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Abstract

Deciphering the mechanisms of regulation of metabolic networks subjected to perturbations,

including disease states and drug-induced stress, relies on tracing metabolic fluxes. One of

the most informative data to predict metabolic fluxes are 13C based metabolomics, which

provide information about how carbons are redistributed along central carbon metabolism.

Such data can be integrated using 13C Metabolic Flux Analysis (13C MFA) to provide quanti-

tative metabolic maps of flux distributions. However, 13C MFA might be unable to reduce the

solution space towards a unique solution either in large metabolic networks or when small

sets of measurements are integrated. Here we present parsimonious 13C MFA (p13CMFA),

an approach that runs a secondary optimization in the 13C MFA solution space to identify

the solution that minimizes the total reaction flux. Furthermore, flux minimization can be

weighted by gene expression measurements allowing seamless integration of gene expres-

sion data with 13C data. As proof of concept, we demonstrate how p13CMFA can be used to

estimate intracellular flux distributions from 13C measurements and transcriptomics data.

We have implemented p13CMFA in Iso2Flux, our in-house developed isotopic steady-state
13C MFA software. The source code is freely available on GitHub (https://github.com/

cfoguet/iso2flux/releases/tag/0.7.2).

Author summary

13C Metabolic Flux Analysis (13C MFA) is a well-established technique that has proven to

be a valuable tool in quantifying the metabolic flux profile of central carbon metabolism.

When a biological system is incubated with a 13C-labeled substrate, 13C propagates to

metabolites throughout the metabolic network in a flux and pathway-dependent manner.
13C MFA integrates measurements of 13C enrichment in metabolites to identify the flux

distributions consistent with the measured 13C propagation. However, there is often a

range of flux values that can lead to the observed 13C distribution. Indeed, either when the

metabolic network is large or a small set of measurements are integrated, the range of
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d’Ajuts Universitaris i de Recerca (AGAUR) –

Generalitat de Catalunya (2017SGR1033) and

Instituto de Salud Carlos III (CIBEREHD, CB17/04/

00023). CF acknowledges the support received

http://orcid.org/0000-0001-8494-9595
http://orcid.org/0000-0002-9856-1679
http://orcid.org/0000-0002-7754-7851
http://orcid.org/0000-0002-2062-4633
https://github.com/cfoguet/iso2flux/releases/tag/0.7.2
https://github.com/cfoguet/iso2flux/releases/tag/0.7.2
https://doi.org/10.1371/journal.pcbi.1007310
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007310&domain=pdf&date_stamp=2019-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007310&domain=pdf&date_stamp=2019-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007310&domain=pdf&date_stamp=2019-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007310&domain=pdf&date_stamp=2019-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007310&domain=pdf&date_stamp=2019-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1007310&domain=pdf&date_stamp=2019-09-18
https://doi.org/10.1371/journal.pcbi.1007310
http://creativecommons.org/licenses/by/4.0/


valid solutions can be too wide to accurately estimate part of the underlying flux distribu-

tion. Here we propose to use flux minimization to select the best flux solution in the13C

MFA solution space. Furthermore, this approach can integrate gene expression data to

give greater weight to the minimization of fluxes through enzymes with low gene expres-

sion evidence in order to ensure that the selected solution is biologically relevant. The

concept of using flux minimization to select the best solution is widely used in flux balance

analysis, but it had never been applied in the framework of 13C MFA. We have termed

this new approach parsimonious 13C MFA (p13CMFA).

Introduction

Fluxomics is the omics field that analyses metabolic fluxes (i.e., reaction and transport rates in

living cells) which are a close reflection of the metabolic phenotype. As such, quantitative

tracking of metabolic fluxes is vital for deciphering the regulation mechanisms of metabolic

networks subjected to perturbations, including disease states and drug-induced stress. How-

ever, unlike other omics data that can be quantified directly, the fluxome can only be estimated

through an indirect interpretation of experimental data[1–3].

There are two main model-based approaches to quantifying metabolic fluxes, Flux Balance

Analysis (FBA) and 13C Metabolic Flux Analysis (13C MFA). Both methods use stoichiometric,

thermodynamic and experimental constraints to find the range of feasible fluxes across a meta-

bolic network and then find the flux distributions within that space that optimize a given

objective function. However, both techniques differ in the type of objective function

optimized.

In FBA, the objective function is a set of fluxes to be minimized or maximized. These fluxes

must represent a biological objective deemed desirable in the conditions of study (e.g., synthe-

sis of biomass components for proliferating systems)[4]. A significant limitation of FBA is that

the choice of objective(s) can significantly influence the predicted flux distributions.

