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INTRODUCTION
In sport, testosterone (T) is a recognised androgen producing both 
androgenic (i.e., reproductive function) and anabolic (i.e., skeletal 
muscle and bone development) effects [1]. These actions predomi-
nate during puberty when T production increases dramatically (up 
to 20-fold), particularly among boys [2, 3]. In adult populations, 
acute physiological T changes appear less important for promoting 
muscle size and strength gains [4], although T may remain permis-
sive to hypertrophy. Still, T has been implicated in other neuromus-
cular functions (e.g., mood, motivation, cognition, neural activity) 
that support human movement [5], as alternative pathways to explain 
its training role in a physiological range.

Several studies have reported a link between T and athlete (male 
or female) performance in sporting competition [6, 7, 8, 9, 10], but 
these relationships include pre- and post-competition T measures, so 
it’s unclear if T availability is driving performance, or whether it sim-
ply responds to exercise as a biomarker of stress. Conversely, other 
researchers have failed to find a T association with competitive per-
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formance [11, 12, 13, 14]. The pleiotropic effects of T on the neu-
romuscular system could explain these inconsistencies, such that 
some sports may preferentially utilise those T-related functions more 
so than others. Alternatively, some athletes might express certain 
features that enables them to better use T as a training resource, such 
as greater maximal strength [15, 16] or a higher training status [17]. 

Cortisol (C) is a glucocorticoid released under stress to mobilise 
energy resources [5], with recent evidence suggesting a further role 
as a moderator of T activity [18, 19, 20]. For instance, salivary T 
did not initially correlate with social status among women ath-
letes [18] and hand-grip strength in healthy men [19]. However, 
significant relationships did emerge when individuals with relatively 
high C or low C levels were considered separately [18, 19]. Thus, 
simple bivariate associations could mask the presence of more intri-
cate, and possibly functionally relevant, hormonal interactions. In 
fact, it transpired that the combination of low T and high C levels 
was associated with greater hand-grip strength before stressful  
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repeated, but only if this occurred on the first or second trials. The 
rest periods exceeded five minutes, except when consecutive lifts 
were required, and a two-minute rest period was imposed. Perfor-
mance was indexed by the total combined load, calculated from the 
sum of the heaviest snatch and CJ lifts [14, 25], as it ultimately 
determines the athlete’s placing in their weight class [26]. Though 
the CJ enables heavier loads (by 18-20%) to be lifted than the 
snatch [26], both exercises are strongly related to each other (r=0.97) 
and the combined total (r=0.99). All athletes completed a warm-up 
(15-30 minutes) using progressively heavier loads up to 90-93% of 
the first exercise trial.

To ensure ecological validity, we encouraged a normal dietary 
intake and maintenance of established pre-competition routines (e.g., 
smelling salts, motivational feedback). The athletes were instructed 
to get at least seven hours of sleep and they reported being awake 
at least three hours before testing, thereby accounting for the C awak-
ening response [27]. The start times did vary across weight classes 
(10:00 am to 7:00 pm), as most competitions use only a single 
lifting platform, which can influence performance, perceived exertion 
and hormones [12, 28]. Weight class testing (in real competitions) 
also lasted ~60-120 minutes, depending on the number entries, 
whilst the simulated events were completed within an hour. Subse-
quently, we controlled for the type of competition and time-of-day in 
the statistical analyses (see below). All testing was performed in front 
of an audience (e.g., other athletes, coaches, family), so the envi-
ronmental stressors would be somewhat comparable. To ensure peak 
performance, we anticipated that the athletes would follow some 
form of tapering schedule (e.g., a reduction in training vol-
ume) [12, 21, 25] several days before their individual assessments.

Blood hormone testing
Capillary blood provides a valid, non-invasive alternative to the venous 
assessment of T and C concentrations [29, 30]. Samples were tak-
en before warming up, representing the pre-competition T (pre-T) 

exercise [19]. This aligns to reports that rising C levels are necessary 
for optimising muscle strength under competitive stress and more 
so than T [14, 21]. To date, no work has examined this T and C in-
terplay with respect to strength-based performance in competition.

