ASYMPTOTIC DOMINATION OF SAMPLE MAXIMA

ENKELEJD HASHORVA AND DIDIER RULLIERE `

Abstract: For a given random sample from some underlying multivariate distribution F we consider the domination of the component-wise maxima by some independent random vector W with distribution function G . We show that the probability that certain components of the sample maxima are dominated by the corresponding components of W can be approximated under the assumptions that both F and G are in the max-domain of attraction of some max-stable distribution functions. We study further some basic probabilistic properties of the dominated components of sample maxima by W .

Key Words: Max-stable distributions; records; domination of sample maxima; extremal dependence; de Haan representation; infargmax formula;

AMS Classification: Primary 60G15; secondary 60G70

1. INTRODUCTION

Let $\mathbf{Z}_i, i \leq n$ be independent *d*-dimensional random vectors with common continuous distribution function (df) F and denote by M_n their component-wise maxima, i.e., $M_{nj} = \max_{1 \leq k \leq n} Z_{kj}$, $j \leq d$. If W is another d-dimensional random vector with continuous df G being further independent of M_n the approximation of the probability that at least one component of W dominates the corresponding component of M_n is of interest since it is related to the dependence of the components of M_n , see e.g., [\[1\]](#page-9-0). In the special case that W has a max-stable df with unit Fréchet marginal df's $\Phi(x) = e^{-1/x}, x > 0$ and \overline{M}_n has almost surely positive components, we simply have

$$
\mathbb{P}\{\exists i\leq d: W_i>M_{ni}\}=1-\mathbb{P}\{\forall i, 1\leq i\leq d: M_{ni}\geq W_i\}=1-\mathbb{E}_{\mathbf{M}_n}\left\{\exp\left(-\mathbb{E}_{\mathbf{W}}\left\{\max_{1\leq i\leq d}\frac{\mathcal{W}_i}{M_{ni}}\right\}\right)\right\},\right\}
$$

where $\mathbf{W} = (W_1, \ldots, W_d)$ being independent of \mathbf{M}_n is a spectral random vector of G which exists in view of the well-known de Haan representation, see e.g., [\[2\]](#page-9-1) and [\(2.1\)](#page-2-0) below. Note that the assumption that W_i has unit Fréchet df implies that $\mathbb{E}{\{\mathcal{W}_i\}} = 1$.

The above probability is referred to as the marginal domination probability of the sample maxima. If F is also a max-stable df with unit Fréchet marginals, then by definition M_n/n has for any $n > 0$ df F and consequently

$$
(1.1) \ \ n[1-\mathbb{P}\{\forall i, \ 1 \leq i \leq d : M_{ni} \geq W_i\}] = n\left[1-\mathbb{E}_{\mathbf{Z}}\left\{\exp\left(-\frac{1}{n}\mathbb{E}_{\mathbf{W}}\left\{\max_{1 \leq i \leq d} \frac{\mathcal{W}_i}{\mathcal{Z}_i}\right\}\right)\right\}\right] \sim \mathbb{E}\left\{\max_{1 \leq i \leq d} \frac{\mathcal{W}_i}{\mathcal{Z}_i}\right\},\
$$

Date: December 24, 2019.

where ∼ means asymptotic equivalence as $n \to \infty$ and $\mathcal{Z} = (\mathcal{Z}_1, \ldots, \mathcal{Z}_d)$ has df F being further independent of \mathcal{W} . Under the above assumptions, we have

$$
(1.2) \t\t p_{n,T}(F,G) = \mathbb{P}\{\forall i, 1 \le i \le d : W_i > M_{ni}\} \sim \frac{1}{n} \mathbb{E}\left\{\min_{1 \le i \le d} \frac{\mathcal{W}_i}{\mathcal{Z}_i}\right\}, \quad T = \{1, \dots, d\}
$$

as $n \to \infty$, which follows by [\(1.1\)](#page-0-0) and the inclusion-exclusion formula or directly by [\[1\]](#page-9-0)[Thm 2.5 and Prop 4.2]. Here $p_{n,T}(F,G)$ is referred to as the probability of the complete domination of sample maxima by W. In the particular case that $F = G$ it is related to the probability of observing a multiple maxima or concurrence probability, see [\[3](#page-9-2)[–9\]](#page-10-0).

Between these two extreme cases, of interest is also to consider the partial domination of the sample maxima. Let therefore below $T \subset \{1, \ldots, d\}$ be non-empty and consider the probability that only the components of W with indices in T dominate M_n , i.e.,

$$
\mathbb{P}\{\forall i \in T : W_i > M_{ni}, \forall i \in \overline{T} : W_i \le M_{ni}\} =: p_{n,T}(F, G),
$$

where $\overline{T} = \{1, ..., d\} \setminus T$. Note that $p_{n,T}(F, F)$ relates to the probability of observing a T-record, see [\[10\]](#page-10-1). By the continuity of F and G we simply have

$$
p_{n,T}(F,G) = \int_{\mathbb{R}^d} \mathbb{P}\{\forall i \in T : W_i > y_i, \forall i \in \overline{T} : W_i \le y_i\} \ dF^n(\boldsymbol{y}),
$$

which cannot be evaluated without knowledge of both F and G . In the particular case that F and G are max-stable df's as above, using [\(1.1\)](#page-0-0) and the inclusion-exclusion formula we obtain

(1.3)
$$
\lim_{n \to +\infty} n p_{n,T}(F,G) = \mathbb{E}\bigg\{ \bigg(\min_{i \in T} \frac{\mathcal{W}_i}{\mathcal{Z}_i} - \max_{i \in \bar{T}} \frac{\mathcal{W}_i}{\mathcal{Z}_i} \bigg)_+ \bigg\}.
$$

