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a b s t r a c t

Dynamical behavior of the turbulent channel flow separation induced by a wall-mounted two-
dimensional bump is studied, with an emphasis on unsteadiness characteristics of vortical motions
evolving in the separated flow. The present investigations are based on an experimental approach and
Direct Numerical Simulation (Dns). The main interests are devoted to give further insight on mean flow
properties, characteristic scales and physical mechanisms of low-frequencies unsteadiness. The study
also aims to clarify the Reynolds number effects. Results are presented for turbulent flows at moderate
Reynolds-number Reτ ranging from 125 to 730 where Reτ is based on friction velocity and channel
half-height. A large database of time-resolved two-dimensional Piv measurements is used to obtain
the velocity distributions in a region covering the entire shear layer and the flow surrounding the
bump. An examination of both high resolved velocity and wall-shear stress measurements showed
that for moderate Reynolds numbers, a separated region exists until a critical value. Under this
conditions, a thin region of reverse flow is formed above the bump and a large-scale vortical activity is
clearly observed and analyzed. Three distinct self-sustained oscillations are identified in the separated
zone. The investigation showed that the flow exhibits the shear-layer instability and vortex-shedding
type instability of the bubble. A low-frequency self-sustained oscillation associated with a flapping
phenomenon is also identified. The experimental results are further emphasized using post-processed
data from Direct Numerical Simulations, such as flow statistics and Dynamic Mode Decomposition.
Physical mechanisms associated with observed self-sustained oscillations are then suggested and
results are discussed in the light of instabilities observed in a laminar regime for the same flow
configuration.

1. Introduction

Turbulent boundary layer separation, mean flow patterns and
unsteady behavior, play an important role in a wide range of in-
dustrial applications. In this context, several research efforts have
been focused on improving current technologies of ground vehi-
cles and aircraft with a specific attention devoted to social and en-
vironmental issues. Flow separation generally causes an increase
of drag force associated with a strong lift reduction, and conse-
quently leads to significant losses of aerodynamic performances
(e.g. Joseph et al. [1] and Yang and Spedding [2]). Moreover, the
unsteadiness exhibited in turbulent boundary layer separation
(referenced as TSB ‘Turbulent Separated Bubble’’ hereafter) create
large pressure fluctuations that act as strong aerodynamic loads.

The prediction of the associated critical parameters is essential
in the vibro-acoustic design of many engineering applications.
In that respect, several attempts have been made to investigate
active flow control strategies (see Dandois et al. [3] for instance).
Despite all these efforts, major issues, related to accurate predic-
tions of the mean separation point or the understanding of the
origin of turbulent separated flow unsteadiness, are still under
debate. Consequently, the boundary layer separation prediction
as well as its control has been considered as major challenge for
years [4]. Separation process is commonly encountered in wall-
bounded flows subjected to an adverse pressure gradient or to an
abrupt geometry variation.

Many research activities have been focused on relatively sim-
ple academic configurations such as a rounded ramp [5], a bump
[6], a wall-mounted bump [7–10], a backward facing step [11] or
a thick flat plate [12,13].
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All these investigations pointed out complex flow physics
associated with TSB (i.e. a wide range of temporal and spatial
scales). In particular, recently Mollicone et al. [9] have conducted
intensive channel flow simulations with the presence of a bump
on the lower wall which produces the flow separation. The au-
thors give some insight onto the role of the different terms
in the kinetic energy budget of the mean flow. The anisotropy
of the different scales are also highlighted through the devia-
toric components of the Reynolds stresses aiming to improve
turbulence modeling for separated flows. Mollicone et al. [10] ex-
panded these analyses by trying to identify the link with coherent
structures through the generalized Kolmogorov equation (GKE).
However, a further understanding onto the role of coherent vorti-
cal motion and flow unsteadiness are not discussed by Mollicone
et al. [9] and Mollicone et al. [10].

Different unsteadiness types are generally encountered in TSB,
as shown experimentally by Cherry et al. [14] and Kiya and Sasaki
[12], for a flow over a blunt plate held normal to a uniform
stream and for a backward facing step by Eaton and Johnston
[15]. Experimental evidences of Cherry et al. [14] and Kiya and
Sasaki [12] are further confirmed numerically by Tafti and Vanka
[16]. Instabilities associated with the roll-up of the shear layer
are identified by the authors cited above. They exhibit similarities
with turbulent mixing layer experiments of Brown and Roshko
[17], who first linked the emergence of large scale spanwise-
coherent rollers with instabilities properties of the mean tur-
bulent flow. The Strouhal number for the vortex shedding is
measured by Cherry et al. [14] and Kiya and Sasaki [12] St ≈

0.6 − 0.7U∞/LR, where U∞ is the free-stream velocity and LR
is the mean recirculation length. While previous authors gave
a scaling based on LR, Sigurdson [18] suggested a characteristic
length scale associated with the bubble height for the same flow
case. As recently underlined by Marquillie et al. [19], near wall
coherent turbulent streaks (see Cossu et al. [20] for instance) may
also interact with TSB and generate vortex shedding.

It is also shown by Cherry et al. [14] and Eaton and Johnston
[15] that the separation line oscillates at a low frequency of the
order St ≈ 0.12 0.2, the so-called flapping motion. These authors
argued that the cause of the low frequency unsteadiness is an
instantaneous imbalance between the entrainment rate from the
bubble and the reinjection of fluid near the reattachment line.
Piponniau et al. [21] proposed a similar mechanism for low-
frequency unsteadiness observed in shock-induced separation for
supersonic flows. In this context, the latter authors derived a
simple model based on time averaged values of the separated
flow that seems to be consistent with experiments and numerical
simulations for both subsonic and supersonic flows. Kiya and
Sasaki [12] proposed another scenario to explain the flapping
phenomenon that is based on a pressure feedback mechanism
linked to the oscillating reattachment line. Finally, while Eaton
and Johnston [15] argued that the mechanism is mainly two-
dimensional, Tafti and Vanka [16] have shed some light on the
importance of three-dimensional effects. Hence, from this discus-
sion, it seems that there is not a consensus on the driving mech-
anism associated with the flapping motion and the characteristic
scales of the vortex shedding frequency.

Similar flow unsteadiness such as flapping phenomenon or
Kelvin–Helmholtz instabilities are also observed in a laminar
separated flow (see Dovgal et al. [22]). In particular, based on
the preliminary work of Brown and Roshko [17] who gives some
insight about similarities between laminar and turbulent large
scale structures, Marquillie and Ehrenstein [23] and Ehrenstein
and Gallaire [24] have investigated the onset of low-frequencies
unsteadiness in the case of a laminar separated flows at the
rear of a bump. For that purpose, previous authors carried out
Direct Numerical Simulations and stability analyses. One may

recall that unsteadiness in open-flows can be classified into two
main categories (see Huerre and Monkewitz [25] and Chomaz
[26] for a review).

