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Abstract

Background: To undertake a systematic review of existing literature relating to speech recognition technology and
its application within health care.

Methods: A systematic review of existing literature from 2000 was undertaken. Inclusion criteria were: all papers that
referred to speech recognition (SR) in health care settings, used by health professionals (allied health, medicine,
nursing, technical or support staff), with an evaluation or patient or staff outcomes. Experimental and non-experimental
designs were considered.
Six databases (Ebscohost including CINAHL, EMBASE, MEDLINE including the Cochrane Database of Systematic
Reviews, OVID Technologies, PreMED-LINE, PsycINFO) were searched by a qualified health librarian trained in systematic
review searches initially capturing 1,730 references. Fourteen studies met the inclusion criteria and were retained.

Results: The heterogeneity of the studies made comparative analysis and synthesis of the data challenging resulting in
a narrative presentation of the results. SR, although not as accurate as human transcription, does deliver reduced
turnaround times for reporting and cost-effective reporting, although equivocal evidence of improved workflow
processes.

Conclusions: SR systems have substantial benefits and should be considered in light of the cost and selection of the
SR system, training requirements, length of the transcription task, potential use of macros and templates, the presence
of accented voices or experienced and in-experienced typists, and workflow patterns.

Keywords: Nursing, Systematic review, Speech recognition, Interactive voice response systems, Human transcriptions,
Health professionals
Background
Introduction
Technologies focusing on the generation, presentation
and application of clinical information in healthcare, re-
ferred to as health informatics or eHealth solutions [1,2]
have experienced substantial growth over the past 40 years.
Pioneering studies relating to technologies for producing
and using written or spoken text, known as computational
linguistics, natural language processing, human language
technologies, or text mining, were published in the 1970s
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and 1980s [3-10]. Highlights of the 1990s and early
2000s include the MedLEE Medical Language Extrac-
tion and Encoding System to parse patient records and
map them to a coded medical ontology [11] and the Auto-
coder system to generate medical diagnosis codes from a
patient record [12]. Today, a literature search using
Pubmed for computational linguistics, natural language
processing, human language technologies, or text mining
recovers over 20,000 references.
Health informatics or eHealth solutions enable clin-

ical data to become potentially accessible through com-
puter networks for the purposes of improving health
outcomes for patients and creating efficiencies for health
professionals [13-16]. Language technologies hold the po-
tential for making information easier to understand and
access [17].
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Table 1 Search strategies OVID Embase, Medline,
PreMedline

OVID Embase

1 automatic speech recognition/ 469

2 ((voice or speech) adj (recogni* or respon*)).tw. 2516
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Speech recognition, in particular, presents some inter-
esting applications. Speech recognition (SR) systems com-
pose of microphones (converting sound into electrical
signals), sound cards (that digitalise the electrical signals)
and speech engine software (that convert the data into
text words) [18]. As early as 1975 speech recognition sys-
tems were described ‘in which isolated words, spoken by a
designed talker, are recognized through calculation of a
minimum prediction residual’ [19] reporting a 97.3 per
cent recognition rate for a male speaker. Applications have
been demonstrated in radiology [20] with the authors not-
ing a reduction in turnaround time of reports from
15.7 hours to 4.7 hours, although some difficulties with in-
tegration of systems have also been identified [21]. Docu-
ment processing within endocrinology and psychiatry
including physicians and their secretaries also demon-
strated improvements in productivity [22]. Similar ap-
proaches have recently been applied in the reporting of
surgical pathology with improvements in ‘turnaround time
from 4 to 3 days’ and ‘cases signed out in 1 day improved
from 22% to 37%’ [23]. These authors also alluded to the
issue of correction of errors and the use of templates [23]
for processing of information.
Although systematic reviews of health informatics

[24-27] have been conducted, surprisingly we were unable
to locate such a review on speech recognition in health
care.
3 or/1-2 27490

4 exp research/ 380483

5 (qualitative* or quantitative* or mixed method* or
descriptive* or research*).tw.

