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Ab st ract

Selenium enters near shore mar ine environments from the act ivities of coal -fired power stations.

Alth ough seleni um is an essential element, at elevated conc entrations it can cause genotoxic

damage. The relati onship between selenium exposure dose and response was investigated in

Anadara trapezia exposed to selenium spiked sediment (5 fl glg and 20 flglg dry mass) for 56

days. A. Irapezia reached an equilibrium selenium tissue concentration (2 fl glg and 10 ug/g

respectively) by day 42. Gills had significantly more se lenium than the hepatopancreas and

haemolymph. Between 12 to 2 1% of accumu lated selenium in the gil l and hepatopancreas was

detox ified and in the metal rich granule. Most of the biologic ally active selenium in both tiss ues

was in the mitochondrial fraction. Glutath ione peroxidase activity and mean total glutathione

concentratio ns for selenium exposed organi sms were not signi ficantly different to controls . The

rat io of redu ced to ox idised glutathione and the total anti oxidant capac ity were significantly

reduced in selenium exposed organisms compared to control organisms. Increased selenium

exposure resulted in significant increases in lipid peroxid ation, lysosomal destab ilisat ion and an

increased frequ ency of micronuclei. A signifi cant exposure - dose - response relationsh ip for

A.lrapezia exposed to selenium enriched sedim ents ind icates that elevated sediment selenium

concentrat ions can increased biologica lly active selen ium burden s and cause impairment of

ce llular processes and cell integri ty .

Keywords: Selenium; Biomarkers; Subcellu lar fractionation; Biolog ically act ive selenium;

Biologicall y detox ified selenium; Oxidative stress ; Lysosomal stability; Lipid peroxidat ion,

Micronuclei.
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1. Introduction

In Australia, 70 % of power gene ration is from the burning of coal that contains significant

quantities of selenium (ARCA RP, 2006) . Selenium leaching from fly ash enter s coastal bays,

accumulates in sediments (Pete rs et aI. , 1999a), benthic dwelling animals (Peters et al., 1999b)

and biomagnifies in aquati c food webs (Barwick and Mahe r, 2003). Selenium is an essential

element within a fairly narrow concentrat ion range, above which it is tox ic and below whic h

selenium defic iency occurs (Hodson, 1988; Hoffman, 2002). Selenium is involved in the

reduct ion of peroxides in the glutathione cycle and the protection of cell membranes from

damage due to lipid peroxidiation (Lernly, 1998). Selenium is chemically similar to sulfur and

animals cannot discr iminate betwe en the two elements in biochemical proce sses. Substitut ion of

selenium for sulfur results in dysfunctional proteins and enzymes. At elevated concentrations,

selenium can cause genotoxic damage (Hodson , 1988; Hoffman, 2002; Mical lef and Tyler,

1987).

The tenn biomarker has been defined by Koeman et al. (1993) as a change in a biologica l

response that can be related to an expo sure to, or tox ic effect of, an env ironmental chemi cal or

chemicals. A multi -biomarker approach at several levels of biological organ isation has

advantages over the use of a single biomarker and provides an effective ear ly warning system of

adverse effects in biomonitoring of aquati c env ironments (Adams et al., 1988; Adam s et al.,

1989; Brown et al. , 2004; Galloway et al., 2004 ; Rome o el aI., 2003; Smolders et al., 2004).

The oxidative system offers a range of general response and effect biomarkers which have been

shown to be sensitive to selenium through perturbations in the glutathione cycle (Hoffman, 2002 ;

Palace et al., 2004 ; Winston, 1991). The measurement of a suite of biomarkers within this

system, from oxidative enzymes to lipid peroxidation offers a weight of evidence approach to

assessing molecular level exposure and effects. As Iysosomes playa role in metal sequestration

and detoxification (Viarengo, 1989) and are also susceptible to oxidative damage (Rego li et aI. ,

1998) the measurement of the ir integrity is a useful biomarker of effect at the cellu lar level ,

while a measure of DNA damage aids in completing the picture of a series of early adverse

reactions resulting from exposure to selenium which may have the potential to lead to higher

order effects .
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The purpose of this study was to estab lish the exposure - dose - response of Anadara trapezia, a

common sediment dwe lling es tuarine biva lve which sat isfies most of the basic requirements to

be an effective biomonitor of contami nants (Phillips and Rainbow, 1994), to sed iments with

known concentrations of se lenium . The exposure time was 56 days and the deve lopm ent of

useful biomarkers of effect was undertake n, with a view to determining whether they would be

useful organisms for assessing se lenium bioavailability and toxicity in estuarine ecosystems.

The re are currently no Austral ian selenium sediment guideline concentrations, so sediment

se lenium exposure concentrat ions 5 and 20 ug/g dry mass are based on concentrat ions previously

measured in contaminated Australian estuarine sediments (Peters, 1997; Roac h, 2005).

Organ ism internal exposure was measured by total selenium burden in gill and hepatopancreas

t issues and in haemolymph . Intemal tissue doses were further exa mined by subcellu lar

fraction ation of tissues to determine what fraction of the total selenium taken up was in a

metabolically available form . Ox idative stress was assessed by measuring total antioxi dant

scavenging capacity of cell s, cellular concentrations of ox idised and reduced glutath ione ,

glutathione peroxidase act ivity and the extent of lipid peroxidat ion. Cellular damage was

determined by measu ring lysosomal membran e stability and a micronucleus assay used to assess

genotoxic damage.

2. Materials and Methods

2.1. Sediment and Anadara trapezia collection

Estua rine sediments were collected from a NSW Departmen t of Environmental and Climate

Change reference site in Durras Lake NS W. Anadara trapezia have a cream to white heavy

ribbed equiva lve shell and ranges in length from 30 - 80 mm. A strong elonga te foot is used to

move the organism around and burrow into sediment as well as anchoring it in place (Sullivan,

1961 ). A. trapezia is a filte r feeder which has no siphon to extend beyond its shell so it never

buries entirely below the sediment surface as it must keep its posterior end expo sed to enable

feed ing (Bees ley et 01., 1998). A. trapezia used in the laboratory exposure experiment s were

co llected from sedime nt beds in Burrill Lake on the south coast of NS W. They were placed in

coolers with sediment and wate r from the collection sites for transportation. Organisms were

ma intaine d for a maximum of two weeks, in clean sed iments to allow acclimation before

experimentation. Overlying water used in aquaria was co llected from coastal waters near
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Murramurrang National Park, NSW and adjusted from 35 %0 to 30 %0 with de ionised water to

match the salinity of the estuarine water from which organisms were collected. The water

temperature was maintained at 22°C with a day I night light cycle of 14 I 10 hours to reflect

spring I summer conditions and aerated to main ta in high oxyge n saturation level s > 100 % .

Organisms were fed daily with a commercial powdered complete food suitable for marine

bivalves (Sera Micron, Germany) made up in seawater. Half water changes were done twice

weekly and pH wh ich was mea sured daily remained relat ively constant at pH 7.8-8.0 .

2.2. Sediment spiking

Sediments were sieved through a 2 mm stainless steel sieve to remove large pieces of organic

matte r and organisms prior to the addition of selenium. Sub samples of the collected sediments

were measured for moisture content and grain size . To create a sed iment matrix suitable for

organism burrowing and feed ing fine sediment was mixed with clean beach sand so that the 63

urn fraction was not greater than 20 % by mass. Wet sediment was added to glass mixing

conta iners and Na2Se0 3 (AR grade Sigma-Aldrich, USA) added at concentration of 0, 5 and 20

mglkg dry mass of sediment. To ensure added selenium was rapidly adsorbed and strongly

bound to the sediment particles a method devel oped by Simpson et al. (2004) was followed.