The flow can behave as an oscillator (i.e. due to a global unsta-
ble mode) where self-sustained oscillations are observed. Or the
flow may exhibit a noise-amplifier dynamics due to convective
instabilities. In that case, the flow filters and amplifies upstream
perturbations. In this context, Ehrenstein and Gallaire [24] at-
tributed the emergence of the flapping motion to an oscillator
dynamics caused by the interference of linear Kelvin–Helmholtz
modes spatially extended in the entire bubble. Passaggia et al.
[27] provided further arguments on this mechanism by carrying
out several experiments. Nevertheless, for the case of a flat plate
separated flow, Marxen and Rist [28] pointed out the strong
influence of nonlinearities on low frequencies unsteadiness. In
addition, the latter authors suggested that flapping phenomenon
may be triggered by a forcing upstream the separated zone simi-
lar as a noise amplifier flow dynamic. The importance of the noise
amplifier mechanism to generate large scale motions in laminar
separated flows is also highlighted by Alizard et al. [29], Marquet
et al. [30] and Blackburn et al. [31]. Gallaire et al. [32], Passaggia
et al. [27] and Barkley et al. [33] have shown that initially two-
dimensional recirculation bubble can exhibit three-dimensional
resonator dynamics that triggers spanwise modulation and vortex
shedding (see Robinet [34] for a recent review). However, no
effort has been made to provide characteristic length scales and
a link with the turbulent regime.

The dynamics of a turbulent separated flow, whether behind a
hump or more generally behind a surface defect (backward-facing
step, forward-facing step, . . . ) is representative of many indus-
trial configurations. Furthermore, a large number of separated
flows are the seat of a low-frequency motions. From the discus-
sion above, low-frequency dynamics is a common characteristic
shared by many separated flow configurations for various flow
regimes (subsonic, transonic and supersonic). The objective of
this paper is to study the dynamics of a turbulent separated flow
with a particular focus on its dependence upon Reynolds number.
The latter parameter has a major impact on flow unsteadiness
because shaping the mean flow, i.e. its characteristic length scales.
We will consider hereafter the same case as the one studied
by Marquillie and Ehrenstein [23] and Passaggia et al. [27] but for
a turbulent flow, which has been not considered yet. We aim to
provide spatial and temporal characteristic scales of unsteadiness
associated with the turbulent regime and give some insight about
the underlying large scale coherent structures.

The present study will thus address some fundamental ques-
tions such as the following: how does the Reynolds-number
affect the mean separation length and turbulence statistics ? Does
turbulent separated flow at the rear of a bump exhibit similar
flow unsteadiness as those observed in other TSB cases ? What
are the spatial and temporal characteristic scales associated with
flow unsteadiness and does the flow exhibit similar coherent
structures as those found in a laminar regime?

To this purpose, high-resolution particle image velocimetry
and electrochemical experimental measurements have been con-
ducted in a separated flow at the friction Reynolds-number Reτ =

125−730. An electrochemical experimental measurement deter-
mines the limiting diffusion current at the surface of a platinum
microelectrode in order to calculate the wall bounded turbulent
flow dynamics. Three-dimensional direct numerical simulations
have also been performed in the same Reynolds number range
(Reτ = 187, 395 and 617). One may precise that no detailed quan-
titative experimental comparison to these numerical simulations
in such configuration has been made up-to-now.

The paper is thus organized as follows. The apparatus, the
experimental techniques and the flow parameters are given in



Fig. 1. 3D view of the channel setup.

Section 2. Section 3 provides a brief theoretical background of the
numerical procedure used in the present paper. Flow description
and statistics from simulation and experiments are discussed in
Section 4. Dynamics of unsteady separation, Reynolds-numbers
dependency and characteristic scales are presented in Section 5.
Concluding perspectives and remarks are given in Section 6.

2. Flow configuration, methods and experimental conditions

The aim of this section is to provide the flow characteristics
and present the experimental techniques used to obtain the sets
of data. The x-coordinate is referred as the streamwise direc-
tion (pointing downstream), y-coordinate as the cross-stream
(upward) and z-coordinate as the spanwise direction. The crest
of the bump is taken as the origin of the coordinate system.
Instantaneous, ensemble-averaged and fluctuating horizontal and
vertical velocity components are denoted by u, v, U , V , u′, and
v′, respectively. The Reynolds number considered hereafter is
based on the friction velocity uτ , the half-height H , the kinematic
velocity ν, and is noted Reτ = uτ .H/ν (obtained at x⋆

= −6).

2.1. Facility and test model

The experimental investigations are conducted in the small
hydrodynamic re-circulating water channel of Lamih (Laboratory
of Industrial and Human Automation control, Mechanical en-
gineering and Computer Science). Bottom and sides walls (see
Fig. 1) are made in Perspex R⃝ with a minimum number of support
braces to maximize optical access. It was originally designed
to study wall turbulence phenomena [35]. To control the free-
stream velocity, flow is powered by water pumps coupled to a
Dc motor drive. The test section has a full height of 2H (20 mm)
and it operates at a moderate velocity range with a low free
stream turbulence intensity (the contraction ratio is up to 1:30).
The spanwise dimension of the channel is 150 mm, providing a
7.5 : 1 channel aspect ratio. As sketched in Fig. 1, the flow is
tripped at the channel inlet using thin rods (1 mm diameter).
For more details about the present experimental apparatus, see
Keirsbulck et al. [35]. Boundary layer separation is induced by
placing a smooth bump on the bottom wall of the test section
at a distance L = 1250 mm from the channel inlet. The geometry
(shown in Fig. 2) was originally designed by Dassault Aviation
to reproduce, for turbulent flows, the pressure gradient of a wing
with short attack angle representative of aeronautical industrial
applications [7]. The same geometry was considered recently
in the numerical investigation of Laval et al. [36] and in the
experimental investigation of Passaggia et al. [27]. The bump,
used in the present investigation, has a height h = 6.7 mm and a
characteristic length of 10h. The bump extends over each channel
sidewalls in the spanwise direction.

Fig. 2. Test section containing the two-dimensional bump geometry and the
Piv fields of interest. The symbol ⋆ denotes the half height normalization. η

represents the direction of the local outward normal of the surface and ς the
tangential direction.

2.2. Measurement techniques

The unsteady separation process and its associated instability
mechanism are known to be sensitive to small perturbations.
Therefore, in order to preserve the flow physics, all the ex-
perimental techniques employed in the present study are non-
intrusive.

Velocity time-series measurements are carried out with a laser
Doppler anemometry (Lda) system, mounted on a traverse device.
The system consist of the fiberoptic-based optics and its electron-
ics (Dantec Flowlite). Due to a solid wall close to the channel,
a back-scatter orientation is used. Signal processing is performed
via a Dantec Bsa Flow software. For all optical techniques, the
liquid is seeded with micron-size Iriodin1 particles with mean
particle diameters on the order of 10–15 µm, with a Stokes
number Stk (defined as the ratio of the characteristic time of
the particles, τp to a characteristic time of the turbulent flow,
τf ) approximatively in the range from 0.001 to 0.01. Further-
more, the relaxation time of the particles it is defined as: τp =

(ρp − ρf )d2p/(18µf ) where µf is the water dynamic viscosity, ρp,
ρf respectively the particle and the water densities and dp the
mean particle diameter. Concerning the characteristic time of the
flow, defined as: τf = ηf /Uc where ηf is an estimation of the
Kolmogorov scale and Uc the convection velocity estimated to be
equal respectively to 0.001H and 10% of the free-stream velocity.
As a consequence, the flow tracer fidelity in our particle image
velocimetry experiments are acceptable since response time of
the particles to the motion of the fluid is reasonably short to
accurately follow the flow. The velocity profiles are measured at
several locations along the test section during 5 min at each point
of the profile. Spectral analysis of velocity signals is performed to
uncover organized flow structures and determine their charac-
teristics. In this particular case, the associate velocity time-series
measurements are carried out with a longer time of 1 h each.