This study investigated whether serum C activity is moderating 
the relationship between serum T and Olympic weightlifting (OWL) 
performance during competition. Only male athletes were recruited 
and, since moderation studies require larger samples (>10 subjects 
for each predictor), data from real and simulated competitions were 
collated for analysis. We hypothesised that T would be a poor (non-
significant) predictor of the individual variances in OWL performance; 
however, a significant T × C interaction would emerge in relation to 
this outcome, as statistical evidence of moderation [22]. Based on 
prior work [19], we also hypothesised that T would be negatively 
related to performance, but only for those athletes with relatively 
high C levels before competition.

MATERIALS AND METHODS 
Participants
One hundred and nine male weightlifters were tested, as part of  
a broad 10-year scientific monitoring programme conducted by the 
Institute of Sport – National Research Institute, Poland. These athletes 
participated in weight classes ranging from 50 kg up to +94 kg 
across youth (<17 years, n=27), and from 56 kg up to +105 kg 
across junior (<20 years, n=53) and adult (20+ years, n=29) 
competitions (http://www.iwf.net/). Body mass (BM) was measured 
to the nearest 0.1 kg during event weigh-in using electronic scales. 
All athletes were screened for any injuries, medical conditions, or 
other health issues that would confound the study results. The ath-
letes were also questioned about anabolic doping agents, but none 
were reported, and they were routinely tested in this capacity in and 
out of competition. No athletes tested were currently banned for 
taking any illegal substances. Still, four subjects were removed from 
the final analysis due to serum T levels that exceeded the upper 
reference value (~46 nmol·L-1) for healthy, non-obese men [23]. 
The final assessed cohort (n=105) had a mean age (±SD) of 
19.3±3.7 years, BM of 81.4±21.0 kg, and training experience of 
5.5±3.4 years. Written informed consent and parental consent, 
where necessary, was given before testing commenced. This ex-
periment received ethical approval from the Institute of Sport.

Competition testing
Forty-six athletes were monitored during real competitions (i.e., reg-
istered club events, national age-group championships) and 59 across 
simulated events (i.e., national talent identification programme, 
preparation for a European championship). Testing was conducted 
under International Weightlifting Federation rules (http://www.iwf.net/). 
Briefly, three trials for both the snatch and clean and jerk (CJ) exer-
cises were completed. Familiarisation was not necessary, as both 
exercises are very reliable among well-trained weightlifters with co-
efficients of variation (CV) of 2.3-2.7% [24]. A failed lift could be 

Table 1. Performance and hormonal profiles (means±SD) of male 
athletes combined across the real and simulated Olympic 
weightlifting competitions.

Variables Mean SD

Performance (kg) 257 64.5

Testosterone 
(nmol·L-1)

Pre-competition 15.4 6.2

Post-competition 16.5* 6.5

∆ score 1.2 4.1

Cortisol  
(nmol·L-1)

Pre-competition 426 146

Post-competition 512* 170

∆ score 85.4 179

Key: *Significant from pre-competition p<0.05.
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and C (pre-C) measures, and within 15 minutes of event completion, 
signifying the post-competition T and C responses. Pre- to post-
competition changes in T (T∆) and C (C∆) were also calculated. The 
sampling procedures were as follows; a small skin incision was made 
on the fingertip using a sterile lancet, after which a small volume of 
blood (~300 μL) was collected in serum microvettes (Sarstedt, Ger-
many), placed on ice and centrifuged within 60 minutes. The super-
natant was transferred to a labelled tube and stored at -80˚C before 
assay. All samples were assayed within two months using enzyme-
linked immunoassay kits from the same manufacturer (DRG, Ger-
many). The low standards for the T and C kits were 0.69 nmol·L-1 
and 5.5 nmol·L-1, respectively. The CVs for duplicate samples were 
less than 4% and inter-assay kit CVs less than 8%.

