Metadata, citation and similar papers at core.ac.uk

Provided by University of Canberra Research Repository

Hindawi Publishing Corporation
Advances in Evolutionary Biology
Volume 2014, Article ID 104683, 9 pages
http://dx.doi.org/10.1155/2014/104683

Hindawi

Review Article

Repetitive Sequence and Sex Chromosome
Evolution in Vertebrates

Tariq Ezaz and Janine E. Deakin

Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
Correspondence should be addressed to Tariq Ezaz; ezaz.tariq@gmail.com
Received 14 May 2014; Accepted 3 September 2014; Published 11 September 2014
Academic Editor: Paul Harrison

Copyright © 2014 T. Ezaz and J. E. Deakin. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Sex chromosomes are the most dynamic entity in any genome having unique morphology, gene content, and evolution. They have
evolved multiple times and independently throughout vertebrate evolution. One of the major genomic changes that pertain to sex
chromosomes involves the amplification of common repeats. It is hypothesized that such amplification of repeats facilitates the
suppression of recombination, leading to the evolution of heteromorphic sex chromosomes through genetic degradation of Y or
W chromosomes. Although contrasting evidence is available, it is clear that amplification of simple repetitive sequences played a
major role in the evolution of Y and W chromosomes in vertebrates. In this review, we present a brief overview of the repetitive
DNA classes that accumulated during sex chromosome evolution, mainly focusing on vertebrates, and discuss their possible role

and potential function in this process.

1. Introduction

Two major types of sex chromosome systems exist in verte-
brates, XX female/XY male (e.g., human and salmon) and ZZ
male/ZW female (birds and snakes). How these functionally
important chromosomes evolve has been a topic for debate
for more than a century, since the discovery of the first sex
chromosomes in the late 1800s [1-3]. Despite the interest in
this area, difficulties in sequencing highly repetitive Y and
W chromosomes have hampered progress towards gaining
a fuller understanding of the mechanisms involved in their
evolution. This has resulted in the most detailed research
on vertebrate sex chromosomes being carried out on species
which have had at least part of the euchromatic region
of their Y or W chromosome sequenced, for example, the
evolutionary old sex chromosomes of eutherian mammals
(three primates and two carnivores) [4-7] or the evolution-
arily young sex chromosomes of fishes such as the half-
smooth tongue sole [8], three-spine stickleback [9], and
medaka [10]. The comparison between species of evolutionar-
ily advanced Y chromosomes is not ideal for gaining insight
into the mechanisms driving sex chromosome evolution as
the chromosomes have undergone extensive changes and

degeneration, perhaps even losing key clues required to
unravel their evolution. In contrast, the sequencing of young
sex chromosomes should help in elucidating these driving
mechanisms [11], particularly if comparisons can be made to
more highly diverged sex chromosomes that share a common
ancestry.

Although we have some understanding of the molecu-
lar organization of sex chromosomes in model vertebrate
species, it is largely unknown for the majority of the species
where sex chromosomes have been identified cytologically.
The conservation of sex chromosome gene content and the
sex determining gene in most mammals does not reflect
the diversities that exist in other vertebrate groups, where
there has been rapid evolution of sex chromosomes in many
lineages [12]. Despite the cytogenetic identification of non-
homologous sex chromosomes among vertebrates, very few
Y or W chromosomes have been sufficiently mapped and/or
sequenced, for studies into their evolution, largely due to the
abundant repetitive sequences on these chromosomes [13],
and only a few sex determining genes have been identified.
Nonetheless, the latest advances in molecular cytogenetics,
DNA sequencing, and bioinformatics are making it possible
to study the make-up of sex chromosomes in greater detail
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than ever before. Here we review the association of the ampli-
fication of repetitive sequences near the sex determining
locus and discuss their possible role in the evolution of sex
chromosomes and their potential function. As the technical
advances in this field are relatively recent, we call upon data
from organisms outside the vertebrate phylogeny to identify
important areas for future research in vertebrates.

