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Abstract. Ti-Mo alloys are promising biocompatible materials with lower elastic modulus than 

the extensively used Ti-6Al-4V alloy. However, research work done on these alloys indicate that 

their elastic modulus is still higher than that of the bone, even after the execution of numerous 

heat treatment procedures. Therefore, this study was aimed at adding Nb (non-toxic β stabilizer) 

to Ti-Mo system followed by the characterization of its microstructural and mechanical 

properties in the as-cast condition. This study will provide systematic preliminary information 

towards the design and development of novel biomedical components. The microstructure and 

phase analysis were carried out using optical microscope, SEM, and XRD. Mechanical tests were 

conducted using the uniaxial tensile test machine and Vickers microhardness tester. The as-cast 

Ti-11.1Mo-10.8Nb alloy consisted primarily of β phase and a possible small volume fraction of 

ω phase. The Vickers micro-hardness, elastic modulus, bending strength were measured as 

311.62 HV0.5, 56.9 GPa 1671.4 MPa, respectively. The Ti-11.1Mo-10.8Nb alloy also exhibited 

ductile fracture behaviour during bend testing. The Ti-11.1Mo-10.8Nb design is a promising 

alloy for biomedical applications. 

1. Introduction 

The most widely used biomaterial today is probably Ti6Al4V, owing to its low-weight, high corrosion 

resistance, high specific strength and availability [1–4]. However, in addition to low wear resistance [5], 

two particularly serious concerns are often raised in more recent years. Firstly, the Ti6Al4V alloy has 

an elastic modulus of 110 GPa, which is significantly higher than that of the human bone (10 – 40 GPa) 

[1–4,6]. This difference in the elastic moduli between an implant and a bone can cause bone degradation 

(‘stress shielding effect’) and resorption. This drawback puts serious limitations on their performance 

as implant materials [6]. Secondly, The release of Al and V ions from the alloy into the human body 

might cause genotoxic and cytotoxic responses from the human body such as the potential for the 
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development of Alzheimer’s disease, peripheral neuropathy, and osteomalacia especially in long-term 

implantation cases [5,7,8]. 

 

Therefore, strategies to design next-generation Ti-based biomaterials with lower elastic modulus from 

biocompatible elements are developed [1–4,9]. Global research into next-generation Ti alloys has 

focussed on the lower elastic modulus β-type than α-type Ti alloys - their cubic crystal symmetry 

incidentally makes them processable too [9]. The β stabilizing elements are classified as isomorphous 

(form continuous solid solution with limited solubility in α phase like Mo, Ta, Nb, and V) and eutectoid 

(form continuous solid solubility in α and β phases like Zr and Hf) [6,10]. Amongst these β-stabilizers, 

Mo is the strongest β stabilizer, is the cheapest, can improve strength and corrosion resistance at lower 

elastic modulus and it can regulate the pH balance in the body [11]. 

 

The design of these β-type alloys can be carried out using several approaches amongst them being the 

Mo equivalence (Moeq) and the average valence electron concentration (e/a) ratio approaches. The Moeq 

is a parameter used in Ti alloy compositions to characterize the contribution of alloying elements on the 

β-phase stability [10], [12]–[15]. The proposal of the Moeq formula as a measure to compare the 

elemental contributions to that of Mo, the most β-stabilizing element, was presented by Bania as follows:  

Moeq =  1.0 Mo +   0.67 V +  0.44 W +  0.28 Nb +  0.22 Ta +  2.9 Fe +  1.6 Cr +  0.77 Cu

+  1.11 Ni +  1.43 Co +  1.54 Mn +  0.0 Sn +  0 .0 Zr − 1.0 Al (wt%) 
Eq. 1 

For each alloying element, the coefficient value is the least amount of an alloying element that can 

suppress the formation of martensitic phases (α' and α") and retain a single β-phase microstructure at 

room temperature upon water quenching – it’s also known as a critical value (βc) for that alloying 

element. The value of βc experimentally determined by Bania was is approximately 10 wt% Mo [14–

16]; that is a single β phase with equiaxed grains can be stabilized at Mo content of 10 wt% or more 

[7,17,18]. Hence, Wang et al (2015) proposed a new Moeq model for the characterization of the critical 

stability limit of multicomponent β-type Ti-based alloy systems, where the critical lower limit for β 

stabilization is 11.78 wt% [14]. 

