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ASYMPTOTIC DOMINATION OF SAMPLE MAXIMA

ENKELEJD HASHORVA AND DIDIER RULLIERE

Abstract: For a given random sample from some underlying multivariate distribution F' we consider the domination
of the component-wise maxima by some independent random vector W with distribution function G. We show that
the probability that certain components of the sample maxima are dominated by the corresponding components of
W can be approximated under the assumptions that both F' and G are in the max-domain of attraction of some
max-stable distribution functions. We study further some basic probabilistic properties of the dominated components
of sample maxima by W.
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1. INTRODUCTION

Let Z;,i < n be independent d-dimensional random vectors with common continuous distribution function (df) F’
and denote by M, their component-wise maxima, i.e., My; = maxXi<k<pn Zk;,Jj < d. If W is another d-dimensional
random vector with continuous df G being further independent of M, the approximation of the probability that
at least one component of W dominates the corresponding component of M, is of interest since it is related to
the dependence of the components of M, see e.g., [1]. In the special case that W has a max-stable df with unit

Fréchet marginal df’s ®(z) = e 1% £ >0 and M, has almost surely positive components, we simply have

P{3i<d:W;>My}=1-P{Vi,1<i<d: My >W;}=1—-Ep, {exp(—EW {f?aé{d AZV })} ;
Sis ni

where W = (W,...,W,) being independent of M, is a spectral random vector of G which exists in view of
the well-known de Haan representation, see e.g., [2] and (2.1) below. Note that the assumption that W; has unit
Fréchet df implies that E{W;} = 1.

The above probability is referred to as the marginal domination probability of the sample maxima. If F' is also a

max-stable df with unit Fréchet marginals, then by definition M, /n has for any n > 0 df F' and consequently

1 W; W,
— ) <71<d: . > 1 = — —— — ~
(1.1) n[l =P{Vi, 1 <i<d: M, > W} n[l Ez {exp( nEW {112?<xd i }) }] E {112?<Xd i } )
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where ~ means asymptotic equivalence as n — oo and Z = (Z1,..., 2,) has df F' being further independent of W.

Under the above assumptions, we have

(1.2) Pur(F,G)=P{Vi, 1 <i<d:W;> My}~ ;E{lrgigdyz\f}, T=A{1,...,d}

as n — 0o, which follows by (1.1) and the inclusion-exclusion formula or directly by [1][Thm 2.5 and Prop 4.2].
Here p, r(F,G) is referred to as the probability of the complete domination of sample maxima by W. In the
particular case that F' = G it is related to the probability of observing a multiple maxima or concurrence probability,
see [3-9].

Between these two extreme cases, of interest is also to consider the partial domination of the sample maxima. Let

therefore below T' C {1,...,d} be non-empty and consider the probability that only the components of W with

indices in T' dominate M, i.e.,
P{VZ eT :W; > M,;,Vi € T: W, < an} =: me(F, G),

where T'= {1,...,d} \ T. Note that p, r(F, F) relates to the probability of observing a T-record, see [10]. By the
continuity of F' and G we simply have
o1 (F,G) = / P{VieT:W; >y, VicT: W, <y} dF"(y),
Rd
which cannot be evaluated without knowledge of both F' and G. In the particular case that F' and G are max-stable

df’s as above, using (1.1) and the inclusion-exclusion formula we obtain

. . Wi Wi
13 i r(F,6) = B (mip 5~ max 5) L

When F = G the above result is known from [10][Prop 2.2]. Moreover, in the special case that T consists of one
element, then the right-hand side of (1.3) is equal to P{C(T) C T}, where C(T) is the tessellation as determined in
[11]. If we are not interested on a particular index set T, where the domination of sample maxima by W occurs but
simply on the number of components being dominated, i.e., on the random variable (rv)

d
N, = Z Lew,>n.y

i=1

a question of interest is if IV,, can be approximated as n — co. We have that V,, has the same distribution as

d
> wimsz
i=1

provided that F' is max-stable as above and Z has df F' being further independent of W. Hence if W;’s are unit
Fréchet rv’s, then

d d s
lm nE{N,} =" lim nP{Wi>nZ}=)" lm n {1 _ B }} —d

n—-+oo n—-+oo
=1 =1

Consequently, the expected number of components of sample maxima being dominated by the components of W
decreases as d/n when n goes to infinity. Moreover, the dependence of both W and M, does not play any role.
This is however in general not the case for the expectation of f(IN,,), where f is some real-valued function, since the

dependence of both M,, and W influence the approximation as we shall show in the next section.
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From our discussion above the assumptions that F' and G are max-stable df’s with unit Fréchet marginals lead to
tractable asymptotic formulas for various quantities related to the domination of sample maxima M, by W.