2. Sex Chromosome Evolution in Vertebrates

Sex chromosomes have evolved multiple times and inde-
pendently throughout evolution. They have many unique
features, including unique gene content (e.g., sex linked
genes, including the master sex determining genes, such as
SRY in most mammals) and existence of highly variable
morphology among different taxa, often representing various
evolutionary stages [14-16]. Such morphological variations
have formed due to a suppression of recombination leading to
gene loss and the accumulation of repetitive sequence on one
of the homologues (Y or W) [14, 17, 18]. They also experience
special selective pressures compared to those of autosomes
which, although debatable, are proposed to include both
positive and negative selections, such as purifying selection
to maintain sequences in the X-degenerate regions on the
human Y chromosome [19] and even sex-specific selection,
which has been demonstrated to impact on W chromosome
gene expression in chicken [20]. These unique features make
sex chromosomes the most dynamic entity in any genome
(15, 17, 21], providing unique opportunities to study and
understand genome evolution and organization.

Vertebrate sex chromosomes display enormous diversity
in morphology and in gene content [12, 17, 22-27]. Such
diversities not only imply multiple and independent origins
of sex chromosomes, but also suggest evolution of a very spe-
cific molecular mechanism that is uniquely dynamic in per-
forming a very specific task—sex determination. Despite such
enormous diversities among taxa, two competing hypotheses
have been put forward on sex chromosome evolution and
degeneration based on the studies derived from mammals
and birds (Y and W degeneration) and from nonamniotes,
such as fish and frogs (fountain of youth) [15, 18, 28-31].

In most mammals, sex chromosomes are highly differ-
entiated morphologically, usually represented by a large and
gene rich X chromosome and a small, degenerated, and gene
poor Y chromosome. This heteromorphism and subsequent
in-depth molecular analysis led to the postulation of the most
accepted theory for sex chromosome evolution. This hypoth-
esis posits that sex chromosomes have evolved from an
autosomal pair when the proto-Y chromosome acquired a sex
determining gene/locus [28, 29]. Subsequently, chromosome
rearrangements including accumulation of other sexually
advantageous genes near the sex determining locus drove
selection for suppression of recombination. This process in
turn facilitated loss of active genes, deletions, and insertions,
leading to degeneration of the proto-Y, making the sex
chromosome pair morphologically differentiated [14, 18, 29,
32]. This hypothesis considers suppression of recombination
as a result of chromosome rearrangements, which gradually
expand into the nonrecombining regions leading to the
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gradual loss of genes from Y chromosomes, leaving only sets
of genes that are required for development of testes and brain
development [33]. It is well known that chromosome rear-
rangements (such as inversions, insertions, and deletions)
suppress recombination between homologous chromosomes
[34, 35]. The best example would include differentiation of
mammalian sex chromosomes which has occurred through
the genetic degradation of the Y chromosome following rear-
rangements [17, 23]. Although the chicken W chromosome
appears to have evolved independently, it is proposed to have
followed the same mechanisms [15].

Despite the tremendous morphological diversities of sex
chromosomes observed in amniotes, the scenario is quite the
opposite in nonamniotes, such as in fish and amphibians.
Although most of the fish and amphibians (so far studied)
display genotypic sex determination (GSD), in the majority
of species, sex chromosomes are cryptic; that is, they are
not morphologically differentiated [36-39]. Evolution of such
homomorphic sex chromosomes in fish and amphibians
has been attributed to the rapid turnover of sex chromo-
somes through acquisition of sex chromosome functions by
native/existing genes, often unrelated to those that are part of
the sex differentiating cascade [26, 30, 40, 41]. The mechanism
behind the evolution of such rapid turnover through de novo
evolution of sex determining genes is not fully understood.
However, Perrin [31] argued that such a mechanism is likely to
be maintained by sex reversal and occasional recombination
between sex chromosomes. The author’s observation is based
on the empirical data that the recombination frequencies are
associated with the phenotypes rather than the genotypes.
Therefore, because the sex chromosomes are not strictly
recombinationally isolated from each other (i.e., recombina-
tion in sex reversed individuals, which is common in fish
and amphibians), the Y/W are protected from degradation
(fountain of youth). Certainly, more evidence is required
to support this hypothesis and is likely to be published in
coming years from studies on fish to reptiles.