Briefly, all containers were topped up with clean deoxygenated sea water and the final mixture

was completely deoxygenated by bubbling with nitrogen for 2 hours. Head spaces of containers

were filled with nitrogen prior to sealing the jars. Any pH adjustments were made immediately

after the addition of the Na2Se03 using 1M NaOH (AR grade BDH , Aust) prepared in seawater.

pH was checked weekly and maintained at 7.5 - 8.2. Sediments were mixed on a Cell­

production Roller Apparatus (Belco, USA) for several hours each day . Sediments were

maintained at room temperature 22 - 25°C. The time required for equilibration of added metals

will be affected by the sediment properties, equilibration pH and the concentration and properties

of the metal (Simpson et aI. , 2004). To determine when the added Na2Se0 3 was completely

bound to sediment particles, pore waters were collected, acidified to 1 % v/v with nitric acid

(AristaR, BDH) and selenium measured using an ELAN® 6000 lCP-MS (PerkinElmer SCIEX,

USA) (Maher et al., 2001) . Once pore water selenium concentrations had fallen below

instrument detection limits 0.001 ~g/l the sediment was ready for use. The time until full

adsorpt ion was four weeks. Sediment selenium concentrations were mea sured by ICP-MS after
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digestion of 0.2 g of Iyophilised sediment in 3 ml of nitr ic acid (AristaR, BDH, Aust) in

polyethylene 50 ml centr ifuge tubes for 60 minutes at 115°C (Maher et aI., 2003). Selenium in

NRCC Certified Reference Materials , BCSS-I marine sediment measured along with samples

was 0.4 I ± 0.0 I ug/g and in agreement with certified values 0.43 ± 0.06 ug/g. Exposure

sediment selenium concen trations were measured prior to and at the end of the 56 day organism

exposure period, sediment concentrations were < 0.001, 5.00 ± 0.05 and 20 ± I ug/g on each

occasion.

2.3. Microcosm experiments

Procedures for conducting the exposures were adapted from methods recommended for

conducting sediment bioaccumulation tests (Ingersoll et al., 2000). Sedim ent 1000 g wet WI. was

placed in each of six replicate 12 litre polystyrene aquariums per treatment and allowed to settle

for 24 hours . The conta iners were filled with seawate r adj usted to a salinity of 30 %0.

Conta iners were placed in a random order in a water bath set at 22°C with a day / night light

cycle of 14 / 10 hours to reflect spring / summer conditi ons. Aeration was introduced and the

aquariums were left for 24 hours to allow them settle and the temperature to equ ilibrate. Twelve

to fourteen A. trapezia were added to each treatment aquar ium. Organ isms were fed daily with a

commercial powdered complete food suitable for marine bivalves (Sera Micron, German y) made

up in seawater. Half water changes were done twice week ly. Aquaria were contin ually aerated

using an air pump with valves on each line to regulate air flow such that oxygen saturat ion levels

::: 100 % were maintained in individua l aquaria but sediments were not agitated. Due to the

natural buffering capacity of sea water and associated sediments pH of aquarium water remained

relatively constant at pH 7.8-8.0 in all aquaria through out the 56 days of exposure. This is

similar to result s of other studies of this type (King et al., 2006 ; Strom et al., 20 11). Selenium

tissue accumulation was measured in haemolymph, gill and hepatopancreas of two organisms

from each treatment replicate at 14 day intervals to investigate the pattern of selenium

accumulation over time. After 56 days; selen ium subcellular distribution was measured in one

organism from two treatment replicates; oxidative enzyme biomarker assays were measured on

two organisms from each treatment replicate; lysosomal stability and micronuclei were measured

on one organism from each replicate. Mortalit ies were low during the 56 day exposure with the

loss of only four individuals from the control and 20 I' glg treatments.
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2.4. Selenium Measurements

2.4.1. Total selenium

Lyophi lised ground tissues were microwave digested in I ml of nitr ic acid (AristaR BDH, Aust)

in a 630 W microwave oven (CEM MDS -2000, USA) for two min at 630 W, two min 0 W, and

45 min at 315 W (Baldw in et 01., 1994) . Analys is of selenium was as previously described

above. NIST 1566a oyster tissue and acid blanks were routine ly digested and diluted in the same

way as the samples and analysed along with them. The measure d selenium values 2.1 ± 0.3 fig/g

were in good agreement with certified values 2.2 1 ± 0.24 fig/g .

2.4.2. Subcellular Selenium

The subce llular tissue selenium distribution was examined in gill and hepatopancreas tissues of

day 56 exposed A. trapezia using a procedure adapted from Sokolova et 01. (2005) and Wallace

et 01. (2003 ). The dissected tissues were placed in polyprop ylene vial s, snap frozen in liquid

nitrogen and stored at -80°C unti l processed . The tissue was homo gen ised in Ca 2+ / Mg2
+ free

saline buffer on ice using an lKA® Labortechnick Ultra-turrax-T25 homo geniser equipped with

an S25-UT dispersing tool at 9,500 rpm (Janke & Kunkel, Germany). Hom ogenised t issue was

subjected to differential centrifugation and tissue digestion procedures according to the protoco l

outlined in Taylor and Maher (201 2) using an Eppendorf 5804R centrifuge and a Himac

CP90WX preparative ultracent rifuge (Hitachi, Japan) . The mitochondria, Iysosomes plus

microsome s and heat sens itive protein pellets were grouped as biologically active selenium

fractions. The granule pellet and final supernatant containing heat stable metallothionein like

proteins were grouped as biologically detoxified selenium fractions. The supernatant from the

granule pellet isolation, contained the nuclei and cell ular debr is (Wallace et 01., 2003) . To

determine mitochondrial and lysosomal con tent of the fractions obtained from the differential

centrifugation the act ivity of enzymes specific for these organelles, cytochrome c oxidase and

acid pho sphatise, respectively, were measured in each of the total tissue, mitochondrial and

lysosome+microsome pellets using commercial colorimetric assays (CYTOC-OX I Sigma­

Aldrich, USA and CS0740 Sigma-Aldrich, USA , respectively). This showed that the

mitochondrial fraction was enriched with mitochondria, and the lysosome+micro some fract ion

with Iysosomes (Supp Figure 2). Fract ions were acidified to 10 % v/v with nitric acid (AristaR
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BDH, Aust) and placed in a water bath at 80°C for 4 hours. NIST CRM 1566a oyster tissue ,

buffer and acid blanks were digested and diluted in the same way as the samples and analysed

along with them . Ana lysis of selenium was as prev iously described above.

2.5. Enzymatic and Oxidative Damage Biomarkers

All enzyma tic biomarkers were measured in gill tissue, an active site for metal accumulation

(Ringwood et al., 2003).

2.5.1. Total Antioxidant Capacity & Lipid Peroxidation

Dissected tissue was hom ogen ised in a 5 mM potassium phosphate buffer contain ing 0.9 % w/v

sodium chloride and 0.1 % w/v glucose , pH 7.4 ( 1:5 w/v) . Tiss ue was homogenise d on ice using

a motorised micro centrifuge pellet pestle, sonicated on ice using a (Vibraf'e ll" Sonics Materials

USA) sonic probe for 15 seconds at 40 V and centr ifuged, in a 5804R centrifuge (Eppendorf,

Germany), at 10,000 x g for 15 minutes at 4°C (Caym an, 201 I) . The supernatant was stored at

_80°C until analysis of total antioxidant capacity (TAOC) , lipid peroxidation (TBARS) and

protein. TAOC was measured using an assay based on the ability of the tissue lysate

antioxidants to inhibit the oxidation of ABTS (2,2 '-azino-di-[3-ethylbenzthiazoline su lphonate])

to ABTS'+ by metmyoglobin in the presence of hydrogen peroxide. This was compared with the

antioxidant capacity of a standard, Trol ox (Cayman, 20I I). The amount of ABTS'+ produced

was measured by the suppression of absorb ance at 750 nrn and is proportional to the final tota l

antioxidant capacity concentration, expressed in millim olar Trol ox equivalents. Samples were

pipetted into a 96 well plate with metmyoglobin and ABTS . The react ions were init iated with a

44 I ~I solut ion of hydrogen peroxi de. The plate was shaken for 5 minutes at 25°C and

absorbance was read at 750 nm on a BioRad Benchm ark Plus microplate spectrophotometer.

