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The rapid development of mechanistic, trait-based models has resulted in increas-
ingly reliable predictions of the functional diversity of individuals in populations and 
communities. However, a focus on individuals’ traits differs from the prevailing focus 
on species in much of community ecology. We sought to identify correlative links 
between species richness and size diversity, focusing on size diversity as one component 
of functional diversity. These links could be used to extend individual, size-based mod-
els to predict patterns of species richness. We used the distribution of the sizes of 
individuals in a community – the individual–size distribution (ISD) – as a measure 
of size diversity, and constructed Bayesian regression models with species richness as 
the response variable and ISDs as the predictor variables. We used two methods to 
include ISDs in our analyses. First, we summarized the ISD with five common diver-
sity indices and used these indices as predictor variables in our analyses. Second, we 
used functional data analysis to include the entire ISD (a continuous function) as a 
predictor variable in our analyses. Analyses of diversity indices identified consistent, 
positive associations between species richness and size diversity. Analyses of entire ISDs 
revealed that these associations were driven by numbers of small- and medium-sized 
individuals. In general, a combination of diversity indices predicted species richness as 
well as or better than continuous ISDs. However, models with ISDs as predictor vari-
ables were less sensitive to technical details of model fitting (e.g. discretization method) 
than those based on diversity indices, and the use of ISDs avoids the arbitrary selection 
of one or several diversity indices. Our use of functional data analysis allows any trait 
distribution to be included as a variable in statistical analyses, and has the potential to 
reveal new diversity patterns in ecology.
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Introduction

Functional trait-based methods are increasingly used to 
address fundamental and practical questions in ecology 
(Cadotte  et  al. 2011, Violle  et  al. 2014). The use of trait-
based methods has been supported by expanding trait 
databases (Fishtraits: Frimpong and Angermeier 2009, 
BIEN: Enquist  et  al. 2016) and substantial progress 
towards mechanistic models of populations and communi-
ties (Kooijman 2010, Scott et al. 2014, Falster et al. 2016, 
Guiet et al. 2016). Mechanistic, trait-based models have been 
used to explain many ecological and evolutionary processes, 
including community assembly, trophic and competitive 
dynamics, community responses to disturbance, and devel-
opmental and evolutionary processes (Laughlin et al. 2012, 
Blanchard et al. 2017, Falster et al. 2017).

Many mechanistic models, particularly for aquatic 
systems (Blanchard et al. 2017), emphasize the importance 
of individual sizes (e.g. length or body mass) (Scott  et  al. 
2014). Size is a useful proxy for functional diversity because 
many morphological, physiological, and life-history traits are 
correlated with individuals’ sizes (Peters 1983, White  et  al. 
2007). Size-based models may have few (Brown et al. 2004) 
or many parameters (Maury and Poggiale 2013, Scott et al. 
2014), and many of these models do not depend upon species’ 
identities (Guiet  et  al. 2016). Disregarding species’ identi-
ties leads to models that are easy to parameterize and that 
are computationally tractable, yet still capture key aspects of 
ecological dynamics (Scott et al. 2014, Guiet et al. 2016).

The distribution of individuals’ sizes in a community – 
the individual–size distribution (ISD) or abundance–size 
spectrum – underpins many size-based models (White et al. 
2007, Blanchard et al. 2017). ISDs are continuous functions, 
the value of which at a particular size reflects the density or 
abundance of that size in a community. ISDs are one of sev-
eral related size distributions, all of which characterize the 
diversity of sizes in a community (White et al. 2007). Other 
size distributions focus on average sizes and abundances of 
species (species–size distributions; White et al. 2007) or on 
measures other than abundance, such as biomass or diversity 
indices calculated separately for size classes (Rice and Gislason 
1996, Gislason and Rice 1998). Some recent empirical 
studies successfully predicted ISDs from environmental vari-
ables (dos Santos et al. 2017, Yen et al. 2017a, b, Zhao et al. 
2017). Such studies are supported by efficient methods to 
measure individuals’ sizes in the field without recording spe-
cies’ identities (Sheldon  et  al. 1972, Turnbull  et  al. 2014, 
Wheeland and Rose 2016).

A focus on individual sizes differs from a focus on species, 
which underlies much of biogeography, macroecology, and 
community ecology (McGill et al. 2006). Despite advances 
in mechanistic modeling of species richness (Gotelli  et  al. 
2009), predictive models of species richness often rely on cor-
relative analyses (Mittelbach et al. 2001, Hawkins et al. 2003, 
Stein et al. 2014). Given the practical importance of species 
richness in conservation management (Magurran and McGill 

2011) and its role in macroecological theories (Harte 2011, 
Locey and White 2013), understanding the processes under-
pinning variation in species richness remains a core ecological 
goal (Gotelli et al. 2009).

Progress towards mechanistic trait- and size-based models 
(Blanchard  et  al. 2017, Falster  et  al. 2017) raises the pos-
sibility of modelling individual sizes or traits in communities 
without requiring knowledge of species’ identities. Therefore, 
we asked whether increasingly sophisticated models of indi-
vidual sizes and traits might explain observed patterns in 
species richness? Few studies have considered potential links 
between functional diversity and species richness (Petchey 
and Gaston 2002, Mayfield et al. 2010, Cadotte et al. 2011). 
Focusing on individual sizes, Cardillo (2002) noted positive 
associations between species richness and the number of 
small species in a community along a latitudinal gradient, 
and Brown and Nicoletto (1991) reported a similar pattern 
when comparing data from local to continental scales.

Three general associations between species richness and 
size diversity are possible. First, species richness might not 
be associated with size diversity (scenario A in Fig. 1). This 
might be the case in communities characterized by species 
that grow continuously (indeterminate growth), so that 
adults of each species span a potentially wide range of size 
classes (Werner and Gilliam 1984). Second, species richness 
might be associated directly with indices of size diversity (e.g. 
the range or Shannon entropy of sizes). This may arise in 
communities with species that grow to a fixed maximum 
adult body size (determinate growth), so that adults of each 
species belong to one or at most a few size classes (Sebens 
1987). Third, species richness might be associated with size 
diversity, but the variation in size diversity might not be rep-
resented well by commonly used diversity indices (scenario B 
in Fig. 1). Information is lost when size diversity is condensed 
into a single-valued diversity index, which might obscure the 
associations between species richness and size diversity.

There are many measures to describe different components 
of functional diversity (Mason  et  al. 2005, Carmona  et  al. 
2016). Although some measures require data on species’ 
identities, many measures can be calculated from individual 
size or trait distributions (Carmona et al. 2016). Most of these 
measures characterize the full trait-frequency distribution by 
partitioning the distribution into independent components 
(e.g. richness, evenness, divergence; Mason  et  al. 2005) or 
by calculating the volume of functional space occupied by 
a given community (Carmona  et  al. 2016, Blonder  et  al. 
2018). All of these approaches condense functional diversity 
into one or several numbers (e.g. a hypervolume or an index 
of functional richness or evenness).

