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Abstract— Vector quantization (VQ) is a simple but effective
modelling technique in pattern recognition. VQ employs a
clustering technique to convert a feature vector set in to a
cluster center set to model the feature vector set. Some clus-
tering techniques have been applied to improve VQ. However
VQ is not always effective because data features are treated
equally although their importance may not be the same. Some
automated feature weighting techniques have been proposed to
overcome this drawback. This paper reviews those weighting
techniques and proposes a general scheme for selecting any
pair of clustering and feature weighting techniques to form a
fuzzy feature weighting-based VQ modelling technique. Besides
the current techniques, a number of new feature weighting-
based VQ techniques is proposed and their evaluations are also
presented.

I. INTRODUCTION

Vector quantization (VQ) is a popular modelling technique
that has been used in pattern recognition, image processing,
and data reduction methods [1]. VQ is used to convert
a feature vector set into a small set of distinct vectors
using a clustering technique. Advantages of this reduction
are reduced storage and computation. The distinct vectors
are called codevectors and the set of codevectors that best
represents the training set is called the codebook. Since
there is only a finite number of code vectors, the process
of choosing the best representation of a given feature vector
is equivalent to quantizing the vector and leads to a certain
level of quantization error. This error decreases as the size
of the codebook increases, however the storage required for
a large codebook is non-trivial. The VQ codebook can be
used as a model in pattern recognition. The key point of
VQ modelling is to derive an optimal codebook which is
commonly achieved by using a clustering technique.

Some clustering techniques have been applied to improve
VQ [2]. However VQ is not always effective because all
features are treated equally, but they may not have the same
importance. Some automated feature weighting techniques
have been proposed to overcome this drawback. This paper
reviews these weighting techniques and proposes a general
scheme for selecting any pair of clustering and feature
weighting techniques to form a feature weighting-based VQ
technique. Besides the current feature weighting-based VQ
techniques, a number of new techniques is proposed and their
experimental results are also presented.

II. VECTOR QUANTIZATION

A. Vector Quantization Modeling
VQ modeling can be summarized as follows. Given a train-

ing set of T feature vectors X = {x1,x2, . . . ,xT }, where
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each source vector xt = (xt1, xt2, . . . , xtM ) is of M dimen-
sions. Let λ = {c1, c2, . . . , cK} represent the codebook of
size K, where ck = (ck1, ck2, . . . , ckM ), k = 1, 2, . . . ,K are
code vectors. Each code vector ck is assigned to an encoding
region Rk in the partition Ω = {R1, R2, . . . , RK}. Then the
source vector xt can be represented by the encoding region
Rk and expressed by

V (xt) = ck, if xt ∈ Rk (1)

B. K-Means Partition
Let U = [ukt] be a matrix whose elements are member-

ships of xt in the nth cluster, k = 1, . . . ,K, t = 1, . . . , T .
A K-partition space for X is the set of matrices U such that
[1]

ukt ∈ {0, 1} ∀k, t,
K∑
k=1

ukt = 1∀t, 0 <
T∑
t=1

ukt < T ∀k

(2)
where ukt = uk(xt) is 1 or 0, according to whether xt is or
is not in the kth cluster,

∑K
k=1 ukt = 1 ∀t means each xt

is in exactly one of the K clusters, and 0 <
∑T
t=1 ukt < T

∀k means that no cluster is empty and no cluster is all of X
because of 1 < K < T .

