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Abstract. Nickel aluminides have attracted considerable interest in the past few decades owing 

to its unique properties. In this work, nickel aluminide (NiAl) was formed in-situ during spark 

plasma sintering of admixed powders of nickel, aluminium and carbon nanotubes (CNTs) after 

ball milling. 1 wt % CNTs was incorporated into the intermetallic matrix and the effect of varying 

sintering parameters investigated, particularly the sintering temperature and pressure. Results 

showed that a combination of higher sintering temperature with lower pressure yielded better 

results than lower sintering temperature and higher pressure. Thus the former parameters yielded 

better densification and subsequently higher micro hardness values of the NiAl-CNTs 

composites as compared to the latter. 

1. Introduction 

Aluminides have shown huge potential in high temperature applications due to their high temperature 

strengths, lightweight, high wear resistance and high oxidation resistance [1-3]. In particular, interest in 

nickel aluminides have progressively grown over the years because of the aforementioned properties in 

combination with their relative lightweights as compared to expensive nickel base super alloys [4]. The 

major limiting factor of these aluminides is their room temperature brittleness due to insufficient slip 

systems within the lattice [5, 6]. Efforts have been made in the research community to eliminate this 

challenge mostly by introducing an additional element into the dual system to enhance the ductility and 

toughness [7]. Recently, carbon nanotubes (CNTs) have proven to be ideal reinforcing candidates owing 

to the enhanced mechanical properties exhibited by the CNT reinforced metal matrices. They have been 

widely incorporated into metallic matrices like copper, titanium and aluminium. The mechanical 

properties of metal matrices have been seen to depend on the microstructure [4]. The microstructures of 

these metals however, also depend on their process history. The most popular fabrication route for these 

aluminides have been the powder metallurgy route due to its ease of fabrication coupled with the 

advantage of producing near net shape components [8]. During sintering, the metallurgical interactions 

occurring within the matrix are responsible for the microstructure, and consequently the resulting 
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mechanical properties. The fabrication parameters, especially sintering parameters play a critical role in 

determining the resulting mechanical properties and consequently, material performance.  In this work, 

1 wt % CNTs were incorporated into nickel aluminide intermetallic matrix via ball milling and the 

sintering parameters varied. The resulting mechanical properties from each combination of sintering 

parameters were thus investigated. 

2. Methodology 

2.1. Starting materials 

Commercially available nickel, supplied by Weartech Limited with particle size of 0.5-3.0 microns and 

99.5% purity, spherical aluminium powder with average particle size of 25µm was supplied by TLS 

Technik GmbH & Co., and MWCNTs supplied by Nanocyl, Belgium with average diameter of 9.5 nm 

and average length of l.5µm were used in this study. 

2.2. Low energy ball milling 

The nickel, aluminium and CNTs powders were ball milled together to effectively disperse the CNTs in 

the nickel and aluminium powders using a planetary ball mill, PM 100 with milling speed of 150rpm. 

Nickel and aluminium powders were set at a weight ratio of 1:1 in all the sample mixtures for the 

synthesis of the NiAl composites. Ball to powder ratio of 10:1 was used and a 10 min break was taken 

after every 10 min milling to prevent excessive over heating of the powders. Weight percent of CNTs 

was set at 1 wt % for all samples for accurate comparison and evaluation. The powders were milled for 

6 h after which the mixed powders were consolidated by spark plasma sintering. 

2.3. Spark plasma sintering  

The admixed powders were compressed in a graphite die and the whole die assemble was placed in the 

SPS system (model HHPD-25, FCT Germany). To investigate the effect of sintering parameters on the 

mechanical properties, 20 mm diameter with 5 mm height discs were sintered with two different sets of 

sintering parameters namely: 1) sintering temperature of 800 ºC and pressure of 32 MPa and 2) sintering 

temperature of 600 ºC and pressure of 50 MPa. Holding time was 5 min and heating rate was set at 100 

ºC per min for both regimes.  

2.4. Density and hardness measurements 

The densities of the sintered discs were measured using the Archimedes’ principle according to ASTM 

standards. The recorded density was an average value of five repeated measurements taken from each 

sample and the relative densities calculated as percentages of the composites’ theoretical densities. 

Vickers indentation microhardness tests were conducted on sectioned samples that had been previously 

polished to achieve mirror-like surfaces for all the samples. A load of 100 gf and 10 s dwell time was 

used for the hardness tests. The reported microhardness values are the arithmetic mean of five successive 

indentations made on the smooth sample surfaces.    

3. Results and discussion 

Figure 1 shows the powder morphologies of the starting powders that were milled together. This was 

done to effectively disperse the CNTs within the powders and secondly to trigger the reaction between 

nickel and aluminium to form an intermetallic powder matrix.  

After 6 h of milling time, the CNTs clusters were effectively broken down and the CNTs uniformly 

distributed as observed in Figure 2. Low energy ball milling was used throughout to prevent significant 

damage of the CNTs in the matrix which would be detrimental to their mechanical properties [9]. This 

is because the mechanical properties of CNTs reinforced composites are largely dependent on the 

structural integrity of the CNTs. Hence the damage of these nanotubes would adversely affect the 

mechanical properties of the composites. Figure 3 shows the transmission electron microscopy (TEM) 
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images of the nanotubes, depicting the homogeneous dispersion of the nanotubes and thus endorsing 

Figure 2. This confirms that the ball milling process employed was particularly effective in dispersing 

intact nanotubes with well retained tubular morphologies. 

