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ABSTRACT 

Images are, in many cases, degraded even before they are 
encoded. Emission and transmission tomography images, X-ray 
films, and photographs taken by satellites are usually 
contaminated by quantum noise, which is Poisson distributed. 
Poisson shot noise is a natural generalization of a compound 
Poisson process when the summands are stochastic processes 
starting at the points of the underlying Poisson process. Unlike 
additive Gaussian noise, Poisson noise is signal-dependent and 
separating signal from noise is a difficult task. A wavelet-based 
maximum likelihood for a Bayesian estimator that recovers the 
signal component of the wavelet coefficients in original images 
by using an alpha-stable signal prior distribution is extended to 
the Poisson noise removal from a previous investigation. As we 
discussed in our earlier papers that Bayesian estimator can 
approximate impulsive noise more accurately than other models 
and that in the general case the Bayesian processor does not have 
a closed-form expression. The parameters relative to Bayesian 
estimators of the model are carefully investigated after an 
investigation of estable simulations for a maximum likelihood 
estimator. As an example, an improved Bayesian estimator that is 
a natural extension of other wavelet denoising (soft and hard 
threshold methods) via a colour image is presented to illustrate 
our discussion. 

1. INTRODUCTION 

It is well known that noise degrades the performance of any 
image compression algorithm. In many cases, degraded even 
before they are encoded. It is obvious that linear filtering 
techniques used in many image-processing applications, are 
attractive due to their mathematical simplicity, and efficiency in 
the presence of additive Gaussian noise. However, they also blur 
sharp edges, make some distortions of lines and tine image 
details, less effectively remove tailed noise, and poorly treat the 
presence of signal-dependent noise. For example, emission and 
transmission tomography images are usually contaminated by 
quantum noise, which is Poisson noise. Unlike additive Gaussian 
noise, Poisson noise is signaldependent, and separating signal 
from noise is difficult. Several groups have discussed that 
wavelet subhand coeficients have highly non-Gaussian statistics 
[MI and the general class of a-stable distributions has also been 
shown to accurately model heavy-tailed noise 15-71, The 
question is, how to deal with estable distributions with signal- 
dependent noise, such as signals contaminated by Poisson noise. 

Wavelet transform is a powerful tool for recovering signals from 
noise and has been of considerably interest [4, 8-1 I]. In fact, 
wavelet theory combines many existing concepts into a global 
framework and hence becomes a powerful tool for several 
domains of application. 

0-7803-7965-9/03/$17.00 02003 IEEE 

As mentioned by Achim et al. [U], there are two major 
drawbacks for thresholding. One is that choice of the threshold is 
always done in an ad hac manner; another is that the specific 
dishibutions of the signal and noise may not be well matched at 
different scales. 

Donoho gives some minimum thresholds for several threshold 
schemes, titled "universal thresholds" [IO]. These explicitly 
depend on the standard deviation of noise, where the standard 
deviation is assumed to be known. In practice, the standard 
deviation can be readily estimated using the methods discussed in 
[9], [13]. For some applications the optimal threshold can he 
computed. An approach different from "universal thresholds" is 
presented by Nason [14], in which cross-validation is used. Two 
approaches to cross validation are used, namely ordinary cross 
validation (OCV) and generalised cross validation (GCV): each is 
used to minimize the least-squares error between the original 
(which is the unknown value) function and its estimate based an  
the noisy observation. 

Modelling the statistics of raw images is a challenging task 
because of the high dimensionality of the signal and the 
complexity of statistical StNChIreS that are prevalent. Numerous 
papers discuss modelling the statistics of raw images, including 
Bayesian processing assuming proper modelling of the prior 
probability density function of the signal, but they dealt with the 
Gaussian noise, or with the symmetric stochastic distributions [5, 
6, 15,16,17,19,20]. 

In this paper it is carefully discussed that a wavelet-based 
maximum likelihood for Bayesian estimator that recovers the 
signal component of the wavelet coefficients in original images 
from images contaminated by Poisson noise, by using an alpha- 
stable signal prior distribution. 