The Thiobarbituric Acid Reactive Substances (TBARS) assay was used to measure lipid

peroxidation by measuring the malondialdehyde (MDA) concentration in each tissue lysate. The

end product of lipid peroxidation, MDA, forms a 1:2 adduc t with TBARS and produces a colour

reaction that can be read spectrophotometrica lly at 532 nm and compared to an MDA standard

curve (ZepoMetrix, 20 I I) . The samples were incubated in a solution of sodiu m dodecyl

sulphate, thiobarbituric acid and sodium hydroxide dissol ved in acetic acid at 95°C for 60

minutes. After cooli ng on ice and centrifuging at 3000 rpm for 10 minutes at room temperature,
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the colour reaction was measured, on a BioRad Benchmark Plus microplate spectrophotometer at

532 nm.

2.5.2. Reduced:Oxidised Glutathione Ratio & Glutathione Peroxidase

Dissected tissue was homogenised in a 50 mM Tris -HCI buffer containing 5 mM EDTA and

I mM OTT, pH 7.5 (1:5 w /v) on ice and supernatants produced using the technique outlined

above. A thiol scavenging agent l -methyl-2- vinyl-pyridium trifluoromethane sulfonate in HCI

(Calbiochem" , Merck, Germany) was added to GSSG tissue homogenates to remove GSH, prior

to the add ition of buffer and production of the final supernatant. The remaining GSSG is then

reduced to GSH and determined by the reaction with Ellman's reagent (Calbiochem, 2004) .

Supernatants were stored at -80°C until analysi s of reduced glutathione (GSH), glutathione

peroxidise (GPx) and protein (Calbiochem, 2004). The ratio of reduced to oxidi sed glutathione

(GSH:GS SG) was measured using an enzymat ic method based on one developed by (Tietze,

1969). The method uses Ellman' s reagent (5,5 '-dithiob is-(2 nitrobenzoic acid) (DTNB) which

reacts with GSH to form a colour which is detected at 412 nm (Calbiochem", Merck, Germany) .

The samples were acidified by the addition of a 5 % solution of metaphosphoric acid, vortexed

for 15 seconds and centrifuged at 1000 x g for 10 minute s at room temperature. The

metaphosphor ic acid extracts were diluted with a sodium phosphate buffer and mixed at room

temperature in 1 ml euvettes with DTNB and glutathione reductase enzyme at (I : I: I v/v/v). The

react ion was initiated with Il -nicotinamide adenine dinucleot ide phosphate (NADPH) and

absorbance read at 412 nm for 3 minutes at intervals of 15 seconds on a Unicam Helios Gamma

UV-Vis spectrophotometer (Spectronic, UK). Absorbance rates were calculated and GSH and

GSSG concentrations calculated using a 6 point GSH calibration curve. A GSSG buffer blank

was run for interference correction.

Glutathione peroxidise activity (GPx) was measured using a coupled reaction with glutathione

reductase (GR) (Cayman Chemicals, USA). The oxidation of NADPH to NADP+ is

accompanied by a decrease in absorbance at 340 nm. Under conditi ons where GPx activity is

rate limit ing, the rate of decrease in the A340 is directly proporti onal to the GPx activity in the

sample . Assay buffer (50 mM Tris-HCI, pH 7.6, 5 mM EDTA) was added to sample wells of a

flat bottomed 96 well plate with a co-substrate mixture (NADPH, glutathione and GR) (2:I v/v) .

Samples were added to each well and the react ion was init iated by the addition of cumene
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hydroperoxide. The plate was shaken briefly and the decrease in absorbance read at 340 nm for

5 minutes at interva ls of 30 second s at 25°C on a BioRad Benchmark Plus microplate

spectrophotometer. Rates were calculated and samples were compared with a bovine erythrocyte

GPx positive control. Buffer blanks run with the samples were used to correct for interfe rences

and GPx activity was calcul ated using the NADPH extinction coeffic ient, adj usted for the

pathlength of the solution, of 0.00373 flM-I. One unit is defined as the amount of enzyme that

will cause oxidation of 1.0 nmol of NADPH to NADP+per minute at 25°C.

2.5.3. Protein

All tissue lysates used for enzymat ic assays were analysed for protein concentration and enzyme

concentration I activity was normalised to mg" of prote in in the sample . The FluoroProfile'"

(Sigma #FPOOI0, Sigma-Aldrich, USA) protein assay used is a fluorescent assay based on

Epiccoconone, a biodegradable natural product. The fluoresce nce intens ity was read at 485 nm

excitation and 620 nm emission, on a Luminoskan Ascent Fluorescence Plate Reader (Thermo

Electrical Corp., USA). Bov ine serum (BSA) calibration curve standards were made up in

sample buffer.

2.6_ Cellular and Genotoxic Biom arkers

The cellular biomarker lysosomal stability was measured in the hepatopancreas, one of the most

important sites of contaminant deposition and effects, which has large cells with numerous

lysosomes which act as an important detoxification pathway in these organisms (Ringwood et

al., 2003). The genotoxic biomarker micronuclei frequenc y was measured in gill tissues of A.

trapezi which are another important site for metal uptake and accumulation.

2.6.1. Lysosom al Stability

Lysosomal stab ility was assessed using a method developed by (Ringwood et al., 2003) for

oysters. The assay uses neutral red dye retention to assess the integrity of the lysosomal

membrane. Cells incubated in neutral red accumulate the lipophi lic dye in the Iysosomes.

Healthy cells retain the dye in the lysosomes whereas in cells with damaged lysosomal

membranes it leaks out into the cytoplasm. Minced tissue was shaken in CMFS buffer pH 7.35

salinity 30 %0 on a reciprocating shake r at 100 rpm for 20 minutes. Trypsin (1'4799 Sigma ,

USA), 325 fll at I mglm l in CMFS buffer, was added and samples shaken for a further 20
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minutes. Cells were then collected by centrifuging samples through a 20 11m screen 2S0 - SOO g

at ISoC for S - 15 minutes. Cells were incubated in neutra l red (Sigma, USA), 0.04 mg/ml in

CMFS for I hour and one hundred cells per slide were counted using a light microscope with

40x lens and scored as stable or unstable. Two slides per sample were counted.

2.6.2. Micronuclei Frequency

The micronuclei assay used was based on a technique developed on the mussel Mytilus

galloprovincialis (Gorbi et al., 2008) . The assay uses DAPI (4',6 -diamidine-2 '-phenylindole

dihydrochloride), a fluorescent dye specific for nucleic material , to stain the nuclei. Micronuclei

are defined as small round structures less than one third the diameter and in the same optical plan

as the main nucleus, with a boundary dist inct from the nuclear boundary. Tissue preparation for

the collection of cells was the same as that used for the neutra l red retention assay. The rinsed

cells were fixed in Carney's solution (methanol.glacial acetic acid 3:1) and stored at 4°C until

counted. A drop of the fixed cell suspension was placed on a slide and air dried. A drop of the

DAPI (# 32670 Sigma, USA) working solution was added to each slide and a cover-slip added .

Slides were incubated in the dark for S minutes and observed under an inverted epifluorescent

microscope (Nikon, Eclipse TE 300, Japan) with the appropriate filter for DAPl, excitation

wavelength 350 nm magnification 40x . Two slides per sample were counted with 1000 cells per

slide scored as micronuclei present or absent.

