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Abstract—Knuth proposed a simple scheme for balancing
codewords, which was later extended for generating q-ary
balanced codewords. The redundancy of existing schemes for
balancing q-ary sequences is larger than that of the full balanced
set which is the minimum achievable redundancy. In this article,
we present a simple and efficient method to encode the prefix that
results in less redundancy for the construction of q-ary balanced
codewords.

Index Terms—balanced codes, balancing point, redundancy, q-
ary alphabet, parallel decoding scheme, Knuth’s scheme.

I. INTRODUCTION

It is undeniable that balanced or dc-free q-ary codes are
widely used in magnetic and optical recording, detection of
unidirectional errors, noise reduction in VLSI design sys-
tems, transmission of high power through cables. Also, it
was established that q-ary balanced sequences can be used
in various communication systems, for example, in visible
light communication (VLC), they can be used to balance
the flickering and perform dimming of lighting as well as
compensate average color in color shift keying (CSK).

A simple and efficient scheme was proposed by Knuth
[1] to generate binary balanced codewords; this consists of
inverting bits within a sequence up to a certain index referred
to as the balancing point. This balancing point is encoded as
a prefix for enabling recovering of the original information at
the receiver end.

A scheme was proposed in [2] to compress the redundancy
of binary balanced codewords based on the multiplicity of
balanced encoded codewords. This method was not successful
enough and then a further improvement was made by Immink
and Weber [3] through a very efficient scheme that decreased
the redundancy of Knuth’s traditional algorithm from log2 n
to log2

n
2 + 1, with n being the length of the information

sequence. A modification of this method was presented in
[4] for packet transmission systems with a prefix length of
log2

n
2 . This is the same result obtained by Al-Rababa’s et al.

in [5] by exploiting the multiplicity of balancing points within
a sequence as introduced in [2].

Many results have been published to improve Knuth’s
binary parallel balancing scheme. In [6], a method for par-
allel decoding of q-ary codes was presented using r check
digits and qr−1

q−1 source digits. Swart and Weber [7] proposed
another balancing scheme for q-ary sequences of length n with
parallel decoding, with a prefix length of logq n for very long
sequences. This scheme was extended by Mambou and Swart
in [8] to provide a complete encoding and decoding method
with Gray sequences as prefixes achieving a redundancy of

logq n + 2, resulting in an overall (encoded information and
prefix) balanced codeword.

In this paper, we propose an efficient q-ary balancing
method based on [3] and [7] which provides reduce the
redundancy of the resulting code.

The rest of this paper is organized as follows: some
necessary background is discussed in Section II. The efficient
encoding of q-ary sequence is presented in Section III, fol-
lowed by the decoding in Section IV. Section V outlines some
performance analysis as well as discussions of the proposed
scheme. Finally the paper is concluded in Section VI.

II. BACKGROUND

Let x = (x0x1 . . . xk−1) be a q-ary sequence of length k;
p = (p0p1 . . . pr−1), the prefix of length r to be appended to
x. The codeword, c = (c0c1 . . . cn−1) of length n = k + r is
the transmitted codeword made of the encoding of x appended
with p, c = (x|p). All these sequences are defined within the
alphabet set Q = {0, 1, . . . , q−1}. w(x) refers to the algebraic
sum of symbols within x. The q-ary codeword x is said to be
balanced if

w(x) =

k−1∑
i=0

xi =
k(q − 1)

2
.

We denote β(k,q) as the balancing value of a q-ary sequence
of length k. For the rest of this paper, the assumption is made
that β(k,q) is always an integer value, that is k must not be
odd while q is even.

A polar representation of x = (x0x1 . . . xk−1) is as fol-
lows: xi ∈ {−(q− 1), . . . ,−2,−1,+1,+2, . . . ,+(q− 1)} for
q even and xi ∈ {−(q−1)/2, . . . ,−1, 0,+1, . . . ,+(q−1)/2}
for odd q.

This previous notation allows us to define the running
digital sum (RDS) of the first t symbols with t ≤ k for q-
ary sequences as

zt(x) =

t∑
i=1

xi.

The RDS through the whole length k is also referred to as
the imbalance; the word x is balanced if and only if zk(x) = 0.