3. Chromosome Rearrangements and
Repeat Accumulation

It is a well-observed phenomenon that chromosome rear-
rangements occurred particularly adjacent to the sex deter-
mination locus in most taxa. These include deletions, inser-
tions, inversions, transpositions, and amplification of repet-
itive sequences [42-50]. This may suggest that it is likely
that the sex determining locus or gene arises in a region of
a chromosome which is unstable or fragile (e.g., contains
common classes of fragile sites, such as AT-rich) or in a
region which allows chromatin modification through cellular
mechanisms (e.g., histone modifications). However, this is
certainly not the case in mammalian sex chromosomes,
as the human X chromosome contains only three fragile
sites, while the Y contains none [46]. Nonetheless, the sex
determining gene SRY lies very close to the pseudoautosomal
region (PAR), which seems to be somewhat unstable [51].
However, the absence of fragile sites may represent advanced
sex chromosomes, which have gone through the evolutionary
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FIGURE 1: C-banding in Australian dragon lizards showing accumulation of heterochromatin on W chromosome: (a) Ctenophorus fordi,
(b) Pogona vitticeps. Note that the ZW sex chromosomes between these two species are nonhomologous [12], yet the heterochromatin
accumulation on the W chromosomes is very similar. For more images see [42, 43]. Arrows indicate W chromosomes. Scale bars represent

10 uM.

process of stabilization, but the presence of fragile sites may
be a common phenomenon in many animals and plants with
nascent sex chromosomes. It may also be likely that the
sex determining locus or gene destabilizes the chromosome
region in which it is located.

Simple repetitive sequences (e.g., microsatellites) are
often accumulated in high copy numbers on the sex chro-
mosomes in many taxa [41-45, 52-54], although those
same motifs have low copy numbers distributed throughout
the genome, implying preferential amplification. Even stan-
dard cytogenetic technique, such as C-banding, is able to
detect heterochromatin accumulation on sex chromosomes
(Figure 1). Why repetitive sequences preferentially amplify on
sex chromosomes is still unknown, yet many theories have
been put forward. One of the well-accepted theories is that
the accumulation of repetitive sequences on one of the pair
of sex chromosomes facilitates suppression of recombination
between sex chromosome homologues, therefore, protecting
the sexually beneficial mutations [14, 15]. On the other hand,
it is equally plausible that chromosome rearrangements as
well as repeat accumulation and amplification may occur
near the sex determining locus as a result of suppression of
recombination, rather than inducing it [55-57].

There have been a limited number of studies on rel-
atively young sex chromosomes that have shown that the
suppression of recombination, repeat accumulation, and
chromosomal rearrangement can occur rapidly. In medaka
(Oryzias latipes), the sex determining gene dmrtlbY is
derived from a duplicated fragment of an autosome that
has inserted onto the proto-Y chromosome [10]. Sequence
data indicates that repeats expanded in the sex determining
region after the insertion onto the proto-Y [10]. Sequence
comparisons and gene mapping of the homomorphic X and
Y chromosomes of the three-spine stickleback (Gasterosteus
aculeatus) have demonstrated that even these supposedly

nascent sex chromosomes have diverged considerably, with
higher repeat content on the Y than the X and chromosomal
rearrangements such as inversions and deletion [9, 58].
However, in both of these cases, it is still unclear whether
repeat accumulation led to suppressed recombination or vice
versa.