When $F = G$ the above result is known from [\[10\]](#page-10-1)[Prop 2.2]. Moreover, in the special case that T consists of one element, then the right-hand side of [\(1.3\)](#page-1-0) is equal to $\mathbb{P}\{C(T) \subset T\}$, where $C(T)$ is the tessellation as determined in [\[11\]](#page-10-2). If we are not interested on a particular index set T, where the domination of sample maxima by W occurs but simply on the number of components being dominated, i.e., on the random variable (rv)

$$
N_n = \sum_{i=1}^d \mathbb{1}_{\{W_i > M_{ni}\}}
$$

a question of interest is if N_n can be approximated as $n \to \infty$. We have that N_n has the same distribution as

$$
\sum_{i=1}^d 1\!\!1_{\{W_i/n\geq \mathcal{Z}_i\}},
$$

provided that F is max-stable as above and $\mathcal Z$ has df F being further independent of W. Hence if W_i 's are unit Fréchet rv's, then

$$
\lim_{n \to +\infty} n \mathbb{E}\{N_n\} = \sum_{i=1}^d \lim_{n \to +\infty} n \mathbb{P}\{W_i > n\mathcal{Z}_i\} = \sum_{i=1}^d \lim_{n \to +\infty} n \left[1 - e^{-\mathbb{E}\left\{\frac{1}{n\mathcal{Z}_i}\right\}}\right] = d.
$$

Consequently, the expected number of components of sample maxima being dominated by the components of W decreases as d/n when n goes to infinity. Moreover, the dependence of both W and M_n does not play any role. This is however in general not the case for the expectation of $f(N_n)$, where f is some real-valued function, since the dependence of both M_n and W influence the approximation as we shall show in the next section.

In view of $[1]$ we know that both (1.1) and (1.2) are valid in the more general setup that both F and G are in the max-domain of attraction of some max-stable df's (see next section for details). We shall show in this paper that the same assumptions lead to tractable approximations of both $p_{n,T}(F,G)$ and $\mathbb{E}\{f(N_n)\}\$ as $n \to \infty$.

Brief organisation of the paper: Section [2](#page-2-1) presents the main results concerning the approximations of the marginal domination probabilities and the expectation of $f(N_n)$. Section [3](#page-4-0) is dedicated to properties of \mathcal{W}/\mathcal{Z} which we call the domination spectral vector. All the proofs are relegated to Section [4.](#page-6-0)

2. Main Results

We shall recall first some basic properties of max-stable df's, see [\[2,](#page-9-1) [12–](#page-10-3)[14\]](#page-10-4) for details. A d.dimensional df $\mathcal G$ is max-stable with unit Fréchet marginals if

$$
\mathcal{G}^t(tx_1,\ldots,tx_d)=\mathcal{G}(x_1,\ldots,x_d)
$$

for any $t > 0, x_i \in (0, \infty), 1 \leq i \leq d$. In the light of De Haan representation

(2.1)
$$
\mathcal{G}(\boldsymbol{x}) = \exp\left(-\mathbb{E}\{\max_{1 \leq j \leq d} \mathcal{W}_j/x_j\}\right), \quad \boldsymbol{x} = (x_1, \ldots, x_d) \in (0, \infty)^d,
$$

where W_j 's are non-negative rv's with $\mathbb{E}\{W_j\} = 1, j \leq d$ and $\mathcal{W} = (W_1, \ldots, W_d)$ is a spectral vector for \mathcal{G} (which is not unique).

In view of multivariate extreme value theory, see e.g., [\[14\]](#page-10-4) d-dimensional max-stable df's $\mathcal F$ are limiting df's of the component-wise maxima of d-dimensional iid random vectors with some df F . In that case, F is said to be in the max-domain of attraction (MDA) of F, abbreviated $F \in MDA(F)$. For simplicity we shall assume throughout in the following that F has marginal df's F_i 's such that

(2.2)
$$
\lim_{n \to +\infty} F_i^n(nx) = \Phi(x), \quad x \in \mathbb{R}
$$

for all $i \leq d$, where we set $\Phi(x) = 0$ if $x \leq 0$. We have thus that $F \in MDA(\mathcal{F})$ if further

(2.3)
$$
\lim_{n \to +\infty} \sup_{x_i \in \mathbb{R}, 1 \leq i \leq d} \left| F^n(nx_1, \dots, nx_d) - \mathcal{F}(x_1, \dots, x_d) \right| = 0.
$$

In the following F is a d-dimensional max-stable df of some random vector $\mathcal Z$ with unit Fréchet marginals and $\mathcal G$ is another max-stable df with unit Fréchet marginals and spectral random vector $\mathcal W$ independent of $\mathcal Z$.

Below we extend [\[15\]](#page-10-5)[Prop 1] which considers the case $F = G$.

Proposition 2.1. If F and G have continuous marginal distributions satisfying [\(2.2\)](#page-2-2) and $F \in MDA(\mathcal{F}), G \in$ $MDA(\mathcal{G})$, then for any non-empty $T \subset \{1, \ldots, d\}$ we have

(2.4)
$$
\lim_{n \to +\infty} n p_{n,T}(F,G) = \mathbb{E}\left\{ \left(\min_{i \in T} \mathcal{W}_i / \mathcal{Z}_i - \max_{i \in \overline{T}} \mathcal{W}_i / \mathcal{Z}_i \right)_+ \right\} =: \lambda_T(\mathcal{F}, \mathcal{G}).
$$

Remark 2.2. Define for a non-emtpy index set T the rv $K_n = \sum_{j=1}^n 1_{\{\forall i \in T : W_i > M_{ji}, \forall i \in \overline{T} : W_i \le M_{ji}\}}$. Under the assumptions of Proposition [2.1](#page-2-3) we have (see also $[16]$ [Corr 3.2]) that

(2.5)
$$
\lim_{n \to +\infty} \frac{\mathbb{E}\{K_n\}}{\ln n} = \lambda_T(\mathcal{F}, \mathcal{G}).
$$

Example 2.3 (F comonotonic and G a product df). Suppose that F is comonotonic, i.e., $\mathcal{Z}_1 = \cdots = \mathcal{Z}_d$ almost surely and let G be a product df with unit Fréchet marginals df's and let N be rv on $\{1,\ldots,d\}$ with $\mathbb{P}\{N=i\}$ $1/d, i \leq d$. A spectral vector **W** for G can be defined as follows

$$
(\mathcal{W}_1,\ldots,\mathcal{W}_d)=(d1\!\!1_{\{N=1\}},\ldots,d1\!\!1_{\{N=d\}}).
$$

