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ABSTRACT 
In this paper we propose a feature level fusion approach 
for checking  liveness in   face-voice person 
authentication. Liveness verification experiments 
conducted on two audiovisual databases, VidTIMIT and 
UCBN, show that feature-level fusion is indeed a powerful 
technique for checking liveness in  systems that are 
vulnerable to replay attacks, as it preserves 
synchronisation between closely coupled modalities, such 
as voice and face, through various stages of authentication. 
An improvement in error rate of the order of 25-40% is 
achieved for replay attack experiments by using feature 
level fusion of acoustic and visual feature vectors from lip 
region as compared to  classical late fusion approach. 

1. INTRODUCTION 
By using multiple cues concurrently for 

authentication, systems gain more immunity to intruder 
attacks [1], as it will be more difficult for an impostor to 
impersonate another person with multiple cues, such as   
audio and visual cues simultaneously. In addition, multiple 
cues such as those from face and voice, also help improve 
system reliability. For instance, while background noise 
has a detrimental effect on the performance of voice 
biometrics, it does not have any influence on face 
biometrics. On the other hand, while the performance of 
face recognition systems depends heavily on lighting 
conditions, lighting does not have any effect on the voice 
quality [2].  

However, current audiovisual authentication 
systems mostly verify a person’s face statically, and hence 
these systems remain vulnerable to replay attacks that 
present pre-recorded audio together with a still 
photograph. To resist such attacks, audiovideo 
authentication should include verification of the “liveness” 
of the audiovideo data presented to the system [3]. Until 
now, although there has been much published research on 
the liveness, for example, of fingerprints, research on live-
ness verification in audiovisual  authentication systems has 
been very limited. 

Moreover, the classical approaches to multimodal 
fusion, late fusion and its variants in particular, have been 
investigated in great depth. Late fusion, or fusion at the 
score level, involves combining the scores of different 
classifiers, each of which has made an independent 
decision. This means, however, that many of correlation 

properties of the joint audiovideo data are lost. Fusion at 
feature-level on the other hand, can substantially improve 
the performance of the multimodal systems as the feature 
sets provide a richer source of information than the 
matching scores, and because  in this mode, features are 
extracted from the raw data and subsequently combined. 
Feature-level fusion allows synchronisation between 
closely coupled modalities such as voice and lip-
movements to be preserved throughout various stages of 
authentication, facilitating liveness  verification in systems 
that would otherwise be more vulnerable to replay attacks.  

This paper proposes feature-level audiovisual 
fusion as a powerful technique for checking liveness for 
face-voice authentication. The remainder of this paper is 
organised as follows.  The next section details the 
speaking face data used for different experiments. The 
description of feature extraction method used is given in 
section 3. The examination of system performance for 
feature fusion and late fusion, in the presence of adverse 
environmental conditions such as acoustic noise and visual 
artefacts, as well as  sensitivity to training data size and 
utterance length  are discussed in section 4, followed by 
concluding remarks in section 5. 

2. SPEAKING FACE DATA 
We used two different types of speaking face data 

to evaluate proposed feature-level fusion. The first 
database used for evaluation is the multimodal person 
authentication database VidTIMIT [4]. The VidTIMIT 
database consists of video and corresponding audio 
recordings of 43 people (19 female and 24 male). The 
mean duration of each sentence is around 4 seconds, or 
approximately 100 video frames. A broadcast-quality 
digital video camera in a noisy office environment was 
used to record the data. The video of each person is stored 
as a sequence of JPEG images with a resolution of 512 × 
384 pixels (columns × rows), with corresponding audio 
provided as a monophonic, 16 bit, 32 kHz PCM file.  

The second type of data used is the UCBN 
database,  a free to air broadcast news database. The 
broadcast news is a continuous source of video sequences, 
that can be easily obtained or recorded, and has optimal 
illumination, colour, and sound recording conditions. 
However, some of the attributes of broadcast news 
database such as near-frontal images, smaller facial 
regions, multiple faces and complex backgrounds require 
an efficient face detection and tracking scheme to be used. 
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The database consists of 20-40 second video clips for 
anchor persons and newsreaders with frontal/near-frontal 
shots of 10 different faces (5 female and 5 male). Each 
video sample is a 25 frames per second MPEG2 encoded 
stream with a resolution of 720 × 576 pixels, with 
corresponding 16 bit, 48 kHz PCM audio.  

