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Abstract

Osteoglossiformes represents one of the most ancestral teleost lineages, currently wide-

spread over almost all continents, except for Antarctica. However, data involving advanced

molecular cytogenetics or comparative genomics are yet largely limited for this fish group.

Therefore, the present investigations focus on the osteoglossiform family Arapaimidae,

studying a unique fish model group with advanced molecular cytogenetic genomic tools. The

aim is to better explore and clarify certain events and factors that had impact on evolutionary

history of this fish group. For that, both South American and African representatives of Ara-

paimidae, namely Arapaima gigas and Heterotis niloticus, were examined. Both species dif-

fered markedly by diploid chromosome numbers, with 2n = 56 found in A. gigas and 2n = 40

exhibited by H. niloticus. Conventional cytogenetics along with fluorescence in situ hybridiza-

tion revealed some general trends shared by most osteoglossiform species analyzed thus

far, such as the presence of only one chromosome pair bearing 18S and 5S rDNA sites and

karyotypes dominated by acrocentric chromosomes, resembling thus the patterns of hypo-

thetical ancestral teleost karyotype. Furthermore, the genomes of A. gigas and H. niloticus

display remarkable divergence in terms of repetitive DNA content and distribution, as

revealed by comparative genomic hybridization (CGH). On the other hand, genomic diversity

of single copy sequences studied through principal component analyses (PCA) based on

SNP alleles genotyped by the DArT seq procedure demonstrated a very low genetic distance

between the South American and African Arapaimidae species; this pattern contrasts sharply

with the scenario found in other osteoglossiform species. Underlying evolutionary mecha-

nisms potentially explaining the obtained data have been suggested and discussed.
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Introduction

Freshwater fishes represent an important model group for biogeographic studies, as their evo-

lution is often tightly linked with (and affected by) the Earth’s geological development that

shapes the freshwater networks [1,2]. Consequently, each continent presents characteristic

freshwater fish faunas, where the proper distributional patterns are modified by physical barri-

ers that blocked the dispersion of ancestors for many present-day species. The freshwater

order Osteoglossiformes is an important model for biogeographic studies [3–5] as it represents

one of the main ancestral teleostean lineages [6–8] that shows a worldwide distribution, with

at least one representative in each continent of the southern hemisphere, except for Antarctica.

According to the current taxonomy, Osteoglossiformes includes the suborders Osteoglossoidei

(including the Osteoglossidae, Arapaimidae, Pantodontidae families) and Notopteroidei

(including the Gymnarchidae, Mormyridae, and Notopteridae families) [6,9].

Arapaimidae includes the South American genus Arapaima and the African genus Hetero-
tis, which are distributed in various freshwaters of these continents (Fig 1). Heterotis is reput-

edly represented by the sole bonytongue species H. niloticus, but the actual species diversity is

unknown, with some preliminary reports indicating possible fast ongoing genetic differentia-

tion [10,11]. The African bonytongue can reach up to 1 m in length, and, due to the demand

and popularity of their meat [10], this species has experienced a huge population decrease and

has been recently included in the list of endangered species [12].

Arapaima has been considered monotypic since Günther grouped A. arapaima, A. mapae,
and A. agassizii into a single taxon, A. gigas [13–15]. However, recent studies have led to the

conclusion that all three taxa are valid as separate, well-diagnosed species and one additional

new species, A. leptosoma, has been described, with further indications that the list of Ara-
paima´s species will likely continue to grow [14,15]. Hence, Arapaima genus lost the mono-

typic status, encompassing more species than appreciated for more than one century. The real

problem may be represented by the fact that these species are known just from their holotypes

and their actual distribution is unknown, because all Arapaima individuals are recognized as

A. gigas, popularly known as “pirarucus”. The natural distribution of these fishes covers a large

part of the Brazilian Araguaia–Tocantins and Amazon River basins [16,17]. They live preferen-

tially in lentic environments such as floodplains and lakes, with significant sedentary behavior

[18,19], displaying complex reproductive strategies, including nest building and a high level of

Fig 1. Geographical distribution of Arapaimidae fishes and the sampling locations. Distribution areas of extant

Arapaimidae species (red) and the currently described fossil records (crosses). The fossil records are based on

descriptions reported by [4,9,22–27]. The sampling sites are marked by triangle for Arapaima gigas (Brazil) and square

for Heterotis niloticus (Nigeria).

https://doi.org/10.1371/journal.pone.0214225.g001
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parental care [20, 21]. Being one of the largest freshwater fishes of the planet, with individuals

measuring up to 4 m in length, they have been subjected to extensive fishery activities for years

[6].