As an example, a colour image and its image contaminated by 
Poisson noise will he shown using the discussed method. 

2. ALPHA-STABLE DISTRIBUTIONS AND LOG 
LIKELIHOOD 

It is well known that the symmetric alpha-stable distribution 
( S a  distribution is defined by its characteristic function: 

@(a) = e x p ( j h  - Y Io IT), (1) 
The parameters a ,  y. and 6 describe completely a So5 
distribution. The characteristic exponent acontrols the heaviness 
of the tails of the stable density. a c a n  take values in (0,2]; while 
a = I and 2 are the Cauchy and Gaussian cases respectively. 
There is not closed-form expression known for the general So5 
probability density function (PDF). Thus, it is useful when using 
the principle of maximum likelihood estimation. The dispersion 
parameter y(y>O) refers to the spread of the PDF., The location 
parameter 6 i s  analogous to the mean of the PDF, which, for our 
following discussion, will be the same assumption as that in [5].  
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If a variable 8 is unbiased it follows that 

E ( 6 - 8 ) = 0  (2) 

j...j(B-e)fiw(3e)ax=o (3) 

which can be expressed as: - 
- 

where ?(() = [x l ( ( ) ,x2(5) , . . . .xN(( )JT and fES(Xi8) i s  

the joint density of i ({) ,  which depends on a fixed but 
unknown parameter. Following [15-171 we have 

The function Infi;s(?;8) is well known as the "log likelihood" 

function of B (LLF). Its maximum likelihood estimate can be 
obtained from the equation: 

"" 

The first order of differential log likelihood function with respect 
to B is called the maximum likelihood (ML) estimate. If the 
efficient estimate does not exist, then the ML estimate will not 
achieve the lower bound and hence it is difficult to ascertain how 
closely the variance of any estimate will approach the bound. 

It is noted that the value of about 1.5 is strongly recommended if 
there is no information about a d u e  t o  the 2nd order simulations of 
the LLF for an alpha-stable [ 171. 

3. WAVE-BASED BAYESIAN ESTIMATOR 

If we take the probability density of B as p(6) ;  and the posterior 
density function as J ( S  I xI, ..., x") , then the updated probability 
density function of Bis as follows: 

If we estimate the parameters of the prior distributions of the 
signals and noise y components of the wavelet coefficients c, we 
may use the parameters to form the prior PDFs of P,(s) and PJq), 
hence the inputloutput relationship can be established by the 
Bayesian estimator, namely, let inputloutput of the Bayesian 
estimator = BE, we have: 

P,(s) is the prior PDF of the signal component of the wavelet 
coefficients of the ultrasound image and P,(q) is the PDF of the 
wavelet coefficients corresponding to the noise. 

In order to be able to construct the Bayesian processor in (7), we 
must estimate the parameters of the prior distributions of the 
signal (s) and noise (4) components of the wavelet coefficients 

(d). Then, we use the parameters to obtain the two prior PDFs 
P,(q) and Pxs) and the nonlinear input-output relationship BE. 

Figure 1 shows the simulation results of inputloutput of BE with 
different @ values for given y (=25) and the mean of Poisson 
distribution (=35). It clearly shows that, for the given case, the 
curves with a= 0.1, 1.5, and 1.9 approximately correspond to the 
"hard", "soft", and "semisoft" functions respectively when 
compared with results in [8,18]. 

,h,muV-nBEnh6"mo".,-~.~,Ihmand~d.tnbum.SI) 

I f I 

t 

v/: ' I I 4m 920 ?do w w I m ,  ,om ,m (coo ICM ,,m 

Figure I : The inputloutput of BE with different a values ( y =  25; 
the mean of Poisson distribution = 35). 

Unlike the case contaminated by Gaussian noise [15-18], the 
mean of Poisson noise plays a role in a B E  as shown in Figure 2, 
where the parameters are the same as that in Figure I except for 
the mean of Poisson distribution is equal to IO rather than 35 
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Figure 2: The mean of Poisson distribution affects BE. Here all 
parameters are the same as that in Figure 1 except the mean of 
Poisson distribution, which is IO. 