In 13C MFA, the objective function is to minimize the difference between simulated and

measured 13C enrichment in metabolites [5,6]. 13C enrichment is quantified in metabolic

products and intermediates after incubating samples with metabolic substrates labeled with
13C (tracers) and provides information about how carbons are redistributed along metabolic

pathways[7]. Compared to FBA, 13C MFA has a greater capacity to elucidate the fluxes of cen-

tral carbon metabolism. However, 13C MFA is more complex to solve than FBA due to the

non-linear nature of the 13C MFA objective.

A significant limitation of FBA is that there is generally a wide range of optimal flux distri-

butions[8]. This is not usually the case with 13C MFA which can generally determine flux dis-

tributions with a high degree of accuracy. 13C MFA achieves this by integrating large sets of

measured isotopologue fractions from parallel experiments with tracers optimized for different

parts of the network[9–16]. However, when 13C MFA is used in large metabolic networks and

with a limited set of measurements, it can also suffer from the same limitation as FBA and

result on a wide interval of flux values for part of the metabolic network[5,17–19].

On FBA, an approach to reduce the range of optimal solutions consists in running a second

optimization step on the optimal solution range. One of such methods is parsimonious FBA

(pFBA)[20]. This approach, which follows the principle of parsimony or simplicity, consists on

finding the optimal value of the primary objective function through FBA and then running a

second optimization step where the sum of reaction fluxes is minimized while maintaining the

optimal primary objective. The GIMME (and its derivative GIM3E) algorithms[21,22] are

p13CMFA
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based on a similar principle as pFBA. Unlike standard pFBA, where all reactions fluxes are

minimized with equal weight, GIMME integrates gene expression data to give greater weight

to the minimization of fluxes through reactions catalyzed by lowly expressed enzymes. Differ-

ent to FBA, for 13C MFA, there is currently no approach that relies on a second optimization

to reduce the solution space when experimental data is insufficient to constrain the system

towards a unique solution.

In addition to model-based approaches (e.g., FBA or 13C MFA), metabolic fluxes can also

be analyzed through the direct or semidirect interpretation of 13C data. This approach primar-

ily consists of predicting the contribution of a labeled substrate to the synthesis of a given

metabolite (nutrient contribution) and predicting the relative activity of pathways (pathway

activity analysis). Pathway activity analysis assumes that the isotopologue fractions used as a

surrogate for the pathways of interest are primarily generated through them. This assumption

is generally based on the assertion that the pathways of interest are the most direct way to gen-

erate such fractions from the labeled substrate used in the experiment[2,7,23–25]. Unlike 13C

MFA, direct interpretation of 13C data is generally not able to quantify network-wide flux

maps. Instead, it provides a series of qualitative or semiquantitative flux predictions around

each analyzed metabolite. Strategies that couple direct interpretation of 13C data to regression

and correlation analyses are widely applied to unveil the effect of an external perturbation,

such as a therapeutic intervention, on central carbon metabolism[26–30].

Here we present parsimonious 13C MFA (p13CMFA), a new model-based approach to flux

estimation. p13CMFA first minimizes the difference between experimental and simulated 13C

enrichment in metabolites (13C MFA) and then applies the flux minimization principle to

select the best solution among the solutions that fit experimental 13C data. Hence, p13CMFA

can be used to select the best flux map in instances where experimental 13C measurements are

not enough to fully constrain the 13C MFA solution space. Furthermore, the minimization can

be weighted by gene expression allowing seamless integration of 13C with gene expression data

(Fig 1).

We have implemented p13CMFA in Iso2Flux, our in-house developed isotopic steady-state
13C MFA software (https://github.com/cfoguet/iso2flux/releases/tag/0.7.2). As a proof of con-

cept, we have applied it to the analysis of the metabolic flux distribution in HUVECs (Human

umbilical vein endothelial cells) through the integration of a small set of 13C enrichment mea-

surements and transcriptomics data. Furthermore, we validated the predictive capacity of

p13CMFA using data from a published study of HTC116 cells where fluxes had been estimated

with a high degree of confidence[14]. Using only a small subset of the measurements from

such study, p13CMFA was able to achieve significantly better flux predictions than both 13C

MFA and GIMME.

Results

Description of the p13CMFA approach

p13CMFA consists of two consecutive optimizations: first, the optimal solution to the 13C

MFA problem is identified (Eq 1); secondly, the weighted sum of reaction fluxes is minimized

within the optimal solution space of 13C MFA (Eq 2).

The 13C MFA optimization (Eq 1) identifies the flux distribution that minimizes the differ-

ence between measured and simulated isotopologue fractions [5,7]:

Xopt ¼ min
X

j

Ej � YjðvÞ
sj

 !2

ðEq1Þ

p13CMFA
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Subject to S:v ¼ 0; lb � v � ub

where,

v is a vector of flux values describing a valid steady-state flux distribution;

Xopt is the optimal value of the 13C MFA objective;

Ej is the experimentally quantified fraction for isotopologue j;
Yj(v) is the simulated isotopologue fraction for isotopologue j with flux distribution v. Such

simulation is performed by solving a complex non-linear system of equations built around iso-

topologues balances [1].