The inclusion of one or several size-diversity indices in sta-
tistical analyses is straightforward (Fig. 2a). However, most 
indices have been developed to represent the same quantity: 
a trait-frequency distribution (e.g. the ISD) (Carmona et al. 
2016). Ideally, the entire trait distribution should be used as a 
predictor (Fig. 2b). Functional data analysis meets this need, 
and allows continuous functions (e.g. ISDs) to be used as 
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response or predictor variables in statistical analyses (Ramsay 
and Silverman 2005, Yen  et  al. 2015a). By including trait 
distributions as predictor variables, functional data analysis 
can be used to detect complex associations between species 
richness and functional diversity. Functional data analysis 
might be used to identify relations between species rich-
ness and ISDs that are not apparent when ISDs are reduced 
to single-valued, size-diversity indices (e.g. size range, size 
entropy) (Fig. 1, 2d). We focus here on ISDs, which are one-
dimensional distributions, but our method could equally be 
applied to distributions with multiple dimensions (Ramsay 
and Silverman 2005).

We sought to identify correlations between species rich-
ness and size diversity. We used field data from Australia and 
the United States on birds and fishes to compare taxonomic 
groups with disparate life histories. We used individual–size 
distributions (ISDs) as a measure of size diversity, and con-
structed Bayesian regression models with species richness 
as the response variable and size diversity as the predictor 
variable. In one set of analyses, we used single-valued, size-
diversity indices as the predictor variables. In a second set, 
we used functional data analysis to include continuous, 
function-valued ISDs as predictor variables. Many different 
ISDs, generated by potentially distinct ecological processes, 
can yield the same value of a size-diversity index (Fig. 1). 

Although a combination of indices is likely to capture differ-
ences in ISDs (Mason et al. 2005), we expected that the rich 
information content of ISDs might reveal associations that 
were not apparent in analyses of single-valued, size-diversity 
indices (e.g. scenario B in Fig. 1).

Methods

Data

We used four large data sets on birds and fishes from Australia 
and the United States (Table 1, Supplementary material 
Appendix 1). Lists of the species recorded, the number of 
records of each species, and means and standard deviations  
of species’ body masses are in Supplementary material 
Appendix 2.

Bird data were collected from montane canyons in the 
Great Basin in the western United States (Fleishman  et  al. 
2014, Fleishman 2015a, b, c, d) and from woodlands and 
forests in the box-ironbark region in southeastern Australia 
(Mac Nally et al. 2000, Radford et al. 2005, Bennett et al. 
2014). Great Basin birds were surveyed annually from 2001 
to 2014 at 472 points in 47 canyons in the central and western 
Great Basin (Supplementary material Appendix 1). Several 

Figure  1. Hypothetical example of the links between species richness and size diversity. Size diversity is represented with two indices  
(the range of individual sizes and the Shannon entropy of individual sizes; centre panels) and with individual–size distributions (ISDs), 
which are continuous functions (far-left and far-right panels). In scenario A, there is no association between species richness and size 
diversity. The addition of new species to the communities does not alter the distribution of individual sizes (far-left panels). In scenario B, 
there is an association between species richness and ISDs. The addition of new species to the communities substantially alters the observed 
ISD by adding a second peak (far-right panels). The two size-diversity indices are not associated with species richness in either scenario.
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groups of birds are poorly sampled by point counts (e.g. 
raptors, waterfowl) (Supplementary material Appendix 2).  
We ran analyses with and without the species in these groups 
to determine whether their inclusion affected observed 
associations between species richness and ISDs.

Box-ironbark bird data were collected as part of two separate 
studies. In the first (fragment study), birds were surveyed 
along 2-ha transects at 139 sites from 1995–1997. Of these 
sites, 120 were resurveyed in 2010 and 2011 (Supplementary 
material Appendix 1). In the second (landscape study), 
birds were surveyed along 300 2-ha transects in 2006 and 
2007 (Supplementary material Appendix 1). We analyzed 

data from the fragment and landscape studies separately 
due to differences in the number of surveys in each period 
(Supplementary material Appendix 1).

We used fish data from 1438 sites in the National Water-
Quality Assessment (NAWQA) program, which is conducted 
by the US Geological Survey (2001). These data included 
body sizes of fishes sampled in the United States from 1993 
to 2012. Sites were stream or river reaches of lengths from 
150–300 m (wadeable waters) or 500–1000 m (non-wadeable 
waters). The exact length of the sampled reaches was based on 
local geomorphology, such that the area sampled was com-
parable among reaches of different width and depth (US 
Geological Survey 2001).

Compiling individual–size distributions

We compiled individual–size distributions (ISDs) for birds 
and fishes by placing individuals into body-mass bins of 
equal width on a logarithmic scale. We used a logarithmic 
scale because ISDs typically are highly right-skewed, which 
means that if the data were binned on a natural scale, most 
would fall into the left-most bin. We compiled ISDs with 
10, 20, 30 and 40 bins to assess whether our inferences were 
sensitive to bin widths. We present results for 20 bins and  
40 bins below, and results for all bin widths in Supplementary 
material Appendix 3. The use of more than 40 bins was 
computationally prohibitive.

Body masses of individuals were measured during the 
fish surveys but not during the bird surveys. To estimate 
body masses of individual birds, we used species’ body-
mass means and standard deviations from a global database 
(Dunning 2007) to generate one random normal variate 
for each individual bird recorded. For Australian birds, we 
supplemented body-mass data from Dunning (2007) with 
data from Baker (1995) and Higgins (2006). If standard 
deviations were unknown, we used information on species 
body-mass ranges (standard deviation ≈ range/4; based on the 
range rule for standard deviations; Hozo et al. 2005). If the 
range was unknown, we set the standard deviation equal to 
the mean multiplied by 0.09, on the basis of a linear regres-
sion of the data in Dunning (2007) ([standard deviation of 
body mass] = 0.09  [mean body mass], n = 3008, r2 = 0.84). 
If data on body masses of males and females were available, 

(a) (b)

(c) (d)

Figure 2. Conceptual outline of functional data analysis. Analyses of 
size-diversity indices condense entire individual–size distributions 
(ISDs) into a single number (blue circles in (a)). Variation in size-
diversity indices might be apparent in ISDs, in which case ISDs or 
size-diversity indices will predict species richness well (a and b). 
Alternatively, there might be no association between species richness 
and size diversity (c). Associations between species richness and size 
diversity might be apparent when size diversity is represented with 
ISDs but not when size-diversity is condensed into a single-valued 
diversity index (d).

Table 1. Data sets used in our analyses. Details on data collection are in the Supplementary material Appendix 1.