For quantitative flow visualization measurements, both a time-
resolved and spatial-resolved Piv systems are used. Two different
Piv setups are used in the present study. Both fields of view
are illustrated in Fig. 2, the ⋆ symbol will denote hereafter the
half height normalization. The cameras are located on the side
of the bump. The same particles are used for the Piv and the
Lda measurements. The time-resolved setup is used to resolve
the dynamic of unsteady vortices induced in the separation area,
while the other setup increases the field of view in order to
capture the near-wall phenomena with a good spatial resolution.
The time-resolved system consists of a Quantronix Darwin-Duo
operating at 528 nm with two-cavities laser and a 12 bit Imager
Phantom v641 Cmos camera. The camera is able to operate in a
single-frame mode with a frame rate of 1450 Hz at full resolution
(2560 × 1600 pixels). The laser beam is collimated and then
expanded into an approximately 0.5 mm in thickness sheet.

1 Pigments sold by Merck Corporation.



The images are recorded at 1450 frames per second in order to
have a sufficient temporal resolution to resolve the unsteady vor-
tices dynamic. This set consists of 3000 instantaneous realizations
over a period of 2.07 s. The field of view is 12 × 45 mm2 covering
the entire channel height. The velocity vectors are calculated
using an adaptive correlation with 32 × 32 pixels interrogation
windows and a 50% overlap leading to a spatial resolution of
0.02H. A local median method, included in the Piv software, is
employed to eliminate outliers. A 3 × 3 median filter is also
used to smooth the vector fields in order to define the vortical
structures in the separated area. An other Piv system was used
to obtain a more spatially resolved velocity fields using a larger
Ccd camera. In this setup, the light sheet is provided by a double-
pulsed Nd-Yag laser Quantel Bslt220 with a 12 bit Imager Pow-
erview 16m camera at the full resolution of 4864 × 3232 pixels.
In those measurements, the data consist of ensembles of 1500
realizations recorded at 1 Hz. The field of view is 20 × 50 mm2

covering the full separation area. At the final stage, the interro-
gation window size was set to 16 × 16 pixels, corresponding to a
spatial resolution of 0.08 mm (0.008 H). The relative uncertainties
on the mean velocity and on the fluctuation velocity can be
estimated respectively to 0.2% and 2% of the free stream velocity.

This study also focuses on the ability of the electrochem-
ical method (see [37] for a thorough review) to analyze the
wall-shear stress fluctuation distribution on the bump surface.
The experimental method determines the limiting diffusion cur-
rent at the surface of a platinum microelectrode and it was
adapted to study the wall bounded turbulent flow dynamics
[35]. The wall-shear stress is experimentally determined using an
array of two-segment electrodiffusion microelectrodes (100 µm×

500 µm) placed at different positions above the bump surface
(reported in Table 1). The segments are oriented with the longer
side perpendicular to the mean flow direction. The two probe seg-
ments (introduced by Son and Hanratty [38]) are able to measure
the magnitude of wall shear rate, detect the existence of near-
wall flow reversal [39,40] and estimate the wall-shear rate signals
close the reattachment point [41]. The electrolytic solution used
in the present study is a mixture of ferri-ferrocyanide of potas-
sium (10 mol/m3) and potassium sulphate (240 mol/m3). The
limiting diffusion current is converted to voltage using a Keith-
ley 6514 system electrometer, and acquired using a 12 bit A/d
converter from an acquisition system Graphtec Gl1000. Wall-
shear stress time-series measurements are sampled at 1 kHz
using a 500 Hz low-pass anti-aliasing filter during 1 h each. For
high-frequency fluctuations of the wall shear rate, the filtering
effect of the concentration boundary layer reduces the mass
transfer rate fluctuations enabling the use of the linearization the-
ory [42–44]. For an accurate evaluation of the relative wall-shear
stress fluctuation, the dynamic behavior can be corrected using
the inverse method. This technique is a diffusion–convection
equation developed by Mao and Hanratty [45], its methodology
for heat transfer problems can be found in literature [46–49]. In
our case, the inverse method, based on a sequential estimation
ensures a sufficiently good frequency response (above 500 Hz) to
resolve dominant frequency peaks and wall-shear stress statistics.

2.3. Flow conditions

In order to define the inflow conditions, experimental velocity
measurements were recorded; using Lda, at an unperturbed up-
stream position of x⋆

= −6 (we recall that x⋆ is associated with
quantities non-dimensionalized by H and the origin is taken at
the crest of the bump). Profiles of the streamwise velocity as a
function of the wall-normal coordinate are presented in Fig. 3
for a range of Reynolds number from 125 to 730. The profiles
obtained, specially at a Reynolds number of Reτ = 605, agree well
with the Dns results from [36], denoted in Fig. 3 with dashed line.
The parameters of the upstream velocity profiles are presented in
Table 2.

Table 1
Flush-mounted micro-electrodes locations against the Reynolds number based
on the friction velocity. LR denotes the separate length and x⋆ denotes the probes
positions normalized by the half height.
x⋆ 0.22 0.52 0.62 0.72 0.92 1.03 1.12 1.32 1.42 1.52

Reτ x/LR
125 0.07 0.17 0.21 0.24 0.31 0.34 0.38 0.44 0.48 0.51
165 0.10 0.23 0.27 0.31 0.40 0.44 0.49 0.57 0.62 0.66
255 0.13 0.30 0.35 0.41 0.53 0.58 0.64 0.75 0.81 0.87
375 0.18 0.43 0.52 0.60 0.77 0.85 0.93 1.10 1.18 1.27

Fig. 3. Profiles of the streamwise velocity against the wall-normal coordinate
for various Reynolds-numbers. Dashed line represents Dns results of [36] at
Reτ = 617.

3. Numerical method and theoretical background

3.1. Numerical procedure

Direct numerical simulations (Dns) of converging–diverging
channels have been performed, with the exact same geometry,
for three Reynolds numbers using the code Mflops3d devel-
oped by Lml. The parameters of the Dns are given in Table 3.
The algorithm used for solving the incompressible Navier–Stokes
equations is similar to the one described in Marquillie et al.
[7]. To take into account the complex geometry of the physical
domain, the partial differential operators are transformed using
mapping, which has the property of following a profile at the
lower wall with a flat surface at the upper wall. Applying this
mapping to the momentum and divergence equations, the mod-
ified system in the computational coordinates has to be solved
in the transformed Cartesian geometry. The three-dimensional
Navier–Stokes equations are discretized using respectively eight
and fourth orders centered finite differences for the first and
second order derivatives in the streamwise x-direction. A pseudo-
spectral Chebyshev-collocation method is used in the wall normal
y-direction. The spanwise z-direction is assumed periodic and is
discretized using a spectral Fourier expansion. The resulting 2d-
Poisson equations are solved in parallel using Mpi library. Implicit
second-order backward Euler differencing is used for time inte-
gration, the Cartesian part of the diffusion term is taken implicitly
whereas the nonlinear and metric terms (due to the mapping)
are evaluated using an explicit second-order Adams–Bashforth
scheme. In order to ensure a divergence-free velocity field, a
fractional-step method has been adapted to the present formula-
tion of the Navier–Stokes system with coordinate transformation.
In order to ensure a divergence-free velocity field a fractional-
step method has been adapted to the present formulation of
the Navier–Stokes system with coordinate transformation. The



Table 2
Mean-flow parameters. The subscript c and b referred to quantities based on the
centerline and on the bulk velocity.
Uc (m s−1) Ub (m s−1) uτ (m s−1) Reb (Ub × H/ν) Reτ Cfb × 103 Symbols

