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Abstract

Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and
socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing
diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in
wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine
whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and
isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates
were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified
several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission
(molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations,
sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median
Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the
traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance
of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial
proximity and herd membership as well as some individual risk factors (sex, condition score and relative density)
determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are
complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for
wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by local spatial, social, density and
individual factors, rather than resources. This enhanced understanding has implications for the control of diseases in wildlife
populations. Attempts to manage wildlife disease using simplistic density approaches do not acknowledge the complexity
of disease ecology.
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Introduction

Infectious diseases of wildlife have caused important global

pandemics in people [1], have influenced human welfare through

reduced agricultural production [2,3] and are reducing global

biodiversity [4–6]. Management of wildlife infectious disease

requires that key ecological processes and mechanisms that drive

infection transmission and persistence in wildlife populations be

identified, characterised and quantified [7,8]. Despite this, little is

known about disease transmission in wildlife [9]. Improved

knowledge could assist management of wildlife disease thereby

reducing disease emergence that threatens human and animal

health and welfare, agricultural production and species conserva-

tion. In this respect, Daszak et al. [10] have proposed that

emerging infectious diseases of wildlife can be classified into three

major groups based on key epidemiological criteria – spillover

from domestic animals to wildlife populations living in proximity;

those related directly to human intervention via host or parasite

translocations; and those with no overt human or domestic animal

involvement.

Cross sectional surveys – where a representative sample of a

population is taken, prevalence of disease measured and a contrast
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made between those with and without the infection to infer risk

factors – have frequently been a mainstay of wildlife epidemio-

logical study [11]. However, in recent years it has been recognised

that the interface of genetics, ecology and epidemiology is poised

to advance our understanding of disease ecology, such as infection

transmission, in new and novel ways [12,13].

Here, we use both the traditional and widely accepted cross

sectional survey design to investigate risk factors for prevalence or

persistence of Salmonella and a contemporary molecular epidemi-

ological study design to assess risk factors for transmission of

Salmonella in wild pigs. We use wild pigs (Sus scrofa) as our model as

they are a species of global importance, being found on every

continent except Antarctica [14]. They are a damaging invasive

species or valued endemic animal depending on their location, and

have frequently played an important role in the spread of

infectious diseases [15–19], including Salmonella [20]. There are

two Salmonella species, six subspecies and more than 2500 serovars

[21]. In this paper Salmonella refers to serovars within Salmonella

enterica subspecies enterica.

Materials and Methods

We sampled [22] and determined the Salmonella infection status

of 543 wild pigs (Sus scrofa) by culturing mesenteric lymph nodes

and faeces [23]. Salmonella isolates were genotyped using Pulsed

field gel electrophoresis (PFGE) [24]. A range of data were

collected on putative risk factors for Salmonella transmission

including: pig genotype (using microsatellites) [25], spatial and

remote sensing data [26] and pig demographic and morphological

data [25,27]. We took two approaches to analyse the data.

1. Cross sectional prevalence study design.
A traditional cross sectional prevalence based logistic regression

analysis which modelled associations between Salmonella infection

and risk factors.

2. Molecular case series approach.
A pair-wise molecular analysis of all Salmonella isolates which

modelled Salmonella genetic relatedness for each pair of infected

pigs against risk factors using linear regression. It was assumed that

increasing similarity between Salmonella isolates was correlated with

transmission.

We a priori identified several plausible biological hypotheses for

both Salmonella prevalence in pigs (cross sectional prevalence study

design) and Salmonella transmission between pigs (molecular case

series study design). Two models (paired) were implemented for

each hypothesis, one for the cross sectional prevalence study

design and one for the molecular case series study design. We used

information theoretic approaches to select the most supported

models within each study design. We compared the two study

design for utility for wildlife disease investigation and inferred

mechanisms for Salmonella persistence and transmission between

wild pigs.

The study was undertaken on a 200 km length of the Fitzroy

River floodplain in the west Kimberley region of north-western

Australia (see Figure 1) in October 2010. The study area is

approximately 4000 km2, lying between 18.612 to 18.037uS and

124.922 to 126.270uE. The area has a tropical monsoonal climate

with mean rainfall over the last century of 484 mm per year (range

163–907) and hot temperatures (mean daily maximum tempera-

ture 30–39uC [range 18–46uC]).The sampling strategy was to

systematically search water features by helicopter. All pigs

observed were targeted for humane destruction according to

Australian standard operating procedures [22]. Dead pigs were

sampled within one hour by veterinarians. Faeces and mesenteric

lymph nodes (MLN) were collected, immediately refrigerated and

delivered to the laboratory chilled for culture. A sample of ear

tissue was also collected from each pig and stored in salt-saturated

DMSO buffer for genetic analysis.