Ecosystem and 
taxonomic group Location

No. of 
data points

Random effects 
included in analyses Years sampled Reference

Great Basin birds Mono County, California and 
Lander, Nye, Eureka, Mineral, 
Lyon, and Douglas Counties, 
Nevada, United States

322 year, mountain range, 
zoogeographic 
region

2001–2014 Fleishman et al. 2014, 
Fleishman 2015a, b, c, d

Box-ironbark birds –  
fragment study

southeastern Australia 518 season, survey period 1995–1997, 
2010–2011

Mac Nally et al. 2000, 
Bennett et al. 2014

Box-ironbark birds –  
landscape study

southeastern Australia 600 site, season, landscape 2006–2007 Radford et al. 2005, 
Bennett et al. 2014

Fishes in the United 
States

United States (including Alaska 
and Hawaii)

1438 year 1993–2012 US Geological Survey 2001
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we assigned the sex of each random variate with probabilities 
of 0.6 (male) and 0.4 (female). This sex ratio was based on 
global, empirical data for bird species (Donald 2007). Our 
method of estimating body masses of birds has been used in 
other studies of bird ISDs (Thibault et al. 2011) and has been 
suggested as a reliable way to recover individual trait diversity 
from species’ average trait values (Carmona et al. 2016). This 
approach generates realistic size distributions and is robust to 
the assumption of normally distributed body masses within 
species (Yen et al. 2017a).

Calculating size-diversity indices

We calculated five indices of size diversity: the range of body 
masses; the relative richness of body masses, defined as the 
number of non-empty bins in the individual–size distribu-
tion (ISD); the Shannon entropy of body masses, calculated 
from compiled ISDs; the Pielou evenness of body masses, 
calculated from compiled ISDs; and the divergence of body 
masses. These indices often are used as measures of taxonomic 
and functional diversity (Mason et al. 2005, Schleuter et al. 
2010), and are based on the same data as the ISDs. We 
calculated size-diversity indices from ISDs with 10, 20, 30, 
40, 100, 500, 1000 and 5000 bins. The use of 1000 bins 
is common in kernel-based calculations of size-diversity indi-
ces (Carmona  et  al. 2016). We present results for 20 bins 
and 1000 bins, and include results for all bin widths in 
Supplementary material Appendix 3.

Statistical analysis – overview

We constructed regression models with species richness as 
the response variable and with size diversity as a predictor 
variable (Fig. 2). We used the individual–size distribution 
(ISD) as a measure of size diversity, and used two methods 
to include ISDs. First, we used five size-diversity indices as 
predictor variables (Fig. 2a). Second, we used functional data 
analysis to include the entire ISD as a predictor (Fig. 2b). 
The second method can distinguish between the true absence 
of an association between species richness and size diversity 
(Fig. 2c) and the inability of size-diversity indices to detect 
such an association (Fig. 2d). We fitted linear and quadratic 
versions of both models. We evaluated our models with cross 
validation to account for differences in the number of param-
eters between the two modelling methods. In the following 
sections, we provide statistical and computational details for 
the two analysis methods.

Statistical analysis – relating species richness to  
size-diversity indices

We related species richness to size-diversity indices with 
a linear regression model, response = intercept + slope  
predictor, but we included random intercepts for clusters 
within the data (e.g. data collected in the same year or in the  

same region; Table 1). We fitted seven models with the  
five size-diversity indices included as predictors, either alone 
(five models), in combination (one model), or in combina-
tion with pairwise interactions (one model). The model 
structure was

y xi k k i k q q G i i= + + ∑ +α β γ εΣ , , ( )

where yi is the species richness of site i; α is the mean site-level 
species richness; βk is the linear association between species 
richness and the kth size-diversity index, which takes value xi,k 
in site i; γq,G(i) is a random intercept for level G(i) of group-
ing variable q (e.g. year or region), where G(i) is the group 
to which site i belongs; and ei is the residual for site i. Site 
refers to canyons aggregated over a given sampling year for 
the Great Basin bird data, transects aggregated over a given 
survey period and season for the box-ironbark bird data, and 
single surveys at each site for the fish data. We standardized 
species richness data and size-diversity indices to zero mean 
and unit standard deviation. We assumed that the ei (residual) 
terms were normally distributed, which was supported by 
inspection of model residuals.

We extended the linear regression model to test whether 
associations between species richness and size-diversity 
indices were quadratic, which would occur if size-diversity 
indices had a saturating or unimodal association with species 
richness (e.g. Fig. 1b). The quadratic model was

y x xi k k i k k k i k q q G i i= + + + ∑ +α β δ γ εΣ Σ, , , ( )
2

where δk is the quadratic association between species richness 
and the kth size-diversity index. All other variables are 
defined above. The addition of a quadratic term did not sub-
stantially alter model fit for any data set; results of quadratic 
models are in Supplementary material Appendix 3.

We used Bayesian parameter estimation and assigned 
vague normal prior distributions (zero mean and variance  
 10) to α, β, and δ. We assigned inverse-gamma prior 
distributions with both parameters equal to 0.01 to the 
variance parameters for ei and γq,G(i) (Supplementary material 
Appendix 4).

Statistical analysis – relating species richness  
to individual–size distributions

Scalar-response function regression is similar structurally to a 
linear regression model, except that the slope and predictor 
are functions rather than single values (Ramsay and Silverman 
2005). Here, ‘function’ refers to a mathematical function 
and not to ecological functions or to functional diversity. 
The regression equation is response = intercept + ∫ slope(m) × 
predictor(m) dm, where slope(m) and predictor(m) are func-
tions of the index variable m (body mass in this study) and 
∫ f(m) dm denotes integration of the function f(m) over all 
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values of m. In our analysis of individual–size distributions 
(ISDs) and species richness, the function slope(m) can be 
interpreted as a size-dependent, linear-regression coefficient, 
such that each point on the ISD has a different associa-
tion with species richness (Fig. 3). We extended this model 
to include random intercepts for clusters within the data  
(Table 1). The model structure was

y m z m mi q G iq i= + + +∫ ∑α β γ( ) ( ) , ( )d e

where β(m) is the size-dependent effect of the predictor func-
tion (the ISD) on the response variable (species richness), and 
z(m) is the value of the predictor function (the ISD) for a 
given value of m. All other variables are defined above. We 
standardized species richness data to zero mean and unit stan-
dard deviation, and divided ISDs by their maximum value in 
all analyses.

We extended this model to include possible quadratic 
associations between species richness and ISDs, which would 
occur if the abundance of individuals within a given size class 

had a saturating or unimodal association with species rich-
ness. The quadratic model was

y m z m m m z m mi q G iq i= + + + +∫ ∫ ∑α β β γ ε1 2
2( ) ( ) ( ) ( ) , ( )d d

where β1(m) is the linear effect of the ISD on species richness, 
β2(m) is the quadratic effect of the ISD on species rich-
ness, and z2(m) is the squared ISD. Other variables are as 
defined above. The fit of linear and quadratic models did not 
differ substantially; we report results for quadratic models in 
Appendix 3.

We used a B-spline basis to represent the continuous 
function β(m) as a set of discrete coefficients. The fitted 
model was

y B m z mi p p j p i j i i j q q G i i= + ∑ ∑ + ∑ +( ) ( )  ( )α β γ ε, , ,

where βp is the coefficient of the pth B-spline basis func-
tion, Bp(mi,j) is the value of the pth B-spline basis function 
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Figure  3. Interpretation of estimated coefficients from functional data analysis with species richness as the response variable and  
individual–size distributions (ISDs) as the predictor variable. The predictor variable is the entire, continuous ISD (a). The estimated 
coefficient is a continuous function spanning the full range of sizes in the ISD (b). The analysis calculates species richness in two steps. First, 
the estimated coefficient (b) is multiplied by the ISD (a), which yields an estimate of species richness as a function of individual sizes (c). 
Second, this size-dependent species richness is integrated over the entire range of sizes (d). The value of this integral (the area of the shaded 
region in d) is the model estimate of species richness.
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evaluated at mi,j, mi,j is the abscissa for the jth value of the 
predictor function in site i, and zi(mi,j) is the value of the 
predictor function at mi,j. Other variables are defined above. 
We used Bayesian parameter estimation and assigned vague 
normal prior distributions (zero mean and variance  10) 
to α and βp. We assigned inverse-gamma prior distributions 
with both parameters set to 0.01 for the variance parameters 
for ei and γq,G(i) (Supplementary material Appendix 4).