1194784

6 or/4-5 14148120

7 3 and 6 483

8 limit 7 to yr = “2000 -Current” 433

OVID Medline

1 Speech Recognition Software 416
Aim
The aim of this study was to undertake a systematic re-
view of existing literature relating to SR applications,
including the identification of the range of systems, imple-
mentation or training requirements, accuracy of informa-
tion transfer, patient outcomes, and staff considerations.
This review will inform all health professionals about the
possible opportunities and challenges this technology
offers.
2 ((voice or speech) adj (recogni* or respon*)).tw. 2081

3 or/1-2 2263

4 exp Research/ 224487

5 (qualitative* or quantitative* or mixed method* or
descriptive* or research*).tw.

840821

6 or/4-5 971456

7 3 and 6 360

8 limit 7 to yr = “2000 -Current” 319

OVID PreMedline

1 ((voice or speech) adj (recogni* or respon*)).tw. 140

2 (qualitative* or quantitative* or mixed method* or
descriptive* or research*).tw.

94513

3 1 and 2 20

4 limit 3 to yr = “2000 -Current” 19

Note that Speech Recognition Software refers to a MeSH term. * = wildcard.
Methods
All discoverable studies published in the refereed litera-
ture from the year 2000 and in English language only were
included in the review. We believed that only studies from
2000 onwards would use speech recognition technology
that was sufficiently accurate to be suitable for health care
settings. Papers were included if they referred to speech
recognition in health care settings, being used by health
professionals (allied health, medicine, nursing, technical or
support staff ), with an evaluation of patient or staff out-
comes. All research designs, experimental and non-
experimental, were included. Studies were excluded if they
were opinion papers or describing technical aspects of a
system without evaluation. Methods for searching the
literature, inclusion criteria, and general appraisal and
analysis approaches were specified in advance in an un-
registered review protocol.
Data sources (Search strategy)
Six databases (Ebscohost including CINAHL, EMBASE,
MEDLINE including the Cochrane Database of Systematic
Reviews, OVID Technologies, PreMED-LINE, PsycINFO)
were searched by a qualified health librarian trained in
systematic review searches, using the following search
terms: “automatic speech recognition”, “Speech Recog-
nition Software”, “interactive voice response systems”,
“((voice or speech) adj (recogni* or respon*)).tw.”, “(quali-
tative* or quantitative* or mixed method* or descriptive*
or research*).tw.”. It should be noted that EMBASE in-
cludes 1000 conference proceedings (grey material) also.
In addition, a search was undertaken for grey literature in
Open Grey. Examples of the searches undertaken from
three major databases are presented in Table 1.



Johnson et al. BMC Medical Informatics and Decision Making 2014, 14:94 Page 3 of 14
http://www.biomedcentral.com/1472-6947/14/94
Selection of studies
The search identified 1,730 references to publications that
were published in or after 2000. There were 639 duplicates
in these 1,730 references which were removed resulting in
1,091. Some 1,073 papers were not found to be relevant as
they reflected other topics or applications such as: audi-
tory research (65), cochlear implant or hearing instrument
(174), conversations, or multiple speakers (12), discrete
speech utterance (2), impaired voice (150), informal
research notes including comments or response (6),
interactive voice response (199), speech perception (53),
synthesized speech (4), thesis (1), and other irrelevant
topics (340). The remaining 18 were examined using the
inclusion criteria by two independent reviewers and 14 pa-
pers (see Figure 1) were retained. All identified abstracts
were reviewed by two reviewers, and a third where there
was disagreement. The relevant full text of the article was
obtained and then if the paper met the eligibility criteria
(checked by two reviewers) the study was included. Inclu-
sion criteria were: referred to speech recognition in health
care settings, used by health professionals (allied health,
Figure 1 Selection of studies for the review.
medicine, nursing, technical or support staff ), with evalu-
ation of patient or staff outcomes.
The quality of each eligible study was rated by two in-

dependent reviewers using the Mixed Methods Appraisal
Tool (including a range of quantitative designs the focus
in this review) [28]. The scores for the included studies
ranged from 4 to 6 out of a possible maximum of 6
[22,29] (See Table 2). Data were extracted from the rele-
vant papers using a specifically designed data extraction
tool and due to the nature of the content reviewed by
two reviewers.