Statistical analyses
Before analysis, the hormonal variables, age, and BM were log-
transformed to meet diagnostic assumptions. We first assessed the 
pre- to post-competition changes in T and C levels using a paired 
T-test. To aid interpretation, the raw hormonal data are presented. 
The primary analysis involved a three-step multiple hierarchical re-
gression with OWL performance as the dependant variable. The type 

of competition, time of day, age, and BM were entered as control 
variables in Step one; pre-T and pre-C as predictors in Step two; and 
the pre-T × pre-C interaction in Step three. Training experience was 
omitted as a control variable, because it was strongly related (r=0.87) 
to subject age. All continuous variables were standardised to reduce 
multicollinearity and aid interpretation (i.e., coefficients expressed in 
SDs), whereas the type of competition was binary coded (real =0, 
simulated =1). The interaction terms were calculated by multiplying 
the standardized scores. Following a significant interaction, simple 
slopes were employed to graphically interpret the result at one SD 
above and below the mean [22]. The significance level was set at 
p<0.05.

RESULTS 
The performance and hormonal data for the study population (pooled 
across all competitions) are reported in Table 1. A pre- to post-
competition rise in both T (p=0.003) and C (p<0.001) levels 
emerged, representing small effect size changes of 0.20 and 0.48, 
respectively. Further testing revealed no significant differences in OWL 
performance or any hormonal variable between the real and simu-
lated competitions. Those athletes participating in real events were 

TABLE 2. Regression models predicting male Olympic weightlifting performance from pre-competition hormones.

Model summaries  β  SE  t value Adjusted R2 ∆R2

Step one F(4, 100) = 83.4*** 0.7602 0.7602

Type of competition -12.1 6.9 -1.74

Time of day  10.8 3.4  3.21**

Age  30.2 3.5  8.58***

BM  36.7 3.3  11.1***

Step two F(2, 98) = 54.8*** 0.7564  -0.004*

Type of competition -12.6 7.0 -1.80

Time of day  10.8 3.4  3.19**

Age  30.2 3.6  8.34***

BM  37.5 3.6  10.6***

Pre-T  0.95 3.3  0.29

Pre-C  1.97 3.3  0.60

Step three F(1, 97) = 50.9*** 0.7704 0.014

Type of competition -13.7 6.8 -2.00*

Time of day  12.6 3.4  3.76***

Age  29.2 3.5  8.27***

BM  39.2 3.5  11.2***

Pre-T -0.46 3.2 -0.14

Pre-C  3.13 3.2  0.98

Pre-T × Pre-C -9.50 3.6 -2.64**

Key: BM = body mass, pre-T = pre-competition testosterone, pre-C = pre-competition cortisol. Level of significance *p<0.05, 
**p<0.01, ***p<0.001.
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pre-C levels (β=-3.6, SE=4.7, p=0.456), the two slopes were 
different (p=0.045).

DISCUSSION 
This study explored the relationship between serum T and competi-
tive OWL performance with serum C as a moderating variable. Two 
findings support our initial hypotheses. First, pre-T concentrations 
were unrelated to OWL performance when controlling for all other 
variables, but the pre-T × pre-C interaction was a significant con-
tributor to the model explaining the individual variances in perfor-
mance. Second, exploring this interaction revealed divergent pre-T 
and performance relationships for athletes with high and low pre-C 
levels. The assessment of T∆ and pre-C revealed somewhat parallel 
results.

The blood T concentrations of males before any OWL competition, 
including the T∆ across each event, were unrelated to weightlifting 
performance. Many studies on trained male populations have also 
failed to find a T relationship with performance during OWL or pow-
erlifting competition [13, 14, 25], and other sporting (e.g., judo, 
triathlon) events [11, 12]. These findings could reflect the relative 
contribution of those neuromuscular functions (e.g., mood, motiva-
tion, cognition, neural activity) supported by T [5], or simply different 
physical, technical and/or tactical measures used to assess com-
petitive ability. Research interpretation is still limited by the common 
practice of simple bivariate comparisons and typically on smaller 
(<30 athletes), and sometimes mixed, population samples. We ad-
dressed these issues by examining a large cohort of male weightlift-
ers under similar competitive conditions, whilst considering the T 
effect on a discrete performance outcome at different C levels. Sub-
sequently, more complex hormonal interactions emerged that might 
be governing certain aspects of physical ability during sporting com-
petition.

however younger (18.1±2.5 years) with lower BM (76.4±19.3 kg) 
and less training experience (4.3±2.2 years) than those athletes 
tested under simulated conditions (age 20.2±4.2 years, 
BM 85.3±21.5 kg, training experience 6.4±3.9 years) (all p<0.03).

