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Abstract 16 

The metalloid selenium is an essential element which at slightly elevated concentrations is 17 

toxic and mutagenic. In Australia the burning of coal for power generation releases selenium 18 

into estuarine environments where it accumulates in sediments. The relationship between 19 

selenium exposure, dose and response was investigated in the deposit feeding, benthic, marine 20 

bivalve Tellina deltoidalis.  Bivalves were exposed in microcosms for 28 days to individual 21 

selenium spiked sediments, 0, 5 and 20 µg/g dry mass.  T. deltoidalis accumulated selenium 22 

from spiked sediment but not in proportion to the sediment selenium concentrations.  The 23 

majority of recovered subcellular selenium was associated with the nuclei and cellular debris 24 

fraction, probably as protein bound selenium associated with plasma and selenium bound 25 

directly to cell walls.  Selenium exposed organisms had increased biologically detoxified 26 

selenium burdens which were associated with both granule and metallothionein like protein 27 

fractions, indicating selenium detoxification.  Half of the biologically active selenium was 28 

associated with the mitochondrial fraction with up to 4 fold increases in selenium in exposed 29 

organisms.  Selenium exposed T. deltoidalis had significantly reduced GSH:GSSG ratios 30 

indicating a build-up of oxidised glutathione.  Total antioxidant capacity of selenium exposed 31 

T. deltoidalis was significantly reduced which corresponded with increased lipid peroxidation, 32 

lysosomal destabilisation and micronuclei frequency.  Clear exposure – dose – response 33 

relationships have been demonstrated for T. deltoidalis exposed to selenium spiked sediments, 34 

supporting its suitability for use in selenium toxicity tests using sub-lethal endpoints. 35 

   36 

Keywords: Biomarkers, subcellular selenium, oxidative stress, lysosomes, lipid peroxidation, 37 

micronuclei, bivalve. 38 

 39 

1 Introduction 40 
Selenium is an essential element within a fairly narrow concentration range, above which it is 41 

both mutagenic and toxic and below which selenium deficiency occurs (Hodson, 1988; 42 

Hoffman, 2002).  Selenium studies which examined selenium dietary requirements, in the 43 

trout Salmo gairdneri showed that plasma glutathione peroxidase homeostasis was maintained 44 

at intakes of up to 1.25 µg/g dry food and toxicity occurred at 13 µg/g dry food.  The authors 45 

speculated that dietary concentrations in excess of 3 µg/g in dry food over long time periods 46 

might be toxic. (Hilton et al., 1980; Hodson et al., 1980; Hodson and Hilton, 1983; Hicks et 47 

al., 1984).  Eisler (2000) and Puls (1994) have reported similar responses in other fish species, 48 
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birds and mammals in relation to selenium dietary requirements, deficiency, and toxicity.  49 

Selenium is released into aquatic environments through industrial activity such as metal 50 

smelting, overflow and leaching from ash dams and stack emissions associated with coal fired 51 

power stations and through sewage effluent (Davies and Linkson, 1991; Peters et al., 1999a).  52 

Sediments contain most of the total estuarine selenium inventory because of sorption and/or 53 

precipitation mechanisms (Peters et al., 1999a).  Selenium biotransformation, 54 

bioaccumulation, and transfer through both sediment and water column foodwebs constitute 55 

major biogeochemical pathways in aquatic ecosystems (Lemly, 1999; Fan et al., 2002; 56 

Hamilton, 2004; Luoma and Rainbow, 2008; Maher et al., 2010).  To acquire sufficient 57 

essential elements from environments with low ambient concentrations, aquatic organisms 58 

have evolved highly efficient uptake mechanisms, coupled with detoxification storage and 59 

excretion strategies (Phillips and Rainbow, 1989).  Selenium accumulation by sediment 60 

dwelling deposit feeding bivalves may be from the interstitial water, sediment ingestion or 61 

from food (Luoma and Rainbow, 2005).  The route of uptake may influence the organism’s 62 

metal handling and therefore its toxicity (Rainbow, 2007).  Physiological effects and toxicity 63 

of metals strongly depend on their intracellular localisation and binding to organelles and 64 

ligands (Sokolova et al., 2005) and selenium appears to be bound and incorporated differently 65 

according to the selenium species (Ewan, 1989; Burk, 1991; Hortensia et al., 2006). 66 

To understand the fate and effects of such toxicants in aquatic environments the causal 67 

relationships between contaminant exposure, internal dose and associated biological effects 68 

need to be established (Widdows and Donkin, 1992; Adams et al., 2011).  The evaluation of 69 

contaminant exposure, uptake and ecotoxicological effects is now an essential component of 70 

sediment quality assessment in Australia (Simpson et al., 2005) and toxicity data for local 71 

species along with suitable routine test protocols is necessary to develop relevant local 72 

exposure dose response toxicity guidelines.  The current developments in ecotoxicological 73 

assessment are moving to the evaluation of sub lethal endpoints for determining toxicant 74 

guideline exposure concentrations.  To this end the development of biomarkers of exposure 75 

and effect for application in environmental assessment have been progressively developed and 76 

refined for a range of toxicants and aquatic species (Cajaraville et al., 2000; Adams, 2001; 77 

van der Oost et al., 2003; Galloway et al., 2004; Moore et al., 2004; Farmer, 2006; Batley et 78 

al., 2007; Damiens et al., 2007; Hagger et al., 2009; Taylor and Maher, 2010). Biomarker 79 

measurements can provide evidence that organisms have been exposed to contaminants at 80 

levels that exceed their detoxification and repair capacity establishing links between toxicant 81 

exposure and ecologically relevant effects (Koeman et al., 1993).  Proteins contain the 82 
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majority of selenium in organisms and of the known selenoproteins, cellular and plasma 83 

glutathione peroxidase, which is involved in redox metabolism, has the highest selenium 84 

content (Burk, 1991; Fan et al., 2002).  The oxidative system has been shown to be sensitive 85 

to selenium through perturbations in the glutathione cycle (Hoffman, 2002).  Lysosomes are 86 

involved in contaminant sequestration and are also susceptible to oxidative damage 87 

(Viarengo, 1989; Winston et al., 1996; Ringwood et al., 2002), while the frequency of 88 

micronuclei occurrence is an effective measure of DNA damage (Burgeot et al., 1996; 89 

Bolognesi et al., 2004).   90 

 Tellina deltoidalis is a sediment dwelling bivalve which is widely distributed in coastal 91 

estuaries around Australia where it lives buried in the sediments at a depth several times the 92 

shell length, of between 15 25 ־ mm, and extends its siphons to the sediment surface to feed 93 

(Beesley et al., 1998). It satisfies most of the basic requirements to be an effective biomonitor 94 

being hardy, representative of the area of interest and an accumulator of bioavailable metals 95 

(Phillips, 1990; Phillips and Rainbow, 1994).  The suitability of T. deltoidalis for use in whole 96 

sediment toxicity tests has been investigated by King et al. (2004; 2005; 2010) who found 97 

they were tolerant of a wide range of sediment types and salinities and easy to handle in a 98 

laboratory setting, while being sensitive to metal contamination.  A protocol for the use of T. 99 

deltoidalis in whole-sediment acute toxicity tests has been included in the Australian 100 

