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ABSTRACT

One of the important problems in medical imaging is two-
class classification, for example determination of benign from
malignant cases in breast cancer treatment. In this paper we
present a new support vector machine method for two-class
medical image classification. The key idea of this method is
to construct an optimal hypersphere such that both the inte-
rior margin between the surface of this sphere and the normal
data, and the exterior margin between this surface and the ab-
normal data are as large as possible. The proposed method
is easily implemented and can reduce both false positive and
false negative error rates to obtain very good classification re-
sults. Experiments were performed on three medical image
data sets to evaluate the proposed method.

Index Terms— Pattern classification, Medical image pro-
cessing, support vector machine.

1. INTRODUCTION

Medical imaging is a vital component of most of applications
in the clinical track of events including clinical diagnostis
settings, planning, consummation, and evaluation of surgical
and radiotherapeutical procedures. Two global categories in
imaging are anatomical and functional. Anatomical modali-
ties include X-ray, CT (computed tomographya), MRI (mag-
netic resonance imagingb), US (ultrasoundc), portal images,
and (video) sequences. Some prominent derivative techniques
are so detached under a separate name, for example MRA
(magnetic resonance angiography), DSA (digital subtraction
angiography, derived from Xray), CTA (computed tomogra-
phy angiography), and Doppler (derived from US, referring
to the Doppler effect measured). Functional modalities de-
picting primarily information on the metabolism of the un-
derlying anatomy, include (planar) scintigraphy, SPECT (sin-
gle photon emission computed tomographyd), PET (positron
emission tomographye), which together make up the nuclear
medicine imaging modalities, fMRI (functional MRI), EEG
(electro encephalography), and MEG (magneto encephalog-
raphy) [20].

Consider medical imaging for breast cancer. Currently
there are no methods to prevent breast cancer, therefore early
detection represents a very important factor in cancer treat-
ment to obtain a high survival rate. The most reliable method
in early detection is mammography. However reading digital
mammogram images is very difficult due to their low con-
trast and differences in the types of tissues [1]. Preliminary
signs of masses and calcification clusters are important vi-
sual clues but they are very subtle and varied in appearance
in the early stages of breast cancer. This is the main reason
for the development of pattern classification systems to assist
specialists in medical institutions. Recently, support vector
machine (SVM) has emerged as a powerful pattern classifica-
tion method for image classification [8]. SVM provides great
results in the classification of high-dimensional datasets and
pixel-based image classifiers [13, 2, 9, 10].

There are different SVM methods proposed for classifica-
tion. Traditional SVM constructs an optimal separating hy-
perplane between classes by focusing on the training vectors
close to the edge of the class descriptors. These training vec-
tors are called support vectors. Other training vectors are dis-
carded, therefore high classification accuracy can be achieved
with small training data sets. In one-class classification also
called novelty detection, one-class SVM (OCSVM) is used to
capture the characteristic of normal data to construct a data
description and then applies this description to detect abnor-
mal data or outliers that cannot fit this description very well
[21]. OCSVM constructs a hyperplane to separate the normal
data such that the margin between the hyperplane and outliers
is maximized [23] [24]. Recently, a small sphere and large
margin (SSLM) approach has been introduced [32] to sur-
round the normal data in an optimal hypersphere such that the
margin—distance from outliers to the optimal hypersphere, is
maximized. This SSLM approach is easily implemented, is
helpful for parameter selection and provides very good detec-
tion results on a number of real data sets.

However the SSLM method can result in a very closed
and tight boundary around the normal data and as a result,
some normal data points can be outside the hypersphere re-
sulting in a high false negative error rate. In order to over-
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come this problem, we propose to have an additional margin
between the surface of this hypersphere and the normal data.
The key idea is to construct an optimal hypersphere such that
both the interior margin between the surface of this hyper-
sphere and the normal data and the exterior margin between
this surface and the abnormal data are as large as possible.
The proposed method is easily implemented and can reduce
both false positive and false negative error rates. It can also
be proved that the SSLM approach is a special case of the
proposed approach. Experiments were performed on three
medical image data sets for evaluation. In all of these experi-
ments, high classification rates are achieved for the proposed
method.

2. CURRENT SVM METHODS

2.1. One-Class Support Vector Machine (OCSVM)

In OCSVM [23], a hyperplane is determined to separate all
normal data and at the same time maximise the margin be-
tween the normal data and the hyperplane. OCSVM can be
modelled as follows

min
w,ρ

(1
2
||w||2 − ρ+ 1

νs

s∑
i=1

ξi

)
(1)

subject to

wTφ(xi) ≥ ρ− ξi i = 1, . . . , s
ξi ≥ 0, i = 1, . . . , s (2)

where w is the normal vector of the hyperplane, ρ is the mar-
gin, ν is a positive constant, xi, i = 1, . . . , s are data points,
ξi, i = 1, . . . , s are slack variables, and φ(.) is a kernel func-
tion.

