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Abstract 

 
In this paper we propose a novel feature warping 

technique based on thin-plate-spline (TPS) analysis for 
3D audio-video person authentication systems. The 
TPS warp features model information related to non-
rigid variations on speaking faces, such as expression 
lines, gestures, and wrinkles, enhancing the 
performance of the system against impostor and spoof 
attacks. Experiments with multimodal fusion of 
acoustic and TPS shape features for two different 
speaking face data corpus, VidTIMIT and AVOZES, 
allowed equal error rates (EERs) of less than 0.5 % 
for imposter attacks, less than 1 % for type-1 replay 
attacks (still photo and pre-recorded audio) and less 
than 2% for more complex type-2 replay attacks (pre-
recorded video or fake CG animated video).  
 
1. Introduction 
 

Current audio-video person authentication systems 
based on 2D face models can achieve satisfactory  
performance in highly constrained environments, and 
encounter difficulties in handling large amounts of 
facial variations due to head pose, lighting conditions 
and facial expressions [1]. Because the human face is a 
three-dimensional (3D) surface, and is a detailed 
internal anatomical structure, instead of just the 
external appearance,   utilizing 3D face information 
should improve the performance of the system against 
pose, illumination and expression variations [2]. By 
including voice information in addition to 3D face 
models, audio-video biometric systems can be made 
less vulnerable to different types of imposter and 
replay attacks. This is because of differential difficulty 
in spoofing a person’s voice, in synchronism with 3D 
shape and texture of a person’s face [3, 4]. However, 
certain subtle and non-rigid variations on speaking 
faces due to variations in expression lines, gesture, and 
wrinkles while talking, cannot be modeled by methods  
that simply extract the rigid 3D shape and texture 

information. Modeling of subtle and non-rigid facial 
variations allows liveness verification and can lead to 
substantial reduction in impostor and spoof attacks, as 
it is almost impossible  to imitate such fine details of a  
human face, and it can be ensured that the person 
trying to access a facility is an authorized “live” person 
and not an impostor or a fake client. 

 In this paper, novel feature warping of 3D facial 
shape features based on thin plate spline(TPS) analysis 
is proposed,  allowing robustness to pose, illumination 
and expression variations, leading to significant 
enhancement in performance of audio-video biometric 
systems against imposter and replay attacks. An equal 
error rate (EER) of less than 0.5 % was achieved for 
imposter attacks, less than 1% for type-1 replay attacks 
(pre-recorded audio and still photo) and less than 2% 
for type-2 replay attacks(pre-recorded video or fake 
speaking faces created with CG animation and other 
similar  techniques). The TPS warp features extract 
non-rigid deformations such as wrinkles and 
expression lines, and other subtle facial gestures on a 
3D speaking face. 

The speaking face corpus used for examining the 
performance of the proposed technique is described in 
next section. The detail of 3D face modeling technique 
used is given in section 3, followed by description of 
TPS warp features in section 4. The details of impostor 
and replay attack experiments is described in section 5, 
with conclusions in section 6.  
 
2. Speaking Face Data Corpus 
 

The speaking face data from two different data 
corpus, VidTIMIT and AVOZES was used for 
conducting  imposter and spoof attack experiments. 
The VidTIMIT multimodal person authentication 
database [4] consists of video and corresponding audio 
recordings of 43 people (19 female and 24 male). The 
mean duration of each sentence is around 4 seconds, or 
approximately 100 video frames. A broadcast-quality 
digital video camera in a noisy office environment was 
used to record the data. The video of each person is 
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stored as a sequence of JPEG images with a resolution 
of 512×384 pixels with corresponding audio provided 
as a 16-bit 32-kHz mono PCM file. 

The second database used is the AVOZES database, 
an audiovisual corpus developed for automatic speech 
recognition research [5]. The corpus  consists of  20 
native speakers of Australian English (10 female and 
10 male speakers), and the  audiovisual data was 
recorded with a stereo camera system to achieve more 
accurate 3D measurements on the face. The recordings 
were made at 30 Hz video frame rate and 16bit 48 kHz 
mono audio rate in a controlled acoustic environment 
with no external noise, and some background computer 
and air-conditioning noise. For each speaker there 
were 3 spoken utterances, 10 digit sequences, 18 
phoneme sequences (CVC words in a carrier phrase), 
and 22 VCV phoneme sequences (VCV words in a 
carrier phrase. 