Fig 1. The conceptual basis of p13CMFA. From an infinite space of flux (v) solutions, a space of feasible solutions is obtained through the integration of stoichiometric

and thermodynamic constraints (in the form of a constraint-based model) and the measured extracellular fluxes. Applying 13C MFA to integrate experimental 13C data

can further reduce the solution space to those flux distributions that are consistent with such data. Through flux minimization, p13CMFA can identify the optimal flux

distribution that lies on the edge of the 13C MFA solution space. Such minimization can be weighted according to the gene expression evidence for each enzyme.

https://doi.org/10.1371/journal.pcbi.1007310.g001

p13CMFA
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σj is the experimental standard deviation of the measurements of isotopologue j;
S is the stoichiometric matrix;

lb and ub are vectors defining the upper and lower bounds for flux values. Flux bounds can

be used to integrate experimental flux measurements;

Either in large metabolic networks or when small sets of 13C measurements are integrated,

the 13C MFA problem can be undetermined and there can be a wide range of possible solu-

tions. Such indetermination emerges from cycles and alternative pathways in the metabolic

network, which lead to many possible flux combinations that can result in the measured 13C

label patterns. Furthermore, many of the 13C MFA solutions can involve large fluxes through

futile cycles, which are usually artifacts of the optimization process as in vivo enzyme activities

cannot support such large flux values. Therefore, to select the best solution among the many

solutions that fit experimental 13C data, p13CMFA runs a second optimization where the

weighted sum of fluxes is minimized (Eq 2):

min
X

i
jvij � wi ðEq2Þ

subject to S:v ¼ 0; lb � v � ub;
X

j

Ej � YjðvÞ
sj

 !2

� Xopt þ T

where:

wi is the weight given to the minimization of flux through reaction i;
T is the maximum value that the 13C MFA objective can deviate from its optimal value (pri-

mary objective tolerance) when fluxes are minimized;

The difference between the optimal 13C MFA objective function value and the objective

function value when the total reaction flux is minimized can be assumed to follow a Chi2-

distribution with one degree of freedom. Therefore, setting T to 3.84 gives a p13CMFA solution

within the 95% confidence intervals of 13C MFA[5].

With p13CMFA, the activity through cycles is minimized to the minimum amount needed

to account for experimental measurements. Furthermore, gene expression measurements can

be integrated to give greater weight to the minimization of fluxes through reactions catalyzed

by lowly expressed enzymes. Then, in instances where multiple pathways can result in similar

label patterns, those pathways with stronger gene expression evidence are selected. Hence,

p13CMFA reduces the solution space towards a unique solution without requiring a simplifica-

tion of the metabolic network or additional 13C measurements (Fig 1).

Example of p13CMFA usage

As an example of a potential application of p13CMFA, we applied it to analyze the metabolic

flux distribution in HUVECs using a publicly available dataset not large enough to make

meaningful flux predictions with conventional 13C MFA.

In this study, available in the MetaboLights repository[31] (accession number MTBLS412),

HUVECs were incubated in the presence of the tracer [1,2-13C2]-glucose, and the relative

abundance of 13C isotopologues was quantified in glycogen, ribose, lactate, and glutamate. The

rates of production/consumption of glucose, glycogen, lactate, glutamate, and glutamine were

also quantified. The data were integrated into a stoichiometric model of central metabolism

which includes glycolysis, glycogen metabolism, pentose phosphate pathway (PPP), tricarbox-

ylic acid (TCA) cycle, fatty acid synthesis, and energy and redox metabolism (S1 ZIP).

To predict the flux distribution using conventional 13C MFA, 95% confidence intervals

were computed for each predicted flux value. From this analysis, the space of flux solutions

p13CMFA
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consistent with the measured 13C enrichment was estimated. The resulting space of solution

was still mostly undetermined and, in general, 13C MFA was unable to significantly constraint

the flux ranges emerging from the stoichiometric and thermodynamic constraints and the

measured extracellular fluxes (Fig 2, S1 Table). For instance, despite integrating measurements

of 13C enrichment in ribose, it was not possible to conclude whether the oxidative branch of

the pentose phosphate pathway contributed more to de novo ribose synthesis than the non-oxi-

dative branch or vice versa.