The regression results are presented in Table 2. All control variables 
(except the type of competition) contributed significantly to the Step 
one model and accounted for 76.0% of the variation in OWL perfor-
mance. In Step two, both pre-T and pre-C were unrelated (p>0.5) 
to performance, with no change in overall model fit when controlling 
for all other variables. Adding the pre-T × pre-C interaction in Step 
three explained an additional 1.4% of the variability in OWL perfor-
mance and this change was significant (p=0.010). Two different 
slope patterns were revealed when deconstructing this interaction 
(Figure 1). The pre-T relationship with OWL performance was nega-
tive in athletes with relatively high pre-C levels (β=-10.0, SE=5.2, 
p=0.059), but positive among athletes with low pre-C levels (β=9.0, 
SE=4.4, p=0.044). These slope patterns also differed from each 
other (p=0.006).

This process was repeated for all permutations of pre-T, pre-C, 
T∆, and C∆. Parallel results (as above) were achieved when exam-
ining T∆ as a predictor and pre-C as a moderator. The Step one 
model is identical to that described above. In Step two, F(2, 98) 
= 55.4, p<0.001, the T∆ and pre-C measures did not contribute 
to the variance in OWL performance (p>0.3) with no significant 
change in model fit. When the T∆ × pre-C interaction was added 
in Step three, F(1, 97) = 49.3, p<0.001, this explained an ad-
ditional 0.6% of the performance variability and the change in 
model fit trended towards significance (p=0.060). Upon exploring 
this interaction (Figure 2), we again found divergent slope patterns. 
The T∆ and performance relationship was positive among males 
with high pre-C levels (β =10.5, SE=5.1, p=0.042). Although 
these variables were unrelated among males with relatively low 

Fig. 1. Interaction between pre-competition cortisol (pre-C) and 
testosterone (pre-T) in relation to Olympic weightlifting performance. 
Slope is significant from zero *p<0.05, **p<0.06, Significant 
between-slope difference #p<0.05.

FIG. 2. Interaction between pre-competition cortisol (pre-C) and 
the testosterone changes (T∆) in relation to Olympic weightlifting 
performance. Slope is significant from zero *p<0.05, Significant 
between-slope difference #p<0.05.
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For the high pre-C group, better performance was achieved when 
T levels were low before competition (Figure 1) and the TΔ were high 
(Figure 2). This reversal in the high pre-C group was identified previ-
ously [19] and might reflect a ceiling effect of baseline T on T reac-
tivity. Conversely, the low pre-C group performed better when T lev-
els were high before competition (Figure 1). Accumulating evidence 
confirms that C can moderate the T effect on physical or psycho-
logical outcomes in sport and exercise [18, 19, 20], as well as 
T reactivity to competition [31]. One study found no evidence of this 
hormonal interplay during judo competition [8]; however, this work 
was likely underpowered (sample size of 28) for detecting a statisti-
cal interaction. Thus, examining T and C interactions could provide 
new insight for researchers and coaches by revealing relationships 
that are masked by simple (pooled) correlations. If rapid blood test-
ing is available, samples analysed before a competition would provide 
a stronger basis for prescribing a hormonal priming strategy (e.g., vid-
eos, coach feedback) to enhance performance [32]. Other sources 
of hormonal variation (e.g., social environment, time of day) could 
also be exploited to optimise OWL performance, especially if the 
relationships described are stable over time.

