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Abstract
Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Like-
wise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate 
that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 
mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobil-
ity of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol 
acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of 
late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy 
revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lack-
ing AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This 
study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation 
of a Rab7-GAP and MCS formation.
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Abbreviations
A431  Human epidermoid carcinoma cells
ACAT   Acyl-CoA:cholesterol acyltransferase
AnxA6  Annexin A6
CHO  Chinese hamster ovary
CHO M12  NPC1 mutant CHO cell line
CMA  Chaperone-mediated autophagy

ER  Endoplasmic reticulum
FYCO1  FYVE and coiled-coil domain containing 1
GST  Glutathione S-transferase
LE/Lys  Late endosome/lysosome (endolysosomes)
LPDS  Lipoprotein-deficient serum
MCS  Membrane contact sites
MEF  Mouse embryonic fibroblasts
MOSPD2  Motile sperm domain containing 2
NPC1  Niemann-Pick type C1
ORP1L  Oxysterol-related protein 1L
OSBP  Oxysterol-binding protein
PFO  Perfringolysin O
RILP  Rab interacting lysosomal protein
SREBP  Sterol regulatory element binding protein
StARD3  StAR-related lipid transfer domain-3
TBC1D15  TBC1 domain family member 15
WT  Wild type
VAP-A  Vesicle-associated membrane protein-associ-

ated protein A
Vps13  Vacuolar protein sorting-associated protein 
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Introduction

The transmembrane NPC1 protein is essential for the effi-
cient export of cholesterol from endolysosomes. Several 
other cytoplasmic players also contribute, via vesicular 
and/or non-vesicular pathways, to the exit of cholesterol 
from this compartment [1–3], including members of the 
oxysterol-binding protein (OSBP) family, such as oxys-
terol-related protein 1L (ORP1L), the small GTPases 
Rab7, Rab8 and Rab9, as well as the late endosome, 
membrane-anchored StARD3 and StARD3 N-terminal 
like (StARD3NL) proteins [3–6]. Despite the ability of 
these multiple players to contribute to cholesterol homeo-
stasis, loss-of-function mutations in the NPC1 protein are 
dominant. Some of the cytoplasmic proteins that bind and 
transport cholesterol are also engaged in the formation 
and functions of membrane contact sites (MCS) that are 
emerging as important non-vesicular transfer mediators 
for lipids, cholesterol or calcium  (Ca2+) between compart-
ments [7–20].

StARD3 and Rab7 are critical for the regulation of 
MCS formation as well as cholesterol transfer between late 
endosomes and the endoplasmic reticulum (ER) [21–23]. 
StARD3 is ubiquitously expressed and anchored to the 
membrane of a late endosome subpopulation [24, 25], 
where it binds to the ER-resident vesicle-associated mem-
brane protein-associated protein A (VAP-A) protein [26, 
27]. Like other members of the START family, StARD3 
could facilitate transport of cholesterol between late 
endosomes and other compartments such as the ER, mito-
chondria or plasma membrane [28–30]. However, despite 
its participation in cholesterol transfer between compart-
ments via MCS, StARD3 overexpression did not increase 
cholesterol esterification via acyl-CoA:cholesterol acyl-
transferase (ACAT) in the ER [31, 32] and was unable to 
rescue late endosome-cholesterol accumulation in NPC1 
mutant cells [23, 24].

At the same interface that connects late endosomes 
and ER compartments, the GTPase Rab7 regulates mem-
brane trafficking, cholesterol homeostasis and contributes, 
together with protrudin and FYVE and coiled-coil domain 
containing 1 (FYCO1), in MCS dynamics [9–12]. In addi-
tion, Rab7 is responsible for endocytic transport between 
early endosomes, late endosomes, lysosomes, phago- and 
autolysosomes [3, 33, 34]. Within these compartments, 
Rab7 contributes to late endosome motility [35], choles-
terol egress [36, 37], as well as early endosome matu-
ration. While Rab7-GTP levels appear downregulated in 
cholesterol overloaded endosomes of NPC1 mutant cells, 
ectopic expression of wild type, constitutively active Rab7, 
or the adenoviral protein RIDα, can bypass (at least in 
part), the NPC1 defect to reduce late endosome-cholesterol 

accumulation [36, 38]. Given the complexity of these 
observations, we reasoned that yet unknown tethers or 
scaffolding proteins could control the dynamics of late 
endosome MCS, raising the possibility that yet unidenti-
fied player(s) or “gatekeepers” may fine-tune alternative 
late endosome-cholesterol transport routes in concert with 
NPC1. In fact, a recent publication identifies Gramd1b, 
an ER-sterol transport protein, interacting with NPC1 and 
transferring cholesterol from LE to the ER [39].

AnxA6, the largest member of the annexin family, has 
been implicated in the regulation of endo- and exocytic path-
ways, cholesterol homeostasis and the formation of multifac-
torial signaling complexes [40–42]. Like other annexins, the 
majority of AnxA6 binds to membranes in a  Ca2+-dependent 
manner, yet cholesterol loading of late endosomes, using 
the NPC1 inhibitor U18666A or low-density lipoproteins 
(LDL), led to the recruitment of significant amounts of 
AnxA6 to the surfaces of late endosomes [43, 44]. AnxA6 
was also enriched in late endosomes lacking functional 
NPC1 [45]. Moreover, AnxA6 overexpression led to the 
accumulation of cholesterol in late endosomes. Although 
these studies link AnxA6 with cholesterol export from 
endolysosomes [46], the underlying molecular mechanisms 
remain unclear. Here, we show that AnxA6 depletion allevi-
ates the NPC1 mutant phenotype through two critical mech-
anisms: it triggers endogenous Rab7 activation by sequester-
ing the Rab7-GTPase activating protein, TBC1D15; it also 
enables StARD3 to facilitate the function of MCS between 
late endosomes and the ER, aiding cholesterol export from 
endolysosomes. Our findings implicate AnxA6 inhibition as 
a novel strategy to rescue late endosome-cholesterol accu-
mulation and identify the AnxA6/TBC1D15 complex as a 
potential therapeutic target for NPC disease.

Materials and methods

Materials

For primary and secondary antibodies, recombinant DNA, 
siRNA, chemicals and commercial assays, see Supple-
mentary Table 1. Low-density lipoproteins (LDL, density 
1.025–1.05 g/ml) were isolated from the plasma of nor-
molipidemic volunteers by two sequential density gradient 
ultracentrifugation in KBr gradients [47]. Lipoprotein-defi-
cient fetal calf serum (LPDS) was prepared by ultracen-
trifugation as described [48]. Before experiments, LDL and 
LPDS were dialyzed extensively against PBS and stored at 
4 °C until use.

LDL protein concentration was determined by the 
bicinchoninic acid (BCA) method (Bio-Rad). Glutathione 
S-transferase (GST) and GST-fusion proteins (GST–AnxA6, 
Rab interacting lysosomal protein (RILP)-C33–GST, 
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GST–perfringolysin O (PFO)) were produced in E. coli 
BL21 cells and purified using glutathione Sepharose 4B 
beads (GE Healthcare) as reported previously [49].

Cell culture and transfections

Chinese hamster ovary wild type (CHO-WT), CHO-AnxA6 
[43], CHO M12 and CHO 2-2 cells were grown in F12 
(HAM) supplemented with 10% fetal bovine serum (FBS, 
Biological Industries), 2 mM l-glutamine (Sigma Aldrich), 
100 units/ml penicillin (Biological Industries) and 100 μg/
ml streptomycin (Biological Industries) at 37 °C, 5%  CO2. 
CHO M12 and CHO 2-2 were kindly provided by Dr. L. Lis-
cum (Tufts University School of Medicine, USA) and Dr. D. 
Ory (Washington University, USA), respectively. A431-WT, 
A431-A6 [50], mouse embryonic fibroblasts from wild 
type (MEF-WT) and AnxA6 KO-mice (MEF-A6ko) [51], 
COS-1 cells were cultured in DMEM supplemented with 
10% (A431, COS-1) or 5% FBS (MEF), 2 mM l-glutamine 
(Sigma Aldrich), 100 units/ml penicillin (Biological Indus-
tries) and 100 μg/ml streptomycin (Biological Industries) at 
37 °C, 5%  CO2.

For transient transfections with fluorescently labeled 
AnxA6, TBC1D15 and Rab7 proteins, cells were incubated 
with GenJet Plus Reagent (SigmaGen Laboratories) fol-
lowing manufacturer’s instructions. For siRNA-mediated 
knockdown of AnxA6, TBC1D15 and StARD3, cells were 
transfected with 100 μM siRNA targeting mouse AnxA6, 
TBC1D15 and StARD3 (Santa Cruz) using Lipofectamine 
RNAiMax (Invitrogen) according to the manufacturer’s 
instructions. Studies were conducted 24 h (siTBC1D15) or 
72 h (siAnxA6, siStARD3) after transfection. Scrambled 
siRNA served as negative control (Dharmacon).

Generation of CHO M12‑A6ko cells using 
the CRISPR/Cas9 system

For AnxA6 gene depletion in CHO M12 cells using 
CRISPR/Cas9 editing technology, guide RNAs targeting 
hamster AnxA6 were designed as described [52], and CHO 
M12 cells were transfected with pSpCas9(BB)-2A-Puro v2 
(Addgene) carrying gRNAs against hamster AnxA6. 24 h 
after transfection, cells were selected for 48 h in puromy-
cin (50 µg/ml). Clones were isolated by dilution and single 
clones were screened for AnxA6 gene knockout by western 
blotting and sequencing.

Immunoblotting

Cells were lysed in lysis buffer (50 mM Tris–HCl, 150 mM 
NaCl, 1% Triton X-100, 0.1 mM  CaCl2, pH 7.4) supple-
mented with protease/phosphatase inhibitors cocktail (1 mM 
 Na3VO4, 10 mM NaF, 1 mM PMSF, 10 µg/ml leupeptin, 

10 µg/ml aprotinin). Lysates were boiled in 1 × sample 
buffer, resolved on SDS-PAGE and transferred to nitrocel-
lulose (Bio-Rad) or Immobilon-P (Millipore) membranes. 
Membranes were blocked in 5% non-fat milk, incubated 
overnight in primary antibodies, washed in TBST, incu-
bated with HRP-conjugated secondary antibodies (Bio-Rad 
or Abcam, see Supplementary Table 1) and developed using 
enhanced chemiluminescence EZ-ECL (Biological Indus-
tries) and Fuji Medical X-ray films (Fujifilm). ImageJ soft-
ware was used for quantitative analysis of WB bands [53].