The break-up of Gondwana has been discussed as being the driving force for the speciation

and intercontinental distribution of the extant arapaimids. However, based on the fossil

record, common ancestors of living Arapaimidae were widespread in the world, inhabiting

both Laurasia and Gondwanaland (Fig 1). This is also consistent with molecular evidences sug-

gesting that the diversification into osteoglossiform (sub-) families started before the Pangea

break-up [3,5]. Extant living arapaimids are represented by only two genera, namely the Afri-

can Heterotis which is native to all basins of the Sahelo-Sudanese region, Senegal, Gambia,

Corubal, Volta, Ouémé, Niger, Bénoue, Chad and Nile basins, and the South American Ara-
paima, widely distributed throughout the Amazon lowlands, Araguaia-Tocantins river basin

and Guiana. Consequently, an intriguing question arises: how do the living arapaimids reach

the South American territory? In this sense, speculations on the role of vicarious events in the

divergent process among such species are plausible. However, while geological data suggest

that Africa and South America started to separate in the early Cretaceous (~135 Mya) [28],

slowly settling in the middle of the Cretaceous between 120–110 Mya with the increase of the

Atlantic Ocean to the south [29], by using nuclear and mitogenomic markers and calibration

with fossil records, it was estimated that the time of divergence between these two lineages

occurred within the range of 85 to 50 Mya [5], thus requiring alternative biogeographic

hypotheses to explain the current intercontinental distribution of these fishes. Therefore,

diversified approaches, including karyotype and high-resolution sequencing analyzes have

been employed and interpreted within the context of Arapaimidae biogeographic history, in

order to provide novel complex insight into this matter.

Advances in cytogenetic techniques have provided evidence that repetitive DNA sequences

play an important role in the structural and functional organization of the genomes [30,31]. In

the last two decades, large amounts of data were generated concerning the chromosomal map-

ping of repetitive DNAs in several fish species [32]. However, the cytogenetic data for repre-

sentatives of Osteoglossiformes are still scarce and, when available, they originate from studies

performed in the early 1970s and are mainly restricted to the description of the diploid num-

ber (2n) and the karyotype structure. A summary table with such information can be found in

Ráb et al. [33]. Within Arapaimidae, only two studies reporting the distribution of the consti-

tutive heterochromatin and the mapping of rDNA sequences in chromosomes have been per-

formed up to now [34,35].

Comparative genomic hybridization (CGH) is a FISH-based method that utilize total geno-

mic DNAs (gDNAs) of the investigated organisms as a hybridization probe. Through CGH, it

is possible to compare the genomic content from two (or more) different sources on the level

of gross molecular composition, once the probes are simultaneously hybridized onto chromo-

somal preparations of interest [36–39]. The principle of the method is based on the differential

distribution of already divergent genome-specific repetitive DNA classes, as this highly abun-

dant genomic fraction display faster evolutionary rate than the single-copy regions [31,40,41].

Such methodology has been, for instance, successfully applied for i) the identification of paren-

tal genomes in hybrids/allopolyploids, ii) delimitation of sex-specific regions on both homo-

morphic and heteromorphic sex chromosomes or iii) the genome comparisons among related

species (for references, see [42]).

Here we performed comprehensive molecular cytogenetic analysis for the representatives

of Arapaimidae family by applying differential cytogenetic methods, such as C-banding, CGH

and physical mapping of certain repetitive DNA classes through FISH, complemented with

DArT-seq molecular analysis using single nucleotide polymorphisms (SNPs). The main goal
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was to investigate and compare patterns of the chromosomal and the gross-scale genome evo-

lution in two representatives of Arapaimidae from two different continents and to interpret

them within the context of known data from other osteoglossiform fishes, bringing thus new

insights into evolutionary trends within the group.

Materials and methods

Animals, mitotic chromosome preparation, and banding procedures

Individuals unambiguously identified as Heterotis niloticus (four females and four males; Oluwa

River (Africa), 6˚16’60.0"N 4˚49’00.0"E) and Arapaima gigas (seven females and eight males;

Tocantins River basin (South America), 11˚5’14.90"S, 49˚56’21.72"W) were analyzed (Fig 1).