 

 

 
Figure 1. SEM images of starting powders (a) CNTs (b) aluminium and (c) nickel. 
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Figure 2. SEM image showing 1 wt % CNTs uniformly dispersed in nickel aluminide powders after 

6h of low energy ball milling. 

 
Figure 3. TEM images showing CNTs uniformly dispersed in nickel aluminide matrix powders after 

6h of low energy ball milling. 

3.1. Relative density and micro hardness 

The correlation between sintering parameters and densification cannot be downplayed. Densification, 

to a large extent, is dependent on sintering parameters. Sintering at higher temperatures or higher 

pressures tend to give better densification during the sintering process. As can be observed in Table 1, 

the effect of sintering parameters on the relative density and micro hardness of the NiAl-1 wt % CNT 

composites is quite significant in this study.  

Table 1. Effect of sintering parameters on the densification and hardness of NiAl-1wt% CNT 

composite 

Sample ID Sintering 

temperature (ºC) 

Sintering 

pressure 

(MPa) 

Relative 

density 

(%) 

Porosity 

(%) 

Hardness  

(HV/GPa) 

A 800 32 97.5 2.5 839/8.23 

B 600 50 96 4 691/6.78 

(a
) 

2µm 

(b) 

Well 

dispersed 

CNTs 
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Both samples A and B have the same composition of starting powders of CNTs, nickel and aluminium 

with the same milling history. Sample A was sintered at a higher sintering temperature with reduced 

pressure, while sample B was sintered at a reduced temperature and higher sintering pressure. The 

relative densities of the consolidated composites showed a higher density for sample A that experienced 

a higher sintering temperature. The relative density was 1.5% higher than that of sample B which was 

sintered at a lower temperature. The observed reduction in the density and subsequently microhardness 

of sample B depicts the presence of microvoids and microholes within the microstructure [10]. The 

presence of these flaws makes the compact bulk more susceptible to failure as these defects are potential 

sites for crack formation. This behaviour is similar to that which was observed in Cooke et al, [11] who 

also observed higher densification with higher sintering temperature of 550 ºC compared to the sample 

sintered at 400 ºC. Chen et al, [12] similarly in his work observed an improvement in densification with 

increase in sintering temperature.  

The seemingly insignificant 1.5% increase in densification led to a substantial increment of 148HV in 

microhardness of sample A, suggesting that densification played a crucial role in the resulting 

mechanical properties of sintered composites. The reason for this increment can be attributed to 

improved bonding between the powder particles at higher sintering temperatures favouring better 

interfacial contact [12] thus reducing the porosity, leading to better densification and ultimately higher 

hardness. Given that diffusion is a thermally activated process, at higher sintering temperatures, 

diffusion is higher, facilitating the rapid diffusion of atoms between the matrix and reinforcement, 

leading to a cleaner interface between them [13]. This tends to improve the interfacial bonding strength 

between the matrix and reinforcement, consequently enhancing the load transfer mechanism leading to 

higher strengthening effects in the composites, hence the improved mechanical properties observed in 

the composite sintered at 800 ºC. 

Additionally, the hardness value obtained in this study for Sample A is significantly higher (almost 

100% higher) than that documented in literature for NiAl-CNT composites. Ameri et al, [14] in a similar 

study, achieved a relative density of 85.6 % and corresponding microhardness value of 4.16 GPa in the 

NiAl-1 % CNT composite. The density and microhardness values observed in this study were 97.5 % 

and 8.23 GPa respectively, even though the sintering temperature used in Ameri et al, [14] was 

significantly higher (1000 ºC) than that employed in this study. Groven et al, [15] also obtained 

microhardness values of 4.5 GPa with the incorporation of single walled CNTs and a much lower value 

of 3.5 GPa with the incorporation of CNTs. The significant increase in the microhardness value obtained 

in this study can be attributed to better dispersion of the CNTs (as depicted in Figure 2) which promoted 

better mechanical properties even at lower sintering temperatures as compared to literature.   

4. Conclusion 

In this work, CNTs were uniformly dispersed in nickel aluminide matrix using low energy ball milling 

in a bid to preserve the structural integrity of the nanotubes. Sintering parameters were varied to 

determine their effect on the densification and subsequently hardness of the spark plasma sintered 

composites. The experimental results obtained clearly depict the importance of sintering parameters in 

the final mechanical properties of sintered composites. Both the density and the microhardness increased 

with increase in sintering temperature. Sample A sintered at higher temperature showed higher 

microhardness value of 8.23 GPa. While Sample B sintered at lower sintering temperatures exhibited 

lower densification and subsequently lower microhardness value of 6.78 GPa. In spite of the improved 

microhardness observed in this study in comparison with literature, higher microhardness values are still 

expected with higher sintering temperatures as can be seen from this study. However further increase of 

the sintering temperature led to the melting out of the admixed powders during sintering. Hence further 

work is still on going to overcome this challenge and thus sinter at higher temperatures and to investigate 

the fracture toughness of the NiAl-CNT composites.   
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