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Abstract—A neuro-physiologically inspired model is pre-
sented for the contrast enhancement of images. The con-
trast of an image is calculated using simulated on- and off-
centre receptive fields whereby obtaining the corresponding
two contrast maps. We propose an adaptive asymmetric gain
control function that is applied to the two contrast maps
which are then used to reconstruct the image resulting in its
contrast enhancement. The image’s mean luminance can be
adjusted as desired by adjusting the asymmetricity between
the gain control factors of the two maps. The model performs
local contrast enhancement in the contrast domain of an
image where it lends itself very naturally to such adjustments.
Furthermore, the model is extended on to colour images using
the concept of colour-opponent receptive fields found in the
human visual system. The colour model enhances the contrast
right in the colour space without extracting the luminance
information from it. Being neuro-physiologically plausible, this
model can be beneficial in theorising and understanding the
gain control mechanisms in the primate visual system. We
compare our results with the CLAHE algorithm.
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I. INTRODUCTION

Contrast is an important attribute whose subjective and
quantitative impact on the image quality is enormous, de-
termining the visibility of its details as well as its aesthetic
appeal. The dynamic range of the visual stimuli in the real
world is extremely large. On the contrary, image captur-
ing and display devices are very restricted in their range,
compressing the luminance levels to a very small range,
thereby reducing the contrast between them significantly.
Even for high dynamic range (HDR) images, displaying
such an image on customary displays results in either its
under- or over-exposure. This requires enhancement both to
the contrast of an image as well as to its mean luminance
level.

The primate visual system excels in tasks to a level so far
unachievable by the best man-made systems. Among those is
its amazing adaptability to a wide range of luminance levels
despite having a limited dynamic range. We present a neuro-
physiologically inspired model for local contrast enhance-
ment of under- or over-exposed images using asymmetrical

boosting of the on- and off-centre contrast maps. Our model
gives excellent performance in enhancing the contrast of
images having both uni- and multi-modal histograms. The
algorithm works by computing two contrast maps of an
image using the on and off-centre receptive fields of neurons,
as found in the primate visual system. Contrast enhancement
then becomes a straightforward operation where we rescale
the contrast values in the map using a gain control function
that is modelled after psychometric adaptability curves.
These transformed maps are then used to reconstruct the
image using the image reconstruction algorithm from [1]
which results in a contrast enhanced image. Feedback is
used at every iteration to modify the gain control function.
A unique feature of the model is that the image’s mean
luminance can be controlled by asymmetrically boosting
the gain control factors that are applied to the two contrast
maps. While we are not aware of any neuro-physiological
evidence of asymmetrical boosting, our research shows that
superior results are achieved in this way as compared to
symmetrical boosting on both maps. We also extend our
model to colour images. For that we show three different
approaches, two of which are conventional ways of dealing
with colour image enhancements in which somehow the
luminance component is extracted and enhanced and later
added back to the unmodified colour component and the
third is the biologically motivated approach using colour-
opponent receptive fields where enhancement is done in the
colour space itself. Our experiments show that this latter
approach produces far superior results than the the other
two.

II. RELATED WORK

Much work has been done on contrast enhancement of
images, only some can be mentioned here. Conventional
methods use some variation of histogram equalisation [2]
or tone mapping [3]. Perhaps the best known histogram
equalisation method is the CLAHE algorithm [4], which
performs adaptive equalisation locally. Tone mapping meth-
ods more commonly work with HDR images, mapping them
onto the low dynamic range (LDR) domain or using images
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(a) (b)

Figure 1. (a) Top: Retinal receptive fields. On-centre (left) and off-centre
(right). Middle: Continuous DoG (left) modelling the retinal receptive field
approximated by its discretised version (right). Bottom: a general 3x3 mask
(left) and its on-centre and off-centre weights (centre and right). (b) Tangent
hyperbolic sigmoidal output function.

captured at multiple exposures generate an output image
that best captures all the detail. Among the unconventional
approaches are those that use wavelets [5] and fuzzy logic
[2].

