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Abstract—This paper suggests an enhanced performance of
the 3-D optical code division multiple access (OCDMA) codes,
a space/wavelength/time spreading family of codes. The initial
codes are in the format wavelength hopping/time sequence
(WH/TS), selected according to their performance requirements
and the TS sequence is constructed to achieve a linear space-
time complexity. The asymmetric run length constraints are
introduced in that regard, such that the positive bit positions align
with the encoder/decoder frequency spacing pattern, yielding
a 3-D WH/WS/TS. The selected 2-D OCDMA codes are one-
coincidence frequency hopping codes (OCFHC) and optical
orthogonal codes (OOC). As a time sequence code, the OOC
code length is extended with a code rate of 0.04. The complexity
and the bit error rate (BER) are herein given and compared
with previous work. The results of the performance show not
only an improvement in the number of simultaneous users due
to the code length extension, but better correlation properties
and hence a better signal-to-noise ratio.

Index Terms—Optical orthogonal code (OOC), optical code
division multiple access (OCDMA), difference of position (DoP),
neighbor difference, asymmetric run length constraints.

I. INTRODUCTION

The optical communication in future must provide plat-
form that enables access network convergence. This implies
transparency to all existing and future access networks. With
this requirement, particularly in terms of transmission, any
wavelength division multiplexing (WDM) based technology
will be costly, even if constructed with a 3-D coding based
solution. Such a 3-D solution, space/wavelength/time sequence
was proposed in [1] using an hybrid WDM-OCDMA, prime
codes and wavelength array gratings (WAG) as encoder. First,
this solution is costly in terms of wavelengths available;
second the prime sequences used are of less performance
than the optical orthogonal code (OOC); and finally the 3-
D S/W/T O(w3) complexity of these code constructions does
not allow the electrical decoder to match its optical counter-
part. To remedy these gaps, we suggest a complete optical
code division multiple access (OCDMA) system using Bragg
gratings (BG) encoder/decoder. In [2], it is shown that the BG
chain is a suitable for 2-D wavelength/time sequence (WH/TS)
encoding, with [3] proving that one-coincidence frequency
hopping code/optical orthogonal code (OCFHC/OOC) is by
far a better selected sequence due to the OOC characteristics.

In this paper, we construct the TS OOC taking into account
the bit “1” positions to yield a linear function in the space-
time plane with the aim to reduce complexity. This complexity

reduction is further exploited by introducing the zero run
length constraints called asymmetric run length constraints in
compliance with the encoder/decoder wavelength pattern to
achieve a wavelength spacing/time sequence (WS/TS). The
final sequence is then WH/WS/TS. Provided that the fiber’s
portion required for the gratings is not of infinite length, the
WS/TS sequence is constructed such that the code rate is
around 0.04, which means an n-bits/m-bits mapping coding
scheme for OOC that limits the code length sequence and
consequently the Bragg gratings chain length. Furthermore,
in an OCDMA system, the transmission is impaired by the
multiple access interference (MAI) which noise contribution
variance is obtained from the more accurate analysis as con-
ducted in [4]. The impact of the new TS structure constructed
using the neighbor difference is assessed through the resulting
impairment variance and a comparison is thereof made with
[1] results.

For the above purpose, the organization of this paper is as
follows. We will start in Section II with the theory behind the
selected code, followed by presenting the neighbor difference
code construction in Section III. In Section IV after having
determined the code length bounds and the subsequent exten-
sion, we introduce the zero length constraints, the performance
of this operation investigated in Section V and compared with
the 3-D OCDMA family from literature.

II. BACKGROUND

Optical orthogonal code, denoted (n,w, λa, λc)-OOC, is
a family of (0,1) sequences representing each a code word
of length n, Hamming weight w, auto- and cross-correlation
indexes λa and λc, respectively, satisfying the following
properties [5]:
• Auto-correlation:

∑n−1
i=0 XiXi+τ ≤ λa

• Cross-correlation:
∑n−1
i=0 XiYi+τ ≤ λc

with the subscript τ , a positive integer, taken in modulo n, for
any X = (x0, x1, . . . , xn−1), Y = (y0, y1, . . . , yn−1) code
vectors of C.