 $Indeed \mathbb{E}\{\mathcal{W}_k\} = d\mathbb{P}\{N = k\} = 1 for any k \leq d and$

$$
\mathbb{E}\{\max_{1\leq i\leq d} \mathcal{W}_i/x_i\} = \sum_{k=1}^d \mathbb{E}\{\max_{1\leq i\leq d} \mathcal{W}_i/x_i \mathbb{1}_{\{N=k\}}\} = \sum_{k=1}^d \mathbb{E}\{\mathcal{W}_k/x_k \mathbb{1}_{\{N=k\}}\} = d \sum_{k=1}^d \mathbb{E}\{\mathbb{1}_{\{N=k\}}/x_k\} = \sum_{k=1}^d 1/x_k
$$

for any x_1, \ldots, x_d positive. In particular, for a non-empty index set $K \subset \{1, \ldots, d\}$ with m elements we have

$$
\mathbb{E}\{\max_{i\in K} \mathcal{W}_i\} = d \sum_{k\in K} \mathbb{E}\{\mathbb{1}_{\{N=k\}}\} = m.
$$

Consequently, using further that (see the proof of Proposition [2.1\)](#page-2-3)

$$
\lambda_T(\mathcal{F}, \mathcal{G}) = \sum_{j=0}^k (-1)^{j+1} \sum_{J \subset T: |J|=j} \mathbb{E} \bigg\{ \max_{i \in J \cup \overline{T}} \frac{\mathcal{W}_i}{\mathcal{Z}_i} \bigg\}
$$

we obtain

$$
\lambda_T(\mathcal{F}, \mathcal{G}) = \sum_{j=0}^k (-1)^{j+1} \sum_{J \subset T : |J|=j} \mathbb{E} \left\{ \max_{i \in J \cup \bar{T}} \mathcal{W}_i \right\} = \sum_{j=0}^k (-1)^{j+1} \sum_{J \subset T : |J|=j} (j+d-k).
$$

If $k = d$, then from above

(2.6)
$$
\lambda_T(\mathcal{F}, \mathcal{G}) = \sum_{j=0}^d (-1)^{j+1} \sum_{J \subset T: |J|=j} j = d(1-1)^{d-1} = 0.
$$

A direct probabilistic proof of [\(2.6\)](#page-3-0) follows by the properties of \mathcal{W} , namely when $k = d \geq 2$

$$
\lambda_T(\mathcal{F}, \mathcal{G}) = \mathbb{E}\{\min_{1 \le i \le d} \mathcal{W}_i/\mathcal{Z}_i\} = \mathbb{E}\{\min_{1 \le i \le d} \mathcal{W}_i\} = d\mathbb{E}\{\min_{1 \le i \le d} 1_{\{N=i\}}\} = 0.
$$

Now, let us investigate the number N_n of dominations defined as in Introduction by $\sum_{i=1}^d \mathbb{1}_{\{W_i/n > Z_i\}}$. For a given function $f : \{0, \ldots, d\} \to \mathbb{R}$ we shall be concerned with the behaviour of

$$
\mathbb{E}\left\{f(N_n)\right\} = \sum_{k=0}^d f(k)\mathbb{P}\left\{N_n = k\right\}
$$

when *n* tends to $+\infty$. Throughout in the sequel we set

$$
\mathcal{D} = \{1, \ldots, d\}.
$$

In Proposition [2.4](#page-3-1) below, we first express this expectation as a function of minima or maxima of W_i/\mathcal{Z}_i 's.

Proposition 2.4. If F and G are as in Proposition [2.1,](#page-2-3) then we have

(2.7)
$$
\lim_{n \to +\infty} n \mathbb{E} \left\{ f(N_n) \right\} - n f(0) = \sum_{k=1}^d \Delta^k f(0) \sum_{K \subset \mathcal{D}, |K| = k} \mathbb{E} \left\{ \min_{i \in K} \mathcal{W}_i / \mathcal{Z}_i \right\}
$$

or alternatively

(2.8)
$$
\lim_{n \to +\infty} n \mathbb{E} \left\{ f(N_n) \right\} - n f(0) = \sum_{k=1}^d (-1)^{k+1} \Delta^k f(d-k) \sum_{K \subset \mathcal{D}, |K| = k} \mathbb{E} \left\{ \max_{i \in K} \mathcal{W}_i / \mathcal{Z}_i \right\},
$$

where Δ is the difference operator, $\Delta f(x) = f(x+1) - f(x)$.

Proposition 2.5. If F and G are as in Proposition [2.1,](#page-2-3) then we have

$$
(2.9) \qquad \lim_{n \to +\infty} n \mathbb{E}\left\{f(N_n)\right\} - n f(0) = \sum_{k=1}^d g(k) \mathbb{E}\left\{ \left(\mathcal{W}/\mathcal{Z}\right)_{(k)} \right\} = \sum_{k=0}^d f(k) \left[\left(\mathcal{W}/\mathcal{Z}\right)_{(d-k+1)} - \left(\mathcal{W}/\mathcal{Z}\right)_{(d-k)} \right],
$$

where $(W/Z)_{(1)} \leq \ldots \leq (W/Z)_{(d)}$ are the order statistics of W_i/Z_i , $i \leq d$ and $g(k) = f(d-k+1) - f(d-k)$, with the convention $(W/Z)_{(0)} = (W/Z)_{(d+1)} = 0.$

Remark 2.6 (retrieving simple cases). For particular cases of f we have:

- From Proposition [2.4,](#page-3-1) setting $f(x) = 1_{\{x=d\}}$, one can check that $\Delta^k f(0) = 0$ when $k < d$ and $\Delta^d f(0) = 1$, so that Equation [\(2.7\)](#page-3-2) implies [\(1.2\)](#page-1-1). Alternatively, by Proposition [2.5](#page-4-1) since $g(1) = f(d) - f(d-1) = 1$ and $g(k) = f(d - k + 1) - f(d - k) = 0 - 0 = 0$ if $k > 1$ we have that $\lim_{n \to +\infty} n \mathbb{E} \{f(N_n)\} - nf(0) =$ $\mathbb{E} \left\{ \left(\mathcal{W} / \mathcal{Z} \right)_{(1)} \right\}.$
- In view of Proposition [2.4,](#page-3-1) setting $f(x) = 1_{\{x \ge 1\}}$, $\Delta^k f(d-k) = \sum_{i=0}^k {k \choose i} (-1)^{k-i} f(d-k+i)$. Thus $\Delta^k f(d-k) = 0$ if $k < d$. If $k = d$, then

$$
\Delta^k f(d-k) = \Delta^d f(0) = (1-1)^d - (-1)^d = (-1)^{d+1}
$$

and Equation [\(2.8\)](#page-3-3) implies [\(1.1\)](#page-0-0). Alternatively, by Proposition [2.5](#page-4-1) since if $k < d$, $g(k) = f(d - k + 1)$ $f(d-k) = 1 - 1 = 0$ and $g(d) = f(1) - f(0) = 1$ we obtain $\lim_{n \to +\infty} n \mathbb{E} \{f(N_n)\} - nf(0) = \mathbb{E} \{(\mathcal{W}/\mathcal{Z})_{(d)}\}.$