RNA extraction and quantitative real‑time PCR

Total RNA was extracted using RNeasy Mini Kit (Qiagen) 
in accordance with the manufacturer’s protocol. 1 μg RNA 
was reverse-transcribed using High Capacity cDNA Reverse 
Transcription Kit (Applied Bioscience). In a final volume 
of 20 μl real-time PCR Brilliant SYBRGreen QPCR Mas-
ter Mix (Agilent Technologies, Stratagene), 10 μl of 1:20 
diluted cDNA was used as a template for PCR analysis using 
the LightCycler system (Roche Diagnostics), specific prim-
ers (see Supplementary Table 1) and standard PCR amplifi-
cation protocol (10 min at 95 °C; 45 cycles of 30 s at 95 °C, 
15 s at 60 °C and 30 s at 72 °C; and 10 s at 95 °C and 60 s 
at 65 °C) according to manufacturer’s instructions. Values 
were normalized to Rpl13 gene in each sample.

Preparation of liver homogenates

Mouse liver tissues were placed in Lysing Matrix tubes (MP 
Biomedicals) with homogenization buffer (10 mM Tris, 
150 mM NaCl, 5 mM EDTA, pH 7.5) supplemented with 
protease/phosphatase inhibitors cocktail (see above). Sam-
ples were then homogenized in a FastPrep120 homogenizer 
(MP Biomedicals) and stored at − 20 °C. For immunopre-
cipitations (see below), liver homogenates were pre-cleaned 
with Protein A-agarose beads for 90 min at 4 °C before anti-
body incubation.

Immunoprecipitation

Cells were grown on 10-mm dishes, washed with PBS and 
solubilized in lysis buffer (50 mM Tris, 150 mM NaCl, 1% 
Triton X-100, 0.1 mM  CaCl2, pH 7.4), supplemented with 
protease/phosphatase inhibitors cocktail (see above). After 
centrifugation at 12,000g for 6 min at 4 °C, proteins from 
supernatants (200–400 µg) were incubated with 2 µg of rab-
bit polyclonal anti-AnxA6, rabbit polyclonal anti-TBC1D15 
(Abcam) or rabbit IgG for 2 h at 4 °C, followed by 60 min 
with Protein A-agarose beads (Thermo Scientific). Immu-
noprecipitates were washed three times with lysis buffer and 
analyzed by western blotting.
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Pull‑down assays

Cells were solubilized in pull-down buffer (50 mM Tris, 
150 mM NaCl, 1% Triton X-100, 0.1 mM  CaCl2, pH 7.3) 
supplemented with protease/phosphatase inhibitors cock-
tail (see above). Samples were centrifuged at 12,000g for 
10 min at 4 °C. Proteins from post-nuclear supernatants 
(400–700 µg) were incubated with glutathione Sepharose 
4B beads (GE Healthcare) coated with purified recombinant 
AnxA6–GST or RILP-C33–GST (40–70 µg) fusion protein 
for 2 h at 4 °C. GST was used as a negative control. Samples 
were washed three times, collected in 30 µL of 1× loading 
buffer and analyzed by western blotting.

Subcellular fractionation

Late endosomes were isolated using sucrose gradients as 
described previously [43, 54]. Briefly, 25 × 106 CHO-WT 
and CHO-A6 cells were used for each gradient. Cells were 
washed twice with cold PBS and collected. Cells were pel-
leted and resuspended in homogenization buffer (250 mM 
sucrose, 3 mM imidazole, pH 7.4) supplemented with pro-
tease/phosphatase inhibitors cocktail (see above). Next, cells 
were homogenized by 15–20 passages through a 22 G nee-
dle at 4 °C. Complete homogenization was confirmed under 
the phase microscope. The homogenate was centrifuged for 
15 min at 1000g at 4 °C. The post-nuclear supernatant was 
collected and quantified by Bradford and 3 mg of PNS were 
brought to a final 40.2% sucrose (w/v) concentration by add-
ing 2.5 M sucrose and loaded at the bottom of a 13.2-ml 
tube (Beckman UltraClear). Then 3 ml of 35% sucrose, 3 ml 
of 25% sucrose and 2.5 ml of homogenization buffer were 
overlaid stepwise on top. The gradient was centrifuged for 
90 min at 150,000g, 4 °C in a Beckman SW 41 Ti rotor. 
After centrifugation, 1.5-ml fractions were collected from 
top to bottom and protein was precipitated using trichloro-
acetic acid/acetone to determine the TBC1D15 and Rab7 
distribution by western blotting.

Immunofluorescence

Cells grown on coverslips were fixed with 4% paraform-
aldehyde (PFA, Electron Microscopy Sciences) for 20 min 
at room temperature (RT), washed with PBS, permeabi-
lized with 0.1% saponin for 10 min and blocked with 1% 
bovine serum albumin (BSA) for 5 min. Coverslips were 
incubated with primary antibody diluted in 0.02% sapo-
nin, 0.1% BSA in PBS for 1 h at RT, washed intensively 
and then incubated with the adequate secondary antibody 
labeled with Alexa Fluor-555 (Invitrogen) for 45 min at RT. 
After staining, coverslips were mounted in Mowiol (Cal-
biochem, Merck). Samples were visualized using a Leica 

TCS SP5 laser scanning confocal microscope equipped 
with a DMI6000 inverted microscope, blue diode (405 nm), 
Argon (458/476/488/496/514  nm), diode pumped solid 
state (561 nm), HeNe (594/633 nm) lasers and APO 63x 
oil immersion objective lens or a Leica DMI6000B epifluo-
rescence inverted microscope equipped with an HCX PLA 
APO 63× oil immersion objective lens.

LDL‑cholesterol transport studies

To analyze the cellular fate of LDL-cholesterol, cells were 
plated on coverslips and grown in F-12 (HAM) supple-
mented with 5% LPDS for 48 h. Cells were then loaded 
with 50 µg/µl of LDL ± 10 µg/ml ACAT inhibitor (Sandow 
58-035) for 24 h, fixed with 4% PFA for 1 h. Free cholesterol 
was stained with 0.05 mg/ml of filipin (Sigma Aldrich) and 
neutral lipids were stained with 1 µg/ml of BODIPY 493/503 
(Molecular Probes) for 20  min at RT. Coverslips were 
mounted in Mowiol (Calbiochem, Merck). Alternatively, 
cellular cholesterol was stained with recombinant GST–PFO 
as follows: cells were fixed with 4% PFA for 15 min, perme-
abilized with 0.1% Triton X-100 (Sigma Aldrich) for 5 min 
and blocked with 3% fat free BSA (Sigma Aldrich) PBS for 
30 min at RT. Cells were incubated with 10 µg/ml of puri-
fied recombinant GST–PFO in blocking buffer for 1 h at RT. 
Immunostaining with anti-GST (Abcam) and fluorescently 
labeled antibody was performed as above.

Live‑cell LDL‑BODIPY‑cholesteryl linoleate transport 
assay

NPC1-deficient CHO M12 cells seeded onto glass-bottom 
dishes (Nunc LabTek 4-well chambered coverglass) were 
transfected with non-targeting control and AnxA6 siRNAs 
in DMEM/F-12 supplemented with 5% LPDS. The transfec-
tions were carried with Lipofectamine RNAiMax (Thermo 
Scientific). 6 h later, 50 μg/ml Alexa Fluor 568-dextran 
(10,000 MW; Thermo Scientific) was added to the cells to 
label late endosomal organelles. 22 h after transfection, the 
cells were pulse-labeled for 2 h with 50 μg/ml BODIPY-
cholesteryl linoleate-labeled LDL in serum-free medium, 
washed and chased in serum-free  CO2-independent medium 
(Gibco) for the indicated times. Synthesis of BODIPY-cho-
lesteryl linoleate was carried by Dr. Young Ah Kim (Queens 
College, New York) and labeling of human LDL was per-
formed as previously described [55].

The chase was followed by confocal live-cell imaging on 
a Leica TCS SP8 attached to a motorized DMI 6000 inverted 
microscope with 63× HC PL APO CS2 water objective 
(1.20 NA). Experiments were performed at 37 °C in a fully 
enclosed temperature-controlled environmental chamber. 
Data were acquired with Leica LAS X (Leica Microsystems) 
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and the efflux of late endosome BODIPY-cholesterol was 
quantified from background subtracted images with ImageJ 
by analyzing mean intensity of BODIPY-cholesterol fluo-
rescence per cell.

For late endosome mobility analysis, time-lapse series 
were obtained with image acquisition frame rate of 370 ms. 
From the resulting live-cell videos, late endosome mobil-
ity was assessed by measuring the Pearson colocalization 
between subsequent frames/cell, and decreased degree of 
colocalization was considered indicative of increased late 
endosome mobility. Ten initial frames from time-lapse 
acquisitions were included in the analysis for each cell. All 
the data are expressed as mean ± SEM.

Image analysis

Image analysis was performed with NIH ImageJ software 
[53]. When comparing different treatments, images were 
captured and systematically screened using identical micro-
scope settings.

For number, size, fluorescence intensity and cellular dis-
tribution of late endosome and lipid droplets, a semi-auto-
mated ImageJ macro was designed and used. Specifically, 
fluorescence microscopy images were locally thresholded 
and vesicles were selected through the ImageJ particle analy-
sis function. Number, size and fluorescence intensity from 
raw images were then calculated. Cellular distribution was 
analyzed using the 3D ImageJ Suite [61].

Electron microscopy

For conventional electron microscopy, pellets from frac-
tions enriched with late endosomes from discontinuous 
sucrose gradients or cells in culture were washed in PBS 
and fixed overnight (gradient fractions) or for 1 h (cells) 
in 2.5% glutaraldehyde in 0.1 M phosphate buffer (PB) at 
RT. Next, samples were slowly and gently scraped and pel-
leted in 1.5 ml tubes. Pellets were washed in PB and incu-
bated with 1%  OsO4 for 90 min at 4 °C. Then samples were 
dehydrated, embedded in Spurr and sectioned using Leica 
ultramicrotome (Leica Microsystems). Ultrathin sections 
(50–70 nm) were stained with 2% uranyl acetate for 10 min, 
a lead-staining solution for 5 min and observed using a trans-
mission electron microscope, JEOL JEM-1010 fitted with a 
Gatan Orius SC1000 (model 832) digital camera.

Perimeter and areas of contact between late endosome/
lysosomes (LE/Lys) and ER–LE/Lys were identified by mor-
phology was measured with ImageJ [53]. At least 20–50 
cells were analyzed per experiment and data were analyzed 
from duplicate or triplicate separate experiments. At least 
two grids were used for each condition. The minimum 

number of cells scored for each condition was 25 and the 
average number of sections (fields) 40.

