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Abstract
Accurate predictions of the timing and magnitude of consumer responses to episodic seed-

ing events (masts) are important for understanding ecosystem dynamics and for managing

outbreaks of invasive species generated by masts. While models relating consumer popula-

tions to resource fluctuations have been developed successfully for a range of natural and

modified ecosystems, a critical gap that needs addressing is better prediction of resource

pulses. A recent model used change in summer temperature from one year to the next (ΔT)

for predicting masts for forest and grassland plants in New Zealand. We extend this climate-

based method in the framework of a model for consumer–resource dynamics to predict in-

vasive house mouse (Mus musculus) outbreaks in forest ecosystems. Compared with pre-

vious mast models based on absolute temperature, the ΔT method for predicting masts

resulted in an improved model for mouse population dynamics. There was also a threshold

effect of ΔT on the likelihood of an outbreak occurring. The improved climate-based method

for predicting resource pulses and consumer responses provides a straightforward rule of

thumb for determining, with one year’s advance warning, whether management intervention

might be required in invaded ecosystems. The approach could be applied to consumer–re-

source systems worldwide where climatic variables are used to model the size and duration

of resource pulses, and may have particular relevance for ecosystems where global change

scenarios predict increased variability in climatic events.

Introduction
Mast seeding (synchronous intermittent production of large seed crops [1]) is a major driver of
the abundance and dynamics of small mammal and bird consumers [2–5]. Resource pulses
such as mast seeding can influence dynamics and interactions among species at multiple
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trophic levels [2, 6, 7] and, for some ecosystems, accurate predictions of consumer responses to
pulsed resources are critical for managing unwanted impacts at one or more trophic levels (e.g.
[8]). Where mast events drive the dynamics of pest species, low-cost predictions of pest out-
breaks can be critical for maximizing the benefit-to-cost ratio of control programmes [9].

Prevention of damage by outbreaking consumer species often requires management to be
implemented or budgeted for well in advance of resource pulses [10]. In addition to control of
invasive species, accurate forecasting is required for managing disease and parasite outbreaks
that threaten wildlife [11], mitigating the impacts of zoonoses [12] and, in agricultural systems,
preventing plagues of crop or pasture pests [13–15]. This can be achieved by (i) predicting the
likely size and occurrence of resource pulses and (ii) estimating the response of consumer pop-
ulations to those resources. The latter problem is more easily overcome than the former: given
appropriate long-term field data, statistical and mechanistic models relating consumer popula-
tions to resource fluctuations have been successfully developed for a range of natural and mod-
ified ecosystems [2, 16, 17].

The critical gap that now needs addressing is better prediction of the size and occurrence of
resource pulses, which requires good understanding of the influence of key drivers such as cli-
mate, in particular temperature and rainfall. While temperature is known to be a driver of
masts [18, 19], temperature cues are often modelled in combination with other predictors such
as rainfall or nutrient availability [19–24]. Although predictive power can be improved by in-
cluding several variables, these are often site-specific and do not have the ‘one-size-fits-all’ ad-
vantage of using a single generic predictor.

Kelly et al. [25] showed that change in average summer temperature from one year to the
next (ΔT, 1 and 2 years prior to seed production) is a significantly better predictor of masts
than absolute temperature (T) for a range of genera in New Zealand (improving predictions
for mast seeding by about 50% on average compared with previously published work; see Kelly
et al. [25]). Using the ΔT model reduces the odds of failing to predict a mast year (a false nega-
tive), or expecting high seedfall when it is not warranted (a false positive). These scenarios have
significant ramifications for the management of invasive consumer species, since a false nega-
tive may result in high levels of damage, whereas too many false positives could undermine
planning and budgeting. Although Kelly et al. [25] noted that predictions could be improved
for some species and sites, for example by fine-tuning the section of summer months or adding
environmental covariates, the relatively minor gains from this process detract from the benefits
of a simple, universal ΔT model for species of management interest.

The primary focus of this paper is to predict consumer outbreaks using improved climate-
driven predictions for resource pulses. The ultimate goal is to predict consumer responses di-
rectly using climate data without having to collect resource data or monitor consumers directly
on an annual basis, as climate data are inexpensive to obtain across large areas, and a climate-
based prediction might provide additional time to plan and implement management to prevent
potential outbreaks. An appropriate climate driver is therefore key. We develop a simple,
mechanistic consumer–resource model including production and depletion of resources and
demographic responses of the consumer, and explore how different climate drivers for pulsed
resources affect the magnitude and occurrence of masts, and their influence on consumer
abundance. The model is designed for mouse population dynamics determined primarily by
resource inputs [16]: environmental factors determine food availability and therefore the rate
of increase of mice, subject to relatively minor density-dependent mechanisms. Food con-
sumption by mice contributes to the decline in food supply, which is also affected by factors
unrelated to mouse abundance. To parameterize the model, we use data on temperature, hard
beech (Fuscospora truncata) seedfall, and invasive house mouse (Mus musculus) abundance
from the Orongorongo Valley (OV), New Zealand. Mice respond strongly to beech seed
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availability [16, 26], but are eaten by invasive stoats (Mustela erminea), prompting an increase
in stoat abundance. Predation by both mice and stoats results in reduced survival of inverte-
brates [27] and native birds [26, 28, 29]; hence the need for timely intervention to protect vul-
nerable native fauna. We fitted the consumer–resource model to the OV mouse data using
observed seedfall, and seedfall predicted by the T and ΔT [25] models. We demonstrate that
the choice of climate driver can have a significant influence on the explanatory and predictive
power of the consumer–resource model.

