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Abstract

In this work we present an a posteriori high-order �nite volume scheme for

the computation of compressible turbulent �ows. An automatic dissipation

adjustment (ADA) method is combined with the a posteriori paradigm, in

order to obtain an implicit subgrid scale model and preserve the stability of

the numerical method. Thus, the numerical scheme is designed to increase

the dissipation in the control volumes where the �ow is under-resolved, and

to decrease the dissipation in those cells where there is excessive dissipation.

This is achieved by adding a multiplicative factor to the dissipative part of

the numerical �ux. In order to keep the stability of the numerical scheme,

the a posteriori approach is used. It allows to increase the dissipation quickly

in cells near shocks if required, ensuring the stability of the scheme. Some

numerical tests are performed to highlight the accuracy and robustness of
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the proposed numerical scheme.

Keywords: High-order methods, Compressible �ows, Computational Fluid

Dynamics, Implicit Large Eddy Simulation, A posteriori shock capturing

1. Introduction

Compressible turbulent �ows are important in many scienti�c and en-

gineering applications, such as scramjet propulsion, supersonic aircraft de-

sign, high-temperature reactive �ows, inertial con�nement fusion, and star-

forming clouds in galaxies. In turbulent �ows of engineering interest, it is

not suitable to simulate the complete range of scales that are present in the

�ow, since the number of degrees of freedom of turbulence grows with the

Reynolds number faster than O(Re11/4) [1]. This huge number of degrees of

freedom, is far out of the possibilities of computation using current comput-

ers and this situation is expected to continue, at least, for the next decades.

In this context, Large Eddy Simulation (LES) is the most suitable approach

for the computation of these �ows. However, the numerical simulation of

compressible turbulent �ows is a very challenging task, due to the complex-

ity of the involved physical processes. Since LES simulations do not solve

the complete range of scales of the �ow, the e�ect of the unresolved scales

should be adequately modeled in order to get the most accurate solution on

a given grid. This is the reason for the existence of the so-called subgrid

scale (SGS) models. The development of SGS models is a very active area

of research. However, most of the subgrid models existing in the literature

have been developed for incompressible �ows, and they do not account for

the intermodal energy transfer which takes place in compressible turbulence
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[1]. The physical mechanism driving this transfer is completely di�erent to

the corresponding one to the interscale energy transfer, which is the basis of

SGS models for incompressible �ows. Yet another problem of the simulation

of turbulent compressible �ows is the possible presence of shocks, that makes

mandatory the use of stabilization methods, which may introduce additional

dissipation [2, 3, 4]. Thus, the main issue is how to introduce the right

amount of numerical dissipation for stabilization with minimal interference

in vortical dynamics. Moreover, the accuracy of a LES computation does not

depend on only one aspect, but it is also dependent on the combination and

coupling of several factors, as the discretization scheme (time and spatial),

the resolution and quality of the grid and the SGS model (if used). In particu-

lar, the dissipation of the numerical scheme is a key feature that determines if

a given numerical method is suitable for LES computations. In this context,

Implicit Large Eddy Simulation (ILES) proposes to use the truncation error

of discretization schemes for modeling the e�ect of subgrid scales on resolved

scales [5, 6, 7, 8, 9]. Thus, in ILES computations, the numerical scheme

plays implicitly the role of the SGS model. However, not all the schemes

are suitable for ILES computations [10]. Standard second-order schemes are

over-dissipative, and thus, they are not well suited for LES (nor ILES) com-

putations. Higher-order approximations are an alternative [11, 12, 13, 14],

but a number of authors have noted that the discretization scheme needs

to be designed speci�cally for ILES in order to obtain better results than

explicit SGS models [15]. In [16, 17], in the framework of the Adaptive Lo-

cal Deconvolution Method (ALDM), the numerical viscosity of the method

is optimized in order to minimize the di�erence with the spectral eddy vis-
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cosity of Eddy Damped Quasi-Normal Markovian (EDQNM) theory. Other

approaches have also been presented in the literature for DNS and LES com-

putations. Hybrid schemes that blend a high order non-dissipative scheme

and high order shock-capturing have been developed based on the di�erent

nature of turbulence and shock waves [18]. A shock sensor based on vorticity

and dilatation is used for switching to one of the di�erent schemes. Yet a

di�erent approach is to use a non-dissipative scheme as a base scheme and

then a post-processing step to nonlinearly �ltering the solution by a dissipa-

tive portion of a high-order shock-capturing scheme with a local �ow sensor

[19, 20, 21].

Finite volumes (FV) are the most commonly used methods for the simu-

lation of compressible �ows. These methods are based on the use of Riemann

solvers [22]. In this context, the Roe scheme[23] is one of the numerical �uxes

which is most widely used for compressible �ow computations. If some cor-

rections are included in the original formulation [4, 24, 25], it is also suitable

for low Mach computations.