Statistical analysis

Unless mentioned in the figure legend, group data are pre-
sented as mean ± SD. Comparison between 2 groups were 
analyzed by Student’s t test; comparison between more than 
2 groups were analyzed by one-way ANOVA with a Bon-
ferroni post hoc test, and comparison between groups and 
condition were analyzed by Bonferroni post-tested two-way 
ANOVA for condition and group differences using Graph-
Pad Prism software. Differences were considered statistically 
significant at p < 0.05. *p < 0.05, **p < 0.01, ***p < 0.001.

Results

Interaction of AnxA6 with the Rab7‑GAP TBC1D15

We previously demonstrated that AnxA6 overexpression 
led to late endosome-cholesterol accumulation, a phenotype 
reminiscent of the NPC1 mutant phenotype [46, 62]. This 
was accompanied by an increased recruitment of AnxA6 
to cholesterol-laden late endosomes upon pharmacologi-
cal NPC1 inhibition, using U18666A, or loading with LDL 
[43–45]. In order to unravel the underlying mechanism, we 
reasoned that cells lacking NPC1-dependent cholesterol 
export pathways would be the most promising model to 
address how AnxA6 could affect late endosome-cholesterol 
levels.

Most strikingly, in the NPC1 mutant cell line CHO M12, 
depleting AnxA6 using a small interfering RNA (siRNA) or 
CRISPR/Cas9 technology (CHO M12-A6ko) led to a signifi-
cant reduction of late endosome-cholesterol accumulation 
in the perinuclear region, determined using both filipin and 
PFO labeling to visualize unesterified (free) cholesterol [63] 
(Fig. 1a, b; quantified in c–e). In addition, loss of late endo-
some-cholesterol accumulation in AnxA6-depleted CHO 
M12 cells was associated with increased late endosome 
positioning towards the cell periphery (Fig. 1f), a feature 
common to late endosomes with normal cholesterol content.

We performed a yeast two-hybrid screen (Hybrigenics 
Services, France) using the N-terminal region of human 
AnxA6 (aa1–273) as bait against a cDNA library from 
human liver to identify AnxA6 interaction partners that 
could explain the rescue of the NPC1 mutant phenotype 
upon AnxA6 depletion. These studies identified TBC1D15, 
a Rab7-GAP [64, 65–69], as a possible AnxA6-binding 
protein.

Previous reports suggested that ectopic expression of 
Rab7 could restore cholesterol re-esterification and neu-
tral lipid deposition in NPC1 mutants [36]. Therefore, 
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the potential interaction of AnxA6 with a Rab7-GAP was 
pursued further. Reciprocal co-immunoprecipitations with 
antibodies against AnxA6 and TBC1D15 confirmed the 
interaction between AnxA6 and TBC1D15 in mouse liver 
homogenates (Fig. 2a), cell lysates from CHO-WT, AnxA6 
overexpressing CHO (CHO-A6) [43], and NPC1 mutant cell 
lines CHO M12 and CHO 2-2 (Fig. 2b). Notably, AnxA6 
protein levels were elevated in NPC1 mutant cells (CHO 
M12, CHO 2-2), compared with CHO-WT cells (Fig. 2c) 
(see “Discussion”). Pull-down assays with AnxA6–GST 
fusion protein further established the ability of AnxA6 to 
directly interact with TBC1D15 (Fig. 2d) and use of trun-
cated TBC1D15 mutants mapped the interaction of AnxA6 
to the N-terminal (1–200aa) region of TBC1D15 (Fig. 2e).

We next addressed a possible involvement of AnxA6/
TBC1D15 interaction in Rab7-mediated late endosome-
cholesterol egress. AnxA6 depletion in CHO M12 cells 
significantly reduced the association and colocalization of 
YFP–TBC1D15 with late endosome and lysosome struc-
tures expressing the constitutively active Rab7 mutant 
GFP–Rab7-Q67L (Fig. S1a). In CHO M12 cells, quantifi-
cation showed that 68 ± 18% of YFP-labeled ring structures 
colocalized with GFP-positive vesicles (see also line profile 
in Fig. S1a). In contrast, CHO M12-A6ko cells contained 
significantly fewer GFP-positive vesicles that colocalized 
with YFP-labeled ring formations (36 ± 23%).

To provide additional evidence for AnxA6-regulated 
association of TBC1D15 with late endosomes, subcellular 
fractionation was performed to compare the cellular distribu-
tion of TBC1D15 in CHO-WT and CHO-A6 cells (Fig. S1b). 
Significant enrichment of TBC1D15 in the late endosome 
fraction (F2) of CHO-A6 cells was observed (Fig. S1b). 
Electron microscopy of the late endosome fraction from 
CHO cells (Fig. S1c) detected vesicular structures, some-
times with internal membrane fragments and/or multilamel-
lar prototypical endolysosomes. Importantly, mitochondria, 
peroxisomes or microsomes (ER) were completely absent 
from this fraction. These data suggested that AnxA6 targets 
TBC1D15 to Rab7-positive endosomes, and correlated with 
reduced filipin staining in AnxA6-depleted CHO M12 cells 
(Fig. 1). Thus, high levels of AnxA6 appear to induce com-
plex formation with TBC1D15 and its recruitment to Rab7-
GTP-positive late endosomes and lysosomes, and removal 
of the AnxA6/TBC1D15 complex to restore late endosome-
cholesterol export in NPC1 mutants.

AnxA6 interferes with Rab7 activity to impair late 
endosome‑cholesterol egress

To determine whether increased AnxA6 levels could pro-
mote Rab7-GAP activity, we examined Rab7-GTP levels 
using RILP-C33–GST pull-down assays (Fig. 2f–h) in cell 

Fig. 1  AnxA6 depletion rescues late endosomal cholesterol accumu-
lation in NPC1 mutant cells. a CHO M12 cells expressing control 
siRNA (siRNA Ctrl) or siRNA targeting AnxA6 (siRNA AnxA6) 
were fixed and stained with filipin. For better comparison of fil-
ipin staining, the outline and shape of transfected cells is indicated. 
AnxA6 protein levels in lysates from CHO M12 cells ± siRNA 
AnxA6 is shown. Scale bar, 10  μm. b Stable AnxA6 gene deletion 
in CHO M12 cells (CHO M12-A6ko) using CRISPR/Cas9 genome 
editing technology. Cholesterol was visualized using GST–perfrin-
golysin O (PFO) staining. For better comparison of GST–PFO stain-

ing, the outline and shape of cells is indicated. Representative cells 
and AnxA6 protein levels in lysates from CHO M12 and CHO M12-
A6ko cells are shown. Scale bar, 10 μm. c–f Dot-plot of PFO-stained 
vesicle number (c), size (d), PFO relative staining intensity (e) and 
vesicle distance to the nucleus (f) of a representative experiment from 
CHO M12 and CHO M12-A6ko cells (n > 60 cells, 3 experiments). 
For quantification details see “Materials and methods”. ***p < 0.001 
by two-tailed Student’s t test (c–f). All data are presented as 
mean ± SD in red
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lysates containing moderate (CHO-WT) or elevated (CHO-
A6, M12, 2-2) AnxA6 protein levels (see Fig. 2c). In addi-
tion, we also compared Rab7-GTP amounts in A431wt cells 
that lack endogenous AnxA6, with those from a well-char-
acterized A431 line stably expressing AnxA6 (A431-A6) 
(Fig. S2a) [50, 70], as well as in MEFs from wild type 
(MEF-WT) and AnxA6-KO (MEF-A6ko) mice (Fig. S2b) 
[40, 51]. Both A431-A6 and MEF-WT express AnxA6 lev-
els commonly found in other cell lines and tissues [50, 70]. 
Indeed, cells with elevated AnxA6 protein expression dis-
played a substantial and significant reduction in Rab7-GTP 
levels (Fig. 2f). On the other hand, AnxA6 knockdown in 
the NPC1 mutant CHO M12 or CHO 2-2 cells was associ-
ated with effectively increased Rab7-GTP levels (Fig. 2g). 
Furthermore, TBC1D15 depletion strongly increased Rab7-
GTP amounts in NPC1 mutant M12 and 2-2 cells (Fig. 2h). 
Thus, elevated AnxA6 levels create an environment that 
favors TBC1D15-mediated Rab7 inactivation. These stud-
ies reveal for the first time that AnxA6 can regulate Rab7 
GTPase via direct binding and recruitment of a member of 
the TBC/Rab7GAP-family, TBC1D15 to late endosomes, 
thereby inhibiting Rab7 activity.

To further confirm that AnxA6- and/or TBC1D15-
induced downregulation of Rab7-GTP levels would inter-
fere with the ability of overexpressed Rab7 to rescue the 
NPC1 mutant phenotype [36], RFP-Rab7 was ectopically 
co-expressed with GFP, AnxA6–GFP or YFP–TBC1D15 
in NPC1 mutant CHO M12 cells. To visualize late endo-
some-cholesterol accumulation, cells were fixed and stained 
with filipin (Fig. 2i). In agreement with previous data [36], 
transient overexpression of Rab7 drastically reduced late 
endosome-cholesterol accumulation in CHO M12 cells, 
yet co-expression of Rab7 with AnxA6 or TBC1D15 not 
only blocked Rab7-mediated rescue of late endosome-cho-
lesterol export (YFP–TBC1D15), but also increased late 
endosome-cholesterol accumulation (AnxA6–GFP). Strik-
ingly, TBC1D15 depletion in CHO M12 cells restored late 
endosome-cholesterol export even upon ectopic co-expres-
sion of AnxA6–GFP (Fig. 2i). These findings show une-
quivocally that AnxA6, acting through TBC1D15, reduces 
Rab7-GTP and blocks late endosome-cholesterol egress in 
NPC1 mutant cells. In support of this, expression of the 
constitutively active Rab7 mutant Rab7-Q67L was sufficient 
to release accumulated late endosome-cholesterol in CHO 
M12 cells (Fig. S2c). Moreover, ectopic expression of the 
YFP–TBC1D15(1–200) deletion mutant, which still interacts 
with AnxA6 (see Fig. 2e), yet lacks the GAP domain to 
inactivate Rab7 (and therefore acts as a dominant-negative 
mutant), also showed a significant reduction of late endo-
some-cholesterol in CHO M12 cells (Fig. S2d). In contrast, 
ectopic expression of the dominant-negative GFP–Rab7-
T22N mutant inhibited late endosome-cholesterol egress 
in AnxA6-depleted CHO M12 cells, demonstrating the 

requirement for active Rab7 protein for the rescue of the 
NPC1 mutant phenotype (Fig. S2d). Collectively, these 
observations clearly indicate that AnxA6 modulates late 
endosome-cholesterol levels by regulation of Rab7 activity.