Throughout this paper we only consider the OOC with
λa = λc = λ = 1. This code is used as the time spreading
(TS) code for user signature sequences, a line code as well as
symmetric error correcting code, though we emphasize only
its line characteristics. As a user signature code, it is worthy to
construct optimal OOC in terms of cardinality which is linked
to the code length n through b n−1

w(w−1)c [6] from Johnson’s
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bounds [7]. Already, this optimal solution was reached in [8]
for w = 3 if and only if n 6= 6t+2, with t ∼= 2 or 3 (mod 4),
but a lot is still to be done for w ≥ 4. In [9] and [10], solutions
for (n, 4, 1) and (9n, 4, 1) were suggested based on incomplete
difference matrix and prime congruent. In [11], Colbourn
demonstrated a wider extension of code length. To achieve the
extension of the code we are presenting herein, a construction
solution called neighbor difference introduced by [12], is
revisited as well as the code length bounds with respect to the
congruence class requirements are given. The lower bounds of
the code length is obtained from the difference family given
by Chunk and Khumar [13] derived from Wilson (n,w, 1)-
OOC construction based on Galois Field GF (n) [14], where
n is not necessarily prime, n ≡ 1 mod (w(w−1)), while the
upper bounds come from the optimal Johnson bounds [7]. An
OCFHC of length L and Q frequencies available denoted by
(L,Q,Hmax) is a (0, 1) sequence, with 0 if no frequency is
present, and 1 otherwise, satisfying the Hamming correlation
condition Hmax = 1 and optimal cardinality Q(Q−1)

L [3].

III. NEIGHBOR DIFFERENCE

We suggest the neighbor difference to construct the OOC
as it allows the manipulation of the sequence to fit a required
pattern. The solution is the partition of the difference of
position (DoP), which takes into account bit “1” position in
the code vector. The way this code is represented can be found
in [7], [18] and it is well analyzed using a combinatorial
method which more so ever yields optimal OOC. The analysis
of different combinatorial methods can be found in [15],
[16], [17] and [5] for cyclic packing, and [19] for difference
cyclic packing led the neighbor difference correlation as the
following subsection defines.

1) Definition: The i-th neighbor is the set X1 =
{δi,1, δi,2, . . . , δi,w−1} where δi,j represents the difference in
position between the (j+i)-th symbol “1” and the j-th symbol
“1” [12].

Example 1 C = {1101000} is a (7, 3, 1) code with one code
word, C1 = {1, 2} is the first neighbor set and C2 = {3} is
the second neighbor set.

The neighbor difference on an (n,w, λ)-OOC can be con-
sidered in this case as a family F of w−1 subsets of neighbor
positions Xi = {δij : 1 ≤ j ≤ w − i} and 1 ≤ i ≤ w − 1,
such that the difference of position based on the i-th neighbor
δi,j = |bi,j+1− bi,j | is represented in at most λ = 1 times. As
a result, one can define the following correlation properties:

• Auto-correlation: for each bx ∈ X , a code vector of the
neighbor difference, any integer δ 6= 0 can be represented
as the difference δij = |bx,j+i − bx,j | : j 6= i, i, j =
0, 1, . . . , w − 1, b ∈ X, b 6= 0 in at most λ blocks.

• Cross-correlation: for each bx ∈ X and by ∈ Y , two
code vectors, any integer δ 6= 0 can be represented as the
difference δx,ij = |bx,j+i − bx,j | and δy,ij = |by,j+i −
by,j | : j 6= i, i, j = 0, 1, . . . , w − 1, b ∈ X, b 6= 0 in at
most λ blocks.

2) Neighbor difference derivation: The neighbor difference
can be derived from the cyclic difference packing (CDP), the
from where the difference correlation definition results in the
matrix given by

0 δ0,1 δ0,2 · · · δ0,w−1
δ1,0 0 δ1,2 · · · δ2,w−1

δ2,0 δ2,1 0 · · ·
...