These two types of databases represent very 
different types of speaking face data, VidTIMIT with 
original audio recorded in a noisy office environment and 
clean visual environment, and UCBN with clean audio and 
visual environments, but complex backgrounds. This 
allows the robustness of feature-level fusion to be 
examined accurately in our study.  Figure 1(a) and 1(b) 
show sample speaking-face data from the VidTIMIT and 
UCBN databases. 
 

 
Fig. 1: Faces from (a) VidTimit (b) UCBN 

3. AUDIOVISUAL FUSION 

3.1 Acoustic  feature extraction 
The mel frequency cepstral coefficients (MFCC) as 

derived from the cepstrum information were used for 
extracting acoustic features. The pre-emphasized audio 
signal was processed using a 30ms Hamming window 
with one-third overlap, yielding a frame rate of 50 Hz, to 
obtain the MFCC acoustic vectors. An acoustic feature 
vector was determined for each frame by warping 512 
spectral bands into 30 mel-spaced bands, and computing 
the 8 MFCCs. Cepstral mean normalization was 
performed on all MFCCs before they were used for 
training, testing and evaluation.  Before extracting 
MFCCs, the audio files from the two databases were 
mixed with factory noise (Factor1.wav) from the Noisex-
92 database [5] at a signal-to-noise ratio of 6 dB. Channel 
effects with a telephone line filter were then added to the 
noisy PCM files to simulate the channel mismatch.  

3.2 Visual  feature extraction 
Before the facial features can be extracted, faces need to 
be detected and recognised. The face detection for video 
was based on the approach of skin colour analysis in red-
blue chrominance colour space, followed by deformable 
template matching with an average face, and finally  
verification with rules derived from the spatial/geometrical 
relationships of facial components, [6]. The lip region was 

determined using derivatives of the hue and saturation 
functions, combined with geometric constraints. Figures 
2(a) to 2(e) show some of the results of the face detection 
and lip feature extraction stages. The details of the scheme 
are described in [6].  
Similarly to the audio files, the video data in both 
databases were mixed with artificial visual artefacts such 
as addition of Gaussian blur and Gaussian noise, using a 
visual editing tool [Adobe Photoshop]. The “Gaussian 
Blur” of Photoshop was set to 1.2, and “Gaussian Noise” 
of Photoshop to 1.6. 
 

  
Fig. 2(a): A skin colour sample and the Gaussian 
distribution in red-blue chromatic space 

 
Fig. 2(b): Lip region localisation using hue-saturation 
thresholding and detection of lip boundaries using 
pseudo-hue/luminance images  

 
Fig. 2(c):  Illustration of geometric features and 
measured key points for different lip openings 
 

3.3 Joint Audiovisual Feature Vector  
To evaluate the power of the feature-level fusion 

strategy in preserving the audiovisual synchrony, and 
hence verification of liveness, experiments were 
conducted with both feature fusion (also referred to as 
early fusion) and late fusion of audiovisual features. In 
case of feature fusion, the audiovisual fusion involved a 
concatenation of the audio features (MFFCs-8) and visual 
features (eigen-lip projections(10)+ lip dimensions(6)), 
and the combined feature vector was then fed to a GMM 
classifier. The audio features acquired at 50 Hz, and the 
visual features acquired at 25Hz were appropriately rate 
interpolated to obtain synchronized joint audiovisual 
feature vectors. For late fusion, audio and visual features 
were fed to independent GMM classifiers and the 
weighted scores (β) [10] from each stage, were fed to a 
weighted-sum fusion unit.  

3.4 Likelihood normalization  
The use of normalized likelihoods together with a 

global threshold in addition, leads to improvements in 
performance as well as robustness of person authentication 
systems [4]. The Universal Background Model (UBM) 
approach [9] is the most popular normalized likelihood 
approach when utilizing Gaussian Mixture Model (GMM) 
classifier.  
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For VidTIMIT, the data from 24 male and 19 female 
clients were used to create separate gender specific 
universal background models. The background models 
were then adapted to speaker models using MAP 
adaptation [9]. The first two utterances for all speakers in 
the corpus being common were used for text dependent 
experiments and 6 different utterances for each speaker 
allowed text independent verification experiments to be 
conducted. For text independent experiments, four 
utterances from session 1 were used for training and four 
utterances from session 2 and 3 were used for testing. 