Handbook for Sediment Quality Assessment (Simpson et al., 2005).   101 

The purpose of this study was to examine the exposure - dose - response relationship to 102 

selenium in T. deltoidalis using 28 day sediment bioaccumulation tests (USEPA, 2000; 103 

ASTM-E1688-10, 2010) to develop useful biomarkers of effect, and further evaluate their 104 

potential for sediment toxicity testing in Australia using sublethal endpoints.  There are no 105 

Australian sediment quality guideline concentrations for selenium so the exposure 106 

concentrations, 5 and 20 µg/g, chosen where based on those previously measured in 107 

contaminated Australian estuarine sediments (Peters et al., 1999a; Roach, 2005). Internal 108 

selenium exposure was measured in whole tissues, and subcellular tissue fractionation used to 109 

determine the active and detoxified selenium.  Biomarker measurements of oxidative stress 110 

included total antioxidant scavenging capacity of cells, total glutathione concentrations, the 111 

ratio of reduced to oxidised glutathione, glutathione peroxidise and the extent of lipid 112 

peroxidation.  Cellular damage was assessed using a lysosomal destabilisation assay and 113 

DNA damage through the presence of micronuclei.  Measurement of enzymatic biomarkers in 114 

the glutathione cycle along with the cellular and genotoxic biomarkers of lysosomal 115 

membrane integrity and micronuclei occurrence provides a weight of evidence approach for 116 
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selenium toxicity at the individual organism level which may indicate the potential for 117 

population level effects. 118 

2 Materials and Methods 119 

2.1 Organism and sediment collection 120 
Sediments were collected from a NSW Department of Environmental and Climate Change 121 

reference site in Durras Lake NSW, and stored at 4oC until use.  Tellina. deltoidalis of 15 – 20 122 

mm in size were collected from Durras Lake and Lake Tabourie, NSW in July 2005 and 123 

January 2006 and placed in coolers with sediment and water from the collection sites for 124 

transportation.  Organisms were maintained for a maximum of two weeks at 22oC in 125 

uncontaminated sediments, depth 15 cm, in glass aquaria with filtration and aeration to allow 126 

acclimation before experimentation.  Overlying water used in aquaria was collected from 127 

coastal waters near Murramurrang National Park, NSW and adjusted from 35‰ to 28‰ with 128 

deionised water to match the salinity of the estuarine water from which organisms were 129 

collected.   130 

 131 

2.2 Sediment selenium spiking 132 
Sediments were sieved through a 2 mm stainless steel sieve to remove large pieces of organic 133 

matter and organisms prior to the addition of selenium.  Sub samples of the collected 134 

sediments were measured for moisture content and grain size.  To ensure the sediment matrix 135 

was suitable for organism burrowing and feeding, sediment was mixed with clean beach sand 136 

so that the 63 µm fraction was not greater than 20% mass/mass.  To ensure added selenium 137 

was rapidly adsorbed and strongly bound to the sediment particles a method developed by 138 

(Simpson et al., 2004) for producing metal spiked marine sediments, was followed.  Wet 139 

sediment was added to mixing containers.  Na2SeO3, (AR grade Sigma-Aldrich) was added to 140 

concentrations of 5 and 20 mg/kg dry mass of sediment.  All containers were topped up with 141 

clean deoxygenated sea water and the final mixture was completely deoxygenated by 142 

bubbling with nitrogen for 2 hours.  Head spaces of containers were filled with nitrogen prior 143 

to sealing. Any pH adjustments were made immediately after the addition of the selenium 144 

using 1M NaOH, (AR grade BDH), prepared in seawater, checked weekly and maintained at 145 

7 - 8.2.  Sediments were mixed on a Cell-production Roller Apparatus (Belco, USA) for 146 

several hours each day.  Sediments were maintained at room temperature 22 - 25oC.  The time 147 

required for equilibration of added metals will be affected by the sediment properties, 148 

equilibration pH and the concentration and properties of the metal (Simpson et al., 2004).  149 
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To determine when the added selenium was completely bound to sediment particles, pore 150 

waters were collected and acidified to 1% v/v with nitric acid (AristaR, BDH, Australia) and 151 

selenium was measured using an ELAN® 6000 ICP-MS (PerkinElmer SCIEX, USA). Once 152 

pore water selenium concentrations had fallen below instrument detection limits 0.001 µg/l 153 

the sediment was ready for use.  Time to full absorption was 4 to 6 weeks.  Unspiked 154 

sediments were treated in the same way and used for control treatments.  Sediment selenium 155 

concentrations were measured by ICP-MS after digestion of 0.2 g of lyophilised sediment in 3 156 

ml of nitric acid (AristaR, BDH, Australia) in polyethylene 50 ml centrifuge tubes for 60 157 

minutes at 115oC (Maher et al., 2003).  Selenium in NRCC Certified Reference Materials, 158 

BCSS-1 marine sediment measured along with samples was 0.41 ± 0.1 µg/g (n = 10) and in 159 

agreement with certified values 0.43 ± 0.06 µg/g.   Sediment selenium concentrations were 160 

measured prior to and at the end of the 28 day exposure period.  Pre exposure concentrations 161 

were < 0.001, 5.00 ± 0.05 and 20 ± 1 µg/g and post exposure were < 0.001, 5.00 ± 0.15 and 162 

19 ± 2 µg/g. 163 

 164 

2.3 Microcosm Experiment Design 165 
Procedures for conducting the exposures were adapted from the test method for conducting 28 166 

day sediment bioaccumulation tests (Ingersoll et al., 2000).  Spiked and control sediments 167 

(500 g wet mass) were placed in each of three replicate 770 ml polypropylene containers 168 

(Chanrol # 01C30, Australia) per treatment.  The containers were filled with fresh seawater 169 

adjusted to a salinity of 28‰.  Containers were placed in random order on a tray in an 170 

incubator set at 22oC with a day / night light cycle of 14 / 10 hours to reflect spring / summer 171 

conditions.  Aeration was introduced and the treatments were left for 24 hours to allow them 172 

settle and the temperature to equilibrate.  Fifteen T. deltoidalis were then introduced to each 173 

treatment container.  Organisms were not given supplementary food and surface water was 174 

changed weekly during the 28 day exposure period.  Aquaria were continually aerated using 175 

an air pump with valves on each line and fine tubing to each container to regulate air flow so 176 

oxygen saturation ≈ 100% were maintained in overlying water of each aquarium but 177 

sediments were not agitated.  Due to the natural buffering capacity of sea water and associated 178 

sediments, pH remained relatively constant at 7.8-8.0 in all aquaria throughout the 28 days of 179 

exposure.  This is similar to results of other studies of this type (King et al., 2006; Strom et 180 

al., 2011).  Total tissue selenium bioaccumulation was measured at intervals of 3, 7, 14, 21 181 

and 28 days.  A day 0 measurement was made using organisms from the acclimation tanks to 182 
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give the background selenium concentration.  All organisms were placed in fresh seawater at 183 

salinity 28‰ with no sediment for 24 hours (King et al., 2004; Simpson et al., 2005; Atkinson 184 

et al., 2007; King et al., 2010) to allow depuration of ingested sediment particles, prior to 185 

selenium analysis.  All assays were done on whole tissues of individual organisms. 186 