Description and methodological quality of included
studies
Of the fourteen studies retrieved, one was a randomised
controlled trial (RCT) [22]; ten were comparative experi-
mental studies [18,20,23,29,32-34,36-38] and most of the
remaining were descriptive studies predominately using
a survey design [30,31,35].
The studies were conducted in hospitals or other clin-

ical settings including: emergency departments [29,38],



Table 2 SR Quality scoring of included studies - Mixed Methods Appraisal Tool (MMAT)-Version 2011

Al-Aynati
2003 [18]

Alapetite,
2008 [30]

Alapetite,
2009 [31]

Callaway,
2002 [20]

Derman,
2010 [32]

Devine,
2000 [33]

Irwin,
2007 [34]

Kanal,
2001 [35]

Koivikko,
2008 [36]

Langer,
2002 [37]

Mohr,
2003 [22]

NSLHD
2012 [29]

Singh,
2011 [23]

Zick,
2001 [38]

Screening Questions

Clear research questions Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Appropriate data
collected

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

1. Qualitative

Appropriate qualitative
data sources

Appropriate qualitative
method

Description of the context

Discussion of researchers’
reflexivity

2. Randomized
controlled

Appropriate
randomization

Yes No

Allocation concealment
and/or blinding

Yes No

Complete outcome data Yes Yes

Low withdrawal/drop out Yes Yes

Screening Questions

3. Non-randomized

Recruitment minimized
bias

No

Appropriate outcome
measures

Yes

Intervention & control
group comparable

Yes

Complete outcome data/
acceptable response rate

Yes

4. Quantitative
descriptive

Appropriate sampling1 No Yes Yes No Yes Yes No Yes Yes Yes No

Appropriate sample2 No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Johnson
et

al.BM
C
M
edicalInform

atics
and

D
ecision

M
aking

2014,14:94
Page

4
of

14
http://w

w
w
.biom

edcentral.com
/1472-6947/14/94



Table 2 SR Quality scoring of included studies - Mixed Methods Appraisal Tool (MMAT)-Version 2011 (Continued)

Appropriate measurement
(valid/standard)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Acceptable response rate Yes Yes Yes Yes Yes No Yes Yes No Yes Yes

Total Score3 (Yes =1,
No = 0)

5 4 6 6 5 6 5 5 6 5 6 4 6 5

1Sampling strategy relevant to address the quantitative research question. Consider whether the source of sample is relevant to the population under study; when appropriate, there is a standard procedure for
sampling; the sample size is justified (using power calculation for example).
2Sample representative of the population under study. Consider whether inclusion and exclusion criteria are explained; reasons why certain eligible individuals chose not to participate are explained.
3Scores ranged from 0–6.
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endocrinology [22]; mental health [22,32], pathology
[18,23], radiology [20,35-37]; and dentistry [34]. How-
ever, one study was carried out in a laboratory setting
simulating an operating room [30].
The health professionals or support staff involved were:

nurses [29], pathologists [23], physicians [22,29,31,32,38],
radiologists [18,35,36], secretaries [22], transcriptionists
[18,22] and undergraduate dental students [34]. In one
study no participants were identified [30].
Training varied between studies with some studies pro-

viding data based on minimal training 5 minutes [29] to
30 minutes [23] to 6 hours [22]. One study emphasised
the need for one to two months use before staff were fa-
miliar with SR [32].
The majority of the papers focused on systems that sup-

ported English language, however other languages such as
Finnish [36] and Danish [30] were also investigated. Par-
ticipants in two studies were non native English speakers
although they transcribed documents into English [18,35].
The quality scores for the studies ranged from two

studies at 4 [29,30], six studies at 5 [18,32,34,35,37,38],
and six studies at 6 [20,22,23,31,33,36], with 6 being the
maximum score possible (see Table 2).