Importantly, in line with elevated Rab7 activity (Fig. 2f) 
and increased late endosome positioning towards the cell 
periphery (Fig.  1f) in AnxA6-depleted M12 cells, we 
observed the re-establishment of late endosome motility as 
judged by live-cell microscopy of M12 cells labeled with 
LDL-derived BODIPY-cholesterol upon AnxA6 depletion 
(Fig. 2j; quantified in k and Movies S1 and S2). One out-
come of this stimulated late endosome-trafficking could 
be the redistribution of late endosome-cholesterol to other 
destinations. Indeed, analysis of BODIPY-cholesterol efflux 
from late endosomes in the presence of extracellular choles-
terol acceptors revealed a faster removal of BODIPY-cho-
lesterol from AnxA6-depleted CHO M12 (siRNA-AnxA6) 
cells compared with control cells (Fig. 2l). Previous studies 
implicated ectopic and non-physiological elevation of Rab7 
levels as a prerequisite to restore neutral lipid storage and 
cholesterol esterification in NPC1 mutants [36]. However, 
our studies strongly suggest that elevation of endogenous 
Rab7-GTP levels, through the depletion of AnxA6 (or 
TBC1D15), is sufficient to re-establish the ability of NPC1 
mutant cells to export late endosome-cholesterol to the cell 
surface (Fig. 2l), or store as neutral lipid in lipid droplets 
(see below).

AnxA6 depletion restores cholesterol trafficking 
in NPC1 mutant cells

In wild type cells, endocytosed, esterified LDL-cholesterol 
is hydrolyzed into free cholesterol in late endosomes and 
lysosomes, to be delivered to other cellular sites, includ-
ing the ER for re-esterification and subsequent storage as 
cholesteryl esters in lipid droplets [3, 5]. In NPC1 mutant 
cells, late endosome-cholesterol accumulation is accompa-
nied by reduced cholesterol re-esterification and neutral lipid 
deposition [36]. To address the trafficking of late endosome-
cholesterol in AnxA6-depleted CHO M12 cells, we set up 
experimental conditions to monitor the trafficking of LDL-
derived cholesterol out of late endosomes and lysosomes. 
CHO-WT and NPC1 mutant cells were grown in LPDS-
containing media for 48 h before loading with LDL for addi-
tional 24 h (Fig. S3a) [38]. After 48 h, a significant reduction 
of filipin and neutral lipid stain (BODIPY 493/503-positive 
structures, green) in both CHO-WT and NPC1 mutant cell 
lines (CHO M12) was observed, pointing to strongly reduced 
late endosome-cholesterol and neutral lipid levels in lipid 
droplets. As expected, subsequent LDL loading caused late 
endosome-cholesterol accumulation only in CHO M12 cells, 
while CHO-WT cells showed cholesterol redistribution and 
robust BODIPY staining (Fig. S3b).
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Given that AnxA6 depletion reduced perinuclear late 
endosome-cholesterol accumulation in CHO M12 cells 
(Fig. 1), we next investigated if the loss of AnxA6 could 
also rescue the delivery of late endosome-cholesterol for 

neutral lipid storage in lipid droplets in these cells. Indeed, 
compared with a control siRNA (siCtrl), AnxA6 deple-
tion not only reduced late endosome-cholesterol accumu-
lation, as judged by reduced filipin staining (quantified in 
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Fig. S4a), but significantly increased neutral lipid stain 
(BODIPY-positive structures, green) in CHO M12 cells 
(Fig. 3a; quantified in c and d). A slightly increased num-
ber of lipid droplets was observed under normal growth 
conditions in AnxA6-depleted CHO M12 cells (Fig. S4a). 
Colocalization with anti-adipophilin, a well-established 
lipid droplet marker [71], confirmed the identity of these 
structures in AnxA6-depleted CHO M12 cells (Fig. S4b). 
Consistent with our previous results (Fig. 1), decreased 
filipin staining was evident in CHO M12-A6ko cells 
(quantified in Fig. S4a). Furthermore, and in strong sup-
port of these findings, conventional electron microscopy 
showed abundant lipid droplets after LDL loading not only 
in CHO-WT, but also in CHO M12-A6ko cells; in contrast, 
as expected [36], very few lipid droplets were observed in 
LDL-loaded CHO M12 cells (Fig. S4c; see quantification).

These results indicate that AnxA6 depletion overcomes 
defective transport of LDL-cholesterol to the ER in NPC1 
mutants. Increased cholesterol levels in the ER suppress pro-
cessing of the major transcriptional regulator of cholesterol 
homeostasis, sterol regulatory element binding protein 2 
(SREBP2), enabling mature SREBP (mSREBP2) to enhance 
the transcription of its target genes [72]. In line with pub-
lished data [73], LDL-cholesterol failed to suppress SREBP2 
maturation in NPC1 mutants. However, AnxA6 depletion 
in CHO M12 was associated with decreased amounts of 
mSREBP2 upon LDL loading (Fig. S5). To further verify 
that late endosome-cholesterol delivery to the ER, followed 
by ACAT-mediated cholesterol esterification, would drive 
transfer of neutral lipids into newly formed lipid droplets in 
AnxA6-depleted CHO M12 cells, a pharmacological ACAT 
inhibitor (Sandoz 58-035) was employed [74]. ACAT inhi-
bition completely abrogated neutral lipid (cholesteryl ester) 
accumulation and lipid droplet formation in AnxA6-depleted 
M12 cells, while a concomitant increase of filipin staining 
was observed (Fig. 3b; quantified in c and d).

Finally, employing the same experimental conditions 
described above (Fig. 3a), we addressed if TBC1D15 deple-
tion would also impact the transfer of neutral lipids into 
lipid droplets in NPC1 mutant CHO M12 cells. Indeed, con-
sistent with TBC1D15 silencing leading to elevated Rab7-
GTP levels (Fig. 2h) and restoration of late endosome-cho-
lesterol efflux (Fig. 2i), depletion of TBC1D15 in CHO M12 
cells was accompanied with increased BODIPY-positive 
lipid droplet numbers (Fig. S2e, f; quantified in g and h). 
Thus, both TBC1D15 and AnxA6 depletion enabled neu-
tral lipid storage in LDL-loaded CHO M12, confirming the 
hypothesis that both proteins contribute to a role for Rab7 
in cholesterol homeostasis. Taken together, these data indi-
cate that AnxA6 as well as TBC1D15 deficiency in NPC1 
mutant cells promotes transport of free cholesterol from late 
endosomes to lipid droplets in an ACAT-dependent manner.

Fig. 2  AnxA6 interacts with TBC1D15. a Mouse liver homogenates were 
immunoprecipitated with antibodies against AnxA6, TBC1D15 or control 
antibody (normal rabbit serum, NRS) and analyzed by western blotting for 
co-immunoprecipitation. Representative images of AnxA6 and TBC1D15 
levels (5% of total input) and immunoprecipitations are shown (n = 2). b 
Cell lysates from CHO-WT, CHO-A6, CHO M12 and CHO 2-2 cells were 
immunoprecipitated with antibodies against AnxA6, TBC1D15 or control 
antibody (NRS) as indicated and analyzed by western blotting for co-immu-
noprecipitation. Representative images of TBC1D15, AnxA6, Rab7 and 
actin levels in the cell lysates (10% of total input, left panel) and immuno-
precipitations are shown (n = 3). c Quantification of AnxA6 levels in CHO-
WT, CHO-A6, CHO M12 and CHO 2-2 cell lysates (n = 3). d Coomassie 
blue staining of purified glutathione S-transferase (GST) and GST–AnxA6 
used in the pull-down assays shown in D–E. Cell lysates (2% of total input) 
from CHO-WT, CHO-A6, CHO M12 and CHO 2-2 cells were incubated 
with GST or GST–AnxA6 fusion protein in pull-down assays and analyzed 
by western blotting with anti-TBC1D15 as indicated (n = 3). e Scheme of 
YFP-tagged TBC1D15 wild type (1–674aa) and deletion mutants (1–200, 
201–333, 334–557, 558–674) used to map the interaction of TBC1D15 
with AnxA6. The TBC domain in TBC1D15 (334–557) is indicated. Cell 
lysates from COS-1 cells ectopically expressing YFP–TBC1D15 wild type 
and mutants were incubated ± GST–AnxA6 fusion protein in pull-down 
assays and analyzed by western blotting for interaction with anti-GFP as 
indicated. Expression levels of YFP-tagged TBC1D15 deletion mutants 
(5% of total input) in COS-1 cell lysates are shown (n = 2). f Cell lysates 
from CHO-WT, CHO-A6, CHO M12 and CHO 2-2 cells were subjected 
to Rab interacting lysosomal protein (RILP)-C33–GST pull-down assays to 
determine active Rab7 (Rab7-GTP) levels. g Rab7-GTP levels determined 
as above with lysates from CHO M12 cells expressing non-targeting con-
trol siRNA (siCtrl) or siRNA targeting AnxA6 (siA6). Total levels of Rab7, 
AnxA6, and actin in cell lysates and the quantification of relative Rab7 
activity are shown (5% of total input, n = 3). h Representative western blot 
showing Rab7-GTP levels determined as above with lysates from CHO 
M12 and CHO 2-2 cells expressing non-targeting control siRNA (siCtrl) or 
siRNA targeting TBC1D15 as indicated. Total levels of Rab7, TBC1D15 
and actin in cell lysates (5% of total input) and the quantification of relative 
Rab7 activity are shown (n = 3). i CHO M12 cells were co-transfected with 
RFP–Rab7 (red) and empty vector (GFP), AnxA6–GFP, YFP–TBC1D15 
or AnxA6–GFP together with siRNA targeting TBC1D15 (siTBC1D15) 
(green) as indicated. Cells were fixed and stained with filipin (blue). For 
better comparison of filipin staining, the outline and shape of transfected 
cells is indicated. Merged images are shown. Scale bar, 10 μm. The mean 
relative filipin intensity of at least 20 transfected cells from 3 independent 
experiments was quantified (n = 3). j Confocal images of CHO M12 cells 
expressing control siRNA (siRNA Ctrl) or siRNA targeting AnxA6 (siRNA 
AnxA6). Cells were grown in lipoprotein-protein deficient serum (LPDS), 
and then pulse-labeled with LDL-BODIPY-cholesteryl linoleate (see 
“Materials and methods” for details). Vesicles labeled with LDL-derived 
BODIPY-cholesterol (BC) were imaged in live cells over time. Repre-
sentative images tracing pseudocoloured individual BC-stained vesicles for 
CHO M12 ± AnxA6 are shown (0–8 s) after 24 h chase. For representative 
frames from live-cell videos see Movies S1 and S2. k Quantitation of BC-
stained vesicle mobility in CHO M12 ± AnxA6 (siCtr, siA6) after pulse-
labeling with LDL-BODIPY-cholesteryl linoleate, followed by 24 h chase. 
Bars: 1 − [Pearson’s colocalization coefficient between subsequent frames/
cell] ± SEM (n = 24–26 cells, two experiments). l Analysis of late endoso-
mal (LE) BODIPY-cholesterol removal. CHO M12 cells were transfected 
with control siRNA (siCtrl) or siRNA targeting AnxA6 (siAnxA6). 22 h 
after transfection, cells were pulse-labeled for 2  h with 50  μg/ml LDL-
BODIPY-cholesteryl linoleate. Cells were washed and chased in medium 
with 5% lipoprotein-deficient serum for 0–48 h. The efflux of LDL-derived 
BODIPY-cholesterol was quantified by analyzing mean fluorescence 
intensity per cell (n = 31–33 cells, two experiments). *p < 0.05; **p < 0.01; 
***p < 0.001 by one-way ANOVA with Bonferroni post hoc test (c, f, i), 
two-tailed Student’s t test (g–i, k) or two-way ANOVA with Bonferroni post 
hoc test (l). All data are shown as mean ± SEM