2.4 Selenium Measurements 187 

2.4.1 Total selenium 188 

Lyophilised ground tissue ≈ 0.1 g  was digested in 1 ml of nitric acid (AristaR BDH, 189 

Australia) in polytetra-fluroacetate digestion vessels, in a 630 watt microwave oven (CEM 190 

MDS-2000, USA) for 2 min at 630 W, 2 min 0 W, and 45 min at 315 W (Baldwin et al., 191 

1994).  Prior to analysis samples were diluted with deionised water to 1% v/v HNO3, and an 192 

ICP-MS mixed 7־element internal standard (EM Science) was added to monitor for variations 193 

due to instrument drift and/or matrix effects.  Selenium was measured using an ELAN® 6000 194 

ICP-MS (PerkinElmer, SCIEX) following the method of Maher et al. (2001).  NRCC 195 

Certified Reference Material, NIST 1566a oyster tissue and acid blanks were routinely 196 

digested and diluted in the same way as the samples and analysed along with them to verify 197 

accuracy and precision of selenium analysis.  The measured CRM mean selenium value; 2.1 ± 198 

0.3 µg/g (n = 50) was not significantly different from the certified value 2.21 ± 0.24 µg/g. 199 

 200 

2.4.2 Subcellular selenium 201 

The subcellular tissue selenium distribution was examined in tissues of day 28 exposed 202 

organisms using a procedure adapted from Sokolova et al. (2005) and Wallace et al. (2003).  203 

The dissected tissues were placed in polypropylene vials, snap frozen in liquid nitrogen and 204 

stored at -80oC until processed.  The tissue was thawed and minced on ice with a blade.  A 205 

sub sample, ≈ 0.1 g wet wt., was taken for total tissue selenium analysis.  The remainder, ≈ 206 

0.5 g wet wt., was homogenised in Ca 2+ / Mg2+ free saline buffer pH 7.35 on ice using an 207 

IKA ® Labortechnick Ultra-turrax-T25 homogeniser equipped with an S25-UT dispersing tool 208 

at 9,500 rpmin-1 (Janke & Kunkel, Germany).  Homogenised tissue was subjected to 209 

differential centrifugation and tissue digestion procedures according to the protocol outlined 210 

in Taylor (2009), using an Eppendorf 5804R centrifuge and a Himac CP90WX preparative 211 

ultracentrifuge (Hitachi, Japan).  The mitochondria, lysosomes-microsomes and heat sensitive 212 

protein pellets were grouped as biologically active selenium fractions while the granule and 213 

heat stable metallothionein like proteins were grouped as biologically detoxified selenium 214 
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fractions (Taylor and Maher, 2013).  The supernatant from the granule pellet isolation 215 

contained the nuclei-cellular debris.  To determine the mitochondrial and lysosomal content of 216 

the fractions obtained the concentration of enzymes specific for these organelles, cytochrome 217 

c oxidase and acid phosphatase, respectively, were measured in each of the total tissue, 218 

mitochondrial and lysosome-microsome pellets using commercial colorimetric assays 219 

(CYTOC-OX1 Sigma-Aldrich, USA and CS0740 Sigma-Aldrich, USA, respectively).  This 220 

showed that the mitochondrial fraction was enriched with mitochondria and in the lysosome-221 

microsome fraction there was some enrichment of lysosomes compared to the mitochondrial 222 

fraction (Supplementary Figure 1).  Fractions were acidified to 10% v/v with nitric acid 223 

(AristaR BDH, Australia) and placed in a water bath at 80oC for 4 hours.  NIST CRM 1566a 224 

oyster tissue, buffer and acid blanks were digested and diluted in the same way as the samples 225 

and analysed along with them.  Analysis of selenium was as previously described above.  The 226 

measured CRM selenium value 2.25 ± 0.3 µg/g (n = 5) were in good agreement with certified 227 

value 2.21 ± 0.24 µg/g. 228 

 229 

2.5 Biomarker Measurements 230 

2.5.1 Total antioxidant capacity and lipid peroxidation 231 

Tissues were homogenised on ice in a 5 mM potassium phosphate buffer containing 0.9% 232 

(w/v) sodium chloride and 0.1% (w/v) glucose, pH 7.4 (1:5 w/v) using a motorised 233 

microcentrifuge pellet pestle, sonicated on ice for 15 seconds at 40 V (VibraCell™ Sonics 234 

Materials, USA) and centrifuged, in a 5804R centrifuge (Eppendorf, Germany), at 10,000 x g 235 

for 15 minutes at 4oC (Cayman, 2011).  The supernatant was stored at 80־oC until analysis. 236 

Total antioxidant capacity was measured using an assay based on the ability of the tissue 237 

lysate antioxidant system to inhibit the oxidation of ABTS (2,2’-azino-di-[3-238 

ethylbenzthiazoline sulphonate]) to ABTS •+ by metmyoglobin in the presence of hydrogen 239 

peroxide.  This was compared with the antioxidant capacity of a standard, Trolox (Cayman, 240 

2011).  Samples were pipetted into a 96 well plate with metmyoglobin and ABTS.  The 241 

reactions were initiated with a 441 µl solution of hydrogen peroxide.  The plate was shaken 242 

for 5 minutes at 25oC and the amount of ABTS•+ produced was measured by the suppression 243 

of absorbance at 750 nm on a BioRad Benchmark Plus microplate spectrophotometer.  This is 244 

proportional to the final total antioxidant capacity concentration, expressed in millimolar 245 

Trolox equivalents.  The Thiobarbituric Acid Reactive Substances (TBARS) assay was used 246 

to measure lipid peroxidation by measuring the malondialdehyde (MDA) concentration in 247 
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each tissue lysate.  The end product of lipid peroxidation, MDA, forms a 1:2 adduct with 248 

TBARS and produces a colour reaction that can be read spectrophotometrically at 532 nm and 249 

compared to an MDA standard curve (ZepoMetrix, 2011).  The samples were incubated in a 250 

solution of sodium dodecyl sulphate, thiobarbituric acid and sodium hydroxide dissolved in 251 

acetic acid at 95oC for 60 minutes.  After cooling on ice and centrifuging at 3000 rpm for 10 252 

minutes at room temperature, the colour reaction was measured, on a BioRad Benchmark Plus 253 

microplate spectrophotometer at 532 nm. 254 

2.5.2 Reduced:oxidised glutathione ratio and glutathione peroxidase  255 

Tissue lysates were produced by homogenisation on ice in a 50 mM Tris-HCl buffer 256 

containing 5 mM EDTA and 1 mM DTT, pH 7.5 (1:5 w/v) using the technique outlined 257 

above.  A thiol scavenging agent 1-methyl-2-vinyl-pyridium trifluoromethane sulfonate in 258 