Moeq =  1.0 Mo +  1.25 V +  0.59 W +  0.28 Nb +  0.22 Ta +  1.93 Fe +  1.84 Cr  
+  1.5 Cu +  2.46 Ni +  2.67 Co +  2.26 Mn +  0.30 Sn +  0.47 Zr
+ 3.01 Si − 1.47 Al (wt%) 

Eq. 2 

The average valence electron concentration (e/a) approach is also used to design alloys. The e/a ratio is 

defined as the average number of valence electrons in each atom of an alloy and the precipitation of the 

metastable omega (ω) phase occurs between the range 4.13 and 4.30 [14,19]. This phase is formed under 

the three conditions: upon quenching above the β transus via a diffusionless (shuffle) mechanism, during 

ageing in the temperature range 100 °C to 500 °C in the regions lean in the alloying elements through a 

diffusion-controlled process and deformation at room temperature [20]. The formation of the β-phase is 

dominant at e/a ratios above 4.30 [14,19].  

 

Mo and Nb are known to segregate easily in β-Ti alloys during solidification and extensive research is 

being carried out to hinder this problem [21,22]. In this study, a novel β-type Ti-Mo-Nb alloy with high 

strength and low elastic modulus was designed using the Mo equivalence and the average valence 

electron concentration ratio approaches. The microstructural characteristics and mechanical properties 

of the alloys in as-cast condition were investigated. This study will provide systematic preliminary 

information towards the design and development of novel biomedical components. 

2. Materials and Methods 

2.1. Alloy design 

The β-type Ti-11.1Mo-10.8Nb alloy used for this study is shown in Table 1 below. The alloy formulation 

was designed using a combination of the Mo equivalence and the average valence electron concentration 

ratio approaches. The investigation will also be carried out on CP Ti and Ti-11.78Mo binary alloy. Their 
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calculated Mo equivalence and e/a ratio values are listed in table 1. The designed alloy is classified in 

the β metastable category [7] and according to references [17,23], the precipitation of ω phase is 

expected in Ti-11.78Mo and Ti-11.1Mo-10.8Nb alloys, but not in CP Ti.  

2.2. Material Preparation 

The three Ti-based alloys of 100 g each were prepared from elemental powders of CP Ti (99.9%), 

molybdenum (99.5%) and niobium (99.8%). Green compacts of each alloy composition were first cold-

pressed and then melted in a water-cooled copper crucible with a tungsten electrode using a commercial 

arc melting vacuum-pressure casting system. The evacuation and purging of the melting chamber with 

argon was carried out before melting. The ingots were each turned-over and remelted three times to 

promote chemical homogeneity [24].  
 

Table 1. Compositions of CP Ti, Ti-11.78Mo and Ti-11.1Mo-10.8Nb alloys. 

Alloy Name 

(MoEq)Bania 

[wt%] 

(MoEq)Qing 

[wt%] e/a Ratio 

CP Ti 0 0 4 

Ti-11.78Mo 11.78 11.78 3.8 

Ti-11.1Mo-10.8Nb 14.19 13.65 4.3 

2.3. Microstructural Characterization 

An optical microscope (Leica CTR4000) and a Scanning electron microscope (SEM) (JEOL: JSM-

6510) were used to observe the microstructure and elemental composition in the alloys. Samples were 

precision cut from the vacuum arc-melt as-cast ingots, mounted, ground using silicon carbide papers up 

to 2400 mesh, polished using 3 μm diamond suspension and colloidal silica (final polishing) and etched 

with Kroll’s reagent (85 ml of distilled water, 15 ml of Nitric acid and 5 ml of hydrofluoric acid). The 

polished samples were then etched with Kroll’s reagent (85 ml of distilled water, 15 ml of nitric acid 

and 5 ml of hydrofluoric acid), consecutively. Phase identification was carried out via X-ray 

diffractometry (XRD) XPERT-PRO diffractrometer with Cu Kα radiation and graphite monochrometer 

operated at an accelerating voltage of 45 kV and a current of 40 mA. The various Ti phases were 

identified by matching the observed XRD profile peaks with the Joint Committee on Powder Diffraction 

Standards files or in prior published work. 

