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ABSTRACT

Hidden Markov model (HMM) is a doubly stochastic
process. The observable process produces a sequence of
observations and the hidden process is a Markov process.
The HMM assumes that the occurrence of one observation
is statistically independent of the occurrence of the
ethers. To avoid this limitation, the temporal HMM is
proposed. The hidden process in the temporal HMM is the
saine but the observable process is now a Markov
process. Each observation in the training sequence Is
assumed to be statistically dependent on its predecessor
and codewords or Gaussian components are used as
states in the observable Markov process. Speaker
identification experiments performed on 138 Gaussian
mixture speaker models in the YOHO database shows a
better performance for the temporal HMM compared to
the standard HMM.

1. INTRODUCTION

The hidden Markov model {HMM) approach is the well-
known and widely uscd statistical mcthod of characterizing
the spectral properties of the time frames of a speech
pattern [6]. There arc two assumptions in the first-order
HMM. The first is thc Markov assumption, i.c. a new state
is cntered at cach time ¢ based on the transition
probability, which only depends on the previous statc. It is
uscd to characterise the scquence of the time frames of a
speech pattern. The second is the output-independence
assumption, i.c. the output probability depends only on
the statc at that time regardlcss of when and how the state
is entered [4]. A process satisfying the Markov
assumption is called a Markov model. An observable
Markov model is a proccss where the output is a set of
states at each instant of time and cach state corresponds
to an observable cvent. The HMM is a doubly stochastic
process with an underlying Markov process which is not
directly obscrvable (hidden) but which can be observed
through another sct of stochastic processes that produce
observable cvents in each of the states [6].

The HMM-based training mcthods have become widely
applicd in specch rccognition, voice authentication, on-
line (dynamic} handwriting rccognition, signaturc

authentication, and face rccognition systems. Flowever,
there is a limitation of this approach. The HMM assumes
that the occurrence of one feature in the training data is
statistically independeitt of the occurrence of the others.
This assumption is not appropriate for speech or
handwriting recognition because a spoken or written word
is represented as a time scrics of featurcs and hence the
featurcs are corrclated in time. The proposed temporal
modcls can avoid this limitation of the HMM.

In order to represent that correlation, the usc of codewords
in a codcbook obtaincd by vector quantization (VQ)
modcling as states of a Markov chain was developed [1]
for isolated word recognition. The proposcd research
cxtends this idea to a gencral framework and hencee it can
apply to HMMs, Gaussian mixture models (GMMs) and
their fuzzy versions. In he proposed approach, cach
codcword in the codebook or cach Gaussian component in
the Gaussian mixture model is a spccific state of the
Markov chain. The statc-transition probabilitics of the
Markov chain are usced to rcpresent the dependence
between acoustic features. For example, if codeword vy
comes after codeword v, it is considered that there is a
probability of transition from state v, to state v,..

The temporal HMM is the standard HMM using the
above-mentioncd Markov chain approach. Each feature
vector in the training sequence is assumed to be
statistically dependent on its predeccssor in the proposcd
temporal model. In the HMM, observations in thc
scquence O are assumed to be independent. Therefore the
temporal model has avoided the limitation of thc HMM. A
simpler version of the temporal HMM is the temporal
GMM, which is also presented in this paper.

Speaker identification cxperiments performed on 138
Gaussian mixture speaker modcls in the YOHO database
shows a better performance for the temporal HMM
compared to the standard HMM.

2. HIDDEN MARKOV MODEL

Let S={s51,52,u57}, and
V={y,va,.

scquence and a discrete sct of obscrvation symbols,

0 ={0y,03,.,01},

,¥a7) be a state sequence, an obscrvation
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respectively. The notation A ={nm, 4, B}
indicates the camplete parameter sct of the HMM where

r={n;}, m;=P(s;=i) is the initial state distribution;

compact

A=fay}, aj =P(s; = |52 =i) is the state transition
probability distribution, and  B={h;(k)}, b;(k)=
P(o, =v, | s, =j) is the observation symbo! probability
distribution, denoting the probability that a symbol o, = ;.
is generated in state j. There are three basic problems for
HMMs. Here we concentrate on the evaluation and

reestimation problems. The decoding problem is not
considered in this time.

