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Abstract—A common problem for network intrusion detection
systems is that there are many available features describing
network traffic and feature values are highly irregular with
burst nature. Some values such as octets transferred range
several orders of magnitudes, from several bytes to million
bytes. The role of network features depends on which pattern
to be detected: normal or intrusive one. Intrusion detection
rates would be better if we know which network features are
more important for a particular pattern. We therefore propose
an automated feature weighting method for network intrusion
detection based on a fuzzy subspace approach. Experimental
results show that the proposed weighting method can improve
the detection rates.
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I. INTRODUCTION

Network intrusion detection systems are automated systems
that detect intrusions in computer network systems. Data
mining-based network intrusion detection systems can be clas-
sified into signature-based intrusion detection and anomaly be-
havior detecting-based intrusion detection. A signature-based
intrusion detection system constantly scans the network and try
to match network traffic with some predefined patterns [1]-[3].
The main advantage of this system is that it can accurately
detect known attacks, while its drawback is that it cannot
detect novel, previously unseen attacks. An anomaly behavior
detecting-based intrusion detection system builds normal traffic
profile and uses this profile to detect abnormal traffic patterns
and intrusion attempts. The goal of this intrusion detection
system is to determine whether an unknown network data
item belongs to “normal” or to an intrusive pattern. Extensive
domain knowledge is required to provide signatures, yet the
process to identify new signatures is time consuming and
always legs behind the new attacks. On the other hand, an
anomaly behavior detecting based intrusion detection system
uses a statistical method in data mining to learn the patterns
of network traffic. Different techniques have been proposed to
train network attack models [4]-[7].

A common problem for all network intrusion detection
systems is that there are many available features describing
network traffic. Basic features for a network connection include
the duration of the current connection, the source IP address,
the destination IP address, octets transferred (both inbound and

outgoing), the protocol type, the service port, the connection
flags etc. Some of these features are of symbolic values such as
the protocol types (HTTP, FTP, TCP, and UDP) and connection
flags (ACK and RST). Other features are digital values such
as duration of the connection and the octets transferred. Note
that the source IP address, the destination IP address, and the
service port features are regarded as symbolic values although
they appear in digital format, because the values are just
served as identities. Compound features, such as the number of
connections happened in a fixed time window and the number
of service ports contacted in the fixed time windows, can be
calculated from the basic features over the time. They are
often used to construct traffic profile. The selection of features
has direct impact on the results of anomaly detection. Values
of network traffic octets features range in several orders of
magnitudes, from several bytes to 10® bytes. Network also
has unique burst nature. The number of connections and the
volumes of octets transferred may be boosted to extraordinary
large numbers from time to time and cannot be predicted
beforehand. The reasons which caused the burst are diverse,
ranging from normal operation to being under attacks.

Current network intrusion detection methods provide low
detection rates because of the multi-dimensional data problem.
For example, a simple variant of single-linkage clustering was
applied in [8] to learn network traffic patterns on unlabelled
noisy data. The KDD CUP 1999 dataset [9] was used and this
approach achieved from 40% to 55% detection rate and from
1.3% to 2.3% false positive rate.

We presented fuzzy c-means vector quantization (VQ) mod-
eling for network intrusion detection in our previous work [10].
A typical network intrusion detection system using fuzzy VQ
is presented in Figure 1. This method achieved higher detection
rates than the traditional k-means VQ modeling method. For
further investigation, we carefully considered network data
to improve the network intrusion detection. We found that
network data values are highly irregular with burst nature.
Some values such as octets transferred range several orders of
magnitudes, from several bytes to million bytes. The detection
system would be better if we know which network features
are important. So we considered network data as a set X of
feature vectors of M dimensions, i.e. M features. Each feature
vector is considered as a point in an M-dimensional space.
For example, M = 41 in the KDD CUP 1999 dataset used in



our experiments. We extracted subsets of feature vectors of M’
dimensions where M’ < M from the set X. Feature vectors in
these subsets were considered as points in subspaces of the M-
dimensional space. The choice of M’ features was based on the
meaning of features and our experience in computer network.
We then used the same modeling method in [10] to model the
network data subsets and measure the network intrusion detec-
tion rates for the entire set and all subsets. Experimental results
showed that the choice of network features was dependent on
the network attack type to be detected. Some features were
good for detecting normal traffic pattern and other features
were good for detecting abnormal traffic patterns.
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Fig. 1. Block diagram of a typical network intrusion detection system using