Among the biological approaches [6] uses a centre-
surround receptive field model for contrast enhancement.
However they uses only a single receptive field type namely
the on-centre off-surround. By defining a new centre-
surround operator, they compare each pixel to its local
average and assigns to it a new value adjusting its tone. Fur-
thermore their algorithm only works on luminance values,
so for colour images, they extract out the luminance compo-
nent, contrast adjust it and regenerate the colour image. [7]
uses the retinex algorithm to visualise HDR images. Some
have developed methods that are based on human perception
and contrast sensitivity functions [8]. Perhaps the work that
comes closest to our approach is [9], which used Difference
of Gaussians (DoG) to calculate contrast maps and applied
some sort of gain control to it. They also use colour oppo-
nency in their algorithm. Their approach, however, is geared
more towards computing spatial frequency components at
different scales and applying selective gain controls to those.

In contrast to the above biological approaches, our method
contains the following distinguishing traits: (a) it takes all
the receptive fields in to consideration that exist in the human
visual system namely the on-centre off-surround and the off-
centre on-surround for luminance and colours and uses them
all in cooperative manner. Specifically, we apply different
gain to the on- and off-centre receptive fields and show that
this is useful in controlling the mean luminance of the image
(b) it takes a reconstructive approach to contrast adjustment
rather than tone adjustment (c) it deals with colour images in
colour domain rather than just on the luminance component,
using the colour-opponent receptive fields.

(a) (b)

(c) (d)

Figure 2. (a) Psychometric contrast adaptation curves. (b) Sigmoidal gain
curve used by our algorithm. (c) Left-asymmetricity exponential curve for
on-centre map. (d) Right-asymmetricity exponential curve for off-centre
map.

III. BACKGROUND

Neurons in the retina and the lateral geniculate nucleus
(LGN) have an antagonistic centre-surround receptive field
which is an area on the retina that may activate a particular
neuron if stimulated appropriately. Because of limited band-
width, the design of the brain separates the receptive fields
into the two categories of on-centre and off-centre, each of
which are half-wave rectified signals of activation. If they
are combined into a composite signal, the on-centre would
form the positive half, while the off-centre the negative half.
Retinal cells transform an input image into a contrast image
consisting of on-centre and off-centre contrast maps, which
record only changes in the input, making the percept largely
independent of the ambient illumination level.

In addition to the ones that detect contrast in luminance,
there are cells in the primate retina that detect contrast in
colours for which they are known as colour opponent cells
[10]. They have a centre of one colour with a surround of
a different colour. Three such cell types exist at the basic
level: those having a red centre and green surround, those
with a green centre and red surround and those with a blue
centre and yellow (red+green) surround. Each of these types
have an on-centre and off-centre version. Besides these there
are more advanced variety of cells that deal with colour
contrast. They are called double-opponent cells which we
are not concerned with in this paper.

IV. PROPOSED METHOD

Convolving the mask with the discretised approximation
of DoG in Fig. 1(a) with the image and passing the result
through the hyperbolic tangent non-linearity in Fig. 1(b):
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y(x) =
1− e−2x/α

1 + e−2x/α
(1)

we get the on- and off-centre contrast maps of the image, to
which we then apply our asymmetric gain control function.

Psychophysical studies of contrast adaptation have shown
that prolonged exposure to high-contrast patterns leads to
a decrease in the perceived contrast [11]. This contrast
adaptation is often indicated by a right shift of psychometric
curves (Fig. 2(a)) indicating a decrease of sensitivity to low
contrast. We model our gain control function by an adaptable
sigmoidal function that is a reverse of the contrast adaptation
function (Fig. 2(b)). The adaptation is based on the contrast
values of the image at any pixel (x, y), as the image contrast
is modified through iterations. Increase in image contrast at
any pixel (x, y) will shift its contrast gain function to the
left decreasing its gain, while those pixels whose contrast
levels are still low will continue to enjoy a high gain, thus,
providing local gain control for every pixel. Gain control G
as a function of contrast c at any pixel (x, y) is modelled
as:

G(c) = (g + β)− (g + β − 1)
1 + e−(|c|−γ)/α

(2)

where γ and α are constants that set the initial position of
the curve on the contrast axis and its slope, respectively,
while (g + β) is the maximum value of the gain factor.