...
...

...
. . . δw−2,w−1

δw−1,0 δw−1,1 δw−1,2 · · · 0

 (1)

From this matrix, the upper triangular matrix elements
define the neighbor difference elements, that can be reduced to
the following neighbor difference matrix where the diagonal
is made of first neighbors:

δ0,1 δ0,2 · · · δ0,w−1
0 δ1,2 · · · δ1,w−1
...

...
. . .

...
0 0 · · · δw−2,w−1

 (2)

The construction of the code is reduced in finding the elements
of the matrix (2) with δi,j 6= 0 yielding w(w−1)

2 operations.
One realizes that the diagonal elements are enough to position
the positive bits which corresponds to the gratings on the
Bragg gratings chain. These elements can be put into notation
set X = {0, δ0,1, δ1,2, . . . , δw−2,w−1} which can be converted
into a vector by padding the “1” to express the code word
X = [1, δ0,1 = 1, (δ1,2 + δ0,1) = 1, . . . , (δw−2,w−1 + · · · +
δ0,1) = 1] (other positions are “0”). This reduces the number
of operations to 2(w − 1).

A. Extension of n ∼= 1 mod (w(w − 1))

The extension comes with the requirements of having opti-
mal OOC in terms of users on the one hand, and mitigating the
line impairments on the other hand. Therefore, this extension
is done with respect to the full orbit requirement of [10], the
difference family of [11] and the bounds of the code length.

1) Bounds of the Code Length Requirements:
a) Upper Bound Code Length: The upper bound on the

code length is derived from the cardinality of the code. The
cardinality of an (n,w, 1)-OOC is given by Johnson’s bound
|C| ≤ b n−1

w(w−1)c [19] and the equality means that the OOC is
optimal.

Consider l as the largest integer resulting from the ratio
n−1

w(w−1) , then one can write nmax ≥ w(w − 1)l + n′ where
1 ≤ n′ ≤ w(w−1)ε : 0 < ε < 1, therefore 1 ≤ n′ < w(w−1).

b) Lower Bound Code Length: The lower bound is
generated by the neighbor positions of bits “1” taken at their
minimum values as follows.

Define the i-th and the k-th neighbor of the j-th bit “1”
by 1 ≤ i 6= k ≤ w − 1. If for any i 6= k neighbor of any
j-th bit “1” position the neighbor differences are such that
δk,j = δk,j−1 +1 and δi,j = δi,j−1 +1, and if furthermore the
maximum run of bits “0” after the last bit “1” in the sequence r
(mod n) is the minimum neighbor difference with respect to
the same arithmetic progression available, the first neighbors



δ1,j containing the entire information of the sequence, then
the minimum code length is given by:

nmin =

w−1∑
j=1

δ1,j + r (mod n).

Hence the following proposition.

Proposition 1 For any starter block Bi of the family F =
{B1, B2, . . . , Bl} of an (n,w, 1)-OOC, if δk,J = δk,j + 1, for
any i 6= k, then the code length n is bounded as follows:∑w−1
j=1 δ1,j + r (mod n) ≤ n ≤ w(w − 1)l + n′ where n′ is

such that 1 ≤ n′ < w(w−1)l, l is the number of blocks called
code words, and the lower bound is necessarily

∑w−1
j=1 δ1,j+r

(mod n) ∼= 1 mod (w(w − 1)).

Proof: Assume X = x0x1 · · ·xn−1 a code vector of an
OOC where the following differences are observed

x1 − x0 = r0

x2 − x1 = r0 + 1

x3 − x2 = r0 + 2
...

... (3)
3∑

i6=j=0

(xi − xj) = 3r0 + 3

This can be extended at (n− 1)-th order by writing:∑
i,j

(xi − xj) = (n− 1)r0 + (n− 1) = w(w − 1).