The decision function is f(x) = sign(wTφ(x)− ρ). The
unknown x is a normal data point if f(x) = +1 or an abnor-
mal data point if f(x) = −1.

2.2. SVM Classification (SVMC)

SVMC was originally proposed to deal with the balanced data
sets [24]. However, by selecting two appropriately propor-
tional trade-off parameters, it can be used to deal with imbal-
anced datasets. Let xi, i = 1, . . . ,m1 be normal data points
with label yi = +1 and xi, i = m1 + 1, . . . , s be abnormal
data points with label yi = −1, and m2 = s −m1. SVMC
can be modelled as follows

min
w,b

(1
2
||w||2 + C1

m1∑
i=1

ξi + C2

s∑
i=m1+1

ξi

)
(3)

subject to

yi[w
Tφ(xi) + b] ≥ 1− ξi i = 1, . . . , s

ξi ≥ 0, i = 1, . . . , s (4)

where C1, C2 and b are real numbers. The decision function
is f(x) = sign(wTφ(x) + b).

2.3. Support Vector Data Description (SVDD)

SVDD [24] aims at drawing an optimal hypersphere contain-
ing normal data. Abnormal data are outside this hypersphere.
The optimisation problem is as follows

min
R,ξ

(
R2 + C1

m1∑
i=1

ξi + C2

s∑
i=m1+1

ξi

)
(5)

subject to

||φ(xi)− c||2 ≤ R2 + ξi i = 1, . . . ,m1

||φ(xi)− c||2 ≥ R2 − ξi i = m1 + 1, . . . , s
ξi ≥ 0, i = 1, . . . , s (6)

where R and c are radius and centre of the hypersphere,
respectively. The decision function is f(x) = sign(R2 −
||φ(x)− c||2).

2.4. Small Sphere & Large Margin (SSLM)

The SSLM approach combines the ideas of OCSVM and con-
ventional two-class SVM [29] in minimising a hypersphere
containing all normal data and simultaneously maximising
the margin which is the distance from outliers (abnormal data)
to the surface of the optimal hypersphere. This SSLM ap-
proach can be formulated by the following optimisation prob-
lem:

min
R,c,ξ,ρ

(
R2 − νρ2 + 1

ν1m1

m1∑
i=1

ξi +
1

ν2m2

s∑
i=m1+1

ξi

)
(7)

subject to

||φ(xi)− c||2 ≤ R2 + ξi i = 1, . . . ,m1

||φ(xi)− c||2 ≥ R2 + ρ2 − ξi i = m1 + 1, . . . , s
ξi ≥ 0, i = 1, . . . , s (8)

where ν, ν1 and ν2 are three positive constants, ρ2 is outside
margin (distance from abnormal data to the surface of the hy-
pershere).

It can be seen that minimising the cost function (7) will
make the radius R as small as possible and the margin ρ2

as large as possible. Therefore this approach is called Small
Sphere and Large Margin (SSLM). The hypersphere only sur-
rounds the positive class (normal data) and SSLM aims to
find a large margin between this hypersphere and the abnor-
mal data points. The decision function is f(x) = sign(R2 −
||φ(x)− c||2).
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3. SS2LM: A NEW SVM METHOD

As mentioned above, the SSLM approach can produce a very
closed and tight hypersphere boundary around the normal
data. Therefore some normal data points can be outside the
hypersphere and they will be classified as abnormal data
resulting in a high false negative error rate.

To overcome this problem, we introduce an interior mar-
gin between the surface of the hypershere and normal data to
the SSLM approach. This margin is proportional to the ex-
terior margin between that surface and abnormal data by a
proportionality constant δ. This constant is determined based
on the ratio of normal data and abnormal data points. Our ap-
proach is to construct an optimal hypersphere such that both
the interior and exterior margins are as large as possible.

The proposed method can be formulated by the following
optimisation problem:

min
R,c,ξ,ρ

(
R2 − νρ2 + 1

ν1m1

m1∑
i=1

ξi +
1

ν2m2

s∑
i=m1+1

ξi

)
(9)

subject to

||φ(xi)− c||2 ≤ R2 − δρ2 + ξi i = 1, . . . ,m1

||φ(xi)− c||2 ≥ R2 + ρ2 − ξi i = m1 + 1, . . . , s
ξi ≥ 0, i = 1, . . . , s (10)

It can be seen that minimising the cost function (9) will
make the radius R as small as possible and the margin ρ2 as
large as possible, resulting in the proposed margin δρ2 is also
as large as possible.