The K-means VQ (KMVQ) technique is based on mini-
mization of the sum-of-squared-errors function as follows

JKM (U, λ;X) =
K∑
k=1

T∑
t=1

uktd
2
kt (3)

where λ is a set of prototypes, in the simplest case, it is the
set of cluster centers λ = {c1, c2, . . . , cK}, and dkt is the
Euclidean norm of (xt − ck). Minizing JKM (U,W, λ;X)
over the variables U and λ yields the following equations

ck =
T∑
t=1

uktxt

/ T∑
t=1

ukt 1 ≤ k ≤ K (4)

ukt =

{
1 : dkt < djt j = 1, . . . ,K, j 6= k
0 : otherwise (5)

C. Fuzzy C-Means Partition
Let U = [ukt] be a matrix whose elements are fuzzy

memberships of xt in the kth cluster, k = 1, . . . ,K, t =
1, . . . , T . A K-partition space for X is the set of matrices
U such that [2]

ukt ∈ [0, 1] ∀k, t,
K∑
k=1

ukt = 1 ∀t, 0 <
T∑
t=1

ukt < T ∀k

(6)

978-1-4244-8126-2/10/$26.00 ©2010 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Canberra Research Repository

https://core.ac.uk/display/286877105?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where ukt ∈ [0, 1] ∀k, t and
∑K
k=1 ukt = 1 ∀t mean it

is possible for each xt to have an arbitrary distribution of
fuzzy membership among the N fuzzy clusters, and 0 <∑T
t=1 ukt < T ∀k means that no cluster is empty and no

cluster is all of X because of 1 < K < T .
The fuzzy c-means VQ (FCMVQ) technique is based

on minimization of the sum-of-squared-errors function as
follows [2]

JFCM (U, λ;X) =
K∑
k=1

T∑
t=1

uγktd
2
kt (7)

where λ is a set of prototypes, γ > 1 is a weighting
exponent on each fuzzy membership uit and controls the
degree of fuzziness, in the simplest case, it is the set of cluster
centers λ = {c1, c2, . . . , cK}, and dkt is the Euclidean norm
of (xt − ck). The basic idea of the FCM method is to
minimize JFCM (U, λ;X) over the variables U and λ on
the assumption that matrix U , which is part of the optimal
pairs for JFCM (U, λ;X), identifies the good partition of the
data. The FCMVQ algorithm is summarized as follows.

1) Given a training data set X = {x1,x2, . . . ,xT }, where
xt = (xt1, xt2, . . . , xtK), t = 1, 2, . . . , T .

2) Initialize the membership values ukt, 1 ≤ k ≤ K, 1 ≤
t ≤ T , at random

3) Given ε > 0 (small real number).
4) Set i = 0 and J (i)

FCM (U, λ;X) = 0. Iteration:
a) Compute cluster centers

ck =

T∑
t=1

uγktxt

/ T∑
t=1

uγkt (8)

b) Compute dkt and J (i+1)
FCM (U, λ;X)

dkt = ‖ck − xt‖2 (9)

c) Update membership values

ukt =
1

K∑
n=1

(
d2kt/d

2
nt

)1/(γ−1)

(10)

5) If

|J (i+1)
FCM (U, λ;X)− J (i)

FCM (U, λ;X)|
J
(i+1)
FCM (U, λ;X)

> ε (11)

then set J (i)
FCM (U, λ;X) = J

(i+1)
FCM (U, λ;X), i = i+ 1

and go to step (a).

D. Fuzzy Entropy Partition

Define U = [ukt] and fuzzy c-partition space as in fuzzy
c-means partition. The fuzzy entropy technique is based on
minimisation of the following function [3]:

JFE(U, λ;X) =
K∑
k=1

T∑
t=1

uktd
2
kt+

δ
K∑
k=1

T∑
t=1

ukt log ukt (12)

where U = {ukt} is a fuzzy c-partition of X , δ > 0
controls the degree of fuzzy entropy, λ and dkt are defined
as in (7). The basic idea of the FE technique is to minimize
JFE(U, λ;X) over the variables U and λ.

The fuzzy entropy VQ (FEVQ) algorithm is summarized
as follows.

1) Given a training data set X = {x1,x2, . . . ,xT }, where
xt = (xt1, xt2, . . . , xtK), t = 1, 2, . . . , T .