Outcomes of the studies
The main outcome measures in the included studies
were: productivity including report turnaround time
[20,22,23,29,36-38]; and accuracy [18,22,29,38].
The findings of the included studies were heterogeneous

in nature, with diverse outcome measures, which resulted in
a narrative presentation of the studies (See Table 3).

Results
Productivity
The search strategy yielded six studies that evaluated the
effect of SR systems on productivity— report turnaround
time (RTT), or proportions of documents completed
within a specified time period. Overall, most papers
[22,29,36-38] reported significant improvement in RTT
with SR. Two studies reported a significant reduction of
RTT when SR was used to generate patient notes in an
emergency department (ED) setting [29] and clinical notes
in endocrinology [22]. A longitudinal study (20,000 radi-
ology examinations) indicated that using SR reduced RTTs
by 81% with reports available within one hour increasing
from 26% to 58% [36]. Similarly, the average RTT of surgi-
cal pathology reports was reduced from four days to three
days with increases in the proportion of reports completed
within one day (22% to 36%) [23]. Zick and Olsen re-
ported the reduction in RTT achieved by using SR in ED
resulted in annual savings of approximately $334,000 [38].
Results of another study reported significant differences

in RTT between SR systems produced by different com-
panies. The authors reported that Dragon software took
the shortest time (12.2 mins) to dictate a 938-word dis-
charge report followed by IBM and L & H [33].

Quality of reports
The quality of the reports in seven studies was determined
by comparing errors or accuracy rates [18,23,29,30,33,35,38].
Taken together results from these studies suggest that
human transcription is slightly more accurate than SR.
The highest reported average accuracy rate across the in-
cluded studies was 99.6% for human transcription [18]
compared to 98.5% for SR [38]. However, an ED study
found that reports generated by SR did not have grammat-
ical errors while typed reports contained spelling and
punctuation mistakes [29].
Evidence from the included studies also suggests that

error rates are dependent on the type of SR system. A
comparison of three SR systems indicated that IBM Via-
Voice 98 General Medical Vocabulary had the lowest over-
all error rates compared with Dragon Naturally Speaking
Medical Suite and L&H Voice X-press for Medicine, Gen-
eral Medicine Edition, when used for generating medical
record entries [33]. A similar comparative analysis of four
dental SR applications reported variation with regards to:
time required to complete training, error rates, total num-
ber of commands required to complete specific tasks, den-
tal specific functionality, and user satisfaction [34].

System design
Some SR systems incorporated generic templates and dic-
tation macros that included sections for specific assess-
ment information such as chief complaint, history of
present illness, past medical history, medications, allergies
and physical examination [22,38]. Other researchers used
SR systems with supplementary accessories for managing
text information such as generic templates [22], medical
or pathology terminology dictionary [18,20,33,38], Radi-
ology Information System (RIS) [37] and Picture Archiving
and Communication System (PACS) [36]. Evidence from
these studies suggests that the use of additional applica-
tions such as macros and templates can substantially im-
prove turnaround times, accuracy and completeness of
documents generated using SR.

Discussion
The purpose of this review was to provide contemporary
evidence on SR systems and their application within
health care. From this review and within the limitations of
the quality of the studies included, we suggest that an SR
system can be successfully implemented in a variety of
health care settings with some considerations.
Several studies compared the use of transcribers to

SR with human transcription having slightly higher
overall word accuracy [18,22,36,38] although with in-
creased grammatical errors [29]. SR, although not as



Table 3 Summary of speech recognition (SR) review results

Author Aim Setting Outcome measures Results

Year Sample

Country Design Speech technology (ST)

Design

Al-Aynati and Chorneyko
2003 [18]

To compare SR software with HT for
generating pathology reports

Setting: Surgical pathology 1. Accuracy rate Accuracy rate (mean %)

Sample: 206 pathology reports 2. Recognition/ Transcription
errors

SR: 93.6 HT: 99.6

Canada Experimental ST: IBM Via Voice Pro version 8 with
pathology vocabulary dictionary

Mean recognition errors

SR: 6.7 HT: 0.4

Mohr et al. 2003 [22] To compare SR software with HT for
clinical notes

Setting: Endocrinology and Psychiatry 1. Dictation/recording time +
transcription (minutes) =
Report Turnaround Time (RTT).