2.4. Mechanical Testing 

The density measurements produced specimens were carried out using Archimedes method. The Vickers 

micro-hardness measurements were conducted using a Vickers micro-hardness tester (FM-700) with a 

load of 500 g for 15 s. At least ten different indentation measurements were taken and the average was 

calculated. Tensile specimens with the dimensions illustrated in Figure 1 were prepared from the 

vacuum arc-melt as-cast ingots via electrical discharge machining (EDM). The stress-strain data was 

recorded at room temperature using the InstronTM 1342 model apparatus.  
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Figure 1. Schematic dimensions of the tensile specimen. 

3. Results and Discussion 

3.1. Microstructural Characterization  

The XRD patterns of the as-cast CP Ti, Ti-11.78Mo and Ti-11.1Mo-10.8Nb with identified phases and 

indexed diffraction planes are exhibited in Figure 2. The as-cast CP Ti XRD patterns are characterised 

by martensitic orthorhombic α' phase peaks and these results are in agreement with Ho et al’s 

observations [25]. The optical micrographs of the as-cast CP Ti alloy presented in Figure 3(a) show 

coarse primary plates with partitioned regions filled with progressing small secondary plates and 

matches the one obtained by Davis et al [17]. The microstructure is characteristic of a fast-cooled 

metastable feather-like microstructure of hexagonal martensitic α' phase was observed in the CP Ti as 

in Ref [3]. 

  

Figure 2: X-ray Diffraction (XRD) patterns of CP Ti, Ti-11.78Mo and Ti-11.1Mo-10.8Nb 

Both the XRD patterns of alloys Ti-11.78Mo and Ti-11.1Mo-10.8Nb exhibit the existence of a single 

cubic β phase. The optical micrographs of alloys Ti-11.78Mo and Alloy are presented in Figures 3(b 

Ti-11.1Mo-10.8Nb 

Ti-11.78Mo 
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and c), respectively corroborate the experimental XRD results. With the addition of 11.78 wt% Mo to 

CP Ti in Ti-11.78Mo, the microstructure was composed of a significant amount of retained β-phase with 

equiaxed grains of various sizes. The grains of Ti-11.1Mo-10.8Nb were finer than those of Ti-11.78Mo. 

Therefore while the alloying of Ti-Mo alloy with Nb also contributed to the stabilization of the β phase 

it tentatively results in grain refinement the microstructure possibly due to the interaction of grain 

boundary that minimizes grain growth [21]. 

 

No peaks of martensitic or ω phases were observed on the XRD patterns. This is probably due to two 

tentative reasons; (i) the amount of the formed ω phase might be below the detection limits of the 

diffractometer and/or (ii) that the provision of sufficient beta-stabilizers suppressed the formation of the 

ω phase as well as other martensitic phases [10]. Our observations and interpretation are consistent with 

findings also available in the literature, specifically by Ho et al. [25], Gabriel et al. [26] and Xu et al. 

[27]. That means that Mo and Nb alloying elements contributed to the stabilization of the β phase by 

suppressing the formation of the martensitic phases. However, the single peak exists in the XRD patterns 

of all the alloys at 2θ ≈ 44.3° could not be conclusively identified.  

 

 

Mo and Nb are known to segregate easily in β Ti alloys during solidification [21]. Figure 4 shows the 

distributions of the key elements in the as-cast alloy Ti-11.1Mo-10.8Nb analysed using EDS mapping. 

Both the β stabilizing elements, Mo and Nb, are present and homogeneously distributed, with no 

significant enrichment or depletion of both beta stabilizers in the as-cast alloy. 