In a number of contributions [26, 27], self-adaptive upwind methods are

proposed to reduce the dissipation introduced by the Roe scheme as much

as possible. In [28] an Automatic Dissipation Adjustment method (ADA)

for low Mach computations using the LMRoe scheme was presented. In this

method, the energy ratio (ER) criteria [29] is used to automatically adjust

the amount of viscosity introduced by the numerical �ux. In this work,

we aim to extend the ADA method for the computation of compressible

�ows with shock waves. In order to address the problem of stabilization due

to shocks we propose to use the a posteriori paradigm [30, 31]. The ER
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criteria adjusts the dissipation in the smooth zones of the �ow, whereas the

a posteriori paradigm preserves the stability by increasing the dissipation if

the computations fail or spurious oscillations appear. Thus, in this work, we

determine numerically if the scheme should introduce more dissipation or not,

avoiding the use of speci�c sensors to discern between turbulent �uctuations

or shocks. The results obtained show a great accuracy improvement in terms

of the distribution of energy in the wavenumber spectrum as well as in the

decay of kinetic energy, and thermodynamic variables. The only constraint

of the numerical �ux in order to apply the proposed methodology is that it

must be possible to write the �ux as a sum of a central part and a dissipation

part. In this work we show the applicability of the proposed methodology to

the numerical �uxes of Roe and Rusanov.

Note that in this work we have used a numerical scheme which is third-

order of accuracy in space and in time. Most of the state-of-the-art methods

for DNS and LES present a higher order of accuracy [18, 21, 32, 33]. More-

over, most of these methods are developed for structured grids. However,

in industrial applications of compressible CFD, second or third order �nite

volume methods are the standard. One of the objectives of this work is

to show that using the proposed methodology with a third-order scheme it

is possible to obtain results comparable to those obtained using very high-

order schemes. In particular, we will show that using the proposed scheme

the physics of the turbulent decay phenomena is reproduced.

The paper is structured as follows. In section 2 the governing equations

are presented. In section 3 the formulation of the proposed methodology is

exposed, and in section 4 some numerical tests are presented to show the ac-
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curacy and robustness of the proposed methodology. Finally, the conclusions

are drawn.

2. Governing equations

The 3D Navier-Stokes equations written in non-dimensional variables and

expressed in conservative form read as

∂UUU

∂τ
+
∂FFF x

∂x
+
∂FFF y

∂y
+
∂FFF z

∂z
=

1

Re

[
∂FFF V

x

∂x
+
∂FFF V

y

∂y
+
∂FFF V

z

∂z

]
(1)

with

UUU =



ρ

ρu

ρv

ρw

ρE


FFF x =



ρu

ρu2 + p

ρuv

ρuw

ρuH


FFF y =



ρv

ρuv

ρv2 + p

ρvw

ρvH


FFF z =



ρw

ρuw

ρvw

ρw2 + p

ρwH


(2)

FFF V
x =



0

τxx

τxy

τxz

uτxx + vτxy + wτxz − qx


FFF V
y =



0

τxy

τyy

τyz

uτxy + vτyy + wτyz − qy


(3)

FFF V
z =



0

τxz

τyz

τzz

uτxz + vτyz + wτzz − qz
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ρE = ρe+
1

2
ρ (vvv · vvv) (4)

H = E +
p

ρ
(5)

where ρ is the density, vvv = (u, v, w) is the velocity, µ is the e�ective viscosity

of the �uid, H is the enthalpy, E is the total energy, e is the internal energy

and ρ is the density. The viscous stress tensor is de�ned as

τxx = 2µ
∂u

∂x
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
τyy = 2µ

∂v

∂y
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
τzz = 2µ

∂w

∂z
− 2

3
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)
(6)

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
τxz = µ

(
∂u

∂z
+
∂w

∂x

)
τyz = µ

(
∂v

∂z
+
∂w

∂y

)
Using this form of the equations, the important �ow parameters are the

Reynolds number (Re) and the Mach number (Ma). In order to determine

the pressure and temperature we use the following non-dimensional ideal-gas

EOS

p = (γ − 1)ρe = RρT (7)

where R = 1/(γMa
2) is the non-dimensional gas constant, with γ = cp/cv.

The speed of sound is computed as c =
√
γp/ρ. We assume that the viscosity

depends on the temperature following a power law

µ(T ) = T 0.75 (8)
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Thermal �ux qqq = (qx, qy, qz), is computed using Fourier's law

qx = −λ∂T
∂x

qy = −λ∂T
∂y

qz = −λ∂T
∂z

(9)

where λ is the non-dimensional thermal conductivity de�ned as

λ =
µ(T )

(γ − 1)Ma
2Pr

(10)

We have used a value of the Prandtl number Pr = 0.72. Note that no

explicit SGS model is used throughout this work.

3. Numerical method

In this work we propose a new methodology for the computation of com-

pressible turbulent �ows. The new methodology is based on two key aspects.

On one hand, the Automatic Dissipation Adjustment (ADA) model [28] that

automatically adjust the amount of numerical dissipation following a cri-

terium based on the Energy Ratio [29]. On the other hand, the a posteriori

paradigm [30, 31] which allow us to identify the problematic points where

the numerical viscosity is not large enough to avoid oscillations. It is impor-

tant to remark that the ADA method adjusts the numerical dissipation as an

implicit SGS model [28], whereas the a posteriori approach ensures the sta-

bility of the numerical method. In all the computations of the present work,

the third-order FV-MLS method [34, 35, 36, 37], and we have applied the

proposed methodology to both Roe [23] and Rusanov [38] numerical �uxes.

However, the proposed methodology is applicable to any other numerical

method based on Riemann solvers provided that the numerical �ux could be

written combining central di�erencing of the non-linear inviscid �uxes with

a smoothing term.
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The integral form of the Navier-Stokes system (1) for each control volume

I is

∫
ΩI

∂UUU

∂t
dΩ +

∫
ΓI

(
FFFH +FFFV

)
· nnn dΓ =

∫
ΩI

SSS dΩ (11)

where ΩI is the volume of the control volume, ΓI is the area of the control

volume cells and nnn = (nx, ny, nz)
T is the unitary exterior normal of the con-

tour. UUU is the vector of variables, FFFH = (Fx, Fy, Fz) and FFFV = (F V
x , F

V
y , F

V
z )

is the viscous �ux vector.

