we compare the vocabulary between D_0 and
D_1, V_0 ∩ V_1 is the intersection between 2 vocabularies,
which is mainly composed of more general terms compared
with V_1/V_0: the relative complement of V_0 with regard to
V_1. As word vectors in V_0 have already been trained for
several epochs and converged to our desired values, we do not
want to change them significantly. However, new words that
were just introduced to the vocabulary from V_1/V_0 contain
domain-specific, related terms about which we care the most.
Owing to the limitations in the available amount of training
samples, a large learning rate at the beginning is useful to adjust
these vectors to the regions they belong. Using the original
skip-gram algorithm will potentially either adjust the already
converged vectors from V_0 away from their optimized values
or the new word vectors will not get close to words that are
similar to them in the vector space. To cope with this problem,
we used 2 strategies in our experiments: averaged initialization
as well as different learning rates.

In averaged initialization, our assumption was that words in
similar contexts would have similar meanings or have
grammatical similarities. Although this is not always true, this
strategy helps in learning the new words, as they start from an
(averaged) optimized point rather than from scratch. To model
this, whenever a new word appears, the initial value of the vector
is set to be the averaged value in each dimension of words in
the same sentence:

1/S∑^{S}_{i=1} v_i, where v_i= v, if v  V_0,

= v_0, otherwise

...where S is the sentence length and v_0 denotes the vector in
V_0, which represents the vector of unknown words.

During the training procedure, we have also used different
learning rates for words in V_1/V_0 in contrast with V_0∩V_1:

α_t=α_{0_new}(1–t/n), t≠0, and v V_1/V_0

α_t=0.2, t=0, and v V_1/V_0

α_t=α_{0_old}(1–t/n), t≠0, and v V_1∩V_0

α_t=α_{0_new}(|V_1/V_0|/|V_0∪V_1|), t≠0, and
v V_1/V_0

...where n is the amount of samples input to the network. For
new words, the initial learning rate α_{0_new} is set to 0.2 and
decreases over time. For words that are already in V_0, the initial
learning rate is set to the portion of new words in the entire
vocabulary: the more learning samples we have for new words,
the larger the initial learning rate for old words.

Transfer Learning for Sequence Labeling
For sequence tagging tasks that use supervised ML, the amount
and purity of training data is crucial to the performance of our
system. As the complexity of learning a 40-class classifier is
high, for some labels, there is only 1 case in the training set,
which could not be generalized to infer good functions [25].
Therefore, introducing more training data could improve the
final results. However, when more training instances are not
available, or are extremely costly in human labor, transfer
learning, which adapts weight matrixes from functions trained
with another dataset and applied to the current task, is another
way to gain knowledge of labels with limited training instances.

The underlying idea of transfer learning is simple: in deep NNs,
there are several hidden layers between the input and output
layers; as data feed forward from the input layer to the output
layer, the composition of features is learned from earlier layers
[26]. A typical sequence tagging structure can be demonstrated
as the left block in Figure 3: neurons in lower layers tend to
capture some common, nondomain, or task-specific concepts,
and later layers would concatenate these features and generate
higher-level concepts. Therefore, weights learned from other
datasets or even other tasks can be potentially reused as long
as the structure of the later layers are consistent between the
source model and target model.

Several strategies of transfer learning on different NLP tasks
and domains have been explored. A simple strategy is to copy
all weight matrixes in the source model to the target model and
fine-tune the target model with new data [27], which
successfully outperformed the leading team in the Multilingual
Emoji Prediction task [28] by 1.55% without any feature
engineering procedure. However, this method requires the source
and target model to have the exact same structure. An alternative
strategy is to map annotations from different datasets into 3
consistent labels and use source domain model parameters
directly as initializations for a target domain model in named
entity recognition [16]. Finally, human adjustment of rules and
features [29,30] or clustering labels from source domain and
target domains to automatically generate label mappings from
one dataset to the other [31] can be applied as transfer learning
strategies. However, their productivity may be limited when
adapting a general source model to multiple tasks and also the
generated mappings might not be satisfactory, especially when
2 datasets have dramatic differences in terms of phraseology
and grammar.