HCl (Calbiochem®, Merck, Germany) was added to GSSG tissue homogenates to remove 259 

GSH, prior to the addition of buffer and production of the final supernatant.  The remaining 260 

GSSG is then reduced to GSH and determined by the reaction with Ellman’s reagent 261 

(Calbiochem, 2004).  Supernatants were stored at -80oC until analysis of reduced glutathione 262 

(GSH), glutathione peroxidise (GPx) and protein (Calbiochem, 2004).  The ratio of reduced to 263 

oxidised glutathione (GSH:GSSG) was measured using an enzymatic method based on one 264 

developed by (Tietze, 1969).  The method uses Ellman’s reagent 5,5’-dithiobis-2־nitrobenzoic 265 

acid (DTNB) which reacts with GSH to form a colour which is detected at 412 nm 266 

(Calbiochem®, Merck, Germany).  The samples were acidified by the addition of a 5% 267 

solution of metaphosphoric acid, vortexed for 15 seconds and centrifuged at 1000 x g for 10 268 

minutes at room temperature.  The metaphosphoric acid extracts were diluted with a sodium 269 

phosphate buffer and mixed at room temperature in 1 ml cuvettes with DTNB and glutathione 270 

reductase enzyme at (1:1:1 v/v/v).  The reaction was initiated with ß ¯ nicotinamide adenine 271 

dinucleotide phosphate (NADPH) and absorbance read at 412 nm for 3 minutes at intervals of 272 

15 seconds on a Unicam Helios Gamma UV-Vis spectrophotometer (Spectronic, UK).  273 

Absorbance rates were calculated and GSH and GSSG concentrations calculated using a 6 274 

point GSH calibration curve.  A GSSG buffer blank was run for interference correction. 275 

Glutathione peroxidise activity (GPx) was measured using a coupled reaction with glutathione 276 

reductase (GR) (Cayman Chemicals, USA).  The oxidation of NADPH to NADP+ is 277 

accompanied by a decrease in absorbance at 340 nm.  Under conditions where GPx activity is 278 

rate limiting, the rate of decrease in the A340 is directly proportional to the GPx activity in the 279 

sample.  Assay buffer 50 mM Tris-HCl, pH 7.6, 5 mM EDTA was added to sample wells of a 280 
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flat bottomed 96 well plate with a co-substrate mixture NADPH, glutathione and GR (2:1 281 

v/v).  Samples were added to each well and the reaction was initiated by the addition of 282 

cumene hydroperoxide.  The plate was shaken briefly and the decrease in absorbance read at 283 

340 nm for 5 minutes at intervals of 30 seconds at 25oC on a BioRad Benchmark Plus 284 

microplate spectrophotometer.  Rates were calculated and samples were compared with a 285 

bovine erythrocyte GPx positive control.  Buffer blanks run with the samples were used to 286 

correct for interferences and GPx activity was calculated using the NADPH extinction 287 

coefficient, adjusted for the pathlength of the solution, of 0.00373 µM-1.  One unit is defined 288 

as the amount of enzyme that will cause oxidation of 1.0 nmol of NADPH to NADP+ per 289 

minute at 25oC. 290 

2.5.3 Protein 291 

All tissue lysates used for enzymatic assays were analysed for protein concentration and 292 

enzyme concentration / activity is expressed as mg-1 of protein in the sample.  The 293 

FluoroProfile™ (Sigma #FP0010, Sigma-Aldrich, USA) protein assay used is a fluorescent 294 

assay based on Epiccoconone, a biodegradable natural product.  The fluorescence intensity 295 

was read at 485 nm excitation and 620 nm emission, on a Luminoskan Ascent Fluorescence 296 

Plate Reader (Thermo Electrical Corp., USA).  Bovine serum (BSA) calibration curve 297 

standards used were made up in sample buffer. 298 

2.6 Cellular and Genotoxic Biomarkers 299 

2.6.1 Lysosomal Stability 300 

Lysosomal stability was assessed using a method developed by (Ringwood et al., 2003) for 301 

oysters.  The assay uses neutral red (NR) dye retention to assess the integrity of the lysosomal 302 

membrane.  Cells incubated in neutral red accumulate the lipophilic dye in the lysosomes.  303 

Healthy cells retain the dye in the lysosomes whereas in cells with damaged lysosomal 304 

membranes it leaks out into the cytoplasm.  Minced tissue was shaken in CMFS buffer pH 305 

7.35 salinity 30‰ on a reciprocating shaker at 100 rpm for 20 minutes.  Trypsin (T4799 306 

Sigma, USA), 325 µl at 1 mg/ml in CMFS buffer, was added and samples shaken for a further 307 

20 minutes.  Cells were then collected by centrifuging samples through a 20 µm screen at 250 308 

- 500 x g at 15oC for 5 - 15 minutes.  Cells were incubated in neutral red (Sigma, USA), 0.04 309 

mg/ml in CMFS for 1 hour and one hundred cells per slide were counted using a light 310 

microscope with 40x lens and scored as stable or unstable, based on dye retained in the 311 

lysosomes or present in the cytosol, respectively.  Two slides per sample were counted.   312 
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2.6.2 Micronuclei Frequency 313 

The micronuclei assay used was based on a technique developed on the mussel Mytilus 314 

galloprovincialis (Gorbi et al., 2008).  The assay uses DAPI (4’,6-diamidine-2’-phenylindole 315 

dihydrochloride), a fluorescent dye specific for nucleic material, to stain the nuclei.  316 

Micronuclei are defined as small round structures less than one third the diameter and in the 317 

same optical plan as the main nucleus, with a boundary distinct from the nuclear boundary.  318 

Tissue preparation for the collection of cells was the same as that used for the neutral red 319 

retention assay.  The rinsed cells were fixed in Carnoy’s solution (methanol:glacial acetic acid 320 

3:1) and stored at 4oC until counted.  A drop of the fixed cell suspension was placed on a slide 321 

and air dried.  A drop of the DAPI (# 32670 Sigma, USA) working solution was added to 322 

each slide and a cover-slip added.  Slides were incubated in the dark for 5 minutes and 323 

observed under an inverted epifluorescent microscope (Nikon, Eclipse TE 300, Japan) with 324 

the appropriate filter for DAPI, excitation wavelength 350 nm magnification 40x.  Two slides 325 

per sample were counted with 1000 cells per slide scored as micronuclei present or absent. 326 

2.7 Statistical analyses 327 

A Mixed Linear Model analysis of variance (ANOVA) (SPSS v 14.0) was used to 328 

simultaneously analyse the effects of time (day) and treatment (selenium exposure 329 

concentration) on organism tissue selenium accumulation.  A Mixed Linear Model ANOVA 330 

was used to analyse the effects of treatment (selenium exposure concentration) on the effect 331 

measurement variables antioxidant capacity, total glutathione, GSH:GSSG ratio, glutathione 332 

peroxidase, lipid peroxidation, lysosomal stability and micronuclei frequency. 333 

(Supplementary Tables 1 – 3). Regressions of sediment selenium and mean tissue selenium 334 

concentrations and means of effects variables antioxidant capacity, lipid peroxidation, 335 

lysosomal stability and micronuclei frequency were calculated using EXCEL™ v 2003 336 