Faeces and MLN were cultured according to the Australian

standard for microbiology of food and animal feeding stuffs for the

detection of Salmonella spp. [23] which is a national modification

of the international standard (ISO 6579:2002). All Salmonella

isolates confirmed by serotyping were genotyped by PFGE [24].

Gel images were imported into BioNumerics (version 6.6) for data

analysis [28]. All gels were normalised using the S. Braenderup

reference strain. Bands were detected automatically and verified

manually. Salmonella PFGE DICE similarity coefficient was

Figure 1. The study area. The inset shows the study area in the context of the Australian continent. The solid and dashed lines represent major
and minor drainage lines respectively. The dots represent sampling locations.
doi:10.1371/journal.pone.0046310.g001
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extracted for each pair-wise comparison of isolates using optimised

parameters (optimisation (0.2%), tolerance (1.375%), tolerance

change (0%), minimum height (9%), minimum surface (2%),

uncertain bands (ignore), relaxed doublet matching (no), fuzzy

logic (no), area sensitive (no) and active zones (4.3–88.6%)). DNA

was extracted from pig ear tissues using the Machery Nagel

NucleoSpin Tissue kit. Fourteen pig microsatellite markers [25]

were amplified from DNA samples in three multiplex PCRs using

the Qiagen Multiplex PCR kit. Microsatellites were genotyped on

a Beckman CEQ8000 and alleles were scored using the CEQ 8000

Genetic Analysis System software Version 8.0.

Two data sets were assembled. The first data set (for the cross

sectional prevalence study design) consisted of a single observation

for each pig that was sampled. Presence or absence of infection

was determined by culture for each pig in this dataset. Covariate

data (as described in Table 1) were collected for assessment as risk

factors or extraneous variables. The second data set (molecular

case series study design) was a subset of the first and consisted of

pair-wise comparisons between Salmonella isolates (case series with

no counterfactual group). The outcome variable was the pair-wise

genetic similarity (DICE) for each pair of Salmonella isolates.

Covariates were the same as for the first data set except that they

were the absolute difference between pair-wise covariates values,

pair-wise contrasts, for example Euclidean distance between pigs,

or pair-wise indicator variables (for example to indicate the same

herd membership).

Five biologically plausible hypotheses were developed a priori

that sought to explain the prevalence or transmission of Salmonella

between pigs within the study area (see Table 1). Two separate

models were then developed for each hypothesis, one model for

the cross sectional prevalence study design and one for the

molecular case series study design. For the simple presence and

absence data set, multivariable logistic regression models were

developed, in which the covariates were related to the log odds of

infection with Salmonella (i.e. generalised linear models with a logit

link). For the pair-wise data set, multivariable linear models were

developed that related Salmonella DICE linearly to pair-wise

covariates. Permutation based methods (999 permutations [29])

were used to assess the significance of coefficients in the linear

models, with coefficients ranked amongst the highest 2.5% or

lowest 2.5% of permutation coefficients being considered signif-

icant at a= 0.05. Examination of the relative strength of evidence

for each hypothesis within either the prevalence or molecular

approach was undertaken using the approach of Burnham and

Anderson [30]. The cross sectional prevalence and molecular case

series study designs were then compared for consistency of

outcome and relative utility. Inferences for risk factors for

Salmonella prevalence (persistence) or transmission were made.

This study was approved by the University of Sydney Animal

Ethics Committee (N00/6-2010/1/5319).

Results

We made 543 wild pig Salmonella observations, sampled at 93

unique locations across the study area. The mean weight of pigs

was 51 kg (95% CI: 47–54) with a range of 2–150 kg. There were

264 males (49%) and 279 females (51%). Mean male weight was

slightly greater than female weight 54 (95% CI: 50–58) versus 49

(95% CI: 45–52) kg, respectively. Assuming an adult wild pig is

$30 kg [21], there were 361 adults (66%) and 182 sub adults

(34%). Of the adult females, 58 were pregnant and 76 were

lactating. The prevalence of Salmonella infection was 41% (95% CI:

37–45%). The median Salmonella DICE coefficient [28] (or

Salmonella genetic similarity) was 52% (IQR: 42–62, range: 10.0–

100). The median pig genetic dissimilarity [31] was 39% (IQR:

35–46, range: 7–71).