The method we have introduced in our study was able to transfer
knowledge to a target domain that does not match labels in the
source domain, does not depend on human integration during
the label mapping process, and is able to map labels from very
different datasets. This method follows 3 steps (Figure 3): the
first step trains a CRF model on the source domain, the second
step uses the weight matrix of the source model W^s to train a
2-layer CRF that predicts a target domain label given a source
domain label, and, finally, the third step is to initialize the
parameters of the target domain model using the product of W_s
and the second layer weight matrix W^t obtained in step 2.

First, in the source model training step, a linear-chain CRF
model is trained on a large labeled source dataset. For each word
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x_i in a sequence x, y_i   Y is the label of x_i, where Y is the
label set. Then (x; y) is a sequence of word label pairs; a linear
chain CRF is a distribution p (y| x) that takes the form:

p( y| x) = 1/Z ∏^{L}_{l=1} ( W^f f(y_l, x) + W^g
g(y_{l-1}, y_l))

...where Z is a normalization constant, L is the length of x, f(y_l,
x) is a real value feature function of x, g(y_{l-1}, y_l) is a feature
function of current label y_l and previous label y_{l-1} in the
sequence to capture the cooccurrence between adjunct labels,
and contains the parameters of the feature functions.

For now, the source CRF model can be seen as an NN with 2
hidden layers: the lower layer, which is connected by W^f, and
the upper layer connected by W^g (Figure 3). However, because
the information that is captured by W^g is normally domain-
and task-specific, label correlations do not always have
similarities between different domains, which would thus not
be suitable to be transferred to the other task. In contrast, the
lower layer learned correlations between words and source
labels, which is what we are interested in, are actually a logistic
regression model:

σ(y*, x_i, W^f) = exp( W^f_{.y*}f(y*_i, x_i)) /
∑_{y Y}exp( W^f_{.y}f(y, x_i))

Second, in the source label and target label correlations step,
we have propagated the label probabilities from the later layer
of the source domain model to another logistic regression
classifier to form a 2-layer linear-chain CRF model that predicts
target domain labels and uses source domain labels to learn
correlations between the source and target labels. More
specifically, the linear layer from the source model can be
defined as:

a_i= W^s f(y, x_i)

...where each a_i is the probability for each source label and
W^s denotes the weight matrix from source domain. After this
layer, a linear regression classifier takes the output from a_i to
predict target labels:

p(y’| a)=σ(y’, a_i; W^t),

...where y’ is the target type. This is equal to:

p(y’| x)=σ(y’, x_i; W^t W^s)

Figure 3. Transfer learning model structure.

After W^s and W^t are trained, we were able to initialize a CRF
model to predict target labels with W^f = W^tW^s as the third
step:

p( y| x)=1/Z ∏^{L}_{l=1} ( W^t W^s f(y_l, x))

During this procedure, the parameters of label NA, W^t_{NA}
are reset to be zeros because the amount of instances of NA in
the text corpus is much larger than that of other labels, which
would cause the model to be biased to the dominant class.

Theoretically, the parameters of feature functions will converge
to the same weights with a random initialization model when
the number of iterations is large enough because the loss
function is convex. However, our aim was to inherit knowledge
from the source domain, updating W^tW^s too often would
cause the model to forget what it has learned so far. Therefore,
early stopping and adaptive gradient algorithm (AdaGrad) [32]
are applied to preserve the learned source domain knowledge.

Performance Evaluation and Experimental Design
To compare the performance of systems, we have measured the
precision, recall, and F1 (harmonic mean of precision and recall)
over all categories [33]. More specifically, microaveraged F1
and macroaveraged F1 are calculated. As our purpose was to
emphasize on systems that perform well in all classes rather
than only in the classes that have majority instances,
macroaveraged F1 was selected as the main evaluation
measurement.

The resources used in our experiments were derived from 7
different corpora (Table 1). Among them, 3 were general English
text based, 3 were specific to the English health care domain,
and 1 was the test set. Details of the test set are available in
Multimedia Appendix 2.

1. General English Corpora:
• English Wikipedia is a freely available corpus from the

September 2014 version of all pages from all Wikipedia
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wikis. It contains more than 3 million English pages,
100 million sentences, and 3.4 billion words in total
after cleaning.