All the specimens of Heterotis niloticus were deposited under voucher number 20558 in the

Museum of Universidade Estadual Paulista (UNESP, Botucatu). The specimens of Arapaima
gigas were deposited in the Museum of Zoology of the University of São Paulo (MZUSP),

under voucher number 121639. Samples were collected with the authorization of the Brazilian

environmental agency ICMBIO/SISBIO (nº 48290–1) and SISGEN (no A96FF09). No authori-

zation for sampling the African specimens was required. The identity of A. gigas was deter-

mined based on diagnostic characters provided by Stewart [14,15]. In order to increase the

number of mitotic cells, animals were first stimulated with yeast suspensions for 48 h [43].

Next, they were euthanized with an overdose of benzocaine (1 g/L) and sacrificed for chromo-

some preparation, which was done following Bertollo et al. [44], with few modifications, but

with one major necessary improvement in the way that we used cells derived from the spleen

instead of kidney to obtain mitotic chromosomes of sufficient quality (full protocol details are

available as S1 Appendix. The experiments were approved by the Ethics Committee on Ani-

mal Experimentation of the Universidade Federal de São Carlos (Process in CEUA

1926260315).

C-banding, silver-nitrate impregnation (Ag-NOR) and Chromomycin A3 (CMA3) staining

were performed following protocols described by Howell and Black [45], Schmid [46] and

Sumner [47], respectively.

Probe preparation and fluorescence in situ hybridization (FISH) analysis

5S and 18S rDNA fragments were obtained by polymerase chain reaction (PCR) using primers

and thermal profiles described in Martins et al. [48] and Cioffi et al. [49], respectively. The 5S

rDNA probe was composed of 120 base pairs (bp) of the 5S rRNA-encoding gene and 200 bp

of the non-transcribed spacer (NTS), while the 18S rRNA probe encompassed a 1400 bp long

segment corresponding to the 18S rRNA gene. The 18S rDNA probe was labeled with Spec-

trum Orange-dUTP (Vysis, Downers Grove, IL, USA) while the 5S rDNA probe was labeled

with Spectrum Green-dUTP (Vysis, Downers Grove, IL, USA), both by nick translation kit,

according to the manufacturer’s recommendations (Roche, Mannheim, Germany).

Fluorescence in situ hybridization (FISH) was performed following Pinkel et al. [50]. The

chromosome preparations were incubated with RNase (40 μg/mL) for 1.5 h at 37˚C. After

denaturation of the chromosomal DNA for 3min in 70% formamide/2× SSC at 70˚C, spreads

were dehydrated in an ethanol series (70, 85, and 100%), 2 min each. Then, 20 μL of the

hybridization mixture (100 ng of each probe, 50% deionized formamide, 10% dextran sul-

phate) was dropped onto the slides, and the hybridization was performed for 14 h at 37˚C in a

moist chamber containing 2× SSC. The post-hybridization wash was carried out with 1× SSC

for 5 min at 42˚C. A final wash was performed at room temperature in 4× SSC for 5 min.

Finally, the chromosomes were counterstained with DAPI (1.2 μg/mL) and mounted in anti-

fade solution (Vector, Burlingame, CA, USA).
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Comparative genomic hybridization (CGH)

The CGH experiment was performed according to Symonová et al. [39]. For each probe, 1 μg

of gDNA was used in the labeling procedure. A. gigas gDNA was labeled with digoxigenin-

11-dUTP using DIG-nick-translation Mix (Roche), while the H. niloticus gDNA was labeled

with biotin-16-dUTP using BIO-nick-translation Mix (Roche). The hybridization solution for

each slide (25 μL) was composed of 1 μg of each genomic probe and 50 μg of unlabeled C0t-1

DNA (i.e. fraction of genomic DNA enriched for highly and moderately repetitive sequences).

C0t-1 DNA was directly isolated from both species according to Zwick et al. [51]. The chosen

ratio of probe vs. C0t-1 DNA amount was set based on the experiences gained during analo-

gous experiments performed in our previous studies in fishes [42,52–57]. The chosen ratio

1:50 reflects high stringency towards repetitive DNA blocking and yet avoids the probability of

improper probe dissolution in the hybridization buffer, which would otherwise cause artifacts

[39,42].