Nevertheless, p13CMFA can be applied to select the best solution in the 13C MFA solution

space. With this aim, transcriptomic data taken from the literature[32] were used to add addi-

tional penalties to the flux through lowly expressed enzymes. Indeed, by applying p13CMFA,

we can now conclude that, under the condition of the study, glucose is mostly directed towards

lactate production except for a small part going to the TCA cycle through pyruvate dehydroge-

nase (Fig 2, Fig 3). Glutamine is mainly metabolized to glutamate or directed to glycolysis

through the TCA cycle and phosphoenolpyruvate carboxykinase. In the PPP, the non-oxida-

tive branch contributes to roughly 60% of the net ribose synthesis. Only the glycogen phos-

phorylase/glycogen synthase futile cycle is predicted to be active, while the remaining futile

cycles (i.e., the hexokinase/glucose 6-phosphatase, phosphofructokinase/fructose bis-phospha-

tase, pyruvate carboxylase/phosphoenolpyruvate carboxykinase, and glutaminase/glutamine

synthase cycles) are predicted to be inactive. Concerning redox metabolism, most of the

reduced NAD+ (NADH) produced in the mitochondria is exported to the cytosol through the

malate-aspartate shuttle, where it is used to reduce pyruvate to lactate.

To evaluate the contribution of 13C MFA to the p13CMFA solution, GIMME (i.e., flux mini-

mization weighted by gene expression without integrating 13C data) was also performed (Fig 2,

S1 Table). Lacking 13C data, GIMME does not predict any activity in the oxidative branch of

the pentose phosphate pathway, nor on the glycogen phosphorylase/glycogen synthase futile

cycle. Furthermore, GIMME predicts a significantly larger flux through pyruvate dehydroge-

nase than p13CMFA. Interestingly, p13CMFA predicts an increased activity of the TCA cycle

compared to the GIMME solution. This increased activity is fueled by alternative sources of

acetyl-CoA such as fatty acid oxidation or catabolism of ketogenic amino acids. Hence,

p13CMFA is able to take advantage of measured 13C enrichments and predict significantly dif-

ferent flux maps than those derived from flux minimization alone.

Validation of the p13CMFA approach

To validate the p13CMFA method, we used data from a metabolic characterization of the colon

cancer cell line HCT 116 published by Tarrado-Castellarnau et al. [14]. In this study, 25 direct

flux measurements and 24 sets of isotopologue fractions, measured after incubation with either

[1,2-13C2]-glucose or [U-13C5]-glutamine, had been integrated in the framework of 13C MFA.

With such a large set of experimental measurements, 13C MFA had been able to estimate the

flux through 62 reactions with a high degree of accuracy. In the same study, transcriptomics

data were also collected.

From this large data set, we selected a partial data set consisting of 7 experimental flux mea-

surements (the rates of uptake/secretion of glucose, lactate, glutamine, glutamate and, oxygen

and the rate of protein and glycogen synthesis) and 4 sets of isotopologue fractions (isotopolo-

gue fractions in ribose, lactate, glutamate and glycogen measured after incubation with

1,2-13C2]-glucose). Those are the sets of isotopologues and fluxes that were analyzed in the

HUVECs case study with the addition of the rate of protein synthesis and oxygen consumption

which Tarrado-Castellarnau et al. described as key determinants of the metabolic phenotype

of HCT 116 cells. The partial data set was used to apply pFBA, GIMME, 13C MFA and

p13CMFA
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Fig 2. Flux spectrum, GIMME solutions, 13C MFA flux ranges, and p13CMFA solutions for some key reaction fluxes in the HUVECs case study.

Flux spectrum represents the feasible flux ranges considering only the stoichiometric and thermodynamic constraints and the measured extracellular

fluxes. GIMME flux values are obtained when total reaction flux is minimized weighted by gene expression without integrating 13C data. For 13C MFA,

p13CMFA
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p13CMFA in the framework of the metabolic network defined by Tarrado-Castellarnau et al.
[14] (S2 Zip). p13CMFA was applied both with and without integrating gene expression data

(p13CMFA+ge and p13CMFA-ge, respectively). Two complementary metrics, Pearson’s corre-

lation and Euclidian distance, were used to evaluate the similarity between the predicted flux

distributions and the flux maps estimated by Tarrado-Castellarnau et al. using the full dataset

[14] (Fig 4, S2 Table). The results show that p13CMFA-ge yields a significantly more accurate

flux prediction than both pFBA (i.e., flux minimization without integrating 13C data), and 13C

MFA. Interestingly, while integrating gene expression significantly enhances the accuracy of

p13CMFA (p13CMFA+ge compared to p13CMFA-ge), such effect is less marked than the effect

of adding gene expression to standard flux minimization (GIMME compared to pFBA). This

is due to the fact that p13CMFA-ge flux predictions have already a remarkable level of accuracy;

hence, less information can be gained by adding transcriptomics data. Nevertheless, even if

GIMME achieves flux predictions of similar accuracy to p13CMFA-ge, p13CMFA+ge results

on flux predictions that are significantly more accurate than those obtained with GIMME.