While likely molecular mechanisms behind chromosome
rearrangements are reasonably well known, the alternate
mechanisms that initiate suppression of recombination near
the sex determining locus are yet to be elucidated. It is also
possible that a heritable epimutation, such as a change in
DNA methylation, and not a genetic mutation in the sex
determining locus may be the first step in sex chromosome
evolution [59, 60]. If this epimutation could suppress recom-
bination, it may result in the region being more susceptible to
genetic mutation [59, 61] and the insertion of repetitive ele-
ments. One plausible and testable hypothesis behind suppres-
sion of recombination near the sex determining locus would
lie within chromosome architecture. This primarily includes
changes in chromatin structure (epigenetic such as DNA
methylation and/or histone modification) inflicted by a sex-
specific mutation, which is sufficient to suppress or reduce
recombination between sex chromosomes. Investigation of
chromosomal architecture around the region adjacent to a
putative sex determining locus in nascent sex chromosomes
from various taxa, including birds and snakes (e.g., ratite
birds and boid snakes) would provide empirical evidence
for unraveling any mechanisms which may be epigenetically
driven.

Studies on the formation of the accumulation of repeats
on the Y chromosomes of Drosophila species are perhaps
more advanced than they are for vertebrates and provide
valuable insight for future studies on the evolution of ver-
tebrate sex chromosomes. By comparing Drosophila species
with neo-sex chromosomes of different ages, it has been
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TABLE 1: An overview of repeats on sex chromosomes among divergent taxa.
Satellite Telomere Multigene TE References
Micro/mini ITS Mega rDNA

Fish Y/W XY Y/W Y/W [49]
Frog Y/W w w w [62]
Snake W [38, 45]
Lizard W W [52, 63]
Turtle w [64]
Bird w w [65-68]
Human Y [69]
Wallaby Y Y [70, 71]
Platypus Y,, Y5, Y5 [72]

(ITS: interstitial telomere signal; TE: transposable elements).

possible to start tracing the events leading to the formation
of a heterochromatic Y chromosome [73-76]. For instance, D.
miranda, neo-sex chromosomes were formed approximately
1 million years ago (MYA) from the fusion of the ancestral
Y chromosome with an autosome. This neo-Y chromosome
presents a case of Y chromosome degradation and repeat
sequence accumulation caught in the act, with only 1941 of
the 2951 neo-X genes possessing intact open reading frames
on the neo-Y and with almost half of these neo-Y genes
expressed at lower levels than their neo-X counterparts [75].
In addition, nearly 50% of the neo-Y sequence consists
of repeats [77, 78], demonstrating the rapid changes that
have occurred in the evolution of sex chromosomes in just
1 million years of evolution [73]. Interestingly, the neo-
Y is also enriched for epigenetic marks associated with
heterochromatin, such as H3K9me2 and HPl«. Furthermore,
neo-Y regions with higher repeat content have higher lev-
els of H3K9me2 binding, which is consistent with models
proposing that repeat accumulation enables the formation
of heterochromatin on nascent Y or W chromosomes [76].
It is to be hoped that similar studies into the sequence
and epigenetic features of vertebrate sex chromosomes will
not be too far behind these Drosophila studies. Further
studies involving high resolution sequence analysis of sex
determining region in vertebrates, as well as investigation
of chromosomal architecture surrounding the sex deter-
mining region, will reveal the true mechanisms that drive
sex chromosome evolution after acquisition of a sexually
advantageous gene or locus.