Methods

Overview
Model development followed a sequence of four steps. First, we describe the field data. Second,
we use these data to parameterize and compare a set of consumer–resource models. Third, we
describe two methods for predicting annual seedfall from summer temperature data and use
these to re-estimate parameters for the best consumer–resource models. Fourth, we use ob-
served seedfall and mouse abundance, and the output of the best temperature-based seedfall
model in the best consumer–resource model, to develop simple, robust relationships for pre-
dicting increases in mouse abundance during periods of beech seed availability, and the annual
peak in mouse abundance.

Step 1: Field data. Data on temperature, seedfall and mouse abundance were collated for
mixed beech–podocarp–broadleaved forest in OV (New Zealand’s North Island: 41° 210 S, 174°
580 E). For 43 years (1968–2010), seed production (seeds m−2) by hard beech was measured
using permanent seed trays mounted c. 1.5 m above the forest floor [19]. Seedfall from beech
trees occurs primarily in late summer and autumn, i.e. February to May [30]. Mean summer
temperature was calculated from mean monthly air temperatures (January–March), measured
at the nearest weather station (Kelburn). An index of mouse abundance (captures per 100 trap
nights; C/100TN) was measured quarterly for the 25 years from May 1972 to November 1996.
Trapping sessions were conducted in Austral summer (February), autumn (May), winter (Au-
gust) and spring (November) using 116 kill-traps spaced at 50-m intervals along a 4-km tran-
sect running through the forest parallel to the hill slope at 100–200 m elevation [31]. Data were
used from the 30% of these traps located in predominantly beech forest, transformed to adjust
for trap saturation [16]. To fill in data for a full initial year, mouse abundance in February 1972
was assumed to be equal to the minimum February value of the time series (1�0 C/100TN). The
start of each annual cycle was taken to be February. Temperature, seedfall and mouse trap-
catch data are available at http://dx.doi.org/10.7931/J2W66HPB.

Step 2: Consumer–resource models. The rate of change of the mouse populationM was
assumed to depend on food consumption [32] and consumer density [33]:

dM
dt

¼ ðagðFÞ � m1 � m2MÞM: Eqn 1

For all equations, time t is continuous and time-dependent parameters are measured in
units of years. Mouse abundance is quantified by the index C/100TN, F is food availability
(seeds m−2), g(F) is the functional response (per capita consumption of seed by mice) and α is
the demographic efficiency of mice, i.e. their ability to convert food into recruitment for the
mouse population. The parameters μ1 (year

−1) and μ2 (mouse−1 year−1) are density-indepen-
dent and density-dependent rates respectively [33]. Both μ1 and μ2 may be positive or negative,
depending on non-food-related processes (e.g. predation, social interactions, Allee effects, etc.).

Four candidate models for g(F) were tested:
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A. Holling I (piecewise linear): g(F) = c1 min(F, K)

B. Holling II (Ivlev): g(F) = c2 (1—exp(—e F))

C. Holling II (standard): g(F) = c2 F / (F+K)

D. Uncapped: g(F) = c1 F

In all four models, when food biomass is low, per capita consumption increases with the
amount of food available. Model A is a type I functional response and models B and C are vari-
ations of a type II functional response: when food biomass is high, consumption slows due to
constraints on search and handling time to reach a maximum rate that is capped either at a sin-
gle value (when F exceeds K seeds m−2 in model A) or an asymptote (models B and C). Model
D is uncapped and the per capita intake rate will continue to increase at high food levels. In
model B, e ((seeds m−2)–1) is a measure of foraging efficiency. In model C, K (seeds m−2) is the
food availability at which growth is at half the possible maximum rate, in the absence of all
other effects. In models A and D, c1 (mouse−1 year−1) is the feeding rate of mice, and in models
B and C, c2 (seeds m

−2 mouse−1 year−1) is the maximum per capita feeding rate. There are
many other models available for the functional response (e.g. [34]); these were chosen for their
simplicity and to minimise the number of parameters to be estimated.

The rate of change of available food was modelled as:

dF
dt

¼ SðtÞ � hF � gðFÞM: Eqn 2

The first term, S(t), describes changes in available food, modelled in the yth annual cycle as a
total amount Fy delivered at a constant rate over the first quarter of the year:

SðtÞ ¼
Fy

0:25
if 0 > floorðtÞ > 0:25;

0 otherwise:

8<
: Eqn 3

The floor function, which rounds t down to the largest integer smaller than t, allows S(t) to in-
crease during autumn only (February–April of each year). The second term, hF, describes the
change in available food that happens throughout the year at a constant rate h (year−1) unrelat-
ed to mouse abundance. The third term, g(F) M, describes the rate of seed consumption by
mice. Food was not carried over between years; it was reset to zero at the start of each
annual cycle.