Chromosome preparations were stored overnight in a freezer; they were passed through an

ethanol row (70, 85, and 100%, 3 min each) before and after the storage. After that, the slides

were aged for 1–2 h at 60˚C and treated gradually with RNase (200 μg/mL, 90 min at 37˚C in a

wet chamber) and with pepsin (50 μg/mL in 10 mM HCl, 3 min, 37˚C). Finally, chromosomes

were denatured in 75% formamide/2× SSC at 72˚C for 5 min, and immediately passed through

70% (cold), 85%, and 100% (Room Temperature) ethanol series (3 min each). The probe mix-

ture (20 μL) was first denatured at at 86˚C for 8 min and then applied onto the slides, which

were then incubated at 37˚C in a dark humid chamber for 72 h. The slides were then washed

twice in 50% formamide/2× SSC for 10 min each and incubated with 500 μL of 3% bovine

serum albumin (BSA)/4× SSC/Tween (20 min, 37˚C). The hybridization signals were detected

with anti-Digoxigenin-Rhodamine (Roche) diluted in 0.5% BSA in PBS, and avidin-FITC

(Sigma) diluted in PBS containing 10% normal goat serum (NGS). The final washes were per-

formed at 44˚C in 4× SSC and 0.01% Tween: three washes, 7 min each. Finally, the chromo-

somes were counterstained with DAPI as described above.

Microscopic analyses and image processing

At least 30 metaphase spreads per individual were analyzed to confirm the 2n number, karyo-

type structure, and results of FISH experiments. Images were captured using an Olympus

BX50 microscope (Olympus Corporation, Ishikawa, Japan) with CoolSNAP, and the images

were processed using Image Pro Plus 4.1 software (Media Cybernetics, Silver Spring, MD,

USA). Chromosomes were classified as metacentric (m), submetacentric (sm), subtelocentric

(st) and acrocentric (a) based on Levan et al. [58].

DNA extraction and DArT-seq analysis

Liver tissue was obtained and stored in 100% ethanol for DNA extraction (for protocol details,

see [59]). Besides H. niloticus and A. gigas, DNA from other Notopteridae species, namely

Chitala blanci, C. ornata, C. lopis, Notopterus notopterus, Xenomystus nigri and Papyrocranus
afer, was also extracted and used for DArT-seq analysis [60]. The gDNAs were analysed under

the DArT-seq technology [61] by the Diversity Arrays Technology Company (Canberra, Aus-

tralia). A combination of PstI and SphI enzymes was used to construct the libraries using

methods described by [62], and sequenced on the Illumina Hiseq2500 next generation

sequencer. These enzymes were selected since both are 6 base cutter targeting AG and GC rich

regions and thus they indirectly target gene rich regions of the genome. Two libraries were

constructed for each DNA sample and the whole process of data generation was done in full

technical replication (from digestion/ligation step to marker calling). Approximately 2.5
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million sequences were used per sample to produce marker data. Markers were extracted

using DArT PL’s proprietary analytical pipeline which, in addition to allele calling and marker

data metadata reporting, evaluates consistency of allele calling among the technical replicates.

Single-nucleotide polymorphisms (SNPs) and SilicoDArTs markers were extracted from

the sequences of genomic representations (libraries). SilicoDArTs, which represent presence/

absence of specific restriction fragment in genomic representations were scored as “1” for the

“present” allele and “0” for absence of the fragment/sequence. SNPs were scored in “two row”

format–each row representing a specific allele at the SNP locus. The absence of the allele was

scored ‘0’ and ‘1’ was reported for presence of the allele (see S1 Table for details) [62].

Analysis of genetic diversity between species

From the filtered SNP DArT-seq data matrix, a pair-wise genetic similarity matrix, based on

[63], was computed and utilized for the genetic diversity analyses through R packages. The

principal component analysis (PCA) was performed with FactorMineR [64], while hierarchical

clustering analysis with p-values (AU, Approximately Unbiased p-value and BP, Bootstrap

Probability value) was performed with pvclust [65] using Euclidean distance.