• University of Maryland, Baltimore County (UMBC)
WebBase corpus is a dataset containing a collection of
100 million English Web pages from more than 50,000
websites with over 3 billion words processed from the
February 2007 crawl by the Stanford WebBase project
[34].

• One Billion Words Benchmark for Language Modeling
is a freely available standard corpus of 4.2 GB (0.8
billion words) for building and testing language models
[35].

2. Medical Domain–specific English Corpora:
• I2B2 is a collection of fully deidentified clinical records

provided by the I2B2 National Centre for Biomedical
Computing funded by U54LM008748 and was
originally prepared for Shared Tasks for Challenges in

NLP for Clinical Data organized by Uzuner, I2B2, and
SUNY [36-39].

• PubMed is a free resource containing over 27 million
citations to the biomedical literature and publication
abstracts derived from MEDLINE, life science journals,
and Web books. It was developed and is maintained
by the National Centre for Biotechnology Information
at the US National Library of Medicine (NLM).

• PubMed Central (PMC) Open Access Subset contains
over 1 million biomedical articles from PMC, which
is a free archive of biomedical and life sciences journal
publications at the US National Institutes of Health's
NLM.

• NICTA TRAIN is the NICTA Synthetic nursing
handover dataset, an open clinical dataset of 3 sets of
nursing handover records, very similar to real
documents in Australian English. Each record consists
of a patient profile, spoken free-form text document,
written free-form text document, and written structured
document [40].

Table 1. Word embeddings training corpora.

SourceSizeCorpus

Wikimedia downloads [41]3.4 billion wordsEnglish Wikipedia

UMBC WebBase corpus [42]>3 billion wordsUMBCa

One Billion Word Benchmark for Measuring Progress in
Statistical Language Modeling [43]

0.8 billion wordsOne Billion

I2B2 NLPb research data sets [6]18,082 unique wordsI2B2

PubMed resources [44]27 million recordsPubMed

PubMed resources [45]1 million articlesPubMed Central

Hospital handover forms [17]101 recordsNational Information and Communications Technology
Australia Train

aUMBC: University of Maryland, Baltimore County.
bNLP: natural language processing.
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Table 2. Mapping of entity types between the source and target corpora.

Target: NICTAa Clinical HandoverOut-domain source: I2B2In-domain source: Bolt, Beranek and Newman

PATIENT_INTRODUCTION/Given_namesPATIENTPERSON

PATIENT_INTRODUCTION/Last_namePATIENTPERSON

PATIENT_INTRODUCTION/Under_Dr:Given_namesDOCTORPERSON

PATIENT_INTRODUCTION/Under_Dr:Last_nameDOCTORPERSON

APPOINTMENTS/Clinician:Last_nameDOCTORPERSON

APPOINTMENTS/Clinician: Given_namesDOCTORPERSON

APPOINTMENTS/HospitalHOSPITALORGANIZATION:HOSPITAL

PATIENT_INTRODUCTION/Age_in_years—bDATE:AGE

PATIENT_INTRODUCTION/Gender—PER_DESC

APPOINTMENTS/Clinician Title—PER_DESC

APPOINTMENTS/CityLOCATIONGPE:CITY

APPOINTMENTS/DayDATEDATE:DATE

APPOINTMENTS/Time—TIME

PATIENT_INTRODUCTION/Current_roomIDCARDINAL

PATIENT_INTRODUCTION/Current_bedIDCARDINAL

Medication/Medicine—PRODUCT:OTHER

Medication/Medicine—SUBSTANCE:DRUG

Medication/Dosage—QUANTITY:3D (volume)

Medication/Dosage—QUANTITY:OTHER

My_shift/Status—QUANTITY:TEMPERATURE

My_shift/Status—QUANTITY:WEIGHT

My_shift/Input_diet—SUBSTANCE:FOOD

APPOINTMENTS/Ward—FACILITY

PATIENT_INTRODUCTION/Admission_reason/diagnosis—DISEASE

PATIENT_INTRODUCTION/Chronic_condition—DISEASE

PATIENT_INTRODUCTION/Disease/problem_history—DISEASE

aNICTA: National Information and Communications Technology Australia.
bDoes not contain any matching label from the source domain.

