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Abstract: In this work, we consider the general linear model or its variants with the ordinary least squares,
generalised least squares or restricted least squares estimators of the regression coe�cients and variance.
We propose a newly uni�ed set of de�nitions for local sensitivity for both situations, one for the estimators
of the regression coe�cients, and the other for the estimators of the variance. Based on these de�nitions, we
present the estimators’ sensitivity results. We include brief remarks on possible links of these de�nitions and
sensitivity results to local in�uence and other existing results.
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1 Introduction
In statistical analysis and applications, the general linear regressionmodel is widely accepted. The ordinary,
generalized and restricted least-squares estimators, and several alternatives, are proposed for the regression
coe�cients and variance in the model or its variants. The local sensitivities of some, but not all, of these
estimators are studied. For local sensitivities and diagnostic tests with applications to linear and random ef-
fects models, see Magnus and Vasnev [17]. For the sensitivity matrices of least squares estimators and their
relevant uses in spatial and panel-spatial autoregressive models, see Liu et al. [12, 14]. The local sensitivi-
ties of the posterior mean and precision matrix in the Bayesian context are established as well; see Polasek
[19, 20]. These sensitivities are applied to estimator comparisons, regression diagnostics and other issues in
several areas. For the interface between these sensitivity results with their applications and some statistical
approaches including in�uence diagnostics see the studies by e.g. Cook [3], Pan et al. [18], Liu et al. [15] and
Hao et al. [7]. It is well-known that these sensitivity results are built on the linear models and matrix tech-
niques. For a technical introduction to linear models, see e.g. Magnus and Neudecker [16], Rao et al. [22] and
Puntanen et al. [21]. For matrix di�erential calculus with applications in statistics, econometrics and multi-
variate analysis, see e.g. Fang and Zhang [5], Liu [10], Magnus and Neudecker [16] and Kollo and von Rosen
[8].

In this paper, we focus on the local sensitivities of the ordinary least squares, generalized least squares
and restricted least squares estimators in the general linear model or its variants including those with linear
restrictions.What is new is that we consider both the regression coe�cient and variance estimators, and both
an existing approach and a newly proposed approach in which the data and variance schemes for Cook’s [3]
local in�uence may be connected.
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We proceed as follows. In section 2, we introduce basic matrix di�erential calculus and local sensitivity
matrix de�nitions in the context of the linear models we need for the later sections. In section 3, we present
the local sensitivitymatrix results in the general linearmodel or its variants,with comments and comparisons
in a number of scenarios. In section 4, we make brief concluding remarks to complete the paper.

2 Matrix calculus and local sensitivity

2.1 Matrix calculus

For an n × p matrix X = (x[1], ..., x[i], ..., x[n])′ = (x1, ..., xj , ...xp), where ()′ denotes the transpose, x′[i] is the
i-th row and xj is the j-th column (i = 1, ..., n and j = 1, ...p), we let vecX = (x′1, ..., x′p)′ denote the np × 1
column-based vectorization vector of X, and vecX′ = (x′[1], ..., x

′
[n])

′ denote the np ×1 row-based vectorization
vector of X. For an n × n symmetric matrix V = (v1, ..., vn), use vechV denote the (n+1)n/2×1 column-based
vectorization vector for the distinct elements of V which stacks the elements on and below themain diagonal
of matrix V, and we let diagV = v = (v11, ..., vnn)′ denote the n ×1 diagonal-based vectorization vector which
stacks the diagonal elements of matrix V. Let ⊗ denote the (right) Kronecker product of two matrices. The
following lemmas, de�nitions and their uses in matrix di�erential calculus are given by e.g. Magnus and
Neudecker [16] and Liu [10].
Lemma 1: Let X be an n × p matrix. We have

vecX = KpnvecX′,

where Kpn is the np × np commutation matrix, with

K′pnKpn = I,
(A ⊗ c′)Kpn = c′ ⊗ A,
(z′ ⊗ B)Kpn = B ⊗ z′,
(z′ ⊗ c′)Kpn = c′ ⊗ z′,

for a p × p matrix A, a p × n matrix B, an n × 1 vector c and a p × 1 vector z.
Lemma 2: Let V be an n × n symmetric matrix. We have

vecV = DvechV ,

where D is the n2 × (n + 1)n/2 duplication matrix, with D′D = I.
Lemma 3: Let V be an n × n diagonal matrix. We have

vecV = JdiagV = v,

where J is the n2 × n selection matrix, with J′J = I.
De�nition 1: Let g(x) be a scalar function of an n × 1 vector x. The 1 × n derivative vector of g(x) is