0.26 0.21 0.0144 3652 125 9.40 •
0.36 0.29 0.0190 5010 165 8.70 ◦
0.56 0.48 0.0295 8330 255 7.59
0.72 0.62 0.0370 10765 320 7.09
0.88 0.76 0.0430 13265 375 6.38
1.02 0.89 0.0505 15600 440 6.34
1.16 1.01 0.0565 17565 500 6.26
1.32 1.15 0.0640 20090 555 6.14
1.45 1.30 0.0695 22575 605 5.74
1.61 1.43 0.0760 24870 660 5.65
1.79 1.59 0.0837 27650 730 5.54

Table 3
Dns parameters: uτ is the friction velocity, Ub is the bulk velocity, Lx & Ly &
Lz are domain size in streamwise, vertical and spanwise directions, Nx & Ny &
Nz are the number of grid points in the corresponding directions and x∗ is the
streamwise coordinate of the inlet.
Reτ uτ Ub Lx Ly Lz Nx Ny Nz x∗

187 0.0576 0.913 4π 2 2π 768 129 384 −5.21
395 0.0501 0.907 4π 2 π 1536 257 384 −3.67
617 0.0494 0.905 4π 2 π 2304 385 576 −5.21

Table 4
Separation points x∗

s , reattachment points x∗
r and separation lengths L∗

R for
experimental and Dns results.
Experimental data Dns data

Reτ L∗

R x∗
s x∗

r Reτ L∗

R x∗
s x∗

r

165 2.388 0.564 2.952 187 2.917 0.538 3.455
375 1.198 0.510 1.708 395 1.187 0.565 1.752
605 0.764 0.500 1.364 617 0.838 0.547 1.385

metric of the Poisson equation for the pressure correction is taken
explicitly and, in practice, few iterations are necessary to recover
a pressure correction up to the second order in time which is
the overall accuracy of the time marching algorithm. A constant
advection condition Uc based on the bulk velocity is used for
the outlet and inlet are generated from precursor Dns or highly
resolved Les of flat channel flows at Reynolds number equivalent
to each Dns of converging–diverging channels. The two boundary
conditions only affect the property of the flow in very limited
region far from the region of interest.

The inlets are generated from flat channel flows Dns at Reynolds
number equivalent to each Dns of converging–diverging channels
except for the medium Reynolds number case for which the
precursor simulation was a highly resolved Les which does not
affect the turbulence statistics in the region of interest subjected
to pressure gradient Marquillie et al. [7] and Laval et al. [36].

4. Baseline mean flow description and statistical behavior

It is known, from various experiments [23,24,32], that the
separation bubble intermittently changes shape and size with the
flapping of the shear layer and strongly depends on the flow
regime. In order to establish the characteristics of the separated
flow in the channel, we analyze the statistical behavior associated
with the velocity fields and the wall shear-stress along the bump
at the middle plane of the channel. In this section, numerical and
experimental description of flow patterns, such as the separation
length or the vorticity thickness, are extracted and compared to
the numerical predictions.

4.1. Velocity fields and separation length

The recirculation zone, also referred as the separation bubble,
is primarily dominated by a large two-dimensional vortex with a
low circulation velocity. In order to visualize the baseline separate
flow fields, Fig. 4 shows the normalized mean streamwise velocity
U/Ub for both experiments and direct numerical simulations. To
have a validation of the numerical data, a comparison between
experimental measurements (mean velocity contours from Piv at
Reτ = 165, 375 and 605) and numerical simulations (Dns for
Reynolds number Reτ = 187, 395 and 617) was done. The domain
that is considered −0.3 < x⋆ < 4.5 and 0 < y⋆ < 2 is the
same for both the experiments and simulations. Values of the
separation lengths LR, separation point xs and reattachment point
xr for both the numerical and experimental data can be found
in Table 4. High levels of mean streamwise velocity distributions
are nearby the bump crest. Furthermore, for Reτ = 165/187, the
shear layer extends from the bump crest (x⋆

= 0) to x⋆
≈ 4.

This value significantly decreases for Reτ = 375/395 and Reτ =

605/617, extending downstream the bump crest up to x⋆
≈ 2

and x⋆
≈ 1.5, respectively. The shear layers associated with the

latter are significantly thicker than those at Reτ = 165/187.
The location and length of the shear layers for both simulation
and experiment are similar, except for Reτ = 165/187 where
a slight difference occurs probably due to spanwise confinement
effects [50]. These similarities reveal a good agreement for mean
flow properties associated with the recirculation region between
experiments and Dns. The separation length (LR) is plotted in
Fig. 5 for all the Reynolds-numbers studied in the present paper,
including those from previous numerical investigations (Schiavo
et al. [51]).

As already mentioned, it is crucial to predict if a separation
exists considering the Reynolds number and the nature of the
flow. For that, two cases are observed: no separation (not rep-
resented herein) and a separation with reattachment over the
bump surface. The recirculation zone behind the bump can be
extracted from velocity measurements. The separation length
decreases up to an estimated critical value close to Reτ = 1200.
Marquillie et al. [7] observed that, for Reτ = 395 and Reτ = 617,
the turbulent flow slightly separates on the profile at the lower
curved wall and is at the onset of separation at the opposite flat
wall (but keeping a positive minimum friction velocity of the
order of 0.001 and 0.0015 respectively). The slowing down of the
opposite wall is also noticed for the present experiment for all
the Reynolds numbers studied (see Fig. 4). This confirms a close
agreement between the numerical and experimental results and
an accurate prediction of the separation bubble. The presence
of a negative level of the mean tangential component of the
velocity distribution (Uς ), in the vicinity of the bump surface,
highlights the presence of a separation bubble caused by adverse
pressure gradients. The development of the normalized mean



Fig. 4. Contour plots of normalized streamwise velocity (U/Ub): (a) Piv at Reτ = 165; (b) Dns at Reτ = 187; (c) Piv at Reτ = 375; (d) Dns at Reτ = 395; (e) Piv at
Reτ = 605; (f) Dns at Reτ = 617. Black arrows denote the separation points and white arrows the reattachment points. Dashed lines denote the separation bubbles
for all the cases presented.

Fig. 5. Normalized separation length, L⋆
R , plotted against Reτ . Cross diamond

symbols represent the present Dns data and cross square symbols represent the
Les data from [51]. The uncertainty interval of LR based on the Piv uncertainty
is equal to L⋆

R = ±0.1.

tangential component at the channel centerline (z⋆
= 0) for

Reτ = 165/187 can be seen in Fig. 6. The profiles are scaled
by the bulk velocity. The direction of the local outward normal
of the surface (η) is normalized by the separation length. Two
main features can be observed in the mean velocity profiles: the
development of the recirculation area over the bump surface and
the shear-layer generated by the bump crest on the profiles near
the wall (see Fig. 4). Once more, similar patterns are observed
for both experiment and simulation. The negative level close to
the wall depicts a large recirculation area for Reτ = 165/187. This
area decreases for higher Reynolds-numbers (see Fig. 4). Fig. 4 (a)
and (b) show a similar normalized flow profiles in the separation
area, even though the separation length is not exactly at the same
position along the bump.