◂
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Fig. 3  AnxA6 knockdown elicits late endosome-cholesterol release 
and neutral lipid accumulation in NPC1 mutant cells. a CHO M12 
cells expressing control siRNA (siCtrl) or siRNA targeting AnxA6 
(siAnxA6) were grown in 10% fetal calf serum (0  h, control), then 
starved in 5% lipoprotein-deficient serum (LPDS) for 48  h before 
loading with 50  µg/ml LDL (± 10  μg/ml ACAT inhibitor Sandoz 
58–035 in b) for 24  h (see scheme in Fig. S3a, and “Materials and 
methods” for details). At each time point (0, 48 and 72 h), cells were 
fixed, stained with filipin (cholesterol, red) and BODIPY 493/503 
(neutral lipids, green). Representative fields of cells at t = 0 (control), 

t = 48 (LPDS) and t = 72  h (LDL) (merged and split channels) are 
shown. Enlarged regions of interest are shown. For better comparison 
of filipin and BODIPY staining, the outline and shape of cells is indi-
cated. Scale bar, 10 μm. A representative western blot showing siRNA 
AnxA6 depletion in CHO M12 cells is provided. Actin served as load-
ing control. c–d Dot-plot of number and area of filipin-stained (LE) 
and BODIPY-stained (LD) vesicles per cell of a representative experi-
ment (n > 60, 3 experiments). For quantification details see “Materials 
and methods”.*p < 0.05; ***p < 0.001 by one-way ANOVA with Bon-
ferroni post hoc test (d, e). All data are presented as mean ± SD in red
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StARD3 is required to rescue late 
endosome‑cholesterol export in NPC1 mutant cells 
lacking AnxA6

It was previously reported that enlarged and cholesterol-
laden late endosomes have impaired vesicular trafficking 
[35]. In addition, active Rab7 is required to promote MCS 
formation between late endosomes and lysosomes and the 
ER [12], providing protein–protein interactions within MCS 
for the bidirectional transfer of cholesterol and other lipids 
between late endosomes and ER [75, 76]. Given elevated 
Rab7-GTP levels and increased late endosome motility in 
AnxA6-depleted NPC1 mutant cells (Fig. 2), we reasoned 
that increased MCS formation could aid cholesterol transfer 
in these cells. However, CHO M12 lack NPC1 and do not 
express ORP1L (Fig. S6), excluding the ORP1L/VAP-A-
dependent cholesterol transfer route [4, 6, 15, 16, 77–79].

We examined the impact of AnxA6 depletion on MCS 
between late endosomes/lysosomes and the ER in CHO 
M12 cells. Since the size of MCS is in the nanometer 
range (~ 5–30 nm), electron microscopy is currently the 
best approach to identify and quantify these membrane 
domains. Therefore, CHO-WT, CHO M12 cells with and 
without AnxA6 were prepared for conventional elec-
tron microscopy and ultrathin sections were analyzed 
and images quantified using ImageJ. For quantifications, 
we selected vesicle sections harboring prototypical late 
endosomes and lysosomes with electron-dense mem-
branes of variable size containing bits of electron-dense 
material [80], similar to those structures observed by oth-
ers after treatment with U18666A. Figure 4a shows rep-
resentative late endosome images from CHO-WT, CHO 
M12 and AnxA6-depleted CHO M12 cells, where the sur-
face contacts between late endosomes and the ER were 
quantified by stereology. These data sets show reduced 
MCS formation or stability of NPC1-mutant CHO cells 
and clearly demonstrate that AnxA6 depletion increased 
MCS formation in CHO M12 cells. In fact, this is the first 
quantitative study showing diminution of MCS in NPC1 
mutant cells (Fig. 4b).

Finally, we investigated whether the StARD3/VAP-A 
protein complex that can facilitate cholesterol transfer 
between late endosomes and the ER [75, 76] could con-
tribute to the rescue of late endosome-cholesterol export 
in CHO M12-A6ko cells. The ability of AnxA6 depletion 
to reduce late endosome-cholesterol accumulation in CHO 
M12 cells was lost upon StARD3 depletion and concomi-
tantly, strongly interfered with neutral lipid accumulation 
in lipid droplets of CHO M12-A6ko cells (Fig. 5a, quan-
tified in c and d; also, electron microscopy in Fig. S4c). 
This observation was accompanied by a wide distribution 
of LDL-containing and filipin-positive late endosomes 
(Fig.  5a), as shown previously for StARD3-deficient 

HeLa cells [23]. Consequently, AnxA6 depletion rescued 
late endosome-cholesterol accumulation in NPC1 mutant 
cells via StARD3-dependent cholesterol transport routes. 
Further supporting a role for StARD3 downstream of the 
AnxA6–TBC1D15–Rab7 axis, simultaneous depletion 
of TBC1D15 and StARD3 in CHO M12 cells was asso-
ciated with late endosome-cholesterol accumulation in 
more scattered late endosomes (Fig. 5e). Hence, despite 
upregulated Rab7 activity due to TBC1D15 depletion, 
StARD3 depletion interfered with late endosome-choles-
terol egress and consequently, these cells did not display 
lipid droplets (Fig. 5e; quantified in g and h). In strong 
support of these findings, and in line with published data 
[36], conventional electron microscopy showed abundant 
lipid droplets in LDL-loaded CHO-WT cells, but not CHO 
M12 cells. Lipid droplet formation upon LDL loading was 
restored in AnxA6-depleted CHO M12 cells, yet depletion 
of StARD3 in these cells resulted in a lack of lipid drop-
lets, further validating the requirement of StARD3 to store 
LDL-derived neutral lipids as cholesteryl esters (Fig. S4c 
and quantification). Altogether, AnxA6 deficiency in CHO 
M12 cells correlated with a significant increase of sur-
face contacts between late endosomes and the ER (MCS), 
possibly facilitating the transfer of cholesterol out of late 
endosomes.

Although it was suggested that non-functional NPC1 may 
impair MCS formation between ER and late endosomes [13], 
this has not been proven experimentally. Here we identified 
decreased MCS numbers in LDL-loaded NPC1 mutant CHO 
M12 cells compared with CHO-WT cells (Fig. S4d) (CHO-
WT cells contain less AnxA6 than CHO M12; see Fig. 2c). 
However, those MCS numbers were significantly expanded 
by the depletion of AnxA6 in NPC1 mutant cells, creating 
an increased surface contact between late endosomes and 
the ER. More remarkably, in these settings no changes in 
the percentage of MCS were observed when StARD3 was 
depleted, despite the transfer of cholesterol to lipid drop-
lets being completely blocked under these conditions. This 
strongly indicates that tethering and cholesterol transport at 
the MCS interface are two independent functions. Indeed, 
StARD3-depleted CHO M12-A6ko cells, showed no differ-
ences in MCS numbers (compared with CHO M12-A6ko), 
though no lipid droplets were observed (Fig. 5a, S4c).

Discussion

We have shown here that the loss of NPC1 function and 
the concomitant accumulation of cholesterol in the late 
endocytic compartment can be rescued by AnxA6 deple-
tion. We found that AnxA6 interacts with TBC1D15 
(Rab7-GAP), enabling TBC1D15 to inactivate Rab7. Con-
sequently, AnxA6 as well as TBC1D15 depletion lead to 



 E. Meneses-Salas et al.

1 3

elevated Rab7-GTP levels, which facilitates late endosome-
cholesterol egress, increased late endosome motility and a 
concurrent increase of neutral lipid accumulation in lipid 
droplets, in an ACAT-dependent manner. Mechanistically, 
we showed that StARD3 is instrumental for the transfer of 
late endosome-cholesterol to the ER in NPC1 mutants lack-
ing AnxA6.

Therefore, AnxA6 is a novel component of the cellu-
lar machinery regulating cellular cholesterol homeostasis 
(Fig. 6). Late endosome-cholesterol accumulation in NPC1 
mutant cells is associated with elevated AnxA6 protein lev-
els, which is detrimental for the trafficking and dynamics 
of the late endocytic compartment because it blocks Rab7 
activation. Increased AnxA6 levels in NPC1 mutant CHO 

cell lines shown here, human NPC1 mutant skin fibroblasts 
(GM03123, data not shown), and U18666A-treated CHO-
WT cells [44] can possibly be explained by a KFERQ-motif 
in AnxA6, which targets AnxA6 via chaperone-mediated 
autophagy (CMA) or endosomal microautophagy [81–83]. 
However, CMA is markedly inhibited upon late endosome-
cholesterol accumulation [83–88], which might explain ham-
pered CMA-mediated AnxA6 degradation.