Hence, in instances were only a limited number of 13C measurements are available, p13CMFA

is a valid method for obtaining accurate flux estimations, regardless of the availability of gene

expression data.

Discussion
13C MFA is a well-established technique and has proven to be an extremely valuable tool in

quantifying metabolic fluxes[9–18]. However, to fully determine fluxes through a large meta-

bolic network, parallel labeling experiments must be performed and 13C propagation must be

quantified in many metabolites in the network[19]. Indeed, when applying 13C MFA either

with a small set of experimental data or with a large metabolic network, part of the 13C MFA

solution space can be too wide to draw meaningful conclusions about the underlying flux dis-

tribution. This solution space can be reduced by removing degrees of freedom from the sys-

tem, for instance, by removing reactions from the network or making reactions irreversible.

However, this can introduce an arbitrary bias in the resulting flux distribution.

Here we describe p13CMFA, a new approach for 13C data integration which can overcome

these limitations of 13C MFA and estimate a realistic solution within an undetermined 13C

MFA solution space. This solution will be the flux distribution within the 13C MFA solution

space that minimizes the weighted sum of reaction fluxes. Thus, it will be the most enzymati-

cally efficient solution. In that regard, p13CMFA is partially based on a similar principle as

pathway activity analysis (i.e., the assumption that specific fractions of isotopologues are pri-

marily generated through the simplest combinations of pathways). However, unlike pathway

activity analysis, p13CMFA is able to integrate all quantified isotopologue fractions and flux

measurements (e.g. rates of metabolite uptake and secretion) to generate network-wide flux

maps consistent with such data. Furthermore, p13CMFA is highly flexible; for instance, here

we show that it can be used to seamlessly integrate gene expression data by giving higher

weight to the minimization of the fluxes through lowly expressed enzymes.

As a proof of concept, we exemplified how p13CMFA can be used to estimate flux distribu-

tions integrating only limited sets of 13C measurements in a test case where traditional 13C

MFA was unable to provide a narrow solution space. Furthermore, we demonstrated that,

when a limited set of measurements are integrated, p13CMFA can yield more accurate flux pre-

dictions than both 13C MFA and GIMME.

the flux values obtained after the 13C MFA optimization and the range of the 95% confidence intervals for such values are shown. The p13CMFA flux

values are obtained when total reaction flux is minimized within the 13C MFA solution space. Fluxes are expressed in μmol�h-1�million-cells-1.

https://doi.org/10.1371/journal.pcbi.1007310.g002

p13CMFA

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007310 September 6, 2019 8 / 18

https://doi.org/10.1371/journal.pcbi.1007310.g002
https://doi.org/10.1371/journal.pcbi.1007310


Fig 3. Schematic representation of the central carbon metabolism flux map obtained with p13CMFA in the HUVECs case study. Reaction fluxes

are indicated for some key reactions in μmol�h-1�million-cells-1. Arrows indicate net flux direction, and line width is representative of flux magnitude.

p13CMFA
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p13C MFA does not aim to be a replacement of 13C MFA; instead, it seeks to supplement it

by identifying the more straightforward solution in parts of the network that cannot be uniquely

determined. In that regard, it can be used to quantitatively study flux distributions in instances

where not enough information can be obtained with conventional 13C MFA. Nor does it aim to

replace the direct interpretation of 13C data. The latter is still a suitable technique when the goal

of the analysis is to compare the relative activity of well-established pathways across conditions

or quantify substrate contributions rather than to generate complete flux maps.
13C data has been widely used to assist in drug discovery. In this regard, tracer analysis cou-

pled with regression and correlation analyses is frequently used to characterize drug response

[26–29]. Such approach uses regression and correlation statistics with binary, numeric and

visual analysis to integrate drug dosage, time points, as well as all necessary biological variables

in order to diagnose disturbed stable isotope labeled matrices[29]. p13CMFA could further

expand the role of 13C in drug discovery by allowing the integration of 13C and transcriptomic

data in the framework of genome-scale metabolic models. In the framework of such models,

drug targets are identified by systematically simulating the effect of reactions or genes knock

out to cell function[34]. This is usually attained by applying the ROOM[35] or MOMA[36]

algorithms, which take a unique flux solution as input (wild-type flux distribution) to predict

the most likely effect of a gene KO. Hence, p13CMFA results could be potentially used as

ROOM/MOMA inputs allowing to take full advantage of the flux information derived from

both 13C and transcriptomics data to predict new drug targets. With atom mappings now

available on a genome-scale[37], the main obstacle to applying p13CMFA at a genome-scale is

the high computational complexity of solving the resulting non-linear problem which

increases with the size of the network. Hence, the next challenge for p13CMFA will be optimiz-

ing its implementation for genome-scale networks.