We took the annual values of Fy to be the observed annual seedfall from the OV data, start-
ing from February 1972. We modelled the abundance of mice over the next 25 years with Eqns
1–3 and with each candidate functional response. Model time is continuous but the data are
from discrete points in time. The abundance of mice at the start of each quarter was therefore
extracted to be compared with the data. Best-fit parameter values were chosen by comparing
the predicted seasonal mouse abundances with those for OVmouse abundance (quarterly, Feb-
ruary 1972 to November 1996; number of data points = 100), and minimising the root mean
square error (RMSE). Confidence intervals were estimated from the distribution of 100 best-fit
values found using the non-parametric bootstrapping technique of sampling with replacement
[35]. Best-fit parameter values were used to generate predicted mouse abundance and candi-
date consumer models were compared using AICc [35] and Pearson’s r correlation. Even
though data were collected over 25 years, only five large seedfall events (log10(seedfall)> 1)
and seven smaller seedfall events (0< log10 (seedfall)< 1) occurred during the period, and
there were seven periods for which mouse abundance was high (above 2.0C/100TN). It was
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therefore not feasible to test model fit using techniques such as splitting the data set and assess-
ing the predictive power of a model trained on a reduced data set.

We tested each formulation of the consumer–resource model with a reduced number of pa-
rameters corresponding to minimal effects of processes such as predation or intraspecific com-
petition for mice, or loss of seed to germination or decay (i.e. with either μ2 = 0 or μ1 = 0, and/
or h = 0). The best models were chosen for their low AICc value, and these models were used
for all subsequent analyses.

Step 3: Predicted seedfall. To predict mouse abundance from climate data, we first re-
quired a way of predicting seedfall. Kelly et al. [25] showed that seedfall Fy (seeds m

−2) could
be modelled using the mean summer temperature (daily average for the 3-month period Janu-
ary to March) in the previous year (Ty–1) or the previous 2 years (Ty–1 − Ty–2). We tested both
seedfall models as drivers for the consumer–resource model.

T model: We used linear regression to predict Fy as a function of temperature in the previ-
ous summer, fitting log10(Fy) = a + b Ty–1 to the OV beech seedfall data over the period for
which the index of mouse abundance was measured (1972–1996).

ΔT model: We used linear regression to predict Fy as a function of the change in tempera-
ture in the previous two summers, fitting log10(Fy) = a + b(Ty–1 − Ty–2) to the OV beech seedfall
data (1972–1996).

We tested each seedfall model for autocorrelation, and compared the distributions of seed-
fall data produced by each model to each other and to the observed OV seedfall using a Kolmo-
gorov–Smirnov test.

Parameters for the best consumer–resource models from Step 2 were re-estimated by re-
placing the values of Fy in Eqn 3 previously taken from the field data with values predicted
from either the T model or the ΔT model, based on temperatures for 1972–1996 for OV. Confi-
dence intervals for these parameter values were found using bootstrapping methods as above.
AICc and Pearson’s r correlation were used for comparing models.

Step 4: Annual predictions of the increase and peak abundance of mice. We generated a
1000-year time series of mean summer temperatures by sampling from a normal distribution
fitted to the OV mean summer temperature values. The validity of this approach was tested by
Holland and James [36], who showed that the temperature time series from the OV (among
others) was normally distributed and showed no autocorrelation on the first five lags, and that
the data sampled in a random order, compared with the true order, had the same distribution
of times between years with temperature in the top 25%, and the same frequency of events
where either high summer temperatures or high positive values of ΔT predicted masts in two
consecutive years. This 1000-year time series was used to generate a seedfall time series using
the ΔT model, and a corresponding time series for mouse abundance using the Ivlev model B
with the parameter-set based on observed seedfall (results were comparable for models A and
C with corresponding best-fit parameter sets). The length of this data set was chosen to capture
a large number of single and double mast events over the course of the simulation, despite their
rarity. We extracted quarterly values of mouse abundance from the continuous model output,
to compare with field data, and calculated the finite rate of increase during the period from late
summer to early spring (mid-February to mid-August), i.e. from immediately prior to annual
production of beech seed to the post-seedfall quarter when mouse populations approach peak
annual abundance [17]. We plotted four cases: the 6-month increase and the early spring (Au-
gust) value of the index for each year against the corresponding ΔT value (from the previous 2
years) and modelled seedfall in the preceding autumn. In all four cases the model output was
used to compare logistic and linear relationships between mouse demographics and ΔT or
seedfall. The goodness of fit for the possible relationships was compared using AICc and Pear-
son’s r correlation (rmm). The observed OV data were treated in the same way as the model
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output, i.e. the increase of mice from late summer to early spring, and the spring value of
mouse abundance, were plotted against the appropriate ΔT and seedfall values. Again the
goodness of fit of linear and logistic relationships was compared with AICc and Pearson’s r cor-
relation (rdd). Finally, model predictions and the data were compared in all four cases using the
fitted logistic curves and the data (rdm).