 

 
(a) 

 
(b) 

 
Figure 1: Faces from (a) VidTIMIT, (b) AVOZES 
 

Figure 1a and 1b show sample data from 
VidTIMIT and AVOZES corpus. The two types of 
databases represent very different types of speaking 
face data, VidTIMIT with original audio recorded in a 
noisy environment and clean visual environment, and 
AVOZES with stereo face data for better 3D face 
modeling. The technique for 3D face modeling for 
three data bases is described in next section, before the 
description of details of proposed TPS warp features.   
 
3. 3D Face modeling 
 

The VidTIMIT data base  consists of frontal and 
profile view images of the faces, and AVOZES data 
comprises left(top) and right(bottom) images of the 
faces, as shown in Figure 1(a) and (b). We used a 

unified approach for 3D face modeling of faces from 
the databases, based on [1, 6, 7, and 8]. The algorithm 
starts by computing 3D coordinates of automatically 
extracted facial feature points. Correspondence 
between feature points in both images is established 
using epipolar constraints, and then depth information 
from front and profile views for VidTIMIT faces, and, 
left and right views for AVOZES faces, is computed 
using perspective projection.  The 3D coordinates of 
the selected feature points are then used to deform a 
3D generic face model to obtain a person specific 3D 
face model.  

  The wire-mesh for face modeling can be created 
either by finite element modeling of vertices and 
surfaces, or based on graphics software created by an 
artist. We used second option, and used discreet 
3DSMAX™, a commercial 3D graphics software for 
creating the generic head model based on polygons. 
Figure 2 shows the generic head model created by the 
software. 

The generic model then undergoes global alignment 
and local refinement. The global alignment stage 
brings the generic model and facial measurements into 
same coordinate system. Then, local refinement is 
performed by generating 3D spline curves for each 
facial component and adjusting corresponding vertices 
of the 3D model accordingly.  Further details of the 
face modeling and automatic facial feature extraction 
are given in [9].  

 

 
 
Figure 2: Front and profile view of a generic 

head model 
 
  The global alignment of generic head model 

shown in Figure 2 for each person’s head shape 
involves deformation of 15 vertices. The entire 3D 
generic model is brought as close as possible to the 
corresponding 3D coordinates of anchor points 
calculated from the images of the person’s face. This is 
done by rotating, translating and scaling to match the 
calculated 3D points by minimizing the sum squared 
error criteria shown in equation 1. 
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Subscripts M, I and M0 correspond to model points, 
calculated image points, and initial model points. S is 
scaling factor, R is the Rotation matrix and T is the 
translation vector. Equation 1 can be solved by 
adjusting the parameters of S, R and T matrices. 

Given two sets of 3D points, namely 15 calculated  
),,( III zyx  anchor points, and 15 corresponding 

),,( MMM zyx  model points, global alignment 
algorithm finds the translation and rotation matrices 
that best match the corresponding data points. That is, 
it calculates the best fit of two similar sets of 3D data 
points, the best least squares translation is computed 
from the centers of mass of the two sets of data points. 
The rotation matrix is computed using a linearized 
iterative least-squares algorithm. The global rigid 
alignment deforms successfully, scales and aligns the 
generic model to the 3D feature points calculated from 
the face images.  
 

 

 

 
 

Figure 3: 3D face model of VidTimit face by 
global and local alignment of generic face model 
shown in Figure 2 

 
 

Local refinement is then implemented by treating 
each of the facial features as separate non-rigid 
components, and the vertices of the generic model are 
brought closer to the calculated 3D anchor points of 
the person’s face. Facial texture for all the vertices is 
computed by blending the R, G, B color components 
of two views of the face. Figure 3 shows the textured 
3D face model for a male subject in VidTIMIT 
database by global and local alignment of generic face 
model. 
 
4. Thin plate spline warp  
 

The use of thin plate spline warping features was 
first proposed by Bookstein [10]. A speaking face is 
characterized by certain person-specific subtle non-
rigid facial deformations, such as nasolabial folds, 
horizontal wrinkles between eyes and forehead, 
furrows on the fore head and the brows, as shown in 
Table 1 [11,12]. Such subtle variations on the face 
cannot be captured with current methods, though there 
is a rich literature on methods for modeling non-rigid 
deformations, ranging from contour, shape, appearance 
to optical flow [13-19]. Thin plate spline(TPS) 
formulation, a powerful surface interpolation approach 
finds a “minimally bended” smooth surface that passes 
through all control points, and in the process maps the 
facial regions with high curvatures, such as nasofabial 
folds and furrows, to a subspace that are more 
discriminatory. Due to better modeling of non-rigid 
facial deformations, it is easier to distinguish genuine 
clients, from imposters and fake clients (replay 
attacks). The name "Thin Plate" comes from the fact 
that a TPS more or less simulates how a thin metal 
plate would behave if it was forced through the same 
control points. 