The only model supported using the traditional cross sectional

prevalence study design, represented the hypothesis that the

abundance of available ecological resources is associated with

Salmonella infection in wild pigs (Table 2). All other hypotheses

were highly unlikely. In the contemporary molecular study design

assessing risk factors for transmission, the resource driven contact

and host immunity models were equally supported models, with

other models/hypotheses being unsupported by the data (Table 3).

Significant coefficients in the cross sectional prevalence data

resource model (Table 4) indicated that resources such as the

change in enhanced vegetation index (EVI) over the monsoon

season (representing areas where pasture growth is marked during

the wet season) and proximity to waterways (representing water to

drink and riparian zone shelter) were critical features that were

associated with increasing prevalence of infection. Additionally,

better conditioned (fatter) pigs and increasing wild pig density

(weakly: P = 0.04) were associated with increasing probability of

infection (Table 4). In the contemporary molecular study design

assessing risk factors for transmission, the resource driven contact

(Table 5) and host immunity (Table 6) models were equally

supported models, with other models/hypotheses being unsup-

ported by the data. However, the only significant coefficients from

the resources model were the extraneous variables included to

control confounding of the association between Salmonella genetic

similarity and the resource covariates. Thus it was apparent that

resource availability had little role in transmission. Interpretation

of significant coefficients for the indicator variables from the two

models demonstrated that transmission of Salmonella was increased

between members of the same herd and between males relative to

other sexes, whilst controlling for isolates that came from the same

individual (isolates from the same individual were more similar as

expected). Transmission was more likely between pigs that were

geographically closer with the similarity of Salmonella declining as

the Euclidean distance between pigs increased. Interpretation of

the remaining significant covariates from the resources and host

immunity models was more complex as these covariates were the

absolute differences between the value of the covariate for each pig

being compared, and are thus undirected associations. There was

an association between Salmonella similarity and divergent ages and

densities of source population of the pigs being compared. The

coefficient for condition score indicated that transmission was less

likely between pigs of differing condition score.

Discussion

It is interesting to posit the reasons that Salmonella prevalence

was higher in well conditioned (fatter) pigs and in resource rich

areas across the landscape. Prevalence of an infection in a

population depends on several factors, especially transmission

rates, but also disease induced mortality, duration of infection and

the length of time an infection has been present in a population

[11]. Given that resources were not observed to be important to

transmission in the molecular approach, it is likely that wild pigs in

resource rich areas may have had higher prevalence for reasons

other than transmission. The last of these alternate explanations

above, namely that prevalence is increased in populations where

infection has been present in populations for longer is intriguing. It

suggests that resource rich areas across the landscape may act as

areas for persistence of Salmonella in pig populations. With regards

to condition score as a risk factor, it is possible that those pigs that

were fatter exhibited some specific behaviour that increased

exposure to infection. Given their better body condition, these pigs

Understanding Wildlife Disease Ecology
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may have been travelling further and foraging more effectively and

widely for food. This may have exposed them to more infection,

resulting in higher prevalence in these pigs through more effective

contacts. This is consistent with prior research in human infections

[32], and recently demonstrated in wildlife [33] that super-

spreaders (or individuals responsible for the majority of transmis-

sion) are disproportionately important for disease transmission.

However, reverse causality concepts associated with cross sectional

surveys also suggests alternate explanations, such as that better

conditioned pigs simply survived better with Salmonella infection.

The molecular study design demonstrated that transmission was

more likely within social groups and to other pigs within close

proximity. This was expected as wild pigs have been shown to be

generally very sedentary [34], highly social [35] and with

overlapping home ranges [36]. This suggests the mechanism for

transmission is largely social and foraging behaviour between local

pigs that increases effective contact. Transmission was also more

common between males. Adult male pigs have larger home ranges

than females [34] and are often found singly or associating in small

male groups in the study area [37]. These characteristics may

account for the observed greater male to male transmission. It also

suggests that older males may be relatively more important in the

transmission of Salmonella in our study area.

An important result from the molecular study design were the

low R2 values associated with both the risk and resources model,

indicating the majority of the variability in the Salmonella genetic

Table 1. Data description and hypotheses for Salmonella persistence and transmission in wild pigs (Sus scrofa) modelled using
both the cross sectional prevalence study design and molecular case series study design.