Effect of climate change on resource pulses driving consumer outbreaks
Following Tompkins et al. [37], we defined a mast year as one in which seed production was
greater than the long-term mean by a designated amount based on standard deviates (Method
4 in [38]). We calculated the annual deviate from the long-term mean, ADy, from the 43 years
of OV seedfall data (Fy) as

ADy ¼
Fy �meanðFyÞ

standard deviation of Fy

Eqn 4

Years in which ADy was greater than a threshold ADthres = minimum(absolute value(ADy))
were considered to have a relative high, positive standardized deviate, and can be called mast
events. We calculated the minimum temperature (Tthres) and minimum temperature change
(ΔTthres) for the mast years identified in the OV data.

Predictions of annual mean summer temperature (January–March) at OV from 1972 to
2100 were generated by the National Institute of Water and Atmospheric Research [39] for
three climate scenarios: A2 (which corresponds to ‘regionally oriented economic develop-
ment’), B1 (which corresponds to ‘global environmental sustainability’) and the intermediate
case, A1B [40]. A systematic bias was evident with lower mean and variance of temperatures in
all climate scenarios compared with the overlapping years of climate scenarios and historical
OV temperature data, likely resulting from the scenarios having been interpolated for a 5-km-
grid cell. We adjusted the mean and variance of the climate scenarios to match the mean and
variance of the OV temperature data using the overlapping years 1972–2010, to account for
this local variation. We then calculated ΔT time series from the adjusted climate scenario data.
For the 43 years of observed ΔT values from the OV, and for each 100-year T and ΔT time se-
ries for the three adjusted climate scenarios, we calculated the proportion of years in which a
single mast event should occur (i.e. Ty � Tthres or ΔTy � ΔT thres), the proportion of years in
which the first year of a double mast event (i.e. two consecutive mast events) should occur (i.e.
Ty & Ty+1 � Tthres or ΔTy & ΔTy+1 � ΔT thres), and the average time between single mast events
(i.e. t for which Ty & Ty+t� Tthres and Tk < Tthres, or ΔTy & ΔTy+t � ΔTthres and ΔTk < ΔTthres,
for y+1< t< k).

Results

Model selection
AICc, RMSE and correlation (Pearson’s r) values for the various candidate models fitted to the
OV mouse abundance data are shown in Table 1. In all cases μ2 (density-dependent mortality)
and h (external seed loss) were included in the model; without these terms the AICc values in-
creased significantly (ΔAICc > 20). Initially the model was highly unstable to parameter fitting,
in all cases tending to give very small values for c1 and c2, and very wide confidence intervals
for α. This was corrected by removing the third term from Eqn 2 (meaning that feeding by con-
sumers did not have a significant effect on food availability) and combining the c and α param-
eters in Eqn 1 (i.e. setting α = 1). This model simplification gave an improved fit, as measured
by RMSE and AICc and narrower confidence intervals for the remaining parameters. All three
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capped models with the model simplification and α = 1 gave an equally good description of the
mouse abundance data (AICc values differed by<1), and all three had Pearson’s correlation r
= 0�74 and RMSE = 1�45.

The best-fit parameter values and associated confidence intervals for the three best models
using the OV seedfall data are shown in Table 2. The predicted parameter values and confi-
dence intervals were very similar for all three models. However, while the confidence intervals
were relatively stable for the observed seedfall and ΔT models (i.e. when bootstrapping was re-
peated, the same values were generated to two decimal places), values for the T model were
more variable. The linear term in the rate of change of the mouse population was negative in
all cases (μ1 � −1�2), and the density-dependent term for all models was positive (μ2 � 0 75),
suggesting regulation by processes not related directly to seed availability. Together these terms
suggest that in the absence of beech seedfall effects, expected mouse abundance in OV would
be approximately 1�6 (= −μ1/μ2) C/100TN. All models predicted the seed-loss term to be h� 9.
In the absence of mouse predation this corresponds to a seed half-life of approximately 6 weeks
and depletion of the seed bank to<5% in 6 months, which is consistent with observations of
germination [30].

Predicting resource fluctuations
The ΔT model (log10(Fy) = 0�33 + 0�97(Ty–1 − Ty–2), p< 10−7, r2 = 0�53) was a better predictor
of historical seed resources than T (log10(Fy) = −18�61 + 1�14 Ty–1, p< 10−4, r2 = 0�35). The dis-
tribution of seedfall given by the data, and the T and ΔT predictors, showed no significant dif-
ferences (Kolmogorov–Smirnov test, statistic< 0�001). The observed OV seedfall time series,
and those from the T and ΔT predictors, showed no evidence of autocorrelation (Ljung–
Box Q-test, P> 0�05 for the first three lags in all series).