In view of [1] we know that both (1.1) and (1.2) are valid in the more general setup that both F' and G are in the
max-domain of attraction of some max-stable df’s (see next section for details). We shall show in this paper that
the same assumptions lead to tractable approximations of both p, r(F,G) and E {f(N,)} as n — occ.

Brief organisation of the paper: Section 2 presents the main results concerning the approximations of the marginal
domination probabilities and the expectation of f(N,). Section 3 is dedicated to properties of W/Z which we call

the domination spectral vector. All the proofs are relegated to Section 4.

2. MAIN RESULTS

We shall recall first some basic properties of max-stable df’s, see [2, 12-14] for details. A d.dimensional df G is

max-stable with unit Fréchet marginals if
Gi(txy, ... txg) = G(x1,...,24q)
for any t > 0,2; € (0,00),1 <7 < d. In the light of De Haan representation
(2.1) G(x) = eXp(—E{lr%agde/xj}), x = (z1,...,2q) € (0,00)4,

where W;’s are non-negative rv’s with E{W,} = 1,7 < d and W = W,...,Wy) is a spectral vector for G (which
is not unique).

In view of multivariate extreme value theory, see e.g., [14] d-dimensional max-stable df’s F are limiting df’s of the
component-wise maxima of d-dimensional iid random vectors with some df F. In that case, F' is said to be in the
max-domain of attraction (MDA) of F, abbreviated F' € M DA(F). For simplicity we shall assume throughout in
the following that F' has marginal df’s F;’s such that

(2.2) lim F'(nz)=®(z), ze€R

n—-+4oo

for all # < d, where we set ®(z) =0 if x < 0. We have thus that F € MDA(F) if further

(2.3) lim sup |F"(nzq,...,nxq) — F(z1,...,2q4)| = 0.
n—=+00 4, cR,1<i<d

In the following F is a d-dimensional max-stable df of some random vector Z with unit Fréchet marginals and G is

another max-stable df with unit Fréchet marginals and spectral random vector Y independent of Z.

Below we extend [15][Prop 1] which considers the case F' = G.

Proposition 2.1. If F' and G have continuous marginal distributions satisfying (2.2) and F € MDA(F),G €
MDA(G), then for any non-empty T C {1,...,d} we have

(2.4) lim npnr(F,G) = E{(minWi/Zi—maxWi/Zi) }:; Ar(F, Q).
€T €T +

n—-+4+oo
Remark 2.2. Define for a non-emtpy index set T the rv K, = Z?Zl Lvier:w,>m;, vieT:wi<m,,y - Under the
assumptions of Proposition 2.1 we have (see also [16][Corr 3.2]) that

(2.5) lim At

n—+oo Inn

= Ap(F,G).
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Example 2.3 (F comonotonic and G a product df). Suppose that F is comonotonic, i.e., Zy = --+ = Z4 almost
surely and let G be a product df with unit Fréchet marginals df’s and let N be rv on {1,...,d} with P{N =i} =
1/d,i < d. A spectral vector W for G can be defined as follows

Wi, .., Wa) = (dln=1}, .-, dl{n=a})-

Indeed E{Wy,} = dP{N =k} =1 for any k <d and

d d d
IEJ{ max W Jxi} = ZE{ max W, Jrilinoiy} =D EWi/z iy} = dZE{]l{N /TRl =Y 1/
k=1 k=1 k=1
for any x4, ..., zq positive. In particular, for a non-empty index set K C {1,...,d} with m elements we have

E{max Wi} =d > E{In—iy} =m.