• By Proposition [2.5,](#page-4-1) setting $f(x) = x$, we easily retrieve $\lim_{n\to+\infty} n \mathbb{E} \{N_n\} = \sum_{k=1}^d \mathbb{E} \{(\mathcal{W}/\mathcal{Z})_{(k)}\} = d$, as seen previously.

Remark 2.7 (Interpretation of $(W/Z)_{(j)}$). Let $f(k) = 1_{\{k \ge d-j+1\}}$, for any $j, k \in \mathcal{D}$. Then $g(k) = f(d - k + 1)$ $f(d-k) = 1_{\{k=j\}}$. In this case, $f(0) = 0$ and $\mathbb{E}\{f(N_n)\} = \mathbb{P}\{N \geq d-j+1\}$, thus

$$
\mathbb{E}\left\{ \left(\mathcal{W}/\mathcal{Z}\right)_{(j)} \right\} = \lim_{n \to +\infty} n \mathbb{P}\left\{ N_n \geq d - j + 1 \right\}.
$$

3. Domination spectrum

In the previous results, we have considered a particular setting, and we have expressed the domination probability and some expectations relying on number of dominations (see Section [2\)](#page-2-1). We have seen that all these results were expressed as a function of

$$
\mathcal{W}/\mathcal{Z} = \left(\frac{\mathcal{W}_i}{\mathcal{Z}_i}\right)_{i \in \mathcal{D}}
$$

.

By the definition W_i/\mathcal{Z}_i 's are nonnegative, and are such that, by independence, $\mathbb{E}\{W_i/\mathcal{Z}_i\} = \mathbb{E}\{W_i\} \mathbb{E}\left\{\frac{1}{\mathcal{Z}_i}\right\} = 1$. Thus in view of the De Haan representation \mathcal{W}/\mathcal{Z} can be viewed as the spectral random vector of some max-stable d-dimensional distribution. Since \mathcal{W}/\mathcal{Z} is related to the domination of M_n by W , we will refer to it by the term domination spectrum. In this section we shall explore some basic properties of the domination spectrum.

Next, assume that W has a copula $C_{\mathcal{W}}$ and suppose further that Z has a copula $C_{\mathbf{Z}}$. Note in passing that the latter copula is unique since the marginals of $\mathcal Z$ have continuous df.

We shall first study the link between the diagonal sections of both copulas $C_{\mathcal{W}}$ and $C_{\mathcal{Z}}$, defined for all $u \in [0,1]$ by

$$
\delta_{\mathbf{\mathcal{W}}}(u) = C_{\mathbf{\mathcal{W}}}(u, \ldots, u)
$$
 and $\delta_{\mathbf{\mathcal{Z}}}(u) = C_{\mathbf{\mathcal{Z}}}(u, \ldots, u)$.

We recall that the diagonal section characterizes uniquely many Archimedean copulas (under a condition that is called Frank's condition, see e.g., [\[17\]](#page-10-7)), some non-parametric estimators of the generator of an Archimedean copulas directly rely on this diagonal section. We consider here the case where the df of $\mathcal Z$ has spectral random vector $\mathcal W$. Notice that the upper tail dependence coefficients can be deduced from the regular variation properties of $\delta_{\mathbf{Z}}$ and $\delta \mathbf{w}$, which is straightforward for $\delta \mathbf{z}$ in the following result.

Proposition 3.1. Consider a d-dimensional random vector \mathcal{Z} having max-stable df with Fréchet unit marginals and with copula $C_{\mathbf{Z}}$. If the random vector \mathbf{Z} has $df H(\mathbf{y}) = \exp(-\mathbb{E} \{\max_{1 \leq j \leq d} \mathbb{E}[f_j] \mathbf{y})\}$ \mathcal{W}_j $\{\frac{\partial V_j}{\partial y_j}\}),$ where all \mathcal{W}_j are nonnegative rv's with mean 1, then

$$
\delta_{\mathbf{Z}}(u) = u^{r_{\mathbf{W}}} \quad \text{with} \quad r_{\mathbf{W}} = \mathbb{E}\left\{\max_{j \in \mathcal{D}} \mathcal{W}_j\right\}
$$

.

In particular, when $r_{\mathcal{W}} > 1$, this diagonal section $\delta_{\mathcal{Z}}(u)$ is the one of a Gumbel copula with parameter

$$
\theta = \frac{\ln d}{\ln r_{\mathbf{W}}}.
$$

Furthermore, if the components of ${\cal W}$ are identically distributed and if $F_{{\cal W}_1}$ is invertible, then we have

$$
r_{\mathbf{W}} = \int_0^1 F_{\mathcal{W}_1}^{-1}(s) d\delta_{\mathbf{W}}(s) .
$$

Example 3.2 (From independence to comonotonicity). Let $W_j = Bd1_{\{I=j\}} + (1-B)\delta_1$, for all $j \in \mathcal{D}$, where I is a uniformely distributed rv's on D , B is a Bernoulli rv with $\mathbb{E}{B} = \alpha \in (0,1]$ and δ_1 is a Dirac mass at 1, all these r v's being mutually independent. In this case, $r_{\mathcal{W}} = \mathbb{E}\left\{\max_{j\in\mathcal{D}}\mathcal{W}_j\right\}$ in Proposition [3.1](#page-5-0) becomes $r_{\mathcal{W}} = \alpha d+1-\alpha$. As a consequence, δz is the diagonal of a Gumbel copula which goes from the independence $(\alpha = 1)$ to the comonotonicity $(\alpha \rightarrow 0)$, with parameter

$$
\theta = \frac{\ln d}{\ln (1 + \alpha (d-1))} \, .
$$

Furthermore, we have when all $t_j > 0$,

$$
\mathbb{E}\left\{\max_{j\in K}\frac{\mathcal{W}_j}{t_j}\right\} = \alpha \sum_{j\in K}\frac{1}{t_j} + (1-\alpha)\frac{1}{\min_{j\in K}t_j}.
$$