Modelling consumer abundance using temperature to predict seedfall
The best-fit model parameters with confidence intervals and correlation coefficients for the
three best models using temperature-based seedfall drivers are shown in Table 2. Recall that for
these models, the OV temperature time series was used to model seedfall, and then mouse
abundance, and the model output was compared with OV mouse abundance data. Best-fit

Table 1. Comparison of Four Consumer–Resource Models Fitted to Mouse Abundance Data from the Orongorongo Valley, New Zealand.

g(F) Density-dependent term Density-independent term Other food changes N RMSE Pearson’s r ΔAICC

A—Piecewise −μ2M −hF 4 1�53 0�73 19�7
−μ2M −μ1 −hF 5 1�45 0�74 0

B—Ivlev −μ2M −hF 4 1�52 0�70 16�2
−μ2M −μ1 −hF 5 1�45 0�74 0�23

C—Holling II −μ2M −hF 4 1�50 0�72 9�3
−μ2M −μ1 −hF 5 1�46 0�74 0�52

D—Uncapped −μ2M −hF 3 1�78 0�29 78�6
−μ2M −μ1 −hF 4 1�65 0�50 50�3

Observed seedfall (F) was used as input for the models. The models included different combinations of functional response (g(F)), density dependence

(μ2M) and density independence (μ1) in the rate of increase for mice, and changes in food (hF) unrelated to mouse abundance. All models shown

excluded the functional response term from the resource equation (Eqn 2) and had fixed α = 1. The models had N parameters (not including α) and

comparisons were based on root mean square error (RMSE), Pearson’s r correlation and the corrected AICC. Models with lowest AICC values are shown

in bold.

doi:10.1371/journal.pone.0119139.t001
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model parameters using ΔT were within the 95% confidence interval of the corresponding
best-fit parameters using observed seedfall, although the ΔT driver predicted a slower rate of
seed decay.

As measured by Pearson’s r correlation, the ΔT-driven model was as good a predictor of
mouse abundance as the observed seedfall (ΔT: r = 0.71; observed seedfall: r = 0.74), but the T-
driven model was a substantially worse predictor (T: r = 0.41).

The predicted mouse abundance using best-fit parameter values for the consumer model
with an Ivlev functional response driven by observed seedfall, and seedfall derived using the ΔT
or T predictors, is shown in Fig. 1. None of the models fully captured the observed magnitude
of the largest mouse outbreaks, but models using observed seedfall, or seedfall predicted using
ΔT, did predict large outbreaks in those years.

Predicting consumer outbreaks
A logistic curve gave a better fit than a linear regression when plotting the change in mouse
abundance from late summer to early spring or peak abundance in spring (calculated from the
1000-year simulated time series) against either ΔT (from the previous 2 years) or autumn seed-
fall (Fig. 2). This is in accordance with mouse populations rapidly achieving their maximum
rate of increase during mast years in New Zealand ecosystems (e.g. [17]). In all four cases the
improvement in fit given by the logistic curve was large (ΔAIC> 10). The correlation between

Table 2. Parameter Values for the Best-Fit Consumer Models Fitted to Mouse Abundance.

Consumer Model A—Piecewise B—Ivlev C—Standard

Seedfall—Observed

c1 (seeds mouse−1 year−1) or c2 (mouse−1 year−1) 4�41 (1�5, 17�8) 6�74 (5�3, 10�2) 6�95 (5�5, 10�6)
K (seeds) or e (seeds−1) 1�49 (0�4, 3�9) 1�08 (0�3, 4�4) 0�67 (0�08, 4�0)
μ1 (year

−1) −1�31 (−2�0, −0�6) −1�23 (−2�1, −0�4) −1.05 (−2�3, −0�2)
μ2 (mouse−1 year−1) 0�77 (0�5, 1�1) 0�76 (0�5, 1�3) 0.71 (0�5, 1�2)
h (year−1) 9�18 (5�1, 16.1) 9�48 (4�8, 18�5) 9.80 (4�8, 17�1)
Correlation 0�74 0�74 0�74
Seedfall Model—ΔT
c1 (seeds mouse−1 year−1) or c2 (mouse−1 year−1) 5�36 (1�6, 7�8) 7�15 (5�1, 11�8) 7�80 (3�4, 27�2)
K (seeds) or e (seeds−1) 1�36 (0�9, 3�5) 1�25 (0�5, 10�2) 2�29 (0�5, 21�3)
μ1 (year

−1) −0�99 (−2�5, −0�5) −0�75 (−1�9, 0�5) −3�55 (−8�4, −0�9)
μ2 (mouse−1 year−1) 1�00 (0�5, 1�8) 0�87 (0�5, 1�7) 2�13 (0�8, 7�2)
h (year−1) 4�47 (1�9, 8�8) 5�38 (2�2, 16�1) 3�32 (−0�7, 13�4)
Correlation 0�71 0�71 0�71
Seedfall Model—T

c1 (seeds mouse−1 year−1) or c2 (mouse−1 year−1) 4�39 (2�1, 85�3) 7�87 (3�4, 27�2) 11v57 (4�4, 25�5)
K (seeds) or e (seeds−1) 0�76 (0�3, 2�9) 2�29 (0�5, 21�3) 0�085 (0�0, 0�8)
μ1 (year