keK

Consequently, using further that (see the proof of Proposition 2.1)

k W,
7(F,6) = Z D Z ,E{ieJuT Z:}

j=0 JCT:|J|=j
we obtain
Ar(F,G) = 2(71)J+1 Z IE{ max_ WZ} = Z(fl)wrl Z G +d—Fk).
J=0 serin= VYT j=0 JCT:|J)|=j
If k =d, then from above
d
(2.6) r(F,G)=>Y (-7 Y j=di-1n*t=o.
Jj=0 JCT:|J|=j

A direct probabilistic proof of (2.6) follows by the properties of W, namely when k =d > 2
Ar(F,G) = E{lrggdwi/zi} = ]E{lIéliléldWi} = dE{1r§ni1£d1{N:i})} =0.

Now, let us investigate the number NV,, of dominations defined as in Introduction by Zgzl Lw, /n>z.3-

For a given function f : {0,...,d} — R we shall be concerned with the behaviour of

E{f(Nn)} = Zf JP{N, =k}

when n tends to +00. Throughout in the sequel we set
D={1,...,d}.
In Proposition 2.4 below, we first express this expectation as a function of minima or maxima of W;/Z;’s.

Proposition 2.4. If F and G are as in Proposition 2.1, then we have

(2.7) lim nE{f(N,)} —nf(0 Z AR f( > {man /Z; }

n—4o00 €K
KCD,\K\ k
or alternatively
d
. B AR f(d — Iz
(2.8) Jim nE{f(Na)} = nf(0 =Y (-D)FAFfd—k) E{rg}ng/zl},
k=1 KCD,|K|=k

where A is the difference operator, Af(x) = f(z + 1) — f(z).
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Proposition 2.5. If F' and G are as in Proposition 2.1, then we have

(29)  lim nE{f(N,)} = nf(0 Zg E{OV/2)4} = Zf ) [ OV/2) 4rsry = W/ Z) 4y

where W/Z) ) < ... < (W/Z) ) are the order statistics of W;/Z;,i < d and g(k) = f(d—k+1)— f(d—k), with
the convention (W/Z) ) = (W/Z)441) =0.

Remark 2.6 (retrieving simple cases). For particular cases of f we have:

e From Proposition 2.4, setting f(x) = 1{,—qy, one can check that A*f(0) = 0 when k < d and A?f(0) =1
so that Equation (2.7) implies (1.2). Alternatively, by Proposition 2.5 since g(1) = f(d) — f(d—1) =1
and g(k) = f(d—k+1)— f(d—k)=0—-0=0 ik > 1 we have that lim,_, ;- NE{f(N,)} —nf(0) =
E {(W/Z)(l)}.

e In view of Proposition 2.4, setting f(z) = Liz>1y, AFf(d — k) = Zf:o (f)(—l)"”‘_"f(d —k+14). Thus
AFf(d—k) =0 ifk<d. Ifk=d, then

AFfld =) = A%F(0) = (1 = 1) = (-1)" = (1)

and Equation (2.8) implies (1.1). Alternatively, by Proposition 2.5 since if k < d, g(k) = f(d —k+1) —
fd=k)=1-1=0 and g(d) = f(1) — f(0) = 1 we obtain lim,_,cc nE{f(N,)} —nf(0) =E {(W/Z)(d)}.
e By Proposition 2.5, setting f(x) = x, we easily retrieve lim,,_, o nE{N,)} = ZZ=1 E {(W/Z)(k)} =d, as

seen previously.

Remark 2.7 (Interpretation of (W/Z2);)). Let f(k) = L{x>a—j+1}, for any j,k € D. Then g(k) = f(d —k+1) —
f(d—k) =1g—j;y. In this case, f(0) =0 and E{f(Nn)} =P{N >d—j+1}, thus

E{(W/Z)(j)} = lim nP{N,>d—j+1}.

n—-+oo
3. DOMINATION SPECTRUM

In the previous results, we have considered a particular setting, and we have expressed the domination probability

and some expectations relying on number of dominations (see Section 2). We have seen that all these results were

W,
W/Z = ( z) .
Zi i€D

By the definition W;/Z;’s are nonnegative, and are such that, by independence, E{W,/Z;} = E{W,} E {%} =1.

expressed as a function of

Thus in view of the De Haan representation WW/Z can be viewed as the spectral random vector of some max-stable
d-dimensional distribution. Since W/ Z is related to the domination of M, by W, we will refer to it by the term
domination spectrum. In this section we shall explore some basic properties of the domination spectrum.