Let $t > 0$ and suppose that K has cardinal $|K| > 1$. By conditioning over B, we get

$$
\mathbb{P}\left\{\forall i \in K, \mathcal{W}_i/\mathcal{Z}_i > t\right\} = (1-\alpha)\mathbb{P}\left\{\forall i \in K, \mathcal{Z}_i < 1/t \mid B = 0\right\}
$$

 $\textit{since } \mathbb{P}\left\{\forall i \in K, \mathcal{W}_i/\mathcal{Z}_i > t \; \middle| \; B = 1 \right\} = 0 \textit{ when } |K| > 1, \textit{ because in this case at least one component } \mathcal{W}_i, \, i \in K, \textit{ is }$ zero when $B = 1$. Recall that $\mathcal Z$ is independent from $\mathcal W$ and B , thus for $t > 0$ and $|K| > 1$

$$
\mathbb{P}\left\{\min_{i\in K} \mathcal{W}_i/\mathcal{Z}_i > t\right\} = (1-\alpha)\exp\left(\mathbb{E}\left\{-\max_{j\in K} \frac{\mathcal{W}_j}{(1/t)}\right\}\right) = (1-\alpha)\exp\left(-t(1+\alpha|K|-\alpha)\right).
$$

When $|K| = 1$, we show similarly that $\mathbb{P} \{ \min_{i \in K} \mathcal{W}_i / \mathcal{Z}_i > t \} = (1 - \alpha) \exp(-t) + \alpha \frac{1}{d} \exp(-\frac{t}{d})$. In both cases $|K| = 1$ and $|K| > 1$, the survival function $\mathbb{P} \{\min_{i \in K} \mathcal{W}_i / \mathcal{Z}_i > t\}$ is a linear combination of exponential functions, and thus can be shown to be a discrete mixture of exponential distributions:

$$
\begin{cases} \min_{i \in K} \mathcal{W}_i / \mathcal{Z}_i \leq (1 - B) \epsilon_{1 + \alpha(|K| - 1)} + \mathbb{1}_{\{|K| = 1\}} B \mathbb{1}_{\{I = 1\}} \epsilon_{1/d} \\ \mathbb{E} \left\{ \min_{i \in K} \mathcal{W}_i / \mathcal{Z}_i \right\} = \frac{1 - \alpha}{1 + \alpha(|K| - 1)} + \mathbb{1}_{\{|K| = 1\}} \alpha, \end{cases}
$$

where B is a Bernoulli r.v. of parameter α , $\epsilon_{1+\alpha(|K|-1)}$ and $\epsilon_{1/d}$ are exponentially distributed r.v. with respective parameters $1 + \alpha(|K| - 1)$ and $1/d$, I an uniformly distributed r.v. over D , all being mutually independent (for simplicity, we denote $1_{\{|K|=1\}}$ the variable whose value is 1 if $|K|=1$ or 0 otherwise). Then all results about the limit law of N_n follow immediately, using Equation [\(2.7\)](#page-3-2) in Proposition [2.4.](#page-3-1) Notice that one could also determine $r_{(\mathcal{W}/\mathcal{Z})}$ from this, and by application of Proposition [3.1,](#page-5-0) assess the dependence structure of the random vector whose spectrum is $(\mathcal{W}/\mathcal{Z})$.

4. Proofs

We first give hereafter some combinatorial results that show how quantities depending on a number of events can be related to quantities involving only intersections or unions of those events. This generalizes inclusion-exclusion formulas that will correspond to very specific functions f and g .

Lemma 4.1 (Inclusion-exclusion relations). Let $\mathcal{D} = \{1, ..., d\}$ and let B_i , $i \in \mathcal{D}$ be events. Consider the number of realized events $N = \sum_{i \in \mathcal{D}} \mathbb{1}_{\{B_i\}}$. Then for any function $f : \{0, \ldots, d\} \to \mathbb{R}$

(4.1)
$$
\sum_{k=0}^{d} f(k) \mathbb{P} \{ N = k \} = f(0) + \sum_{j=1}^{d} S_j \Delta^j f(0) = f(0) + \sum_{j=1}^{d} \bar{S}_j (-1)^{j+1} \Delta^j f(d-j)
$$

and similarly for any function $g: \mathcal{D} \to \mathbb{R}$

(4.2)
$$
\sum_{k=0}^{d} g(k) \mathbb{P} \{ N \ge k \} = \sum_{j=1}^{d} S_j \Delta^{j-1} g(1) = \sum_{j=1}^{d} \bar{S}_j (-1)^{j+1} \Delta^{j-1} g(d-j+1),
$$

where $S_j = \sum$ $J\subset\mathcal{D},|J|=j$ ⊪∫∩ $\bigcap_{i\in J} B_i \bigg\}$ and $\overline{S}_j = \sum_{J \subset \mathcal{D}, |J|}$ $J \subset \mathcal{D}, |J|=j$ r{∪ $\bigcup_{i\in J} B_i\bigg\}.$

Proof of Lemma [4.1.](#page-6-1) The first equality in Equation [\(4.1\)](#page-6-2) is known in actuarial sciences under the name of Schuette-Nesbitt formula, see [\[18,](#page-10-8) section 8.5]. This formula does not require any independence assumption, it is a simple development of $f(N) = (I + 1_{{B_1}\Delta}) \cdots (I + 1_{{B_d}\Delta}) f(0)$ where I and Δ are the identity and the difference operators respectively. To prove the second equality in Equation [\(4.1\)](#page-6-2), let us denote $p_J = \mathbb{P}\{\cap_{i\in J}B_i\}$ and $\bar{p}_J = \mathbb{P} \{ \cup_{i \in J} B_i \}.$ By inclusion-exclusion principle, we get

(4.3)
$$
S_k = \sum_{K \subset \mathcal{D}, |K| = k} \sum_{j=1}^k (-1)^{j+1} \sum_{J \subset K, |J| = j} \bar{p}_J = \sum_{j=1}^k (-1)^{j+1} {d-j \choose k-j} \bar{S}_j.
$$