(Supplementary Table 4). 337 

3 Results 338 

3.1 Selenium Accumulation 339 

Selenium tissue concentrations in organisms from both selenium treatments differed 340 

significantly from the unexposed and control organisms (p ≤ 0.0005) but not from each other 341 

(Figure 1; Supplementary Tables 1 & 2).  The highest selenium concentrations for both 342 

treatments were at day 21 with a slight but not significant decrease to day 28 (Figure 1).  At 343 

day 28, selenium tissue concentrations in the both treatments were higher than the selenium 344 
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spiked sediment with the 5 µg/g treatment organisms having 5 times and the 20 µg/g 1.5 times 345 

the sediment selenium concentration (Figure 1).  After 28 days of exposure there was a 346 

significant positive relationship (r = 0.46; p ≤ 0.0001; n = 41) between sediment and organism 347 

tissue selenium concentrations (Supplementary Table 4).   348 

3.1.1 Subcellular Tissue Selenium Distribution 349 

Approximately 75% the total selenium from the organisms exposed to sediment 350 

concentrations of 5 and 20 µg/g selenium was recovered in the fractions with 82% recovered 351 

from the controls (Table 1).  Of the recovered selenium, up to 60% was in the nuclei-cell 352 

debris fraction in the selenium treatments (Table 1).  The biologically active selenium burden 353 

was 1.8 and 2.8 times respectively, greater in the 5 and 20 µg/g selenium exposed organisms 354 

than the controls (Table 1).  The mitochondrial fraction contained the highest percentage of 355 

biologically active selenium in the 5 and 20 µg/g selenium exposed organisms, followed by 356 

the heat sensitive protein fraction, with only a small percentage in the lysosome-microsome 357 

fraction (Figure 2; Table 2).  The control organisms also had the lowest percentage of 358 

biologically active selenium in the lysosome-microsome fraction while the heat sensitive 359 

protein fraction had the highest percentage with slightly less in the mitochondria (Figure 2; 360 

Table 2).  The majority of biologically detoxified selenium was in the granule fraction 361 

accounting for 97% in the control organisms and 66 and 77%, respectively, in the 5 and 362 

20µg/g selenium exposed organisms (Figure 2; Table 2).  Selenium exposed organisms had a 363 

higher concentration of the mitochondrial enzyme cytochrome c oxidase than the control 364 

organisms (Supplementary Figure 1).  At the highest selenium exposure the concentration of 365 

the lysosomal enzyme acid phosphatase was increased in both whole tissue and in the 366 

lysosome-microsome fraction (Supplementary Figure 1).  367 

3.2 Biomarkers 368 
The total antioxidant capacity (TAOC) of the selenium exposed organisms was significantly 369 

reduced (p ≤ 0.01; Supplementary Table 3a) compared to that of unexposed organisms, 370 

however, the TAOC of each of the selenium treatments were not significantly different to 371 

each other (Figure 3A; Supplementary Table 3b).  Compared to control organisms the 372 

glutathione peroxidase (GPx) activity and total glutathione concentrations were enhanced in 373 

the selenium treatments (Figure 3B) but the difference was not significant (p > 0.05; 374 

Supplementary Table 3b).  The ratio of reduced and oxidised glutathione was significantly 375 

reduced in selenium exposed organisms compared to that of unexposed organisms (p ≤ 0.01; 376 
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Supplementary Table 3a); however, the ratios of each of the selenium treatments were not 377 

significantly different to each other (Figure 3B).  Thiobarbituric acid reactive substances were 378 

significantly higher in selenium exposed organisms than in unexposed organisms (p ≤ 0.05; 379 

Supplementary Table 3a).  The organisms from the selenium exposures both had significantly 380 

higher lipid peroxidation (TBARS) than the controls but not from each other (Figure 4A; 381 

Supplementary Table 3b).  Selenium exposed organisms had significantly more unstable 382 

lysosomes and a higher frequency of micronuclei than the control organisms (p ≤ 0.001; 383 

Supplementary Tables 3a).  The 20 µg/g selenium exposed organisms had significantly more 384 

unstable lysosomes and a higher frequency of micronuclei than both the control and 5 µg/g 385 

selenium exposed organisms (p ≤ 0.001; Supplementary Tables 3b; Figures 5B & C).  386 

Regression analysis showed that when selenium exposure reduced the TAOC within cells this 387 

corresponded with an increase in the effects measures of TBARS (r = 0.37; p ≤ 0.0001; n = 388 

36), lysosomal destabilisation (r = 0.41; p ≤ 0.01; n = 18) and micronuclei frequency (r = 389 

0.51; p ≤ 0.001; n = 18) (Supplementary Table 4).  As TBARS increased there was a 390 

corresponding increase in lysosomal destabilisation (r = 0.32; p ≤ 0.01; n = 18) and the 391 

frequency of micronuclei (r = 0.35; p ≤ 0.01; n = 18) (Supplementary Table 4).   392 

4 Discussion 393 

4.1 Selenium Accumulation and Subcellular Distribution 394 

4.1.1 Whole tissue 395 

The variation in tissue selenium concentrations over time in the control organisms was in the 396 

order of a few micrograms per gram (Figure 1). As selenium is an essential element some 397 

basal concentration is expected (Hamilton, 2004), so this would be indicative of natural 398 

variation.  Selenium accumulation was rapid during the first three days of exposure in 399 

organisms from both selenium treatments, with the 5 µg/g selenium exposed organisms 400 

accumulating twice the exposure concentration and the 20 µg/g equalling it in this time 401 

(Figure 1).  A similar equilibrium tissue concentration for organisms from both treatments 402 

appears to have been reached after four weeks (Figure 1).  Peters et al. (1999b) found native 403 

T. deltoidalis exposed to sediment selenium concentrations of 3.4 µg/g in Lake Macquarie 404 

NSW accumulated tissue concentrations of 32 µg/g which is a considerably higher exposure 405 

to tissue selenium ratio than observed for the T. deltoidalis in this experiment.  Selenite is 406 

taken up rapidly by the aquatic microflora and fauna that is consumed directly by deposit 407 

feeding bivalves from the sediment surface or as part of the detritus.  In addition selenite 408 
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adsorbed to sediment particles may be ingested (Fan et al., 2002; Hamilton, 2004).  T. 409 

deltoidalis in our experiments may have had a change in selenium exposure route from an 410 

initial direct absorption from ingested sediment particles to a later additional dietary exposure 411 

as microfauna and flora, present in the natural sediments and water used, assimilated selenium 412 

and were consumed.  The major route of selenium uptake in aquatic systems is via food rather 413 

than as the free ions in solution (Luoma and Rainbow, 2008), therefore the final greater than 414 

ambient selenium tissue concentrations observed in this experiment after 21 days exposure 415 

may be related to the generation of a source of dietary selenium. 416 

4.1.2 Subcellular selenium distribution 417 

A large proportion of the selenium recovered in the subcellular fractions was in the nuclei-418 

cellular debris fraction, increasing from 36% in the controls to 56 and 60%, respectively, in 419 

the 5 and 20 µg/g exposed organisms (Table 1; Figure 2).  Selenite is bound to plasma 420 

proteins for transport to tissues.  It has been suggested that selenite is taken up by 421 

haemolymph, reduced to selenide, released into the plasma and rapidly bound by plasma 422 

proteins (Ewan, 1989).  The majority of accumulated selenate and selenomethionine occurs in 423 

the plasma (Ewan, 1989).  Selenomethionine has been shown to bind to glutathione 424 

peroxidase extracellularly as well as intracellularly (Burk, 1991).  Mycelia of the fungus 425 