Let Qk
q denote the full set of q-ary sequences and C(Qk

q ) =
|Qk

q |, the cardinality of that set. The values of C(Qk
q ) corre-

spond to the central q-nomial coefficients of (1 + α + α2 +
α3 + · · ·+αq1)k , where α is a variable. All these values can
be obtained online from [9].
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TABLE I
CARDINALITIES FOR FULL BALANCED SETS

q = 2 q = 3 q = 4 q = 5 q = 6
k = 3 7 19
k = 4 6 19 44 85 146
k = 5 51 381
k = 6 20 141 580 1751 4332
k = 7 393 8135
k = 8 70 1107 8092 38165 135954
k = 9 3139 180325
k = 10 252 8953 116304 856945 4395456

From [10] and [7], it was derived that,

C(Qk
q ) = qk

√
6

πk(q2 − 1)

(
1 +O

(1
k

))
. (1)

By applying the logarithm, it follows that

logq(C(Q
k
q )) ≈ k−

1

2
logq k−

1

2
logq

π

6
− 1

2
logq(q

2−1). (2)

Table I presents the cardinalities of full balanced sets for k ∈
[3− 10] and q ∈ [2− 6].

A. Balancing of q-ary sequences

It was established in [7] that any q-ary sequence of length
k can be balanced through a scheme that consists of adding
modulo q a set of kq balancing sequences bs,p to the original
sequence x.

The balancing sequence bs,p = (b0b1 . . . bk−1) of length k
is evaluated as follows:

bi =

{
s, i > p,

s+ 1 (mod q), i ≤ p,

where s, p are integers such that 0 ≤ s ≤ q − 1 and 0 ≤ p ≤
k− 1. z denotes the iterator through all possible kq balancing
sequences, z = sk + p with 0 ≤ z ≤ kq − 1.

If y are the resulting sequences obtained by adding x
distinctly to the kq bs,p as y = x⊕qbs,p, then this process will
always lead to at least one occurrence of a balanced sequence
y, according to [7].

Example 1 Consider the ternary sequence, 2102 of length k =
4 to be balanced.

z x ⊕q bz = y w(y)
0 (2102) ⊕3 (0000) = (2102) 5
1 (2102) ⊕3 (1000) = (0102) 3
2 (2102) ⊕3 (1100) = (0202) 4
3 (2102) ⊕3 (1110) = (0212) 5
4 (2102) ⊕3 (1111) = (0210) 3
5 (2102) ⊕3 (2111) = (1210) 4
6 (2102) ⊕3 (2211) = (1010) 2
7 (2102) ⊕3 (2221) = (1020) 3
8 (2102) ⊕3 (2222) = (1021) 4
9 (2102) ⊕3 (0222) = (2021) 5
10 (2102) ⊕3 (0022) = (2121) 6
11 (2102) ⊕3 (0002) = (2101) 4

For this case, there are 4 distinct ways of balancing the
information sequence 2102. 2

In analogy with Knuth’s scheme that complements digits up
to (k − 1)-th index, a q-ary sequence of length k always has
kq different ways of being complemented corresponding to
the kq balancing sequences. Let e be an index leading to a
balanced q-ary sequence and xe be the codeword obtained after
complementing the first e symbols of x, with 0 ≤ e ≤ kq−1.

In Example 1, x2 = (0202), x5 = (1210), x8 = (1021)
and x11 = (2101) are the balanced 3-ary sequences obtained
from the information sequence 2102. The values of e equals
the corresponding iterator z. This construction may lead to
many occurrences of balanced codewords as it is the case in
this example. It was showed in [2] that the multiplicity of these
balanced occurrences may be used to transmit auxiliary data
and then reduce the redundancy in the binary case.

B. Efficient binary balanced sequences

The efficient encoding scheme presented in [3] consists of
associating or mapping every sequence x from the set of all
binary sequences of length k, of cardinality 2k to a balanced
one denoted as x′ within the set of balanced codewords, of
cardinality

(
k

k/2

)
as will be illustrated in Example 2.

The prefix of the encoded sequence corresponds to the
rank of the information sequence, x within the subset of all
sequences leading to the same balanced codeword, x′. It was
showed that the size of that subset, s(x′) is such that: 2 ≤
s(x′) ≤ k

2 +1, where s(x′) = max{zt(x)}−min{zt(x)}+1
with max{zt(x)} and min{zt(x)} being the maximum and
minimum RDS value of x respectively.

Example 2 Consider all binary sequences of length 4; the
cardinality of this set is 24 = 16 and there are

(
4
2

)
= 6 balanced

sequences out of the 16.

x′ 0011 0101 0110 1001 1010 1100 p
x 1©1011 1101 1000 0001 0010 0000 00

2©1111 1010 1110 0111 0101 0100 01
3©1100 1001 0110 0011 10

(3)
Lines 1©, 2© and 3© show the balancing process according to
Knuth’s algorithm:

1©1011→ 0011
2©1111→ 0111→ 0011
3©1100→ 0100→ 0000→ 0010→ 0011.