Methods

Flux spectrum

The flux spectrum[38] (i.e., the feasible range of fluxes for a given set of stoichiometric, ther-

modynamic and flux boundary constraints) was determined using flux variability analysis [8].

Under this approach, each flux is minimized (Eq 3) and maximized (Eq 4) subject to con-

straints to find the minimum (vminFS
i ) and maximum (vmaxFSi ) feasible values for each flux:

vminFS
i ¼ min vi ðEq3Þ

subject to S:v ¼ 0; lb � v � ub

vmaxFSi ¼ max vi ðEq4Þ

subject to S:v ¼ 0; lb � v � ub

Reactions and metabolites of redox and energy metabolism have been omitted from this figure for clarity. 2PG: 2-Phosphoglycerate. 3PG:

3-Phosphoglycerate. AcCoA: Acetyl-CoA. aKG: α-Ketoglutarate. Asp: Aspartate. bPG13: 1,3-Bisphosphoglycerate. Cit: Citrate. DhaP:

Dihydroxyacetone phosphate. Fru16bP: Fructose 1,6-bisphosphate. Fru6P: Fructose 6-phosphate. Fum: Fumarate. GaP: Glyceraldehyde-3-Phosphate.

Glc: Glucose. Glc1P: Glucose 1-phosphate. Glc6P: Glucose 6-phosphate. Gln: Glutamine. Glu: Glutamate. Glucon6P: Gluconate 6-phosphate. Glygn:

Glycogen. iCit: Isocitrate. Lac: Lactate. Mal: Malate. OAA: Oxaloacetate. PEP: Phosphoenolpyruvate. Pyr: Pyruvate. Rib5P: Ribose 5-phosphate. Rul5P:

Ribulose 5-phosphate. Sed7P: Sedoheptulose 7-phosphate. Suc: Succinate. SucCoa: Succinyl-CoA. UDPGlc: Uridine diphosphate glucose. The

subscripts e, c, and m denote the extracellular, cytosolic and mitochondrial compartments, respectively.

https://doi.org/10.1371/journal.pcbi.1007310.g003
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13C MFA confidence intervals

The 13C MFA solution space is estimated by computing the confidence intervals for each flux.

Such intervals are obtained by minimizing (Eq 5) and maximizing (Eq 6) each flux subject to

Fig 4. Comparison of the predictive power of 13C MFA, pFBA, GIMME, and p13CMFA. A: Pearson’s correlation

coefficients between the reference flux distribution and the flux maps obtained from 13C MFA (optimal solution),

pFBA, GIMME, and p13CMFA. p13CMFA was applied both with and without integrating gene expression data

(p13CMFA+ge and p13CMFA-ge, respectively). The statistical significance of the difference between correlation

coefficients was evaluated using the Fisher r-to-z transformation[33]. B: Euclidian distances between the reference flux

distribution and the flux maps obtained from 13C MFA (optimal solution), pFBA, GIMME, and p13CMFA.

https://doi.org/10.1371/journal.pcbi.1007310.g004
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constraints[5].

vmini ¼ min vi ðEq5Þ

subject to S:v ¼ 0; lb � v � ub;
X

j

Ej � YjðvÞ
sj

 !2

� Xopt þ T

vmaxi ¼ max vi ðEq6Þ

subject to S:v ¼ 0; lb � v � ub;
X

j

Ej � YjðvÞ
sj

 !2

� Xopt þ T

where,

vmini: is the lower bound of the confidence interval for flux i with tolerance T;

vmaxi: is the upper bound of the confidence interval for flux i with tolerance T;

Provided that the same primary objective tolerance (T) is used in computing both the

p13CMFA solution and the 13C MFA confidence intervals, the p13CMFA solution will always

fall within the boundaries of 13C MFA confidence intervals (vmini�vi�vmaxi).

GIMME and pFBA

To apply GIMME and pFBA, the sum of fluxes is minimized subject only to network stoichi-

ometry and flux boundaries (Eq 7).

min
P

ijvij � wi ðEq7Þ

subject to S:v ¼ 0; lb � v � ub

In GIMME, flux minimization weights are derived from gene expression measurements,

whereas in pFBA all reactions are given the same minimization weight[20,22].

Transcriptomic analysis

Transcriptomic data of HUVECs and HCT 116 cells published by Weigand et al.[32] and Tar-

rado-Castellarnau[14] et al., respectively, were obtained from the Gene Expression Omnibus

repository[39]. A Robust Multichip Analysis gene-level normalization[40] was performed with

the Oligo package for R[41].