It is clear that the curves with different a values are not 
significantly different and approximate a single function. This is 
as expected due to the relation, for Poisson distribution, between 
the variance and the mean. Taking the results from [15-17], we 
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investigated how the ratio of  mean affects BE as shown in 
Figures 3 and’4. The means of Poisson distribution in Figures 3 
and 4 are 35 and I O  respectively. Again, they confirm the fact 
that the mean of Poisson distribution plays a role in BE. in Figure 
4, as in Figure 2, we show the corresponding vertical axis and 
“identity line” for previous mean. “hey also show that y will 
affect the output of BE, since y ER is the dispersion of the 
dismbution. The ratio of 30 and 20 correspond to “soft” and 
“semi-soft” functions respectively. 

T h . m p l l ~ u o t B E l “ ~ “ r m n l o , a r i m u n n n m a n a - d a * u a n r l S )  

I ’  I’ . 

called “dust storm” taken in NSW, Australia in Figure 5, together 
with a copy contaminated by Gaussian noise in Figure 6 and a 
copy contaminated by Poisson noise in Figure 7. Note the 
differences between the two noisy images. In particular that for 
the Poisson contaminated there is more noise in the brighter parts 
of the image. The Harr mother wavelet was used for this 
example. The output of the denoised image from BE is shown in 
Figure 8, where the Poisson distribution is I O  and the image with 
all the same conditions but changing the mean of the Poisson 
distribution to 35 is shown in Figure 9. 
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Figure 3: The inputloutput of BE with different ratios of jmean 
(with the mean of Poisson mean = 35, a= I S ) .  
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Figure 4: The inputloutput of BE with different ratios of jmean 
(with the mean of Poisson mean = IO, a= 1 S). 

4. SOME E X A M P L E S  

When we make measurements, we have no information about the 
noise value of the image we obtained. The only information one 
may have is from experience in judgement of the noise level, 
which becomes the outline ofthe demising strategy. We take the 
parameters u=1.5, yimean = 20, in the two cases of BE with the 
mean of Poisson distributions equal to 35 (Figure 8) and IO 
(Figure 9). In order to compare, we show the original image 

Figure 5: An Image of the “dust storm” in NSW Australia 

Figure 7 Figure 5 contaminated by Poisson noise. 

Comparisons of other denoising results are in table I 
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Method I 1 1 2  1 3  1 4  1 5  
SlMSE 1 14.21 I 14.30 I 14.01 I 14.87 I 14.68 
Table 1:  Comparison of denoising results with BE in signal to 
mean square error (SIMSE) in dB. Here I =  soft thresholding; 2 = 
Hard thresholding: 3 = Homomomhic Wiener: 4 = BE (mean 

Figure 8: The denoised image from the designed BE (the mean of 
tbe Poisson distribution is IO). 

. . , .  . 

Fiaurc 9 The Jcnoiwd image from the desiuned RE ithe mean 0 1  
thiPoisson distribution is 35). 

1 

5. CONCLUSION 

The technique using the wavelet-based Bayesian estimator has 
been extended to signaldependent noise obeying the Poisson 
distribution. The statistician’s Bayesian estimator theory is used 
not only to simplify the selection of parameters but also in some 
situations to provide more precise images than other methods. 

6. ACKNOWLEDGEMENT 

One of the authors would like to thank his colleague, Charles 
Pfohl, for his kindly offering the image of “dust storm”. 

1. 

2. 

7. REFERENCES 

D J Field, “What is the goal of sensory coding?”, Neural 
Computation, vo1.6, pp559-601, 1994. 
S. G. Mallat, “A theory for multiresolution signal 
decomposition: The wavelet representation”, IEEE Pat. Anal. 
Mach. Intell. Pp674-693, July 1989. 

3. 

4. 

5.  