Next, assume that W has a copula Cyy and suppose further that Z has a copula Cz. Note in passing that the
latter copula is unique since the marginals of Z have continuous df.

We shall first study the link between the diagonal sections of both copulas Cyy and Cgz, defined for all u € [0, 1] by

ow(u) = Cw(u,...,u) and dz(u)=Cgz(u,...,u).
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We recall that the diagonal section characterizes uniquely many Archimedean copulas (under a condition that is
called Frank’s condition, see e.g., [17]), some non-parametric estimators of the generator of an Archimedean copulas
directly rely on this diagonal section. We consider here the case where the df of Z has spectral random vector W.
Notice that the upper tail dependence coefficients can be deduced from the regular variation properties of dz and

dwy, which is straightforward for dz in the following result.

Proposition 3.1. Consider a d-dimensional random vector Z having maz-stable df with Fréchet unit marginals

and with copula Cz. If the random vector Z has df H(y) = exp(—E{llzlagd %}), where all W; are nonnegative rv’s
sj=d %

with mean 1, then

doz(u) =u™ with ry=E {maXWj} .
JjED
In particular, when ryy > 1, this diagonal section dz(u) is the one of a Gumbel copula with parameter

Ind
1 = .
(3:1) o Inryw

Furthermore, if the components of YW are identically distributed and if Fyy, is invertible, then we have

oy = /0 Fyl(5)dow(s)

Example 3.2 (From independence to comonotonicity). Let W; = Bdl;—;} + (1 — B)d1, for all j € D, where I is a
uniformely distributed rv’s on D, B is a Bernoulli rv with E{B} = « € (0,1] and 61 is a Dirac mass at 1, all these
rv’s being mutually independent. In this case, ryy = E Ijneaé( W; ¢ in Proposition 3.1 becomes ryy = ad+1—a. As a
consequence, dz 1is the diagonal of a Gumbel copula which goes from the independence (o = 1) to the comonotonicity

(o« = 0), with parameter
Ind
In(l+a(d-1))"

Furthermore, we have when all t; > 0,

W; 1 1
E{maxj} :aZ——i—(l—a)_i.
JeK t; = t; minjex t;

Let t > 0 and suppose that K has cardinal |K| > 1. By conditioning over B, we get
P{vie K,W;/2; >t} = (1 —a)IP’{Vz’ €K, Z <1/t ‘ B= 0}

since P {Vi eEK,W;/Z; >t ‘ B = 1} = 0 when |K| > 1, because in this case at least one component W;, i € K, is
zero when B = 1. Recall that Z is independent from W and B, thus for t > 0 and |K| > 1

P{%i}(lwi/zi > t} — (1-a)exp (E{_I}g (’1/2) }) — (1= a)exp (—t(1 + a|K| - a)) .

When |K| = 1, we show similarly that P {min;ex W;/Z; > t} = (1—a) exp(—t) + o exp(=%). In both cases |K| =1
and | K| > 1, the survival function P {min;ex W;/Z; > t} is a linear combination of exponential functions, and thus

can be shown to be a discrete mixture of exponential distributions:

1EN

{21}? Wi/ 2 (1= B)erya(r|-1) + L x|=1y Bl{r=13€1/a

: _ e
E{?élz?m/zi} = Tk T ik
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where B is a Bernoulli r.v. of parameter o, €11q(k|—1) and €,q are exponentially distributed r.v. with respective
parameters 1 + a(|K| — 1) and 1/d, I an uniformly distributed r.v. over D, all being mutually independent (for
simplicity, we denote 11 x|=1y the variable whose value is 1 if |K| =1 or 0 otherwise). Then all results about the
limit law of N, follow immediately, using Equation (2.7) in Proposition 2.4. Notice that one could also determine
r(w/z) from this, and by application of Proposition 5.1, assess the dependence structure of the random vector whose

spectrum is (W/Z).