Since each bit “1” has (w − 1) differences and if r0 = 0,
then one can write w(w − 1) = n − 1. Therefore n ∼= 1
mod (w(w − 1)) is the lower bound code length.

2) Full Orbit Requirements: From the theoretical points,
for a pair (Zn, B) if for any block Bi = {bi1, . . . , biw},
1 ≤ i ≤ l, the w-set of the following block Bi +
1 = {bi1+1, . . . , biw+1} (mod n), 1 ≤ i ≤ l is also
a block. The orbit containing Bi is therefore the set of
blocks {Bi + j (mod v) : j = 0, 1, . . . , v − 1}. Such a block
is noted CB(n,w, 1) [11]. The cycle length is the number of
blocks in the orbit. If the cycle length is equal to the code
length, then the blocks of the orbit are of full orbit, otherwise
they are short. In this construction, we are interested only in
blocks of full orbit.

3) Zero Run Length Constraints: The extension of the code
length adds another requirement, the one of having a unique
solution in constructing the code. The sequence resulting
from these bounds and requirements can be obtained with the
introduction of the minimum run length of bit “0” r0 and the
maximum run length of its “0” R0. The pair (r0, R0) is called
the bits “0” run length constraints or asymmetric run length
constraints. It can be given in a certain pattern that defines the
congruence class as in the following proposition.

Proposition 2 For any block B of an (n,w, 1)-OOC, if any
code satisfies an arithmetic sequence property S0 = 1 and
Si = Si−1 + 1, where S0 is the first term of the sequence and

Si the final term, i = w the number of terms. If r0 = S0+1 and
R0 = Si, then (r0, R0) represents the minimum and maximum
run length of bits “0”, B is unique and the difference leave
is L = Φ.

From this congruence class n ∼= 1 mod (w(w − 1)), w =
3, r0 = 1 and R0 = 3, m ∼= 3 mod (w(w − 1)), we can
now construct the (n,w, 1)-OOC using the neighbor difference
method.

IV. ZERO RUN LENGTH CONSTRUCTION OF (n,w, 1)-OOC

A. Some Considerations

The construction takes into account the following consider-
ations:
• Identify the Hamming weight of the code, w.
• Each element of the matrix (2) defined by δij and its

complementary δji = n− δij belong to the same block,
therefore constitutes one element of the block.

• Introduce the run lengths of “0” (r0, R0) in the sequence,
keeping in mind that r0 6= 0 and there is always bit “1”
at position 0.

• The pair (r0, R0) represents the minimum and maximum
zero length constraints which according to Proposition 2
r0 = 1, and R0 = Ri yields the minimum congruence
class m ∼= 3 mod (w(w − 1)), the difference family
adopted here because of a code rate of 0.04.

B. Code Construction: n-bits/m-bits Mapping

We are interested in a class n = w(w − 1) + 1 and w ≥ 4,
for a block B, there exists x, y, z, . . . t ∈ [1, n−12 ] representing
the values of the δij such that x 6= y 6= z 6= · · · 6= t and
x̄ = n − x, ȳ = n − y, z̄ = n − z, . . ., t̄ = n − t /∈ B
their complementary elements, the correlation properties and
cyclic block operation impose, for any element x, y ∈ B with
x 6= y, x̄ and ȳ /∈ B, that is, for any set of differences elements
∆B = {x, y, z, . . . , t, n− t, . . . , n− z, n− y, n− x}, that:
• If 1 < x, y ≤ n−1

2 , then for any z, t ∈ ∆B−{1}, z, t ∈ B
if and only if z 6= x 6= y 6= t and z 6= x+[2(n−12 −x)+1];
similarly, t 6= x 6= y 6= z and t 6= y + [2(n−12 − y) + 1].

• If 1 < x, y ≥ n−1
2 , then for any z, t ∈ ∆B−{1}, z, t ∈ B

if and only if z 6= x 6= y 6= t and z 6= x−[2(x− n+1
2 )+1];

similarly, t 6= x 6= y 6= z and t 6= y − [2(y − n+1
2 ) + 1].