Results

Karyotype analysis and distribution of constitutive heterochromatin

Both species displayed identical karyotypes for males and females, without cytologically detect-

able sex-related heteromorphisms. Individuals of A. gigas exhibited 2n = 56, with karyotype

composed of 28 metacentric (m) to submetacentric (sm) and 28 subtelocentric (st) to acrocen-

tric (a) chromosomes, and with a number of chromosomal arms per cell (FN; Fundamental

number) being equal to 84. On the other hand, karyotype of H. niloticus consisted of 2n = 40,

with all chromosomes possessing bi-armed (i.e. metacentric or submetacentric) morphology

and FN = 80. In both species, the C-positive bands of constitutive heterochromatin were

found to reside preferentially in the centromeric/pericentromeric regions of all chromosomes,

with some additional conspicuous telomeric blocks being present in a subset of chromosome

pairs. Specifically, conspicuous terminal and interstitial segments of constitutive heterochro-

matin were observed in pairs 2, 3, 6, 8, 13, 15, 16, 18, 19, and 20 in H. niloticus and pairs 1, 2, 4,

6, 7, 9, 10, 21, and 22 in A. gigas, with the bands on pairs 15 (H. niloticus) and 2 (A. gigas) cor-

responding to locations of NORs as revealed by silver-nitrate staining (see Fig 2).

Fig 2. Karyotypes of Arapaima gigas and Heterotis niloticus arranged from Giemsa-stained and C-banded

chromosomes. The Ag-NOR pairs are highlighted in boxes. Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0214225.g002
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Patterns of 5S/18S rDNA and CMA3-positive sites distribution

FISH with the 5S rDNA probe showsbright signals in the pericentromeric region of chromo-

some pair 6 in H. niloticus, whereas in A. gigas, these signals were placed interstitially on the q
arms of chromosome pair 1. The 18S rDNA probe identified a single locus with a very intense

signal located in the distal p arm of pair 15 in H. niloticus and in the proximal p arm of pair 2

in A. gigas, corresponding to the Ag-NOR sites in both species (Fig 3).

Fluorescence staining detected multiple CMA3-positive bands in the genomes of both spe-

cies, particularly nearby the telomeric region of five chromosome pairs in H. niloticus (chro-

mosomes 9, 11, 12, 15, and 18) and of seven chromosome pairs in A. gigas (chromosomes 2, 3,

4, 15, 16, 24, and 26), in addition to CMA3-positive Ag-NOR sites (Fig 3).

Patterns of cross-specific CGH

The CGH experiments provided information about major differences between analyzed

genomes regarding amount and distribution of the shared vs. genome-specific repetitive DNA

fraction. As expected, both genomes shared only minor portion of repetitive DNA sequences,

specifically only a segment related to CMA3-positive/NOR/18S rDNA regions (showed as yel-

low signals, i.e. combination of green and red). Additionally, in both experimental designs, the

probe derived from the gDNA of the species whose chromosomes are subjected to analysis (i.e.

hybridization back against its own chromosome complement) hybridized preferentially to het-

erochromatic blocks abundantly present in the terminal chromosomal regions (as evidenced

by sequential C-banding analysis), despite the high amount of competitive DNA. It should be,

however, noted that despite less intensely, the conspecific genomic probe hybridized also

along the rest of the chromosomal regions. Our findings are in line with the general patterns

observed in previous CGH-based reports (e.g. [66–69]) in the sense of biased hybridization in

heterochromatic regions and point to the fact that even high amount of C0t-1 DNA is often

insufficient to entirely outcompete highly repetitive (heterochromatic) regions (for related dis-

cussion, see [70]) (Figs 4 and 5).

Genetic diversity analyses using the DArT-seq data

DArT-seq genotyping output (S1 Table) consisting of an “absence/presence” (0/1) matrix for

each Arapaimidae and Notopteridae species (columns) for a given allele ID (rows), in which

SNP calling relies on different statistical measures. An overview of the genotyping data showed

that out of 1537 SNP alleles found, 57% showed transition type mutations, 88% presented only

one SNP along the sequence and 19% were found in heterozygosity (S1 Table). Principal com-

ponent analyses using only the SNP alleles showed Notopteridae and Arapaimidae species

Fig 3. Karyotypes of Arapaima gigas and Heterotis niloticus after Chromomycin A3/DAPI-staining and rDNA

FISH. Dual-colour FISH was performed using 18S (red) and 5S (green) rDNAs as probes. Bar = 5μm.

https://doi.org/10.1371/journal.pone.0214225.g003
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clustered according to their geographical distribution. Partial results for Notopteridae were

also discussed in Barby et al. [60] (Fig 6).