Dg(x) = ∂g(x)/∂x′. (1)

De�nition 2: Let f (x) be an m × 1 vector function of an n × 1 vector x. The m × n derivative or Jacobian matrix
of f (x) is

Df (x) = ∂f (x)/∂x′. (2)

2.2 Local sensitivity

Let us consider the general linear model, as given in e.g. Magnus and Neudecker [16], Rao et al. [22] and
Puntanen et al. [21]

y = Xβ + ϵ (3)
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where y is an n ×1 vector of observable random variables, X is an n × p non-stochastic matrix and ϵ is an n ×1
vector of random disturbances with E(ϵ) = 0 and E(ϵϵ′) = σ2V, where V is an n × n known positive de�nite
matrix. The p × 1 vector β of regression coe�cients and the scalar variance parameter σ2 are supposed to be
�xed but unknown, and therefore need to be estimated.

We assume that we have an estimator of β (say b) and an estimator of σ2 (say s2), respectively. Based on
De�nitions 2 and 1, the following local sensitivity matrices of b and s2 are de�ned.
De�nition 3: The local sensitivity matrices of b with respect to y, X and V respectively are

Sby = ∂b/∂y′, (4)
SbX = ∂b/∂(vecX)′, (5)
SbX′ = ∂b/∂(vecX′)′, (6)
Sbv = ∂b/∂(diagV)′ (7)
SbV = ∂b/∂(vechV)′, (8)

where Sby is a p × n matrix, SbX is a p × np matrix, SbX′ is a p × np matrix, Sbv is a p × n matrix and SbV is a
p × (n + 1)n/2matrix.
De�nition 4: The local sensitivity vectors of s2 with respect to y, X and V respectively are

Ss2y = ∂s2/∂y′, (9)
Ss2X = ∂s2/∂(vecX)′, (10)
Ss2X′ = ∂s2/∂(vecX′)′, (11)
Ss2v = ∂s2/∂(diagV)′, (12)
Ss2V = ∂s2/∂(vechV)′, (13)

where Ss2y is a 1 × n vector, Ss2X is a 1 × np vector, Ss2X′ is a 1 × np vector, Ss2v is a 1 × n vector and Ss2V is a
1 × (n + 1)n/2 vector.

Clearly, by de�nition we see that a sensitivity matrix of an estimator b or s2 re�ects the e�ects of small
changes in y, X or V on the estimator. For example, the sensitivity matrix Sby of the estimator b can be used
to measure the e�ects of small changes in y on b.

Actually, the ideas in these de�nitions are not entirely new. The sensitivity of b to the parameters of the
variance matrix in (7) and/or (8) is related to De�nition 1 of Magnus and Vasnev (2007). The sensitivity of b
to the data in y and X can be connected to Cook’s (1986) de�nition of likelihood displacement; see also Cook
(1979). For a study on sensitivity of the variance estimator, see Banerjee and Magnus (1999). In this paper,
we simply focus to present the de�nitions in a systematic approach and provide further results as we see
that these sensitivity results are needed and important in dealing with such issues as estimator approxima-
tions and comparisons, modelmis-speci�cation studies, and regression diagnostics for outliers or in�uential
observations.