Now using Equation [\(4.3\)](#page-6-3),

$$
\sum_{k=1}^d \Delta^k f(0) S_k = \sum_{k=1}^d \Delta^k f(0) \sum_{j=1}^k (-1)^{j+1} {d-j \choose k-j} \bar{S}_j = \sum_{j=1}^d \bar{S}_j (-1)^{j+1} \Delta^j (I + \Delta)^{d-j} f(0),
$$

and since $(I + \Delta)^{d-j} f(0) = f(d-j)$, the second equality in Equation [\(4.1\)](#page-6-2) holds. Similarly, the first equality in Equation [\(4.2\)](#page-6-4) is a known Schuette-Nesbitt formula, see [\[18,](#page-10-8) Section 8.5], and one can retrieve the second equality by using Equation [\(4.3\)](#page-6-3). Alternatively, one can also deduce [\(4.2\)](#page-6-4) from [\(4.1\)](#page-6-2) by setting $f(0) = 0$ and $g(k) = \Delta f(k-1)$ for all $k \in \mathcal{D}$. The formulas in Lemma [4.1](#page-6-1) generalize a very old formula of Waring which give $\mathbb{P}\{N = k\}, k \in \mathcal{D}$. They also generalize the classical inclusion exclusion formula which can be retrieved by setting in (4.1) $f(k) = 1$ if $k \geq 1$, and $f(k) = 0$ otherwise. **Proof of Proposition [2.1.](#page-2-3)** By inclusion-exclusion formula for a given index set $T \subset \{1, ..., d\}$ with $k = |T|$ elements we have

$$
\mathbb{P}\{\forall i \in \bar{T} : W_i \le y_i, \exists i \in T : W_i \le y_i\} = \sum_{j=1}^k (-1)^{j+1} \sum_{J \subset T : |J| = j} \mathbb{P}\{\forall i \in (J \cup \bar{T}) : W_i \le \mathcal{W}_i\}
$$

$$
= \sum_{j=1}^k (-1)^{j+1} \sum_{J \subset T : |J| = j} G_{J \cup \bar{T}}(\mathbf{y}),
$$

where $G_L(\mathbf{y}) = \mathbb{P}\{\forall i \in L : W_i \leq y_i\}$ is the L-th marginal df of G. In particular, letting $\mathcal{W}_i \to \infty, i \leq d$ yields

$$
1 = \sum_{j=1}^{k} (-1)^{j+1} \sum_{J \subset T : |J|=j} 1.
$$

Consequently, for all $n > 1$

$$
p_{n,T}(F,G) = \int_{\mathbb{R}^d} \mathbb{P}\{\forall i \in T : W_i \geq y_i, \forall i \in \bar{T} : W_i < y_i\} dF^n(\mathbf{y})
$$

\n
$$
= \int_{\mathbb{R}^d} \mathbb{P}\{\forall i \in \bar{T} : W_i \leq y_i\} dF^n(\mathbf{y}) - \int_{\mathbb{R}^d} \mathbb{P}\{\forall i \in \bar{T} : W_i \leq y_i, \exists i \in T : W_i \leq y_i\} dF^n(\mathbf{y})
$$

\n
$$
= 1 - \int_{\mathbb{R}^d} \sum_{j=1}^k (-1)^{j+1} \sum_{J \subset K : |J| = j} G_{J \cup \bar{T}}(\mathbf{y}) dF^n(\mathbf{y}) - \left(1 - \int_{\mathbb{R}^d} G_{\bar{T}}(\mathbf{y}) dF^n(\mathbf{y})\right)
$$

\n
$$
= \sum_{j=0}^k (-1)^{j+1} \sum_{J \subset T : |J| = i} \int_{\mathbb{R}^d} [1 - G_{J \cup \bar{T}}(\mathbf{y})] dF^n(\mathbf{y})
$$

\n
$$
= \sum_{j=0}^k (-1)^{j+1} \sum_{J \subset T : |J| = j} \int_{\mathbb{R}^{m+i}} [1 - G_{J \cup \bar{T}}(\mathbf{y})] dF_{J \cup \bar{T}}^n(\mathbf{y}).
$$

In view of [\[1\]](#page-9-0)[Prop 4.2] we obtain

$$
\lim_{n\to+\infty} n \int_{\mathbb{R}^{m+|J|}} [1-G_{J\cup\overline{T}}(\boldsymbol{y})] dF_{J\cup\overline{T}}^n(\boldsymbol{y}) = - \int_{\mathbb{R}^{m+|J|}} \ln Q_{J\cup\overline{T}}(\boldsymbol{y}) dH_{J\cup\overline{T}}(\boldsymbol{y}).
$$

Further by [\[1\]](#page-9-0)[Thm 2.5 and Prop 4.2]

$$
-\int_{\mathbb{R}^{m+|J|}}\ln Q_{J\cup \overline{T}}(\boldsymbol{y})dH_{J\cup \overline{T}}(\boldsymbol{y})=\mathbb{E}\bigg\{\max_{i\in J\cup \overline{T}}\frac{\mathcal{W}_i}{\mathcal{Z}_i}\bigg\}.
$$

Consequently, we have

$$
\lim_{n \to +\infty} n p_{n,T}(F,G) = \sum_{j=0}^k (-1)^{j+1} \sum_{J \subset T: |J|=j} \mathbb{E} \bigg\{ \max_{i \in J \cup \overline{T}} \frac{\mathcal{W}_i}{\mathcal{Z}_i} \bigg\}.
$$

In the light of [\[10\]](#page-10-1)[Lem 1] for given constants c_1, \ldots, c_d

$$
\sum_{j=0}^{k} (-1)^{j+1} \sum_{J \subset T: |J|=i} \max_{i \in J \cup \overline{T}} c_i = \max \Big(\max_{i \in \overline{T}} c_i, \min_{i \in T} c_i \Big) - \max_{i \in \overline{T}} c_i = \Big(\min_{i \in T} c_i - \max_{i \in \overline{T}} c_i \Big)_+
$$

implying the claim.