Computational details

We estimated parameters for all models with a Gibbs sampler 
(Gelfand 2000), which is a Markov chain Monte Carlo 
(MCMC) sampler that iteratively draws parameter estimates 
from their conditional densities. A full derivation of the 
conditional distributions and a description of the MCMC 
sampler are in Supplementary material Appendix 4.

We based parameter estimates on three chains of 40 000 
MCMC iterations, which followed a 10 000 iteration burn-
in period. We assessed convergence through inspection of 
parameter and likelihood chains. All models converged in 
fewer than 1000 iterations. We managed model outputs in 
R ( www.r-project.org ) and wrote the MCMC sampler 
in C++. The MCMC sampler is part of the ‘function regres-
sion in ecology and evolution’ (FREE) R package (Yen et al. 
2015a), and data and code for our models are in Supplemen-
tary material Appendix 5 and 6.

Model comparisons and validation

We fitted eight models for each data set: a function regres-
sion model with the ISD as the predictor of species richness; 
and seven linear regression models with the five size-diversity 
indices included as predictors, either alone (five models), in 
combination (one model), or in combination with pairwise 
interactions (one model). We calculated both naïve (in-
sample) and cross-validated (out-of-sample) model fit sta-
tistics (r2 between observed data and fitted values) for all 
models. Cross-validated estimates of model fit were based 

on ten-fold cross validation. Low values of cross-validated 
model fit relative to naïve model fit indicate model overfit-
ting, whereas high values of cross-validated model fit indicate 
a reliable model that is likely to be identifying a true associa-
tion (Efron and Gong 1983).

Results

Relations between size-diversity indices and  
species richness

There were clear associations between species richness and 
size-diversity indices. Size-diversity indices with 20 bins 
explained 0.06–0.79 of the variation in species richness (naïve 
r2-values) and predicted up to 0.30 of the variation in species 
richness (cross-validated r2-values) (Table 2). Size-diversity 
indices with 1000 bins explained 0.11–0.83 of the variation 
in species richness and predicted up to 0.72 of the variation 
in species richness (Table 3). Size-diversity indices with 500, 
1000 and 5000 bins explained and predicted similar amounts 
of the variation in species richness (Supplementary material 
Appendix 3).

With 20 bins, the richness of size classes predicted the 
greatest proportion of variation in species richness of box-
ironbark birds (fragment study), and a combination of four 
indices with pairwise interactions predicted the greatest 
proportion of variation in species richness of birds in the 
other data sets (Table 2). The richness of size classes and 
combinations of indices with and without pairwise interac-
tions predicted the greatest proportion of variation in species 
richness of fishes (Table 2, 3).

Size-diversity indices were associated positively with 
species richness in all data sets (all model coefficients  0; 
Fig. 4). Size-class divergence had the strongest associations 
with species richness in all data sets, followed by the even-
ness and Shannon entropy of size classes (Fig. 4). However, 
coefficients for size-class divergence and evenness had wider 
credible intervals, hence more uncertain associations than 

Table 2. Correlations (r2) between observed species richness and species richness predicted by size-diversity indices or individual–size dis-
tributions compiled with 20 bins. Values are based on naïve model fit and the numbers in parentheses were derived from ten-fold cross 
validation. Values in boldface denote the best-performing predictor variable under cross validation. Values generated by quadratic models 
are in the Supplementary material Appendix 3. The combination of indices includes the range, richness, evenness, and divergence of body 
masses.

Predictor variable
Great 

Basin birds

Great Basin  
birds – no poorly 
sampled species

Box-ironbark  
birds – fragment study

Box-ironbark  
birds – landscape study

United States 
fishes

Size-diversity indices
Range of body masses 0.42 (0.06) 0.41 (0.02) 0.12 (0.11) 0.78 (0.04) 0.24 (0.20)
Richness of body-mass classes 0.50 (0.17) 0.54 (0.25) 0.18 (0.15) 0.78 (0.18) 0.28 (0.24)
Shannon entropy of body masses 0.42 (0.06) 0.44 (0.12) 0.13 (0.09) 0.78 (0.07) 0.22 (0.18)
Evenness of body masses 0.37 (0.00) 0.39 (0.05) 0.09 (0.05) 0.79 (0.02) 0.16 (0.11)
Divergence of body masses 0.39 (0.00) 0.37 (0.00) 0.06 (0.00) 0.79 (0.00) 0.14 (0.09)
Combination of indices 0.52 (0.18) 0.55 (0.27) 0.18 (0.14) 0.79 (0.20) 0.28 (0.24)
Combination with pairwise interactions 0.54 (0.20) 0.56 (0.30) 0.18 (0.13) 0.78 (0.21) 0.29 (0.24)

Size-distribution measure
Individual–size distributions 0.68 (0.26) 0.69 (0.31) 0.36 (0.23) 0.84 (0.28) 0.27 (0.20)
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those for other indices (Fig. 4). Estimated coefficients for 
most size-diversity indices were greatest for fishes, and were 
lowest for birds in the box-ironbark landscape study (Fig. 4). 
Increasing the number of bins to calculate size-diversity indi-
ces altered the absolute magnitude of estimated coefficients 
but did not affect the direction of associations or their relative 
magnitudes (Supplementary material Appendix 3). For Great 
Basin birds, the removal of species poorly sampled by point 
counts increased the magnitude of the fitted association 
between species richness and the range of size classes, but 

did not substantially alter associations for other size-diversity 
indices (Supplementary material Appendix 3).

Relations between individual–size distributions and 
species richness

With 20 bins, individual–size distributions (ISDs) explained 
0.27–0.84 of the variation in species richness of birds and 
fishes (naïve r2-values; Table 2). ISDs predicted 0.20–0.31 
of the variation in species richness (cross-validated r2-values; 
Table 2). The proportion of variation explained and pre-
dicted was similar when ISDs were compiled with 40 bins  
(Table 2, 3).

Fitted associations between species richness and ISDs can 
be interpreted as size-specific associations between species 
richness and abundance (Fig. 3). The association was uni-
modal for Great Basin birds, with a peak between 10 g and  
50 g (Fig. 5a). There was little evidence of an association 
between species richness and the number of individuals  
 200 g (Fig. 5a). The addition of 15 10-g individuals was 
associated an increase of one in species richness, but additions of 
individuals  200 g were not associated with changes in species  
richness based on the magnitude of the associations in Fig. 5a.  
The omission of species poorly sampled by point counts reduced 
the size range of the sampled community, but the fitted rela-
tion remained consistent, with a positive association between 
species richness and the abundance of individuals with body 
masses 100 g (Supplementary material Appendix 3).