Equation (11) can be written in semi-discrete form as

∫
ΩI

∂UUUh

∂t
dΩ +

∫
ΓI

ΘΘΘ(uuuhb+,uuuhb−) dΓ +

∫
ΓI

FFFhV · nnn dΓ =

∫
ΩI

SSS(uuuh) dΩ (12)

where ΘΘΘ(uuuhb+,uuuhb−) is a suitable numerical �ux, and + and − refers to the

left and right states of the cell I.

In this work we use an explicit Runge-Kutta (RK) schemes for time in-

tegration, as indicated in section 4.

3.1. Automatic Dissipation Adjustment method

The ADA method was recently developed as an implicit SGS model, and

it was applied for the computation of low mach �ows [28]. It is based on the

local Energy Ratio (ER) introduced by Tantikul and Domaradzki [29] in the

context of the Truncated Navier-Stokes (TNS) procedure [39]. In this work,

we aim to extend its range of application to all range of Mach number �ows.

The ADA method uses a multiplicative coe�cient to the dissipation part

of the numerical �ux of the Riemann solver. For example, in the case of the
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numerical �ux of Roe, it can be written as a central �ux plus a dissipation

part as

ΘΘΘij =
1

2
(FFFhH+ +FFFhH−) · nnn− 1

2

4∑
k=1

α̃k|λ̃k|r̃rrk (13)

In equation (13) ΘΘΘij is the numerical �ux at the interface between cells i

and j, λ̃k and r̃rrk are the eigenvalues and eigenvectors of the approximated

Jacobian [23], and αk are the wave strengths. For the sake of brevity, we

refer the interested reader to [23, 40] for �nding the analytic expressions of

these quantities.

Thus, we introduce a coe�cient ε to adjust the dissipation added by the

numerical �ux

ΘΘΘij =
1

2
(FFFhH+ +FFFhH−) · nnn− 1

2
εij

4∑
k=1

α̃k|λ̃k|r̃rrk (14)

This technique can be applied to any other Riemann solver if it can be

expressed as a sum of a central �ux plus a dissipation part. In this work,

we also apply the proposed algorithm to the numerical �ux of Rusanov [38].

The expression used for this numerical �ux is

ΘΘΘij =
1

2
(FFFhH+ +FFFhH−) · nnn− εij

1

2
S+∆(UUU) (15)

with

S+ = max(|vvv+|+ c+, |vvv−|+ c−) (16)

In equation (16) c is the sound velocity and |vvv| is the modulus of the velocity

vector at integration point and ∆(UUU) = (UUU+ −UUU−).

Such approach to reduce the dissipation of the Riemann solver has been

proposed by several authors [26, 27]. The key idea of the ADA method is to

link the reduction of the dissipation part with the Energy Ratio (ER) [29]
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ER =

3∑
i=1

(ui − ũi)2

3∑
i=1

(ui − ûi)2

(17)

In equation (17), ui is the velocity �eld obtained as a result of the compu-

tations to solve the Navier-Stokes equation on a given grid using the Riemann

solver. Moreover, ũi and ûi are two �ltered velocity �elds, obtained through

�ltering of ui using a low-pass �lter with di�erent widths. Thus, in equation

(17) ũi and ûi are obtained using a di�erent �lter width.

In this work we propose a modi�cation for compressible �ows, by includ-

ing the e�ect of density �uctuations. Thus, we compute the energy ratio as

follows

ER =

3∑
i=1

(ρiui − ρ̃iui)2

3∑
i=1

(ρiui − ρ̂iui)2

(18)

Di�erently from what is performed in [28, 29, 41] where a top-hat �lter

is used, in this work we use Moving Least Squares (MLS) based �lters. We

refer the reader to [42, 43] for a complete description of these �lters. Here,

we only comment that a MLS approximation of a variable can be seen as a

low-pass �ltering of the variable. This can be written, for a given variable Φ,

as

ΦI =
n∑
j=1

Nj(xxx)Φj (19)

where n is the number of neighbors of the stencil of cell I, and we use the
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notation Φ to indicate a �ltered variable. In equation (19) NNNT (xxx) are the

MLS shape functions, which are computed as exposed in [34]. To compute

the MLS shape functions we de�ne anm-dimensional basis, which in this case

is de�ned as pppT (xxx) = (1, x, y, z, x2, y2, z2, xy, ...) ∈ Rm. Then, the MLS-shape

funtions are de�ned as [34]

NNNT (xxx) = pppT (xxx)MMM−1(xxx)PPP (xxx)WWW (xxx) (20)

where PPP = [pppT (xjxjxj)]j, is a m × ni matrix where the basis functions are eval-

uated at each point of the stencil, and MMM(xxx) is the m ×m moment matrix

given by

MMM(xxx) = PPP (xxx)WWW (xxx)PPP T (xxx). (21)

The kernel function WWW determines the properties of the �lter, required

in the computation of NNNT (xxx). We have chosen to use an exponential kernel,

de�ned as [43]

W (x, x∗, κx) =
e−( sc)

2

− e−( dmc )
2

1− e−( dmc )
2 (22)

with s = |xj − x∗|, dm = max (|xj − x∗|), with j = 1, . . . , nx∗ , c = dm
2κ
, x is

the position of every cell centroid of the stencil and κ is a shape parameter.