The following Lagrange is introduced to investigate the
proposed problem

L(R, c, ξ, α, β) = R2 − νρ2

+
1

ν1m1

m1∑
i=1

ξi +
1

ν2m2

s∑
i=m1+1

ξi

+
s∑
j=1

αj(yj ||φ(xj)− c||2 − yjR2 − zjρ2 − ξj)

−
s∑

k=1

βkξk (11)

where yi = +1, i = 1, . . . ,m1, yi = −1, i = m1 + 1, . . . , s,
and zi = 1

2 [(1− yi) + (1 + yi)δ], i = 1, . . . , s.
where αi ≥ 0 and βi ≥ 0 are Lagrange multipliers. Setting
derivatives of L(R, c, ξ, α, β) with respect to primal variables
to 0, we obtain the dual form

min
α

( s∑
i=1

αiαjyiyjK(xi, xj)−
s∑
i=1

αiyiK(xi, xi)
)

(12)

subject to

0 ≤ αi ≤
1

ν1m1
, i = 1, . . . ,m1

0 ≤ αj ≤
1

ν2m2
, j = m1 + 1, . . . , s

s∑
i=1

αiyi = 1,
s∑
i=1

αi =
2ν + 1− δ
δ + 1

(13)

The dual form is also a quadratic optimization problem
and has the same form as the dual of the ν-SVM [22], thus
it can be solved with the ν-SVM solver in the LIBSVM soft-
ware [6].

To classify an unknown data point x, the following deci-
sion function is used

f(x) = sgn
(
R2 −

s∑
i=1

s∑
j=1

αiαjyiyjK(xi, xj)−K(x, x)

+2

s∑
k=1

αkykK(x, xk)
)

(14)

x is a normal data point if f(x) = +1 or an abnormal data
point if f(x) = −1

The parameters R, c and ρ are calculated as follows

R2 =
1

n1
P1

||c||2 =
s∑
i=1

s∑
j=1

αiαjyiyjK(xi, xj)

ρ2 =
1

n2
P2 −

1

n1
P1, (15)

where

n1 = |S1|, S1 =
{
xi | 0 < αi <

1

ν1m1
, 1 ≤ i ≤ m1

}
n2 = |S2|, S2 =

{
xj | 0 < αj <

1

ν2m2
, m1 + 1 ≤ j ≤ s

}
P1 =

∑
xi∈S1

[
K(xi, xi) + ||c||2 − 2

s∑
k=1

ykαkK(xk, xi)
]

P2 =
∑
xi∈S2

[
K(xi, xi) + ||c||2 − 2

s∑
k=1

ykαkK(xk, xi)
]

(16)

4. ν-PROPERTY AND MARGIN ERRORS

Similar to SSLM and ν-SVM, a training data point xi is called
a Support Vector (SV) if the corresponding αi > 0, and it is
called a Margin Error (ME) if the corresponding slack vari-
able ξi > 0.

Let m+ and m− denote the number of MEs in the normal
and abnormal data, s+ and s− denote the number of SVs in
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the normal and abnormal data, respectively. Then, for param-
eters ν, ν1, and ν2, we have

m+

m1
≤ (ν + 1)ν1

δ + 1
≤ s+

m1

m−

m2
≤ (ν − δ)ν2

δ + 1
≤ s−

m2
(17)

Proof: From (11), we have

∂L

∂R
= 0 ⇒

s∑
i=1

αiyi = 1

∂L

∂ρ
= 0 ⇒ δ

m1∑
i=1

αi +
s∑

i=m1+1

αi = ν (18)

Summing up αi over the positives MEs leads to

m+

ν1m1
≤

m1∑
i=1

αi =
ν + 1

δ + 1
≤ s+

m1ν1
(19)

The second one of (17) can be proven in a similar manner.
It can be seen that when δ increases, both the margin er-

rorsm+ andm− decrease. When δ = 0, we obtain the margin
errors for the SSLM approach [32].

5. EXPERIMENTAL RESULTS

5.1. Breast Cancer Data Set

The Wisconsin breast cancer data set consists of 683 feature
vectors of which 444 vectors are labeled Benign and 239
vectors were Malignant. Determination of benign from ma-
lignant cases is an important problem in breast cancer treat-
ment. Each vector has 9 features including clump thickness
(the extent to which epithelial cell aggregates were mono-
or multi-layered), uniformity of cell size, uniformity of cell
shape, marginal adhesion (cohesion of the peripheral cells of
the epithelial cell aggregates), single epithelial cell size, bare
nuclei (the proportion of single epithelial nuclei that were de-
void of surrounding cytoplasm), blandness of nuclear chro-
matin, normal nucleoli, and mitoses. All of these feature val-
ues are continuous and range from 1 to 10. A cancer image
for digital analysis was generated by a video camera mounted
on top a microscope. A slide was projected into the camera
and the image was captured. The resulting image is stored
in memory as a 2-dimensional array, with each pixel having
a value between 0 and 255 representing the light intensity at
that point [31].