RTT (mins)

Endocrinology

SR: (Recording + transcription) = 23.7

HT: (Dictation + transcription) = 25.4USA Experimental Sample: 2,354 reports

ST: Linguistic Technology Systems LTI with
clinical notes application

SR: 87.3% (CI 83.3, 92.3) productive
compared to HT.

Psychiatry transcriptionist

SR: (Recording + transcription) = 65.2

HT: (Dictation + transcription) = 38.1

SR: 63.3% (CI 54.0, 74.0) productive
compared to HT.

Psychiatry secretaries

SR: (Recording + transcription) = 36.5

HT: (Dictation + transcription) = 30.5

SR: 55.8% (CI 44.6, 68.0) productive
compared to HT.

Author, secretary, type of notes were
predictors of productivity (p < 0.05).

NSLHD 2012 [29] To compare accuracy and time between
SR software and HT to produce emergency
department reports

Setting: Emergency Department 1. RTT RTT mean (range) in minutes

Australian Experimental Sample: 12 reports SR: 1.07 (46 sec, 1.32)

ST: Nuance Dragon Voice Recognition HT: 3.32 (2.45, 4.35)

HT: Spelling and punctuation errors

SR: Occasional misplaced words

Alapetite, 2008 [30] To evaluate the impact of background Setting: Simulation laboratory 1. Word Recognition Rate
(WRR)

WRR

Denmark Non-experimental Sample: 3600 short anaesthesia commands Microphone
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Table 3 Summary of speech recognition (SR) review results (Continued)

noise (sounds of alarms, aspiration, metal,
people talking, scratch, silence, ventilators)
and other factors affecting SR accuracy
when used in operating rooms

Microphone 1: Headset 83.2%

ST: Philips Speech Magic 5.1.529 SP3 and
Speech Magic Inter Active Danish language,
Danish medical dictation adapted by
Max Manus

Microphone 2: Handset 73.9%

Recognition mode

Command 81.6%

Free text 77.1%

Background noise

Scratch 66.4%

Silence 86.8%

Gender

Male 76.8%

Female 80.3%

Alapetite et al. 2009 [31] To identify physician’s perceptions, attitudes
and expectations of SR technology.

Setting: Hospital (various clinical settings) 1. Users’ expectation and
experience

Overall

Denmark Non-experimental Sample: 186 physicians Predominant response noted. Q1 Expectation: positive 44%

Q1 Experience: negative 46%

Performance

Q8 Expectation: negative 64%

Q8 Experience: negative 77%

Time

Q14 Expectation: negative 85%

Q14 Experience: negative 95%

Social influence

Q6 Expectation negative 54%

Q6 Experienced negative 59%

Callaway et al. 2002 [20] To compare an off the shelf SR software with
manual transcription services for radiology
reports

Setting: 3 military medical facilities 1. RTT (referred to as TAT) RTT

USA Non-experimental Sample: Facility 1: 2042 reports 2. Costs Facility 1: Decreased from 15.7 hours (HT)
to 4.7 hours (SR)

Facility 2: 26600 reports Completed in <8 h: SR 25% HT 6.8%

Facility 3: 5109 reports Facility 2: Decreased from 89 hours (HT)
to 19 hours (SR)

ST: Dragon Medical Cost

Professional 4.0 Facility 2: $42,000 saved

Facility 3: $10,650 saved
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Table 3 Summary of speech recognition (SR) review results (Continued)