2) Initialize the membership values ukt, 1 ≤ t ≤ T, 1 ≤
k ≤ K, at random

3) Given ε > 0 (small real number).
4) Set i = 0 and J (i)

FE(U, λ;X) = 0. Iteration:
a) Compute cluster centers

ck =
T∑
t=1

uktxt

/ T∑
t=1

ukt (13)

b) Compute dkt and J (i+1)
FE

dkt = ‖ck − xt‖2 (14)

c) Update membership values

ukt =
e−d

2
kt/δ

K∑
n=1

e−d
2
nt/δ

(15)

5) If

|J (i+1)
FE (U, λ;X)− J (i)

FE(U, λ;X)|
J
(i+1)
FE (U, λ;X)

> ε (16)

then set J (i)
FE(U, λ;X) = J

(i+1)
FE (U, λ;X), i = i + 1

and go to step (a).

III. FUZZY FEATURE WEIGHTING

There are currently 2 automated feature weighting tech-
niques found in the literature. The first technique employs
a weight vector W = {wm}, m = 1, . . . ,M for all feature
vectors in the M dimensional feature space. Each feature
m is assigned a weight wm, m = 1, . . . ,M [4]. The
second technique employs a weight matrix W = {wmk},
m = 1, . . . ,M, k = 1, . . . ,K, where K is the number of
clusters. This means that every cluster k has its own weight
vector wmk,m = 1, . . . ,M [5], [6], [7]. Weight values were
estimated using either FCM -based estimation technique [4],
[5] or FE-based estimation technique [6]. These two feature
weighting techniques were used in FCM and K-Means
clustering.

It is noticed that feature weighting techniques are applied
to feature levels, that is they are independent of clustering
techniques (or partition techniques in VQ). Therefore a
weighting estimation technique can be applied to any clus-
tering techniques provided that these clustering techniques
employ an objective function-based optimisation method. For



example, an FCM feature weighting has been applied to
FCM clustering as seen in [5] and to K-means clustering
in [4] and [6].

From this notice, we present all combinations of the two
fuzzy feature weighting techniques and the three clustering
techniques presented in the previous section. Moreover there
are also two kinds of weights which are weight vector
and weight matrix as mentioned above, so there are totally
2 * 3 * 2 = 12 combinations found. Four of these 12
combinations have been used in [4], [5] and [6]. The other
eight combinations are proposed in this paper.

A. FCM Feature Weighting for KMVQ Using Weight Vector

Let W = [w1, w2, . . . , wM ] be the weight vector for
M dimensions and α be a parameter weight for wm. The
objective function is defined as follows

JFCM−KM−v(U, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wαmd
2
ktm (17)

where α > 1, dktm is the m-th component distance of the
distance dkt between ck and xt

d2ktm = (ckm − xtm)2 (18)

and weight values satisfy the following conditions:

0 ≤ wm ≤ 1 ∀m,
M∑
m=1

wm = 1 (19)

The well-known Langrange multiplier method is used to
minimise the objective function. We have

wm =
1

M∑
n=1

(
D2
m/D

2
n

)1/(α−1)

(20)

where

D2
m =

K∑
k=1

T∑
t=1

uktd
2
ktm (21)

Cluster centers and membership functions are calculated
in (4) and (5), respectively for K-means partition above.

B. FCM Feature Weighting for KMVQ Using Weight Matrix

Let W = {wkm}, k = 1, . . . ,K,m = 1, . . . ,M , where K
is the number of clusters. The objective function is defined
as follows

JFCM−KM−m(U,W, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wαkmd
2
ktm

(22)
where α and dktm are previously defined. Weight matrix is
calculated as follows

wkm =
1

M∑
n=1

(
D2
km/D

2
kn

)1/(α−1)

(23)

where

D2
km =

T∑
t=1

uktd
2
ktm (24)

Cluster centers and membership functions are calculated
in (4) and (5), respectively for K-means partition above.