Although the final regression models explained up to 77% of OWL 
performance, the hormonal interactions contributed to only 0.6% to 
1.4% of this variance. This contribution was possibly diminished by 
controlling for several situational and demographic factors with a re-
ported impact on OWL performance [14, 21, 25, 28]. Nevertheless, 
most weightlifters tested were competitive at a national and/or inter-
national level (i.e., elites) and enhancements of as little as 1.2%  
are deemed practically significant for this population [24]. By design, 
this study focused on serum T and C as trait variables, but  
these hormones also exhibit large within-subject variation that cor-
relate to changes in training motivation [17, 33, 34] and muscle 
strength [15, 35], particularly among well-trained or physically-
stronger athletes. Speculatively, both sources of hormonal variation 
and their interactions may allow more flexible responses or perfor-
mance adjustments among individual athletes, depending on task, 
situational and environmental cues. Since female T levels show 
marked variation across the menstrual cycle, by eliteness and oral 
contraceptive use [34, 36], it would be prudent to test if the mod-
erating effect on T is similar to men, and vary across these states.

Several mechanisms could explain these C and T linkages, as 
possible intermediaries to physical performance. For example, C can 
interact with androgen receptors [37] to modify the actions of T at 
target tissue. On a functional level, C can moderate the T relationship 
to status-relevant behaviours (e.g., aggression, dominance) [38, 39, 40] 
and anger-induced brain activity [41]. Parallel associations were 
observed regarding social status [18] and social positioning among 
athletes [20]. Both steroids might also form part of the pre-exercise 
arousal response via the sympathoadrenal system [14, 42], which 
has a direct impact on muscle force production. Adding to these 
complexities, reciprocal signalling between the hypothalamic–pitu-
itary–adrenal and hypothalamic–pituitary–gonadal axes can jointly 

regulate C and T release, respectively [43]. This multifaceted network, 
with hormones acting as chemical signals, could explain the incon-
sistent relationships in sport. In fact, individuals within a homogenous 
cohort might achieve the same outcomes by somewhat “opposing” 
hormonal signals, as we demonstrated. We therefore suggest that T 
and C are not strictly anabolic and catabolic markers of performance, 
respectively, but rather they work in tandem to regulate several 
physiological systems that unpin (or reflect) physical performance.

The current results must still be balanced against the cross-sec-
tional study design, which only implies cause and effect. In addition, 
we tested a convenience sample of athletes participating in several 
OWL competitions. As such, we had little control over the time of 
testing for each athlete, with the prior scheduling of weight classes 
at different times (during real events) introducing further bias. On 
the other hand, exploratory analyses revealed no significant time-of-
day relationships with pre-T (r=-0.10), pre-C (r=-0.04), T∆ (r=0.16), 
and C∆ (r=0.03). Only performance was linked (p<0.05) to testing 
time, but this was a weak association (r=0.35) that was controlled 
for across each regression model. The lack of non-exercising data 
and androgen receptor measures are other study limitations, though 
this does not detract from our primary aim to unravel the T-perfor-
mance relationship in a competitive setting.

It’s also important to recognise that the majority (74%) of male 
weightlifters were under 20 years of age when assessed; therefore, 
maturation factors (e.g., sexual maturation, muscle mass) could play 
some role. However, these factors tend to covary with age-related 
changes in BM and T [25], and sub-group testing revealed that BM 
was strongly related (r2=88%) to lean muscle mass. Also, we did 
not monitor dietary restrictions, as practised by weight-classed ath-
letes, but this does not appear to influence absolute OWL performance, 
pre- (weigh-in) and post-competition salivary C [44]. As a further 
limitation, OWL is a highly technical event so applications to other 
sports, particularly those that are more aggressive and less technical, 
are somewhat limited. Notwithstanding these caveats, the study 
cohort did span a wide age range (15-35 years) with varying body 
size (50-150 kg) and OWL abilities (142-424 kg), so our results are 
representative of most male Olympic weightlifters, and potentially of 
single acute strength-power movements.

In summary, the serum T relationship with OWL performance 
under competitive conditions was influenced by serum C activity. 
This could explain the conflicting reports of T as a performance cor-
relate in sport, since most studies examine only bivariate relationships 
between these variables. Our work also implies that T and C are not 
strictly anabolic and catabolic markers of performance, respectively, 
but rather they exert complementary actions that could depend on 
the task, situational and environmental needs of athletes.
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