As stated in equation (18) ER can be seen as a ratio of the spatial high-

frequency components of the velocity �eld for two di�erent �lters. Here,

when the ER has a value larger than 0.55, it is considered that there is

excessive energy at small scales of the �ow, which should be dissipated. When

this happens, ε is increased. When ER is smaller than 0.5 the dissipation

introduced by the numerical �ux is excessive, and ε is reduced. It is important
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to remark that we have chosen di�erent values to de�ne the range of ER than

those presented in [28]. The reason is that we have used di�erent �lters than

those presented in previous works. However, it is important to note that it

is possible to get similar results using another con�guration of the �lters if

an adequate ER interval is found, since the range of validity is completely

dependent of the �lter chosen [44]. Here, we use two di�erent MLS �lters to

compute ER. One �lter with parameters κ = 4 for the computation of ρ̃iui

and other with κ = 3 to compute ρ̂iui. The transfer function of these �lters

is plotted in �gure 1.

0 0.5 1 1.5 2 2.5 3
−0.5

0

0.5

1

SF

κ =3

κ =4

wavenumber

Figure 1: Transfer function (SF ) of the MLS �lter for di�erent values of κ.
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In order to automatically adjust the parameter, we follow the rule pro-

posed in [28]


ER < 0.5, ε = max[(ε− φ), 0]

ER > 0.55, ε = min[(ε+ φ), 1]

0.5 ≤ ER ≤ 0.55, ε does not change

(23)

Here, a value of φ = 0.05 is used, to adjust the value of ε continuously

and gradually. In order to keep the conservative character of the numerical

scheme, we have to ensure a single value of the ε coe�cient at the interface

between cells i and j. In order to ensure the robustness of the numerical

scheme, it is de�ned as

εij = max[εi, εj] (24)

It is important to remark that, when applied to non-smooth �ows, this

method alone may lead to spurious oscillations and eventually to the crash

of computations, since the reduced viscosity may not be enough to stabilize

the computations near shocks. In order to extend the applicability of this

method to turbulent compressible �ows, we propose to combine the ADA

method with the a posteriori paradigm [30, 31]. This will be addressed in

the next section.

3.2. The a posteriori paradigm

The use of the ADA method in the framework of compressible �ow is

problematic, since the algorithm of equation (23) may not be fast enough

to introduce dissipation in the presence of a shock wave. Moreover, in the
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context of high-order methods, even a value of ε = 1 could be not enough for

stabilization since high-order schemes are not monotonic. Thus, a method-

ology for stabilizing the computations is required if shocks appear in the

solution, but with the minimum interference to the ADA method. In this

work we adapt the a posteriori paradigm [30, 31] to the computation of com-

pressible turbulent �ows with the ADA method.

The main idea of this approach is to compute, each step of time inte-

gration algorithm, the cell averaged values using the most accurate available

scheme. This solution is called candidate solution. Then, we use a chain of

di�erent criteria to evaluate if the candidate solution is admissible or not.

In this context, admissible means that it gives positive densities and pres-

sures, and that the level of unphysical oscillations is low. In the original

version of this methodology [30] an iterative scheme was proposed for reduc-

ing progressively and locally the order of the numerical scheme, recomputing

the solution and evaluating again if the solution is admissible. This evalua-

tion/order reduction procedure is performed until the solution is considered

admissible or the numerical scheme reaches �rst-order, which always gives

admissible solutions. This procedure is called Multidimensional Optimal Or-

der Detection (MOOD) [30, 31]. In the following we expose the adapted

procedure proposed in this work.

3.2.1. A posteriori detection

Once the candidate solution is computed, the following chain of detectors

is used

Physical Admissible Detector (PAD)[30]: This detector checks if

15



the candidate solution has positive density and positive pressure. Thus,

if the candidate solution has negative values of pressure and/or density

in a cell, or even a NaN value, this cell is marked as not good and is

recomputed again using a lower order scheme.

Numerical Admissible Detector (NAD) [45]: It is a relaxed ver-

sion of the Discrete Maximum Principle (DMP)[30]. It checks if the

solution is monotonic and new local extrema is not created.

min
y∈Vi

(Un (y))− δ 6 U∗(x) 6 max
y∈Vi

(Un (y)) + δ (25)

In equation (25) superscript n indicates the previous Runge-Kutta step,

and U∗(x) is the candidate solution. The δ parameter allows a certain level

of tolerance, and it is de�ned as in [45]

δ = max

(
10−4, 10−3 ·

(
max
y∈Vi

(Un (y))−min
y∈Vi

(Un (y))

))
(26)

Equation (25) expresses the fact that the representation of the candidate

solution in a cell must remain between the minimum and the maximum values

of the solution at the previous time step in the considered set. The small

number delta in (25) is a parameter used to relax the discrete maximum

principle. It is de�ned in (26), in a way to allow the candidate solution to

exceed the extrema only by a small fraction of the total jump of the variable

considered.