Hypothesis Rationale

Density of hosts Numerous authors have presented transmission models [40,47]. Increasingly, there is evidence that systems are more
complex and that density-dependence does not hold [40,48]. Other research has indicated that endemic marsupials
near the study area have a high prevalence and diversity of Salmonella [49]. Here we hypothesised that increasing
local or larger scale densities of wild pigs and native species (Macropus agilis) would increase prevalence and
transmission of Salmonella. We therefore modelled Salmonella infection or Salmonella genetic similarity (DICE) against
group size and density of groups of wild pigs and density of groups of agile wallabies (groups km22) as measured
during an aerial survey of pigs and agile wallabies in the study area using published aerial survey methodology [50].

Environmental contamination Salmonella survives in the environment after defecation by pigs for considerable periods of time especially in cooler
conditions away from light [51–53]. Our environmental persistence hypothesis assumed that environmental
contamination from pig defecation was responsible for Salmonella prevalence or transmission and that areas of shade
such as trees would increase Salmonella prevalence or transmission. We modelled Salmonella infection or Salmonella
genetic similarity (DICE) against the mean EVI [26] for the 6 months prior to sampling in each pigs home range (radius
of approximately 2.5 km around each sampled pig). The distance to water resources, number of water bodies within
the home range, density of pig herds, pig herd size and densities of the agile wallaby (Macropus agilis) were included
as covariates to allow conditioning on these covariates for control of confounding.

Host immunity There are many reasons to assume that individual animal factors such as sex, age and dominance can affect
prevalence of infection [11]. We hypothesised these factors affected Salmonella prevalence or transmission and
modelled age [38], condition score [36] and gender against Salmonella infection and Salmonella genetic similarity
(DICE).

Resources Under the hot semi arid conditions of the study area, critical resources for wild pigs are water [54], riverine habitat for
thermal protection [55] and plant food resources [54,56]. Pigs are highly social animals [23] that do not establish and
defend territories [54], and as such have overlapping home ranges [22]. Distribution across a landscape therefore
largely depends on resource availability. Thus, we modelled Salmonella infection or Salmonella genetic similarity
(DICE) against features likely to cause aggregation of pigs (Euclidean distance to major water courses (m), the number
of natural water-bodies in a pig home range and pasture availability (change in EVI over 6 months)) but included
density, size of social group and condition score to control confounding.

Social interaction We assumed that pigs that were more related would have greater physical contact and hence transmit Salmonella to
one another more readily. We regressed pair-wise Salmonella genetic similarity [38] against pair-wise genetic distance
of pigs [41] (derived from microsatellites [36]), controlling for common herd occupancy and Euclidean distance to
prevent confounding. We could not assess this in the prevalence approach as little genetic structuring was detected
in pigs across the study area (data not shown) and pairwise comparisons were not possible.

doi:10.1371/journal.pone.0046310.t001

Table 2. Akaike information criterion (AIC) values and other model selection metrics for cross sectional prevalence logistic
regression models using information theoretic approaches [29].

Model
Parameters
(K)

Bias corrected
AIC (AICc)

AICc differences
(D)

Relative likelihood
(evidence ratio)

Probability
(Akaike weight)

Resource driven contact 10 699.8 0.0 1.0 0.994

Environmental contamination 8 710.9 11.1 251.7 0.004

Density dependant 6 712.1 12.2 455.6 0.002

Host immunity 6 713.6 13.7 964.5 0.001

The probability of the resource transmission model is very high (.0.99) and clearly the data support this model. Models are listed in AIC ranked order for each study
design.
doi:10.1371/journal.pone.0046310.t002
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relatedness was not due to direct transmission between wild pigs.

Instead complex phylodynamic processes [38] or the presence of

other species involved in Salmonella ecology likely introduced

considerable Salmonella genetic diversity that we could not model

under the assumption of transmission between pigs. Phylodynamic

processes include mechanisms associated with the persistence of

Salmonella infections within individual pigs, leading to increased

selection pressure and interplay between host immune responses

and mutations [38]. Were we to rely only on the traditional cross

sectional study design and assume that infection status was

correlated with infection transmission we would have overesti-

mated the direct transmission between pigs that occurred in our

study population, with the R2 value of the cross sectional resources

model an order of magnitude greater than the resources or risk

model in the molecular study. Additionally, an assumption that

transmission was associated with resources would have been made,

instead of the likely reason that resources affected prevalence

through other reasons such as persistence of Salmonella in pig

populations in resource rich areas.