Note that the two matrices in de�nitions (5) and (6) can be equated by the np × np commutation matrix
Knp in Lemma 1, same as the two matrices in (10) and (11). However, (6), (8), (11) and (13) are newly proposed
to correspond to the perturbation schemes in Cook’s local in�uence diagnostic analysis. The matrix in (5) or
(10) uses X’s columns or the variables xj (j = 1, ..., p), while the matrix in (6) or (11) uses X’s rows or the
observations x[i] (i = 1, ..., n) instead, whichmay re�ect the e�ects of x[i]’s minor changes on the estimates of
the parameters. In this sense, our sensitivity matrix may be examined to help identifying possible in�uential
observations. The matrix in (7) or the row vector in (12) can be used to examine the e�ects of y[i] and x[i]’s
minor changes via the variances vii, which corresponds to a variance scheme in Cook’s in�uence diagnostic
analysis. The largest absolute element of the row vector may indicate the most in�uential observation in the
data. The sensitivities in (8) or (13) can be used to �nd �rst-order Tylor approximations for certain estimators;
see e.g. Liu et al. [12, 14] for relevant ideas and uses.

In the next section, we useMagnus andNeudecker’s [16]matrix di�erential calculus via De�nitions 1 and
2 to establish the sensitivity results, although we do not include detailed derivations for establishing all the
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local sensitivity results. The general linear model and some of its variants, with the ordinary least squares,
generalized least squares and restricted least squares estimators of β and σ2, are considered.

3 General linear model and variants

3.1 Least squares estimators

As the �rst illustrative example, for the general linear regression model (3)

y = Xβ + ϵ,

the following least squares estimators b of β and s2 of σ2 are considered, respectively:

b = (X′X)−1X′y, (14)

s2 = 1
n − p (y − Xb)

′(y − Xb). (15)

Theorem 1: We have

Sby = (X′X)−1X′, (16)
SbX = (X′X)−1 ⊗ (y − Xb)′ − b′ ⊗ (X′X)−1X′, (17)
SbX′ = (y − Xb)′ ⊗ (X′X)−1 − (X′X)−1X′ ⊗ b′. (18)

To establish (16), we start with (4) for estimator b in (14). We easily �nd the p × n local sensitivity matrix
of b with respect to y.

To �nd (17), we use (5). The p × np local sensitivity matrix of b with respect to X is also given by Magnus
and Neudecker [16].

To �nd (18), we use (6) and the equalities involving the commutation matrix Kpn in Lemma 1. We get

SbX′ = [(X′X)−1 ⊗ (y − Xb)′ − b′ ⊗ (X′X)−1X′]Kpn ,

and then (18).

We note that SbX and SbX′ involve the residual y−Xb. We see from X′(y−Xb) = 0 that SbX′S′bX′ = SbXS
′
bX =

(y − Xb)′(y − Xb)(X′X)−2 + b′b(X′X)−1 whose explicit expression is directly dependent on s2 via the residual.
Therefore these sensitivities can be interpreted by the residual in a certain manner.

Theorem 2: We have

Ss2y = 2
n − p (y − Xb)

′, (19)

Ss2X = − 2
n − p b

′ ⊗ (y − Xb)′, (20)

Ss2X′ = − 2
n − p (y − Xb)

′ ⊗ b′. (21)

To get (19), we use (9) for estimator s2 in (15).
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To establish (20) and (21), we use (10) and (11) with

d(y − Xb) = −(dX)b − Xdb,
(y − Xb)′X = 0,

and therefore the di�erential of s2 with respect to X

ds2 = 2
n − p (y − Xb)

′d(y − Xb)

= − 2
n − p (y − Xb)

′(dX)b

= − 2
n − p b

′(dX)′(y − Xb)

= − 2
n − p (b

′ ⊗ (y − Xb)′)dvecX

= − 2
n − p ((y − Xb)

′ ⊗ b′)dvecX′.

3.2 Generalized least squares estimators

For model (3)
y = Xβ + ϵ,

the generalized least squares estimator of β is

β̂ = (X′V−1X)−1X′V−1y. (22)

An unbiased estimator of σ2 is

σ̂2 = 1
n − p (y − Xβ̂)

′V−1(y − Xβ̂). (23)

Note that β̂ and σ̂2(n − p)/n are the maximum likelihood estimators with (n − p)/n as the adjusting constant,
if we assume normality for model (3). Hence, we only need to �nd the sensitivities of β̂ and σ̂2 as de�ned in
De�nitions 3 and 4 for both generalized least squares and maximum likelihood estimators.

