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ABSTRACT
Human pose estimation is a classic problem in computer vi-

sion. Statistical models based on part-based modelling and

the pictorial structure framework have been widely used re-

cently for articulated human pose estimation. However, the

performance of these models has been limited due to the pres-

ence of self-occlusion. This paper presents a learning-based

framework to automatically detect and recover self-occluded

body parts. We learn two different models: one for detect-

ing occluded parts in the upper body and another one for

the lower body. To solve the key problem of knowing which

parts are occluded, we construct Gaussian Process Regression

(GPR) models to learn the parameters of the occluded body

parts from their corresponding ground truth parameters. Us-

ing these models, the pictorial structure of the occluded parts

in unseen images is automatically rectified. The proposed

framework outperforms a state-of-the-art pictorial structure

approach for human pose estimation on 3 different datasets.

Index Terms— Pictorial Structure, Articulated Pose Es-

timation, Occlusion Sensitive Rectification, Gaussian Process

Recognition, Pose Search

1. INTRODUCTION

With the availability of cheap digital camera technology and

public online databases for sharing digital images and videos,

such as Flickr, Instagaram or Picasa, massive amounts of dig-

ital image data are now available. However, given the sheer

amount of data, it is prohibitive to manually annotate these

for retrieval purposes. It is therefore essential to have effi-

cient automatic annotation and retrieval approaches at hand

to enable users to find the data they are interested in. One

such approach is based on annotating digital images with the

human body pose of persons shown. To this end, articulated

human pose estimation is a long studied problem in computer

vision. This paper proposes a robust Pictorial Structure (PS)

based framework, which results in better pose estimation in

the case of self-occlusion in unconstrained images.

Articulated pose estimation based on the PS framework

has attracted much attention in developing a large variety of

*Equal first authors

Fig. 1. Sample results from the People, HumanEva and Buffy

datasets: (Top) Rectified pictorial structures from proposed

approach. (Bottom) Andriluka et al. [1] pictorial structures.

applications such as automotive safety (pedestrian detection),

surveillance, pose search and video indexing. PS models rep-

resent an object as a graph, where each node represents a

body part and edges between nodes encode the kinematic con-

straints between connected pair of parts. Significant progress

has been achieved [1, 2, 3, 4, 5, 6, 7], but highly articulated

objects (e.g. human body) lead to many self-occluded parts,

resulting in less accurate pose estimation and detection. There

are two types of occlusion: 1) Self-occlusion caused by the

object itself due large degrees of freedom, different camera

views or different poses; 2) Inter-occlusion between differ-

ent objects in the same image. In this paper, we focus on the

former and propose a robust learning-based framework to rec-

tify the human pose estimation in highly self-occluded scenes.

The contributions of this paper are solutions to the following

three key questions: 1) How can we detect whether there is

occlusion in a given image? 2) If there is occlusion, how can

we identify the body parts responsible for that occlusion? 3)

How can we rectify the occluded part’s position? To this end,

we introduce (1) a general framework for self-occlusion de-

tection, which reduces the search space of occluded parts, and

(2) an approach for rectifying PS parameters of occluded parts

in highly articulated poses that can work with any PS model,

making it more robust to self-occlusion and allowing us to
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Fig. 2. Overall framework architecture for both occlusion

detection and occluded parts rectification

accurately estimate the pose from monocular images (Fig. 1).

We use two binary discriminative non-linear SVM classi-

fiers to detect the occluded parts in the upper and lower body

regions. Iteratively, we select parts with a low posterior score

in the region of the detected occlusion to rectify the PS pa-

rameters. Our rectification step is based on learning a set of

mapping functions between the PS parameters and the ground

truth from labelled training images. We employ Gaussian

Process Regression (GPR) [8] for that purpose, which con-

structs a Bayesian model p(Σ|D,D′) = p(D|Σ,D′)p(Σ|D)′
for learning the correlation between the correspondence pa-

rameters, where p(D|Σ,D′) is the likelihood of PS parame-

ters D given the ground truth positions D′ and the covariance

function Σ, and p(Σ|D′) is the prior of the covariance func-

tion for the PS parameters. To rectify an occluded part i, we

use the model: p(D′
i|Σi,D) = p(Σi|D,D′

i)p(D
′
i|D).