(3) presents the mapping of all information sequences
into balanced sequence subsets as described in [3] for binary
sequences of length 4. p represent prefixes.

For instance the encoding of the information sequence
x = (1110) gives 011001, where the bold part represents the
appended prefix and the cardinality of s(0110) is |s(0110)| =
3. 2

In [4], a modified version of [3] was proposed for packet-
based transmission. It was observed that any balanced code-
word is always associated with another balanced one. There-
fore balanced sequences were excluded from sets of informa-
tion sequences as in [3]; this important observation leads to
the compression of s(x′) by removing the already balanced
sequences.



Example 3 Considering all binary sequences of length 4 as
in Example 2

x′ 0011 0101 0110 1001 1010 1100 p
x 1011 1101 1000 0001 0010 0000 0

1111 1110 0111 0100 1
(4)

We see that prefixes can be represented only with 1 bit instead
of 2 like previously. 2

III. ENCODING OF q-ARY SEQUENCES

The scheme presented in [7] stated that the lower bound
for the number of position indexes where a q-ary sequence can
be balanced is 1. The following theorem 1 provides the upper
bound for these balanced indexes.

Theorem 1 There are at most k indexes where a q-ary se-
quence of length k can be balanced. 2

Proof: Let e be the index where a balanced sequence is
obtained with 0 ≤ e ≤ kq − 1. One can observe that at the
neighboring indexes e + (q − 1) or e − (q − 1), a balanced
sequence can not arise. We conclude that the possible number
of indexes where balancing can occur is at most k.

The proposed construction consists of finding the associ-
ated balanced sequence to an information sequence by apply-
ing the scheme in [7] and then determining the cardinality of
this subset and finally encoding the prefix as the rank occupied
by x within that subset.

By applying the scheme in [7] to find the least index to
balance a q-ary sequence and then associate it with a balanced
codeword within the set of balanced q-ary codewords of length
k as it is done in [3] for binary sets. This is shown in the next
example.

In examples 4 to 8, we tabulate the information sequences
into subsets such that each unbalanced sequence is associated
with a balanced codeword.

Example 4 Consider all ternary sequences of length 3; the
cardinality of this set is 33 = 27 and there are 7 balanced
sequences out of the 27.

x′ 012 021 102 111 120 201 210 p
x 201 210 002 000 010 101 100 00

202 211 021 001 012 120 102 01
212 221 022 011 020 121 110 02

111 10
112 10
122 11
200 20
220 21
222 22

2

Example 5 For all ternary sequences of length 4; there are 19
balanced ones out of the 34 = 81.

x′ 0022 0112 0121 0202 0211 0220 p
x 1111 2001 2010 2102 1022 1012 00

2212 2002 2011 1121 2100 2022 01
2222 2012 2021 2122 2101 2110 02

2112 2121 2202 2111 1112 10
2211 2120 11

2220 12

1012 1021 1102 1111 1120 1201 1210 p
0012 0021 0002 0000 0010 0101 0100 00
0202 0211 0022 0001 0020 0121 0110 01
0212 0221 0102 0011 0120 0201 0210 02
2201 1102 2221 0111 2020 10

2210 2000 11
2200 12

2002 2011 2020 2101 2110 2200 p
1202 1011 1020 1001 1000 1002 00
1221 0200 0112 1021 1010 1100 01
1222 1201 1210 1101 1110 0122 02

1220 1122 10
1200 11

2

Example 6 For all 5-ary sequences of length 3; there are 19
balanced ones out of the 53 = 125.

x′ 024 033 042 114 123 132 141 204 p
x 303 312 321 003 013 021 030 033 00

313 322 331 004 023 022 031 043 01
413 422 431 014 123 032 041 104 02
414 423 432 332 234 304 140 130 03
424 433 442 403 340 410 213 143 04

443 401 411 324 144 10
402 421 420 11
412 430 12

213 222 231 240 303 312 321 330 p
022 000 010 024 132 040 044 114 00
042 001 020 034 142 101 100 220 01
102 011 120 134 203 141 110 230 02
103 111 121 243 201 210 03
113 112 131 202 211 04
330 122 343 212 221 10
441 222 404 323 11

223 434 12
233 13
333 14
334 20
344 21
400 22
440 23
444 24

402 411 420 p
124 133 204 00
241 200 214 01
231 240 310 02
241 244 314 03
302 300 320 04