Theorem 3:We have

Sβ̂y = (X′V−1X)−1X′V−1, (24)

Sβ̂X = (X′V−1X)−1 ⊗ (y − Xβ̂)′V−1 − β̂′ ⊗ (X′V−1X)−1X′V−1, (25)

Sβ̂X′ = (y − Xβ̂)′V−1 ⊗ (X′V−1X)−1 − (X′V−1X)−1X′V−1 ⊗ β̂′, (26)

Sβ̂V = −[(y − Xβ̂)′V−1 ⊗ (X′V−1X)−1X′V−1]D, (27)

Sβ̂v = −[(y − Xβ̂)′V−1 ⊗ (X′V−1X)−1X′V−1]J, (28)

where (27) holds for a symmetricmatrix V, (28) holds for a diagonalmatrix V, and D and J are the duplication
and selection matrices, respectively.

To �nd (24 - 26), we use (4-6) and the matrix di�erential calculus.

To establish (27) and (28), we �rst take the di�erential of (22) to have

dβ̂ = −[(y − Xβ̂)′V−1 ⊗ (X′V−1X)−1X′V−1]dvecV . (29)

then, if V is an n × n symmetric matrix, we use dvecV = DdvechV in Lemma 2 to �nd (27).
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Further, for an n × n diagonal matrix V, we use dvecV = Jdv in Lemma 3 to establish (28).

Note that β̂ can be approximated by the �rst-order Tylor expansion b + Sβ̂VvechV. One of such cases
may be for an non-diagonal symmetric matrix V = V(ρ) where an AR(1) error structure is involved via the
autocorrelation parameter ρ. A �rst-order Tylor approximation of the generalised least squares estimator in
terms of ρ and the sensitivity can be easily established.

Theorem 4: We have

Sσ̂2y = 2
n − p (y − Xβ̂)

′V−1, (30)

Sσ̂2X = − 2
n − p β̂

′ ⊗ (y − Xβ̂)′V−1, (31)

Sσ̂2X′ = − 2
n − p (y − Xβ̂)

′V−1 ⊗ β̂′, (32)

Sσ̂2V = − 1
n − p [(y − Xβ̂)

′V−1 ⊗ (y − Xβ̂)′V−1]D, (33)

Sσ̂2v = − 1
n − p [(y − Xβ̂)

′V−1 ⊗ (y − Xβ̂)′V−1]J, (34)

where (33) holds for a symmetricmatrix V, (34) holds for a diagonalmatrix V, and D and J are the duplication
and selection matrices, respectively.

To get (30), we use (9) to take the di�erential of estimator σ̂2 with respect to y.

To get (31) and (32), we use (10) and (11) with

dσ̂2 = − 2
n − p [β̂

′ ⊗ (y − Xβ̂)′V−1]dvecX. (35)

We get (33) for a symmetric matrix V, and (34) for a diagonal matrix V, by using (12) and (13) with

dσ̂2 = − 1
n − p [(y − Xβ̂)

′V−1 ⊗ (y − Xβ̂)′V−1]dvecV . (36)

3.3 Restricted generalized least squares

For the general linear regression model (3)
y = Xβ + ϵ,

we consider to have prior information about β in the form of a set of k independent exact linear restrictions
expressed as

r = Rβ, (37)

where R is a k × p known matrix of rank k ≤ p and r is a k × 1 vector of known elements.
The restricted least squares estimators of the parameters in the formulation (3) and (37) are

β̂R = β̂ + (X′V−1X)−1R′[R(X′V−1X)−1R′]−1(r − Rβ̂), (38)

σ̂2R = (y − Xβ̂R)′V−1(y − Xβ̂R)
n − p + k , (39)

where β̂ = (X′V−1X)−1X′V−1y is the (unrestricted) generalized least squares estimator of β.
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Theorem 5:We have

Sβ̂Ry = M(X′V−1X)−1X′V−1, (40)