 
 

Table 1: Facial expression changes for a 
speaking face [adapted from [11] 
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Thin plate spline warp allows  parameterization of a 

warping transformation based on a set of fiducial or 
anchor points. It effectively generates a minimum 
bending energy (approximate curvature) solution to a 
point constrained warping. The transformed warp 
features allow extraction of non-rigid facial 
deformations such as expression lines and wrinkles, as 
facial expressions can be thought of as the deviation of 
facial action from neutral zero energy position. 

We show that by selecting the anchor points on the 
face that correspond to separate facial action units, it is 
possible to extract person-specific expressions, 
wrinkles and gestures. In addition, differential TPS 
warp field discriminates clearly the intra-subject 
variations due to affine pose and illumination 
variations, and non affine expression variations, from 
the warp field corresponding to imposters and spoof 
attack scenarios. This is due to the ability of TPS warp 
formulation  to modeling  rigid(affine) head 
movements as well, and the solution to TPS model 
equations comprise an affine part for rigid 
deformations, and a non-linear part for non-rigid 
deformations. For sake of simplicity, 2D TPS model is 
described here, though we included the depth 
information for TPS warping. 
The TPS model is initialized from the neutral face 
region with ‘n’ control point window surrounding the 
facial feature anchor points as shown in Figure 2. 
Given n control points ,)ˆ,ˆ( 2IRyx ii ∈ in a plane, and 
their corresponding function values ,,,1,ˆ niIRvi L=∈  
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The interpolated spline function consists of two parts: 
affine transformation parameterized by ‘a’, and non-

affine warping specified by ‘w’. Since the warp 
transform here is a spline function f(x, y), it needs to 
have square-integrable second derivatives with 
following constraints: 
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The TPS parameters a and w can be computed by 
solving the following system of equations: 
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Q is ),,1( jj yx , and the j-th row of the resulting 

vectors x′ and y′ are the interpolated x and y 

coordinates jx′  and jy′ , respectively. We denote the 

matrix [ ]QB  as ‘M’. So, the TPS warp procedure 
can be described in two steps: 
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1. Given the correspondence of control points in 
the two images, the TPS coefficients are first 
estimated and then, 

2.  Points of interest are transformed to new 
locations using interpolated spline from TPS 
coefficients estimated above. 

 

 
 
Figure 4: VidTIMIT face with anchor points   
And regions with control points for TPS warp.  
 

The initial 10 facial anchor points shown in Figure 
4 corresponding to the neutral face for VidTimit and 
Avozes, automatically extracted similar to method 
used for 3D face modeling [9]. The algorithm extracts 
10 anchor points corresponding to the left and right 
corner of the lips, the top and bottom of the lips, the 
left and right side of nostrils, the outer corner of the 
eyes, and inner corner of the eyebrows. For TPS 
warping a square window with 10*n (around 40) 
control points around anchor points corresponding to 
different facial feature regions are  chosen as shown in 
Figure 4. The control points in three windows undergo 
TPS warp as in equations(1) to (8) above. The 
differential warp field (DWF) magnitude is computed 
as the difference between the magnitude of x, y, z (3D) 
of original control points and warped control points. 
The DWF computations are repeated for all frames of 
entire speaking face video, by projecting the markers 
(anchor points) from neutral face by deformable 
template matching technique described in   [9]. The 
DWF magnitude for same person with gesture and 
expression variations is different from DWF 
magnitudes corresponding to an imposter and fake 
client trying to spoof the system. For genuine clients 
with gesture and expression variations, the DWF 
magnitude is strong around cheeks and chin, between 
two eyebrows and nasolabial regions, while it is low 
around nose and eye areas. For imposters, the DWF 

magnitude is noisy and strong deformation is obtained 
near nose, eyes and mouth, due to facial features of an 
imposter being different from a client, and DWF 
around these key facial features dominates more than 
the regions corresponding to expression and gesture 
variations. For fake clients trying to spoof the system 
(simulated here with photo-realistic CG animated 
talking head), the DWF magnitude is random and  very 
noisy around the facial regions corresponding to 
expression and gesture variations such as nasogenian 
wrinkles, horizontal wrinkles between eyes and 
forehead, furrows on the fore head and the brows. 
Figure 5 shows simulated facial deformations for 
genuine client, fake client (spoof attack) and impostor 
for an utterance “aah” with a neutral, smiling and 
angry face. The differential warp field (DWF) for fake 
client and impostor is shown in Figure 6.  
 