Derman et al. 2010 [32] To compare SR with existing methods of data
entry for the creation of electronic
progress notes

Setting: Mental health hospital 1. Perceived usability Usability

Canada Non-experimental Sample: 12 mental health physicians

ST: Details not provided

2. Perceived time savings 50% prefer SR

3. Perceived impact Time savings: No sig diff (p = 0.19)

Impact

Quality of care No sig diff (p = 0.086)

Documentation No sig diff (p = 0.375)

Workflow No sig improvement (p = 0.59)

Devine et al. 2000 [33] To compare ‘out-of-box’ performance of 3
continuous SR software packages for the
generation of medical reports.

Sample: 12 physicians from Veterans Affairs
facilities New England

1. Recognition errors
(mean error rate)

Recognition errors (mean-%)

USA Non-experimental ST: System 1 (S1) IBM ViaVoice98 General
Medicine Vocabulary.

2. Dictation time Vocabulary

3. Completion time S1 (7.0 -9.1%) S3 (13.4-15.1%)
S2 (14.1-15.2%)

System 2 (S2) Dragon Naturally Speaking
Medical Suite, V 3.0.

4. Ranking S1 Best with general English and medical
abbreviations.

Dictation time: No sig diff (P < 0.336).

System 3 (S3) L&H Voice Xpress for
Medicine, General Medicine Edition, V 1.2.

5. Preference Completion time (mean):

S2 (12.2 min) S1 (14.7 min) S3 (16.1 min)

Ranking: 1 S1 2 S2 3 S3

Irwin et al. 2007 [34] To compare SR features and functionality of
4 dental software application systems.

Setting: Simulated dental 1. Training time Training time

USA Non-experimental Sample: 4 participants (3 students,
1 faculty member)

2. Charting time S1 11 min 8 sec S2 9 min 1 sec
(no data reported for S3 ad S4).

3. Completion

ST: Systems 1 (S1) Microsoft SR with
Dragon NaturallySpeaking.

4. Ranking Charting time: S1 5 min 20 sec S2 9 min
13 sec, (no data reported
for S3 ad S4).

System 2 (S2) Microsoft SR Completion %: S1 100 S2 93
S3 90 S4 82

Systems 3 (S3) & System 4 (S4) Default
speech engine.

Ranking

1 S1 104/189 2 S2 77/189

Kanal et al. 2001 [35] To determine the accuracy of continuous
SR for transcribing radiology reports

Setting: Radiology department 1. Error rates Error rates (mean ± %)

USA Non-experimental Sample: 72 radiology reports 6 participants Overall (10.3 ± 33%)

Significant errors (7.8 ± 3.4%)

ST: IBM MedSpeaker/Radiology software
version 1.1

Subtle significant errors (1.2 ± 1.6%)
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Table 3 Summary of speech recognition (SR) review results (Continued)

Koivikko et al. 2008 [36] To evaluate the effect of speech recognition
onadiology workflow systems over a
period of 2 years

Setting: Radiology department 1. RTT (referred to as TAT) at 3
collection points:

RTT (mean ± SD) in minutes

Finland Non-experimental Sample: >20000 reports; 14 Radiologists HT: 2005 (n = 6037) HT: 1486 ± 4591

ST: Finnish Radiology Speech SR1: 2006 (n = 6486) SR1: 323 ± 1662

Recognition System (Philips Electronics) SR2: 2007 (n = 9072) SR2: 280 ± 763

HT: cassette-based reporting 2. Reports completed≤ 1 hour Reports ≤ 1 hour (%)

SR1: SR in 2006 HT: 26

SR2: SR in 2007 SR1: 58

Training:

10-15 minutes training in SR

Langer 2002 [37] To compare impact of SR on radiologist
productivity. Comparison of 4 workflow
systems

Setting: Radiology departments 1. RTT (referred to as TAT) RTT (mean ± SD%) in hours/ RP

USA Non-experimental Sample: Over 40 radiology sites 2. Report productivity (RP),
number of reports per day