6. 

7. 

8. 

9. 

IO 

I I  

12 

13 

14 

I5 

16 

17 

18 

19 

20 

E.P. Simoncelli and E. H. Adelson, “Noise removal via 
Bayesian wavelet coring”, IEEE Sig. Proc. Society, Third 
Int’l Conf. On Image Proc. Vol.1, pp379-382, Lausanne, 
1996. 
E.P. Simoncelli, “Bayesian Denoising of Visual Image in the 
Wavelet Domain”, pp291-308. ~01.141, Springer-Verlag, 
New York, 1999. 
A. Ben Hamza and Krim, “Image Denoising: A Nonlinear 
Robust Statistical Approach”, IEEE Tran. On Signal Proc. 
Vo1.49, no.12, pp3045-3054,2001. 
M. Popescu, P. Cristea, and A. Bezerianos, “Multiresolution 
distributed filtering: A novel technique that reduces the 
amount of data required in hiah resolution - 
electrocardiography,” Future Gen. Comp. Sys., no. 15, pp. 
195-209. 1999. 
M. Shao and C. L. Nikias, “Signal processing with fractional 
lower order moments: Stable processes and their 
applications”, Proceeding of the IEEE, ~01.81, no. 7, pp986- 
1010, July 1993. 
lmola K. Fodor and Chandrika Kamath, “Denoising Through 
Wavelet Shrinkage: An Empirical Study”, Lawrence 
Livermore national Laboratory technical report, UCRL-JC- 
144258, July 27,2001. 
Y. XU, J.B. Weaver, D.M. Healy, and I. Lu, “Wavelet 
transform domain filtration technique”, IEEE Transactions 
on Image Processing, vol. 3,747-758, 1994. 
D.L. Donoho and I.M. Johnstone, “Wavelet shrinkage: 
Asymptopia?”, Journal of the Royal Statistical Society, 
Series B, vol. 57,301-369, 1995. 
D. L. Donoho, “Nonlinear wavelet methods for recovery of 
signals, densities, and spectra from indirect and noisy data”, 
In Proceeding of Symposia in Applied Mathematic, 
American Mathematical Society vol. 00, 173-205, 1993. 
A. Achim, A. Bezerianos, and P. Tsakalides, “An Aplha- 
stable based Bayesian algorithm for speckle noise removal in 
the wavelet domain,” Proc. NSIP-01, June 03-06, 2001, 
Baltimore, Maryland USA. 
D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation 
by wavelet shrinkage”, Biometrika, Also Tech. Report of 
Statistics, July, 1992, revised April 1993. 
G. P. Nason, “Wavelet regression by cross-validation”, 
Technical Report 447, Stanford University, Statistics 
Department, March 1994. 
X. Huang and G. A. Woolsey, “Image denoising using 
Wiener filtering and wavelet threshold”, IEEE International 
Conference, ICME 2000, Proc. Vol. 3 pp1759-1762,2000. 
X. Huang, “Denoising Image via Minimum Variance Bound 
Bayesian Estimator,” IEEE International Conf. ICME2001, 
Proc., pp533-536,2001. 
X. Huang and A. C. Madoc, “Maximum Likelihood for 
Bayesian Estimator Based on a-stable for Image”, IEEE 
lntemational Conf. ICME2002, Roc. Vol.1, pp709-712, 
2002. 
D. L. Donoho, “Denoising by soft-thresholding,” IEEE 
Trans. Inform. Theory, vol. 41, pp613-627, May 1995. 
S. R. Peterson, Y. H. Lee, S. A. Kassam, “Some statistical 
properties of alpha-trimmed mean and standard type M 
filters,” lEEE on Acoust., Speech, Sig. Proc., vol. 36, no.5, 
00707-713, 1988. 
B. W. Brorsen and S. R. Yang, “Maximum likelihood 
estimates of symmetric stable distribution parameters”, 
Commun. Statist.-Simuul., vol. 19, pp1459-1464, 1990. 

I - 596 