2.7. Statistical analyses

A Mixed Linear Model analysis of vanance (ANOYA) (SPSS v 14.0) was used to

simultaneously analyse the effects of time (day) and treatment (selenium exposure concentration)

on organism tissue selenium accumulation. A Mixed Linear Model ANOYA (SPSS v 14.0) was

used analyse the effect of treatment (selenium exposure concentration) on the effect

measurement variables TAOC, total glutathione, GSH:GSSG ratio, GPx , TEARS, lysosomal

stability and micronuclei frequency (Supp Tables 1 - 3). Regressions of sediment selenium and

mean tissue selenium concentrations and means of effects variab les TAOC, TEARS, lysosomal

stability and micronuclei frequency were calculated using EXCEV Mv 2003 .
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3. Results

3.1. Selenium accumulation

Selenium accumulation by A. trapezia was dependent on time and sediment selenium

concentrat ion (p :0: 0.0005; Supplementary Table I). Tissue selenium concentrat ions reflecte d

the sed iment exposure concentrations and were in the order 20 flglg > 5 ug/g > control for each

analys is time (Figure I) . The tissue selenium concentration of the control organisms remained

the same over the course of the exposure (Figure I). The pattern of selenium accumulation was

similar in organisms from both selenium treatments, both accumulated selenium over the first 14

days with very slight increases over the next 28 days and then a slight decrease to day 56 (Figure

I) . Regression between selenium concentrations in sediments and organisms after 56 days

shows a significant positive (r = 0.97), but not proportional, relationshi p (Figu re I). Selenium

accumulation was significantly different between tissues (p :::: 0.0005; Supplementary Table 2)

with tissue sele nium concentrations in the order gills> hepatopancreas 2: haemolymph (Figure

2).

3.1.1. S ubcellular Tissue Selenium

Between 35 and 50 % of the total gill and 3 1 and 59 % of the total hepatopancreas selenium was

recovered in the subcellular tissue fractions (Table I) . Of the selenium recov ered in the gill

fractions between 16 and 21 % was in the biologically detoxified selenium fraction and fairly

equally distributed between the metal rich granule (MRG ) and metallothoinein like protein

(MTLP) fract ions . The hepatopancreas selenium distribution was similar with between 12 and

16 % in the bio logically detoxified selenium fractions with three quarters in the MRG and the

remainder in the MTLP fraction (Table 2; Figure 3) . The biologically detoxified selenium in

both control tissues was in the metal rich granule (MRG) fraction (Figure 3). The highest

percentage of selen ium in the biologi cally act ive selen ium fractions of tissues in controls and

treatments was generally in the mitochondria (35-6 2 %) with the remainder distributed between

the heat sensit ive proteins (HSP) and Iysosome+microsome fractions (Figure 3; Tab le 2).

3.2. Biomarkers

The total antioxidant capacity of ce lls were significantly reduced (p :0: 0.0005; Supplementary

Table 3a) in both the selenium treatments, relative to the control organisms (Figure 4) .
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Glutathione perox idas e activity and mean total glutathione (GSH + 2G SSG) concentrations for

treatments were not significantly different to contro ls (Figure 4, p S 0.0005; Supplementary

Tab le 3b). The ratio of reduced to oxidised glutathi one wa s significant ly red uced in selenium

exposed organi sms (Figure 4, P> 0.05 ; Suppleme ntary Table 3b) . Lipid perox idation (TBARS)

significantly increased w ith exposure to increased sediment selenium concentrations (Figure 5,

P> 0.05 ; Supplementary Tab le 3b). Lysosomal stabil ity dec reased and micronuclei frequency

significantly increased with exposure to increased selenium concentrations (Figure 5,

Supplementary Tables 3a & 3b). Regression analysis showed that the red uced total antioxidant

capacity within cells had a negative relati onsh ip with the effects measures ofTBARS (r = 0.88) ,

lysosomal stability (r = 0.95) and micronuclei frequency (r = 0.88) for selen ium exposed

organisms (Figures 4 & 5). There was a positive re lat ionship between TBARS and lysosomal

stabil ity (r = 0.99) and micronuclei frequency (r = 1.00) (Figure 5).

4. Discussion

4.1. Selenium Accumulation and Subcellular Distribution

4.1.1. Whole Organism and individual tissues

The background selenium concentration of the A. trapezia used was approximately I ug/g

(Figure I). Selenium tissue concentrations of 2 ug/g in A. trapezia from a relatively pristine

env ironment were reported by Jo lley et al. (2004) . Selenium concentrations in this range

presumably reflect the metabolic selenium requirement. Jo lley et al. (2004) fou nd A. trapezia

from a single population were able to maintain almost constant internal selen ium concentrations,

but that th is concentrat ion depended on the individual population an d the sediment ex posure

concentration. Populat ions from areas with higher selenium sediment exposure ma inta ined

higher tissue selen ium concentrations . This is further supported by Burt et al. (2007) who

transplanted A. trapezia from an uncontaminated environment to sites with elevated selenium, in

Lake Macquarie NSW. Within three month s they increased their selenium tissue con centrations

from 2 ug/g to a concentration of 4 - 5 ug/g approaching that of the indigenous population.

Se lenium exposed A. trapezia in this experiment appeared to reach an equ ilibr ium tissue

concentration at both exposure concentrations wh ich was lower than the exposure concentration

with the organisms at the higher exposure accumulating higher selenium concentrations (Figure
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I) suggesting some capacity for A. trapezia to regu late selenium, relative to their exposure

environment.

It has been demonstrated that burrowing and feeding by benthic organisms, includ ing A.

trapezia, in selenium contaminated sediments causes oxidation of sediments which increases the

selenium flux to interstitial waters, resulting in higher concentrations of selenium becoming

available to these organisms (Peters et 01., 1999a). Dietary selenium has also been establ ished as

a major selenium exposure route in aquatic organisms (Hamilton, 2002; Hamilton, 2004; Lemly,

1999b; Luoma and Rainbow, 200 8). The patte rn of tissue accumulat ion observed in the

sele nium exposed organisms indicates that dur ing the initial 14 days the exposure route was

probably via dissolved selenium in interstitial waters as the haemolymph and gill tissues both

had high or equa l selenium concentrations relative to the hepatopan creas tissues (Figu re 2). The

hepatopancreas tissues contributed more to the total selenium in the latter part of the expo sure

period suggesting an increase in the dietary selenium contri bution, probably combined with

internal transport of accumu lated dissolved selenium to the diges tive system (Viarengo and Nott,

1993). Bacteri a and marine algae, which were present in the microco sms, are able to transform

selenite to selenomethionine which is more readily absorbed via the gut and stored by bivalves

than dissolved selenite (Wrisberg et 01. , 1992)

4.1.2. Subcellu lar Selenium Distribution

A large proportion of the selenium recovered in the subcellular fractio ns of both the gill and

hepatopancreas tissues was in the nuclei+cellular debris fraction, increa sing in the gill tissues

from control organisms at 23 % to 42 and 35 % and in the hepatopancreas tissues from contro l

organisms at 14 % to 47 and 51 %, respectively, in the selenium exposed organisms (Table I ;

Figure 3) . Ewan, (1989) sugge sts that selenite is taken up by haemolymph , reduced to selenide,

released into the plasma and rapid ly bound by plasma protein s for transport to tissues, while the

majority of accumulated selenate and selenomethionine occurs in the protein-free plasma.

