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Abstract. Sintering temperature is essential towards attaining desired densification and 

formation of phases which in turn influences the microstructure and properties of a material. In 

this study, the densification and microhardness behaviour of Ni-Cr-Al alloy prepared by spark 

plasma sintering (SPS) at different sintering temperatures were investigated. After sintering 

operation, the density, hardness, phase analysis, and microstructural evolution were 

investigated using the Archimede’s principle, hardness tester, X-ray diffraction (XRD), and 

scanning electron microscopy (SEM) respectively. The nickel based alloy was sintered at 

temperatures of 600, 750, 950 and 1100 ºC. The results indicated that the densification, 

microstructure, and hardness values were influenced by changes in the sintering temperature. 

The relative density increased from 73.89 % at 600 ºC to 99.89 % at 1100 ºC, while the 

hardness value was enhanced from 131.9 ± 2.8 HV to 404 ± 1.2 HV respectively.  

1. Introduction 

Spark  plasma sintering (SPS), otherwise referenced as the field assisted sintering technique (FAST) 

has been recognized for efficient consolidation of materials ranging from metallic alloys, composites, 

ceramics, functionally graded materials [1] and polymers [2]. The consolidation to near theoretical 

density is enhanced by spark discharge which is formed between the voids of elemental particles. The 

spark discharge effect is notable for the purification of the particles’ surface from potential oxides and 

impurities present and its activation which promotes the generation of joule heating. The joule heating 

effect on the surface of the particles which initiates liquid state particle surfaces results into necking of 

one particle to another and subsequently aid densification with applied pressure [1, 3].  Shorter 

sintering times [4], easy control of sintering parameters, inhibiting little or no grain growth [5] and the 

possibility to consolidate constituent powders at a temperature relatively below melting point [6] 

forms part of the significant benefits of the spark plasma sintering process when compared to other 

processing routes. In addition, conventional processing routes have been reported to induce defects 

such as microsegregation of alloying elements [7, 8], inclusion of low melt inclusion which can 
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compromise the structural integrity of engineering materials in service and subsequently lead to 

catastrophic failure. One of the materials which have gained attention over the years are nickel and its 

alloys owing to their superior ability to retain their strength at elevated temperatures, resistance to 

oxidation and corrosion among others. They find application in aggressive environments such as 

aerospace engines, thermal plants, marine [9] and other elevated temperature demanding 

environments. For instance, Ni-Cr-Al system accounts for the most critical ternary system for nickel 

based alloys, utilized for elevated temperature application and has attracted research attention [10].  

However, defects which arise during conventional fabrication of these alloys have plagued their 

excellent performance in service and thus necessitate the production of these alloys via novel approach 

in order to meet increasing performance and efficiency demands. This investigation forms part of 

research work conducted on the development of nickel-based superalloy via spark plasma sintering 

technique in which some have been reported [4, 6, 11]. 

2. Material and methodology 

The features of the elemental powders utilized for this research are presented in Table1. The nickel 

powder used in this study was further subjected to mechanical milling process through high energy 

ball milling process (PM400) and a nanocrystalline size of 7.867 nm after 10 hr milling duration at 

350 rpm, 10:1 ball to powder weight ratio (BPR), was attained. The mechanical milling of the nickel 

powder was carried out in a stainless steel milling vial and balls with dimensions of 250 ml and 2 mm 

diameter respectively. Ethanol was used the process control agent (PCA). The detail report on the 

milling experiment has been reported elsewhere [11]. 

 

Table 1: Alloy elemental constituent’s details 

Element Particle size (µm) Purity (%) Supplier 

Al 25 99.8 TLS Technik GmbH & Co. 

Cr 10 99.2 FloMaster Metal Powder 

Ni 4-7 99.8 Goodfellow metals 

 
The milled nickel powder after drying was blended with chromium (Cr) and aluminium (Al) in their as 

received state according to Ni-17Cr-10Al composition by wt.% and mixed thoroughly in a Turbula 

mixer for 8 h in order to attain homogenized alloy powder prior to sintering process. Mixed starting 

powder (containing constituent elements) was emptied into a graphite die which have 20 mm internal 

diameter, lined with graphite foil to ensure lubrication and easy removal after sintering.  

 

The schematic diagram which illustrates the graphite die and sample assembly within SPS process is 

shown in Figure 1. The mixed powder was sintered at different sintering temperatures (600, 750, 950 

and 1100), at 50 MPa sintering pressure, 10 min holding time and 100 ºC/min heating rate in vacuum 

using HHPD-25 SPS model (FCT Germany).  

After sintering, 20 mm diameter and 5 mm thickness samples were obtained, followed by sand 

blasting to remove the remains of graphite foil on the surface of the alloy. This was followed by 

density evaluation by Archimedes principle; an average of 5 readings for each sintered alloy was 

recorded. Thereafter, the samples were then prepared for microstructural examination by polishing 

following standard procedure and using a solution which contains 50 ml of distilled water, 10 g of 

CuSO4, few drops of H2SO4 and 50 ml of HCl as etchant. 