311 10

2

Example 7 For all 5-ary sequences of length 2; there are 5
balanced ones out of the 52 = 25.



x′ 04 13 22 31 40 p
x 22 02 00 04 13 0

32 03 01 10 23 1
33 31 11 14 24 2
43 41 12 20 30 3
44 42 40 21 34 4

2

Example 8 For all 6-ary sequences of length 2; there are 6
balanced ones out of the 62 = 36.

x′ 05 14 23 32 41 50 p
x 32 03 01 00 14 23 0

33 04 02 05 15 24 1
43 41 12 10 20 34 2
44 42 13 11 25 35 3
54 52 50 21 30 40 4
55 53 51 22 31 45 5

2

We can categorize encoding into three cases depending on
parameters k and q. The case when the value k and q are odd
as in Examples 4 and 7; the case that k is even while q is odd
as in Examples 5 and 6; and the case where k and q are even
as in Examples 2 and 8. This categorization is based on the
distribution of the size s(x′) across balanced sequences x′.

Theorem 2 The cardinality of sets of associated q-ary se-
quences with balanced codewords is such that:

• For k even and q even, |s(x′)| ≤ q(k − 1);

• For k even and q odd, |s(x′)| ≤ kq/2; and

• For k odd and q odd, |s(x′)| ≤ kq. 2

In order to prove Theorem 2, we should know the balanced
codewords that have the maximum |s(x′)| given a codebook,
so that we can compute its bounds. We observed a specific
structure on balanced codewords having maximum |s(x′)|.
Depending of the parity of k and q, they have a structure
made of symbols q−1

2 and/or q − 1.

Lemma 1 Balanced codewords having maximum |s(x′)| are
as follows:

• For q odd, the structure is(q − 1

2

)
. . .
(q − 1

2

)
︸ ︷︷ ︸

k times

(5)

• For q even, the structure is

(q − 1) . . . (q − 1)︸ ︷︷ ︸
k/q times

(q − 1

2

)
. . .
(q − 1

2

)
︸ ︷︷ ︸

k-k/q times

(6)
2

SKETCH OF PROOF (Lemma 1): It is known that the q-ary
balancing technique according to [7] follows a (1, q − 1)-
random walk given every information sequence.

• For q odd, it is observed that balanced codewords
following structure (5) are located almost at the centre of
the full set of balanced codewords in the lexicographic
order; this means that, on average, most of the infor-
mation sequences are associated with those balanced
codewords while following the (1, q − 1)-random walk.

It can be verified that the sum of symbols in structure
(6) equals the balancing value of k(q − 1)/2.

• For q even, information sequences are balanced through
the process of x ⊕q b(s, p); on average, they are asso-
ciated with balancing codewords following the structure
of (6).
Similarly, the sum of symbols in structure (6) also equals
the balancing value of k(q − 1)/2. �

SKETCH OF PROOF (Theorem 2): This proof becomes trivial
as we know exactly the balanced codeword with the maximum
|s(x′)| as per Lemma 1. We have to count the number of
sequences associated with the balanced codeword with the
maximum |s(x′)| and find the upper bound given the parity
of k and q. On average, each subset s(x′) is such that
|s(x′)| = qk

|Sk
q |

, where |Skq | is the cardinality of the full set
of balanced q-ary sequences of length k.

Each q-ary sequence of length k, x, in s(x′), is associated
with the balanced codeword x′, and has a unique b(s, p) within
each s(x′). This implies that the |s(x′)| is upper bounded by
the cardinality of balancing sequences which equals kq.

• For k even and q even, the balanced codeword having
the maximum |s(x′)| has the structure (6). Due to the
fact that balancing an information sequence x can lead
to several balanced states and that only the first one is
considered, only the first q(k − 1) balancing sequences
are necessary to balance any x.

• For k even and q odd, the balanced codeword having the
maximum |s(x′)| has the structure (5). Because of the
parity constraint, only the first kq/2 balancing sequences
are necessary to balance any x.

• For k odd and q odd, the balanced codeword having
the maximum |s(x′)| has the structure (5). All kq
balancing sequences are required to ensure that every
x is balanced. �

After differentiating these three cases of scenario, we define
the steps for our encoding scheme:

• Given a random q-ary sequence x to be balanced, find
the corresponding balanced sequence x′.

• Then find all information sequences associated with x′.

• Rank all the elements of this subset into lexicographic
order.

• Finally, the rank of the information sequence x is en-
coded as the prefix.

IV. DECODING

The decoding process is as follows:

• The prefix is extracted from the overall received code-
word of length n.