Discussion

Osteoglossiformes represents one of the most ancestral, yet not well-studied, teleost lineages,

and it is now widespread across all continents, except for Antarctica [71]. The lacking data are

Fig 4. Comparative genomic hybridization (CGH) on metaphase chromosomes of Heterotis niloticus. (A) DAPI-stained chromosomes(B) Hybridization

pattern with probe derived from gDNA of Heterotis niloticus (green); (C) Hybridization pattern with probe derived from with gDNA of Arapaima gigas (red);

(D) Superposition of both gDNA probes showing the shared sequences between the species. Chromosomes were counterstained with DAPI (blue). Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0214225.g004
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probably associated with the wide geographic distribution of this group, with taxa endemic to

different continents, hampering an integrative study that would allow a globalized view of its

accompanying evolutionary processes. Therefore, the present study focuses on the osteoglossi-

form family Arapaimidae, with aims to investigate unique fish model group using advanced

molecular cytogenetic tools in an attempt to better explore and clarify drivers and certain

events that have shaped its evolutionary and distribution history.

Cytogenetic data are still sporadic and quite incomplete for Osteoglossiformes in general,

limiting the progress in understanding of the evolutionary trends operating in this group.

Despite this, the data show that these fishes have diversified chromosome numbers, ranging

from 34 in Gymnarchus niloticus to 56 in A. gigas and Osteoglossum bicirrhosum and karyo-

types dominated by acrocentric chromosomes in most osteoglossiform species (reviewed by

[35]). However, some representatives of Mormyridae, Gymnarchidae, and Notopteridae fami-

lies share specific karyotype features, such as reduced 2n and a karyotype with bi-armed chro-

mosomes, indicating a closer relationship among them (reviewed in [33]). On the other hand,

while the majority of osteoglossiform species tend to maintain the karyotypes with acrocentric

chromosomes, as stated before, the Arapaimidae and Gymnarchidae members represent

exceptions to this general rule. Indeed, our data demonstrate 2n = 56 and a karyotype com-

posed of 28 m/sm + 28 st/a chromosomes for A. gigas (FN = 84), agreeing well with some pre-

vious reports [34,35], but differing from Urushido [72]. In turn, H. niloticus displays 2n = 40

and a karyotype composed of 40 m/sm chromosomes (FN = 80) (Fig 2), also deviating from

the single record previously published [73], who found the same diploid number (2n = 40) but

Fig 5. Comparative genomic hybridization (CGH) on metaphase chromosomes of Arapaima gigas. (A) DAPI-

stained chromosomes (B) Hybridization pattern with probe derived from gDNA of Arapaima gigas (red); (C)

Hybridization pattern with probe derived from gDNA of Heterotis niloticus (green); (D) Superposition of both gDNA

probes showing the shared sequences between the species. Chromosomes were counterstained with DAPI (blue).

Bar = 5 μm.

https://doi.org/10.1371/journal.pone.0214225.g005
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inferred distinct karyotype composition (26m + 10sm + 4a chromosomes) for a West African

population. The observed incongruences may have resulted from different morphological clas-

sification of some chromosomal pairs. Similar incongruences between karyotype studies are

known also for osteoglossiform species Pantodon buchholzi, where the technical limitations in

the former study were most likely responsible for improper karyotype characterization [33].

Unfortunately, as the locality of the H. niloticus specimens examined by [73] is not specified

(since just “West Africa” is mentioned), we cannot exclude the possibility that these variations

may also be related to some population variability.

In addition, the 18S rDNA probe identified a single locus in both species, with a very bright

and hence arguably highly amplified signal in pair 15 of H. niloticus and in pair 2 of A. gigas,
corresponding to the Ag-NOR sites in both species. In most of its analyzed species, osteoglossi-

form fishes possess only one chromosome pair bearing 18S and 5S rDNA sequences, with

some exceptions, observed in C. chitala, P. afer, X. nigri and Petrocephalus microphthalmus)
(for references and more detailed information about distribution of 18S and 5S rDNA

sequences available to date in other osteoglossiform species, see Fig 7).