We call β the asymmetricity factor. For zero β, the same
gain factor G will be applied to both the on- and off-
centre contrast maps. This would give a resultant image with
approximately the same mean luminance Lm as the original
one. Generally, this is what we would like to have if the Lm

of the input image does not fall too much to the extremes. In
case the image is too dark or too bright, its Lm would also
need adjustment along with its contrast. To shift Lm towards
brightness, we apply a higher gain factor to the on-centre
map, as compared to the off-centre one. Similarly shifting
Lm towards darkness, we apply a higher gain factor to the
off-centre map. This is congruent with an on-centre receptive
field performing figure-ground separation of bright objects,
while the off-centre one does the same for dark objects.
Thus, the gain applied to the two maps differs by the value
of β, if non-zero:

βon = κe−(lm−255)2/σ

βoff = κe−(lm)2/σ
(3)

The curves corresponding to the on- and off-centre β are
given in Fig. 2(c) and 2(d), respectively. κ sets the maximum
asymmetricity applied to the maps while σ determines the
region extent for which β is non-zero. lm is the mean local
luminance around any given pixel at any particular iteration.
As the mean luminance of the image shifts away from the
extremes, β eventually becomes zero.

These boosted contrast maps are then used to reconstruct
the image using the reconstruction algorithm [1] that, given
a composite contrast map of an image, is able to iteratively

Figure 3. (Top): Original image & its histogram (Middle): CLAHE output
(Bottom): Output of our algorithm.

reconstruct the image from it. The algorithm stops when
the change in image through successive iterations is below
a certain threshold. Reconstruction is accomplished by a
gradient descent algorithm using the difference between the
original contrast map and the contrast map calculated at each
iteration as the error function. The pixel update rule, as in
[1], is:

∆IA(x, y) = ηw00CE(x, y) (4)

where ∆IA is the change in the actual pixel intensity at
(x, y), η is the update constant and CE(x, y) = [CD(x, y)−
CA(x, y)] is the contrast error at pixel (x, y) while w00

is the center weight of the DoG mask. For details of the
reconstruction algorithm refer to [1].

To validate the proposed approach experimentally, we
empirically set g = 2.0, γ = 0.5Cm and α = 0.08Cm in Eq.
2 and κ = 0.5 and σ = 2.5Cm in Eq. 3, where Cm is the
maximum possible contrast whose value depends upon the
mapping performed by the tangent hyperbolic non-linearity.
In our case, Cm is mapped to a value of 255. Some results
are shown in Fig. 4, 5 and 3. Although image quality is
a subjective and context dependent measure which is very
hard to quantify, a few necessary, though not sufficient,
parameters can be identified that are indicative of good
image contrast, namely, the spread of the image histogram
and its density. It can be seen from the histograms of our

466396426426



Figure 5. (Top): Original image (left), output of our algorithm (mid) and CLAHE output (right) (Bot): Corresponding histograms.

examples that their contrast spreading is wider than that of
CLAHE and that they are quite dense with no visible gaps.
Also, our algorithm is not known to produce any perceivable
halo effect that some of the other contrast enhancement
algorithms generate.

V. COLOUR IMAGE ENHANCEMENT

We applied the same gain control model presented above
to colour images. Three different colour spaces were exper-
imented with and their results were compared.

A. Experiments Using the RGB Space

In the RGB space, the image is composed of three
different planes corresponding to the colours red, green and
blue. Each image plane was treated as an individual gray-
scale image with no dependencies with any other plane. The
contrast was calculated independently for all three planes
resulting in six contrast maps - two for each plane (the on-
and off-centre maps). Gain control was applied to each pair
of contrast maps and the image of each plane was recon-
structed using the reconstruction algorithm described earlier.
The three reconstructed images were finally displayed as a

single colour image. The results compared with the CLAHE
algorithm can be seen in Fig. 6a and Fig. 7a.