Selenomethionine has also been shown to bind to glutathione peroxid ase extracellularly as well

as intracellularly (Burk, 1991). Fifty six percent of accumulated selenium in enriched mycelia of

the fungu s Pleurotus ostreatus was associated with the cell wall (Hortensia et 01., 2006). A

combination of protein bound selenium assoc iated with plasma and selenium bound directly to

cell wall s coul d account for the high proportio n of selenium associated wit h the debris fraction.
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It would, therefore, be comprised of both biologically detoxified and active selenium. Only a

small percentage of the accumulated selenium was recovered in the biologically detoxified

selenium fractions in the exposed organisms (Figure 3). The distribution within the detox ified

selenium fractions differed between tissues. There was an even distribut ion in the gill tissues

and a higher proportion in the metal rich granule s (MRG) than the metallothionein like proteins

(MTLP) in the hepatopancreas tissues (Table I). Selenium associated with metallothioneins and

MRGs has not previously been reported for marine molluscs. The association of selenium with

selenoamino acids and other low molecular weight proteins which are presumed to act as storage

and transport proteins, not unlike metalloth ioneins has been shown (Akesson and Srikumar,

1994). The strong relationship of selenium with sulphur (Ganther, 1974) is a possible pathway

for the incorporation of selen ium into MRG, as sulphur has been reported as a major component

of zinc and cadmium granu les in M edulis (George, 1983). The lack of se lenium in the MTLP

of the control organisms (Figure 3) is probably due to all of the available selenium being

required for metabolic activity. The MRG component seen in the tissues of the contro l

organ isms may be a result of incomplete ly broken down tissue debris during the NaOH digestion

step in sample preparation, or could represent a previous exposure history in which excess

selenium was detoxified and stored. If this is the case the observation that selenium has not been

lost during the exposure to clean sediments raises the question of whether selenium excretion

occurs in A. trapezia and if so over what time scale. Selenium half-lives varying between 19 and

42 days have been reported for j uvenile fathead minnow, after ora l administration of selenate,

selenite and L selenomethionine, depend ing on the form of the selenium and the fish tissue

studied (Kleinow and Brooks, 1986). Mature fish chronically exposed to selenium in natural

waters did not show any selenium loss from muscle tissue from year to year (Osmundson et al.,

2000) . It is thought that selenium bound with in selenomethionine would probab ly require more

energy to eliminate due to its incorporation into proteins and tissue (Hamilton, 2004) .

The majority of the recovered selenium in the gill and hepatopancreas tissues of the control

organisms was in the biologically active selenium fraction (Table 1). This supports the view that

the selenium measured in these organisms represents the metabolic requirement (DeNico la

Cafferky et al., 2006) . The percentage of selenium in the biologically active selenium fractions

of organisms from all treatments was far greater than the percentage in the biologically

detoxified selenium fractions indicating that A. trapezius ' capacity to detoxify or store selenium
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is limited. More than half of the selen ium in the biologically active selenium comp onent of the

gill tissues was in the mitochondrial fraction (Figure 3; Table 2) . This may represent dissolved

selenium released to interstitial water following bioturbation (Lem ly, I999b) being incorpo rated

rapidly, via the large gill filaments, across cell walls into the active sites of glutathione induction

in the mitochon dria. Increase d activity of the mitocho ndrial enzyme cytochrome c oxidase in the

gill tissues compared to the hepatopan creas tissues (Supplementary Figures I and 2) shows the

gill tissue is enr iched in mitoch ondria and th is was enhanced in the selenium exposed organ isms

indicating selenium induced mitoch ondrial activity. The hepatopancreas tissues of exposed

organisms had 35 to 39 % of the selenium in the mitochondrial fraction with about the same

amount in the heat sensitive protein fraction (Figure 3; Table I) . The higher binding ofseJenium

with heat sens itive prote ins in the hepatopancreas tissue may be due to the incorporation of

selenium into the hepatopancreas ; via ass imilation of food and sediment, as we ll as thro ugh

haemolymph transfer and directly from water (Fan et al., 2002) . The increased selenium

concent rations in the biolog ically activ e selenium fract ions of the exposed organisms has

implications for adverse effects in A. trapezia, as there is only a narrow concentration range at

which selenium is required for metabolic processes and beyond this it is highly toxic (Ham ilton,

2004).

4.2. Enzymatic Biomarkers - Oxidative En zymes

Selenium's prooxidant activity arises from its abi lity to oxidi se thiols. Some forms of selenium

compl ex with glutathione to form a selenopersulfide anion that ult imately generates superoxide

radicals (Palace et al., 2004). There was a significant reduction in the total antioxidant capacity

(TAOC) in A. trapezia from both selenium treatments to less than half that of the control

organisms (Figure 4). The final gill biologically active selenium burden of the 5 ug/g selenium

exposed A. trapezia was 4.5 times lower than that of the 20 ug/g selenium exposed organisms.

The pattern of equivalent TOA C reduction in organisms with very different bio logica lly active

selenium burden s was also seen for lead exposure in A. trapezia (Taylor and Maher, 20 12) and

like lead it is possible that there is a critical selenium concentrat ion that impairs TAOC which

may be lower than these concentrat ions. The glutath ione peroxidase (GPx) enzyme activ ity, in

which sel enium plays a maj or role , was reduced in A. trapezia from both treatments but neither

was significantly lower than control organisms (Figure 4). At optimal selenium mitochondr ial
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conce ntrat ions the format ion of Se-dependent GPx would be expected to be enhanced in

response to an oxidative challenge thereby increasing the total GP x activity (Winston and Oi

Giul io, 199 1). The reduced activi ty in the selenium exposed A. trapezia may relate to the

increased biologically active sele nium burd en hav ing a toxic inhibitory effe ct on GPx formation.

The tota l glutath ione concentration was enhanced in A. trapezia from both treatments but neither

was significantly higher than con trol organisms (Figure 4). The significantly reduced

GSH: GS SG ratio in se len ium exp osed A. trapezia, indicates that increased tota l glutathione wa s

largely comprised of oxidised glutathione. Sign ificantly reduced ratio s of GSH :GSSG have

prev iously been measured in sel enium exp osed mallard ducks (Hoffman, 2002). Oxid ised

glutathione can react with protein sulfhydryls , con tributing to total and protein bound thiol

depletions (Hoffman, 2002), but equally exce ss GSSG may be excreted from cells more rapidly

than it can be reconverted back to the reduced form by glutathione reductase (Mei ster, 1989).

Selenite in high concentrations can also deplete GSH, inhibiting the release of selenium

metabolites (Magos and Webb , 1980).

4.3. Oxidative Damage Biomarker - Thiobarbituric Acid Reactive Substances

Increased lipid peroxidation has been measured in the tissues of adult and hatchl ing tiss ues and

in the eggs of aquatic bird s which was directly related to the effects of selenium accumu lation on

the glutathione system (Hoffman, 2002). There was a trend of increasing lipid peroxidation with

increased selenium exp osure which was significantly higher in organism s from both selenium

treatments than in the control organisms (Figure 5) . The negative relationship between total

ant ioxidant capacity and lipid peroxidation with increased selenium exposure supports the

existence of a link between increased ROS and the production of lipid peroxidation products .

4.4. Cellular Biomarker - Lysosomal Stability

The lysosomal' destabi lisati on of selenium exposed A. trapezia was extremely high, 54 and 69 'Yo,

respectively, in the 5 and 20 ug /g selenium exposed organisms (Figure 5). This level of

lysosomal destabilisation indicates sign ificant selenium toxicity and puts them well into the

stressed range of the criteria developed for the oyster C. virginica by Ringwood et al. (2003).

The increased lysosomal destabilisation with increased selenium burdens follows the same

pattern as seen for lipid peroxidation (Figure 5) and the positive relationship between these two
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bioma rkers indicates peroxidative damage was probably a significant pathway for lysosomal

destabilisation. Heat sensitive cytosolic proteins of the selenium exposed A. trapezia had

significantly increased selenium burden s (Table I) which may have been bound to sensitive

macrom olecules . This may have contributed to the total protein thiol depletions, reduc ing the

effectiveness of metabolic regulation, thereby contributing to the breakdown of the lysosomal

membrane integrity (Hoffman, 2002) .