fuzzy VQ modeling

Therefore we propose an automated feature weighting
method to find out feature subspaces automatically in the entire
feature space and then assign fuzzy weight values to network
features depending on which subspace they belong to. The
weighting algorithm based on fuzzy c-means estimation is
proposed. A set of M weights for the feature vector set of
M features will be calculated when we train network models.
In the detection stage, these weight values are used to calculate
similarity scores between unknown network data and network
models. The modeling method is the same fuzzy c-means VQ.
Experimental results show that the proposed weighting method
can improve the detection rates.

The rest of the paper is as follows. Section 2 briefly reviews
current detection methods. Section 3 presents the fuzzy VQ
modeling method. Section 4 presents the fuzzy c-means-based
subspace method. Section 5 describes network data and attack
types. Section 6 presents experimental results. Finally, we
conclude the paper in Section 7.

II. CURRENT NETWORK INTRUSION DETECTION
METHODS

Different techniques have been proposed as detection en-
gines, for example using probability distribution to detect
intrusions [4], autonomous agents and distributed intrusion
detection [5], data mining model [6] and hidden Markov model
[7]. A good survey can be found in [11] and [12]. Due to
the highly irregular distribution of the network data, which

has “power-law distribution” and is “one-sided and heavy
tailed” [13], using clustering method is strongly advocated by
a number of research groups.

Most of the current clustering-based methods were evalu-
ated using the KDD CUP 1999 dataset [9] or the DARPA 1999
dataset [14]. A simple variant of single-linkage clustering was
applied in [13] to leam network traffic patterns on unlabelled
noisy data. The KDD CUP 1999 dataset was used but it was not
clear that what features were selected. This approach achieved
from 40% to 55% detection rate and from 1.3% to 2.3% false
positive rate. NATE (Network Analysis of Anomalous Traffic
Events) in [15], [16] was proposed to select some of the traffic
records to improve the detection performance. The selected
features include the frequency of TCP flags, the average and
total number of bytes transferred, the percentage of session
control flags, and also network packet header information. The
dataset was MIT Lincoln lab data [14]. CLAD (Clustering
for Anomaly Detection) in [13] used k-NN algorithm and an
unsupervised training process. CCAS [17] was proposed for
supervised clustering and classification. They chose clustering
method because it relies very little on the distribution models
of data. Weka data mining tools [18] was used and selected
features were time stamps, protocol, destination IP, Source IP,
Service port, number of packets, duration, and the country of
source IP address. However it is unclear that how symbolic
values (protocol) were handled.

III. VECTOR QUANTIZATION

Vector quantization (VQ) modeling is an efficient data
reduction method, which is used to convert a feature vector
set into a small set of distinct vectors using a clustering
technique. Advantages of this reduction are reduced storage
and computation. The distinct vectors are called codevectors
and the set of codevectors that best represents the training set
is called the codebook. Since there is only a finite number of
code vectors, the process of choosing the best representation
of a given feature vector is equivalent to quantizing the vector
and leads to a certain level of quantization error. This error
decreases as the size of the codebook increases, however the
storage required for a large codebook is non-trivial. The VQ
codebook can be used as a model in pattern recognition. The
key point of VQ modelling is to derive an optimal codebook
which is commonly achieved by using a clustering technique.

A. Vector Quantization Modeling

VQ modeling can be summarized as follows. Given a

training set of T feature vectors X = {xi,x2,...,Xr},
where each source vector x; = (41, %t2,...,%tn) is of M
dimensions. Let A = {c1,¢s,...,ck} represent the codebook

of size K, where ¢ = (ck1,¢k2,---,¢cem), k=1,2,..., K
are code vectors. Each code vector cj is assigned to an
encoding region Ry in the partition Q = {R;,Rs,...,Rk}.
Then the source vector x; can be represented by the encoding
region Ry and expressed by

V(x¢) = ¢k, if x¢ € Ry (1)



B. K-Means Partition

Let U = [ug] be a matrix whose elements are memberships
of x; in the nth cluster, k =1,...,K,t=1,...,T. A K-
partition space for X is the set of matrices U such that [21]

K T
uke € {0,1} Vk,t, > upe =1Vt, 0< Y uke <T Vk

k=1 t=1

)

where ug; = uk(x:) is 1 or 0, according to whether x; is or

is not in the kth cluster, Zk 1 Ukt = 1 Vt means each x;

is in exactly one of the K clusters, and 0 < Zt 1uke < T

Vk means that no cluster is empty and no cluster is all of X

because of 1 < K < T.