On the other hand, it is now well established that cho-
lesterol levels in endolysosomes can regulate the position-
ing of this organelle. A sophisticated ensemble of tethers, 
OSBPs, motor proteins and components of the cytoskeleton 
accomplishes the spatio-temporal re-organization of late 
endosomes and lysosomes between the perinuclear area to 

Fig. 4  Increased membrane contact sites in CHO M12 cells after 
AnxA6 depletion. a Representative transmission electron micros-
copy (TEM) images of late endosomes/lysosomes (LE/Lys) from 
CHO-WT, CHO M12 expressing control siRNA (siRNA Ctrl), 
siRNA targeting AnxA6 (siRNA AnxA6) and CHO M12-A6ko cells. 
Arrowheads indicate endoplasmic reticulum (ER). A schematic repre-
sentation of these images with highlighted membrane contacts (pur-

ple) between ER and LE/Lys structures is shown. b Quantitative ste-
reology of ER–LE/Lys contacts in TEM sections is given: perimeter 
of LE/Lys contacts (in microns) and percentage of endosome surface 
in contact with the ER per cell (n > 30). LE late endosomes, ER endo-
plasmic reticulum, Mit mitochondria, PM plasma membrane. Scale 
bar, 200 nm. *p < 0.05; ***p < 0.001 by one-way ANOVA with Bon-
ferroni post hoc test. All data are presented as mean ± SD in red
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Fig. 5  StARD3 contributes to late endosome-cholesterol egress 
and neutral lipid accumulation in AnxA6-deficient NPC1 mutant 
cells. a CHO M12-A6ko cells expressing control siRNA (siCtrl) or 
siRNA targeting StARD3 (siStARD3) were starved in 5% LPDS for 
48  h before loading with 50  µg/ml LDL for 24  h. Cells were fixed 
and stained with filipin (cholesterol, red) and BODIPY 493/503 (neu-
tral lipids, green). Enlarged regions of interest are shown. For better 
comparison of filipin and BODIPY staining, the outline and shape of 
cells is indicated. Scale bar, 10 μm. b Western blot analysis (StARD3, 
tubulin) and RNA quantification determined by qPCR (n = 3) of 
StARD3 knockdown in CHO M12-A6ko cells is shown. c–d Dot-
plot of number, area and relative intensity of filipin-stained (LEs) and 
BODIPY-stained (LDs) vesicles per cell of a representative experi-
ment (n > 60, 3 experiments). For quantification details see “Materials 
and methods”. e CHO M12 cells expressing control siRNA (siCtrl) 
or siRNA targeting TBC1D15 and StARD3 (siTBC1D15 siStARD3) 

were starved in 5% LPDS for 48 h and loaded with 50 µg/ml LDL for 
24 h. Then cells were fixed, stained with filipin (cholesterol, red) and 
BODIPY 493/503 (neutral lipids, green), and representative fields 
(merged and split channels) are shown. Enlarged regions of interest 
are shown. For better comparison of filipin and BODIPY staining, 
the outline and shape of cells is indicated. Scale bar, 10 μm. f West-
ern blot analysis of TBC1D15, StARD3 and actin ± siRNA-mediated 
TBC1D15 and StARD3 knockdown from lysates of CHO M12 cells 
as indicated. g–h Dot-plot of number, area and relative intensity of 
filipin-stained (LE) and BODIPY-stained (LD) vesicles per cell of a 
representative experiment in CHO M12 cells ± siTBC1D15 and siSt-
ARD3 as indicated (n > 60, 3 experiments). For quantification details 
see “Materials and methods”.**p < 0.01; ***p < 0.001 by two-tailed 
Student’s t test (b–d, g, h). Data are shown as mean ± SEM (b) or as 
mean ± SD in red (c, d, g, h)
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the cell periphery [15, 16, 77]. The currently best understood 
mechanism involves cholesterol driving ORP1L interaction 
with Rab7 and phosphoinositides to facilitate minus-end 
transport, leading to enlarged, cholesterol-rich late endo-
some/lysosome vesicles in the perinuclear region. In con-
trast, when cholesterol levels are low, ORP1L undergoes 
a conformational change that allows interaction with VAP 
proteins in the ER and MCS formation in the cell periph-
ery, permitting cholesterol transfer between these two com-
partments [27, 78, 89–91]. Hence, in NPC1 mutant cells 
late endosome-cholesterol accumulation is responsible for 
late endosome/lysosome clustering and transport collapse 
at the minus-end [27]. Although ORP1L and Rab7 are the 
main drivers in this process, NPC1 activity is required for 
ORP1L function [78]. These findings are based on studies 
in MelJuSo [27], HeLa [78, 90, 91] and A549 [92] cells, 
yet NPC1 mutant CHO cell lines examined in the current 
study do not express significant amounts of ORP1L. Hence 
other proteins and mechanisms that allow for MCS forma-
tion and cholesterol transfer, including StARD3, need to be 
considered.

The involvement of MCS in Rab7-dependent late endo-
some functionality was strongly supported by the increased 
contact surface between the ER and late endosomes. 
StARD3 depletion blocking late endosome-cholesterol 
export was in line with neutral lipid deposition in lipid 

droplets of CHO M12-A6ko cells. These findings are con-
sistent with StARD3 upregulation in NPC1 mutant CHO 
cells and livers of NPC1 KO-mice [93] and StARD3 overex-
pression inducing MCS formation between late endosomes 
and the ER [26].

Although a number of MCS constituents between late 
endosomes and the ER have been identified (for a recent 
review see: [20]), the understanding of their regulation and 
dynamics remains elusive, and additional tethering/scaffold-
ing proteins, such as MOSPD2 [75], AnxA1 [90], VPS13 
proteins [94], Gramd1b [39] or lipids (PtdIns) have also been 
implicated [10]. With regard to cholesterol homeostasis, 
unsolved mechanisms include the kinetics and directional-
ity of cholesterol transfer. For example, in HeLa cells the 
StARD3/VAP-A complex mediates cholesterol transport 
from the ER to late endosomes independently of ORP1L 
[75, 76]; however, using the same protein machinery, trans-
port of cholesterol from late endosomes to the ER was also 
demonstrated [92]. Based on our findings, one can envis-
age that late endosome-cholesterol accumulation caused by 
loss of NPC1 would trigger an elevation of AnxA6 levels, 
possibly due to inhibition of CMA [83], and a concomitant 
increased recruitment of AnxA6 to late endosomes [43–45]. 
In CHO M12 cells, this enlarged pool of AnxA6 proteins 
could further potentiate late endosome-cholesterol accumu-
lation and possibly impair their ability to fuse with other 

Fig. 6  Model. Scheme of the proposed mechanism for AnxA6 in 
Rab7 inactivation and membrane contact site (MCS) functioning. 
Increased amounts of AnxA6 in cholesterol-laden late endosomes 
(LE) of NPC1 mutant cells enables the recruitment of the Rab7-GAP, 
TBC1D15, which inactivates Rab7. Lowering AnxA6 levels in late 
endosomes of NPC1 mutant cells leads to elevated amounts of Rab7-
GTP and upregulation of StARD3. This facilitates the formation of 
MCS to establish LDL-cholesterol transfer to the ER, followed by 

cholesterol esterification in an ACAT-dependent manner and choles-
teryl-ester storage (neutral lipids) in lipid droplets (LDs). StARD3/
VAP-A seems to be instrumental for the cholesterol transfer from 
late endosomes to ER through MCS. This concomitantly reduces 
late endosome-cholesterol accumulation in NPC1 mutant cells. Most 
likely other tethers also operate at this interface, since StARD3 deple-
tion interferes with cholesterol transfer from LE to LD yet MCS for-
mation was not affected (see text for details)
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structures, for example autophagosomes or phagosomes. In 
line with this model, active Rab7-GTP was not detected on 
phagosomes from cholesterol-laden cells [95]. This would 
not only result in an increased ability of AnxA6/TBC1D15 
to inactivate Rab7, but would also interfere with StARD3-
dependent MCS formation/functioning, thereby inhibiting 
alternative late endosome-cholesterol export routes in NPC1 
mutant cells.

Active GTP-bound lysosomal Rab7 is also involved in 
MCS formation via its direct interaction with protrudin 
[9–12, 18, 19]. This points to dual mechanistic tasks for 
activated Rab7 after AnxA6 depletion in NPC1 mutant cells: 
(i) to confer increased late endosome motility and choles-
terol transport and (ii) to stabilize MCS through Rab7/pro-
trudin/VAP-A complex formation. This implicates that cho-
lesterol transport, which is inhibited by StARD3 depletion 
in AnxA6-depleted M12 cells, and MCS formation, which 
is not inhibited in these settings, are regulated separately. 
Depletion of AnxA6 could stabilize StARD3/VAP-A and 
Rab7/protrudin/VAP-A complexes, ensuring re-establish-
ment of MCS between the ER and late endosomes, and even-
tually the transfer of late endosome-cholesterol to the ER in 
cells with non-functional NPC1. Although several annexins 
contribute to endosomal membrane dynamics [62, 96, 97], 
only the AnxA1/S100A11 protein complex has yet been 
associated with MCS formation [90]. While AnxA2 and 
AnxA6 are also well known to bind S100 proteins, to our 
knowledge there is no data linking AnxA2 with MCS [90, 
98]. On the other hand, in the present study, the presence of 
AnxA6 seems to confer untethering of MCS between LE/
Lys and ER in NPC1 mutant cells. Indeed, recent findings 
support that untethering of mitochondria–lysosome con-
tacts is mediated by the recruitment of TBC1D15 to elicit 
Rab7-GTP hydrolysis and thereby release contacts [18, 19]. 
Alternatively, AnxA6 may interact with Rab7-GTP similar 
to ORP1L, which binds Rab7 via its ANK domain, exclud-
ing a direct effect on Rab7 GTPase activity [99].

We propose a model (Fig. 6) in which lowering AnxA6 
levels on late endosomes of NPC1 mutant cells, character-
ized by upregulated StARD3 expression [93], leads to elevated 
Rab7-GTP levels. This enables the formation of MCS to estab-
lish LDL-cholesterol transfer to the ER, followed by increased 
cholesterol delivery to lipid droplets, ultimately decreasing late 
endosome-cholesterol accumulation in NPC1 mutant cells.
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1. List of reagents used in this study. 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies   
Rabbit polyclonal anti-TBC1D15 Abcam ab-121396 
Rabbit polyclonal anti-AnxA6 [1] N/A 
Rabbit polyclonal anti-GFP Abcam ab290 
Rabbit polyclonal anti-Rab7 Cell Signalling 2094 
Mouse monoclonal anti-Actin MP Biomedicals  69.100 
Rabbit polyclonal anti-Adipophilin Abcam ab78920 
Rabbit polyclonal anti-GST Abcam ab19256 
Rabbit polyclonal anti-MLN64 Abcam ab3478 
   
Secondary Antibodies   
Alexa Fluor 555 donkey anti-rabbit IgG Invitrogen A31572 
HRP goat anti-rabbit IgG Bio-Rad 170-6515 
HRP goat anti-mouse IgG Bio-Rad 170-6516 
HRP mouse anti-rabbit IgG light chain Abcam ab99697 
   
Recombinant DNA   
pEYFP-C-TBC1D15 generated from pEF6-myc-

TBC1D15 [2] 
N/A 

pEGFP-N1 Clontech 6085-1 
pEGFP-N1-AnxA6 [3] N/A 
pEGFP-C-Rab7-T22N [4] Addgene #12660 
pcDNA3.1-GFP-Rab7-Q67L [5] Addgene #28049 
RFP-Rab7 [6] N/A 
pEYFP-C-TBC1D15 [1-200] [7] N/A 
pEYFP-C-TBC1D15 [201-333] [7] N/A 
pEYFP-C-TBC1D15 [334-557] [7] N/A 
pEYFP-C-TBC1D15 [558-647] [7] N/A 
RILP-C33-GST [8] N/A 
pGEX-4T-AnxA6 [3] N/A 
pGEX-4T2-PFO (Y181A C459A) [9] N/A 
pSpCas9(BB)-2A-Puro v2 [10] Addgene #62988 
pSpCas9(BB)-2A-Puro2-cAnxA6 #1 This paper N/A 
pSpCas9(BB)-2A-Puro2-cAnxA6 #2 This paper N/A 
   