2. RELATED WORK

While there is a plethora of literature on articulated pose es-

timation and occlusion manipulation, we focus here on the

recent and widely used PS models and methods for handling

occlusion. The original PS by Felzenszwalb et al. [2] is based

on a simple appearance model and requires background sub-

traction, which hence does not work well in cluttered and dy-

namic background scenes. Andriluka et al. [1] overcame this

problem by using a discriminative appearance model. Start-

ing from the original PS method [9] for discriminatively de-

tecting each body part, they interpret the normalised margin

of each part as the appearance likelihood for that part. Al-

though this produces a general framework for both object de-

tection and articulated pose estimation, their model is not able

to estimate the human pose in highly occluded scenes. Our

proposed algorithm is inspired by their work and extends it

by providing a robust framework for rectifying PS in occluded

scenes for human body pose estimation and detection.

[10, 11, 12] provide frameworks for handling occlusions

between multiple objects in an image by estimating each ob-

ject’s pose based in the PS framework. In contrast, our ap-

proach focusses on self-occlusion. While all of the above

methods are modelled to estimate poses from still images,

there exists only limited research on the same task in videos.

Kumar et al. [13] used structural learning of the PS parame-

ters from videos. Their model is based on background sub-

traction from consecutive frames to define which parts are

occluded. Ramanan et al. [7] employ the PS idea to find

stylised poses, such as walking persons, by learning the dif-

ference between the background and foreground from consec-

utive frames and tracking the person in the followomg video

frames. Their approach works well in videos for poses with

little self-occlusion.

Sigal and Black [4] modelled self-occlusion handling in

the PS framework as a set of constraints on the occluded parts,

which are extracted after performing background subtraction

which renders it unsuitable for dynamic background scenes.

Our work follows both [1, 4] by producing a framework for

articulated pose estimation robust to cluttered backgrounds

and self occlusion without relying on background subtrac-

tion models. The step of rectifying occluded body parts via a

GPR model is inspired by recent work by Asthana et al. [14],

who used GPR for modelling parametric correspondences be-

tweem face models of different people. Our problem is more

difficult because the human body includes more parameters

to be rectified and has more degrees of freedom than faces.

3. THE PROPOSED APPROACH

We start with a brief introduction of the Pictorial Struc-
ture framework for articulated pose estimation, then discuss

its shortcomings in the presence of self-occlusion, before

proposing a novel approach to rectify the PS.

3.1. Pictorial Structures

In the PS framework [2], the human body is represented as a

graph with n vertices V = v1, . . . , vn for the body parts and

a set of edges E where each (vi, vj) ∈ E pair encodes the

spatial relationship between parts i and j. For a given image

I , PS learns two models. The first one learns the evidence of

each part as an appearance model, where each part is parame-

terised by its location (x, y), orientation θ, scale s, and some-

times foreshortening. All of these parameters D are learned

from exemplars and produce a likelihood of that image. The

second model learns the kinematic constraints between each

pair of parts in a prior configuration model. Given those two

models for an image I , the posterior distribution over all the

set of part locations is

p(L|I,D) ∝ p(I|L,D)p(L|D) (1)
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where p(I|L,D) measures the likelihood of representing the

image in a particular configuration and p(L|D) is the kine-

matic prior configuration. Finding a maximum a posteriori
probability (MAP) is equivalent to estimating the maximum

likelihood for all parts. The best spatial relationship between

pairs of parts, L∗ for an image I is

L∗ = argmax
L

P (L|I,D) (2)

One of the major problems of this framework is the low con-

tributions of the parts when they are occluded, resulting in

either wrong or missing detections of these parts, which in

turn leads to inaccurate pose estimation. To overome this, we

propose a robust self-occlusion model, which works with any

pictorial structure approach and can produce a robust pose

estimate for articulated objects in scenes with cluttered back-

ground and self-occlusion.

3.2. Self-Occlusion Detector

Firstly, we introduce a novel self-occlusion detection ap-

proach that, unlike [4], does not rely on background subtrac-

tion for input images or the identification of occlusion rela-

tionships as a set of constraints between pairs of parts. In-

stead, we learn two binary models corresponding to the upper

and lower body, respectively. Firstly, Pyramids of Histogram
of Gradients (PHOG) are computed. The PHOG descriptor

is an extension of Dalal et al.’s [15] HOG descriptor and has

been extensively used for various computer vision problems

such as object recognition [16] and facial expression analy-

sis [17]. The upper and lower body regions of interest are

divided into patches and a 3x3 Sobel mask is applied to the

edge contours for calculating the orientation gradients. Then,

the gradients of each grid are joined together at each pyramid

level. Secondly, we also compute the Local Phase Quanti-
sation (LPQ) [18] descriptor, which belongs to the class of

Local Binary Patterns (LBP) [19]. LPQ computes the short-

term Fourier transform on a patch and has been empirically

shown to better handle blur and illumination than LBP [18].