The fitted association between species richness and 
ISDs was unimodal for birds in the box-ironbark fragment 
study, with a peak between 50 g and 200 g (Fig. 5b). This 
association was positive for all birds  5000 g, but there was 
little evidence of an association between species richness and 
the number of individuals  5000 g (Fig. 5c). The magni-
tude of this association was similar to that observed in Great 
Basin birds (Fig. 5a–b). 

The association between species richness and ISDs was 
positive and unimodal for birds in the box-ironbark landscape 
study, with a peak at 200 g (Fig. 5c). This association indicates 

Table 3. Correlations (r2) between observed species richness and species richness predicted by size-diversity indices compiled with 1000 
bins or individual–size distributions compiled with 40 bins. Values are based on naïve model fit and the numbers in brackets were derived 
from ten-fold cross validation. Values in boldface denote the best-performing predictor variable under cross validation. Values generated by 
quadratic models are in the Supplementary material Appendix 3. The combination of indices includes the range, richness, evenness and 
divergence of body masses.

Predictor variable
Great 

Basin birds

Great Basin  
birds – no poorly 
sampled species

Box-ironbark  
birds – fragment study

Box-ironbark  
birds – landscape study

United States 
fishes

Size-diversity indices
Range of body masses 0.42 (0.05) 0.42 (0.02) 0.14 (0.13) 0.78 (0.02) 0.25 (0.20)
Richness of body-mass classes 0.75 (0.72) 0.74 (0.70) 0.38 (0.28) 0.81 (0.36) 0.27 (0.21)
Shannon entropy of body masses 0.75 (0.71) 0.74 (0.70) 0.36 (0.26) 0.78 (0.30) 0.13 (0.07)
Evenness of body masses 0.75 (0.70) 0.74 (0.70) 0.36 (0.26) 0.78 (0.28) 0.11 (0.05)
Divergence of body masses 0.39 (0.00) 0.37 (0.00) 0.06 (0.00) 0.78 (0.00) 0.15 (0.09)
Combination of indices 0.76 (0.71) 0.75 (0.71) 0.39 (0.29) 0.82 (0.36) 0.35 (0.29)
Combination with pairwise interactions 0.76 (0.72) 0.76 (0.71) 0.49 (0.37) 0.83 (0.40) 0.35 (0.29)

Size-distribution measure
Individual–size distributions 0.67 (0.26) 0.64 (0.28) 0.36 (0.23) 0.84 (0.35) 0.28 (0.21)
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Figure 4. Estimated coefficients from a linear regression with species 
richness as the response variable and one of five size-diversity indices 
as the predictor variable for Great Basin birds (circles), box-ironbark 
birds – fragment study (squares), box-ironbark birds – landscape 
study (triangles), and fishes in the United States (diamonds). Points 
are mean fitted effects and lines indicate one standard deviation of 
the mean fitted effect.
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that species richness is positively associated with abundances 
of birds  1000 g. However, near-zero regression values for 
individuals 1000 g suggest that the abundance of these 
larger birds is not closely associated with species richness  
(Fig. 5c).

The fitted effect of fish ISDs on species richness was posi-
tive for fishes  0.01 g and did not differ substantially from 
zero for smaller individuals (Fig. 5d). This association indi-
cates a consistent, positive association between species rich-
ness and abundances of fishes  0.01 g (Fig. 5d). In all data 
sets, associations between species richness and ISDs were 
relatively insensitive to changes in the number of bins used 
to calculate ISDs. Increasing the number of bins produced 
smoother curves but did not alter their shapes (Supplemen-
tary material Appendix 3).

Comparison between size-diversity indices and 
individual–size distributions

When based on 20 bins, individual–size distributions (ISDs) 
predicted 3–53% more variation in bird species richness 
than did size-diversity indices (Table 2). Size-diversity indi-
ces predicted 20% more variation in species richness of fishes 

than did ISDs (0.24 and 0.20, respectively; Table 2). With  
40 bins, size-diversity indices explained 4–68% more varia-
tion in species richness of Great Basin birds, box-ironbark 
birds (fragment study), and fishes than did ISDs (Supple-
mentary material Appendix 3). ISDs predicted 17% more 
variation in species richness of box-ironbark birds (land-
scape study) than did size-diversity indices (0.35 and 0.30, 
respectively; Table 3). With 1000 bins, size-diversity indices 
predicted 14–177% more variation in species richness than 
did ISDs compiled with 40 bins (Table 3).

The omission of species poorly sampled by point counts 
for Great Basin birds more than doubled cross-validated 
r2-values for size-diversity indices and increased the cross-
validated r2-value for ISDs by 0.05 (Table 2). The inclusion 
of quadratic terms in the regression model had little effect on 
naïve and cross-validated r2-values for ISDs and size-diversity 
indices (Supplementary material Appendix 3).

Discussion

There were clear links between species richness and size 
diversity in birds and fishes, which suggest that mechanistic, 
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Figure 5. Estimated coefficients from functional data analysis with species richness as the response variable and individual–size distributions 
(ISDs) as the predictor variable for Great Basin birds (a), box-ironbark birds – fragment study (b), box-ironbark birds – landscape study (c), 
and fishes in the United States (d). Estimated coefficients display the expected change in species richness (Δ richness) as an individual of a 
given size is added to a community. Grey shading indicates one standard deviation of the mean fitted effect.
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size-based models might be extended to predict variation 
in species richness. Associations between size diversity and 
species richness generally were strongest when we included 
multiple size-diversity indices with pairwise interactions as 
predictor variables. However, the proportion of variation 
in species richness explained by models with continuous 
individual–size distributions (ISDs) as predictor variables was 
similar to that explained by models based on size-diversity 
indices for several data sets, and the ISD-based models 
were largely insensitive to details of model fitting, such as 
the number of bins used to discretize ISDs. Although size-
diversity indices identified complex associations between size 
diversity and species richness, functional data analysis pro-
vided other inferences, such as the size classes that underpin 
observed associations. Analyses of continuous ISDs showed 
that small- and medium-sized individuals drive observed 
associations between species richness and size diversity. We 
believe that broader use of functional data analysis would 
enrich ecological inferences from analyses of taxonomic or 
functional diversity indices.

There are two practical benefits of functional data analy-
sis. First, outcomes from functional data analysis appeared 
to be relatively insensitive to differences in the calculation 
of ISDs, such as the number and width of bins. By contrast, 
the number of bins used to compile ISDs was strongly asso-
ciated with the predictive accuracy of size-diversity indices 
(Supplementary material Appendix 3). In many cases, this 
association was unimodal, so using a very large number of 
bins did not guarantee high predictive accuracy (Supplemen-
tary material Appendix 3). Second, models based on ISDs 
had similar accuracy regardless of whether poorly sampled 
species were included, whereas model predictions based on 
size-diversity indices improved when poorly sampled spe-
cies were excluded. Analyses using entire ISDs may be less 
sensitive to changes in the range of observed sizes or the pres-
ence of specific size classes than comparable analyses based on 
size-diversity indices.