C. FCM Feature Weighting for FCMVQ Using Weight Vector

The objective function is defined as

JFCM−FCM−v(U,W, λ;X) =
K∑
k=1

T∑
t=1

uγkt

M∑
m=1

wαmd
2
ktm (25)

Use (20), (8) and (10) to calculate weight values, cluster
centers and membership functions, respectively.

D. FCM Feature Weighting for FCMVQ Using Weight Ma-
trix

The objective function is defined as

JFCM−FCM−m(U,W, λ;X) =
K∑
k=1

T∑
t=1

uγkt

M∑
m=1

wαkmd
2
ktm (26)

Use (23), (8) and (10) to calculate weight values, cluster
centers and membership functions, respectively.

E. FCM Feature Weighting for FEVQ Using Weight Vector

The objective function is defined as

JFCM−FE−v(U,W, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wαmd
2
ktm + δ

K∑
k=1

T∑
t=1

ukt log ukt (27)

Use (20), (13) and (15) to calculate weight values, cluster
centers and membership functions, respectively.

F. FCM Feature Weighting for FEVQ Using Weight Matrix

The objective function is defined as

JFCM−FE−m(U,W, λ;X) =
K∑
k=1

T∑
t=1

uγkt

M∑
m=1

wαkmd
2
ktm (28)

Use (23), (13) and (15) to calculate weight values, cluster
centers and membership functions, respectively.



G. FE Feature Weighting for KMVQ Using Weight Vector

JFE−KM−v(U,W, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wmd
2
ktm + β

M∑
m=1

wm logwm (29)

The weight vector is calculated as follows

wm =
e−D

2
m/β

M∑
n=1

e−D
2
n/β

(30)

where Dm is calculated using (21)

H. FE Feature Weighting for KMVQ Using Weight Matrix

JFE−KM−m(U,W, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wkmd
2
ktm + β

K∑
k=1

M∑
m=1

wkm logwkm (31)

The weight matrix is calculated as follows

wkm =
e−D

2
km/β

M∑
n=1

e−D
2
kn/β

(32)

where Dkm is calculated using (24)

I. FE Feature Weighting for FCMVQ Using Weight Vector

JFE−FCM−v(U,W, λ;X) =
K∑
k=1

T∑
t=1

uγkt

M∑
m=1

wmd
2
ktm + β

M∑
m=1

wm logwm (33)

Use (30), (8) and (10) to calculate weight values, cluster
centers and membership functions, respectively.

J. FE Feature Weighting for FCMVQ Using Weight Matrix

JFE−FCM−m(U,W, λ;X) =
K∑
k=1

T∑
t=1

uγkt

M∑
m=1

wkmd
2
ktm + β

K∑
k=1

M∑
m=1

wkm logwkm (34)

Use (32), (8) and (10) to calculate weight values, cluster
centers and membership functions, respectively.

K. FE Feature Weighting for FEVQ Using Weight Vector

JFE−FE−v(U,W, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wmd
2
ktm+

δ
K∑
k=1

T∑
t=1

ukt log ukt + β
M∑
m=1

wm logwm (35)

Use (30), (13) and (15) to calculate weight values, cluster
centers and membership functions, respectively.

L. FE Feature Weighting for FEVQ Using Weight Matrix

JFE−FE−m(U,W, λ;X) =
K∑
k=1

T∑
t=1

ukt

M∑
m=1

wkmd
2
ktm + δ

K∑
k=1

T∑
t=1

ukt log ukt+

β
K∑
k=1

M∑
m=1

wkm logwkm (36)

Use (32), (13) and (15) to calculate weight values, cluster
centers and membership functions, respectively.

IV. EVALUATION

We present speaker characteristic classification results as
an evaluation of the proposed feature weighting-based VQ
models.