Pleurotus ostreatus enriched with selenium had 56% of accumulated selenium associated 426 

with the cell wall (Hortensia et al., 2006).  A combination of protein bound selenium 427 

associated with plasma and selenium bound directly to cell walls would account for the high 428 

proportion of selenium associated with this fraction and therefore it would be comprised of 429 

both biologically active and detoxified selenium.  Of the remaining selenium recovered in the 430 

fractions, the control organisms had 11% and the exposed organisms 20% in the detoxified 431 

selenium fractions (Table 1; Figure 2), but the distribution within this portion differed.  The 432 

control organisms had most selenium in the granule fraction while the 5 and 20 µg/g exposed 433 

organisms had 66 and 77%, respectively, in the granules with the remainder in the 434 

metallothionein like proteins (Table 2).  Selenium associated with metallothionein like 435 

proteins has not previously been reported in aquatic organisms, although there is evidence 436 

from mammalian studies that suggests selenite exposure induces metallothionein production 437 

(Iwai et al., 1988; Chen and Whanger, 1994).  The majority of selenium not associated with 438 

selenoproteins of the glutathione peroxidase family has been found bound to selenoamino 439 

acids and other low molecular weight selenium compounds analogous to metallothioneins  440 

and it is presumed that these act as storage and transport proteins and intermediaries in the 441 
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synthesis of selenoproteins (Akesson and Srikumar, 1994).  The metallothionein like protein 442 

fraction may therefore represent a pool of detoxified selenium.  Like metallothioneins, 443 

selenium associated with granules has not previously been described.  The operational 444 

fraction defined as granules in this procedure has been examined in fractions obtained from 445 

cadmium exposed oligochaetes by Wallace et al. (1998), with a compound microscope, and 446 

shown to contain numerous metal rich granules of varying sizes.  The fraction obtained in the 447 

present study using the same technique as described by Wallace et al. (1998) was not 448 

examined visually for granules so it can only be assumed that the fraction contained 449 

detoxified selenium rich concretions.  Using a similar fractionation procedure Zhang and 450 

Wang (2006) found 40% and 60% of accumulated selenium in crustaceans and bivalves, 451 

respectively, was associated with the granule fractions, while Dubois and Hare (2009) 452 

obtained only 1 - 2% of selenium in the granule fractions of the oligochaete Tubifex tubifex 453 

and the insect Chironomus riparius.  George, (1983) showed that granules of cadmium 454 

exposed Mytilus edulis contained high concentrations of protein, calcium and sulphur.  455 

Selenium is known to substitute for sulphur in proteins as it has similarities with the 456 

chemistry of sulphur (Ewan, 1989).  The presence of selenium in a protein is always related to 457 

the presence of sulphur, the selenium atom is either incorporated in the place of a sulphur 458 

atom in a sulphur amino acid, or it is attached to the sulphur atoms of cysteine residues 459 

(Ganther, 1974).  It is possible that selenium is incorporated into granule like structures via a 460 

similar process to that postulated for cadmium by George (1983), due to an increase in 461 

lysosomal protein degradation, following enzyme inactivation by intracellular selenium, 462 

causing an increase in intracellular protein turnover.  Alternatively the granule fraction may 463 

represent selenium associated with incompletely digested tissue and cell debris in the NaOH 464 

digestion step of the fractionation procedure (Taylor and Maher, 2013).  The fractionation 465 

procedure used by Zhang and Wang (2006) which found 40 and 60% of selenium in 466 

crustaceans and bivalves associated with the granule fraction used a shorter NaOH digestion 467 

step, 10 minutes rather than the 60 minutes used in this study, so incomplete digestion of the 468 

tissue and cell debris fraction in their study is also a possibility.  If this is the case then it is 469 

still a reasonable assumption that a fair proportion of this fraction represents detoxified 470 

selenium.  The increased percentage of selenium associated with the detoxified selenium 471 

fractions (Figure 2) demonstrates that selenium detoxification processes are operating.   472 

The concentration of the mitochondrial enzyme cytochrome c oxidase was increased in the 473 

total homogenate and mitochondrial fractions of the selenium exposed organisms 474 

(Supplementary Figure 1) indicating an increased response in this organelle to selenium 475 
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accumulation.  This is in agreement with the organelle selenium distribution results (Table 2; 476 

Figure 2) which show a 3 and 4 fold increase, respectively, in mitochondrial selenium in the 5 477 

and 20 µg/g exposed organisms.  As selenium is an essential component of the glutathione 478 

peroxidase enzyme it is expected that it will be present in the mitochondria where oxygen 479 

reduction and cellular energy production occurs, however, selenium toxicity can arise at 480 

concentrations only slightly greater than those that are required (Palace et al., 2004).  The 481 

percentage of selenium in the heat sensitive protein fraction was slightly lower than that of the 482 

mitochondria in the selenium exposed organisms and higher in the controls (Table 2).  This 483 

fraction contains enzymes, high and low molecular weight proteins and other target molecules 484 

which are sensitive to metals (Wallace et al., 2003).  The increased binding of selenium in this 485 

fraction is not unexpected as selenium is largely associated with protein complexes (Ganther, 486 

1974).  The activity of the lysosomal enzyme acid phosphatase was only increased in the 20 487 

µg/g exposure while the 5 µg/g organisms remained the same as the control organisms 488 

(Supplementary Figure 1). The percentage of biologically active selenium in the lysosomal-489 

microsomal fraction of the selenium exposed organisms was around half that of the controls 490 

(Table 2) but the selenium concentration was 1.1 and 1.6 times higher in the 5 and 20 µg/g 491 

treatments, respectively, than the controls.  The microsomal component of the cell includes 492 

fragmented endoplasmic reticulum, which is generally responsible for protein synthesis and 493 

transport, selenium in this fraction may be associated with microsomes rather than lysosomes 494 

which could be indicative of essential activity but equally could have implications for toxicity 495 

(Bonneris et al., 2005).   496 

4.2 Enzymatic Biomarkers – Oxidative Enzymes 497 
Selenium is an essential element involved in the reduction of peroxide in the glutathione cycle 498 

(Micallef and Tyler, 1987; Hodson, 1988; Hoffman, 2002).  Total antioxidant capacity was 499 

significantly reduced in the selenium exposed T. deltoidalis compared to the control 500 

organisms but there was no difference in antioxidant capacity between selenium treatments 501 