For the source domain corpus, we used 1 domain-related dataset,
which contained labels that were relevant but not exactly the
same as in our target domain data, and 1 of the domain corpora,
which contained many of the general labels, including some
labels that were relevant to biometrics. With this setup, we were
keen to find out whether the parameters learned from the same
domain were more valuable than those from general English.

The related domain source corpus was the aforementioned I2B2.
It included fully deidentified discharge summaries and progress
notes from real hospital scenarios. All records had been
manually annotated for concept, assertion, and relation
information. The corpus contained entities of 7 different labels:
PATIENT, DOCTOR, HOSPITAL, DATE, PHONE,
LOCATION, and ID. They were potentially relevant to labels
in our NICTA dataset.

The general domain source corpus was Bolt, Beranek and
Newman (BBN), which has a 1 million-word Penn Treebank

corpus of Wall Street Journal texts annotated by BBN with 28
main types of entities: 12 named entity types (Person, Facility,
Organization, geographical entities (GPE), Location, Nationality,
Product, Event, Work of Art, Law, Language, and Contact-Info),
9 nominal entity types (Person, Facility, Organization, GPE,
Product, Plant, Animal, Substance, and Disease and Game),
and 7 numeric types (Date, Time, Percent, Money, Quantity,
Ordinal, and Cardinal). These types were further divided into
64 subtypes [46] (see Table 2 for the types related to labels in
the target domain).

To examine what kind of word embeddings were most valuable
to our task, we classified all the available datasets into 3
different groups: Group 1 General (English
Wikipedia+UMBC+One Billion) was composed of general
English materials, which do not contain many domain-specific
words or sentences. Group 2 Biomedical literature
(PubMed+PMC) was composed of biomedical literature and
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abstracts. Words in this group could be similar to clinical words
but would be used in different ways, considering that publication
writing is different from authoring clinical documents. Group
3 Clinical documents (I2B2+NICTA Train) was composed of
clinical handovers, discharge summaries, and progress notes
that closely resemble our task data. All corpora were
preprocessed with the Stanford CoreNLP sentence splitter and
tokenizer [47]. Digits were replaced with NUM[Length] (eg,
08-08-1988 is replaced by NUM2-NUM2-NUM4), this method
helps to capture some digit patterns such as date and phone
numbers and will dramatically decrease the amount of words
in vocabularies as well. To compute vector representations of
word, word2vec [48] was used and modified with an extra option
to incrementally train word embeddings based on existing
models being given new text materials. We inherited the best
parameter settings for named entity recognition from a previous
study [24] with 200-word vector dimensions, 5 words in the
context window, 10 negative samples, start with a 0.05 learning
rate, and run over 20 iterations.

Besides using word vectors as features, we also used a collection
of hand-crafted features that were identical to our previous
NICTA IE system [25] for performance tracking. For each
feature of 1-word instance, a unigram with a window size of 3
(w_{i-1}, w_i, w_{i+1}), and bigrams with a window size of 2
(w_{i-1}w_i, w_iw_{i+1}) were used. Features used in our
experiments include the lemma, part of speech tag, and parse
tree, top 5 candidates and top mapping retrieved from the
Unified Medical Language System (UMLS) [49], medication
score—derived from the Anatomical Therapeutic Chemical
List, location, and frequency.

To track the performance improvement on this task, the
following 10 baselines were included for comparison, they are:
1) Benchmark, 2) TUC-MI-A, 3) TUC-MI-B, 4) ECNU_ICA-A,
5) ECNU_ICA-B, 6) LQRZ-A, 7) LQRZ-B, 8) Unigram NN, 9)
Random, 10) Majority.

Benchmark
This was the initial NICTA benchmark system on this task using
a single-layer linear-chain CRF [50] with L2 regulator with the
handcrafted features mentioned before as input. A detailed
description of this system can be found in the study by Suominen
et al [4].