5.2. Liver Disorders Data Set

There are many disorders of the liver that require clinical care
by a physician or other healthcare professional, for example
alcohol-induced liver disease, chronic liver disease, congeni-
tal defects, and hepatitis. The BUPA liver disorders data set

consists of 345 feature vectors of multiclasses. Each vec-
tor has 7 features including mean corpuscular volume, alka-
line phosphotase, alamine aminotransferase, aspartate amino-
transferase, gamma-glutamyl transpeptidase, number of half-
pint equivalents of alcoholic beverages drunk per day, and
field used to split data into two sets. The first 5 features are
all blood tests which are sensitive to liver disorders that might
arise from excessive alcohol consumption [27]. In this pa-
per, we used a version of this data set downloadable at [28]
containing only 6 continuous features.

5.3. SPECTF Heart Data Set

Single Proton Emission Computed Tomography (SPECT)
imaging is used as a diagnostic tool for myocardial perfu-
sion. The patient is injected with radioactive tracer then a
stress image was taken 10-15 minutes after injection during
maximal stress, and a rest image 2-5 hours after injection.
Cardiologists compare stress and rest studies in order to de-
tect abnormalities in the left ventricle perfusion. Normally
the SPECT images are presented to a cardiologist as three
sets of two-dimensional images [15].

The SPECTF heart data set [25] describes diagnosing of
cardiac SPECT images. There are 349 image sets (patients)
in this data set. Each of the patients is classified into two
categories: normal and abnormal. A total of 44 continuous
features was created for each patient . In our experiment, 254
abnormal patients were used as target class and 95 normal
patients as outlier class.

5.4. Experiments

We performed classification experiments on these 3 data sets
to compare OCSVM, SVM-C, SVDD, SSLM, and SS2LM
methods. These sets are balanced so we created at random
imbalanced subsets such that the ratio of number of normal
data points (m1) and number of abnormal data points (m2)
was 19:1, i.e. 95% of data points are normal and 5% are
abnormal. Creating subsets were repeated 10 times and the
average classification rate for 10 times was determined.

Table 1. Number of data points in the 3 data sets. #pos: to-
tal positive data points, #neg: total negative data points, m1:
positive data points for training, m2: negative data points
for training, and d: dimension. The remaining data points
(#pos−m1) and (#neg −m2) were used for testing.

Data set #pos #neg m1 m2 d
Breast Cancer 444 239 355 18 10

Liver Disorders 200 145 116 6 6
Spectf Heart 254 95 203 10 44

The classification rate acc is measured as [14]
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acc =
√
acc+acc− (20)

where acc+ and acc− are the classification accuracy on nor-
mal and abnormal data, respectively.

The popular RBF kernel functionK(x, x′) = e−||x−x
′||2/γ

was used in our experiments to compare with the SSLM ap-
proach. We used the same parameter settings suggested in
[32], the parameter γ was searched in {σ2

0/16, σ
2
0/8, σ

2
0/4,

σ2
0/2, σ

2
0 , 2σ

2
0 , 4σ

2
0 , 8σ

2
0 , 16σ

2
0}, where σ2

0 is the mean norm
of the training data. For SVMs the penalty parameters C, C1

and C2 were searched over the grid {0.01, 0.05, 0.1, 0.5, 1, 5,
10, 50, 100, 500}, such that the ratio C2/C1 belonged to

{1
4
× m1

m2
,
1

2
× m1

m2
,
m1

m2
, 2× m1

m2
, 4× m1

m2

}
(21)

For OCSVM, the parameter ν was searched in {0.01k, 0.1k},
where k was an integer ranging from 1 to 9. For SSLM and
SS2LM, the parameter ν was searched in {10, 30, 50, 70, 90},
while ν1 and ν2 were selected from {0.001, 0.01}.

Table 2. Classification results (in %) on the 3 data sets

Method Breast Cancer Liver Disorders SPECTF Heart
OCSVM 95.0 73.8 84.1
SVM-C 88.9 81.7 88.4
SVDD 89.9 78.6 89.8
SSLM 98.7 85.1 90.6

SS2LM 99.0 87.4 91.4

We can see from Table 2 that the SSLM method provides
better performance than the OCSVM, SVM-C and SVDD
methods. The proposed SS2LM approach achieved higher
classification rates than the SSLM method for all of the
datasets because it produces lower false negative error rates.

6. CONCLUSION

We have analysed current SVM methods for medical image
classification and propose a new SVM method to provide a
lower false negative error rates in two-class medical image
classification. We have evaluated the proposed method on
three popular data sets which were breast cancer, liver dis-
orders and SPECTF heart images. The experimental results
showed a good performance for the proposed method. For
further investigation, larger real data sets will be used for
evaluation. A fuzzy approach to this SVM method will be
investigated to reduce the sensitivity of SVM to noisy data
and outliers.
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