Experimental Models: Cell Lines   
CHO-WT (CHO-K1) ECACC 85051005 
CHO AnxA6 [3] N/A 
CHO M12 Dr L Liscum N/A 
CHO 2-2 Dr D Ory N/A 
CHO M12-AnxA6ko This paper N/A 
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A431-WT ECACC 85090402 
A431 AnxA6 [11] N/A 
MEF-WT [12] N/A 
MEF AnxA6ko [12] N/A 
COS-1 ATCC CRL-1650 
   
Oligonucleotides   
Hamster & mouse ORP1L Fwd: 
5’-ctggcatgctattttggaca-3’ 

This paper N/A 

Hamster & mouse ORP1L Rev: 
5’-agctttctttgttgagtcc-3’ 

This paper N/A 

Hamster Stard3 Fwd: 
5’-agggtctgacaatgaatcag-3’ 

This paper N/A 

Hamster Stard3 Rev 5’-acagggcaggaaggtcttca-3’ This paper N/A 
Hamster Rpl13 Fwd 5’-gccccacttccacaaggatt-3’ This paper N/A 
Hamster Rpl13 Rev 5’-ataccagccaccctgagttc-3’ This paper N/A 
   
Chemicals and Recombinant Proteins   
Sandoz 58-035 Sigma Aldrich S9318 
LPDS This paper N/A 
LDL This paper N/A 
Puromycin Sigma Aldrich P8833 
Fetal Bovine Serum Biological Industries 04-001-1A 
Trypsin Gibco by Life Technologies 15400-054 
F12 (HAM) Biological Industries 01-095-1A 
DMEM Biological Industries 01-055-1A 
L-Glutamine Sigma Aldrich 49419 
Penicillin-Streptomycin solution Biological Industries 03-031-1B 
Lipofectamine RNAiMax Invitrogen 13778-075 
GenJet Plus Reagent SigmaGen Laboratories SL100499 
Pierce Protein A Agarose beads Thermo Scientific 20333 
Glutathione Sepharose 4B beads GE Healthcare 17-0756-01 
GenJet Plus Reagent SignaGen Laboratories SL100499 
Lipofectamine RNAiMAX Invitrogen 13778-075 
RNeasy Mini Kit Qiagen 74104 
Nitrocellulose Membranes 0.45 um Bio-Rad 162-0115 
Immobilon-P Transfer Membranes Millipore IPVH00010 
Lysing Matrix D tubes MP Biomedicals 6913-100 
Na3VO4 Sigma-Aldrich D6508 
NaF Sigma-Aldrich S6508 
PMSF Sigma-Aldrich P7626 
Aprotinin Sigma-Aldrich A1153 
Leupeptin Sigma-Aldrich L2884 
Super RX-N Fuji Medical X-Ray films Fujifilm 47410 19289 
Paraformaldehyde (PFA) Electron Microscopy Sciences 15710 
Saponin Sigma-Aldrich S4521 
BSA Sigma-Aldrich A7906 
Mowiol Calbiochem, Merk 475904 
Glutaraldehyde Merck Millipore 104239 
EZ-ECL Biological Industries 20-500-120 
Triton X-100 Sigma-Aldrich T8787 
BSA fat free Sigma-Aldrich A8806 
siMLN64-m (siStARD3) Santa Cruz sc-149470 
siAnxA6-m Santa Cruz sc-29689 
siTBC1D15-m Santa Cruz sc-154093 
siScramble Ambion 4635 
   
Critical Commercial Assays   
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Bio-Rad protein assay dye reagent concentrate Bio-Rad 500-0006 
High Capacity cDNA Reverse Transcription Kit Applied Bioscience 4368814 
PCR Brilliant SYBRGreen qPCR Master Mix Agilent Technologies 600828 
   
Software and Algorithms   
ImageJ [13] N/A 
GraphPad Prism 5 http://www.graphpad.com N/A 
Vesicle quantification plugin (for ImageJ) This paper N/A 
CRISPR design https://benchling.com N/A 
 

 

SUPPLEMENTARY FIGURES 

 

	

Figure	S1.	Characterization	of	AnxA6/TBC1D15	interaction.	(A)	Representative	images	of	CHO	
M12	and	CHO	M12‐A6ko	cells	expressing	GFP‐Rab7‐Q67L	(green)	and	YFP‐TBC1D15	(red).	Areas	
of	interest	are	shown	at	higher	magnification.	White	arrowheads	point	at	GFP‐Rab7‐Q67L	positive	
vesicles.	Line	profile	of	fluorescence	intensities	of	GFP‐Rab7‐Q67L	(green)	and	YFP‐TBC1D15	(red)	
are	shown	(A‐B	and	C‐D,	3‐4	μm).	Scale	bar,	10	and	5	μm.	Quantification	shows	the	relative	number	
of	 late	 endosomes	with	GFP/YFP	 (n=15	 cells).	 (B)	 Subcellular	 fractionation	 of	 cell	 lysates	 from	
CHO‐WT	and	CHO‐A6	cells	on	discontinuous	 sucrose	gradients.	Fractions	 (F1‐F2)	were	collected	
from	top,	separated	by	gel	electrophoresis	and	immunoblotted	for	TBC1D15	and	Rab7	as	indicated.	
Cell	lysates	(5%	of	total	input)	are	shown.	Relative	protein	levels	of	TBC1D15	in	the	Rab7‐positive	
late	endosomal	fraction	(F2)	were	normalized	to	total	TBC1D15	levels	(see	input)	and	are	shown	in	
the	 right	 panel	 (n=3).	 (C)	 Representative	 electron	micrograph	 of	 the	 late	 endosome/lysosome	
(LE/Lys)	 fraction	F2	 from	 sucrose	gradients	of	CHO	 cells	 (Fig.	S2B).	Prototypical	endolysosomal	
structures	with	 internal	membranes	can	be	observed	 (*).	 Insert	 shows	a	high	magnification	of	a	
multilamellar	structure.	Scale	bar:	500	and	200	nm.	
**	p<0.01	by	two‐tailed	Student’s	t‐test	(A	and	B).	Data	is	shown	as	mean	±	SEM.	
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Figure	S2.	Regulation	of	Rab7	activity	and	 late	endosome‐cholesterol	egress.	Total	 levels	of	
Rab7,	AnxA6	and	actin	 in	cell	 lysates	 (5%	of	 total	 input)	and	 the	quantification	of	 relative	Rab7	
activity	are	shown	(n=3).	Rab7‐GTP	 levels	determined	as	 in	Fig.	2F‐2H	with	cell	 lysates	 from	(A)	
A431‐WT	and	A431‐A6,	or	 (B)	mouse	embryonic	 fibroblasts	 from	wildtype	 (WT)	and	AnxA6‐KO	
(A6ko)	mice.	(C‐D)	CHO	M12	or	CHO	M12‐A6ko	cells	were	 transfected	with	empty	vector	 (GFP),	
GFP‐Rab7‐Q67L,	 YFP‐TBC1D15(1‐200)	 or	 GFP‐Rab7‐T22N	 (green)	 as	 indicated,	 fixed	 and	 stained	
with	 filipin	 (red).	 For	 better	 comparison	 of	 filipin	 staining,	 the	 outline	 and	 shape	 of	 cells	 is	
indicated	 (transfected	 cells	 in	 yellow).	Merged	 images	 are	 shown.	 Scale	 bar,	 10	 μm.	 The	mean	
relative	filipin	intensity	of	at	least	20	transfected	vs.	non‐transfected	cells	was	quantified	(n=3).	(E)	
CHO	M12	cells	expressing	control	siRNA	 (siCtrl)	or	siRNA	 targeting	TBC1D15	 (siTBC1D15)	were	
starved	in	5%	LPDS	for	48	h	and	loaded	with	50	µg/ml	LDL	for	24	h	as	above.	Then	cells	were	fixed,	
stained	 with	 filipin	 (cholesterol,	 red)	 and	 BODIPY	 493/503	 (neutral	 lipids,	 green),	 and	
representative	 fields	 (merged	 and	 split	 channels)	 are	 shown.	 Enlarged	 regions	 of	 interest	 are	
shown.	 For	 better	 comparison	 of	 filipin	 and	 BODIPY	 staining,	 the	 outline	 and	 shape	 of	 cells	 is	
indicated.	 Scale	 bar,	 10	 μm.	 (F)	 Representative	western	 blot	 and	 quantification	 (normalized	 to	
actin)	 showing	 siRNA‐mediated	 TBC1D15	 depletion	 in	 CHO	M12	 cells	 (n=3).	 (G‐H)	Dot‐plot	 of	
number,	area	and	relative	 intensity	of	 filipin‐stained	(late	endosomes)	and	BODIPY‐stained	(lipid	
droplets)	 vesicles	 per	 cell	 of	 a	 representative	 experiment	 (n	 >	 60,	 3	 experiments).	 For	
quantification	details	see	Methods.	
**	p<0.01;	***	p<0.001	by	two‐tailed	Student’s	t‐test	(A,	B,	C,	D,	F,	G,	H).	Data	are	presented	as	mean	
±	SEM	(A,	B,	C,	D,	F)	and	mean	±	SD	in	red	(G,	H).	
 