 
Figure 5:  Facial deformations for genuine client, 
fake client and impostor for an utterance “aah” 
 

 
Figure 6: DWF field for fake client and impostor 

 
The 120 dimensional DWF vector (40 control 

points*3 windows) being high can make the DWF 
classifier very weak. However, from initial 
experiments, we learnt that more than 97% non-rigid 
deformations for a speaking face can be modeled by  
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Eight-ten principal differential warps or Eigen 
values of differential warp field (DWF magnitudes), 
two-four each for the three windows shown in figure 4. 
These exigent values correspond to each of the regions 
from AU1-AU7, AU9-AU17, and AU20-AU27, 
shown in Table 1.  

For acoustic features, the Mel frequency cepstral 
coefficients (MFCC) as derived from the cepstrum 
information were used. The MFCC features were 
obtained by pre-emphasizing the audio signal first, and 
then processed with a 30ms Hamming window with 
one third overlap, yielding a frame rate of 50 Hz. An 
acoustic feature vector was determined for each frame 
by warping 512 spectral bands into 30 Mel spaced 
bands, and computing the 8 MFCCs. Cepstral mean 
normalization was performed on all MFCCs before 
they were used for training, testing and evaluation. In 
addition, log energy and pitch information computed 
by autocorrelation method was used.  

 
5. Authentication Experiments 
 

To investigate the potential of DWF warp features 
for thwarting impostor attacks and spoof attacks, 
different sets of experiments were conducted using 16  
dimensional multimodal audio-visual feature vector(8 
MFCCs +1 log-Energy + 1 pitch+ 6 TPS warp 
features).  

In the training phase, a 10-Gaussian mixture model 
of each client’s feature vectors in the three dimensional 
space was built by constructing a gender-specific 
universal background model (UBM) and then adapting 
each UBM by MAP adaptation [11]. Both text-
dependent and text-independent experiments were 
conducted with VidTIMIT corpus and text-dependent 
experiments with AVOZES data. For all experiments, 
the threshold was set using data from the test data set. 
Table 2 shows the notation used for different 
experimental modes. 

 
Table 2: Notation for different experimental 
modes 
 

In the test phase, clients’ live test recordings were 
evaluated against a client’s model λ by determining the 
log likelihoods log p (X|λ) of the time sequences X of 
audiovisual feature vectors in cross-modal space. A Z-
norm based approach [12] was used for score 
normalization. 

For testing replay/spoof attacks, two types of 
replay-attack experiments were conducted. For Type-1 
replay attacks, a number of “fake” recordings were 
constructed by combining the sequence of audio 
feature vectors from each test utterance with ONE 
visual feature vector chosen from the sequence of 
visual feature vectors. Such a fake sequence represents 
an attack on the authentication system, which is carried 
out by replaying an audio recording of the client’s 
utterance while presenting a still photograph to the 
camera. Four such fake audiovisual sequences were 
constructed from different still frames of each client 
test recording. Log-likelihoods log p(X’|λ) were 
computed for the fake sequences X’ of audiovisual 
feature vectors against the client model λ.  

For Type-2 replay attacks, a video clip was 
constructed from a still photo of each speaker. This 
represents a scenario of a spoof attack with an 
impostor presenting a fake video clip constructed from 
pre-recorded audio and a still photo of the client 
animated with facial movements and voice-
synchronous lip movements. The still photo of each 
client was voice-synched with the speech signal of 
each speaker, using a set of commercial software tools 
(Adobe Photoshop Elements, Discreet 3DSMax, and 
Adobe After Effects). We constructed several fake 
video clips by extracting ONE face (the first face) 
from the video sequence, which acts as a key frame, 
animated the lip region of the key frame by phoneme-
to-viseme mapping, and then added random 
deformations and movements in the face and finally 
rendered lip and face movements with speech, all 
together as a new video clip. Such a fake clip emulates 
a normal talking head with certain facial and head 
movements in three dimensional spaces in 
synchronism with spoken utterance. 

Different sets of experiments were conducted to 
evaluate the performance of the system in terms of 
DET curves and equal error rates. The results for only 
two types of data, that is DB1TIMO (VidTIMIT 
database text-independent male-only cohort) and 
DB2TDFO (AVOZES database text dependent female-
only cohort) are reported here. For both types of data, 
both late-fusion and feature-level fusion of shape and 
texture features were examined. For late-fusion equal 
weights for shape and feature fusion was used.  