4. PROOFS

We first give hereafter some combinatorial results that show how quantities depending on a number of events can
be related to quantities involving only intersections or unions of those events. This generalizes inclusion-exclusion

formulas that will correspond to very specific functions f and g.

Lemma 4.1 (Inclusion-exclusion relations). Let D = {1,...,d} and let B;, i € D be events. Consider the number

of realized events N =) ;. 1yp,y. Then for any function f:{0,...,d} -+ R

d d d
(4.1) SCFRPIN =k} = £(0)+ S S;004(0) = £(0)+ 3 S;(—1)HA f(d— )
k=0 =1 j=1
and similarly for any function g : D — R
d d
(4.2) S gRP{N = k) = S50 (1) = 30 §;(-1)H AT Igd— j + 1),
k=0 j=1 j=1

where S; = Y P{ﬂBi}ande D P{UB,;}.

JcD,J)= \lieJ JcD,|J)=j \ieJ

Proof of Lemma 4.1. The first equality in Equation (4.1) is known in actuarial sciences under the name of
Schuette-Nesbitt formula, see [18, section 8.5]. This formula does not require any independence assumption, it
is a simple development of f(N) = (I + 1;p,3A)---(I + 1;p,3A)f(0) where I and A are the identity and the
difference operators respectively. To prove the second equality in Equation (4.1), let us denote p; = P{N;c;B;} and

Py =P{U;c;B;}. By inclusion-exclusion principle, we get

KCD,|K|=k j=1 JCK,|J|=j j=1
Now using Equation (4.3),
S A8 = A’“f(O)i(—l)f“(d‘?)ﬁ=iS-(—l)jHMHA)d—jﬂm
k=1 k=1 j=1 k—=i)™ j=1 ’ ’

and since (I + A)4=7£(0) = f(d — j), the second equality in Equation (4.1) holds. Similarly, the first equality in
Equation (4.2) is a known Schuette-Nesbitt formula, see [18, Section 8.5], and one can retrieve the second equality by
using Equation (4.3). Alternatively, one can also deduce (4.2) from (4.1) by setting f(0) =0 and g(k) = Af(k—1)
for all k € D. The formulas in Lemma 4.1 generalize a very old formula of Waring which give P{N =k}, k € D.
They also generalize the classical inclusion exclusion formula which can be retrieved by setting in (4.1) f(k) =1 if

k> 1, and f(k) = 0 otherwise. O
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Proof of Proposition 2.1. By inclusion-exclusion formula for a given index set T' C {1,...,d} with k = |T|

elements we have

P{VZGTngyZ,EZETWZSyl} =

M-

(=17 > P{Vie (JUT): W; < Wi}

JCT:|J|=5

<
Il
—

I
Wk

(—=1)*! Z Gur(y),

1 JCT:|J|=j

<.
Il

where G (y) =P{Vi € L : W; < y;} is the L-th marginal df of G. In particular, letting W; — 00,7 < d yields

k
=> (=1t L

j=1 JCT:|J|=j

Consequently, for all n > 1

pn,T(F7 G)

/ P{Vl el :W; Zyi,Vi € TWZ < yz} an(y)
R4

_ 1_/Rdz DI Goury)dFr(y) - (1- Rde(y)dF”(y))

JCK:|J|=j

k
- Yt Y [ -G m)

=0 JCT:|J|=i

.

I
pﬂw

1)7+1 _a ! anU
=0 ) JCY;]l /Rmﬁ[ s (WA 7 (Y)-

<.

In view of [1][Prop 4.2] we obtain

i o [ =G @R @) == [ Q@)

Further by [1][Thm 2.5 and Prop 4.2

Wi
_ /Reru\ InQ;u7(y)dH ;u7(y) = E{ }

ieJUT Z;

Consequently, we have

k
_ W,
Jm npyr(F,G) = > (=1 > E{zglﬁij Zi}'

=0 JCT:|J|=j
In the light of [10][Lem 1] for given constants ci, ..., cq
k
E (—1)J+1 E max ¢; = max(magcci,minci)— maxc; = (minci — magcci)
: i€ JuT €T €T €T €T €T +
j=0 JCT:|J|=i

implying the claim.