Participants of Conference and Labs of the Evaluation Forum
(CLEF) eHealth Evaluation Lab 2016 Task 1: The CLEF
eHealth 2016 Task 1 required the participants to implement
systems that are able to identify relevant text snippets from
free-text nursing handovers [51]. Participants were expected to
train their systems using the given training set, optimize their
performances using the validation set, and their final result was
tested on a previous confidential test set. It should be noted that
the benchmark NICTA IE system was provided to participants
in the CLEF task as well as feature generators and intermediate
processing results [51]. Participants could start their experiments
from any point based on our previous work with very little
effort. In fact, all systems except a and b were started from the
NICTA benchmark IE system.

• TUC-MI-A was based on our benchmark system; rather
than using our default features, this method constructed a
41-feature set based on Stanford CoreNLP, latent Dirichlet
allocation, regular expressions, and the ontologies of
WordNet and UMLS features [10].

• TUC-MI-B optimized TUC-MI-A; 19 features were selected
from the whole feature set with forward and backward
greedy search.

• ECNU_ICA-A was a rule-based IE system to recognize bed
number, room number, age, and doctor’s name and was
combined with CRF results using the same feature
collection with the organizers’ benchmark system [52].

• ECNU_ICA-B has the same system architecture as
ECNU_ICA-A, except for CRF training, and a subcollection
of features was used for different label types [52].

• LQRZ-A was a feed-forward neural network with one hidden
layer initialized with uniform distribution. Inputs to this
NN model are pretrained word embeddings from
GoogleNews. No handcrafted features were used in this
model [53].

• LQRZ-B firstly used a random forest to predict a subset of
the tags and the previous NN to further discriminate
between the remaining labels [53].

Unigram NN
The unigram NN was an implementation of a 2-layer, first-order
linear-chain graph transformer [21] with handcrafted features
weighted by word vectors as the first layer and a linear-chain
CRF on top of it. The model was trained using AdaGrad. This
is a baseline to show separately, from the multilayer NN, what
is the performance gain from using word embeddings and
transfer learning.

Other Baselines
We evaluated the task difficulty of labeling each word with 1
out of 37 classes by comparing 2 baseline systems: First, we
built a system that assigns classes randomly. Second, we
implemented another system that always predicts the majority
class (ie, the most common class in the training set): Random
to randomly select 1 class label for each instance and Majority
to assign the majority class of Future_Goal/
TaskToBeCompleted/ExpectedOutcome for every instance.

Results

Researchers worldwide have contributed to achieve a significant
improvement on the clinical handover task because of a shared
computational task organized in 2016 [51]. In this study, we
have reported the results from our experiments on the test set
(Table 3) and have also taken this opportunity to overview
performance improvements in the task, to summarize methods
that have been used to solve the problems so far, and to inspire
researchers to work further on this task. Overall, the
state-of-the-art benchmark has been increased from 38.2% to
41.6% F1 (P<.001; Wilcoxon text [54]). Our transfer learning
method using BBN as source domain (Trans_BBN) outperforms
all other methods.
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Table 3. Results of transfer learning compared with baseline systems.

MicF1fMicReceMicPrecdMacF1cMacRecbMacPrecaMethod

0.5160.4880.5470.4160.4190.498 gTrans_BBN

0.5140.4710.5650.3920.3900.481Trans_I2B2

0.5030.5050.5000.3820.3690.493TUC-MI-B

0.5160.5220.5100.3740.4060.493ECNU_ICA-A

0.5400.4830.6120.3540.3610.477General+I2B2+train

0.5370.4840.6040.3540.3670.443I2B2+train

0.5350.4780.6060.3450.3560.429General

0.5030.5170.4900.3450.3830.425LQRZ-B

0.5320.4740.6060.3340.3460.409General+PubMed+PMC

0.5030.4480.5740.3110.2920.393Unigram

0.4710.4430.5030.3110.3000.423TUC-MI-A

0.5140.4720.5630.3080.3070.411LQRZ-A

0.5130.4590.5810.2970.2920.428ECNU_ICA-B

0.3980.3680.4330.2460.2330.435National Information and Communications
Technology Australia

0.0220.0300.0180.0190.0280.018Random

0.0200.0270.0160.0010.0290.000Majority

aMacro averaged precision.
bMacro averaged recall.
cMacro averaged F1.
dMicro averaged precision.
eMicro averaged recall.
fMicro averaged F1.
gItalics indicate the best result over the column.