There were positive associations between species rich-
ness and size-diversity indices for all indices and data sets, 
so that, for the data sets considered here, increases in size 
diversity were associated with increases in species richness. 
This is consistent with the results of our analysis of species 
richness and ISDs in which species richness was positively 
associated with the number of individuals in most size classes 
in all data sets (Fig. 5). Increases in the abundances of indi-
viduals in multiple size classes typically would be associated 
with increases in size-diversity indices because increases in the 
number of individuals in these size classes would result in a 
more-even ISD spanning more size classes. Close associations 
between species richness and size-diversity indices do not 
provide detailed insight into which size classes are driving the 
observed associations. Increases in size-class richness could 
result from the addition of individuals into any absent size 
class, but our analysis of ISDs showed that positive associa-
tions between species richness and size diversity were deter-
mined by small and medium-sized individuals ( 100 g for 

Great Basin birds,  1000 g for box-ironbark birds) (Fig. 
5a–c). The abundances of individuals in larger size classes 
were not associated with a change in species richness of birds 
(Fig. 5a–c). We found a similar, but weaker, pattern for fishes, 
with the strength of the associations between species richness 
and ISDs decreasing for large size classes (5000 g; Fig. 5d).

Our aim was to identify correlative links between species 
richness and size diversity. Although it is possible that size 
diversity is causally linked to species richness, species rich-
ness and size diversity may be linked indirectly through the 
ecological processes that determine community structure and 
dynamics, including competition and niche partitioning, tro-
phic interactions and ecological drift. The primary contribu-
tion of the current study is the quantification of links between 
size diversity and species richness, which suggests that mecha-
nistic, size-based models (Scott et al. 2014) might be used to 
predict patterns in species richness. Size-based models often 
do not include species’ identities but can incorporate many 
ecological processes. Our study provides a link between the 
outputs of these models (typically ISDs) and species richness, 
which has always been and continues to be a critical quantity 
in much of community ecology, macroecology and biogeog-
raphy (Gotelli et al. 2009).

Although we did not set out to identify a causal link 
between species richness and size diversity, our work provides 
insight into the processes that determine species richness. 
One might expect that both ISDs and size-diversity indices 
are associated with size-dependent niche partitioning, where 
the addition of a species is likely to fill an empty size class or 
extend the range of observed size classes. The links between 
species richness and size-class richness suggests that size-
dependent niche partitioning occurs in the systems that we 
considered. Weaker associations between species richness and 
abundances in larger size classes (e.g.  100 g for Great Basin 
birds,  1000 g for box-ironbark birds) might reflect the 
intensity of interactions between species in these size classes 
and other species in the community. Weak associations 
between species richness and larger-bodied species might 
be expected in the box-ironbark region given that many of 
these species are wide-ranging resource-trackers (Mac Nally 
and McGoldrick 1997), which would be expected to have 
limited, temporally and spatially variable interactions with 
woodland bird communities (Mac Nally 1995).

Right-skewed associations between species richness and 
ISDs of birds in the Great Basin and the box-ironbark 
landscape study indicate that the number of species was pos-
itively correlated with the proportion of small individuals 
(Fig. 5a, c). These studies covered a range of land-cover types 
(e.g. woodlands, riparian zones, non-native grasses). There-
fore, concurrent changes in species richness and ISDs might 
be due to changes in species composition or to body sizes 
among land-cover types (e.g. shifts to fewer, larger species 
in less-vegetated sites; Fischer et al. 2008). The fitted asso-
ciation between species richness and ISDs of birds in the 
box-ironbark fragment study was less skewed (Fig. 5b), 
probably reflecting that the number of individuals, but not 
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the proportion of small individuals, increased as species rich-
ness increased. Sampling in the box-ironbark fragment study 
was restricted primarily to the interior of native woodland 
fragments, most of which were  40 ha. Therefore, asso-
ciations between species richness and size diversity may not 
have been associated strongly with differences in land-cover 
type. Concurrent changes in species richness and abundance 
might be due to changes in ecological function, with the 
number of species and individuals increasing as productivity 
increased (the more-individuals hypothesis; Srivastava and 
Lawton 1998). A relatively constant, positive association 
between species richness and ISDs of fishes from 1–1000 
g (Fig. 5d) might reflect differences in ecological function, 
with a greater number of species and individuals in more-
productive sites.

That the proportion of small individuals in species-rich 
bird communities was greater than the proportion of large 
individuals is consistent with evidence that the proportion of 
small species is greater than that of large species (Hutchinson 
and MacArthur 1959), and with observations that there are 
proportionally more small species in species-rich commu-
nities than in species-poor communities (Meiri and Dayan 
2003). We can relate ISDs to community metabolic rate (i.e. 
the rate at which a community processes energy and materi-
als) by applying allometric scaling relations [metabolic rate ∝ 
(body size)0.75] and summing over all individuals in a com-
munity (Yen  et  al. 2015b). Coupled with our observation 
that the number of small individuals increased as species 
richness increased, these allometric scaling relations sug-
gest that increases in species richness may be associated with 
increases in community metabolism, which is consistent with 
hypothesized positive links between species richness and eco-
system function (Loreau  et  al. 2001, Hooper  et  al. 2005). 
Shifts in the proportion of small and large individuals were 
less apparent among fishes than among birds, which suggests 
that macroecological patterns recorded in terrestrial bird 
and mammal communities may not occur in freshwater fish 
communities (see also Le Feuvre et al. 2015).

Our analysis assumes that data on individual sizes are 
available but that species’ identities are unknown. Data on 
individual sizes often are collected in aquatic systems and in 
terrestrial plant assemblages. Although such data typically 
are collected alongside data on species’ identities, we believe 
our approach is useful in two situations. First, some mecha-
nistic models of individual traits and many mechanistic 
models of individual sizes do not model individual species 
(Blanchard et al. 2017). It would be useful to predict species 
richness from the outputs of these increasingly sophisticated 
models. Second, there are efficient techniques to measure 
individual sizes without identifying species, particularly in 
aquatic systems (Sheldon et al. 1972, Turnbull et al. 2014, 
Wheeland and Rose 2016). Relating the data sets from these 
techniques to species richness would yield rapid estimates 
of species richness without the often substantial additional 
effort of identifying species.

Estimating species richness from the outputs of 
mechanistic, size-based models would generate predictions 

of species richness associated with any of the many eco-
logical processes considered in recent size-based models 
(Blanchard et  al. 2017). Our results also suggest that func-
tional data analysis can be used to interpret associations in 
more detail than is possible with single-valued diversity indi-
ces. Our approach is applicable to any variable that can be 
represented as a distribution or function (e.g. land-cover 
diversity, trait diversity). We expect that broad application of 
this approach will identify previously undetected links among 
these different components of biological diversity.