Using gene-protein-reaction rules, normalized transcript intensities were mapped to each

enzyme-catalyzed reaction or protein-facilitated transport process. The weight given to the

minimization of fluxes was assigned according to the following equation:

wi ¼ 1þmaxðTh � gei; 0Þ ðEq8Þ

where,

gei is the gene expression value assigned to reaction i;
Th is the gene expression threshold. Fluxes through reactions with gene expression levels

below this threshold are given additional minimization weight;

p13CMFA
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Using the same criteria as GIM3E[22], Th was set at the maximum gene expression value

found in the set of genes mapped to the metabolic network (Eq 9):

Th ¼ maxðgeÞ ðEq9Þ

Using this threshold, the information gained from integrating available gene expression

measurements is maximized. Other Th values were tested in the validation case study[14] and

using the maximum gene expression as the threshold was found to yield the most accurate flux

predictions (S3 Table).

p13CMFA implementation

p13CMFA was implemented in Iso2Flux, our in-house developed 13C MFA software (https://

github.com/cfoguet/iso2flux/releases/tag/0.7.2).

Iso2Flux computes steady-state flux distributions as the product of the null space of the stoi-

chiometric matrix and the vector of free fluxes. Reversible reactions are split into forward and

reverse reactions. For each reversible reaction, a turnover variable (ti) is introduced defining

the flux that is common to the forward (vif) and reverse (vir) reactions. These variables are used

to assign values to the fluxes of the forward and reverse reactions as a function of the steady-

state net flux (vi).

vfi ¼ ti þmaxðvi; 0Þ ðEq10Þ

vri ¼ ti � minðvi; 0Þ ðEq11Þ

Iso2flux uses the Elementary Metabolite Unit (EMU) framework[1] to build the 13C propa-

gation model. This framework is based on a highly efficient decomposition method that identi-

fies the minimum amount of isotopologue transitions required to simulate the experimentally

quantified isotopologues according to the defined carbon propagation rules. The isotopologue

transitions are grouped into decoupled systems based on isotopologue size. Balance equations

are built around each isotopologue fraction under the assumption of isotopic steady state (S1

Fig). Using the steady-state flux distribution as an input, systems of equations around isotopo-

logues balances are solved sequentially starting with the smallest isotopologue size [1] using

the fsolve function of the SciPy library (https://scipy.org/scipylib/index.html). Solving such

system predicts the isotopologue distribution associated with a given steady-state flux distribu-

tion (Yj(v)).
The self-adaptive differential evolution (SADE) algorithm from PyGMO (Python Parallel

Global Multiobjective Optimizer, https://github.com/esa/pagmo2) was used to find the opti-

mal solution of the 13C MFA (Eq 1) and p13CMFA (Eq 2) problems. SADE was parallelized

using the generalized island-model paradigm. Under such implementation, SADE is run in

parallel in different CPU processes (islands). After a given number of SADE iterations (genera-

tions), the best solutions (individuals) in each SADE process (island) are shared to parallel

SADE processes (migrate to adjacent islands). To prevent bias from the starting solutions

(starting populations), the islands are seeded through random sampling of all variables. Free

fluxes variables are sampled using the optGpSampler implemented into COBRApy[42,43].

Turnover variables are sampled using the random.uniform function built into python. The

algorithm was run with 7 islands, each with a population of 60, and with migrations between

islands set to occur every 400 generations. For the analyzed 13C MFA and p13CMFA problems,

repeated iterations of the algorithm were shown to reliably converge towards the same mini-

mal objective function value.
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Accommodating large metabolite pools

At the beginning of a 13C experiment, all internal metabolites are unlabeled (m0). Progres-

sively, these products are enriched in 13C, with the subsequent decrease in m0. Isotopic steady

state is quickly reached for small pools of metabolites but not necessarily for larger pools such

as those of fatty acids, glycogen or metabolites present in large concentrations in the external

medium[44]. For these larger pools, unlabeled isotopologues m0 are oversized and might not

quickly decrease to the theoretical value that should be reached at steady-state.

However, it is possible to represent the effect of large pools in the framework of steady-state
13C MFA through the addition of a virtual reaction. This reaction replaces labeled isotopolo-

gues by unlabeled isotopologues in metabolites with large pools. With p13CMFA, the flux

through this virtual reaction can be minimized. Effectively, this allows correcting steady-state
13C simulations for large pools while identifying the solutions that require the minimum

amount of correction.

Evaluating the significance of the difference between correlation

coefficients

The statistical significance of the difference between correlation coefficients was evaluated

using the Fisher r-to-z transformation[33]. Following this approach, Pearson’s correlation

coefficients (r) can be converted to a z-score (r’):

r0 ¼
1

2
� Ln

1þ r
1 � r

� �

ðEq12Þ

The variance of z (Sz) will depend only on the sample size (n):

Sz ¼
ffiffiffiffiffiffiffiffiffiffiffi

1

n � 3

r

ðEq13Þ

From Eq 12 and Eq 13, the significance of the difference between two correlation coeffi-

cients (r1 and r2) can be evaluated by computing the z score corresponding to such difference

(Eq 14) and its associated p-value.