4. Is There a Particular Class (or Classes) of
Repeats That Amplified Preferentially on
Sex Chromosomes?

Large volumes of research papers have been published on
physical mapping of various repetitive sequences in divergent
taxa, from plants to mammals. These include amplification
of satellite DNA (mini and micro), telomeric sequences
(including megatelomere in chicken), amplification of multi-
gene families (rDNA and histones), taxon specific repeats,
transposable elements (LINEs and SINEs), and multicopy

genes. Table1 presents a representative summary of the
various classes of repetitive sequences which have been
mapped in vertebrates. However, the majority of the mapping
has been done on fishes as a tool for identifying sex chro-
mosomes, as their sex chromosomes are often homomorphic.
Amphibians also have a high frequency of homomorphic sex
chromosomes; however, there have been only limited studies
where repetitive sequences have been used to identify sex
chromosomes [62]. The minisatellite repeat Bkm (branded
krait minor) was characterized on the W chromosome of
a snake species in the early 70s [79] and in many other
species including snakes [80-85]. Only two studies have
so far been published on the repeat content of lizard sex
chromosomes [52, 63]. It may not be the true scenario because
of the unavailability of mapping information of all repetitive
classes in representative taxa, but overwhelming data on
the amplification of simple repeats near the sex-determining
locus in divergent taxa suggest a common trend; that is, such
accumulation of simple repeats may not be an artifact of the
volume of the published literature but a true representation
of the molecular mechanism. Information from sequenced Y
and W chromosomes would support this as, for example, the
half-smooth tongue sole W has more than double the repeat
content of Z [8]. Perhaps this convergent amplification of
simple repeats triggered by sex-linked mutation is the prime
genomic driver that initiates sex chromosome evolution in
many taxa.

5. Do Sex Chromosome Repeats
Have a Function?

In the past, repetitive sequences were dismissed as part of
the “junk DNA” [86], a term used by Ohno to describe the
non-protein-coding regions of the genome [87]. We now
know that at least some of these sequences are transcribed
and obviously play a functional role in the genome [86].
When it comes to sex chromosomes, the idea of “junk
DNA” is also gradually being rejected. Recent findings in
taxonomically diverse species suggest that these sequences
play an important role. However, evidence of a functional
role of repeats on vertebrate sex chromosomes is limited
at this stage, largely due to the difficulty in obtaining Y
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or W chromosome sequences. Nonetheless, methods have
been developed to achieve this challenging task [88, 89] and
will undoubtedly lead to more studies in this area. Again,
we are able to gain important insight into the function of
sex chromosome repeats from species outside the vertebrate
lineage.

One elegant study on the function of sex chromosome
repeats was carried out on Schistosoma mansoni, a para-
sitic platyhelminth, with a ZW sex determination system.
The Z and W chromosomes can be cytogenetically distin-
guished by their chromatin structure rather than by their
size. Sequencing of male and female genomes led to the
identification of W-specific sequences, which consisted of
36 W-specific repeats, including an SMalpha retroposon,
LTRs, LINE2, and DNA transposons [89]. Of these repeats,
transcription was detected for eight, and three of these were
transcribed in the larval stages but not in immature or adult
females. Using chromatin immunoprecipitation sequencing
(ChIP-Seq), Lepesant and colleagues [89] were able to pro-
file the level of an epigenetic mark associated with active
chromatin, acetylated H3K9 (H3K9Ac), around repeats at
various developmental stages. A gradual decrease in the level
of H3K9Ac was observed for all W-specific repeats from
larval to adult stages. Subsequent experiments performed
on two transcribed and one nontranscribed repeats showed
enrichment for another active mark, trimethylated H3K4
(H3K4Me3), in larval stages compared to adults. Repressive
marks trimethylated H3K9 (H3K9Me3) and trimethylated
H3K27 (H3K27Me3) associated with heterochromatin were
enriched at these three repeats in cercariae, the larval stage
capable of infecting a vertebrate host, but less abundant in
miracidia (a different larval stage) and adults. It appears
that the transcription of these repeats can be correlated with
changes in chromatin structure. Lepesant and colleagues [89]
suggest that it may even be these changes in chromatin
structure that may contribute to sex determination, perhaps
even in the absence of a sex determining gene.