The free shear layer plays an important role in the dynam-
ics of the separated bubble, since the interaction of large eddy

structures with the wall in the reattachment region are formed
upstream this area. Therefore, it is worth analyzing the stream-
wise evolution of the shear layer characteristics. The growth
of the separated shear layer may be described by the vorticity
thickness, δω , as defined by Brown and Roshko [17] and given by:

δω(x) = max
η

( ∆Uς

∂Uς/∂η

)
, (1)

where ∆Uς is the difference between the maximum
wall-tangential velocity on the high speed side of the shear layer,
Uςmax, and the minimum wall-tangential velocity on the low
speed side, Uςmin. η denotes the direction of the local outward
normal of the wall. Upstream the reattachment point ((x −

xs)/LR < 1), Uςmin reaches negative values in the reverse-flow
region and Uςmax increases over the bulk velocity, Ub, up to 50%
(see Fig. 6). Two regions are evidenced in the streamwise evolu-
tion of the vorticity thickness, seen in Fig. 6, for the experimental
data (Reτ = 165) and numerical simulations (Reτ = 187, 375
and 617). Note that the experimental extraction of the vorticity
thickness, for Reynolds numbers higher than Reτ = 165, is not
possible with a satisfying accuracy due to the narrow thickness of
the shear layer. The first region is located between (x−xs)/LR = 0
and 0.4 where the growth of the mixing layer is exponential as
predicted by linear stability theory in the case of planar mixing
layers. The second one ((x−xs)/LR > 0.4), evidenced in Fig. 6 and
obtained from our experimental data, is wider and characterized
by a nearly linear rate dδω/dx = 0.17−0.275. The value obtained
with the lowest Reynolds number is higher than those observed
in classical planar mixing layer where the growth rate was equal
to 0.17 ([52]). For (x − xs)/LR ≈ 1, the shear layer is affected
by the reattachment process and the vorticity thickness reaches
a maximum value before it strongly decreases. This result is in
accordance with the observations of Cherry et al. [14] (see Fig. 8).

In order to validate the Dns results, a comparison, shown in
Fig. 7, between experiment and numerical statistics is done and



Fig. 6. Normalized mean tangential component Uς at the channel symmetry plane (z⋆
= 0) against η/LR . The direction of the local outward normal of the surface

for Reτ = 165/187. The inset plot is the normalized vorticity thickness against (x − xs)/LR , xs denotes the separation abscissa. # represent experimental data for
Reτ = 165. Lines represent numerical data (solid line; Reτ = 617, short-dashed lines; Reτ = 395 and medium-dashed lines; Reτ = 187).

Fig. 7. Contour plots of normalized streamwise r.m.s. velocity (urms/uτ ): (a) Piv at Reτ = 165; (b) Dns at Reτ = 187; (c) Piv at Reτ = 375; (d) Dns at Reτ = 395; (e)
Piv at Reτ = 605; (f) Dns at Reτ = 617.

focus on the normalized streamwise r.m.s. velocity fluctuations
for three equivalent Reynolds numbers i.e. Reτ = 165/187,
375/395 and 605/617. A global agreement can be observed be-
tween the experiments and the numerical results. The location of
the highest r.m.s values for the three Reynolds number is denotes
in Fig. 7 by a white cross symbol. For Reτ = 165/187, the peak
locations and magnitudes for the simulation and the experiment
agree well. However, at Reτ = 375/395 and Reτ = 605/617, the
peaks are correctly located, but the magnitudes at the vicinity
of the bump surface are lower for the experiments than for the
simulations. This is due to the limited resolution of Piv with
respect to the smallest coherent structures. A detailed analysis
of the vortices in 2d planes of the Dns at the largest Reynolds
number (Reτ = 617) has been performed. Both experiments and
Dns exhibit the same general behavior for fluctuations. At Reτ =

605/617, the separation area is significantly shorter and thicker
than at Reτ = 165/187 while the overall form of the distribution

Fig. 8. Distribution of the ratio ∆PIV /η for Reτ = 605/617.

at Reτ = 165/187 is similar to that at the higher Reynolds-
number. The loci of the r.m.s. maxima has moved upstream from
x⋆

= 2.5 up to x⋆
= 1.3 for Reτ = 605/617.



Fig. 9. Skin friction coefficient over the bump surface plotted against x⋆ for three Reynolds-numbers (numerical and experimental dataset). Relative intensity of the
wall shear-stress fluctuations are also plotted against x⋆ . τ0 denotes the mean wall shear stress evaluate at x⋆

= −6. ◦ Reτ = 165, Reτ = 375 and Reτ = 605.
Lines represent numerical data (solid line; Reτ = 617, short-dashed lines; Reτ = 395 and medium-dashed lines; Reτ = 187).

4.2. Behavior of the wall-shear stress statistics

The mean skin friction coefficient over the bump surface is
plotted against x⋆ in Fig. 9 for Reτ = 165, 375 and 605. This
figure includes also Dns results at Reτ = 187, 395 and 617
for comparison purposes. Statistical values are deduced from
the wall-shear stress time histories using the electrochemical
technique at the streamwise locations defined in Table 1. The
mean skin friction obtained from experimental data agrees with
the simulation. Measurements confirm the high value of the skin
friction coefficient before the crest region. The separation region
is also underlined by secondary peaks values observed from the
Dns data just after the bump crest at x⋆

= 2.3, 1.4 and 1.2,
for Reτ = 165/187, 375/395 and 605/617 respectively. These
peaks correspond to the maximum values of the streamwise
r.m.s. velocity denoted by cross symbols in Fig. 7. Moreover, the
present results show a strong Reynolds number dependence and
a trend toward a constant value, indicating that the flow reaches
equilibrium conditions.

In order to quantify the near wall unsteadiness, the r.m.s. wall-
shear stress above the bump is analyzed. The relative intensity of
the wall-shear stress fluctuations over the bump surface, given
in the inset of Fig. 9, is reported against x⋆ for experimental and
numerical data. Despite a slight shift of the friction coefficient
in the separation region, the latter figure shows that the exper-
imental results agree well with the numerical simulations. This
minor difference is due to the limiting experimental frequency
responses of the electrochemical technique, that are not able to
reproduce correctly the high unsteadiness levels occurring at the
reverse flow region. Low fluctuations of the wall-shear stress are
observed before the separation. These fluctuations increase at the
separation region and remains high until x⋆

≃ 6 for the lower
Reynolds numbers. Strong secondary peaks of the mean bulk
skin friction coefficient, previously mentioned, coincide with the
minimal values of the relative intensity of the wall-shear stress
fluctuations.

5. Study of the dynamics of separated turbulent flow

5.1. Shedding and non-linear interactions of shear layer eddies

In order to enhance the dominant scales, for each region of the
flow, and to investigate the characteristic frequencies embedded
in the unsteady separated flow fields, we perform spectral anal-
ysis at various locations along the bump for different Reynolds

numbers. Power spectra densities (P.s.d) of the vertical fluctu-
ating velocity component are sensitive to instability phenomena
associated with spanwise structures. Therefore, we use P.s.d of
the vertical velocity component in order to investigate the de-
velopment of shear layer instabilities. P.s.d are computed using
the Welch method with a Hamming window, an overlap of 75%
and an acquisition time of 1 h each. Normalized P.s.d for various
representative locations are presented in a logarithmic scale in
Fig. 10a for the streamwise stations inside the separation area.
For Reτ = 165, the frequency distribution exhibits a broadband
hump phenomenon, denotes by a + symbol in figure Fig. 10a. In
particular, the humps are shifted toward lower frequencies when
probes locations are moved from x/LR = 0.43 to x/LR = 1.52. For
1.5 < x < 1.8, the humps are centered around a fixed frequency.
When rescaled by the bump height and for Reynolds numbers
ranging from 125 to 255, the fundamental frequency is St ≈ 0.2
(where the centerline velocity Uc is considered) of the same order
than the vortex shedding phenomenon reported in the literature
for various flow configurations (Sigurdson [18]). For Reτ > 320,
Fig. 10b shows that the humps are broader and less defined than
those obtained for lower Reynolds numbers. These observations
indicate that the shape and motion of vortices becomes more
irregular for higher Reynolds numbers (i.e. the vortex-shedding
acts in broadband frequency).