The VQ method is based on minimization of the sum-of-

squared-errors function as follows

J(U,\; X) Z Z uped, 3)
k=1 t=1
where ) is a set of prototypes, in the simplest case, it is the
set of cluster centers A = {cj,c3,...,Ck}, and dj; is the
Euclidean norm of (x; — ¢i). Minizing J(U, \; X) over the
variables U and ) yields the following equations

T T
=Y wx/Sue 1sk<K @
t=1 t=1

um:{ lidw<djy j=1,....K, j#k

)

0 : otherwise

C. Fuzzy C-Means Partition

Let U = [uk¢] be a matrix whose elements are fuzzy mem-
berships of x; in the nth cluster, k =1,...,K,t=1,...,T.
A K-partition space for X is the set of matrices U such that
[21]

K T
ure € [0,1] Vk,t, Y wg =1Vt 0< Y up <TVk

k=1 t=1

(6)

where uy; € [0,1] Vk,t and ZkK 1 Ukt = 1 Vt mean it is

possible for each x; to have an arbitrary d1str1but10n of fuzzy

membership among the K fuzzy clusters, and 0 < Zt 1 Ukt <

T Vk means that no cluster is empty and no cluster is all of
X because of 1 < K < T.

The fuzzy c-means vector quantization (FCMVQ) method

is based on minimization of the sum-of-squared-errors function

as follows [21], [22]

K T
J(UXX) = Z Z up iy (M

k=1t=1
where A is a set of prototypes, v > 1 is a weighting exponent
on each fuzzy membership u;; and controls the degree of
fuzziness, in the simplest case, it is the set of cluster centers
A = {c,¢q,...,¢ck}, and di; is the Euclidean norm of

(x¢ — ck). The basic idea of the FCM method is to minimize
J(U, \; X) over the variables U and A on the assumption that
matrix U, which is part of the optimal pairs for J(U, \; X),
identifies the good partition of the data. The FCMVQ algorithm
is summarized as follows.
1) Given a training data set X = {x1,Xa,...
Xy = ((Etl,fL‘tz,...,CL'tK), t= 1,2,...,T.
2) Initialize the membership values ux:,1 < k < K,1 <
t < T, at random
3) Given € > 0 (small real number).
4) Set i =0and J® (U, \; X) = 0. Iteration:
a) Compute cluster centers

T T
Ck =Zugtxt/zugt J1<k<N (8
t=1 t=1

b) Compute di; and JE+D (U, \; X)
dit = ||ck — X¢|2 9

¢) Update membership values
1

us 1/(v-1)
Z 2,/d2)"

,XT}, Where

(10)

Ukt =

5) If ‘ .
JED (U, x; X)
then set J® (U, \; X) = JOFD(U,\; X), i =i+ 1 and
go to step (a).

IV. Fuzzy SUBSPACE METHOD FOR FCMVQ

We present the fuzzy subspace method based on fuzzy c-
means estimation for FCM VQ. A similar subspace method
for VQ was proposed in [20].

Let W = [wy,ws,...,wp] be the weight vector for M
dimensions and « be a parameter weight for w,,. The equation
(7) is modified as follows

K T
oUW, X X)=> "% "u,

k=1 t=1 m=
where o > 1, ditm is the m-th component distance of the
distance dx; between ¢ and x;

M
wdpm  (12)
1

Zw By (13)

and weight values satisfy the following condmons.

M
Y wm=1 (14)
m=1

The basic idea of the fuzzy c-means subspace-based
FCMVQ (FCMS-FCMVQ) method is to minimize
Jo(U,W,X\; X) over the variables U, W, and A on the
assumption that matrix U identifies the good partition of the
data, and that matrix W identifies the good dimension of the
data.