Thus, in order to keep a high accuracy when dealing with smooth extrema,

very small undershoots and overshoots are allowed. If the condition expressed

in equation (25) is veri�ed, the solution is considered as admissible.
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Note that in order to work with this formulation, all the variables in

equation (26) should be normalized with an adequate reference value to get

a value between 0 and 1. In the original formulation [30, 31, 45] the set Vi
represents the set of �rst neighbors of the point x. However, in this work Vi is

de�ned as the stencil used by MLS approximations [34, 35, 36]. This is based

on the ideas presented in [3] in the context of slope limiters. The full�llment

of the NAD condition implies that the candidate value remains between the

local minimum and the local maximum of the previous time step. In all of

the examples of this work, the NAD is checked only in one variable (density

or energy), but it could be applied to the full vector of conservative variables

as suggested by [31].

If one cell does not verify the PAD criteria, it is marked and recomputed

with a �rst-order scheme and ε is set to ε = 1. If the cell does not verify

the NAD criteria, the cell is recomputed using a �rst-order scheme. For

these cells, the use of ε = 1, even though is a possible choice, will lead to an

excessive dissipation. So we have to de�ne a more accurate value for ε. One

possibility is to keep the value of ε given by the ADA method. However, if

there are strong shocks in the problem, the stability of the numerical scheme

is not guaranteed. In order to solve this problem, the value of ε is chosen

according to the strength of the shock detected. In order to determine the

strength of the shock, we compute the shock strength parameter (F ) proposed

in [46], de�ned in terms of the pressure ratio y = pL
pR

as

F =
1

4

(
y + 2 +

1

y

)
(27)

An alternative is to use the density ratio s = ρL
ρR

instead of the pressure
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ratio. In this case, F is de�ned as [46]

F =
1
2
γ2/(γ2 − 1)− 1

2

N − 1
2

(28)

where N is

N =
(1 + µ)2

2µ

s

(1 + s)2
(29)

with µ = γ+1
γ−1

.

Using these de�nitions, the parameter F varies in [1,∞). Once the

strength of the shock is determined using the F parameter, a value of εshock

for this cell is computed as follows.

We de�ne the value of ε to vary following an hyperbolic tangent as

εshock =
1

2

(
1 + tanh

(
F − F0

l0

))
(30)

In this work, the values of F0 = 1.01 and l0 = 0.0085 are used. A plot

of this curve is shown in �gure 2. It is observed the fast increase of the

value of epsilon which ensures stability for the computations. Note that the

choice of these parameters determines the minimum value of ε and also the

strength of the shock for which the scheme recovers the full dissipation. All

the numerical examples of this work have been computed using these values

of F0 and l0.

To summarize, for a given cell i where the NAD is activated, we de�ne

εNAD = max(εshock, εADA) (31)

where εADA refers to the value given by the ADA algorithm as explained in

previous sections.

The complete algorithm is schematically shown in �gure 3.
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Figure 2: Value of εshock in terms of the shock strength parameter F [46]
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solution

ADA
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Figure 3: Schematic representation of the proposed algorithm.

Note that in the practical application of this methodology, only the de-

tected cells have to be recomputed [30, 31] once the candidate solution has

been checked.
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4. Numerical tests

In this section we test the proposed approach for the resolution of under-

resolved turbulent �ows in an Implicit LES approach. First we address two

1D problems in order to show that the modi�cation of the dissipation does

not introduce dispersion errors. All the examples are solved using a third-

order FV-MLS method [13, 14]. In all of the numerical examples presented

here we have used a third-order TVD Runge-Kutta scheme [47] for time

integration.

4.1. One-dimensional tests

In this section we test the proposed methodology in two one-dimensional

tests, in order to study if the proposed approach is stable. First we test

the one-dimensional advection equation, and then, the 1D Euler equations

are solved for several test cases. These test cases with Euler equations are

intended to test the robustness of the proposed scheme when dealing with

discontinuities. Note that due to the con�guration of these tests cases for

the Euler equation, it is not expected to obtain a remarkable improvement

in accuracy with the adaptive viscosity method. This is due to the fact

that when a strong shock is detected, the scheme quickly recovers the full

dissipation whereas in the rest of the domain, the dissipation introduced by

the original scheme is low.

4.1.1. Linear Advection equation

In this �rst case we test if the reduced dissipation introduce dispersion

errors in the solution. The computational domain is Ω = [0, 4], with periodic
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boundary conditions. We initialize the computations using the exact solution,

which at a given time t reads

u(x, t) = 1 + A sin (π(x− at)) (32)

where A = 0.2 and the constant freestream velocity a = 1. The simulation

is run until t = 4, using the Lax-Friedrichs �ux with and without the ADA

method presented in section 3.1. The results are shown in �gure 4 and Table

1 where L2-norm of the error and the convergence order are computed and

presented.

20 40 80 160 320 640 1280

Mesh resolution

10
-8

10
-6

10
-4

10
-2

3

Standard L-F

ADA L-F

Figure 4: One-dimensional linear advection test case. Comparison of L2 error norms with

and without the proposed method at t = 4.

It is observed that the ADA method recovers the expected order of con-

vergence, with increased accuracy compared with the baseline method.
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FV-MLS FV-MLS ADA

Grid L2 error order L2 error order

20 6.00E-02 � 1.69E-02 �

40 9.89E-03 2.60 1.20E-03 3.82

80 1.29E-03 2.93 8.36E-05 3.85

160 1.63E-04 2.99 7.07E-06 3.56

320 2.04E-05 3.00 7.37E-07 3.26

640 2.55E-06 3.00 8.69E-08 3.08

1280 3.19E-07 3.00 1.07E-08 3.02

Table 1: L2-norm of the error and convergence order for the linear advection equation test

case, using the proposed and the baseline methods.