A sequence of characteristic snapshots of the spanwise com-
ponent of the fluctuating vorticity ωz from time-resolved Piv
measurements is shown Fig. 11 for Reτ = 125. The local fluc-
tuating vorticity is used herein to identify vortices in the flow
field and to show that the main dominant large structures are de-
formed, sheared, broken, and periodically transported along the
shear layer. This figure illustrates the development and the spatial
organization of the vortex-shedding from the shear layer. The
negative fluctuating spanwise vorticity corresponds to clockwise
rotation of the vortices, as the positive fluctuations correspond
to the counter-clockwise rotation. For this Reynolds number,
Reτ = 125, the propagating vortices are nearly circular with a
radius of approximately H/2 stretching into elliptical shapes fur-
ther downstream. This phenomenon is also previously observed
by Mollicone et al. [10].

The fluctuating spanwise vorticity field, shown in Fig. 11(a–
e), consists of alternate regions of positive and negative values.
A vortex structure convection without self-interaction but with
a strong collective interaction [52] can be observed. A region of
high vorticity inside the shear layer shows that the structures re-
main dissociated during a cycle. White circles represent the cores



Fig. 10. Power spectral densities (P.s.d) of the vertical fluctuating velocity component, v′ , (a) at various x/LR location along to the shear layer and at an elevation
corresponding to the maximum of the velocity gradient locations for Reτ = 165 (b) at x/LR ≈ 1.5 for various Reynolds numbers. h/UC is used in order to normalize
the frequency and P.s.d are plotted with arbitrary reference scale. Measurements are obtained from the laser Doppler anemometry. The + symbol denotes the
evolution of spectral emergences against the dimensionless probe positions. Measurements are obtained from the laser Doppler anemometry.

Fig. 11. Two samples of the fluctuating vorticity field from the Tr-Piv at Reτ = 125 showing different phases of the same shear layer vortex without (a to e) and
with (f to j) self-interacting. Time steps follow from top to bottom and the normalized time interval between snapshot is ∆t.Ub/h = 0.0216. Arbitrary scale. #
denotes dominant vorticity centers. The two vortices cores pointed out have a clockwise rotation.

of the propagating vortices for different consecutive time instants.
The vortex core is defined as the position of the maximum mag-
nitude of the spanwise vorticity. These cores are initially located
closer to the centerline of the shear layer. The lines connecting
the vortex cores correspond to a typical path followed by the shed

vortices. The relatively uniform spacing between vortex cores
is attributed to an almost constant vortex shedding frequency,
which also confirms that the vortex-shedding moves with a con-
stant convection velocity. The general features of unsteady events
depicted in Fig. 11 are repetitive. However, some features, such as



the period, the vortex size and shape and the self-interaction, vary
substantially from one structure to the next. An example of coher-
ent structures interaction is illustrated in Fig. 11(f–j). Based on the
mechanism observed previously, it is expected that the identified
vortices (with clockwise rotation) convect without further inter-
action. But, in this case, the vortex-shedding, which is driven by
the low frequency oscillation, subsequently diverges away. This
behavior is due to the reverse flow moving toward the wall lead-
ing, in this particular case, to a merging of the coherent structures
with the vortex development just downstream the shear layer.
This phenomenon occurs more often when the Reynolds number
increases and can explain the broadband behavior of the shedding
for higher Reynolds numbers.

5.2. Low-frequency flapping

The influence of the mean recirculation region onto the low-
frequency dynamics was identified in a very recent study carried
out by [53], for the shock/wave turbulent boundary layer inter-
action. In particular, the authors investigated the linear global
stability of the mean flow obtained by LES. They found low
frequency modes that are strongly localized in the recirculation
area and exhibit close correspondence with the breathing of
the bubble observed in the LES. In this context, the influence
of the recirculation zone onto the low frequency motions is of
major interest in the study of turbulent separated flows. Here-
after, we investigate low-frequency dynamics (flapping motion)
in the light of weighted power spectrum density of the wall-shear
stress and characteristic scales of the mean separated flow. In
Fig. 12, weighted power spectral density distribution are shown
for several distances x/LR and Reynolds-number (Reτ = 125, 165,
255 and 375). The hump, obtained by the power spectra of the
normal fluctuating velocities in the shear-layer, correspond to the
frequency of shear-layer vortices. However, other humps can be
found at values lower than those obtained from the shear-layer
vortices frequency. These humps, underlined by plus symbols in
Fig. 12, are clearly observed until x/LR ≈ 0.6. For higher distances,
x/LR > 1, the peaks seem to merge and disappear. As mentioned
previously, when the distance from the bump crest increase, the
frequency range, associated to the shear-layer vortices, moves
toward lower values. This deviation can be seen by the dashed-
lines in Fig. 12. In contrast to the high-frequency shear-layer
vortices, the low frequency humps are centered at a constant
frequency St = 0.12 (denoted by vertical dashed-lines in Fig. 12).
This characteristic frequency is consistent with those obtained in
previous experimental studies ([14] and [12]) and corresponds to
the flapping of the shear-layer. The low flapping frequencies and
shear-layer vortices appear to be confined near the bump crest
region.

In figure 12, we observe that the humps associated with both
flapping motion and vortex shedding phenomenon emerge for
probes localized in the recirculation region for 125 < Reτ <

375. The humps flatten as the probes are moved away from
the region associated with mean separation. This characteristic
curve is in agreement with the measurements observed in a sepa-
rated bubble for a backward-facing step configuration [54]. These
broadband humps are less visible compared to a laminar flow
regime, where it is easier to detect the phenomena (see Passaggia
et al. [27]).

The broadband humps, which is characteristic of the flow
spectra in the shear layers, vanishes downstream the shear layer.
In the light of the present findings, the presence of flapping in this
flow regime has not been detected before. Indeed, in the present
study, the flapping could not be detected in the velocity spectra
but it is revealed only in the wall shear stress spectra.

To give some insight about the driving mechanism and its link
with mean flow properties, we use the model derived by Pipon-
niau et al. [21]. The latter model suggests an universal parameter
St/g(r) ≈ [5 − 6] with:

g(r) =
δ′
w

2
2(1 − r)
1 + r

(
(1 − r)C +

r
2

)
where δ′

w is the spreading rate of the mixing layer and r is the
reverse flow intensity. These values are associated with the two-
dimensional mean flow. In particular, Piponniau et al. [21] argue
that g(r) is a universal function relying on classical similarity
properties of plane mixing layer. As underlined by Piponniau
et al. [21], C is fixed to 0.14. In the latter expression, we neglect
compressibility effects. When using mean quantities associated
with DNS database for Reτ = 165, 395 and 617 we obtain for
St/g(r) values that are comprised between 4.75 and 5.4 for St =

0.12. Hence, it may suggest that the two-dimensional mechanism
proposed by Piponniau et al. [21] that relies on an instantaneous
imbalance between the entrainment rate from the bubble and the
reinjection of fluid near the reattachment line is also the driving
process of the flapping phenomenon for a separated flow behind
a bump.