2 2
ditm = (ckm — xtm y dkt

0<w, <1 Vm,



A. Network Intrusion Modeling

The FCMS-FCMVQ modeling algorithm is summarized as
follows:
1) Given a training data set X = {x1,Xa,...,xr}, where
Xy = (il)ﬂ,(l?n,. ..,CL‘tM), t= 1,2,...,T.
2) Initialize memberships ux:,1 <t < T,1 < k < K, at
random satisfying (6)
3) Initialize weight values w,,,1 < m < M at random
satisfying (14)
4) Given o > 1,y > 1 and € > 0 (small real number)
5) Set i =0 and J) (U, W, X; X) = 0. Iteration:
a) Compute cluster centers using (8)
b) Compute distance components dj;,, and distances
dy using (13)
¢) Update weight values

Wm = =7 !
Z (D2 /D2)1/(a_1)
m n
=l K T
Dy =3 ukdim (15)
k=1 t=1

d) Update membership values using (10)
e) Compute JS (U, W, X; X) using (12)
f) If
IS W, WA X) = JE (U, W, X))
JED(U, WA X)

> €

. ‘ (16)
then set JO (U, W, X) = J& (U, W\ X),
i =1+ 1 and go to step (a).

B. Network Intrusion Detection

Assuming there are N network attack models. Given an
unknown network feature vector x, the task is to find which
attack x belongs to. The following algorithm is proposed

1) Given an unknown network feature vector x and N

network attack models.

2) Calculate the minimum distance between x and A,,n =

1,...,N
dn = min d(x, Ckn) a7

where d(-) is defined in (13) and cy, is the kth code
vector in \,,.

3) Assign x to the n*-th network attack that has the
minimum distance:

n* = argmin(d,) (18)

V. NETWORK DATA AND ATTACK TYPES
A. KDD CUP 1999 dataset
We consider a sample dataset which is the KDD CUP 1999
dataset. This dataset was based on MIT Lincoln Lab intrusion
detection dataset, also known as DARPA dataset [14]. The

data was produced for “The Third International Knowledge
Discovery and Data Mining Tools Competition”, which was

held in conjunction with the Fifth International Conference
on Knowledge Discovery and Data Mining. The raw network
traffic records have already been converted into vector format.
Each feature vector consists of 41 featues. The meanings of
these features can be found in [9]. In this paper, we ignore
features with symbolic values. Other features are classified into
the following four categories:

o Category I. Features of a connection, including duration,
octets transferred, and wrong fragmentation flags.

o Category II: Features that are actually not traffic features.
They cannot be obtained by looking at traffic records
alone.

o Category III: Features that are time based traffic features.
They are statistics of traffic features in the previous 2-
second window. The calculation is based on the source
IP address.

o Category IV: Features that are the same as Category
III, except that the calculation is destination IP address
oriented.

B. Network Attacks

The attacks listed in feature vectors of KDD CUP 1999
dataset come from MIT Lincoln intrusion detection dataset
web site [14]. The labels are mostly the same except a few
discrepancies. The MIT Lincoln lab web site lists 2 types
of buffer overflow attack: eject and ffb. The former explores
the buffer overflow problem of eject program of Solaris, and
the later explores the buffer overflow problem of ffb config
program. Guessing user logon names and passwords through
remote logon via telnet session is labeled as guess_passwd in
the KDD CUP 1999 dataset, but listed as dict on the MIT
Lincoln lab web site. Finally, we cannot find the counterparts
of syslog and warez in the KDD CUP 1999 dataset. In addition
to the attack labels, the KDD CUP 1999 dataset has also the
label normal, which means that the traffic is normal and free
from any attack.

VI. EXPERIMENTAL RESULTS

The proposed method for network intrusion detection was
evaluated using the KDD CUP 1999 data set for training
and the Corrected data set for testing. The number of feature
vectors for training each attack was set to 5000. There were
not sufficient data for all attack types, so we selected the
normal network pattern and the 5 attacks which were ipsweep,
neptune, portsweep, satan, and smurf. The testing data set
contains 60593 feature vectors for the normal network pattern,
and 306, 58001, 354, 1633 and 164091 feature vectors for the
five attacks, respectively. Three symbolic features were not
considered in our experiments.