4.1.2. Isolated steady normal shock

In this case we compute a stationary shock. The computational domain

is [0, 20], and the shock is placed at x0 = 10. We solve this problem using 100

control volumes until an steady state is reached, using the Rusanov numerical

�ux. The left initial state is de�ned as (ρL, uL, pL) = (1, 1, 1
γM2

L
) and the right

initial state is computed using with the following expressions, obtained from

the Rankine-Hugoniot conditions [40]

ρR =
(γ + 1)M2

L

(γ − 1)M2
L + 2

(33)

uR =
1

ρR
(34)

pR =

[
1 +

2γ

γ + 1
(M2

L − 1)

]
1

γM2
L

(35)
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where the Mach number of the left state is ML = 7 and the polytropic

index is γ = 1.4.

0 5 10 15 20

x

1

2

3

4

5
Exact

MOOD

MOOD-ADA

0 5 10 15 20

x

0.2

0.4

0.6

0.8

1
Exact

MOOD

MOOD-ADA

0 5 10 15 20

x

0

0.2

0.4

0.6

0.8 Exact

MOOD

MOOD-ADA

0 5 10 15 20

x

0

0.2

0.4

0.6

0.8

1
Epsilon

Figure 5: Isolated stationary shock test case. Comparison of the results using adaptive

dissipation and the Rusanov numerical �ux..

The results are shown in �gure 5. It is shown that both, MOOD and

ADA-MOOD scheme are able to obtain a solution free of oscillations. The

adaptive dissipation scheme obtains a slightly sharper shock front. It is

observed that the value of ε (and then the dissipation) is one at the shock

and is very reduced in the rest of the domain.
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4.1.3. Slowly moving shock

This case computes a strong slowly moving shock. Note that the lower

value of the pressure in the right state makes the pressure ratio close to

its maximum. Thus, it is an almost in�nite strong shock. This is a severe

test case for the numerical scheme, and we reproduce here the con�guration

given in [48]. The computational domain is [0, 100], and the shock is initially

placed at x0 = 20. We solve this problem using 100 control volumes until a

�nal time of t = 2000 with CFL = 0.5 using the Rusanov numerical �ux.

The left and right initial states are de�ned as in [48](ρL, uL, pL) = (4, 0.3, 4/3)

and (ρR, uR, pR) = (1,−1.3, 10−6). The polytropic index is γ = 5/3. The re-

sults are shown in �gure 6. It is shown that both, MOOD and ADA-MOOD

schemes are able to obtain a solution free of oscillations. Moreover, the shock

position is well-predicted. As in the previous case, it is observed that the

value of ε (and then the dissipation) is one at the surroundings of the shock

and it is very reduced in the rest of the domain.

4.1.4. Isolated contact discontinuity

In this test we show the behavior of the proposed methodology when

dealing with contact discontinuities. In particular, we test both, an isolated

stationary contact discontinuity and also an isolated moving contact discon-

tinuity. The left and right initial states are de�ned as (ρL, uL, pL) = (1, 0, 0.5)

and (ρR, uR, pR) = (0.6, 0, 0.5) for the stationary case. The contact disconti-

nuity is placed at x0 = 0.5. The polytropic index is γ = 1.4. We discretize

the domain [0, 1] using 100 control volumes. The moving case uses the same

initial states with an advection velocity u = 0.1. We use also 100 control

volumes and the computational domain is enlarged to [0, 5], and the contact
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Figure 6: Slowly moving shock test case. Comparison of the results using adaptive dissi-

pation and the Rusanov numerical �ux at t = 2000.

discontinuity is initially located at x0 = 2. Rusanov �ux is used for the

computations. And for this test case we use the expression of F given in

equation (28).

The results are displayed in �gure 7. It is observed the reduced numer-

ical viscosity obtained with the MOOD-ADA method. In the case of the

stationary contact discontinuity, the solution is excellent, with only 2 cells in

the discontinuity. In the moving case, the numerical viscosity is also reduced

compared with the full Rusanov �ux.
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Figure 7: Isolated contact discontinuity. Comparison of the results for the density �eld

using the baseline and adaptive dissipation methods. On the left, results of the stationary

case at t = 1. On the right, results for the moving case at t = 10.

4.1.5. Double shock

In this test case, a left and right shocks collide, and the solution consists

of a left facing shock that travels very slowly to the right, a contact discon-

tinuity which travels to the right and a right traveling shock wave. The two

di�erent states are initially placed in a [0, 1] domain, separated at x0 = 0.5.

The left and right initial states are de�ned as (ρL, uL, pL) = (6, 20, 450) and

(ρR, uR, pR) = (6,−6, 45). We solve this problem using 100 control volumes

until a �nal time of t = 0.02 and the numerical �ux of Roe.

The results using the proposed methodology are compared with the case

using a constant value of ε = 1. The exact solutions were computed using the

NUMERICA software [49]. The results are shown in �gure 8. We observe

that the use of adaptive dissipation does not vary the results. This is an
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expected results for this test case, since in the zone of the shock we recover the

original scheme, whereas in the rest of the domain, the dissipation introduced

by the original scheme is low.
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Figure 8: One-dimensional double shock tube test case. Comparison of the results using

adaptive dissipation and the numerical �ux of Roe at t = 0.02.