(Figure 3A).  The similarity in the antioxidant response between selenium treatments may be 502 

explained by the similarity in the final selenium tissue concentrations between the two 503 

treatments (Figure 1).  Changes in activity and concentration of enzymes within the 504 

glutathione cycle indicate an imbalance in the intracellular glutathione redox status.  The 505 

activity of the glutathione peroxidase (GPx) enzyme was enhanced in the T. deltoidalis from 506 

both selenium exposures although not significantly compared to control organisms (Figure 507 

3B).  The increase in GPx activity may have increased the rate of oxidation of GSH as seen in 508 
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the increased GSH+2GSSG concentration and the significantly reduced GSH:GSSG ratio 509 

(Figure 3B; Supplementary Table 3b).  The increase in GSSG may also be a result of the 510 

direct reaction of selenite with GSH, which has been shown in the trout Oncorhynchus mykiss 511 

to produce increased reactive oxygen species, a sharply decreased GSH/GSSG ratio and 512 

increased membrane lipid peroxidation  (Misra and Niyogi, 2009).  Studies in mallard ducks 513 

showed that increased dietary and subsequent selenium tissue concentrations resulted in 514 

increases in plasma and hepatic GPx activity and GSH concentrations, followed by a dose-515 

dependent decrease in the ratio of hepatic GSH to GSSG concentrations which ultimately led 516 

to increased hepatic lipid peroxidation (Hoffman, 2002).  Excess GSSG can react with protein 517 

sulfhydryls, contributing to the total thiol and protein bound thiol depletions, by the formation 518 

of mixed glutathione:protein disulphides.  Formation of mixed disulphides may be part of a 519 

significant mechanism in regulating metabolic activity as well as the integrity of the cell 520 

membranes in response to oxidative stress (Hoffman, 2002).  An examination of 521 

selenomethionine metabolism in embryos of the trout Oncorhynchus mykiss showed oxidative 522 

stress, which appeared to be generated by methioninase enzyme activity, liberating 523 

methylselenol from L-Selenomethionine (Palace et al., 2004).  The methylselenol is able to 524 

undergo redox cycling in the presence of glutathione producing superoxide and likely 525 

accounts for oxidative stress measured in aquatic organisms environmentally exposed to 526 

excess selenomethionine (Palace et al., 2004).  Although the sediment in this study was 527 

spiked with sodium selenite, which is readily bioaccumulated by animals and bound to 528 

proteins following assimilation into cells, animals do not have the capacity to transform it into 529 

selenomethionine (Suzuki and Ogra, 2002; Suzuki et al., 2006).  Marine algae and bacteria, 530 

however, are known to convert selenite mainly into selenomethionine (Fan et al., 2002; Orr et 531 

al., 2006) and this secondary pathway of dietary derived selenium may have resulted in 532 

selenomethionine exposure for T. deltoidalis during the course of the experiment.   533 

4.3 Oxidative Damage Biomarker – Thiobarbituric Acid Reactive Substances 534 
Thiobarbituric acid reactive substances (TBARS) are a measure of lipid peroxidation, a 535 

widely recognised consequence of excess oxyradical production which destabilises cell 536 

membranes leading to loss of lysosomal integrity and the leaking of the lysosomal contents 537 

into the cytoplasm (Winston, 1991; Winston and Di Giulio, 1991).  The concentration of 538 

TBARS increased significantly in T. deltoidalis from both selenium treatments compared to 539 

the control organisms (Figure 4A).  Increased hepatic lipid peroxidation related to effects of 540 

accumulated selenium on glutathione metabolism have been measured in a number of wild 541 
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aquatic birds, including their hatchlings and eggs (Hoffman, 2002).  The TBARS 542 

concentration of the selenium exposed organisms was highly negatively correlated with the 543 

total antioxidant capacity, indicating that the increased tissue selenium resulted in a reduction 544 

in the capacity to reduce reactive oxygen species.  It is likely that their subsequent increase 545 

directly influenced the build-up of lipid peroxidation by-products.   546 

4.4 Cellular Biomarker – Lysosomal Stability 547 
Metal accumulation in the lysosomes can induce lipid peroxidation through redox cycling or 548 

by direct reaction with cellular molecules to generate reactive oxygen species (Ercal et al., 549 

2001).  This can destabilise the lysosomal membrane causing the contents to leak out into the 550 

cytosol thereby reducing the cells capacity to remove waste which will ultimately lead to cell 551 

death (Viarengo et al., 1987).  Similar to T. deltoidalis exposed to cadmium and lead (Taylor 552 

and Maher, 2013; 2014), the selenium exposed T. deltoidalis had significantly higher 553 

lysosomal destabilisation than the control organisms (Figure 4B).  The 5 µg/g selenium 554 

exposed T. deltoidalis were in the ‘concern range’ with 30% destabilised lysosomes, while the 555 

20 µg/g selenium exposed organisms would be classed as ‘stressed’ with 68% lysosomal 556 

destabilisation based on the Ringwood et al. (2003) criteria.  The biologically active selenium 557 

burden of the 20 µg/g selenium exposed organisms was ≈ 1.6 times that of the 5 µg/g 558 

selenium exposed organisms and this may account for the significantly higher lysosomal 559 

membrane damage.  The lysosomal fraction of the selenium exposed organisms did not have a 560 

marked selenium burden increase, the majority of active selenium was associated with the 561 

mitochondrial and heat sensitive protein fractions (Table 2).  Selenium binding to molecules 562 

present in the heat sensitive proteins of the cytosol may contribute to the total thiol and 563 

protein bound thiol depletions, which may be part of a significant mechanism in regulating 564 

metabolic activity as well as the integrity of the cell membranes in response to oxidative stress 565 

(Hoffman, 2002).   566 

4.5 Genotoxic Biomarker – Micronuclei Frequency 567 
The micronuclei test is a sensitive test to detect genomic damage due to both clastogenic 568 

effects and alterations to the mitotic spindle (Migliore et al., 1987).  It has been used in 569 

bivalves to examine the genotoxicity of a range of chemicals (Scarpato et al., 1990; Williams 570 

and Metcalfe, 1992; Burgeot et al., 1996; Bolognesi et al., 2004).  The occurrence of 571 

micronuclei increased significantly with selenium exposure (Figure 4C).  Induction of 572 

micronuclei in response to selenium bioaccumulation has not previously been investigated in 573 

bivalves, however, these results fit the pattern found for metal induced genotoxic damage as 574 



 19

increased frequency of micronuclei shown for Mytilus galloprovincialis (Dailianis et al., 575 

2003; Bolognesi et al., 2004; Kalpaxis et al., 2004; Gorbi et al., 2008) and for T. deltoidalis 576 

exposed to cadmium and lead (Taylor and Maher, 2013; 2014).  Increased micronuclei 577 

frequency in response to selenium exposure has been observed in fish erythrocyte cells (al 578 

Sabti, 1994) and mice bone marrow (Itoh and Shimada, 1996).  The frequency of micronuclei 579 

in the selenium exposed T. deltoidalis corresponded with a decrease in antioxidant capacity 580 

and an increase in lipid peroxidation (Supplementary Table 4) indicating that an increase in 581 