−1) −1�76 (−46�5,−1�1) −3�55 (−8�4, −0�9) −0�19 (−4�5, 0�2)
μ2 (mouse−1 year−1) 0�86 (0�7, 33�7) 2�13 (0�8, 7�2) 2�17 (0�8, 6�1)
h (year−1) 4�44 (0�00, 11�9) 3�32 (−0�7, 13�4) 3�9 (0�1, 19�3)
Correlation 0�42 0�41 0�41

Parameter values for the best-fit consumer models fitted to mouse abundance using observed seedfall or seedfall predicted by the change in mean

summer temperature in the preceding 2 years (ΔT) or mean summer temperature last year (T). Model parameters are defined in the text. Values in

brackets are 95% confidence intervals. Correlation between the consumer model predictions and field-collected data on mouse abundance was measured

by Pearson’s r. The index of mouse abundance is captures per 100 trap nights, ‘seeds’ is shorthand for ‘seeds m−2
’.

doi:10.1371/journal.pone.0119139.t002
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the model output and the fitted logistic curve was very high (Pearson’s r: rmm> 0�98) in
all cases.

Similarly, when OV field data on spring mouse abundance and the change in mouse abun-
dance from late summer to early spring were plotted in the same way, in all four cases a logistic

Fig 1. Quarterly abundance of mice, Orongorongo Valley, New Zealand. Abundance (grey points/lines) and the predicted time series from a consumer
model (solid dark line) using the best-fit parameter values and the Ivlev model fitted using three seedfall drivers: (a) observed seedfall; (b) seedfall predicted
using ΔT (change in mean summer temperature in the preceding 2 years) and (c) seedfall predicted using absolute temperature T (mean summer
temperature last year). Model parameters are in Table 2.

doi:10.1371/journal.pone.0119139.g001
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curve gave a better fit than a linear regression, as measured by both AIC and correlation coeffi-
cient (Fig. 2). In three of the four cases the improvement was moderately large (ΔAICc > 5).
However, for the data there was one case (mouse abundance predicted by log10(seedfall))
where the improvement with the logistic model was only marginal (ΔAICc < 2). The correla-
tion between the data and the best-fit logistic curve was high (Pearson’s r: rdd > 0�8) in
all cases.

The strongest correlations for the model and data were between the observed mouse abun-
dance in spring and either observed seedfall (rdd = 0�85, rmm > 0�99) or ΔT (rdd = 0�84, rmm >

0�99) (Fig. 2A-B).
Finally, correlation between the model output (i.e. the logistic curve fitted to the simulation

data) and the observed data from OV (rdm) was also strong in all four cases. Again, the stron-
gest correlations were between the simulated mouse abundance in spring and either observed
seedfall (rdm = 0�84) or ΔT (rdm = 0�82) (Fig. 2A- B).

Logistic curves fitted to mouse abundance in spring against observed seedfall had a relatively
shallow gradient (i.e. a linear regression was only a slightly worse fit) for both model and data

Fig 2. Relationships predicting the annual spring peak in abundance and changes in OVmouse population over autumn/winter.Mouse abundance
(C/100TN) in early spring (August) and change in mouse abundance from late summer to early spring (February–August) are plotted against (a, c)
log10(seedfall) from the preceding year and (b, d) the mean summer temperature change between the two previous years (ΔT). In all panels, modelled results
and the best-fit logistic curve are shown in grey. Observed demographic data and the best-fit logistic curve are shown in black. Correlation values are rmm

between the model (grey) line and the model (grey) points, rdd between the data (black) line and the data (black) points, and rdm between the model (grey) line
and the data (black) points.

doi:10.1371/journal.pone.0119139.g002
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(Fig. 2A). A data gap around log10(seedfall) = 1 (likely resulting from the on–off nature of
beech seedfall) makes identifying a clear threshold difficult. In contrast, ΔT values do not show
a clear gap (i.e. all values of ΔT are equally likely to occur, and the logistic curve fitted to the ob-
served mouse abundance in spring against ΔT had a very steep slope (Fig. 2B), suggesting a
clear threshold). A threshold was also evident when the change in mouse abundance from late
summer to early spring was plotted against ΔT (Fig. 2D). For ΔT> 1°C, the change in mouse
abundance and the observed peak abundance in spring were high. In contrast for ΔT< 0°C
both these values were low.