The output from the two descriptors is combined (sepa-

rately for the upper and lower body). A non-linear Support
Vector Machine (SVM) [20] is learnt and optimum parameters

are found via fivefold cross-validation. As described in Fig.

2, standard PS is estimated for each image I , before the two

ROIs (upper and lower body) are passed to the self-occlusion

detection step. If there is a self-occlusion part i detected (e.g.

left lower leg), the configuration parameters of that part are

changed from Di to D′
i, where D′

i = (x′, y′, θ′), representing

the rectified location and orientation of part i via hallucina-
tion. Based on this hallucination step the eXtended Pictorial
Structure (XPS) model can be defined as

p(L̂|I,D) ∝ p(I|L̂,D′)p(L̂|D′) (3)

In the next section, we discuss how to detect and rectify the

occluded parts from the ROIs, i.e. how to map D to D′

Algorithm 1: Part-by-part rectification via GPR

[Training]
input : {D} and {D′} matrices for training images

output: a ModelMi for each part p in the occluded ROI
begin

P ←− parts in ROI

for i ∈ P do
x←− D
y ←− D′i, // ith column of D′
Use GPR to estimate the prior covariance function

Construct and save modelMi for part i

end
end
[Prediction]
input : PS parameters d for occluded image I
begin

P ←− parts in ROI

S ←− PS score for all parts in ROI

i←− 0, // i here means iteration number

p(L̂i)←− p(L) from eq. 1

for i ≤ size{P} do
i←− i+ 1
Select part with minimum Score

Load GPR model for that part

Predict d′ for that part

Estimate L̂i for whole image I

if p(L̂i) ≤ p( ˆLi−1) then
break

end if
end

end

3.3. Rectifying Hallucinated Occluded Body Parts

Let D ∈ R
n×m represent the PS parameters matrix for

m training Images with falsely detected parts due to self-

occlusion. LetD′ ∈ R
q×m be the corresponding ground truth

parameters in those images. Our aim is to learn a mapping be-

tween these two set of parameters. To compute the mapping

function W : D → D′, we propose a part-by-part hallucina-

tion method.

Part-by-Part Hallucination. Let,D = [d1 . . . dm] and

D′ = [d′1 . . . d
′
m], where each dj is the jth column, which

represents the position and orientation parameters of all parts

in a training image I and d′i, j is (i, j)th element of matrix

D′. Formally, the training set is

τi = {(dj , d
′
i,j)}mj=1 i = 1, . . . , q (4)

where d ∈ D (the set of multivariate inputs) and d′ ∈ D′

(the set of outputs/targets). Here, a simple approach is to

learn a non-linear mapping function wi : Dn×m → D′q×m
,

where i = 1, . . . , q, that results in the mapping function

W = [w1 w2 . . . wq], resulting in q models, which can be
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Fig. 3. PCP performance of our 2 frameworks against Andriluka et al. [1] (PS): (a) HumanEva dataset - full body, (b) HumanEva

dataset - upper body, (c) People dataset - full body, (d) People dataset - upper body, (e) Buffy datatset - upper body

used to rectify q parts. We employ GPR [8] to compute the

mapping functionW .

For unseen images, we rectify those occluded parts, which

decrease the appearance and configuration likelihood in esti-

mating the posterior value L of Eq. 1. We argue that the pres-

ence of occlusion in a part affects the likelihood of that part,

which in turn affects the posterior probability of the whole

body in the PS model. This argument motivates us to sort the

likelihood of each part existing in the ROI and select the min-

imum likelihood value. Then, we use its pre-learnt model to

rectify its correspondence and use it to estimate a new p(L̂)
for all parts. A comparison with the previous value of p(L̂) is

performed, and if it is improved, we select the second small-

est value in the list and so on until the improvement of the

pose estimation stops (see Algorithm 1).

4. EXPERIMENTS AND DISCUSSION

In this section, we evaluate the capability of the proposed ap-

proach to model the parametric correspondence between PS

and the ground truth (from labelled data), and use them for

localising the occluded parts in unseen sequences.