4.5. Gel/atoxic Biomarker - Micronuclei Frequency

The significant increase in micronuclei with increased selenium exposure showed a relationshi p

with both total antioxidant capac ity reduction and increased TBARS (Figure 5) indicating that an

increase in reactive oxygen species probabl y contributed to an increa se in genotoxic dama ge,

e ither through interaction of reactive oxygen intermediates and lipid peroxid at ion product s with

DNA or direct interaction of selenium with cellular macromolecules form ing adducts, alkaline

labile sites and strand breaks (Regoli et al., 2004). An investigation of the bone marrow of

selenium exposed mice reported increased micronuclei inducti on (Itoh and Shimada, 1996) and

thc erythrocyte cells of fish exposed to selenium showed significant increases in micronuclei

frequency (al Sabt i, 1994). The accumul ation of selenium not only has implications for

individual organism health. The primary point of impact can be the gamete which rece ives

sele nium via the fema le's diet and stores it until hatching when tetragenic deform ity and death

can occu r. While mature organisms may appear outwardly unaffected, reprod uctive failure may

be occurring (Lemly, 1999a). The increased induction of micronuclei in the selenium exposed A.

trapezia indicates that sign ificant DNA damage occurred at the individual organism leve l. The

tetragenic tendency of this element suggests there is a potential for this level of exposure to have

consequences for popu lation viability.

5. Conclus ions

The metabolic selenium requirement of A. trapezia appears to be in the order of I to 2 ug/g dry

tissue mass. A large percentage of the accumulated selenium was associated with the cellular

debris. This was probably comprised of a combination of protein bound selenium, associated

with plasma, and selenium bound to cell wall s. Selenium exposed A. trapezia only detoxified a
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small percentage of accu mulated selenium which suggests a limited detox ification and storage

capac ity for this element. The high proportion in the nuclei+cellu lar debris potentially bound to

cell walls could, howev er, effecti vely be detoxified. The differences in selenium distribution in

the biologically active selenium fractions of the two tissues indicate two major exposure routes,

dissolved selenium in the gill and dietary selenium in the hepatopancreas. There was a

significan t reduction in the total antioxid ant capacity in A. trapezia from both selenium

treatments. Glutath ione peroxidase reduction was reflected in increased total glutathione

concentrations which the GSH:GSSG ratios indicate was due to a build up of oxidis ed

glutathione . Organisms with reduced total antio xidant capacity showed increased lipid

peroxidation, lysosomal destabilisation and micronuclei frequency . Th is research supports a

significant exposure - dose - response relationship for selenium in A. trapezia. Identification of

these relationships for seleni um exposure at these levels of biological organisation should enable

a greater understanding of the mechanisms of stress responses to this tox icant . If such

relationships can be demo nstrated in field expos ed organisms thi s could ultimately aid in

developing improved predictive capability for ecological risk assessment, allowing better

informed decis ions regarding remedial actions to be made.

Acknowledgements

We thank F. Krikowa for meta l analysis , S. Foster for assistance with aquarium set up and K. &

C. Tay lor for assistance with organism collection and sample preparation. Funding from the

Ecochemistry Laboratory and the NSW Environmental Trust is acknowledged. This paper is

ded icated to Tony Roach (1962-20 I I) a sad ly missed friend and research co llaborator.

19



References

Adams SM, Beauchamp 11, Burtis CA (1988) A multivariate approach for evaluat ing responses
of fish to chronic pollutant stress. Marine Environmental Research 24, 223-226 .

Adams SM, Shepard KL, Greeley J, M. S., Jimenez BD, Ryon MG, Shugart LR, McCarthy JF,
Hinton DE (1989) The use ofbioindicators for assessing the effects of pollutant stress on fish.
Marine Environmental Research 28, 459-464 .

Akesson B, Srikumar TS (1994) Occurrence of low-molecular-weight and high-mo lecular­
weight selenium compounds in fish. Food Chemistry 51, 45-49.

al Sabti K (1994) Micronuclei induced by selenium, mercury, methylmercury and their mixtu res
in binucleated blocked fish erythrocyte cells . Muta tion Research Leiters 320, 157-163.

ARCARP (2006) 'Trace Elements in Coal.' Austra lian Coal Association Research Program.

Baldwin S, Deaker M, Maher W (1994) Low-vo lume microwave digestion of marine biological
tissues for the measurement of trace elements. Analyst 119, 1701-1704 .

Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper,
cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie
Estuary, NSW, Australia. Mar ine Environmental Research 56, 471-502.

Beesley PL, Ross GJB, Wells A (Eds) (1998) 'Mollusca: The Southern Synthesis' Fauna of
Australia Vol. 5 (CSIRO Publishing: Melbourne)

Brown RJ, Galloway TS, Lowe D, Browne MA, Dissanayake A, Jones MB, Depledge MH
(2004) Differential sensitivity of three marine invertebrates to copper assessed using multip le
biomarkers. Aquatic Toxicology 66, 267-278.

Burk RF (1991) Molecu lar biology of selenium with implications for its metabolism . The FASEB
Journal S, 2274-2279.

Burt A, Maher W, Roach A, Krikowa F, Honkoop P, Bayne BL (2007) The accumu lation of Zn,
Se, Cd and Pb and physiological condition ofAnadara trapezia transplan ted to a contamination
gradient in Lake Macqua rie, New South Wales, Aust ralia. Marine Environmental Research 64,
54-78.

Calbiochem (2004) GSHfGSSG Ratio Assay Kit User Protocol 371757.

Cayman (20 II ) Antioxidant Assay Kit User Protocol 709001.

DeNicola Cafferky K, Richardson DD, Caruso JA (2006) ICP-MS Speciation Analysis: Three
Roles of Selenium. Spectroscopy 21, 18-22.

20



Ewan RC (1989) An imal Tissues. In 'Occurance and Distrib ution of Selenium
'. (Ed. M Ihnat) pp. 121-167. (CRC Press Boca Raton , Florida)

Fan TW -M, Teh SJ, Hinton DE, Higashi RM (2002) Sele nium biotransformations into
proteinaceous forms by foodweb organisms of selen ium-laden drainage waters in Californ ia.
Aquatic Toxicology 57, 65-84.

Galloway TS , Brown RJ, Browne MA, Dissanayake A, Lowe D, Jones MB, Depledge MH
(2004) Ecosystem management bioin dicators : the ECOMAN project - a mult i-biomarker
approach to ecosystem management. Marine Environmental Research 58, 233-237.

Ganther HE (1974) Biochemistry of Selenium. In 'Selenium'. (Eds RA Zingaro and WC Cooper)
pp. 546-6 14. (Van Nostrand Reingold Company: New York)

George S (1983) Heavy meta l detoxication in Mytilus kidney - an in vitro study of Cd- and Zn­
binding to isolated tertiary Iysosomes. Comparative Biochemistry and Physiology 76C , 59-65 .

Gorb i S, Virno Lamberti C, Notti A, Benedett i M, Fattorini D, Mo ltedo G, Regoli F (2008) An
ecotoxicological protocol with caged mussels, Mytilus ga lloprovincialis, for monitor ing the
impact of an offshore platform in the Adri atic sea. Marine Environ mental Research 65,34-39.

Hamil ton SJ (2002) Rationale for a tissue-based selenium criter ion for aquatic life. Aquatic
Toxicology 57, 85-lO 0.

Hamilton SJ (2004) Revie w of selenium toxicity in the aquat ic food ch ain. Scie nce of The Total
Environment 326 , 1-31.

Hodson PV (1988) The effec t of metal metabolism on uptake, disposition and toxicity in fish.
Aquatic Toxicology 11, 3- 18.