Alternatively, we have using again inclusion-exclusion formula

$$
p_{n,T}(F,G) = \int_{\mathbb{R}^d} \mathbb{P}\{w_i \ge M_i, i \in T, w_i < M_i, i \in \overline{T}\} dG(\mathbf{w})
$$
\n
$$
= \int_{\mathbb{R}^d} \mathbb{P}\{M_i \le w_i, i \in T\} dG(\mathbf{w}) - \int_{\mathbb{R}^d} \mathbb{P}\{M_i \le w_i, i \in T, \exists i \in \overline{T} : M_i \le w_i\} dG(\mathbf{w})
$$

$$
= \int_{\mathbb{R}^d} F_T^n(\mathbf{w}) dG_T(\mathbf{w}) - \int_{\mathbb{R}^d} \sum_{j=1}^m (-1)^{j+1} \sum_{J \subset \bar{T}: |J|=j} F_{J \cup T}^n(\mathbf{w}) dG(\mathbf{w})
$$

$$
= \sum_{j=0}^{d-k} (-1)^j \sum_{J \subset \bar{T}: |J|=j} \int_{\mathbb{R}^{k+j}} F_{J \cup T}^n(\mathbf{w}) dG_{J \cup T}(\mathbf{w}).
$$

Applying [\[1\]](#page-9-0)[Thm 2.5 and Prop 4.2] we obtain

$$
\lim_{n\to+\infty} n \int_{\mathbb{R}^{k+i}} F_{J\cup T}^n(\mathbf{y}) dG_{J\cup T}(\mathbf{y}) = \mathbb{E}\left\{\min_{i\in J\cup T} \frac{\mathcal{W}_i}{\mathcal{Z}_i}\right\}
$$

and thus

(4.4)
$$
\mu_T(H,Q) = \sum_{j=0}^{d-k} (-1)^i \sum_{J \subset \bar{T}:|J|=j} \mathbb{E} \bigg\{ \min_{i \in J \cup T} \frac{\mathcal{W}_i}{\mathcal{Z}_i} \bigg\}.
$$

By [\[10\]](#page-10-1)[Lem 1] we obtain further

$$
\mu_T(H, Q) = \mathbb{E}\bigg\{\min_{i \in T} \frac{\mathcal{W}_i}{\mathcal{Z}_i} - \min(\min_{i \in T} \frac{\mathcal{W}_i}{\mathcal{Z}_i}, \max_{i \in T} \frac{\mathcal{W}_i}{\mathcal{Z}_i})\bigg\},\
$$

hence the proof is complete. $\hfill \square$

Proof of Proposition [2.4.](#page-3-1) In view of the first equality in Equation (4.1)

$$
\mathbb{E}\left\{f(N_n)\right\} = f(0) + \sum_{k=1}^d \Delta^k f(0) \sum_{K \subset \mathcal{D}, |K| = k} \mathbb{P}\left\{\forall i \in K, W_i \ge M_{ni}\right\}.
$$

Alternatively, using the second equality in Equation [\(4.1\)](#page-6-2)

$$
\mathbb{E}\left\{f(N_n)\right\} = f(0) + \sum_{k=1}^d (-1)^{k+1} \Delta^k f(d-k) \sum_{K \subset \mathcal{D}, |K|=k} \mathbb{P}\left\{\exists i \in K, W_i \ge M_{ni}\right\}.
$$

Thus using (1.1) establishes the claim.

Proof of Proposition [2.5.](#page-4-1) Let us consider $\mathbb{P}\left\{ \left(\mathcal{W}/\mathcal{Z} \right)_{(k)} \leq x \right\} = \mathbb{P}\left\{ \text{at least k events } \left[\mathcal{W}_i/\mathcal{Z}_i \leq x \right] \text{ are realized}, i \in \mathcal{D} \right\}.$ Using the first equality in Equation [\(4.2\)](#page-6-4), for any function $g: \{1, \ldots, d\} \to \mathbb{R}$ we obtain

$$
\sum_{k=1}^{d} g(k) \mathbb{P} \left\{ (\mathcal{W}/\mathcal{Z})_{(k)} \leq x \right\} = \sum_{k=1}^{d} \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D}, |K| = k} \mathbb{P} \left\{ \forall i \in K, \mathcal{W}_i / \mathcal{Z}_i \leq x \right\}
$$

and hence letting $x \to \infty$ we have

$$
\sum_{k=1}^{d} g(k) = \sum_{k=1}^{d} \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D}, |K| = k} 1.
$$

Consequently, for any real x

$$
\sum_{k=1}^d g(k) \mathbb{P}\left\{ (\mathcal{W}/\mathcal{Z})_{(k)} > x \right\} = \sum_{k=1}^d \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D}, |K| = k} \mathbb{P}\left\{ \max_{i \in K} \mathcal{W}_i / \mathcal{Z}_i > x \right\}.
$$

By the assumptions

$$
\mathbb{E}\{\max_{1\leq i\leq d}\mathcal{W}_i/\mathcal{Z}_i\}\leq \sum_{i=1}^d\mathbb{E}\{\mathcal{W}_i/\mathcal{Z}_i\}=d,
$$

hence since $\mathcal{W}_i/\mathcal{Z}_i$'s are non-negative it follows that

$$
\sum_{k=1}^d g(k) \mathbb{E}\left\{ (\mathcal{W}/\mathcal{Z})_{(k)} \right\} = \sum_{k=1}^d \Delta^{k-1} g(1) \sum_{K \subset \mathcal{D}, |K| = k} \mathbb{E}\left\{ \max_{i \in K} \mathcal{W}_i / \mathcal{Z}_i \right\}.
$$

Finally, in order to retrieve Equation [\(2.8\)](#page-3-3), we must have for any $k \in \{1, \ldots, d\}$

$$
\Delta^{k-1} g(1) = (-1)^{k+1} \Delta^k f(d-k).
$$

Now, assuming that for all $k \in \{1, \ldots, d\}$, $g(k) = f(d-k+1) - f(d-k) = \Delta f(d-k)$, then denoting by $T = \Delta + I$ the translation operator

$$
\Delta^{k-1} g(1) = \sum_{i=0}^{k-1} {k-1 \choose i} (-1)^{k-1-i} T^{-i} \Delta f(d-1).
$$