4.1. Datasets

Selecting suitable datasets was one of the challenges we faced

in this work because of a lack of data with self-occlusion.

Many commonly used datasets contain only a small amount

of self-occluded body parts in their images. Therefore, we

collected our training, validating and testing data from 3 dif-

ferent public databases: the People dataset [21], the BUFFY

dataset [22] and the HumanEva dataset [23]. For evaluating

the full body pose, the human body was divided into 10 parts:

torso, head, left / right upper / lower arms, and left / right up-

per / lower legs. When evaluating the upper body pose only,

we used only the first 6 parts.

Fig. 4. ROC curves for our occlusion detector based for upper

and lower body occluded parts

4.2. Performance Evaluation

Occlusion Detection Step: Rectifying the occluded body

parts requires to localise them first (see Sec. 3). We built two

discriminative SVM binary classifiers to reduce the search

space into one of two regions of interest (ROI). The perfor-

mance of these two binary classifiers was evaluated via the

ROC metric, measuring the true positive average of samples

against the false positive for both upper body ROI and lower

body ROI. The accuracy of the occlusion detector was higher

when the occluded body parts were located in the lower body

region (Fig. 4). We believe that is due to the degree of free-

dom in the arms being higher than the degree of freedom in

the legs; hence, the arm parts result in more self occlusion.

Rectification Step: To evaluate the performance of our re-

gression based approach, we employ two criteria:

• Detection rate indicates number of detected stick fig-

ures men (PASCAL VOC criterion [24]).

• Percentage of Correctly estimated body Parts (PCP)
counts an estimated body part as correct if its segment

endpoints lie within t% of the length of the ground truth

segment from their annotated location. PCP is evalu-
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Table 1. Comparison of PCP, detection rate and total accuracy between the proposed approach and Andriluka et al. [1] (PS)

Database Type (PS) PCP (Our) PCP (PS) DetRate (Our) DetRate (PS) Accuracy (Our) Accuracy

HumanEva
full body 70.54% 86.70% 85.20% 92.09% 60.10% 79.48%

upper body 65.19% 74.10% 91.50% 94.00% 59.64% 69.65%

People
full body 70.56% 74.62% 84.71% 94.12% 59.77% 70.23%

upper body 70.56% 64.55% 84.71% 90.59% 59.72% 58.47%

Buffy
full − − − − − −
upper body 86.67% 87.72% 85.11% 88.64% 73.76% 77.75%

ated only for those that have been detected (i.e. there

is a correct detection window). Overall performance

is evaluated by a PCP curve, obtained by varying the

accuracy threshold t [25].

Using those two evaluation criteria, we measure the perfor-

mance of part-by-part rectification method against the classic

PS method [1].

To rectify the occluded parts in the whole body, we estab-

lished two experiments, one for the HumanEva and another

one for the People database. In the first experiment, we con-

structed 10 independent models, one for each part based on

single GPR (SGPR) [8], where the first 4 models are from

images, which have lower occluded parts, and the 6 other

parts are from images with occlusion in the upper body parts.

The performance of these models has been evaluated on 200

frame from HumanEva database and 85 images from People

database. These two are picturised in Fig. 3.a and 3.c, respec-

tively.

To rectify the occluded parts in the upper body, we con-

structed three experiments: for HumanEva, for People and

for Buffy databases. For frames from HumanEva and im-

ages from People we used the same models from the previ-

ous experiments which corresponding to the upper parts such

that we used the 6 models for the upper body parts based on

SGPR. The overall result of those experiments are shown in

Fig. 3.b and 3.d. Since the Buffy database contains infor-

mation about the upper body parts, the last experiment is only

for upper body parts. We built the regression models based on

frames which do not have occlusion because there are a few

number of frames which contain occluded body parts. How-

ever, we tested on those which have occluded parts. The com-

parison between original PS and the rectified ones are shown

in Fig. 3.e.

From the experimental results in Fig. 3, we can infer

that the proposed approach using SGPR convincingly outper-

formed the state-of-the-art approach [1] for pose estimation

of both full body part and upper body part localisation. In

the upper body experiment for the People dataset, we got less

accuracy because the regressor has been affected by the oc-

clusion detector performance. A summary of the accuracy

results for all experiments is shown in Table 1.