ROS contributed to an increase in genotoxic damage, either through interaction of reactive 582 

oxygen intermediates and lipid peroxidation products with DNA or direct interaction of 583 

selenium with cellular macromolecules forming adducts, alkaline labile sites and strand 584 

breaks (Regoli et al., 2004).   585 

5 Summary and Conclusions 586 
This study has demonstrated a significant exposure – dose – response relationship for 587 

selenium in T. deltoidalis.  Exposure to selenium contaminated sediments resulted in selenium 588 

bioaccumulation but not in proportion to the sediment selenium concentrations.  Up to 60% of 589 

the accumulated selenium was in the nuclei-cellular debris fraction probably comprised of a 590 

combination of protein bound selenium associated with plasma and selenium bound directly 591 

to cell walls and therefore effectively removed from active sites within the cell.  The 592 

percentage of selenium increased in the biologically detoxified fraction of selenium exposed 593 

organisms and was associated with both granules and metallothionein like proteins, which has 594 

not previously reported for marine bivalves.  Selenium associated with low molecular weight 595 

proteins is likely to act as storage and transport and intermediaries in the synthesis of 596 

selenoproteins and therefore may represent a pool of detoxified selenium.  The strong 597 

association of selenium with sulphur is a likely mechanism for the incorporation of selenium 598 

into granules as has been demonstrated for cadmium.  Biologically active selenium burdens 599 

increased with selenium exposure and this led to impairment of the antioxidant system which 600 

may have initiated the observed increase in lipid peroxidation, lysosomal destabilisation and 601 

micronuclei frequency. 602 
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Figure & Table Legends 986 

Figure 1:  Tissue selenium concentrations (µg/g dry mass) of T. deltoidalis exposed to 987 
selenium spiked sediments of 0 (control), Se 5 and 20µg/g dry mass.  Mean ± SE, n = 12.  988 
Day 0 are unexposed organisms n = 6. Different letters indicate significant differences 989 
between means within treatments among collection day (Bonferroni test: p < 0.05). 990 
 991 
Figure 2:  Distribution (%) of selenium in each of the subcellular fractions of T. deltoidalis 992 
following 28 days exposure to selenium spiked sediments.  Subcellular fractions are: Nuclei-993 
cellular debris; granules; heat stable, metallothionein like proteins (MTLP); mitochondria 994 
(Mit); lysosomes- microsomes (Lys & Mic); heat sensitive proteins (HSP).  Stippled fractions 995 
(          ) make up the biologically active selenium (BA), dashed fractions (       ) make up the 996 
biologically detoxified selenium (BD), n = 2. 997 

Figure 3:  Antioxidant enzyme biomarkers of T. deltoidalis after 28 days exposure to 998 
selenium spiked sediments of 0 (control), Se 5 and Se 20µg/g dry mass.  Mean ± SE, n = 12.  999 
3A: TAOC (Total Antioxidant Capacity); 3B:  GPx (glutathione peroxidise); GSH+2GSSG 1000 
(total glutathione); GSH/GSSG (ratio of reduced to oxidised glutathione).  Different letters 1001 
indicate significant differences between means (Bonferroni test; p < 0.05). 1002 

Figure 4:  Changes in oxidative damage biomarkers: 4A: MDA (lipid peroxidation); 4B: 1003 
cellular (lysosomal destabilisation); and 4C:  genotoxic (micronuclei) of T. deltoidalis after 1004 
28 days exposure to selenium spiked sediments, 0 (control), Se 5 and Se 20µg/g dry mass.  1005 
Mean ± SE n = 12.  Different letters indicate significant differences between means 1006 
(Bonferroni test; p < 0.05). 1007 

Table 1: Total selenium concentrations (µg/g wet mass) in whole tissue and subcellular 1008 
fractions with the percentage of total selenium recovered in all fractions of T. deltoidalis after 1009 
28 days exposure to selenium spiked sediments.  Selenium subcellular concentrations (µg/g 1010 
wet mass) and percentage distribution of total recovered selenium fractions are grouped as 1011 
nuclei-cellular debris and biologically active and biologically detoxified selenium. Mean ± 1012 
SE, n = 2. 1013 

Table 2: Mean percentage of selenium in the debris, biologically detoxified selenium (BD) 1014 
and biologically active selenium (BA) with the percentage of selenium each of the fractions 1015 
contributes to BD or BA of T. deltoidalis subcellular fractions after 28 days exposure to 1016 
selenium spiked sediments.  Mean ± SE, n = 2. 1017 

  1018 
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Table 1:  1019 

 Sediment Treatments (µg/g)  
 control Se 5 Se 20 
Total Tissue Selenium (µg/g) 0.42 ± 0.07 1.9 ± 0.5 3.4 ± 0.7 
Total Recovered Selenium (µg/g) 0.34 ± 0.01 1.4 ± 0.5 2.5 ± 0.2 
Proportion of total recovered in fractions (%) 82 ± 12 75 ± 4 74 ± 10 

Selenium Subcellular Distribution    
Nuclei - Cellular debris (µg/g) 0.12 ± 0.004 0.78 ± 0.21 1.5 ± 0.2 
Nuclei - Cellular debris (%) 36 ± 1 56 ± 5 60 ± 4 
Biologically Active Selenium (BA) (µg/g) 0.18 ± 0.001 0.32 ± 0.1 0.51 ± 0.05 
Biologically Active Selenium (%) 53 ± 0.8 23 ± 1 20 ± 4 
Biologically Detoxified Selenium (BD) (µg/g) 0.04 ± 0.0003 0.29 ± 0.14 0.51 ± 0.08 
Biologically Detoxified Selenium (%) 11 ± 0.5 21 ± 4 20 ± 2 

Mean ± SD, n = 2 1020 
 1021 
Table 2:  1022 

 Sediment Treatments (µg/g) 
 control Se 5 Se 20 
Nuclei - Cellular debris % of total 36 ± 1 56 ± 5 60 ± 4 
Biologically Detoxified Selenium % of total 11 ± 0.5 21 ± 4 20 ± 2 
Selenium Rich Granules % of BD 97 ± 0.5 66 ± 5 77± 6  
Heat Stable MT Like Proteins % of BD 3 ± 0.5 34 ± 4 23 ± 3 
Biologically Active Selenium % of total 53 ± 0.8 23 ± 1 20 ± 4 
Mitochondria % of BA 34 ± 4 53 ± 1 48 ± 2 
Lysosomes - Microsomes % of BA 22 ± 0.1 14 ± 2 12 ± 0.4 
Heat Sensitive Proteins % of BA 44 ± 4 34 ± 1 40 ± 3 

  1023 



 30

Figure 1 1024 

1025 
  1026 

0

10

20

30

40

50

Control Se Se 5 Se 20

T
is

su
e 

S
e 

µ
g/

g

Sediment Se µg/g

Day 0 Day 3 Day 7 Day 14 Day 21 Day 28

a

b b b

c
c

d

e
e

e

e

e



 31

Figure 2 1027 
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Figure 3 1031 
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Figure 4 1034 
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