This implies

$$
\Delta^{k-1}g(1) = (-I + T^{-1})^{k-1} \Delta f(d-1) = (-1)^{k-1} (T^{-1} (T - I))^{k-1} \Delta f(d-1).
$$

Thus, for all $k \in \{1, \ldots, d\}$ we have

$$
\Delta^{k-1}g(1) = (-1)^{k+1} \Delta^k f(d-k)
$$

and hence the claim follows. \Box

Proof of Proposition [3.1.](#page-5-0) For the first equality, since Z has unit Fréchet marginals for any $u > 0$ we have

$$
C_{\mathbf{Z}}(u,\ldots,u) = H\left(\frac{1}{-\ln u},\ldots,\frac{1}{-\ln u}\right) = \exp\left(\mathbb{E}\left\{\max_{1\leq j\leq d}\ln(u)\mathcal{W}_j\right\}\right) = u^{\mathbb{E}\left\{\max_{j\in\mathcal{D}}\mathcal{W}_j\right\}}
$$

and thus $\delta_{\mathbf{Z}}(u) = u^{r_{\mathbf{Y}}}$. Since the diagonal section of a d-dimensional Archimedean copula with parameter θ is $u^{d^{1/\theta}}$ we obtain the formula for θ . This is consistent with the fact that the Gumbel copula is an Extreme Value Copula (the only Archimedean one, see [\[19\]](#page-10-9)).

For the last equality, setting $\mathcal{W}_j = F_{\mathcal{W}_1}^{-1}(U_j)$, we get $\max_{j \in \mathcal{D}} \mathcal{W}_j = \max_{j \in \mathcal{D}} F_{\mathcal{W}_1}^{-1}(U_j)$. Assuming further that all \mathcal{W}_i 's have a common df $F_{\mathcal{W}_1}$, then $\max_{j \in \mathcal{D}} F_{\mathcal{W}_1}^{-1}(U_j) = F_{\mathcal{W}_1}^{-1}(\max_{j \in \mathcal{D}} (U_j)$. Using further

$$
\mathbb{P}\left\{\max_{j\in\mathcal{D}} U_j \le u\right\} = \mathbb{P}\left\{U_1 \le u, \dots U_d \le u\right\} = C_Y(u, \dots, u) = \delta_Y(u)
$$

we get $\mathbb{E}\left\{\max_{j\in\mathcal{D}} \mathcal{W}_j\right\} = \int_0^1 F_{\mathcal{W}_1}^{-1}(s) d\delta_Y(s).$

Acknowledgments: EH is partially supported by SNSF Grant 200021-175752/1 and PSG 1250 grant. We also thank the anonymous reviewer for very helpful comments and suggestions.

REFERENCES

- [1] E. Hashorva, "Domination of sample maxima and related extremal dependence measures," Depend. Model., vol. 6, no. 1, pp. 88–101, 2018.
- [2] L. de Haan, "A spectral representation for max-stable processes," Ann. Probab., vol. 12, no. 4, pp. 1194–1204, 1984.
- [3] A. V. Gnedin, "On a best-choice problem with dependent criteria," J. Appl. Probab., vol. 31, no. 1, pp. 221–234, 1994.
- [4] A. V. Gnedin, "Conical extremes of a multivariate sample," Journal of Research of National Institute of Standards and Technology, vol. 99, pp. 511–511, 1994.
- [5] A. V. Gnedin, "Records from a multivariate normal sample," Statist. Probab. Lett., vol. 39, no. 1, pp. 11–15, 1998.

- [6] E. Hashorva and J. Hüsler, "On asymptotics of multivariate integrals with applications to records," Stoch. Models, vol. 18, no. 1, pp. 41–69, 2002.
- [7] E. Hashorva and J. Hüsler, "Multiple maxima in multivariate samples," Statist. Probab. Lett., vol. 75, no. 1, pp. 11–17, 2005.
- [8] C. Dombry, M. Ribatet, and S. Stoev, "Probabilities of concurrent extremes," J. Amer. Statist. Assoc., vol. 113, no. 524, pp. 1565–1582, 2018.
- [9] S. Stoev and Y. Wang, "Exchangeable random partitions from max-infinitely-divisible distributions," Statist. Probab. Lett., vol. 146, pp. 50–56, 2019.
- [10] C. Dombry and M. Zott, "Multivariate records and hitting scenarios," Extremes, vol. 21, no. 2, pp. 343–361, 2018.
- [11] C. Dombry and Z. Kabluchko, "Random tessellations associated with max-stable random fields," Bernoulli, vol. 24, no. 1, pp. 30–52, 2018.
- [12] S. I. Resnick, Extreme values, regular variation, and point processes, vol. 4 of Applied Probability. A Series of the Applied Probability Trust. New York: Springer-Verlag, 1987.
- [13] J. Beirlant, Y. Goegebeur, J. Teugels, and J. Segers, Statistics of extremes. Wiley Series in Probability and Statistics, John Wiley & Sons, Ltd., Chichester, 2004.
- [14] M. Falk, J. Hüsler, and R. D. Reiss, "Laws of Small Numbers: Extremes and Rare Events," in DMV Seminar, vol. 23, Basel: Birkhäuser, third ed., 2010.
- [15] C. Dombry and M. Zott, "Multivariate records and hitting scenarios," Extremes, vol. 21, no. 2, pp. 343–361, 2018.
- [16] C. Dombry, M. Falk, and M. Zott, "On Functional Records and Champions," J. Theoret. Probab., vol. 32, no. 3, pp. 1252–1277, 2019.
- [17] A. Erdely, J. M. González-Barrios, and M. M. Hernández-Cedillo, "Frank's condition for multivariate archimedean copulas," Fuzzy Sets and Systems, vol. 240, pp. 131–136, 2014.
- [18] H. U. Gerber, Life insurance mathematics. Springer Science & Business Media, 2013.
- [19] C. Genest and L.-P. Rivest, "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, vol. 8, no. 3, pp. 207–211, 1989.

Enkelejd Hashorva, Department of Actuarial Science University of Lausanne,, UNIL-Dorigny, 1015 Lausanne, Switzerland E-mail address: Enkelejd.Hashorva@unil.ch

DIDIER RULLIÈRE, ECOLE ISFA, LSAF, UNIVERSITÉ LYON 1, 69366 LYON, FRANCE E-mail address: didier.rulliere@univ-lyon1.fr