5.3. Modal decomposition: Dmd analysis

In the previous section, the analysis of experimental data, to
calculate the weighted power spectrum density of the wall-shear
stress fluctuations, has shown two main points. First, the spec-
trum is broadband, reflecting highly turbulent activity. Second,
the two frequency ranges are statistically favored: the first one
at low frequency, St ∼ 0.1, corresponding to a flapping dynamics
and the second one, St ∼ 2, mainly linked to the dynamics
of the shear-layer generated by the separated boundary-layer
downstream of the bump. The study of the dynamics of these
two particular frequency ranges and in particularly the link be-
tween the frequency and the spatial location of the associated
mode can allow us to better understand the different physical
mechanisms involved. Several modal decompositions can be used
for this investigation, the most well known being the Proper
Orthogonal Decomposition (Pod). The Pod allows to order modes
by level of decreasing energy. However this is not our objective
here because a frequency decomposition is more natural when
we want to compare with experiments. Recently Rowley et al.
[55] and Schmid [56] proposed a Dynamics Modal Decomposition
(Dmd) which has the advantage to be a frequency modal decom-
position easily accessible (see Appendix for a deeply study of this
technique). The advantage of the Dmd, relative to other frequency
decomposition such as for example Fourier decomposition, is to
better grasp the real physical mechanisms, in particular for tran-
sient or non-equilibrium phenomena. The Dmd can be used with
both experimental and numerical data. The main constraint is to
have access to sufficiently time-resolved data. In the present case,
experimental data is well resolved temporally over a long time,
but poorly resolved in space, when the Dns data is well resolved
both in space and time but limited to a short integration time. The
objective is to characterize the spatial nature of the disturbance
for a given frequency, this is why the Dmd analysis is performed
on Dns data. This implies that only the medium frequencies are
available, flapping phenomenon is then unresolved. The Dmd
analysis was conducted only for the case with a Reynolds number
Reτ = 617.

The computational domain for Dmd analysis is linked to the
bump in local coordinates system (xb/LR, yb/LR, zb/LR) and shown
in Fig. 13 by a red rectangular box. The lengths of the domain
are: (Lxb , Lyb , Lzb )/LR = (3.31, 0.5, π/2). The computational grid
is a regular mesh of Nxb × Nyb × Nzb = 250 × 75 × 235 points.



Fig. 12. Weighted power spectrum density of the wall-shear stress fluctuations at various Reynolds-number against the distance x/LR . + and × symbols denotes the
spectrum peaks. The vertical dashed line shows the normalized low-frequency 0,12 and the inclined dashed lines denotes the evolution of the secondary spectrum
peaks. Measurements are obtained from the electrochemical method.

Fig. 13. Computational domain for Dmd analysis. (x/LR; y/LR) are the global
coordinates. (xb/LR; yb/LR) are the local coordinates linked to the bump.

The Dmd modes are processed as follows: (i) the numerical data
initially given in global coordinates system (x/LR, y/LR, z/LR) are
interpolated in Dmd grid (xb/LR, yb/LR, zb/LR). (ii) The velocity
component (u, v, w) are decomposed into u = u∥ + u⊥ where u∥

and u⊥ are the parallel and perpendicular velocity components
to the direction of the mean flow U respectively. These two
components are given by:

u∥ =

(
u · U

)
∥U∥2

U and u⊥ = u − u∥.

(iii) The Dmd analysis was performed in the referential (xb, yb, zb)
then projected in the referential (x, y, z). Details of the method
are summarized in Appendix. The Dmd analysis is based on a
sequence of Ns = 930 snapshots of the velocity field sampled at
a constant sampling period ∆ts = 0.06. Preliminary tests have
shown that these parameters (∆ts,Ns) are able to converge fairly
well the frequency range [0.1; 10].

Fig. 14-(Left) depicts the eigenspectrum of the approximate
Koopman eigenvalues λj. Almost all eigenvalues lie on the unit
circle, indicating that the dynamics is statistically stationary and
well converged. Fig. 14-(Right) shows the kinetic energy of each
mode with respect to the associated Strouhal number St (in a
logarithmic scale). The turbulent nature of the flow generates a
continuous field of peaks ranging from high to low frequencies.
This result is in good agreement with the Psd analysis previously
discussed. In the previous sections, the analysis of temporal sig-
nals from the Dns has shown that there is a range of frequencies
around St ∼ 2 where the dynamic implies coherent structures
related to the shear-layer. As this frequency range is well resolved
by the Dmd analysis, it is thus possible to extract the Dmd mode

Fig. 14. (Left): Spectrum of the Dynamic Mode Decomposition. (Right): The
normalized kinetic energy norm versus the Strouhal number. Reτ = 617.

Fig. 15. The Dmd mode for St = 2 computed from the flow around the bump,
illustrated using two opposite contours of the perpendicular velocity component
u⊥ .

for this particular frequency. Fig. 15 depicts the spatial distribu-
tion of the Dmd mode for St = 2 and for the wall normal velocity
component. The velocity field of the Dmd mode is clearly related
to a Kelvin–Helmholtz mode with a parallel wavelength of about
1/4LR. It is found that despite a fully turbulent flow upstream



Fig. 16. Evolution of the perpendicular component of velocity of the (K–H) mode
for a Strouhal number St = 2 over one period T .

of the bump, the K–H mode is almost two-dimensional in the
first part of the separated zone. In this area, the mode is spatially
amplified. Further downstream, the K–H mode quickly loses its
two-dimensional nature and complex three-dimensional struc-
tures are observed that quickly lose their coherence. As shown in
the next section (Fig. 17), this zone is characterized by a vortex-
shedding phenomenon where the frequency no longer evolves
with the streamwise direction. The frequency of vortex-shedding
is determined by the value of the frequency of the K–H mode
when the vortex-shedding starts. This abscissa where the K–H
modes are released depends on the frequency. The higher is the
frequency, the earlier the vortex-shedding phenomenon starts. In
order to clearly identify the nature of the modes in the first part of
the separated zone, the computation of the convection velocity of
these modes has been achieved. Fig. 16 shows the evolution of the
Kelvin–Helmholtz mode at St = 2 over one period T . To improve
the coherence of the mode, the velocity field has been previously
averaged in z direction. The advection velocity of the structures
is closed to Uc/2, which corresponds perfectly to the convection
velocity of shear-layer instabilities observed in the literature.

One may also remark some similarities between the modes
obtained by the Dmd analysis carried out in the present study for
a turbulent flow and the global modes computed by Ehrenstein
and Gallaire [24] in a laminar regime for the same flow case.
It suggests the persistence of such instabilities in the turbulent
regime.

6. Conclusion and final remarks

The present analysis combining numerical and experimen-
tal approaches aimed to deeply understand how the Reynolds-
number affects the mean separation length and how the turbulent
regime may change flow unsteadiness characteristics. The re-
sults indicated that, for turbulent flows, the frequency range
is the typical combination of flapping phenomenon and shear-
layer instabilities. High-resolution Piv and electrochemical mea-
surements have been conducted in a Reynolds-number range of
125–730. These results were compared to direct numerical simu-
lations, at similar Reynolds numbers (Reτ = 187, 395, 617). Flow
baseline statistics from both simulations and experiments were
compared in order to validate the Dns prediction. The velocity
fields along the bump were analyzed and showed the existence
of a separated region, clearly observed for moderate Reynolds
numbers. A deep analysis of self-sustained oscillations and con-
vective instabilities of the shear-layer was also addressed. Two
high frequency shear layer instabilities, shedding phenomena and
K–H oscillations, and one low-frequency, flapping motion, are
identified. Both Psd of vertical velocity component and wall shear
stress were used to investigate unsteadiness of the separate shear
layer. It showed that characteristic frequencies detected for low

Reynolds numbers and classically observed in the literature, still
exist for high Reynolds numbers. A peak at the fundamental
frequency corroborated the existence of shedding of the shear
layer vortices. Weighted power spectrum density of the wall-
shear stress fluctuations were computed to investigate the near
wall unsteadiness. Flapping frequencies could only be detected in
the wall shear stress spectra, and appeared to be confined near
the crest bump region. Results showed a broadband spectrum and
two frequency ranges statistically being favored. This broad band
peak can be explained by the non-periodic self-interacting vortex
pairing phenomena; observed from the Tr-Piv measurements.