V. CONSTRUCTION OF (n,w, 1)-OOC

The following steps are required to construct the code.
• Identify the Hamming weight of the code, w.
• Each element of the matrix (3) defined by δij and its

complementary δji = n − δij belong to the same block
therefore, constitutes one element of the block.

• Introduce the run lengths of “0” (r0, R0) in the sequence
keeping in mind that r0 6= 0 and there is always bit “1”
at position 0.

• The pair (r0, R0) represents the minimum and maximum
zero length constraints which according to Proposition
2 r0 = 1, and R0i = R0i−1 + 2 yields the minimum



congruence class n = 3 ∼= mod (w(w − 1)), our
difference family.

• The starter block has position 0 of the vector filled with
bit “1” and the two neighbor differences (r0 + 1) and
(R0 + 1) selected together with their complementary in
modulo n operation (n − (r0 + 1)) and (n − (R0 + 1))
respectively.

• Determine the remaining w(w−1)
2 − 2 elements of matrix

(2). The block is reduced to the diagonal elements of that
matrix called the first neighbors.

Example 2 Let us construct an (n, 3, 1)-OOC. The construc-
tion of this code is given here within the bounds of its length:
2δi,0 + 1 ≤ n ≤ w(w − 1)l + n′. The minimum code length
is 2× 3 + 1 = 7 and the maximum is 6l+ 5 according to the
bounds. Introducing the run length constraints yields n = 9.
The run length are 1 and 3, hence the neighbor differences and
their complementaries (2, 7), (4, 5). Only the neighbor differ-
ence (3, 6) pair remains where the first neighbor is 3. Hence
the following sequence: 1010010000, which corresponds to
the block B = {0, 2, 7} and it is unique.

In the same manner, we can construct for a given code
length n and Hamming weight w an (n,w, 1)-OOC and
achieve the line code, as Table I illustrates some of the
constructions obtained.

VI. COMPARISON n ∼= 1 mod (w(w − 1)) AND n ∼= 3
mod (w(w − 1))

The performance analysis of this code extension is meant
for MAI mean and variance analysis.

A. Multiple Access Interference

The MAI is evaluated based on correlations as in [4], [20],
since there are lags with zero correlation. It is analyzed for
(Q,N), the number of frequencies and time pulses spreading
user signals. The k-th modulating signal of user data:

sk =
√

2pA(ωq, n)ak(t− τk)bk(t− τk) cos(ωqt+ φk).

A(ωq, n)ak(t − τk) is the OCFHC/OOC spreading sequence
where ak(t) =

∑N−1
l=0 akl p(t− lTc) and

A(ωq, n) =

{
1, if ωq is present at τk,

0, otherwise,

represent the OOC time spreading sequence represented by
a rectangular pulse and OCFHC sequence, bk(t) is the data

TABLE I
CONSTRUCTION OF (r0, R0) n ∼= 3 mod (w(w − 1)) OOC

w n (r0, R0) Sequence
3 9 (1, 3) {0, 2, 5}
4 15 (1, 5) {0, 2, 5, 9}
5 23 (1, 7) {0, 2, 5, 9, 17}
6 33 (1, 9) {0, 2, 5, 9, 17, 23}
7 45 (1, 11) {0, 3, 7, 9, 17, 22, 33, }
8 59 (1, 13) {0, 3, 5, 9, 20, 27, 37, 45}

sequence also assume to be bk(t) =
∑N−1
j=0 bkj p(t−jT ) where

T = NTc and bkj is the j-th data of the k-th user, (akl ) and
(bkj ) being Bernoulli random variables.

At the receiver input the K users signals are such that
r(t) =

∑K
k=1

∑N
n=1

∑Q
q=1

√
2PA(ωq, n)bkj p(t − τk)akl (t −

τk) cos(wωct− τk).
The non-coherent receiver listening to user 1 will output:

y1 =

∫ Tc

0

s1(t)r1(t)dt

= I1 +
√

2P

N−1∑
n=1

Q−1∑
q=1

A(ωq, n)bkj p(t− τk)akl p(t− τk).