In Drosophila, the Y chromosome consists of megabase
regions of repetitive sequences, such as microsatellites, trans-
posable elements, and ribosomal DNA (rDNA), and it has
been hypothesized that variation in the type, abundance,
and distribution of these repetitive sequences can influence
gene expression across the genome [90]. Most Drosophila
Y chromosome polymorphisms are not located in protein-
coding genes but in the heterochromatic regions where repet-
itive sequences are abundant. These polymorphisms affect
the expression of many autosomal and X-linked genes [91-
94], typically those that are located in repressive chromatin
and are subject to tissue-specific expression [90]. It would
appear that the Y chromosome acts as a giant regulator
of gene expression through its global effects on chromatin
dynamics [92, 95-97] and there is evidence from male and
XXY female Drosophila lines, differing only in the origin of
their Y chromosomes, that there is a yet to be ascertained
underlying epigenetic mechanism involved [93]. This gene
regulator is not acting by turning genes on or oft but by
working at a more subtle scale of gene regulation [98]. This
effect on gene expression is also observed in XXY females
where Y-linked genes are not expressed, providing additional

support for the idea that the heterochromatic region of the Y
acts as a gene expression modulator [93].

It would be interesting to know if the heterochromatic
region of the human Y chromosome similarly plays a role
in gene regulation. Such studies are yet to be conducted on
the human Y, as most research efforts have focused on the
protein-coding genes and not the heterochromatic region
[98]. However, copy number variation of genes present in
multiple copies on the mouse Y chromosome (Sly and Rmby)
is correlated with regulation of autosomal immune gene
expression and, similar to the Drosophilia Y, is most likely the
result of a chromatin remodeling mechanism, suggesting that
this regulatory function of the Y chromosome may be wide-
spread [99]. Furthermore, epigenetic profiling of tandem
repeat sequences within the euchromatic region of the human
Y has shown specific patterns of histone modifications (active
mark H3K9Ac, repressive marks H3K9me3 and H3K27me3)
and CTCF binding (transcriptional repressor) associated
with different repeats. These specific patterns of epigenetic
marks suggest that tandem repeats on the Y chromosome
may play a role in chromatin status and may act as regulatory
elements [100].

The Bkm satellite repeat consists of tandem arrays of
GATA nucleotides. Although not necessarily specific to the
sex chromosomes, Bkm repeats are abundant on heteroga-
metic sex chromosomes of divergent vertebrate species [81]. A
sex and tissue-specific protein that binds specifically to Bkm
repeats known as Bkm-binding protein (BBP) appears to be
involved in coordinated decondensation of the heterogametic
sex chromosome in germ cells [101, 102]. Subramanian et
al. [103] reported that the GATA repeats on the human Y
chromosome may play a role in marking the boundaries of
chromatin domains. More recently, it has been discovered
that GATA repeats have a conserved role, acting as insulators
in both Drosophila and human cells [104].

Determining the function of repetitive sequences on Y
or W chromosomes is in its infancy but it is clear that
these sequences do play a functional role in gene regulation
and chromatin structure. The demonstrated ability of the
Drosophila and mouse Y chromosome to regulate gene
expression across the genome is particularly exciting and is an
area of research that needs to be pursued in more vertebrate
species.

6. Conclusions/Future Directions

It is clear that repetitive sequences are a prominent feature of
sex chromosomes across plant and animal kingdoms. These
repeats have proven challenging for efforts to sequence Y
and W chromosomes but bioinformaticians are rising to the
challenge and are developing methods to obtain sequences
from these unique chromosomes. This will enable many more
Y or W-specific repeats to be identified and their functions
to be determined. Typically, the heterochromatic regions
of these chromosomes, where repeats are abundant, are
ignored in favour of studying euchromatic regions containing
protein-coding genes. However, even the limited number of
studies that have been carried out on Y and W repeat function
has shown that these sequences play an important role in gene



regulation, even beyond that of the sex chromosome itself.
By determining the function of these repeats, perhaps we can
then decipher whether the accumulation of repeats on sex
chromosomes is a cause or consequence of recombination
suppression and gain a better understanding of the steps
involved in sex chromosome evolution.
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