From Table I for the normal only, we can see that the FCM
VQ modeling technique achieved higher detection rates than
the standard K-means VQ method and the FCM subspace-
based FCM VQ achieved the highest rates. However, with
the overall detection rates for the normal model and 5 attack
models ipsweep, neptune, portsweep, satan, and smurf shown
in Table II, we can see that all the systems achieved high



TABLE 1
DETECTION RESULTS (IN %) FOR THE normal MODEL USING DIFFERENT
MODELING METHODS, WHERE a = 4.0 AND v = 1.1

NORMAL Model Size
Modeling 4 8 12 16 20
K-MeansVQ 33.6 31.7 31.2 32.0 324
FCMVQ 41.7 383 59.6 61.5 61.8
FCMS-FCMVQ 422 444 64.0 62.5 64.7

TABLE II
DETECTION RESULTS (IN %) FOR THE normal MODEL AND 5 ATTACK
MODELS ipsweep, neptune, portsweep, satan, AND smurf USING DIFFERENT
MODELING METHODS, WHERE @ = 4.0 AND vy = 1.1

ALL Model Size
Modeling 4 8 12 16 20
K-MeansVQ 68.0 75.1 75.5 75.5 75.9
FCMVQ 71.5 76.3 81.0 81.1 81.1
FCMS-FCMVQ 77.6 77.6 81.9 82.0 82.4

detection rates comparing with the results for the normal model
only, where the fuzzy modeling methods performed better
than the standard K-means VQ one. The FCM subspace-based
FCM VQ method again provided higher detection rates than
the FCM VQ one. In all the cases, the FCM subspace-based
FCM VQ method achieved the highest detection rates.

We also conducted a set of experiments for the network
data using the normalization technique as follows

T
Ttm — W 1
T = ——",  Sm== Y |Tim—pm|  (19)

Sm T P
where z;,, is the m-th feature of the ¢-th feature vector, p,
the mean value of all T" feature vectors for feature m, and s,,
the mean absolute deviation.

TABLE III
DETECTION RESULTS (IN %) FOR THE normal MODEL USING DIFFERENT
MODELING METHODS, WHERE @ = 4.0 AND v = 1.1. ALL NETWORK DATA
WERE NORMALISED.

NORMAL Model Size
Modeling 4 8 12 16 20
K-MeansVQ 83.4 89.5 94.2 95.0 95.4
FCMVQ 85.0 89.6 94.3 95.2 95.8
FCMS-FCMVQ 82.1 93.7 95.3 96.0 96.4

TABLE IV
DETECTION RESULTS (IN %) FOR THE normal MODEL AND 5 ATTACK
MODELS ipsweep, neptune, portsweep, satan, AND smurf USING DIFFERENT
MODELING METHODS, WHERE o = 4.0 AND v = 1.1. ALL NETWORK DATA
WERE NORMALISED.

ALL Model Size
Modeling 4 8 12 16 20
K-MeansVQ 29.9 46.4 52.9 53.1 533
FCMVQ 30.2 62.3 62.4 64.1 64.2
FCMS-FCMVQ 62.1 64.5 65.0 65.2 65.3

With the normalised network data, the detection rates for
the normal model in Table III are very high comparing with

those in Table 1. However the overall detection rates in Table
IV are lower than those in Table II. Although the proposed
fuzzy subspace method achieved the highest results in all of
the experiments, the lower detection rates in Table IV are a
challenge.

VII. CONCLUSION

We have proposed automated feature weighting method by
considering feature subspaces in a multidimensional feature
space for network data. The proposed method is based on fuzzy
c-means estimation to assign fuzzy weight values to network
features depending on which subspace they belong to. We have
used the KDD CUP 1999 dataset as the sample data to evaluate
the proposed method. For both unnormalised and normalised
network data, the proposed method provided better recognition
results. The proposed subspace methods have just considered
the difference between dimensions and have not considered
clusters in each dimension. For further investigation, we are
considering other automated weighting subspace methods that
can assign different weights to clusters even in the same
dimension. This may help find a better solution to improve
the overall detection rates shown in Table IV.
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