B. Experiments Using the L∗a∗b∗ Space

In the L∗a∗b∗ space the luminance component is extracted
from the image leaving its colour component untouched.
This lumincance component is a gray-scale image. Contrast
was calculated for this single gray-scale image giving a
single pair of contrast maps (on- and off-centre). Gain
control was applied to it and the image reconstructed. The
gain-adjusted reconstructed image was then merged again
with its original colour component to produce the final
colour image. The results can be seen in Fig. 6b and Fig.
7b.

C. Experiments Using the Colour-Opponent Receptive
Fields Space

Six contrast maps are obtained in here as well like that
of the RGB space with the difference that while in the RGB
space each of the pair of contrast maps were computed treat-
ing each colour independently from the other two, in here
the contrast maps are computed such that each contrast map
is dependent on two or more colours acting in opposition to
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Figure 4. (Top): Original image & its histogram. (Middle): CLAHE output.
(Bottom): Output of our algorithm.

the other. Because of this opponent dependency between the
colours, the result using the colour-opponent receptive fields
come out to be more natural than the other two approaches.
See Fig. 6c and Fig. 7c. It is believed that these colour-
opponent receptive fields are the cause of colour-constancy
in the primate brain [10], [12]. Here also three different
images are reconstructed - one for each of the three planes
of R, G, and B. The R plane image is reconstructed using
the contrast maps obtained by convolving with the receptive
field with a red centre. The G plane image is obtained by
using the contrast maps from the green centre receptive fields
and the B plane image is obtained using reconstruction from
blue centre receptive field contrast maps. The difference here
lies in the way the contrast maps were obtained.

VI. CONCLUSION

We have developed a model of contrast enhancement
using our image reconstruction algorithm that is biologically
inspired. A key feature of this model is the control of the
mean luminance value of the image. Starting with the origi-
nal image, we calculate its on- and off-centre contrast maps.
We then apply local gain control to these maps, boosting the

contrasts in the two maps symmetrically or asymmetrically
based on the mean luminance. Symmetrical boosting keeps
the mean luminance roughly the same, while enhancing the
contrast, whereas asymmetrical boosting shifts the mean
luminance towards the stronger weighted side. A higher gain
on the off-centre map shifts the mean luminance towards the
darker values, while that on the on-centre moves it towards
brighter ones. We also applied the model to colour images
in three different colour spaces using RGB, L∗a∗b∗, and the
colour-opponent receptive fields. Colour-opponent receptive
fields generated results that were better than those obtained
by applying the gain control model to the other two colour
spaces. The model is also biologically plausible since it
uses only local computations and, thus, can be beneficial in
gaining further understanding of the primate visual system.
In the future, we plan to continue addressing the slow
reconstruction phase of the algorithm, currently rendering it
unsuitable for applications requiring quick enhancements.
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(b) (left) Original image (centre) Output of the proposed algorithm in the L∗a∗b∗ space (right) CLAHE output in the L∗a∗b∗ space.

(c) (left) Original image (centre) Output of the proposed algorithm using the colour-opponent receptive fields (right) Corresponding contrast
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Figure 6. Images with enhancement performed in three different colour spaces and comparison with CLAHE algorithm
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(a) (Left): Original image (Centre): Output of the proposed algorithm in the RGB space (Right): CLAHE output in the RGB space.

(b) (Left): Original image (Centre): Output of the proposed algorithm in the L∗a∗b∗ space (Right): CLAHE output in the L∗a∗b∗ space.

(c) (Left): Original image (Centre): Output of the proposed algorithm using the colour-opponent receptive fields.(Right): Corresponding contrast
image

Figure 7. Images with enhancement performed in three different colour spaces and comparison with CLAHE algorithm
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