Acknowledgements – The views expressed herein are those of the 
authors and are not necessarily those of the Australian Government 
or Australian Research Council. For contributions to surveys of birds 
in the box-ironbark region we thank G. Horrocks, G. Cheers, and 
J. Radford. H. Possingham and A. Magurran provided insightful 
feedback on a draft manuscript.
Funding – This research was conducted by the Australian Research 
Council Centre of Excellence for Environmental Decisions 
(CE11001000104) and was funded by the Australian Government. 
Data on fishes were available due to the efforts of the many 
researchers involved in the NAWQA program (USGS). Australian 
bird-mass data were collated by C. Catterall, R. Loyn, and T. Sloane, 
with support from the Arthur Rylah Institute for Environmental 
Research. Funds for collection and archiving of data on birds in the 
Great Basin were provided by the Joint Fire Science Program via 
cooperative agreements with the Rocky Mountain Research Station 
(JFSP 00-2-15, 01B-3-3-01, 05-2-1-94, and 09-1-08-4), by the 
National Fish and Wildlife Foundation (2005-0294-000), and by 
the Strategic Environmental Research and Development Program 
of the Department of Defense (contract W912HQ-12-C-0033, 
project RC-2202). JDLY was funded by a Monash University Sir 
James McNeill Foundation Postgraduate Research Scholarship and 
Monash University Postgraduate Publications Award and received 
financial support from the Victorian Life Sciences Computation 
Initiative.

References

Baker, G. B. 1995. Report on the Australian bird and bat banding 
scheme,1984–95. – Australian Nature Conservation Agency, 
Canberra.

Bennett, J. M. et al. 2014. Resistance and resilience: can the abrupt 
end of extreme drought reverse avifaunal collapse?  
– Divers. Distrib. 20: 1321–1332.

Blonder, B. C.  et  al. 2018. New approaches for delineating 
n-dimensional hypervolumes. – Methods Ecol. Evol. 9:  
305–319.

Brown, J. H. and Nicoletto, P. F. 1991. Spatial scaling of species 
composition: body masses of North American land mammals. 
– Am. Nat. 138: 1478–1512.

Brown, J. H.  et  al. 2004. Toward a metabolic theory of ecology. 
– Ecology 85: 1771–1789.

Blanchard, J. L.et al. 2017. From bacteria to whales: using func-
tional size spectra to model marine ecosystems. – Trends Ecol. 
Evol. 32: 174–186.

Cadotte, M. et al. 2011. Beyond species: functional diversity and 
the maintenance of ecological processes and services. – J. Appl. 
Ecol. 48: 1079–1087.



1990

Cardillo, M. 2002. Body size and latitudinal gradients in regional 
diversity of New World birds. – Global Ecol. Biogeogr. 11: 
59–65.

Carmona, C. P.  et  al. 2016. Traits without borders: integrating 
functional diversity across scales. – Trends Ecol. Evol. 31:  
382–394.

Donald, P. F. 2007. Adult sex ratios in wild bird populations. – Ibis 
149: 671–692.

dos Santos, R. M.  et  al. 2017. Evaluation of models capacity to 
predict size spectra parameters in ecosystems under stress.  
– Ecol. Ind. 79: 114–121.

Dunning, J. B. Jr. 2007. CRC handbook of avian body masses, 2nd 
ed. – CRC Press.

Efron, B. and Gong, G. 1983. A leisurely look at the bootstrap, the 
jackknife, and cross-validation. – Am. Stat. 37: 36–48.

Enquist, B. J.  et  al. 2016. Cyberinfrastructure for an integrated 
botanical information network to investigate the ecological 
impacts of global climate change on plant biodiversity. – PeerJ 
Preprints,  https://peerj.com/preprints/2615/ .

Falster, D. S.  et  al. 2016. plant: a package for modelling forest 
trait ecology and evolution. – Methods Ecol. Evol. 7:  
136–146.

Falster, D. S.  et  al. 2017. Multitrait successional forest dynamics 
enable diverse competitive coexistence. – Proc. Natl Acad. Sci. 
USA 114: E2719–E2728.

Fischer, J. et al. 2008. The role of landscape texture in conservation 
biogeography: a case study on birds in southeastern Australia. 
– Divers. Distrib. 14: 38–46.

Fleishman, E. 2015a. Detections of breeding birds in the Shoshone, 
Toiyabe, Toquima and Monitor ranges, Nevada, 3rd ed.  
– Forest Service Research Data Archive, Fort Collins, Colorado, 
doi:10.2737/RDS-2011-0002.3.

Fleishman, E. 2015b. Detections of breeding birds in the Wassuk 
Range, Sweetwater Mountains, and east slope of the Sierra 
Nevada, Nevada and California. – Forest Service Research Data 
Archive, Fort Collins, Colorado, doi:10.2737/RDS-2015-0031.

Fleishman, E. 2015c. Vegetation structure and composition in the 
Shoshone Mountains and Toiyabe, Toquima and Monitor 
ranges, Nevada, 2nd ed. – Forest Service Research Data Archive, 
Fort Collins, Colorado, doi:10.2737/RDS-2013-0007-2.

Fleishman, E. 2015d. Vegetation structure and composition in the 
Wassuk Range, Sweetwater Mountains, and east slope of the 
Sierra Nevada, Nevada and California. – Forest Service Research 
Data Archive, Fort Collins, Colorado, doi:10.2737/RDS-2015-
0032.

Fleishman, E. et al. 2014. Projecting current and future location, 
quality, and connectivity of habitat for breeding birds in the 
Great Basin. – Ecosphere 5: 82.

Frimpong, E. A. and Angermeier, P. L. 2009. Fish traits: a database 
of ecological and life-history traits of freshwater fishes of the 
United States. – Fisheries 34: 487–495.

Gelfand, A. E. 2000. Gibbs sampling. – J. Am. Stat. Assoc. 95: 
1300–1304.

Gislason, H. and Rice, J. 1998. Modelling the response of size and 
diversity spectra of fish assemblages to changes in exploitation. 
– ICES J. Mar. Sci. 55: 362–370.

Gotelli, N. J. et al. 2009. Patterns and causes of species richness: a 
general simulation model for macroecology. – Ecol. Lett. 12: 
873–886.

Guiet, J.  et  al. 2016. Modelling the community size-spectrum: 
recent developments and new directions. – Ecol. Model. 337: 
4–14.

Harte, J. 2011. Maximum entropy and ecology: a theory of 
abundance, distribution and energetics. – Oxford Univ. Press.

Hawkins, B. A.  et  al. 2003. Energy, water, and broad-scale 
geographic patterns of species richness. – Ecology 84:  
3105–3117.

Higgins, P. 2006. Handbook of Australian, New Zealand and 
Antarctic Birds. Seven-volume set. – Oxford Univ. Press.

Hooper, D. U.  et  al. 2005. Effects of biodiversity of ecosystem 
functioning: a consensus of current knowledge. – Ecol. Monogr. 
75: 3–35.

Hozo, S. P. et al. 2005. Estimating the mean and variance from the 
median, range and the size of a sample. – BMC Med. Res. 
Methodol. 5: 13.

Hutchinson, G. E. and MacArthur, R. H. 1959. A theoretical 
ecological model of size distributions among species of animals. 
– Am. Nat 93: 117–125.