The Evaluation Problent given the observation sequence
O, and the model A4, the problem is how to choose the
model which best matches the observations for the
purpose of classification or recognition. For solving this
problem, we obtain {6)

PO|X)= Y P(O{S,A)P(S|2) (N
all §
or
N N \
P(O|A) =2ar(i)=2”;[71("l 1By () )
i=| i=l
where o, ()= P(01,02,500,5 =i|A) and

B.()=Ployy ..o |s, =i,A) are the forward and
backward variables, respectively [6].

The estimation problent given the observation sequence
O, how do we adjust the model parameters A to maximize

PO|A)? This problem is solved by applying the Baum-
Welch reestimation algorithm as follows [6]

-1
2 51 )
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where Y () =PGs, =i|OA) =Y & G, ) 4
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> Sodagh 0B ()

i=l j=1

Note that a scaling procedure is required for implementing
(3) since the dynamic range of the &,{/) computation will

exceed the precision range of any machine for sufficiently
large 1.

3. TEMPORAL HIDDEN MARKOV MODEL

The use of codewords in a codebook as states of a
Markov chain was developed for isolated word recognition
[1]. The proposed research extends this idea to a general
framework and hence it can apply to HMMs, Gaussian
mixture models (GMMs) and their fuzzy versions.

HMMs have been successfully applied to speech
recognition, however there is a limitation of this approach.
The HMM assumes that the occurrence of one feature is
statistically independent of the occurrence of the others.
This assumption is not appropriate for speech or
handwriting recognition becausc a spoken or written word
is represented as a time series of features and hence the
features are correlated in time. Let O =0/, 0;, ... ordenote
a stochastic process in discrete time. The probability that
the t-th variable o, takes the value w, depends on the
values taken by all the previous variables. Using the
Markov assumption, the probability that the s-th variable o,
takes the value wy depends on the immediately preceding
value o,_ as follows:

Plo, =w, |0,y =W,_|,0,_3 = W,_3,, 0] W)

©)

= Plo, =wy lDl—] = “'r—l)

The stochastic processes based on this assumption are
termed Markov processes. Markov chains are Markov
processes for which state variables are restricted to have a
finite number of values and the probability
P(o; =w, |6,y =w,_) is assumed to be invariant in
time. The sequence W = w, wa, .,. w, represents a
sequence of states. In order to apply Markov chains
theory to temporal models, the feature vectors are
considered as outputs of Markov chains. Let X' =x), x2, ..
xr be a sequence of feature vectors which represents a
spoken or written word, a feature vector x; can be mapped
to either a member of the set of codewords V ={v,, vy, ...
vy} obtained by vector quantization (VQ) modeling or a
member of the set of Gaussian components G ={g, g1, ...
g«} by GMM. The state sequence I nmy be either a
codeword sequence w; = v, w; = v, ... Wr= 1, Ora
Gaussian sequence wi =g, W2=gj, .,. Wr=gu, where | <4,
4, m £ K. Therefore, each codeword in ¥ or each Gaussian
in G is a specific state of the Markov chain. The state-
transition probabilitics of the Markov chain are used to
represent the dependence between acoustic features. For
example, if codeword v; comes after codeword v, in IV, it is,
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considered that there is a probability of transition from
statc v, to state vy,

[t should be notcd that each observation in the sequence
O is assumcd to be statistically dependent on its
predecessor in the proposcd temporal model. in the HMM,
obscrvations in the sequence O are assumed to be
independent. Thercfore the temporal modcl has avoided
the limitation of the HMM.

Temporal Gaussian Mixture Model

The parameter model sct is denoted as A= (q. p) where g =

[¢(i)] and p = {p{i, /).
q(i)=Plo, =g;),
pU.N)=Po,=gjlo =g, 15i,j<K (7)

satisfying
K K
Yaiy=1,  Ypi.p=l 1sijs<K
i=l J=l

()
Using the Lagrangian mcthod and the maximum likelihood
estimation method, the model parameters arc calculated as
follows

1 L
9)= 7L Ple; 1)
=t

L & 0 0
SN Pg x5 AP a1 A)
I=1i=2

Pl j)= T "
R 1
33 Pg, 140, 3)
i=1t=2
&)
where | €4, j < K, 1 £ <L, L: number of training
sequences and P(g; |.\',m,.l) denotes the posterior
probability used in the GMM method to update mixture
weights, mecan vectors and covariance matrices,

Temporal Hidden Markov Model

The paramcter model set is denoted as A= (4, 8, m) where B

=(a, p), 9= K] and p = (i, H) are temporal model
paramcters, A and mare standard HMM parametcrs. The
probability (O] A} is calculated as follows