For the UCBN database, the training data for both text 
dependent and text independent experiments contained 15 
utterances from 5 male and 5 female speakers, and 5 
utterances for testing, each recorded in a different session. 
The utterances were of  20-second duration for text 
dependent experiments, and of 40-second duration in text 
independent mode. Similarly to VidTIMIT, separate 
UBMs for the male and female cohorts were created for 
UCBN data. 

4. REPLAY ATTACK EXPERIMENTS 
The replay attack  experiments  were conducted 

in two phases, training and testing. In the training phase, a 
10-mixture gaussian mixture model λ of a client’s 
audiovisual feature vectors was built, reflecting the 
probability densities for the combined phonemes and 
visemes in the audiovisual feature space. 
  For testing, the clients’ live test recordings were 
evaluated against the client’s model λ by determining the 
log likelihoods log p(X|λ) of the time sequences X of 
audiovisual feature vectors under the usual assumption of 
statistical independence of successive feature vectors.  

For testing replay attacks, a number of “fake” or 
synthetic recordings were constructed by combining the 
sequence of audio feature vectors from each test utterance 
with ONE visual feature vector chosen from the sequence 
of visual feature vectors and keeping that visual feature 
vector constant throughout the utterance [3]. Such a 
synthetic sequence represents an attack on the 
authentication system, carried out by replaying an audio 
recording of a client’s utterance while presenting a still 
photograph to the camera. Four such fake audiovisual 
sequences were constructed from different still frames of 
each client test recording. Log-likelihoods log p(X’|λ) 
were computed for the fake sequences X’ of audiovisual 
feature vectors against the client model λ. In order to 
obtain suitable thresholds to distinguish live recordings 
from fake recordings, detection error tradeoff (DET) 
curves and equal error rates (EER)  were determined.  

For all experiments, the threshold was set using 
data from the test data set. Table 2 shows the number of 
client trials and  replay attack trials conducted for 
determining the EERs. The first row in Table 2 for 
example, refers to experiments with the VidTIMIT 
database in text dependent mode for a male-only cohort, 
comprising a total of 48 client trials (24 clients × 2 
utterances per client) and 192 replay attack trials (24 
clients × 2 utterances × 4 fake sequences per client). A 

convenient notation is used here for referring to the 
experiments in a particular mode (Table 1). A simple Z-
norm based approach as proposed in [9] was used for the 
normalization of all scores. 

 
Notation True description 
EER Equal Error Rate 
LF(0.25) Late fusion with fusion weight β=0.25 
FF Feature Fusion 
DB1 VidTIMIT database 
DB2 UCBN database 
TDMO Text dependent male only cohort 
TDFO Text dependent female only cohort 
TIMO Text independent male only cohort 
TIFO Text independent male only cohort 
 
Table 1 : Notation for different experiments with 
Speaking face data 
 

Different sets of experiments were conducted to 
evaluate the performance of the system in terms of DET 
curves and equal error rates (EER).  The results of only 
two types of data, that is DB1TIMO (VidTIMIT database 
text-independent male-only cohort) and DB2TDFO 
(UCBN database text-dependent female-only cohort) 
experiments are reported here. All late fusion experiments 
had varying combination weights ‘β’ for combining audio 
and visual scores. β is varied from 0→1 with β increasing 
for increasing visual scores.  