 5

	

Figure	S3.	Delipidation	and	LDL‐loading	experiment	procedure.	(A)	Scheme	of	experimental	
protocol	 for	delipidation	and	LDL	 loading,	and	AnxA6	siRNA	depletion	control	 in	CHO	M12	cells.		
(B)	CHO‐WT	and	CHO	M12	cells	were	grown	in	10%	FCS	(0	h,	control),	then	starved	in	5%	LPDS	for	
48	h	before	 loading	with	50	μg/ml	LDL	 for	24	h.	At	each	 time	point	 (0,	48	and	72	h),	cells	were	
fixed,	 stained	 with	 filipin	 (cholesterol,	 red)	 and	 BODIPY	 493/503	 (neutral	 lipids,	 green).	
Representative	 fields	of	cells	at	 t=0	(control),	 t=48	 (LPDS)	and	 t=72	h	 (LDL)	are	shown	 (merged	
and	 split	channels).	Enlarged	regions	of	 interest	are	shown.	For	better	comparison	of	 filipin	and	
BODIPY	staining,	the	outline	and	shape	of	cells	is	indicated.	Scale	bar,	10	μm.	
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Figure	S4.	Characterization	of	neutral	lipid	and	cholesterol	distribution	in	CHO	M12	and	CHO	
M12‐A6ko	 cells.	 (A)	CHO	M12	 and	CHO	M12‐A6ko	 cells	were	 grown	under	normal	 conditions.	
Cells	were	fixed,	immunolabelled	with	the	lipid	droplet	marker	anti‐adipophilin	(red)	and	stained	
with	 filipin	 (blue)	and	BODIPY	 (green)	as	 indicated.	Representative	 images	and	quantification	of	
adipophilin‐positive	vesicles	and	filipin	intensity	per	cell	(n	>	20	cells,	2	experiments)	are	shown.	
For	quantification	details	see	Methods.	White	squares	outline	enlarged	inserts	(1‐2).	Scale	bar,	10	
μm.	(B)	CHO	M12‐A6ko	cells	were	starved	in	5%	LPDS	for	48	h	before	loading	with	50	μg/ml	LDL	
for	 24	 h	 fixed,	 immunolabeled	 with	 anti‐adipophilin	 (red)	 and	 stained	 with	 filipin	 (blue)	 and	
BODIPY	 (green).	 Separate	 and	merged	 channels	 are	 shown.	Arrowheads	point	 at	 representative	
BODIPY‐	 and	 adipophilin‐positive	 lipid	droplets	 in	 the	perinuclear	 region.	 Scale	bar,	10	 μm.	 (C)	
Conventional	 transmission	 electron	 microscopy	 (TEM)	 showing	 representative	 images	 and	
quantitation	of	 lipid	droplets	(red	asterisks)	and	MCS	 in	CHO‐WT,	CHO	M12,	CHO	M12‐A6ko	and	
StARD3‐depleted	CHO	M12‐A6ko	(CHO	M12‐A6ko	siRNA‐StARD3)	cells	loaded	with	LDL	for	24	h	as	
indicated	 (see	details	 in	Methods)	 (D).	Abundant	 lipid	droplets,	 as	 characterized	 by	 translucent	
electron	density,	 can	be	 observed	 in	CHO‐WT	 and	CHO	M12‐A6ko	 cells.	Note	 the	 close	 contacts	
between	lipid	droplets	and	late	endosomes/lysosomes	(LE/Lys)	structures	in	CHO	M12‐A6ko	cells	
(red	 squares).	 Lipid	 droplets	 with	 an	 electron‐dense	 ‘‘cap’’	 (white	 arrow)	 of	 lipofuscin‐like	
structures	possibly	pointing	at	early	steps	to	initiate	the	sequestration/engulfing	portions	of	LD	for	
degradation.	Mit,	mitochondria;	ER,	endoplasmic	reticulum;	Nuc,	nucleus;	PM,	plasma	membrane.	
Scale	bar,	200	nm.		
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***	p<0.001	by	two‐tailed	Student’s	t‐test	(A)	or	one‐way	ANOVA	with	Bonferroni	post‐hoc	test	(C).	
All	data	is	presented	as	mean	±	SD	in	red.	
 

	

Figure	S5.	Reduced	expression	of	mature	SREBP2	(mSREBP2)	 in	AnxA6‐depleted	CHO	M12	
cells.	CHO	M12	expressing	control	 siRNA	 (siRNA	Ctrl)	or	 siRNA	 targeting	AnxA6	 (siRNA	AnxA6)	
were	grown	in	5%	LPDS	and	10	mM	mevastatin	for	3	days	before	loading	with	50	μg/ml	LDL	for	0,	
4	 and	 8	 h	 as	 indicated.	Whole	 cell	 lysates	were	 prepared	 at	 each	 time	 point	 and	 analyzed	 by	
Western	 blotting	 for	 mature	 SREBP2	 (mSREBP2),	 glyceraldehyde	 3‐phosphate	 dehydrogenase	
(GAPDH)	and	AnxA6.	Relative	mSREBP2	 levels	were	quantified	and	normalized	to	GAPDH.	AnxA6	
depletion	 results	 in	 less	 mSREBP2	 protein	 expression	 (~	 20%)	 after	 8	 h	 LDL	 loading.	 A	
representative	Western	 blot	 and	 quantification	 from	 2	 independent	 experiments	with	 duplicate	
samples	is	shown.	Data	is	presented	as	mean	±	SEM.	
 

	

Figure	S6.	Lack	of	ORP1L	expression	 in	CHO	cells.	RNA	samples	 from	CHO	cells	 transfected	±	
ORP1L‐GFP	(mouse)	were	analyzed	by	RT‐PCR	for	the	expression	of	endogenous	(hamster	ORP1L)	
and	transfected	ORP1L‐GFP	(primer	sequence	from	homologous	hamster	and	mouse	regions).	The	
housekeeper	 hamster	 gene	RPL13	 served	 as	 control.	While	 transfected	ORP1L‐GFP	was	 readily	
detectable	(mean	Cq	18.37),	hamster	ORP1L	could	only	be	detected	after	more	than	30	PCR	cycles	
(mean	Cq	32.77)	indicating	very	low	expression	of	ORP1L	in	CHO	cells.	
 

Movie S1  
Motility of BODIPY-Cholesterol-labelled late endosomes in control siRNA-transfected CHO M12 cells 
(CHO M12 siCtrl) 24 h after pulse-labelling with LDL-BODIPY-cholesteryl linoleate. Confocal time-
lapse images were captured with image acquisition frame rate of 370 msec. 
 
Movie S2  
Motility of BODIPY-Cholesterol-labelled late endosomes in AnxA6 siRNA-transfected CHO M12 cells 
(CHO M12 siAnxA6) 24 h after pulse-labelling with LDL-BODIPY-cholesteryl linoleate. Confocal time-
lapse images were captured with image acquisition frame rate of 370 msec. 
 

REFERENCES 

1. Garcia-Melero A, Reverter M, Hoque M, Meneses-Salas E, Koese M, Conway JR, Johnsen CH, 

Alvarez-Guaita A, Morales-Paytuvi F, Elmaghrabi YA, Pol A, Tebar F, Murray RZ, Timpson P, 

Enrich C, Grewal T, Rentero C (2016) Annexin A6 and Late Endosomal Cholesterol Modulate 

Integrin Recycling and Cell Migration. J Biol Chem 291 (3):1320-1335. 

doi:10.1074/jbc.M115.683557 

2. Peralta ER, Martin BC, Edinger AL (2010) Differential effects of TBC1D15 and mammalian Vps39 on 

Rab7 activation state, lysosomal morphology, and growth factor dependence. J Biol Chem 285 

(22):16814-16821. doi:10.1074/jbc.M110.111633 



 8

3. Grewal T, Heeren J, Mewawala D, Schnitgerhans T, Wendt D, Salomon G, Enrich C, Beisiegel U, 

Jackle S (2000) Annexin VI stimulates endocytosis and is involved in the trafficking of low density 

lipoprotein to the prelysosomal compartment. J Biol Chem 275 (43):33806-33813. 

doi:10.1074/jbc.M002662200 

4. Choudhury A, Dominguez M, Puri V, Sharma DK, Narita K, Wheatley CL, Marks DL, Pagano RE 

(2002) Rab proteins mediate Golgi transport of caveola-internalized glycosphingolipids and correct 

lipid trafficking in Niemann-Pick C cells. J Clin Invest 109 (12):1541-1550. doi:10.1172/JCI15420 

5. Sun Q, Westphal W, Wong KN, Tan I, Zhong Q (2010) Rubicon controls endosome maturation as a 

Rab7 effector. Proc Natl Acad Sci U S A 107 (45):19338-19343. doi:10.1073/pnas.1010554107 

6. Itoh RE, Kurokawa K, Fujioka A, Sharma A, Mayer BJ, Matsuda M (2005) A FRET-based probe for 

epidermal growth factor receptor bound non-covalently to a pair of synthetic amphipathic helixes. Exp 

Cell Res 307 (1):142-152. doi:10.1016/j.yexcr.2005.02.026 

7. Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ (2014) Mitochondrial Rab GAPs govern 

autophagosome biogenesis during mitophagy. Elife 3:e01612. doi:10.7554/eLife.01612 

8. Cantalupo G, Alifano P, Roberti V, Bruni CB, Bucci C (2001) Rab-interacting lysosomal protein 

(RILP): the Rab7 effector required for transport to lysosomes. EMBO J 20 (4):683-693. 

doi:10.1093/emboj/20.4.683 

9. Das A, Goldstein JL, Anderson DD, Brown MS, Radhakrishnan A (2013) Use of mutant 125I-

perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. Proc 

Natl Acad Sci U S A 110 (26):10580-10585. doi:10.1073/pnas.1309273110 

10. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the 

CRISPR-Cas9 system. Nat Protoc 8 (11):2281-2308. doi:10.1038/nprot.2013.143 

11. Grewal T, Evans R, Rentero C, Tebar F, Cubells L, de Diego I, Kirchhoff MF, Hughes WE, Heeren J, 

Rye KA, Rinninger F, Daly RJ, Pol A, Enrich C (2005) Annexin A6 stimulates the membrane 

recruitment of p120GAP to modulate Ras and Raf-1 activity. Oncogene 24 (38):5809-5820. 

doi:10.1038/sj.onc.1208743 

12. Alvarez-Guaita A, Vila de Muga S, Owen DM, Williamson D, Magenau A, Garcia-Melero A, 

Reverter M, Hoque M, Cairns R, Cornely R, Tebar F, Grewal T, Gaus K, Ayala-Sanmartin J, Enrich 

C, Rentero C (2015) Evidence for annexin A6-dependent plasma membrane remodelling of lipid 

domains. Br J Pharmacol 172 (7):1677-1690. doi:10.1111/bph.13022 

13. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. 

Nat Methods 9 (7):671-675 

 


	Cell Mol Life Sci.pdf
	Annexin A6 modulates TBC1D15Rab7StARD3 axis to control endosomal cholesterol export in NPC1 cells
	Abstract
	Introduction
	Materials and methods
	Materials
	Cell culture and transfections
	Generation of CHO M12-A6ko cells using the CRISPRCas9 system
	Immunoblotting
	RNA extraction and quantitative real-time PCR
	Preparation of liver homogenates
	Immunoprecipitation
	Pull-down assays
	Subcellular fractionation
	Immunofluorescence
	LDL-cholesterol transport studies
	Live-cell LDL-BODIPY-cholesteryl linoleate transport assay
	Image analysis
	Electron microscopy
	Statistical analysis

	Results
	Interaction of AnxA6 with the Rab7-GAP TBC1D15
	AnxA6 interferes with Rab7 activity to impair late endosome-cholesterol egress
	AnxA6 depletion restores cholesterol trafficking in NPC1 mutant cells
	StARD3 is required to rescue late endosome-cholesterol export in NPC1 mutant cells lacking AnxA6

	Discussion
	Acknowledgements 
	References