Effect of climate change on resource pulses driving consumer outbreaks
Eight years of seedfall data from the OV were designated as mast years (0.19 of years, every
5.43 years on average; Table 3). The minimum value of ΔT in these 8 years was ΔTthres =
0.77°C, which is consistent with the ΔT thresholds for change in mouse abundance and peak
abundance identified in the previous section. The corresponding minimum value of T was
Tthres = 16.67°C. Using ΔTthres to predict mast events from three climate scenarios over the
period 2001–2100 suggests slightly more frequent mast events (ranging from 21% to 24% of
years, every 4.20–4.32 years on average), with only two double mast events occurring during
the century (Table 3). In contrast, 83–92% of years are predicted to be above Tthres, with conse-
cutive mast events being the norm rather than the exception (Table 3). This is due to the in-
creasing trend in temperatures in the climate scenarios: four of the first 10 years are predicted
to have T� Tthres, but all 10 years of the final decade of the century have T� Tthres. For the ΔT
time series, one year in the first decade and two years in the final decade have ΔT� ΔTthres.

Discussion
Predicting the occurrence and magnitude of resource pulses as far in advance as possible is fun-
damental to predicting, budgeting for and managing outbreaks of consumers and for under-
standing cascading consequences among multiple trophic levels [7]. In particular, predictions
based on low-cost, readily available data, such as climatic data, can overcome the financial and
logistic constraints of field-based methods for monitoring either resources or consumers [9].
Predicting longer-term changes in the frequency of consumer outbreaks is also critical for

Table 3. Effect of climate change on mast events.

Historical Data Climate Scenario

Observed seedfall A2 A1B B1

T Model

Single mast events 0.19 0.89 0.92 0.83

Double mast events 0 1.13 1.08 1.21

Average yrs between mast events 5.43 1.86 1.98 1.58

ΔT Model

Single mast events 0.19 0.23 0.24 0.21

Double mast events 0 0.02 0.02 0.02

Average yrs between mast events 5.43 4.32 4.26 4.20

Proportion of years in which there is expected to be a single mast event; proportion of years in which the

first year of two consecutive mast events may occur (double mast events); and the average time between

single mast events, calculated from observed seedfall data, and predicted from simulated 100-year time

series for three climate scenarios.

doi:10.1371/journal.pone.0119139.t003
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adjusting management strategies in natural and human-modified ecosystems [37, 41, 42]. Our
aim was to improve models for pulsed resources, in order to improve the predictability of con-
sumer outbreaks. We found that, for a model system of invasive house mice (consumers) in
New Zealand beech forest, an improved climate-based model for pulsed resources (the ΔT
model [25]) resulted in more accurate predictions for fluctuations in consumer abundance. In
addition, the ΔT-driven consumer model displayed threshold effects, supporting the use of
even stronger thresholds between mouse demographic data and ΔT to indicate when outbreaks
may occur, and hence improve the timing of management interventions. These direct forecasts
of mouse outbreaks, rather than inferred outbreaks from predictions of masts, are required for
optimal management of invasive mammals that threaten indigenous fauna in beech forests [9].

Models of seed production using differential temperature cues appear to be applicable to a
wide range of plant genera in New Zealand [25], North America [23, 43], and Europe [44], al-
though other cues may also be involved [22, 23, 45]. Masts can have cascading trophic effects
on ecosystems by increasing the abundance of top predators [46], which may in turn reduce
the abundance and productivity of secondary prey [4, 28, 47]. Resource pulses also influence
omnivores [48] and herbivores [12], disease outbreaks [12, 49], parasite prevalence [50, 51]
and invertebrate abundance [12, 20, 21]. Hence, our findings have general applicability for a
range of natural and human-modified ecosystems worldwide.

Our model parameters and outputs were reassuringly similar to previous models of the pop-
ulation dynamics of invasive house mice. For instance, the best consumer model had a negative
density-dependent growth term and a positive independent growth term, like that of Choque-
not and Ruscoe [16]. Our best models had a capped functional response to food availability,
consistent with previous field observations of satiation in seed consumption by mice [17]. Our
modelled maximum finite rate of increase over 6 months was a little less than the observed
value�10 (Fig. 2C- D), similar to the maximum instantaneous rate of increase of 0�5 per 40
days estimated by Pech et al. [52] for house mouse outbreaks in Australia. Further, our esti-
mates of the half-life of beech seed available using the ΔT driver were 12–16 weeks: consistent
with consumer satiation (i.e. seed removal by mice limited by a maximum rate) in years of high
seed availability [53], and with the observation that seed predation had no significant effect on
the amount of seed available [17].

Our improved resource–consumer models have a number of advantages over previous ap-
proaches. First, our consumer model required fewer parameters than other models used with
the same data, but had similar or better explanatory power when driven by the appropriate
seedfall model (i.e. ΔT; r2 = 0�55 cf. 0�223–0�439 in [16]).