 
Table 2: Number of client and replay attack trials 
 

For the first set of experiments, original data from 
VidTIMIT and original files from UCBN database were 
used. The DET curves for the baseline performance of the 
system with the original data, with feature fusion and late 
fusion are shown in Figure 3. As can be seen in Figure 3, 
the baseline EER achieved is 3.65% for DB1TIMO and 
2.55% for DB2TDFO, as compared to 8.1% (DB1TIMO) 
and 6.8% (DB2TDFO), achieved for late fusion with 
β=0.75.  In Figure 4, the behavior of the system is shown 
when subjected to different types of environmental 
degradations as is the EER sensitivity to variations in 
training data size. Once again, feature level fusion 
outperforms late fusion for acoustic and visual 
degradations. When mixed with acoustic noise (Factory 
noise at 6 dB SNR + channel effects), feature fusion 
allows a performance improvement of the order of 38% 

Speaking 
 face data 

Client 
Trials 

Replay Attack 
Trials 

DB1TDMO 48(24×2)  192(24×2×4)  
DB1TDFO 38(19 × 2) 152(19×2× 4) 
DB1TIMO 144 (24 × 6) 384(24×2×2×4) 
DB1TIFO 114(19 × 6) 304 (19×2×2×4) 
DB2TDMO 100 (5 × 10) 200 (5×4×10) 
DB2TDFO 100(5 × 10) 200 (5×4×10) 
DB2TIMO 100 (5 × 10) 200 (5×4×10) 
DB2TIFO 100 (5 × 10) 200 (5×4×10) 
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compared to late fusion (β=0.25), and 18% for late fusion 
(β=0.75).  When mixed with visual artefacts, the 
improvement in performance achieved with feature fusion 
is about 30.40% as compared to LF (β=0.75), and 18.9% 
with LF (β=0.25). Table 3 and Figure 4 show the baseline 
EERs achieved and EERs achieved with inclusion of 
visual artefacts, acoustic noise and shorter training data. 
The table also shows a drop in performance  due to late 
fusion and feature fusion. 

 
Fig 3: Baseline replay attack performance  
(late fusion vs. feature fusion) 
 

 
Table 3: Relative Performance with acoustic noise, 
visual artefacts and variation in training data size 
The influence of training utterance length variation on 
system performance is quite remarkable and different as 
compared to other effects. The system is more sensitive to 
utterance length variation for feature fusion mode as 
compared to late fusion mode (Table 3). 
The drop in performance is less (9.46% for late fusion 
(β=0.75)) and  (26.57% for late fusion (β=0.25)) as 
compared to 42.32% drop for feature fusion for 
DB1TIMO, and likewise, the drop is 12.15% and 24.53% 
as compared to 40.96% drop for DB2TDFO. The utterance 
length is varied from 4 seconds to 1 second for DB1TIMO 
and from 20 seconds to 5 seconds for DB2TDFO data.  
This drop in performance is because of a larger 
dimensionality of the joint audiovisual feature vectors 
used (8 MFCCs+10 eigenlips+6 lip dimensions), as well 
as the shorter utterance length, which seems to be not 
sufficient to establish the audiovisual synchrony. 
 

 
Fig 4:  Liveness Verification System Sensitivity 
 
Longer utterances and hence more training speech would 
allow the audiovisual correspondence to be learnt, and 
better liveness verification to be done. 

5. CONCLUSIONS 
In this paper we have shown that feature level fusion of 
audiovisual feature vectors substantially improves the 
performance of a face-voice authentication system for 
checking liveness and thwarting replay attacks. Also, the 
sensitivity of the feature fusion approach to variations in 
the size of the training data has been recognized.  
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Speaking 
Face Data 

Base 
Line 

% EER 

Acoustic 
Effects 

Visual 
artefacts

Utterance 
Length 
Effects 

DB1TIMO 
(LF-0.75) 

8.1 9.98 
(-23.22 %) 

11.44 
(-41.12%)

8.87 
(-9.46 %) 

DB2TDFO 
(LF-0.75) 

6.8 8.18 
(-20.22 %) 

9.81 
(-44.92%)

7.63 
(-12.15%)

DB1TIMO 
(LF- 0.25) 

4.75 6.76 
(-42.33%) 

6.19 
(-30.22%)

6.01 
(-26.57%)

DB1TDFO 
(LF- 0.25) 

4.35 6.10 
(-40.16%) 

5.75 
(-32.82%)

5.42 
(-24.53%)

DB1TIMO 
(FF) 

3.65 3.83 
(-4.83%) 

4.06 
(-11.82%)

5.19 
(-42.32%)

DB2TDFO 
(FF) 

2.55 2.60 
(-2.06%) 

2.89 
(-13.42%)

3.59 
(-40.96%)
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