Classifying speaker characteristics is an important task
in Dialog Systems, Speech Synthesis, Forensics, Language
Learning, Assessment Systems, and Speaker Recognition
Systems. In Human-Computer Interaction applications, the
interaction between users and computers taking place at the
speech-driven user interface. For example, Spoken Dialogs
Systems provide services in domains of finance, travel,
scheduling, tutoring, or weather. The systems need to gather
automatically information from the user in order to provide
timely and relevant services. Most telephone-based services
today use spoken dialog systems to either route calls to the
appropriate agent or even handle the complete service by
an automatic system. In Human-Centered applications, the
computers stay in the background attempting to anticipate
and serve peoples needs. One example is Smart Room En-
vironments in which computers watch and interpret peoples
actions and interactions in order to support communication
goals. We particularly focus on Australian accent classifica-
tion in this paper. Although the accent is only spoken by a
minority of the population, it has a great deal of cultural
credibility. It is disproportionately used in advertisements
and by newsreaders. According to linguists, three main
varieties of spoken English in Australia are Broad (spoken
by 34% of the population), General (55%) and Cultivated
(11%). They are part of a continuum, reflecting variations
in accent. Although some men use the pronunciation, the
majority of Australians that speak with the accent are women.
Broad Australian English is usually spoken by men, probably
because this accent is associated with Australian masculinity.
It is used to identify Australian characters in non-Australian
media programs and is familiar to English speakers. The
majority of Australians speak with the General Australian
accent. Cultivated Australian English has some similarities
to British Received Pronunciation, and is often mistaken for
it. In the past, the cultivated accent had the kind of cultural
credibility that the broad accent has today. For example, until
30 years ago newsreaders on the government funded ABC
had to speak with the cultivated accent.

We developed a classification system that can classify
persons based on their gender, age and accent simultaneously.



Voice features are extracted as feature vectors and are used to
train speaker group models with different feature weighting-
based VQ techniques which are FE-KM-v, FE-KM-m, FE-
FCM-v, FE-FCM-m, FE-FE-v, and FE-FE-m Fusion of clas-
sification results from those groups is then performed to
obtain results for each gender, age and accent.

A. ANDOSL Database

The Australian National Database of Spoken Language
(ANDOSL) corpus [12] comprises carefully balanced ma-
terial for Australian speakers, both Australian-born and
overseas-born migrants. The aim was to represent as many
significant speaker groups within the Australian population as
possible. Current holdings are divided into those from native
speakers of Australian English (born and fully educated in
Australia) and those from non-native speakers of Australian
English (first generation migrants having a non-English
native language). A subset used for speaker verification
experiments in this paper consists of 108 native speakers.
There are 36 speakers of General Australian English, 36
speakers of Broad Australian English and 36 speakers of
Cultivated Australian English in this subset. Each of the
three groups comprises 6 speakers of each gender in each
of three age ranges (18-30, 31-45 and 46+). So there are
total of 18 groups of 6 speakers labeled as ijk, where i
denotes f (female) or m (male), j denotes y (young) or
m (medium) or e (elder), and k denotes g (general) or b
(broad) or c (cultivated). For example, the group fyg contains
6 female young general Australian English speakers. Each
speaker contributed in a single session, 200 phonetically rich
sentences. All waveforms were sampled at 20 kHz and 16
bits per sample.

B. Speech Processing

In speaker characteristics feature research, prosodic ap-
proaches attempt to capture speaker-specific variation in
intonation, timing, and loudness. Because such features are
supra-segmental (are not properties of single speech seg-
ments but extend over syllables and longer regions), they
can provide complementary information to systems based
on frame-level or phonetic features. One of the most studied
features is speech fundamental frequency (or as perceived,
pitch), which reflects vocal fold vibration rate and is affected
by various physical properties of the speakers vocal folds,
including their size, mass, and stiffness. Distributions of
frame-level pitch values have been used in a number of
studies. Although they convey useful information about a
speakers distribution of pitch values, such statistics do not
capture dynamic information about pitch contours and are
thus not viewed as high-level here. Speech processing was
performed using open source openSMILE feature extraction
[10]. There are 16 low-level descriptors chosen including
ZCR, RMS energy, pitch frequency, HNR, and MFCC 1-12
in full accordance to HTK-based computation [11]. To each
of these, the delta coefficients are additionally computed.
Next the 12 functionals including mean, standard deviation,
kurtosis, skewness, minimum and maximum value, relative

position, and range as well as two linear regression coeffi-
cients with their mean square error (MSE) are applied on a
chunk basis. Thus, the total feature vector per chunk contains
16 * 2 * 12 = 384 features.