5. CONCLUSIONS AND FUTURE WORK

A GPR-based framework has been proposed to rectify self-

occluded human body parts, which results in better articu-

lated pose estimation for both upper and full body. This gen-

eral framework can work on the output of any PS approach

to detect occluded body parts and rectify their PS parameters.

We showed that it is suitable for both videos and still images

without prior tracking of the body parts, enabling accurate

pose search in media databases such as YouTube, Flickr or

Picasa. In the future, we plan to investigate other regression

methods such as Multiple output GPR. Merging temporal in-

formation with PS parameters is another avenue to improved

pose estimation, reducing the search space of the occluded

parts.

6. ACKNOWLEDGEMENT

We would like to thank Akshay Asthana for the useful discus-

sions.

7. REFERENCES

[1] M. Andriluka, S. Roth, and B. Schiele, “Pictorial struc-

tures revisited: People detection and articulated pose es-

timation,” in CVPR, 2009, pp. 1014–1021. 1, 2, 4, 5,

6

[2] P.F. Felzenszwalb and D.P. Huttenlocher, “Pictorial

Structures for Object Recognition,” IJCV, vol. 61, no.

1, pp. 55–79, Jan. 2005. 1, 2

[3] V. Ferrari, M. Marin-Jimenez, and A. Zisserman, “Pose

search: Retrieving people using their pose,” in CVPR,

2009, DOI: 10.1109/CVPR.2009.5206495. 1

[4] L. Sigal and M.J. Black, “Measure locally, reason glob-

ally: Occlusion-sensitive articulated pose estimation,”

in CVPR, 2006, pp. 2041–2048. 1, 2, 3

[5] H. Bhaskar, L. Mihaylova, and S. Maskell, “Human

body parts tracking using pictorial structures and a ge-

netic algorithm,” in 4th Int. Conf. Intelligent Systems,

2008, vol. 2, pp. 10–2 – 10–6. 1

125



[6] P.F. Felzenszwalb, R.B. Girshick, and D. McAllester,

“Cascade object detection with deformable part mod-

els,” in CVPR, 2010, pp. 2241–2248. 1

[7] D. Ramanan, D. A. Forsyth, and A. Zisserman, “Strike

a pose: tracking people by finding stylized poses,” in

CVPR, 2005, vol. 1, pp. 271–278. 1, 2

[8] C.E. Rasmussen and C.K.I. Williams, Gaussian Pro-
cesses for Machine Learning, MIT Press, 2005. 2, 4,

5

[9] P. Felzenszwalb, D. McAllester, and D. Ra-

manan, “A discriminatively trained, multiscale,

deformable part model,” in CVPR, 2008, DOI:

10.1109/CVPR.2008.4587597. 2

[10] M Eichner and V Ferrari, “We Are Family: Joint Pose

Estimation of Multiple Persons,” in ECCV 2010, LNCS
6311, pp. 228–242. 2010. 2

[11] X. Wang, T.X. Han, and S. Yan, “An HOG-LBP hu-

man detector with partial occlusion handling,” in CVPR,

2009, pp. 32–39. 2

[12] P. Fihl and T.B. Moeslund, “Pose Estimation of Inter-

acting People using Pictorial Structures,” in AVSS, 2010,

pp. 462–468. 2

[13] M. Pawan Kumar, P.H.S. Torr, and A. Zisserman,

“Learning Layered Pictorial Structures from Video,” in

ICVGIP, 2004, pp. 148–153. 2

[14] A. Asthana, M. Delahunty, A. Dhall, and R. Goecke,

“Facial Performance Transfer via Deformable Models

and Parametric Correspondence,” IEEE Trans. Vis. and
Comp. Graph., vol. 99, 2011. 2

[15] N. Dalal and B. Triggs, “Histograms of Oriented Gra-

dients for Human Detection,” in CVPR, 2005, pp. 886–

893. 3

[16] A. Bosch, A. Zisserman, and X. Munoz, “Representing

Shape with a Spatial Pyramid Kernel,” in CIVR, 2007.

3

[17] A. Dhall, A. Asthana, R. Goecke, and T. Gedeon, “Emo-

tion recognition using PHOG and LPQ features,” in FG,
FERA Workshop, 2011, pp. 878–883. 3

[18] V. Ojansivu and J. Heikkilä, “Blur Insensitive Tex-
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Fig. 5. Sample results for our proposed approach (top) and PS [1] (bottom) for the People (top two rows), HumanEva (middle
two rows), Buffy (bottom two rows) databases
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