For VidTimit corpus in text-independent mode 
there were 144 client trials (24×6) and 3312 impostor 

Notation True Description 
EER Equal Error Rate 
DB1 Vitamin corpus 
DB2 AVOZES corpus 
TDMO Text dependent male only cohort 
TDFO Text dependent female only cohort 
TIMO Text independent male only cohort 
TIFO Text independent female only cohort 
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trials (24×23×6) for male subjects. For AVOZES there 
were 53 client trials and 4770(10×9×53) imposter 
trials. Next set of experiments were for testing the 
Type-1 replay attacks. For the VidTimit database in 
text-independent mode, there were 144 client trials 
(24×6) and 576(24×6×4) replay attacks for male 
subjects. For AVOZES data, there were 53 client and 
2120 (10×53×4) replay attack trials for both female 
subjects in text dependent mode. The third set of 
experiments is to test Type-2 replay attacks, where the 
numbers of client and spoof attack trials were same as 
client trials. Table 3 shows the number of client, 
imposter and replay attack trials for each set. 

  The DET curve and EER results  in Table 4, and 
Figures 7 and 8, show the potential of the proposed 
fusion of principal TPS warp features with acoustic 
features (MFCC+f0) to thwart imposter and replay 
attacks for VidTIMIT data and AVOZES data.   

 

Corpus DB1TIMO DB2TDFO 
Client 
Trials 

144 (24 clients × 6 
Utterances per 
client) 

530  trials 
(10×53) 

Imposter 
Trials 

3312  trials 
(24×23 ×6) 

4770 trials 
(10×9×53) 

type-1 Replay-
attack Trials 

576 trials 
(24×6×4) 

2120 trials 
(10×53×4) 

type-2 Replay 
attack Trials 

144 trials 
 

530  trials 
 

 

Table 3: Number of Client, Imposter and Replay 
attack trials 
 
For VidTIMIT corpus, less than 0.5% EER achieved 
for impostor attacks, with 0.28% for late fusion and 
0.19% for feature fusion. Feature fusion performs 
better, around 32% improvement as compared to late 
fusion, due to synchronous processing of principal 
warp and acoustic features. For AVOZES corpus, EER 
achieved is 0.42% with feature fusion as compared to 
0.50% for late fusion, about 16% EER improvement.  
For type-1 replay attacks, less than 1 % EER is 
achieved for VidTIMIT and AVOZES, with feature-
fusion performing better than late fusion (27% 
improvement for VidTIMIT data vs.  33% for 
AVOZES data).  Less than 2% EER is achieved for 
type-2 replay attacks for both VidTIMIT and 
AVOZES data, with best EER equal to 0.77% for 
VidTIMIT TIMO data and worst EER of 1.57% for 
AVOZES TDFO data.  

 

 
 
Table 4: EERs for impostor and replay attacks 
 

 
             (a)                                        (b) 
 

Figure 7: DET curves for testing (a) imposter, 
and (b) type 1 replay attacks 
 

 
 

Figure 8: DET curves for testing type-2 replay 
attacks 
 
The fusion of acoustic features with three dimensional 
TPS warp features allowed a significantly enhanced 
performance for both impostor and spoof attacks, 
including type-2 replay attacks, which are more 
complex to detect. VidTIMIT data in general performs 
better than AVOZES data for all experiments. This can 
be due to several reasons, better quality of images in 
VidTIMIT, and difference in accuracy of depth 
computations with availability of frontal and side faces 

% EER  
achieved 

ViDTIMIT 
TIMO 

ViDTIMIT 
TIMO   

AVOZES
TDFO  

AVOZES
TDFO 

 
Fusion 
Type 

Late  
Fusion 

Feature 
Fusion 

Late 
Fusion 

Feature 
Fusion 

Imposter 
Attacks 

0.28 0.19 0.50 0.42 

Type1 
RA attacks 

0.65 0.47 0.90 0.60 

Type-2 RA 
attacks 

1.1 0.77 1.57 1.25 
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in VidTIMIT, and left and right images in AVOZES. 
Figures 7 and 8 shows the DET curves corresponding 
to the EERS in table 4.  
 

6. CONCLUSIONS 
 
The potential of TPS warp features to thwart imposter 
and still-photo/video-replay spoof attacks for audio-
video biometric system has been shown in this study. 
The multimodal feature fusion of acoustic and TPS 
warp features allowed less than 0.5 % EERs to be 
achieved for imposter attacks, and less than 1% for 
type-1 replay attacks.  With less than 2 % EER for 
type-2 replay attacks, a significant enhancement in 
performance was achieved for more difficult type-2 
replay attacks.  
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