Hoffman DJ (2002) Role of selenium toxicity and oxidative stress in aquat ic birds. Aquatic
Toxico logy 57, 11-26.

Hortensia A, Munoz S, Kubachka K, Wrobel K, Corona JFG, Yathavakilla SKV, Caruso JA,
Wrobel K (2006) Se-Enri ched Mycelia ofPle urotus ostreatus: Distribut ion of Seleni um in Cell
Walls and Cell Membranes/Cytosol. Jo urnal ofAgricultural and Food Chemistry 54,3440-3444 .

Ingerso ll CG, Burton GA, et al. (2000) Methods for Measuring the Toxicity and
Bioaccumulation of Sediment-associated Contaminants wit h Freshwate r Invertebrates In. (Ed.
SaTW Offices of Research and Devel opment Mid-Continent Eco logy Department). (U.S.
Environmental Protec tion Agency)

Itoh S, Shimada H (1996) Micronucleus induction by chromium and selenium, and suppression
by meta llothio nein inducer. Mutation Research Letters 367, 233-236.

2 1



Jolley OF, Maher WA, Kyd J (2004) Seleniu m accumulat ion in the cockle Anadara trapezia.
Environmental Pollution 132, 203-2 12.

King CK , Gale SA, Hyne RV, Stauber JL, Simpson SL, Hickey CW (2006) Sensiti vities of
Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked
sediments. Chemosphere 63, 1466- 1476.

Kleinow KM, Broo ks AS (1986) Se lenium compounds in the fathead minnow (Pimephales
promelas ) - l. Uptake, distribut ion and eliminat ion of orally adm inistered selenate, selenite ans 1­
selenomet hio nine. Comparative Biochemistry and Physiology C 83, 61-69 .

Koeman JH, Kohler-Gunther A, Kurelec B, Riviere JL, Verstee g 0 , Walker CH ( 1993)
Ap plications and Objecti ves of Bioma rker Research. In 'Biomarkers Research and Application in
the Assessment of Environmenta l Hea lth'. (Eds DB Peakall and LR Shugart) pp. 1-13)

Lemly A D (1998) Pathology of selenium poisoning in fish. In 'Environmental Chemistry of Selenium'.
(Eds WT Frankenberger and RA Engberg) pp . 281-296 . (Marcel-Dekker Inc: New York)

Lem ly DA (1999a) Selenium impacts on fish: An insidious time bomb. Human and Ecological
Risk Assessment 5, 1139-1151.

Leml y DA (199 9b) Selenium transport and bioaccumulation in aquatic ecosystems: A proposal
for water qua lity criteria based on hydrolog ical un its. Ecotoxicology and Environmental Safety B
42, 150-156.

Luoma SN, Rainb ow PS (2008) 'Metal Contaminatio n in Aquatic Environments: Science and
Lateral Management.' (Cambridge Univers ity Press: Camb ridge)

Magos L, We bb M (19 80) The interacti ons of selenium with cadmium and mercury. Critical
Reviews in Toxicology 8, 1-42.

Maher W, Forster S, Krikowa F, Snitch P, Chapple G, Craig P (2001) Measurement of trace
elements and phosphorus in marine animal and plant tis sues by low-volume microwave digest ion
and ICP-MS. Atomic Spec troscopy 22, 361-370.

Maher W, Krikowa F, Kirby J, Townsend AT, Snitch P (2003) Measurement of trace elements in
marine environmental samples using solution ICP-MS. Current and future app licat ions.
Australian Journal of Chemistry 56, 103-116.

Meister A (1989) On the biochemistry of glutathione. In 'Glutath ione Ce ntennial: molecular
perspectives and cli nica l implicat ions'. (Eds N Tan iguchi, T Higashi, S Sakamoto and A Meister)
pp. 3-22. (Academic Press: San Diego)

Micallef S, Ty ler PA (1987) Preliminary observati ons of the interactions of mercury and
selenium in Mytilus edulis. Marine Pollution Bulletin 18, 180-185.

22



Osmund son BC, May TW, Osmundson DB (2000) Selenium concentrations in the Colorado
pinkeminnow (Ptychocheilus lucius) : Relationship with flows in the upper Colorada River. .
Archives of Environmental Contamination and Toxicology 38, 479-485.

Palace VP, Spallholz JE, Holm J, Waultier K, Evans RE, Baron CL (2004) Metabolism of
selenomethionine by rainbow trout (Oncorhyn chus mykiss) embryos can generate oxidative
stress. Ecotoxicology and Env ironmental Saf ety 58, 17-21.

Peters G (1997) Bioturb ative remobilisation of selenium in contaminated sediments. PhD thes is,
University of Canberra.

Peters GM, Maher WA, Jolley DF, Carroll BI, Gomes BI, Jenk inson AV, McOrist GD (l999a)
Selenium contamination, red istributio n and remobili sation in sediments of Lake Macquarie, New
South Wales. Organic Geochemistry 30, 1287-1300 .

Peters GM, Maher WA, Krikowa F, Roach AC, Jeswan i HK, Barford JP, Gomes VG, Reible DD
(l999b) Selenium in sediments, pore waters and benthic infauna of Lake Macquarie, New South
Wales, Australia. Marine Environmental Research 47, 491-508.

Phillips DJH, Rainbow PS (1994) 'Biomonitoring of Trace Aquat ic Contaminants.' (Chapman &
Hall: London)

Regoli F, Frenzilli G, Bocchetti R, Annarumma F, Scarcell i V, Fattorin i D, Nigro M (2004)
Time-course variat ions of oxyradical metabolism, DNA integri ty and lysosomal stability in
mussels, Mytilus galloprovincialis , during a field translocation experiment. Aq uatic Toxicology
68,167-178.

Regoli F, Nigro M, Orlando E (1998) Lysosomal and antioxidant respon ses to metals in the
Antarctic scallop Adamussium colbecki. Aquatic Toxicology 40, 375-392.

Ringwood AH, Hoguet J, Keppler CJ, Gielazyn ML, Ward CH, Rourk AR (2003) 'Cellu lar
Biomarkers (Lysosomal Destabilization, Glutathione & Lipid Peroxidation) in Three Common
Estuarine Species: A Methods Handbook.' (Marine Resources Research Institute, Sth. Caro lina
Dept. Nat. Res. Charleston)

Roach A (2005) Assessment of metals in sediments from Lake Macq uarie, New South Wales,
Australia, using normali sation mode ls and sediment quality guidel ines. Mar ine Environmental
Research 59, 453-472.

Romeo M, Hoarau P, Garello G, Gnassia-Barelli M, Girard JP (2003) Musse l transplantation and
biomarkers as useful tools for assessing wate r quality in the NW Mediterranean . Environmental
Pollu tion 122, 369-378 .

Simpson SL, Angel BM, Jolley DF (2004) Metal equilibration in laboratory-contaminated
(spiked) sediments used for the develo pment of whole-sediment toxicity tests. Chemosphere 54,
597-609.

23



Smolders R, Bervoets L, De Coen W, Blust R (2004) Cellular energy allocation in zebra mussels
exposed along a pollution gradient : linking cellula r effects to higher levels of biological
organiza tion. Environmental Pollution 129, 99-112.

Sokolova 1M, Ringwood AH, Johnson C (2005) Tissue-specific accumulation of cadmium in
subcellular compartments of eastern oysters Crassostrea virginica Gmelin (Bivalvia: Ostreidae).
Aq uatic Toxicology 74, 218-228.

Strom 0 , Simpson SL, Bately GE, Jo lley OF (2011) The influence of sedime nt particle size and
organ ic carbon on toxic ity of copper to benthic invertebrates in oxic/suboxic surface sediments.
Environmental Toxicology and Chemistry 30, 1599- 1610.