System 1

System 1 Film, report dictated, HT RTT: 48.2 ± 50 RP: 240

System 2 Film, report dictated, SR System 2

System 3 Picture archiving and
communication system + HT

RTT: 15.5 ± 93 RP: 311

System 3

System 4 Picture archiving and
communication system + SR

RTT: 13.3 ± 119 (t value at 10%) RP: 248

System 4

RTT: 15.7 ± 98 (t value at 10%) RP: 310

Singh et al. 2011 [23] To compare accuracy and turnaround Setting: Surgical pathology 1. RTT (referred to as TAT) RTT in days

USA Non-experimental times between SR software and traditional
transcription service (TS) when used for
generating surgical pathology reports

Sample: 5011 pathology reports 2. Reports completed≤ 1 day Phase 0: 4

ST: VoiceOver (version 4.1) Dragon
Naturally Speaking Software (version 10)

3. Reports completed≤ 2 day Phase 1: 4

Phase 0: 3 years prior SR Phase 2–4: 3

Phase 1: First 35 months of
SR use, gross descriptions

Reports ≤ 1 day (%)

Phase 0: 22

Phase 2–4: During use of SR
for gross descriptions and final
diagnosis

Phase 1: 24

Phase 2–4: 36

Reports ≤ 2 day (%)

Phase 0: 54

Phase 1: 60

Phase 2–4: 67
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Table 3 Summary of speech recognition (SR) review results (Continued)

Zick et al. 2001 [38] To compare accuracy and RTT between Setting: Emergency Department 1. RTT (referred to as TAT) RTT in mins

USA Non-experimental SR software and traditional transcription
service (TS) when used for recording in
patients’ charts in ED

Sample: Two physicians - 47 patients’
charts

2. Accuracy SR: 3.55 TS: 39.6

3. Errors per chart Accuracy % (Mean and range)

ST: Dragon NaturallySpeaking Medical
suite version 4

4. Dictation and editing time SR: 98.5 (98.2-98.9) TS: 99.7 (99.6-99.8)

4. Throughput Average errors/chart

SR: 2.5 (2–3) TS: 1.2 (0.9-1.5)

Average dictation time in mins
(Mean and range)

SR: 3.65 (3.35-3.95) TS: 3.77 (3.43-4.10)

Throughput (words/minute)

SR: 54.5 (49.6-59.4) TS: 14.1 (11.1-17.2)

Report productivity (RP): Normalises the output of staff to the daily report volume.
Note: SR = speech recognition ST = speech technology HT = human transcription RTT = report turnaround time WRR = word recognition rate PACS = picture archiving and communication system RP = report productivity
TS = traditional transcription service ED = emergency department Sig. = Significant Diff = difference. TAT = turnaround time, equivalent to RTT.
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accurate (98.5% SR, 99.7% transcription [38]) with 10.3%
to 15.2% error rates [33,35], does deliver other benefits.
Significantly improved patient outcomes such as reduced
turnaround times for reporting [20,23,36-38] and cost-
effectiveness [20,38] have been demonstrated, however,
equivocal evidence exists on improved workflow processes
with Derman and colleagues finding no significant im-
provement [32].
Several issues related to the practical implementation

of SR systems have been identified.
As with any information system [39], a SR system repre-

sents the interplay of staff, system, environment, and
processes. A diverse range of health professionals and
support staff were included in these studies with no
demonstrable differences in training or accuracy, how-
ever typists (including health professionals) who are com-
petent and presumably fast typists have some difficulty
adapting to SR systems [22] ie., more benefit is obtained
for slower typists. Also the length of transcription does
seem to raise some concerns with text of 3 minutes or less
recording time being problematic [22]. The nature of the
information to be transcribed is also important as re-
petitive clinical cases frequently seen in settings such as
radiology [36] or the emergency department [29], where
templates or macros are easily adapted to the setting, are
more likely to succeed. Applications relating to the writing
of progress notes within psychiatry were limited in their
success suggesting that other approaches or advances may
be required where opportunities for standardised informa-
tion is reduced [40].
In the majority of the included studies the reported