Second, a consumer–resource model must correctly predict outbreaks that occurred, and
not predict outbreaks at other times [15]. Using the ΔT resource–consumer model, we pre-
dicted six of the seven largest outbreaks in the data series (Fig. 1). The exception was the only
recorded double peak (in 1974–1975), which none of the models predicted well. Conversely,
the model did not predict outbreaks that were not observed in the data. Seasonal fluctuations
were evident in the dynamics of our consumer model, consistent with consumer population
growth when beech seed was available and with little or no population growth at other times.
The magnitude of large outbreaks was underestimated by all the models, similar to results re-
ported by Pech et al. [52], albeit for a very different system. However this might not be critical
for using the model to trigger management intervention if damage thresholds are exceeded be-
fore peak mouse abundance is reached (cf. [41]). The ΔT-driven model matched the qualitative
pattern of outbreaks better than the T-driven model, which failed in particular to predict low
periods between outbreaks as well as indicating a lower maximum population level
during outbreaks.
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Third, our consumer model parameters are explicitly related to demographic processes such
as mortality and reproductive rates. This allows comparison of the relative effectiveness of le-
thal versus fertility control, as has been done for other irruptive species (e.g. [54]). Conversely,
other aspects of consumer ecology—such as detailed knowledge of all components of mouse
diets—do not need to be modelled explicitly. Some of these additional food types are likely to
fluctuate in synchrony with masts (e.g. seed-eating invertebrates). In this sense, the ΔT model
is an example of a general approach where climatic variables have been used directly to model
the dynamics of irruptive mammalian species, e.g. kangaroos (Macropus spp.) [55], foxes
(Vulpes vulpes) [56], rabbits (Oryctolagus cuniculus) [57], feral pigs (Sus scrofa) [58] and house
mice [15].

Fourth, with the global trend towards collection and modelling of climate data spatially (e.g.
[39]), our approach facilitates a much larger spatial scale of prediction for resource pulses and
consumer outbreaks than was previously possible. In our mouse–beech system, localized mod-
els of beech seed production are needed across the latitudinal and altitudinal range of the
South Island when predictions rely on absolute temperatures. However, the responses of Fus-
cospora and other masting species to ΔT are consistent at regional and national scales in New
Zealand [25], meaning that large-scale spatial synchrony of resource pulses can be predicted
on the basis of regional variation in ΔT. From a management perspective this is extremely use-
ful, since data do not need to be collected at every location for which predictions are required.
Our findings may therefore facilitate a better understanding of the mechanisms underlying
spatial synchrony in consumer outbreaks worldwide [59–61].

Finally, our improved resource–consumer models allow us to make inference about how
changes in resource patterns might affect consumer dynamics in future. This is important
when exploring the effects of climate change on resource–consumer dynamics [37, 61]. In-
creased climatic variability between successive years is a global trend [62]. Although impacts of
climate change on variability in ΔT are yet to be formally assessed for all areas of beech forest
in New Zealand, our preliminary analysis of the number and distribution of years in which ΔT
is greater than some threshold corresponding to a mast event (ΔTthres) for three climate scenar-
ios suggests that the effect on mast seeding in the next 100 years at OV may be small. In con-
trast, using an absolute temperature threshold either predicts increasing temperatures will have
major consequences for mast seeding species, or indicates that the T model is not fit for pur-
pose. Our ΔT-driven approach captures climate variability more accurately, with significant
implications for resource and consumer dynamics. Moreover, with irruptive consumers, the
size of an outbreak is often linked to starting density as well as magnitude of the resource pulse
[13, 16, 63]. More frequent resource pulses could enable consumer populations to persist long
enough at high density to initiate a subsequent outbreak. In the New Zealand beech–mouse
system, successive high-seedfall years (‘double masts’) can have disastrous consequences for
native biota [28]. Consequently, any change in climate that alters the frequency of masts, espe-
cially double masts, will have flow-on effects for (invasive) consumer outbreaks and subsequent
impacts on native biota [37]. Additional research on past occurrences of masts and mouse out-
breaks would provide a valuable benchmark for assessing the consequences of climate change
for the beech–mouse system.

Our resource–consumer model has some limitations. The density-dependent term for pop-
ulation growth (μ2) and the cap on per capita consumption of seed, both necessary to provide a
good fit, prevented the model from predicting the exact magnitude of the largest outbreaks.
Mouse breeding season (onset and duration) is determined primarily by food supply [17, 41,
64] and the exact timing of the breeding season within a year may vary. This effect was not cap-
tured by our consumer model, which assumed that seedfall occurred steadily over 3 months in
autumn each year. To improve and parameterize variable timing of the onset and duration of
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breeding into the model, more frequent collection of seedfall and mouse data would
be necessary.

In summary, improved climate-based models as drivers of pulsed resource input to ecosys-
tems improve our ability to predict consumer dynamics, including outbreaks. Because climate
information is often collected over large spatial scales, our model has the ability to predict the
synchrony that has been observed over large areas for beech masts and house mouse outbreaks
in New Zealand. Predictions of resource pulses can be modified to include the increasing vari-
ability likely to occur as a result of climate change. The threshold effect is a straightforward and
easy-to-use ‘rule of thumb’ for planning: if ΔT< 0, a mast and an outbreak of consumers is un-
likely, and therefore no management will be required; however, if ΔT> 1, an outbreak year is
almost guaranteed or, if initial density is already high, an outbreak will be maintained. Manage-
ment strategies can therefore be planned and budgeted for in advance.
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