   

 

 

 

Figure 4: Energy dispersive spectroscopy (EDS) elemental mapping of Ti, Mo and Nb distribution 

and spectra of Ti-11.1Mo-10.8Nb 

Figure 3: Optical micrographs of as-cast a) CP Ti, b) Ti-11.78Mo and c) Ti-11.1Mo-10.8Nb. 

 

Ti-11.1Mo-10.8Nb 

Ti Mo Nb 
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3.2. Mechanical Properties 

Table 2 summarises the physical and mechanical properties of the studied alloys. The addition of 11.78 

wt% Mo to CP Ti contributed to a significant increase in the micro-hardness while with Nb addition, 

the micro-hardness of Ti-11.1Mo-10.8Nb was significantly lower than of Ti-11.78Mo, but higher than 

that of CP Ti. The general increase can be attributed to the possible solution strengthening effect of the 

alloying elements as well as the tentative precipitation of the ω phase during cooling [10,17,23,25]. The 

addition of Nb possibly contributed towards the stabilization of β phase and the suppression of the 

formation of ω and/or the α' phases (in the Ti-11.1Mo-10.8Nb alloy), which has been reported to have 

lower hardness [25,28]. 

Table 2: Comparison of the mechanical properties of the designed alloys (Ti-11.78Mo and Ti-

11.1Mo10.8Nb) with other biomaterials.  

Alloy Name 
Rel. Density 

[g/cm3] 

Hardness 

[Hv] 

Elastic Modulus 

[GPa] 

Ti6Al4V  ELI wrought [29] - - 110 

Ti-12Mo-13Nb (hot swaged + aged) [30] - - 110 ± 2.62 

Ti-10Mo-20Nb (cold swaged +/or aged) [31] - 267.36 - 333.28 100.12  - 101.32  

Ti-12Mo-8Nb (hot swaged + annealed) [32] - 275 ± 9 91 ± 0.53 

CP Ti (this study) 4.5  ± 0.01 234.22   ±  14.77 133.7  ±  0 

Ti-11.78Mo (this study) 4.8 ±  0.01 389.62  ±  32.22 133.15 ±  10.52 

Ti-11.1Mo-10.8Nb (this study) 5.1 ±  0.01 311.62  ±  5.44 56.9 ±  3.08 

The elastic modulus generally decreases with the increasing Mo equivalence [14]. It is evident that the 

increased Moeq of Ti-11.78Mo did not have a significant influence on the elastic modulus of CP Ti. The 

elastic modulus of Ti-11.1Mo-10.8Nb alloy was decreased significantly by the Nb that contributed to 

increase in Moeq and the stabilization of β phase, thereby suppressing the formation of ω phase. The 

mechanical properties show that this Ti-11.1Mo-10.8Nb is a promising β-type alloy for biomedical 

applications. 

4. Conclusions 

The design of Ti-11.1Mo-10.8Nb β-type alloy for biomedical applications was carried out using the Mo 

equivalence and e/a ratio approaches. Based on the microstructures, phase constitution and mechanical 

properties of the alloys studied, the following conclusions can be drawn:  

a. The microstructure of as-cast Ti-11.1Mo-10.8Nb alloy was composed primarily of β and 

possibly some ω phase, which were characterized by optical microscopy and XRD.  

b. The distribution of the β stabilizing elements (Mo and/or Nb) in the alloys was homogeneous 

and there was no significant enrichment or depletion of both beta stabilizers.  

c. The tentative precipitation of ω phase in the alloy contributed to the significant increase in 

micro-hardness compared to CP Ti.  

d. The addition of 11.78 wt% Mo decreased the elastic modulus due to the precipitation of ω phase 

during fast cooling, while the micro-alloying of Ti-Mo alloy with Nb contributed to the decrease 

in elastic modulus from 133.15 ± 10.52 GPa to 56.9 ± 3.08 GPa.  

e. This β-type Ti-11.1Mo-10.8Nb composition design is a promising alloy for biomedical 

applications. 
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