Fig 6. Principal component analyses (PCA) of SNP data in DArT-seq alleles found in seven osteoglossiform species. Individuals factor map using 3074

alleles (reference and alternative alleles). Osteoglossiform samples and presence/absence SNP were structured as observations (individual) and variable,

respectively, as input matrix data. Notopteridae genera (Papyrocranus, Xenomystus, Notopterus and Chitala) and Arapamidae genera (Heterotis and Arapaima)

together with their geographical distribution (Africa, Southeast Asia and South America); categorical variables are summarized in black (Africa), green

(Southeast Asia) and red (South America) squares.

https://doi.org/10.1371/journal.pone.0214225.g006
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A single site (i.e. one pair of loci) for each rDNA cluster appears to be also the general trend

reported for most teleosts [75,76] and ancient non-teleost actinopterygian fishes [77,78]. The

location of such sequences in similar positions of similar chromosomes may be evidence of

homeologous chromosomes (but see [79]). Among arapaimids, 18S rDNA sites are associated

with GC-rich heterochromatin (Fig 3), a feature also shared with other osteoglossiform species,

like the ones belonging to the Notopteridae and Gymnarchidae families [57,60], supporting

the view that it likely represents the ancestral pattern for actinopterygian fishes [78]. However,

besides a single merged 18S rDNA/ CMA3
+ site , multiple additional CMA3

+ signals were also

observed in both species, similarly to the pattern described in P. buchholzi, [33]. This pattern is

otherwise very infrequent among teleosts (for references, see [80].

To gain deeper insight into gross-scale sub-chromosomal dynamics on the level of compo-

sition and distribution of repetitive DNA sequences, we performed CGH experiments in inter-

specific comparative manner. These CGH comparisons showed overall high genomic diver-

gence between the two species under study as might be expected due to their deep evolutionary

divergence and corresponding advanced stage of repeat turnover (Figs 4 and 5). In fact, both

genomic probes merged only in NOR sites which generally maintain high sequence conserva-

tivism [81]. In fact, when basically only the NOR regions are intensively labeled after cross-

hybridization, it points to a large genomic divergence between both species. Such scenario has

been also observed in several plants and other animal groups (e.g: [37,82]).

In summary, the genomes A. gigas and H. niloticus display remarkable chromosomal diver-

gence, in terms of their karyotype macrostructure and repetitive DNA content and distribu-

tion. In striking contrast, the genomic diversity studies through PCA analyses demonstrated a

very low genetic distance between these fishes on the level of unique/single copy regions (Fig

6). This scenario further deeply contrasts with the one found for African and Asian representa-

tives of Old World knifefishes, family Notopteridae, where an opposite pattern was discovered,

i.e., highly conserved karyotypes despite at least 80 My of isolation among the species [60].

Thus, what would have contributed to such enormous chromosomal diversity between Arapai-

midae species?

Fig 7. Idiograms representing 2n and patterns of rDNA distribution in osteoglossiform species. On the

chromosomes, the distribution sites of 18S rDNA are highlighted in green, 5S rDNA in red, and Interstitial Telomeric

Sites (ITS) in blue. HNI = Heterotis niloticus; AGI = Arapaima gigas; PMI = Petrocephalus microphthalmus; SWA =

Stomatorhinus walkeri; MMO = Marcusenius moorii; GPE = Gnathonemus petersii; GNI = Gymnachus niloticus; CBL =

Chitala blanci; CCH = Chitala chitala; COR = Chitala ornate; CLO = Chitala lopis; NNO = Notopterus notopterus; XNI

= Xenomystus nigri; PAF = Papyrocranus afer; and PBU = Pantodon buchholzi. Data are based on [57,60,74].