Kooijman, S. A. L. M. 2010. Dynamic energy budget theory for 
metabolic organisation, 3rd edn. – Cambridge Univ. Press.

Laughlin, D. C.  et  al. 2012. A predictive model of community 
assembly that incorporates intraspecific trait variation. – Ecol. 
Lett. 15: 1291–1299.

Le Feuvre, M. C. et al. 2015. Macroecological relationships reveal 
hotspots and extinction-prone species in Australia’s freshwater 
fishes. – Global Ecol. Biogeogr. 25: 176–186.

Locey, K. J. and White, E. P. 2013. How species richness and total 
abundance constrain the distribution of abundance. – Ecol. 
Lett. 16: 1177–1185.

Loreau, M.  et  al. 2001. Biodiversity and ecosystem functioning: 
current knowledge and future challenges. – Science 294:  
804–808.

Mac Nally, R. C. 1995. On large-scale dynamics and community 
structure in forest birds: lessons from some eucalypt forests of 
southeastern Australia. – Phil. Trans R. Soc. B 350: 369–379.

Mac Nally, R. and McGoldrick, J. M. 1997. Landscape dynamics 
of bird communities in relation to mass flowering in some 
eucalypt forests of central Victoria, Australia. – J. Avian Biol. 
28: 171–183.

Mac Nally, R.  et  al. 2000. Forecasting the impacts of habitat 
fragmentation. Evaluation of species-specific predictions of the 
impact of habitat fragmentation on birds in the box-ironbark 
forests of central Victoria, Australia. – Biol. Conserv. 95: 7–29.

Magurran, A. E. and McGill, B. J. 2011. Biological diversity: 
frontiers in measurement and assessment. – Oxford Univ. 
Press.

Mason, N. W. H.  et  al. 2005. Functional richness, functional 
evenness and functional divergence: the primary components 
of functional diversity. – Oikos 111: 112–118.

Maury, O. and Poggiale, J.-C. 2013. From individuals to populations 
to communities: a dynamic energy budget model of marine 
ecosystem size-spectrum including life history diversity. – J. 
Theor. Biol. 324: 52–71.

Mayfield, M. M.  et  al. 2010. What does species richness tell us 
about functional trait diversity? Predictions and evidence for 
responses of species and functional trait diversity to land-use 
change. – Global Ecol. Biogeogr. 19: 423–431.

McGill, B. J.  et  al. 2006. Rebuilding community ecology from 
functional traits. – Trends Ecol. Evol. 21: 178–185.

Meiri, S. and Dayan, T. 2003. On the validity of Bergmann’s rule. 
– J. Biogeogr. 30: 331–351.

Mittelbach, G. G.  et  al. 2001. What is the observed relationship 
between species richness and productivity? – Ecology 82:  
2381–2396.



1991

Petchey, O. L. and Gaston, K. J. 2002. Functional diversity (FD), 
species richness and community composition. – Ecol. Lett. 5: 
402–411.

Peters, R. H. 1983. The ecological implications of body size. 
– Cambridge Univ. Press.

Radford, J. Q. et al. 2005. Landscape-level thresholds of habitat cover 
for woodland-dependent birds. – Biol. Conserv. 124: 317–337.

Ramsay, J. O. and Silverman, B. W. 2005. Functional data analysis, 
2nd edn. – Springer.

Rice, J. and Gislason, H. 1996. Patterns of change in the size spectra 
of numbers and diversity of the North Sea fish assemblage,  
as reflected in surveys and models. – ICES J. Mar. Sci. 53: 
1214–1225.

Schleuter, D.  et  al. 2010. A user’s guide to functional diversity 
indices. – Ecol. Monogr. 80: 469–484.

Scott, F.  et  al. 2014. mizer: an R package for multispecies, trait-
based and community size-spectrum ecological modelling.  
– Methods Ecol. Evol. 5: 1121–1125.

Sebens, K. P. 1987. The ecology of indeterminate growth in animals. 
– Annu. Rev. Ecol. Syst. 18: 371–407.

Sheldon, R. W. et al. 1972. The size distribution of particles in the 
ocean. – Limnol. Oceanogr. 17: 327–340.

Srivastava, D. S. and Lawton, J. H. 1998. Why more productive 
sites have more species: an experimental test of theory using 
tree-hole communities. – Am. Nat. 152: 510–529.

Stein, A.  et  al. 2014. Environmental heterogeneity as a universal 
driver of species richness across taxa, biomes and spatial scales. 
– Ecol. Lett. 17: 866–880.

Thibault, K. M. et al. 2011. Multimodality in the individual size 
distributions of bird communities. – Global Ecol. Biogeogr. 20: 
145–153.

Turnbull, M. S. et al. 2014. Weighing in: size spectra as a standard 
tool in soil community analyses. – Soil Biol. Biogeochem. 68: 
366–372.

US Geological Survey 2001. National water information system 
(NWIS). – US Geol. Survey database.  http://cida.usgs.gov/
nawqa_queries_public/ .

Violle, C.  et  al. 2014. The emergence and promise of functional 
biogeography. – Proc. Natl Acad. Sci. USA 111: 13690–13696.

Werner, E. E. and Gilliam, J. F. 1984. The ontogenetic niche and 
species interactions in size-structured populations. – Annu. Rev. 
Ecol. Syst. 15: 393–425.

Wheeland, L. J. and Rose, G. A. 2016. Acoustic measures of  
lake community size spectra. – Can. J. Fish. Aquat. Sci. 73: 
557–564.

White, E. P.  et  al. 2007. Relationships between body size and 
abundance in ecology. – Trends Ecol. Evol. 22: 323–330.

Yen, J. D. L.  et  al. 2015a. Function regression in ecology and 
evolution: FREE. – Methods Ecol. Evol. 6: 17–26.

Yen, J. D. L.  et  al. 2015b. Thermodynamics predicts density-
dependent energy use in organisms and ecological communities. 
– Phys. Rev. E 91: 042708.

Yen, J. D. L.  et  al. 2017a. Balancing generality and specificity in 
ecological gradient analysis with species abundance distribu-
tions and individual size distributions. – Global Ecol. Biogeogr. 
26: 318–332.

Yen, J. D. L. et al. 2017b. How do different aspects of biodiversity 
change through time? A case study on an Australian bird 
community. – Ecography 40: 642–650.

Zhao, J.  et  al. 2017. Size spectra of soil nematode assemblages 
under different land use types. – Soil Biol. Biochem. 85: 
130–136.

Supplementary material (online Appendix ecog-03582 at 
 www.ecography.org/appendix/ecog-03582 ). Appendix 1.  
Description of data sets. Appendix 2. Species lists, abun-
dances, and means and standard deviations of body masses for 
each data set. Appendix 3. Results for ISDs and size-diversity 
indices compiled with 10, 20, 30, 40, 100, 500, 1000 and 
5000 bins, results for quadratic models, and results for Great 
Basin birds following removal of poorly sampled species from 
analyses. Appendix 4. Description and computational details 
for statistical analyses. Appendix 5. R object containing data 
on species richness and individual–size distributions for all 
data sets. Appendix 6. R-code to calculate size-diversity indi-
ces and to fit function regression models for birds and fishes.