C. Experimental Results

TABLE I
GENDER CLASSIFICATION RESULTS (IN %) WITH DIFFERENT FUZZY

FEATURE WEIGHTING-BASED VQ. NUMBER OF TEST UTTERANCES =
21600. NUMBER OF CLUSTERS = 8

Technique
Gender

Female Male
KM 99.90 99.83

FE-KM-v 99.96 99.87
FE-KM-m 99.96 99.9 6

FCM 99.94 99.91
FE-FCM-v 99.95 99.95
FE-FCM-m 99.98 99.97

FE 99.91 99.94
FE-FE-v 99.97 99.98
FE-FE-m 99.98 100.0

TABLE II
AGE CLASSIFICATION RESULTS (IN %) WITH DIFFERENT FUZZY

FEATURE WEIGHTING-BASED VQ. NUMBER OF TEST UTTERANCES =
21600. NUMBER OF CLUSTERS = 8

Technique
Age

Young Middle Elderly
KM 97.26 97.17 97.03

FE-KM-v 97.73 97.59 97.17
FE-KM-m 97.73 98.42 98.33

FCM 97.50 98.10 98.15
FE-FCM-v 97.73 98.19 97.69
FE-FCM-m 97.73 98.10 98.15

FE 97.27 97.18 97.04
FE-FE-v 97.69 97.73 97.18
FE-FE-m 97.55 98.38 98.33

TABLE III
ACCENT CLASSIFICATION RESULTS (IN %) WITH DIFFERENT FUZZY

FEATURE WEIGHTING-BASED VQ. NUMBER OF TEST UTTERANCES =
21600. NUMBER OF CLUSTERS = 8

Technique
Accent

Broad General Cultivated
KM 97.63 97.31 96.34

FE-KM-v 98.19 98.10 96.97
FE-KM-m 98.28 98.05 97.17

FCM 98.15 98.15 96.76
FE-FCM-v 98.33 98.43 96.67
FE-FCM-m 98.39 98.78 97.27

FE 97.64 97.27 96.34
FE-FE-v 98.19 98.15 96.26
FE-FE-m 98.24 98.16 97.18

Experimental results for FCM feature weighting-based VQ
can be found in the literature [4], [5], [6], [7]. In this paper,
results for FE feature weighting-based VQ are presented.
Results for others have similar improvements for fuzzy



feature weighting VQ comparing with non-feature weighting
ones.

Tables I, II and III present classification results for each
gender, age and accent classification using 32 cluster centers.
Table I shows very good result for gender classification for all
techniques. Table II shows an improvement for fuzzy feature
weighting-based VQ (FE-KM-v, FE-KM-m, FE-FCM-v, FE-
FCM-m, FE-FE-v and FE-FE-m) comparing with non feature
weighting VQ (KM, FCM and FE). Similar result is found
for accent classification in Table III. The lowest classification
rate for Cultivated is found comparing with the other two
accents Broad and General.

V. CONCLUSIONS

We have reviewed current feature weighting techniques
and have proposed a general scheme for selecting a pair
of clustering and feature weighting techniques to apply to
VQ. Besides the current feature weighting-based VQ tech-
niques, a number of new techniques has been proposed and
experimental results for fuzzy entropy technique have also
been presented. The Australian speech database consisting of
108 speakers and 200 utterances for each speaker was used
for evaluation. An improvement for fuzzy feature weighting-
based VQ has been found via gender, age and accent classi-
fication using 21600 utterances from 108 speakers.
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