Transfer learning with I2B2 as a source model (Trans_I2B2) is
also able to increase the overall macro F1 by 4.7% (P<.001)
compared with models using a 2-layer NN with general word
embeddings (General). When using the same collection of
handcrafted features, a 2-layer NN model (Unigram) performs
6.5% better than a single-layer linear-chain CRF (NICTA). The
same model (Unigram) gains 3.4% improvement of macro F1
(P<.001) by using word embeddings pretrained with a large
text collection with general English (Wiki). Word embeddings
trained with a domain-related corpus but different context
(Wiki+PubMed+PMC) actually harm rather than help the result.
This is possibly because although the domain-related corpus
contains medical terms, which are also used in a clinical health
care environment, the context of these terms is still very different
from clinical handovers. On the contrary, documents used in a
similar scenario (I2B2+train) show their advantage at this point.
Finally, embeddings trained with a combination of I2B2+train
with general English (Wiki_I2B2+train) do not help the system
to increase the macro F1, but they yield the best result on micro
F1.

Discussion

Principal Findings
It can be seen from the experiment results that the DL system
using pretrained word representations as the input, and the
proposed transfer learning technique, is able to achieve better
performance.

When comparing the results of different system setups on
different subclasses, we observed that word representations
learned from different domains and the knowledge transferred
from various sources affect the clinical IE system on certain
subclasses.

Comparing with the best result of feature engineering methods
used in TUC-MI [9], our transfer learning method performs
3.4% better without a labor-costing feature-selection procedure.
Furthermore, in contrast with the rule-based methods used in
ECNU_ICA [52], which require domain-specific experts to
inspect data carefully and make the rules, our method is much
more efficient and still able to achieve a 4.2% better macro F1.
Finally, the best LQRZ [53] used a very similar architecture
with our General model, and we can see their performance is
very similar as well; the minor difference is caused by different
materials to train the word embeddings. Our transfer learning
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method is able to improve 7.1% macro F1 on top of the General
model (P<.001).

In this section, we have analyzed these results and discussed
these effects. The default measure will be the official macro F1
unless specifically mentioned otherwise.

Word Representations
Word embeddings trained from general English can improve
the clinical IE performance. Our results show that the General
model, which used exactly the same model structure and feature
map as the Unigram model, except it used a combination of 3
large corpora (English Wiki, UMBC, and One Billion) to train
general word embeddings, performed better on the overall task
(34.5% vs 31.1%, respectively; P<.001). This indicates that
word representations trained from unlabeled general English
text are able to capture word features that contribute to
classifying different annotations in clinical handovers.

Moreover, general word embeddings fine-tuned with a small
task-relevant dataset can further increase the result. The model
trained with I2B2 and NICTA training data (I2B2+train)
outperforms the Unigram model by 4.3% and outperforms
general embeddings when it is compared with the General model
(35.4% vs 34.5%, respectively; P=.17).

However, no evidence was found to indicate that continuing
training word embeddings with a relevant dataset based on
pretrained general word embeddings contributes to the system
performance when comparing the I2B2+train with
General+I2B2+train. This might be because although the
corpora of I2B2 and NICTA training data are significantly
smaller than the general English corpus, the vocabulary is still
enough to cover words that are present in the test set, and after
several iterations of training, word embeddings in these 2
different settings eventually converged to similar values.

Word embeddings trained from domain relevant data do not
show any evidence to contribute to improving the system result
either. Our results showed that the General+PubMed+PMC
model performed worse than the General model (33.4% vs
34.5%, respectively; P=.07). This might be because even though
we considered clinical and biomedical areas as relevant, but
because of having different scenarios, vocabulary and context
could end up too different. This would introduce more noise to
the word embeddings and so does not contribute to the IE
performance.

Transfer Learning
Transfer learning shows its advantage in the clinical handover
IE task. The top 2 systems were both transfer learning models.
Transfer learning from BBN (Trans_BBN) was 3.4% higher
than the previous best system TUC-MI-B (41.6% vs 38.2%,
respectively; P<.001).