  

The characterization of phases formed in the nickel-based alloys was done by utilizing a PANalytical 

Empyrean model X-ray diffraction (XRD), with Cu Kα radiation. The diffractographs of the sintered 

alloys obtained over a range of 2θ between 5 and 90°, were studied through the use of Highscore plus 

software. The microstructural evolutions due to increasing sintering temperature of the alloy were 

characterized by JOEL JSM-7600F field emission scanning electron microscope furnished with an 

energy-dispersive X-ray spectroscopy (EDS) detector.  
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The hardness value of the sintered alloy was evaluated at room temperature by utilizing Future-tech 

micro-hardness tester at a test load of 1000 gf for a dwell time of 10 s. The average of 10 indentations 

was recorded for hardness value. 
 

 
Figure 1. Schematic diagram illustrating SPS assembly of sample and graphite die. 

 

3. Results and discussion 

3.1. Densification and hardness behaviour 

Figure 2 shows the densification and hardness behaviour of sintered Ni-Cr-Al alloy at increasing 

sintering temperatures. The relative displacements which occur between the upper punch and the 

lower punch, within the graphite wall due to the consolidation effect of different sintering 

temperatures on the powder is presented in Figure 2(a). It can be seen that the displacement increases 

with corresponding increase in the sintering temperature, while at sintering temperature of 950 ºC and 

1100 ºC attains highest displacement at 3.74 mm and 3.76 mm respectively. This is a typical 

representation of the densification mechanism of the alloy powder at different sintering temperatures. 

The relative displacement experienced by the alloy at different sintering temperatures clearly indicates 

the reduction in the height of powder sample during sintering with respect to time. Similar account on 

densification analysis has been given in the literature to better understand the consolidation of powders 

with respect to sintering parameters [12, 13].  

Similar behaviour was observed for the relative density and hardness, which agrees with 

corresponding increase in the sintering temperature, as shown in Figure 2(b). The relative density 

trend with respect to increasing sintering temperature in this study is in agreement with a study 

conducted by Zhou et al. [14]. 

 
Figure 2. Densification features of sintered Ni-Cr-Al alloy (a) relative displacement against time and 

(b) comparison of relative density with hardness at different sintering temperatures. 
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It can also be seen that the hardness value increases as the densification increases (Figure 2b), this can 

be attributed to the effect of reduced porosity, increased bonding of constituent particles as sintering 

temperature increases. The lowest hardness value, 131.9 ± 2.8 HV attained at sintering temperature of 

600 °C can be attributed to its poor densification while the highest hardness value of 404 ± 1.2 HV 

was obtained at 1100 °C. 

3.2. Phase analysis and microstructural behaviour of sintered alloys. 

The XRD patterns of the sintered Ni-Cr-Al alloy according to sintering temperatures (600, 750, 950 

and 1100 ºC) are shown in Figure 3. There were no foreign inclusions or elements detected, which 

indicates that spark plasma sintering technique aids the fabrication of materials towards attaining 

intrinsic properties. As shown in the XRD patterns, the occurrence of phases, as the sintering 

temperature increases. Ni3Al phase occurred only at 1100 ºC, Ni2Al3 phase evolved at 950 ºC, NiAl 

and Ni2Al3 evolved at 750 ºC and NiAl evolved at 600 ºC. According to Mitra [15] and Dey [16], these 

are the phases responsible for the strengthening of nickel based superalloys. The increase in hardness 

value can be ascribed to the occurence of these phases in the alloy, in accordance to the densification 

of the alloy at different sintering temperature. 

 

Figure 4 shows the microstructural evolution of Ni-Cr-Al alloy obtained at different sintering 

temperatures. As shown in Figure 4(a), the initiation of necking formation of the constituent particles 

of the alloy is evident which clearly reflects that the alloy is yet to attain full densification at 600 ºC. 

At increased sintering temperature, 750 ºC (Figure 4b), more bonding between the particles exist and 

consequently improves the densification. This is in agreement with the relative density results, as 

discussed in Section 3.1.  

 

However, at higher sintering temperature (950 ºC, 1100 ºC), finer microstructures were attained (see 

Figure 4c-d) as a result of effective bonding of particles, reduction of porosity, which in turn enhances 

the hardness value as discussed above. Elemental spot analysis was conducted on the alloy 

consolidated at 950 ºC and 1100 ºC, the dominant peaks in the analysis were mainly Ni and Al. This is 

in confirmation to the XRD analysis which reveals the presence of strengthening phase which is nickel 

aluminides. Similar report relating to the impact of sintering temperature on density and its associated 

properties have been reported by [4, 17, 18]. 

 
Figure 3. XRD pattern of Ni-Cr-Al alloy fabricated at different sintering temperatures. 
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Figure 4. SEM images of sintered Ni-Cr-Al alloy at (a) 600 ºC, (b) 750 ºC, (c) 950 ºC with EDS 

analysis and (d) 1100 ºC with EDS analysis. 

4. Conclusion 

In this research, an investigation on the role of sintering temperature on the densification and micro-

hardness on Ni-Cr-Al alloy was conducted. The following key conclusions were deduced; 

1. The relative density and hardness of the Ni-Cr-Al alloy increases due to increasing sintering 

temperature. 
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2. The sintering temperature also influences the microstructure of the alloys, more bonding of the 

particles and finer microstructure were obtained at higher sintering temperature which in turn 

enhances the hardness value. 

3. The formation nickel aluminide phases, which are the strengthening phases in nickel based 

alloys, were detected. Hence, this production technique is efficient towards the fabrication of 

advanced material void of defects which can impair its structural integrity while in service. 
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