error rates and improvements and other outcomes were
achieved after only limited training was provided to
participants who had no prior experience with SR. Train-
ing delivered varied from 5 minutes [29] to 6 hours [22],
but several researchers advised that either a pre-training
period using any speech recognition system [22] for one
month or prolonged exposure with SR (one to three
months) [20] is preferred. This is confirmed by the im-
proved turnaround times demonstrated in longitudinal
studies [36].
Technical aspects of system selection, vocabulary ap-

plied, and the management of background noise and
accented voices are all challenges during implementa-
tion. System selection is important with several systems
available with varying levels of recognition errors (7.0%-
9.1% IBM ViaVoice98 General Medicine Vocabulary to
14.1%-15.2% L&H Voice Xpress for Medicine General
medicine Edition) [33], but with nonetheless relatively
low error rates. Dawson and colleagues [41] noted that
nurses expectations of the accuracy of speech recogni-
tion systems were low.
Accuracy also varies depending upon the vocabulary

used with potential users needing to consider the
appropriate vocabulary for the task— using a pathology
vocabulary [18], and using a general medicine vocabu-
lary [33]—to minimise recognition errors. For example
laboratory studies varying vocabularies for nursing
handover confirmed that using the nursing vocabulary
was more accurate than using the general medical vo-
cabulary in the Dragon Medical version 11.0 (72.5% vs.
57.1%) [42].
Most contemporary SR systems have advanced micro-

phones that have noise cancelling capacities that allow
for SR systems to be used in noisy clinical environments
[18,30].
SR systems now accommodate some accented voices

such as Dragon Medical™ providing accented voice pro-
files, for Australian English, Indian English and South
East Asian English [40]. Finally the use of standardised
terminology is recommended such as the Voice Recogni-
tion Accuracy standards- by the National Institutes of
Standards and Technology [22] when reporting study
outcomes.

Limitations of the study
Whereas every endeavour was made to optimise inclusiv-
ity, the heterogeneity of the studies made comparative
analysis and synthesis of the data challenging. The studies
included in this review represent comparative designs or
descriptive evaluations and only further rigorous clinical
trials can confirm or refute the findings proposed here. A
thorough examination of the cost benefits of SR in specific
clinical settings needs to be undertaken to confirm some of
the economic outcomes proposed or demonstrated here.
The focus on patient turnaround times in reporting of
radiographic procedures or assessment within the emer-
gency department has the potential to increase patient flow
and reduce waiting times. Additionally, SR has the po-
tential to automatically generate standardised, terminology-
coded clinical records and dynamically interact with clinical
information systems to enhance clinical decision-making
and improve time-to-diagnosis. Taking into account these
areas in future evaluations will allow for a more compre-
hensive assessment of the overall impact that SR systems
can have on quality of care and patient safety, as well as ef-
ficiency of clinical practice. We acknowledge the import-
ance of publication bias relating to non-publication of
studies or selective reporting of results that may affect the
findings of this review.

Conclusions
SR systems have substantial benefits but these benefits
need to be considered in light of the cost of the SR system,
training requirements, length of transcription task, poten-
tial use of macros and templates, and the presence of
accented voices. The regularity of use enhances accuracy
although frustration can result in disengaging with the
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technology before large accuracy gains are made. Expecta-
tions prior to implementation combined with the need for
prolonged engagement with the technology are issues for
management during the implementation phase. The im-
proved turnaround times of patient diagnostic procedure
reports or similar tasks represent an important outcome
as it impacts on timely delivery of quality patient care.
The ubiquitous nature of SR systems within other social
contexts will guarantee improvements in SR systems (soft-
ware and hardware). The availability of applications such
as macros, templates, and medical dictionaries will in-
crease accuracy and improve user acceptance. These ad-
vances will ultimately increase the uptake of SR systems
by diverse health and support staff working within a range
of healthcare settings.
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