Alternatively, we have using again inclusion-exclusion formula
pn,T(F; G) = / ]P){’LUZ > MZ,Z eTl, w;< MZ,Z € T} dG('LU)
Rd

_ / P{M; < w;,i € T}dG(w) — / P{M; < wii € T,3i € T: My < w; }dG(w)
R4 Rd
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- | Fiw)crw /WZ Y Fiup(w)dGw)

JCT:|J|=3

Il
m
|
_
=

<

/ 7 (w)dGyur (w).
Rk+J

Jj=0 JCT:|J|=

Applying [1][Thm 2.5 and Prop 4.2] we obtain

' . W
nll}l_ir_loon/Rk“ FJuT( )dGJUT(y) - E{iglleIJlT Z; }

and thus
d—k ) W
(4.0 pr(.Q) = Y0 Y {2
JCT:|J|

By [10][Lem 1] we obtain further

pr(H,Q) = E{min Wi _ min(min m, max Wl)},

ieT Z; €T Z; ieT Z;

hence the proof is complete. O

Proof of Proposition 2.4. In view of the first equality in Equation (4.1)

E{f(N.)}=f(0)+ > AFf0) > P{V¥ie K,W;> M,}.

k=1 KCD,|K|=k

Alternatively, using the second equality in Equation (4.1)

d
E{f(Nn )+ Y (~DMARfd—k) Y P{Iie K,W;> My}
k=1

KCD,|K|=k

Thus using (1.1) establishes the claim. O

Proof of Proposition 2.5. Let us consider P {(W/Z) :c} = P {at least k events [W;/Z; < x] are realized, i € D}.

(k) S
Using the first equality in Equation (4.2), for any function g : {1,...,d} — R we obtain

d
Zg {W/Z)<k)§w} = Y A1) Y P{Vie K,Wi/Z <}
k=1

KCD,|K|=k

and hence letting © — oo we have

d d
doglk)y = DY A1) YL

k=1 k=1 KCD,|K|=k
Consequently, for any real x
d d
Zg(k)IP’{(W/Z)(k) > x} = Y Ay Y P {InaxWi/Zi > x} :
k=1 k=1 KCD,|K|=k er

By the assumptions
E{max Wi/ Zi} <ZE{W/Z}—d

hence since W;/Z;’s are non-negative it follows that

zd:g { W/Z)(k)} = Xd:Akilg(l) Z ]E{rlréz}?W/Z}

k=1 k=1 KCD,|K|=k
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Finally, in order to retrieve Equation (2.8), we must have for any k € {1,...,d}
AFlg(1) = (1) ARf(d k).

Now, assuming that for all k € {1,...,d}, g(k) = f(d—k+1)— f(d—k) = Af(d— k), then denoting by T = A+ 1T
the translation operator

k—1

g = 3 (M e riasa- .

=0

This implies
AMlg() = (I + T Y Af(d = 1) = (D)"Y (T HT - 1) Af(d - 1).

Thus, for all k € {1,...,d} we have
AM (1) = (1) Akf(d - k)

and hence the claim follows. O

Proof of Proposition 3.1. For the first equality, since Z has unit Fréchet marginals for any u > 0 we have

Cz(u,...,u)zﬂ( LI ):exp(E{maXln(u)Wj}>:um{%agwj}

—Inu’ " —Inu 1<j<d

and thus dz(u) = v"Y. Since the diagonal section of a d-dimensional Archimedean copula with parameter 6 is ud"’

we obtain the formula for . This is consistent with the fact that the Gumbel copula is an Extreme Value Copula

(the only Archimedean one, see [19]).

For the last equality, setting W; = Fv_vi (U;), we get max Wj = max Fv_\/i (U;). Assuming further that all W;’s have
JE JE€

a common df Fyy,, then max Fv_vi(U]) = Fv_vi (Eyleag((]j). Using further

jeD

P{maXUj Su} =P{U; <u,...Us <u}=Cy(u,...,u) =0y (u)
we get E {max;cp W;} = f01 Fv_vi(s)d§y(s). O
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