Our empirical findings, that Salmonella persistence in pig

populations is associated with resource abundance, and conversely

that density has little role in persistence, have implications for

control of infection in pigs in Northern Australia and in wildlife

more generally. It indicates that control of wildlife infections may

not always be achieved through simplistic application of threshold

density concepts, as indicated by prior theoretical models [39,40].

Based on this principal, many authors have proposed that simply

reducing abundance or the susceptible proportion of wildlife (e.g.

by culling or vaccination) will lead to disease fadeout because

transmission cannot be maintained [41]. Other authors argue that

empirical evidence of such an effect is lacking [42,43], or that

percolation thresholds better explain empirical data of threshold

densities [43]. Our results do not disprove a threshold effect but do

indicate that targeting areas for control simplistically based on

density may not be a useful strategy. Instead careful consideration

Table 3. Akaike information criterion (AIC) values and other model selection metrics for molecular case series linear models using
information theoretic approaches [29].

Model
Parameters
(K)

Bias corrected
AIC (AICc)

AICc differences
(D)

Relative likelihood
(evidence ratio)

Probability
(Akaike weight)

Host immunity 6 339132.1 0.0 0.98 0.580

Resource driven contact 11 339132.7 0.6 1.0 0.420

Environmental contamination 8 339218.0 85.9 4.461018 0.000

Genetic relatedness model 5 339284.7 152.6 1.461033 0.000

Density dependant 7 339735.4 603.3 1.0610131 0.000

The probability of both the resources and host immunity models is high rather than the other hypothesised mechanisms of transmission. Models are listed in AIC ranked
order for each study design.
doi:10.1371/journal.pone.0046310.t003

Table 4. Resource hypothesis model formulation and coefficient estimates for cross sectional prevalence study design.

Model Parameter
Coefficient
estimate

Standard
error Z value P value

Odds
ratio

log [p4(12p)] =b1+b2CS+b3DS+b4

|DEVI|+b5HS+b6NWB+b7DW+b8DP+b9X+b10Y+r.eff.(location)
Calibration: le Cessie-van Houwelingen goodness
of fit test (Z = 0.2, P = 0.8) Validation: AUC 0.7 Pseudo r2 = 14%

(Intercept) 12.04 143.76 0.08 0.93 …

Condition
score (CS)

0.76 0.39 1.93 0.05 2.13

Dist. to
streams (DS)

20.57 0.21 22.73 0.01 0.57

EVI decline
(DEVI)

20.38 0.15 22.59 0.01 0.68*

Herd size (HS) 0.01 0.02 0.61 0.54 1.01

No. water
bodies (NWB)

0.06 0.05 1.26 0.21 1.06

Wallaby herd
density (DW)

0.38 0.38 1.00 0.32 1.46*

Wild pig
density (DP)

20.84 0.40 22.09 0.04 0.43*

X coordinate (X) 20.34 0.90 20.38 0.71 0.71

Y coordinate (Y) 21.60 2.29 20.70 0.49 0.20

Random effects terms for herd, and fixed effect covariates for latitude and longitude were included to control clustering of data and spatial trends or autocorrelation.
*These covariates were transformed (normalised z = (x2m)4s) to yield more interpretable odds ratios.
doi:10.1371/journal.pone.0046310.t004
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of resource distribution across the landscape and spatial targeting

of control to those areas of greatest risk would be more efficient at

reducing prevalence than control targeted at wildlife density alone.

Additionally, the local transmission observed in our study suggests

that in the event of a spreading epidemic in a naive population

where vaccination or culling zones are implemented [44], these

zones can be structured on the probable movements of local pigs

(especially males). Transmission was also more likely between pigs

in areas where the density of their local population differed

markedly. The role of density in control may thus be to allow

targeting of areas where transmission may occur from population

to population (i.e. at areas of divergent density).

Salmonella is an important human pathogen. It is also important

in livestock production, both due to its effect on health and

productivity and due to its role as a foodborne zoonosis. Salmonella

has been isolated from the carcasses of wild pigs harvested for

human consumption in Australia [45,46]. Salmonella infection of

wild pig populations might represent a reservoir of infection for

grazing livestock (sheep and cattle) or pose a direct (wild pigs are

hunted as a recreational pursuit) and a foodborne (wild pigs are

commercially harvested) zoonotic hazard [35]. The role that wild

pig populations might play as reservoirs of Salmonella for domestic

livestock apparently has not been investigated. Whether this is an

ecosystem with no overt domestic animal (or human) involvement

i.e. wild pigs as a reservoir, or spillover from domestic animals to

wildlife populations living in proximity [10], is an open question.