4.2. Isentropic vortex convection

This validation case corresponds to the unsteady vortex convection. This

test case is widely used as benchmark for unsteady vortical �ows [50, 51, 52].
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The analytical solution reads as

u(x, y, t)

a∞
=
u∞
a∞
− K

2πa∞
ŷeα(1−r2)/2

v(x, y, t)

a∞
=
v∞
a∞

+
K

2πa∞
x̂eα(1−r2)/2

T (x, y, t)

T∞
= 1− K2(γ − 1)

8απ2a2
∞

eα(1−r2)

ρ(x, y, t)

ρ∞
=

(
T (x, y, t)

T∞

) 1
γ−1

p(x, y, t)

p∞
=

(
T (x, y, t)

T∞

) γ
γ−1

where x̂ = x−x0−u∞t, ŷ = y−y0−v∞t, γ = 1.4 and r =
√
x̂2 + ŷ2. Here,

the chosen parameters are α = 1, ρ∞ = 1, p∞ = 1, (u∞, v∞) = ( 0.5√
2
, 0.5√

2
),

(x0, y0) = (−5,−5) and K = 5. This corresponds to a free stream Mach

number of M = 0.5. With this set of parameters the vortex starts at the

position (x, y) = (−5,−5) and at reaches the position (x, y) = (5, 5) at

t = 20
√

2.

The proposed methodology is used to compute the problem and compared

with the results obtained without the adaptive dissipation method. Error

norms and convergence order are reported in Table 2. In this case, the ADA

scheme obtains the same results using Rusanov and Roe �uxes. The reason

is that, for this case, the ADA method leads to the central scheme, neglecting

the dissipation introduced by the numerical �uxes. Note that this result is

not expected to hold for more complex �ows.
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Rusanov Roe

Standard ADA Standard ADA

Grid L2 error order L2 error order L2 error order L2 error order

32× 32 6.00E-02 � 5.27E-02 � 5.10E-02 � 5.28E-02 �

64× 64 3.04E-02 0.98 3.90E-03 3.75 1.84E-02 1.47 3.90E-03 3.76

128× 128 7.74E-03 1.98 2.51E-04 3.96 4.37E-03 2.07 2.51E-04 3.96

256× 256 1.75E-03 2.14 2.01E-05 3.64 7.85E-04 2.48 2.01E-05 3.64

512× 512 2.57E-04 2.77 3.20E-06 2.65 1.06E-04 2.89 3.20E-06 2.65

Table 2: L2-norm of the error and convergence order for the isentropic vortex convection

test case using Rusanov and Roe �uxes.

4.3. Incompressible isotropic Taylor-Green vortex

The Taylor-Green vortex (TGV) is the simplest model for the analysis of

the nonlinear transfer of kinetic energy among the di�erent scales of a �ow.

Even if it is simple to construct, it contains several key physical processes of

turbulence. We solve the inviscid version of this test example in order to an-

alyze an in�nite Reynolds case. This is intended to show the behavior of the

proposed method in under-resolved simulations, and to examine the capabil-

ity of the ILES scheme to reproduce transition to turbulence. For very large

Reynolds number, it is known that statistically isotropic turbulence devel-

ops following the −5/3 decay Kolmogorov's law of the kinetic-energy spectra

within the inertial subrange around t ≈ 9 [53]. A physically-consistent nu-

merical method developed for implicit LES should recover this behavior.

29



4.3.1. Setup of the problem and results

In this test case, we solve the three-dimensional Euler equations with

γ = 5/3, using both, Roe and Rusanov numerical �uxes. The initial condition

of the TGV is

u(x, y, z, 0) = sin(x) cos(y) cos(z)

v(x, y, z, 0) = − cos(x) sin(y) cos(z)

w(x, y, z, 0) = 0 (36)

ρ(x, y, z, 0) = 1

p(x, y, z, 0) = 100 +
1

16
[(cos(2x) + cos(2y))(2 + cos(2z))− 2]

We solve this set of equations in a periodic [0, 2π] × [0, 2π] × [0, 2π] cube,

using a 643 grid, until a �nal time of t = 10. This grid is used in order to

check the behavior of the method for a under-resolved turbulent simulation.

Since the density must remain constant in this case, we use the kinetic energy

as the variable to detect oscillations with the a posteriori method (equation

(25)). The evolution of the normalized total kinetic energy and enstrophy

using the proposed scheme with Roe and Rusanov numerical �uxes, is shown

in �gure 9, where our results are also compared with those obtained using

other numerical schemes. In particular, we compare with the eight-order

TENO scheme [33], the Fourier collocation method with exponential �lter

(F-EF-10-38-N) and the WENO5 scheme [54]. We also compare with the

results obtained with a third-order Residual Based Compact scheme (RBC3)

[55]. The non linear interactions generate successively smaller scales, but the

kinetic energy remains constant until t ≈ 4. The results obtained by the pro-

posed approach, are in excellent agreement with the reference solution, both
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in terms of the kinetic energy and enstrophy. The use of the ADA method