P(O}l):zP(O,S]ﬂ.)=ZP(O|S,/1}P(S|/I) (10)
N s

where
PO!S,A)=

& (I
g(o; =w !S,)l)l_[ plo, =w,|o,_y =w,_,8,4)

=2

T T
P(S|A)=Psy | AT PCsi Isimn Ay =g [T as,_s, (12
t=2 =2

where 5, and ag_s, arc HMM parameters. If the state

scquence #is represented by the codeword sequence V,
we obtain the discrete temporal hidden Markov model
(DTHMM). The continuous tcmporal hidden Markov
modcl (CTHMM) is obtained if the Gaussian sequence is
uscd to represent the state sequence . The forward-
backward algorithm is wused to calculatc both state
transitions p{i, /) and ay.

4. EXPERIMENTAL RESULTS

Database description

The YOHO corpus was designed for speaker verification
systems in office cnvironments with limited vocabulary.
There arc 138 spcakers, 186 males and 32 females. The
vocabulary consists of 56 two-digit numbers ranging from
21 to 97 pronounced as “twenty-one”, “nincty-seven”, and
spoken continuously in scts of three, for example “3645-
89", in each utterance. There arc four cnrolment sessions
per speaker, numbered | through 4, and cach scssion
contains 24 utterances. There arc also ten verification
sessions, numbered 1 through 10, and cach session
contains 4 uttcrances. All waveforms arc low-pass filtered
at 3.8 kHz and sampled at 8 kHz. Speech processing was
performed using HTK V2.0, a toolkit [10] for building
hidden Markov modcls (HMMs). The data were processed
in 32 ms frames @ a frame rate of 10 ms. Frames werc
Hamming windowed and pre-cmphasized. The basic
featurc sct consisted of 12th-order mel-frequency ccpstral
cocfficients (MFCCs) and the normalized short-time
encrgy, augmented by the corresponding delta MFCCs to
form a final sct of feature vector with a dimension of 26 for
individual frames

Algorithmic Issues

GMMs are initialized as follows. Mixture weights, mean
vectors, and covariance matrices were initialized with
essentially random choices. Covariance matrices  arc
diagonal,i.c. (o4 ]y =of and [o4]; =# ifi =/, where g7, |

<k < care variances. A variance limiting constraint was
appliced to all GMMs using diagonal covariance matrices
[7). This constraint places a minimum variance valuc
;in =10"2 on clements of all variancc vectors in the
GMM in our experiments. Each spcaker was modclicd by
using 96 training uttcrances in four enrolment scssions
without end-point detection. Error rates thercfore were not
too low to allow meaningful comparisons betwcen the
current and proposed methods. GMMs were trained in
text-independent mode.

[ed
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Speaker ldentification

Let A, , k=1,.,. M, denote speaker models of M speakers.
Given a feature vector sequence X, a classifier is designed
to classify X into M speaker models by using A
discriminant functions f,(X), computing the similarities
between the unknown X and each speaker model Ay and
selecting the model A4 if

k*=arg max fi (X) 13
Isk<A?
where £, (X)=P(X|A;) (14)

P(X|A;) is the likelihood function for the standard
GMM method and

T
K =g =g | S A]] ey, =25 |5 = £,5.4)
t=2
(15)
(/) and p(i, ;) are calculated as shown in (9) for the
proposed temporal GMM method.

Experimental Results

Figure | shows the speaker identification error rates
averaged on the YOHO 138 speakers. Speaker models
consist of 16, 32 and 64 Gaussian mixtures, respectively.
The identification error rate obtained by using the tempora!
GMM method is lower than that obtained by using the
standard GMM method in all of the three different model
sizes.
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Figure 1: Speaker identification error rate (in %) averaged
on 138 speakers for speaker models consisting of 16, 32
and 64 Gaussian mixtures using the standard GMM and
the temporal GMM methods.

5. CONCLUSION

A new approach to hidden Markov modeling has been
proposed in this paper. The proposed temporal hidden
Markov model employs the Markov process for both the

observable and the hidden processes. Each feature vector
in the training sequence is assumed to be statistically
dependent on its predecessor in the proposed temporal
model. In the HMM, observations in the sequence O are
assumed to be independent. Therefore the temporal model
has avoided the limitation of the HMM, Speaker
identification experiments performed on 138 Gaussian
mixture speaker models in the YOHQ database shows a
better performance for the temporal GMM compared to the
standard GMM. More experiments on the temporal HMM
are investigating for speaker recognition.
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