Sβ̂RX = MSβ̂X − (β̂R − β̂)′ ⊗M(X′V−1X)−1X′V−1 − [(β̂R − β̂)′X′V−1 ⊗M(X′V−1X)−1]K′pn , (41)

Sβ̂RX′ = MSβ̂X′ − [(β̂R − β̂)′ ⊗M(X′V−1X)−1X′V−1]Kpn − (β̂R − β̂)′X′V−1 ⊗M(X′V−1X)−1, (42)

Sβ̂RV = MSβ̂V + [(β̂R − β̂)′X′V−1 ⊗M(X′V−1X)−1X′V−1]D, (43)

Sβ̂Rv = MSβ̂v + [(β̂R − β̂)′X′V−1 ⊗M(X′V−1X)−1X′V−1]J, (44)

where (43) holds for a symmetric matrix V, (44) holds for a diagonal matrix V,

M = I − (X′V−1X)−1R′[R(X′V−1X)−1R′]−1R

is a p × p idempotent matrix, Kpn, D and J are the commutation, duplication and selectionmatrices, Sβ̂y, Sβ̂X,
Sβ̂X′ , Sβ̂V and Sβ̂v are the samematrices as given in Theorem 3, and β̂R and β̂ are the restricted and unrestricted
generalized least squares estimators of β, respectively.

We establish Theorem 5 using De�nition 2 and those results in Theorem 3.

The local sensitivity results of β̂R with respect to X extend a result for which V = I given by Liu and
Neudecker [13].

Theorem 6:We have

Sσ̂2Ry = 2
n − p + k (y − Xβ̂R)′V−1(I − XSβ̂Ry), (45)

Sσ̂2RX = − 2
n − p + k [β̂

′
R ⊗ (y − Xβ̂R)′V−1 − (y − Xβ̂R)′V−1XSβ̂RX], (46)

Sσ̂2RX′ = − 2
n − p + k [(y − Xβ̂R)′V−1 ⊗ β̂′R − (y − Xβ̂R)′V−1XSβ̂RX′ ], (47)

Sσ̂2RV = − 1
n − p + k [((y − Xβ̂R)′V−1 ⊗ (y − Xβ̂R)′V−1)D + 2(y − Xβ̂R)′V−1XSβ̂RV ], (48)

Sσ̂2Rv = − 1
n − p + k [((y − Xβ̂R)′V−1 ⊗ (y − Xβ̂R)′V−1)J + 2(y − Xβ̂R)′V−1XSβ̂Rv], (49)

where (48) holds for a symmetric matrix V, (49) holds for a diagonal matrix V, D and J are the duplication
and selection matrices, Sβ̂Ry, Sβ̂RX, Sβ̂RX′ , Sβ̂RV and Sβ̂Rv are the same matrices as given in Theorem 5, and β̂R

is the restricted generalized least squares estimator of β.

We establish Theorem 6 using De�nition 1.

4 Concluding remarks
Fang et al. [4] studied elliptical distributions and the elliptical distributions based generalized multivariate
analysis. Scha�rin and Toutenburg [23], Rao et al. [22], Liu et al. [11] and Leiva et al. [9] discussed mixed
estimators for the normal or elliptical distributions based general linear model with stochastic linear restric-
tions. So wemay study sensitivity results for themixed estimators under normality or elliptical distributional
assumptions.

We may further study the maximum likelihood estimators for some of the models covered by Puntanen
et al. [21] or the growth curve models studied by e.g. Pan et al. [18] or those discussed in the previous section
under elliptical distributions studied by e.g. Fang et al. [4].

Unauthenticated
Download Date | 6/6/16 7:23 AM



232 | Shuangzhe Liu, Tiefeng Ma, and Yonghui Liu

Wemay apply some of these sensitivity results to the �rst-order approximations of those possible estima-
tors in an approach as taken in section 3.2 and in e.g. Liu et al. [12, 14].

We may conduct numerical studies to examine the possible link of (6) and (11) to Cook’s local in�uence
results for the di�erent estimators.

To summarize, we have de�ned the sensitivities for the general linear model and its variants in a system-
atic manner, derived the sensitivity results easy to use, and listed possible extensions to further consider.
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