In the current study evidence was found to support ecological

resources as a driver of Salmonella transmission; in addition,

spatial proximity and other host factors influenced transmission

between pigs. These results suggest that a Salmonella pig-pig

ecosystem exists but does not answer the open question posed

above. However, we have commenced research to determine

whether the wild pig population described in this study is a

Table 5. Resource hypothesis model formulation and coefficient estimates for molecular case series study design.

Model Parameter
Coefficient
estimate

Standard
error Z value P value

Salmonella DICE =b1+b2|CS|+b3|DS|+b4

ED+b5|DEVI|+b6|HS|+b7|DW|+b8|WB|+b9H+b10Pig+b11|DP|
Adjusted r2 = 3%

(Intercept) 55.55 0.25 224.19 0.001

|Condition score| (|CS|) 22.99 0.32 29.48 ,0.001

|Dist. to streams| (|DS|) 20.22 0.16 21.33 0.098

Euclidean distance (ED) 20.02 0.00 24.53 ,0.001

|EVI decline| (|DEVI|) 0.00 0.00 20.46 0.303

|Herd Size| (|HS|) 20.02 0.01 21.31 0.107

|Wallaby density| (|DW|) 23.20 0.40 28.07 ,0.001

|water bodies| (|WB|) 0.07 0.06 1.29 0.088

Same herd (Indicator:
0 = false) (H)

1.14 0.24 4.71 0.001

Same pig (Indicator:
0 = False) (Pig)

44.45 2.00 22.27 ,0.001

|Wild pig density| (|DP|) 16.41 2.67 6.15 ,0.001

A fixed effect (indicator) covariate for herd and the distance between two pigs were included to control clustering and spatial autocorrelation.
doi:10.1371/journal.pone.0046310.t005

Table 6. Host immunity hypothesis model formulation and coefficient estimates for molecular case series study designs.

Model Parameter
Coefficient
estimate

Standard
error Z value P value

Salmonella DICE =b1+b2|Age|+b3|CS|+b4ED+b5H+b6Pig+b7Sex
Adjusted r2 = 2%

(Intercept) 56.81 0.26 216.33 ,0.001

|Age| 20.58 0.00 23.01 0.001

|Condition score| (|CS|) 23.01 0.31 29.57 ,0.001

Euclidean distance (km) (ED) 20.03 0.00 211.39 ,0.001

Same herd (Indicator: 0 = false) (H) 0.71 0.23 3.04 0.001

Same pig (Indicator: 0 = False) (Pig) 44.45 1.99 22.32 0.001

Sex Indicator variable (reference
Male: Male) (Sex)

Female/Female 21.89 0.24 27.88 ,0.001

Female/Male) 20.92 0.22 24.19 ,0.001

A fixed effect (indicator) covariate for herd and the distance between two pigs were included to control clustering and spatial autocorrelation.
doi:10.1371/journal.pone.0046310.t006
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reservoir of Salmonella for co-grazing cattle by using molecular and

spatial epidemiological methods.

We conclude that molecular epidemiological approaches and

traditional cross sectional surveys are complementary and can

enhance the understanding that can be achieved using either

approach alone. Even in a complex hyper-endemic Salmonella

ecological system, strong signals were evident and greater

inferences were possible than using either approach alone. Our

analyses indicated that the abundance of ecological resources

critical for wildlife influences Salmonella prevalence, likely through

greater persistence of Salmonella in wild pig populations. Impor-

tantly the use of a molecular approach allowed differentiation

between persistence and transmission of Salmonella, revealing that

transmission is influenced by local spatial, social and individual

factors, rather than just resources. Additionally, reliance on only

cross sectional data for evaluating Salmonella transmission would

have overestimated the proportion of variability of Salmonella data

that could be explained, with R2 values orders of magnitude

greater than with the molecular approaches. The integration of

molecular and cross sectional approaches also allows nuanced

inferences for control. Implementation of control zones for wildlife

disease management should be structured on complex spatial,

social, density and resource distribution principals that aim to

reduce prevalence as well as transmission, rather than on simple

host density principals outlined in previous theoretical models.
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