https://doi.org/10.1371/journal.pone.0214225.g007
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An important hint may come from recently published genome of Arapaima gigas [83]. It is

noteworthy that according to this study, only 21% of Arapaima gigas genome is composed of

repetitive DNA, while other 33% represent coding regions. Similar proportion between repeti-

tive DNA and coding sequences has been found also in the Asian arowana Scleropages formo-
sus [84]. In the context of these genomic data and with respect to results yielded in this study,

it might be imaginable that a strong selection might be operating in arapaimids to preserve

sequence integrity of coding parts, which encompass substantial part of the genome. A possible

outcome might be that repetitive sequences must accumulate in restricted genome areas and

hence they might promote rearrangements in these specific locations due to elevated local

dynamics (driven, for instance, by illegitimate recombination; e.g., [85]). This way, repetitive

sequences may provide the fuel for karyotype variability, while coding regions retain high

degree of sequence conservativity. The presence of elevated number of CMA+/GC-rich

regions in both studied arapaimids may partly support our hypothesis as GC-rich regions,

especially in conjunction with their terminal location on chromosomes, are more prone to

high recombination rates (e.g., [86–88]). At the same time (or as an alternative explanation),

higher flexibility of chromatin functional arrangement in interphase nuclei would be expected

to be required to facilitate elevated plasticity for genome reshuffling and this flexibility might

be, on the other hand, missing in Notopteridae fishes. This matter warrants further investiga-

tion especially in the context of current models of functional chromatin arrangement basing

on topologically associating domains (TADs) [89–91].

Although separated by more than 50–80 Mya [5], A. gigas and H. niloticus still retain some

similar morphological, physiological, and behavioral characteristics, such as obligatory bran-

chial and aerial respiration, preference for low-oxygenated lentic environments, low migratory

activities, and sophisticated parental care. Consequently, both species are sedentary, living in

flocks with small population sizes and having a high degree of kinship and endogamy [10,92].

Molecular studies on individuals from the Amazon basin using microsatellite markers and

mitochondrial genes have shown that different populations of A. gigas present some small

degree of isolation by distance and fragmentation only in populations separated by distances

greater than 1000 km [92,93]. In fact, higher karyotype variability is usually present in fish

groups with low mobility and establishment of small isolated populations, in contrast with fish

species characterized by higher mobility and population density [94–96]. In this context, chro-

mosomal rearrangements spread and settle more easily in small populations, where the proba-

bility of generating homozygous rearranged forms, free of meiotic segregation problems, is

greater than in large populations [97]. It is, however, worth mentioning that while the older

theoretical models explained chromosomal speciation only in conjunction with geographic

isolation in allopatric populations [98], current views enable to theoretize about this issue to

happen also in sympatry, as the reproductive barriers may still evolve in the persisting presence

of a gene flow [99]. This may happen if the strong selection acts to maintain linkage disequilib-

rium between locally adapted alleles via recombination arrest (through structural rearrange-

ments and/or recombination modifiers), leading to gradual accumulation of sequence

divergence only in a restricted genomic region [100]. In fact, the diversity of chromosomal

types in Arapaima and Heterotis karyotypes is a result of several chromosomal rearrangements

accumulated over millions of years, in addition to the accumulation of different classes of

repetitive DNAs in their genomes. A similar scenario was already observed in another osteo-

glossiform species, the Asian Arowana Scleropage formosus, where repetitive DNAs are

thought to be the major contributors to the chromosomal diversity observed in this species

[84].

Our data support the view that highly rearranged karyotypes tend to occur in South Ameri-

can osteoglossiforms. A. gigas (2n = 56) and the South American arowana–O. bicirrhosum
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(2n = 56)–possess the highest 2n found in the order. This was also documented and verified in

cichlid fishes, in which representatives from the Neotropical region display 2n = 48 chromo-

somes, with a greater karyotype diversity in comparison to the African ones [101,102]. Several

fossil taxa were assigned to the Arapaimidae and/or closely related lineages (Fig 1), and,

although their evolutionary interrelationships are not well established [9,24,103,104], we can-

not exclude that the intermediate 2n numbers have occurred between them and the extant A.

gigas and H. niloticus.

Conclusions

Taken together, the genomes of A. gigas and H. niloticus displayed remarkable chromosomal

divergence and repetitive DNA turn over. Our results demonstrated some general trends

shared by most osteoglossiform species analyzed so far, like the presence of only one chromo-

some pair bearing 18S and 5S rDNA sites; karyotypes dominated by acrocentric chromosomes;

and rDNA sites which are associated with GC-rich heterochromatin, supporting the view that

it likely represents the ancestral state for teleost fishes. On the other hand, genomic diversity

studied through PCA analyses demonstrated a very low genetic distance between these fishes

despite separate evolutionary histories spanning approximately 50–80 My [5] and also the

marked karyotype variability.
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