Considering the substantial variation of flow characteristics
within the investigated range of Reynolds numbers, a length
scale, linked to the separation length flapping phenomenon, as
opposed to a geometric model dimension, would be more ap-
propriate. Frequency peaks, extracted from Figs. 10 & 12 for
all the Reynolds-numbers, as a function of x/LR are plotted in
Fig. 17. For this case, the flapping exhibits a nearly constant
normalized low-frequency of St = 0.12. Variations of Reynolds-
number influence the instability. For values of St around 2, the
shear-layer vortex frequencies decrease due to the shear-layer
instabilities and are strongly dependent of the Reynolds-number.
Investigation on both experimental and numerical data did not
yield to provide suitable scaling for the shear-layer instabilities,
because the very restricted region where the phenomena occurs,
for high Reynolds numbers, is difficult to analyze. However, in
our case, the frequency of this phenomena can be scaled by
the vorticity thickness. This scaling led to a same dimensionless
frequency value f δω/UC ≈ 0.1±0.02 for the three lower Reynolds
numbers, but the latter is lower compared to those classically
obtained in the literature. We propose the bump height, H , as
an alternative length scale for the shedding scaling. The variation
of the resulting universal normalized frequency fh/Uc is shown
in the upset of Fig. 17 . This scaling dramatically reduces the
variation of the scaled vortex shedding frequency. A summary of
the experimental results obtained in the present study is reported
in Fig. 17. In fact, despite a minor scatter, the data collapse into
a universal normalized frequency of about fh/Uc ≈ 0.2, which is
in good agreement with that reported in the literature.

From these analyses, it appears that unsteadiness observed
for the same configuration in the laminar regime by Passaggia
et al. [27] are also detected in the turbulent regime. Nevertheless,
some discrepancies exist. For instance, the flapping phenomenon
is of the order St = 0.12 in the turbulent regime. When con-
sidering the laminar case studied by Passaggia et al. [27] we
obtained St ≈ 0.5 which is significantly higher. It suggests that
a different mechanism as the one proposed by Gallaire et al.
[32] occurs in the turbulent regime. In addition, the good agree-
ment between dimensionless frequency derived from the model
given by Piponniau et al. [21] and results provided by the same
authors gave some confidence that a two-dimensional mecha-
nism based on fluid entrainment along the mixing layer is also
active for this configuration. The latter mechanism generates low-
frequency motions associated with successive contractions and
expansions of the recirculation zone.

It should be also consistent with the recent numerical study
carried out by Mollicone et al. [10] based on the DNS database
of Mollicone et al. [9] for a similar configuration. The previous
authors through the Generalized Kolmogorov equation GKE give
further support onto a strong correlation between vortical struc-
ture developing onto the shear layer and the recirculation region.
As underlined by Mollicone et al. [10], these coherent motions are
trapped by the recirculation region while being advected in the
bubble. They may eventually disappear and reform again at the
top of the recirculation area.

Dmd analysis was conducted for one numerical data set (Reτ =

617) to characterize the spatial nature of the disturbances. Results



Fig. 17. Normalized frequencies peaks plotted against the distance from the separation location above the bump surface. The significant peaks are extracted from
the wall-shear stress and from the velocity spectra. H denotes here the bump height.

from Dmd analysis clearly highlighted the coherent shear-layer
instability phenomenon, similarly as the one observed in the
laminar regime by Gallaire et al. [32] that it provides strong
evidence of the persistence of such instabilities in the turbulent
regime. Furthermore, the convection speed observed from Dns
database is consistent with experimental observations.

Until now, the present study is the first one to deeply explore
unsteadiness presented in a turbulent flow regime and demon-
strates the persistence of such phenomena even for high Reynolds
numbers. This paper opens the way for an harmonic forcing flow
control based on the modulation of the studied coherent motions.
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Appendix. Dynamic modal decomposition (Dmd)

The modal decomposition of fluid dynamics is a frequently
employed technique, capable of providing tools for studying dom-
inant and coherent structures in turbulent flows. The coherent
structures represent spatially or temporally evolving vortical mo-
tions, either growing with one rate, oscillating with one frequency
or containing the largest possible kinetic energy. A complex tur-
bulent flow often consists of a superposition of such coherent
structures, whose development is responsible for the bulk mass,
energy transfer or hydrodynamic instability. Dmd is a data-driven
computational technique capable of extracting dynamical infor-
mation from flow fields measured in physical experiments or
generated by direct numerical simulations. Dmd is a powerful
method of spectral decomposition, built to represent statistically
recurring and transients events. The Dmd modes are extracted
from the data snapshots and a unique frequency is associated to
each mode.

The coherent features of turbulent separated bubble (Tsb)
behind the bump are identified by modal decomposition tech-

niques in order to describe the underlying mechanism of Tsb. An
advantage of modal decomposition is the possibility to reduce the
large scale dynamics to a fewer number of degrees of freedom. To
extract the coherent motion from a given dataset, we consider
a sequence of m discretized and equi-distributed velocity fields
uj = u(xi, tj) ∈ Rn, tj = j∆t , j = 0, 1, . . . ,m − 1 as

Um = [u0, u1, . . . , um−1] ∈ Rn×m, (A.1)

where n is the total number of degrees of freedom at one time
instant (number of grid points multiplied by the number of ve-
locity components). This number is usually large compared to the
number of snapshots m in the flow problem, n ≫ m. In modal
decomposition, the flow dynamics is splitted into space and time
dependent parts as

u
(
xi, tj

)
=

m−1∑
k=0

φk (xi) ak
(
tj
)
, (A.2)

where φk(xi), k = 0, . . . ,m − 1 is spatial basis (the modes)
and ak = ak(tj) are temporal coefficients (amplitudes). This
decomposition is not unique and depends on the choice of the
base φk. In dynamic mode decomposition (Dmd), the snapshots
are generated by a dynamical system. It is possible, without ex-
plicit knowledge of the evolution operator, to extract frequencies,
growth rates, and their related spatial structures. Dmd splits the
flow into different spatial modes at a given frequency. Rowley
et al. [55] present the theoretical framework to compute the
Koopman decomposition from a finite sequence of snapshots.
Schmid [56] provides a more stable method to compute dynamic
modes: the Dmd algorithm. To compute this decomposition, a
sufficiently long, but finite time series of snapshots is considered.
A time-evolving physical situation may be approximated by the
action of a linear operator to the flow field uj such that

u
(
xi, tj+1

)
= uj+1 = eÃ∆tuj = Auj, (A.3)

where A = eÃ∆t is the evolution operator. It is then possible to
write

u
(
xi, tj

)
=

m−1∑
k=0

φk (xi) ak
(
tj
)

=

m−1∑
k=0

φk (xi) eiωkj∆t
=

m−1∑
k=0

φk (xi) λ
j
k,

(A.4)



where iωk and λk are the eigenvalues of the matrices Ã and A,
respectively, and the φk are the corresponding eigenvectors. The
relation linking the eigenvalues λk and the more familiar complex
frequencies iωk is

λk = eiωk∆t

It is then possible to write φk = vkdk where vT
kMvk = 1. We

define dk as the amplitude and d2k as the energy of the dynamic
mode φk.
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