For the overall result, there is no strong evidence to show any
advantage of transfer from domain-relevant source data
(Trans_I2B2) over general annotations (Trans_BBN). On the
contrary, transfer learning from BBN with general annotations
performed slightly better than I2B2, which contains more
relevant entities with our target task on macro F1 (41.6% vs
39.2%, respectively; P<.001).

For subclasses, Table 4 shows the results of transfer learning
compared with the baseline system when the performance is
improved on subclasses. When referring to Table 2:

1. Some subclasses where the performance is improved by
transfer learning HAVE a mapping annotation type from
the source domain: for example, subclass
PATIENT_INTRODUCTION: Age in years has a mapping
annotation DATE:AGE in the source domain BBN, and
Trans_BBN on this subclass performed better than the
General model (96.5% vs 94.8%, respectively; P<.001).
This indicates that when the target domain labels have
mappings from the source domain annotations, transfer
learning can improve the extraction results of these labels.

2. Some subclasses where the performance is improved by
transfer learning do not have a mapping annotation type
from the source domain: for subclass FUTURE_CARE:
Alert/waring/abnormal result, the general model was not
able to predict any instance correctly, whereas transfer
learning did learn some knowledge from the training set
but the performance was still not very high. This might be
because these subclasses may have some underlying
correlations with source domain labels that are automatically
learned during the second process in our method, even
though the correlations were not straightforward or obvious
for human readers.

3. Some subclasses that have mappings from the source
domains do not gain any improvement from transfer
learning: for example, PATIENT_INTRODUCTION/
Given_names. These classes normally already have good
performance from only using general models, so transfer
learning, in this case, might introduce extra noise from other
domains that potentially have different sentence structures
to the target domain, and thus harm the results.
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Table 4. Results of subclasses when transfer learning improved in the baseline system (F1 score).

Trans_BBNTrans_I2B2GeneralInstances (n)Entity type

0.965 a0.8790.948246PATIENT_INTRODUCTION: Age (years)

0.9170.8960.82688PATIENT_INTRODUCTION: Gender

0.3440.3110.214412PATIENT_INTRODUCTION: Admission reason

0.0810.1050.00070PATIENT_INTRODUCTION: Chronic condition

0.0440.0830.016147PATIENT_INTRODUCTION: Disease/problem history

0.1330.1290.06936PATIENT_INTRODUCTION: Care plan

0.5660.5000.26714PATIENT_INTRODUCTION: Allergy

0.4000.4310.11428APPOINTMENTS: Time

0.4000.0000.0003APPOINTMENTS: Place: Ward

0.1320.1750.111159APPOINTMENTS: Status

0.1780.0870.00059FUTURE_CARE: Alert/warning/abnormal result

0.0700.0680.000496FUTURE_CARE: Goal/task to be completed/expected outcome

0.3610.2880.32789FUTURE_CARE: Discharge/transfer place

0.6380.6880.570481MY_SHIFT: Status

0.8040.7830.413101MY_SHIFT: Input/diet

0.4780.3960.28652MY_SHIFT: Output/diuresis/bowel movement

0.4570.3570.44455MY_SHIFT: Wounds/skin

0.7480.7530.579245MY_SHIFT: Activities of daily living

0.2020.2200.177361MY_SHIFT: Other observation

0.4950.5480.450156MEDICATION: Medicine

0.0850.0860.03468MEDICATION: Status

aItalics indicate the best result over the column.

Conclusions
This study investigated adapting a DL method to extract patient
information from clinical reports. Domain and task specification
word representations have been used as inputs to a DL system
to achieve better performance. In addition, a transfer learning
model has been applied to adapt knowledge learned from general
text sources to a domain-specific task. This method was able
to further improve the overall result, especially in the classes
related to the source domain. Domain-specific word

representations improve the overall clinical IE system
performance by 3.4% on macro-F1. Transferring the knowledge
from a general English corpus to our task-specific domain gains
a further 7.1% improvement. To our knowledge, our study is
the first attempt to transfer knowledge from general deep models
to specific tasks in health care and gain a significant
improvement. The result of our system is state-of-the-art on this
task. Our method and result point out the way toward adapting
an advanced ML technique to professional informatics system
tasks.
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Multimedia Appendix 2
The test set of our experiments in the format of each row contains the word with its features, and the last column is the
human-assigned label.
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