The quantity I1 is the user 1 decision value while the second
term represents the multiple access interference:

Imai =
√

2P

N−1∑
n=1

Q−1∑
q=1

A(ωq, n)bkj p(t− τk)akl p(t− τk).

Therefore, user 1 will experience in average from any k
users the following interference:

Imai =
√

2P

∫ Tc

0

K−1∑
k=1

bkj a
k
l p(t)a

k
l p(t− τk)dt.

Following the same approximation as in [4] and [20], we
obtain the following random MAI

Imai = Pb[Xk + Yk(1− S) + Pk(1− S) +QkS],

which with the extension yields

Imai = Pb[Yk(1− S) + Pk(1− S) +QkS].

Note that Xk, Yk, Pk, Qk are interpreted as follows: Xk and
Yk represent the cross-correlation of the spreading sequence
coefficients {ajk}; Pk and Qk are the correlation coefficients at
the end and at the beginning (after one cycle) of the sequence
positions. Without loss of generality, S = Sk is the random
time correlation of the spreading rectangular pulse probability
function, considered as uniformly distributed over [0, Tc) and
so is (1− S).

Since the MAI noise process is Bernoulli distributed with
mean E[Imai] and variance Var[Imai], it can be approximated
as a Gaussian process using the central limit theorem with the
density probability function f(imai) for BER evaluation:

f(imai) =
1√

2πVar[Imai]
exp

(
− i

2
mai

2

)
where

imai =
Imai − E[Imai]√

Var[Imai]
.

VII. NUMERICAL RESULTS

To carry out this simulation, we considered the system
model in Fig. 1 and the Gaussian approximation of both the
WDM-OCDMA, using prime codes as prescribed by [1], and
the MAI above. We chose the sequence that suits the code



rate of 0.04 in which the n-bits/m-bits mapping is 7-bits/9-
bits for the OOC while the OCFHC remains with the same
characteristics. This length extension is investigated through
the correlation properties. Both 3-D WDM-OCDMA prime
codes and 3-D OCDMA OCFHC/OOC are investigated with
the same number of users. The results are given in Figs. 2 and
3.

A. Results Analysis

The results of our construction method as Table I suggests
and as Fig. 2 shows, are all code with good correlation
properties from the difference family. The construction method
shows a reduction of complexity from O(w3) of the prime
sequences to the O(w2) which is further reduced to O(w),
allowing the electrical correlation/decorrelation operations at
the detection to match the BG speed. Furthermore, with the
introduction of zero run length constraints, one experiences
a pulsive like correlations, proof of correlation reduction, as
confirmed in Fig. 2. In Fig. 3, it is shown that the overall BER
of our approach 3-D ODMA OCFHC/OOC is better than the
previous results based on 3-D WDM-OCDMA prime codes
though the latter shows a big gap for users less than 100,
number (n = 100). This solution will be costly to have 100

Fig. 1. System model: Bragg Gratings of FFH/OOC scenario.

Fig. 2. Auto-correlation: {0,1,3} of an (7,3,1)-OOC vs. {0,2,5} of an (9,3,1)-
OOC

Fig. 3. BER 3-D OCFHC/OOC vs. prime codes

gratings in a BG chain. Considering this result of [1] however,
the observed gap can be bridged easily with the use of the
embedded asymmetric error correction capability of the OOC
if necessary.

VIII. CONCLUSION

In this paper, we have reduced the construction complexity
of the OOC/OCFHC to O(w) by linearizing the plane (S, T )
space-time that transforms the TS sequence into WS/TS,
yielding a 3-D WH/WS/TS, compared to O(w3) of the 3-D
S/W/T of [1]. This construction based on 0.04 code rate leads
to a better BER due to the reduction of the correlations brought
in by the introduction of zero run length constraints, hence an
improve number of simultaneous users. The method to correct
the asymmetric errors that could occur during transmission, as
stated earlier, is left for further studies.
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