Z ¼
r01 � r02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nr1� 3
þ 1

nr2 � 3

q ðEq14Þ

Experimental methods

Human Umbilical Vein Endothelial Cells (HUVECs-pooled, Lonza) were maintained on 1%

gelatin-coated flasks at 37˚C in a humidified atmosphere of 5% CO2 and 95% air in MCDB131

(Gibco) medium, supplemented with the recommended quantity of endothelial growth

medium (EGM) SingleQuots (Lonza), 10% fetal bovine serum (FBS) (Gibco), 2 mM glutamine

(Gibco) and 0.1% Streptomycin (100 μg/mL)/Penicillin (100 units/mL) (S/P) (Gibco). 1 × 106

HUVECs were seeded in 1% gelatin-coated cell culture plates for 6h, and then the maintenance

medium was replaced with the MCDB131 basal medium, supplemented with 2% FBS, 2 mM

glutamine and 0.1% S/P and cells were incubated overnight for nutrient deprivation. After

nutrient deprivation, the medium was replaced with a restricted medium containing

MCDB131 medium supplemented with 2% FBS, 2 mM glutamine and 0.1% S/P with 10 mM

of 50% [1,2-13C2]-glucose (Sigma-Aldrich) and cells were incubated for 40h in a humidified

atmosphere with 5% CO2 and 1% O2 at 37˚C. Both at the beginning (t = 0h) and the end

(t = 40h) of incubation, media and pellets were collected. On the one hand, media and cell

p13CMFA
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pellets were used for analyzing isotopologue abundances for glucose, lactate, glutamate, RNA

ribose and glycogen. Raw data are publicly available in the MetaboLights repository at http://

www.ebi.ac.uk/metabolights [31], with accession number MTBLS412. Isolation, derivatization

and analysis details are described in MetaboLights. Glucose, lactate, glutamate, and glutamine

concentrations were determined in media samples for estimation of secretion or uptake rates

of these metabolites using spectrophotometric methods[45]. Also, the net rate of glycogen re-

utilization into glucose was estimated by quantifying glycogen content at initial and final

time points using [U-13C-D7]-glucose as recovery standard[46]. All biochemical data were

normalized by cell number, and by incubation time (h). The resulting rates–expressed in

micromoles of metabolite consumed/produced/transformed per hour per million cells

(μmol�h-1�million-cells-1)–were 0.463, 0.099, 0.050 and 1.169 for glucose uptake, glutamine

uptake, glutamate secretion, and lactate secretion, respectively, and a net transformation of

glycogen of 0.000175.

Supporting information

S1 Fig. Example of isotopologue balance equations in a toy metabolic network. In this toy

metabolic network, two mono-carbon metabolites (Ca and Cb) are condensed into a bi-carbon

metabolite (Ca-Cb) through a reaction with a flux v1. Metabolite Ca-Cb is removed from the

system at a rate of v2. For each metabolite, isotopologue fractions (Mx) are defined as the rela-

tive abundance of the metabolite with x number of 13C substitutions. Isotopologue balances

for metabolite Ca-Cb are indicated. Under the assumption of isotopic steady state (i.e., isotopo-

logue fractions are constant in time) and given v1 and v2, and a set of isotopologue fractions

for Ca and Cb (assumed a constant input), the system can be solved to identify the steady-state

isotopologue fractions for metabolite Ca-Cb.

(TIF)

S1 Table. Flux spectrum, GIMME, 13C MFA and p13CMFA flux solutions for all net reac-

tion fluxes in the HUVECs case study. Fluxes are expressed in μmol�h-1�million-cells-1.

(XLSX)

S2 Table. Comparison between the reference flux map in HCT 116 cells and the flux maps

computed from the partial data set using 13C MFA, pFBA, GIMME, and p13CMFA. Fluxes

are indicated in μmol�h-1�million-cells-1.

(XLSX)

S3 Table. Comparison between the reference flux map in HCT 116 cells and the flux maps

computed from the partial data set with p13CMFA using different gene expression percen-

tiles as thresholds for adding additional weight to flux minimization. Fluxes are indicated

in μmol�h-1�million-cells-1.

(XLSX)

S1 ZIP. Files describing the metabolic network, carbon propagation rules, and experimen-

tal data used for the HUVECs case study. The files are inputs for running p13CMFA on Iso2-

Flux.

(ZIP)

S2 ZIP. Files describing the metabolic network, carbon propagation rules, and experimen-

tal data used for the HCT 116 cells case study. The files are inputs for running p13CMFA on

Iso2Flux.

(ZIP)
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