• Then all information sequence candidates associated
with x′ are listed and ordered lexicographically.

• Finally, the prefix is mapped to the rank of the right
original information sequence.



TABLE II
PROPOSED SCHEME REDUNDANCIES

k q k vs. r
Even Even k = qr + 1
Even Odd k = 2qr

Odd Odd k = qr

This construction is similar for the three cases of scenario
depending on parameters k and q as defined previously. For
the case where k and q are even, the size of the subset is the
most efficient, |s(x′)| = kq/2; this decreases the redundancy
of the prefix and improves efficiency.

Example 9 We would like to retrieve the original sequence
from the received codeword, (1111000011), where the bold
symbols is the prefix.

Sequences Prefix rank
01000011 0 (0)
00000011 1 (1)
00110011 2 (10)
00111011 3 (11)
00111111 4 (100)

(7)

(7) presents all information sequence candidates associated
with the balanced codeword 11000011 with corresponding
prefix ranks.

Therefore, the received codeword 1111000011 is mapped
to the original information sequence, 00111011. 2

V. ANALYSIS AND DISCUSSIONS

The construction in [7] has the following information
length k:

k ≤
Srq
q
≈ qr−1

√
6

πr(q2 − 1)
. (8)

In [11], two schemes are presented for k information
symbols, where the first one satisfies the bound

k ≤ qr − 1

q − 1
, (9)

and the second one is

k ≤ 2
qr − 1

q − 1
− r. (10)

The prefix-less scheme presented in [12] shows that

k ≤ qr−1 − r. (11)

Two constructions with parallel decoding are presented in
[6]. The first construction, where the prefixes are also balanced
as in [7], has its information length as a function of r as

k ≤
Srq − {q mod 2 + [(q − 1)k] mod 2}

q − 1
. (12)

The second construction, where the prefixes may not be
balanced, is a refinement of the first and has an information
length the same as (10).

Information length versus redundancies functions of the
proposed construction are presented in Table II. The equations

from this table were obtained and verified after many simula-
tions.

Fig. 1 presents the comparison of the information lengths,
k versus redundancies, r, for some existing constructions as
discussed above for q = 4, 32 and 128. It can be observed that
for large values of q, the proposed scheme when k is even and
q odd is only comparable to that from [11] as per (9); the two
other proposed schemes have a performance comparable only
to [12] and [11] as per (11) and (10) respectively. Moreover,
the proposed scheme becomes much less redundant for large
q.
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q = 32

q = 4

Redundancy r
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k

Proposed algorithm k even and q even

Proposed algorithm k even and q odd

Proposed algorithm k odd and q odd

Swart and Weber (8)

Capocelli et al. 1 (9)

Capocelli et al. 2 (10)

Swart and Immink (11)

Pelusi et al. (12)

Fig. 1. Redundancy comparison

In [8], a construction was described by Mambou and Swart
for full balancing q-ary sequence; a full balancing scheme
refers to a construction that achieve balancing of information
and prefix together; it was stated that

k = qr
′−2. (13)

Where r′ represents the redundancy required to balance the
overall frame made of encoded source and prefix together.
Table III presents the redundancies of the proposed scheme
based on the full balancing construction presented in [8].

TABLE III
PROPOSED SCHEME REDUNDANCIES

k q Redundancy r′ k vs. r′

Even Even r′ = r + logq rq k = qr
′
+ 1

Even Odd r′ = r + logq rq k = 2qr
′

Odd Odd r′ = r + logq rq k = qr
′

Fig. 2 shows the proposed construction performance
against that from [8] as per (13);

It can be observed that, the proposed scheme based on the
full construction of [8] presents a considerable improvement in
redundancies compared to [8]. This implies that the proposed
algorithm can make an efficient construction for full balancing
of q-ary sequences in fixed length as it outperforms several
state-of-the-art schemes.
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Mambou and Swart [8]

Fig. 2. Redundancy comparison

VI. CONCLUSION

A simple and efficient construction was presented to gen-
erate balanced q-ary codes. The proposed method is a fixed
length scheme based on the parity of parameters k and q; it is
fast, efficient and less redundant than other schemes for some
cases and the decoding is done in parallel. Additionally, it does
not make use of look-up tables and it is suitable for both long
and short length codes. Furthermore, the proposed scheme was
integrated in the full balancing construction presented in [8]
and the redundancy was also improved for some cases.

However, the distribution of the prefix length as well as
the average efficiency should be computed and analyzed for
the proposed construction.
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