Sullivan GE (1961) Functional morphology, micro-anatomy and histology of the "Sydney
Cockle" Anadara trapezia (Oeshayes) (Lamellibranchia: Arcidae) . Australian Journal of
Zoology 9, 219-257 .

Taylor AM, Maher WA (2012) Exposure-dose-response ofAnadara trapezia to metal
contaminated estuarine sediments . 1. Lead spiked sediments . Aquatic Toxicology 116-117,
79-89.

Tietze F (1969) Enzymatic method for quantitative determination of nanogram amounts of total
and oxidised glutathione: Applications to mammalian blood and other tissues. Analytical
Biochemistry 27, 502-522.

Viarengo A (1989) Heavy metals in marine invertebrate s: mechani sms of regulat ion and toxicity
at the cellular level. Rev. Aquat. Sc i. 1,295-317.

Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homeostasis in marine
invertebrates. Comparative Biochemistry and Physiology Part C: Comparative Pharm acology
104, 355-372.

Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two
bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detox ified metal
(BOM). Marine Ecology Progress Series 249, 183-197.

Winston GW (1991) Oxidants and antioxiden ts in aquatic animals. Comparative Biochemistry
and Physiology lOOC, 173-176.

Winston GW, Di Giu lio RT (1991) Prooxidant and antioxidant mechanisms in aquatic
organisms. Aquatic Toxicology 19,137-161.

Wrisberg MN, Bilbo CM, Spliid H (1992) Induction of micronuclei in hemocytes of Mytilus
edulis and statistical analysis . Ecotoxicology and Environmental Safety 23, 191-205.

ZepoMetrix (201 I) Oxitek TBARS Assay Kit User Protocol ZMC Cata log # 0801192.

24



25



Table(s)

Ta ble 1: Selenium (ug wet mass) in gill and hepatopancreas whole tissue and the total selenium
with percentage recovered from all subcellular fractions ofA. trapezia after 56 days exposure to
selenium spiked sediments. Subcellular seleniumtug wet mass) and percentage distribution of
total recovered selenium fractions are grouped as nuclei+cellu lar debris and biologically active
and detox ified selenium (Figure 3).

Gill Heuatonancreas

Se co ntrol Se 5 uplp Se20 uplp Se control Se 5 u.l. Se20 ul!!.

Total Tissue Selen ium (J.lg) 0.3 ± 0.2 0.5 ± 0.1 1.7 ±0.1 0.3 ± 0.1 0.40 ± 0.05 0.4 ± 0.1

Total Recove red Selenium (flg) 0.10 ± 0.02 0.2 ±O.I 0.80 ± 0.05 0.10 ± 0.01 0.10 ± 0.01 0.20 ± 0.01
Proportion of total recoveredin
fractions (%) 35 ± 14 45 ± 0.3 50 ± 1 31 ± 5 34 ± 7 59 ± 12

Selenium Distribution

Nuclei + Cellular debr is (Ilg) 0.02 ± 0.01 0.1 ± 0.01 0.3 ± 0 0.01 ± 0.01 0.06 ± 0.01 0.1 ±O

Nuclei + Cellulardebris (%) 23 ± 10 42 ± 6 35 ± 2 14 ± 6 47 ± 3 51 ± 2

Biologically Active Se lenium (flg) 0.06 ± 0 0.09 ± 0.04 0.40 ± 0.02 0.05 ± 0 0.06 ± 0 0.08 ± 0.01

Biologically Active Selenium (%) 67 ± 13 37 ± 7 49 ± 1.4 70 ± 13 37 ±6 37 ± 5

Biologically Det oxified Selenium (Jlg) 0.01 ± 0 0.05 ± 0.01 0.13 ± 0.03 0.01 ± 0.01 0.02 ± 0 0.02 ± 0.01

Bioloaicallv Detoxified Selenium (% ) 10 ±4 21 ± 3 16 ± 3 16 ± 5 16 ± 3 12 ± 2

Mean ± SO, n - 2.

Table 2: Mean percenlage of selenium in the debris, biologically detoxified selenium (BOM)
and biologically active selen ium (BAM) with the percentage of seleni um each of the fractions
within contributes to BOM or BAM, from subcellular fractions ofA. trapezia after 56 days
exposure to selenium spiked sediments, n = 2.

Gill Hena topancreas

Se con trol Se 5 uplp Se 20 " . Ip Se control Se 5 " pip Se 20 ..I.

Nuclei + Cellular deb ris % of tot al 23 42 35 17 47 51

BDl\1 % of total 10 22 16 14 16 12

Metal Rich Granules %ofB DM 100 56 50 100 77 67

Heal Stable MT Like Proteins %ofBDM 0 44 50 0 23 33

BAM % of tota l 67 37 49 70 37 J7

Mitochondria %of BAM 57 58 62 45 35 39

Lysosomes + Microsomes %of BAM 14 19 18 23 26 20

Heat Sensitive Proteins %of BAM 28 24 20 32 38 42



Figure(s)

Figure Captions

Figure 1: Selenium accumulation in whole tissue of A. trapezia at 2 week intervals over 56 days
of exposure to sediments containing selenium at 0 (contro l), 5 & 20 ug/g dry mass. Mean ± SE,
11 = 8, 12 and 8 respectively. Day 0 are unexpo sed organi sms 11=5.

Figure 2: Selenium accumulation in gill, hepatopancreas and haemolymph tissues ofA. trapezia
at 2 week interva ls for 56 days exposure to sediments spiked with selenium at; 0 (control), 5 and
20 ug/g dry mass. Mean ± SE, 11 = 8, 12 and 8 respect ively. Day 0 are unexposed organisms,
11=5.

Figure 3: Distribution (%) of selenium in the subcellular fractions of A. trapezia gill and
hepatopancreas tissues following 56 days of exposure to selenium spiked sediments. Subcellular
fractions are : nuclei+ cellul ar debris (N & Cd); metal rich granules (MRG); heat stable
metallothionein like proteins (MTLP); mitochondria (Mit) ; lysosomes+ microsome s (Lys &
Mic); heat sensit ive proteins (HSP). Red fractions make up the biologically active selenium
(BAM), green fractions make up the biologically detoxified selenium (BDM) , 11 = 2.

Figure 4: Ant iox idant enzyme biomarkers: tota l antioxidant capacity; glutathione peroxidase
(GPx) ; tota l glutathione (GSH+2GSSG); and ratio of reduced to oxidised glutathione
(GSH/GSSG Ratio) ofA. trapezia followin g 56 days of exposure to selenium spiked sediments:
oSe (control) , Se 5 ug/g; and Se 20 ug/g dry mass. Mean ± SE, n = 8, 12 and 8 respectively.
Different letters indicate significant differences between means (Bonferroni test; p < 0.05).

Figure 5: Changes in oxidative damage, cellular and genotoxic biomarkers of A. trapezia gill,
hepatopancreas and gill tissues respectively followi ng 56 days exposure to selenium spiked
sediments, Se 0 (control) , Se 5 flg /g and Se 20 ug/g; dry mass. Mean ± SE. Different letters
indicate significant differences between means (Bonferroni test; p < 0.05) .
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Figure 2
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Figure 3
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Figure 5
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'H igh lights (fo r review)

Highlights

>We describe an exposure-dose-response approach to assessing selenium expos ure in

Anadara trapezia. :- The selen ium accumulation was both dissolved via gills and dietary via
hepatopancreas. ::- The majori ty of accumu lated selenium was associated with cellular debr is
or as biologically active selenium. > The small proportion in metallothionein like proteins

and granules suggests a limited detoxification capacity for selenium . > Increased selenium
dose resulted in reduced antioxidant capacity with an associated increase in lipid
peroxidation, increased lysosomal destabilisation and genotoxic damage. > Elevated sediment

selenium concentrations significantly impaired A. trapezia cellular processes and may
threaten the health of sediment dwelling organisms.:
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