allows to obtain comparable or better results than those attained with higher

order schemes. The method also reproduces closely the semi-analytical re-

sults presented in [56]. It is also seen that the results obtained with the

third-order FV-MLS method with a constant value of ε = 1 (that is, without

the ADA method) seem to be less dissipative than those obtained with the

proposed methodology. These unexpected results are explained since in the

scheme with the ADA method, the reduced dissipation introduced from the

reduction of ε leads to more frequent activation of the a posteriori stabi-

lization method. This, which at a �rst sight could seem a drawback of the

proposed method, turns in fact a numerical mechanism to capture the right

dynamics of the �ow. The ADA method adjusts the dissipative part of the

numerical �ux regarding the high-frequency content of the solution, increas-

ing the dissipation where the solution is under-resolved, and decreasing the

dissipation where the high-frequency content of the solution is low. However,

there are sudden events (such as a shock wave, or a sudden collapse of a vor-

tex in high-Reynolds �ows (with practically no viscosity)) where the ADA

method is not able to react instantaneously, since the variation of epsilon is

limited each time step according to equation (23). In these scenarios, the

MOOD algorithm increases the dissipation. Moreover, there is one possible

scenario in which the MOOD plays an unexpected role: when the solution is

locally under-resolved, the ADA algorithm may increase the value of ε until

a magnitude of ε = 1 without triggering the MOOD. In this case, it is even

possible that the numerical viscosity introduced by the high-order scheme

would not be enough to dissipate the content of energy required to follow
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Kolmogorov's law. In this case, the high-frequency content of the solution

will increase until a level where the MOOD is triggered. This shows that very

high-order methods (with very low intrinsic dissipation) could face accuracy

problems for ILES of very under-resolved �ows without a numerical mecha-

nism to introduce a higher amount of viscosity such as the one proposed in

this work.

In this test case, the dissipation introduced by the third-order scheme is

low, but enough to dissipate the oscillations (avoiding the activation of the

a posteriori stabilization method). However, it still introduce an excessive

amount of numerical dissipation that avoids the scheme to accurately repro-

duce the physics of the �ow. This is con�rmed in �gure 10 (left), where

the evolution of the kinetic energy spectrum is plotted for several times. It

is observed that for time t = 10 the proposed numerical method with the

numerical �ux of Roe is able to reproduce the Kolmogorov scaling, whereas

the spectrum obtained using a constant value of ε = 1 does not capture the

physical behavior. Moreover, in �gure 10 (right), it is shown that the kinetic

energy decays as t−1.3. This value is in the range 1.2-1.4 which is in good

agreement with the values obtained in the literature for the isotropic decay

of turbulence [33, 57].

In �gure 11 (left) we plot the energy spectrum obtained using the Rusanov

�ux. Note that the use of the proposed methodology allows us to improve the

results compared to those obtained with the original scheme. Even though

the results obtained with Rusanov �ux are not as accurate as those using

the Roe �ux, the improvement in accuracy is quite remarkable. This is an

important result for cases where Roe's �ux is not applicable. In �gure 11
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Figure 9: Incompressible isotropic Taylor-Green vortex. Evolution of the normalized total

kinetic energy (left) and enstrophy (right), obtained with the proposed scheme (FV-MLS

MOOD-ADA) using a 643. The results for the TENO-8 [33], the third-order Residual

Based Compact scheme (RBC3) [55], the Fourier collocation method with exponential

�lter (F-EF-10-38-N) schemes and the WENO5 scheme [54] have been digitized from the

indicated references. The results obtained using FV-MLS MOOD third-order schemes

without the proposed adaptive viscosity method are also shown. The semi-analytical

enstrophy solution of [56] is plotted with diamonds.

(right), it is seen that the kinetic energy decay lies also in the 1.2-1.4 range.

We note that the proposed methodology allows to obtain physical results

for under resolved simulations using relatively low order-schemes. The re-

duced dissipation obtained through the use of the ADA methodology and

the a posteriori stabilization to keep the stability, is comparable to that in-

troduced by a very-high order method.

In �gure 12 it is shown that in most of the domain the value of ε is less

than one. Around t = 5, the grid is no longer �ner enough to solve all

the scales and the solution becomes under-resolved. In this moment, the a
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Figure 10: Incompressible isotropic Taylor-Green vortex. The 3D energy spectrum at

di�erent times compared with the Kolmogorov scaling is shown on the left. On the right,

the evolution of the normalized total kinetic energy with the expected −1.3 scaling is

shown. Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the

numerical �ux of Roe.

Figure 11: Incompressible isotropic Taylor-Green vortex. The 3D energy spectrum at

t = 10 compared with the Kolmogorov scaling is shown on the left. On the right, the

evolution of the normalized total kinetic energy with the expected −1.3 scaling is shown.

Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the numerical

�ux of Rusanov.
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posteriori method is activated in some cells, as it is shown in �gure 13. This

is related with the collapse of some vortical structures. The activation of

the a posteriori method introduce enough viscosity to keep the stability, by

decreasing the order of the scheme at the points where the vortical structures

collapse.

Figure 12: Incompressible isotropic Taylor-Green vortex. Absolute value of the vorticity

contours colored with the value of ε. On the left, absolute value of the vorticity contours

at t = 3 are shown, and on the right the absolute value of the vorticity contours with a

value equal to 0.4 att = 5 are plotted. Results obtained using the third-oder FV-MLS

MOOD-ADA scheme and the numerical �ux of Roe.

4.4. Decay of Compressible Isotropic Turbulence

In this section we test the proposed method using the decay of compress-

ible turbulence test case. This test case is a simple case of turbulent �ow, but

it allows to check the ability of the method for Large Eddy Simulations. It has

been used by many authors to investigate SGS models and to test numerical
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Figure 13: Incompressible isotropic Taylor-Green vortex. Absolute value of the vorticity

contours colored with the value of the order of the scheme. On the left, absolute value

of the vorticity contours at t = 3 are shown, and on the right the absolute value of the

vorticity contours with a value equal to 0.4 att = 5 are plotted. Red color indicates the

third-order scheme whereas the yellow color indicates the use of the �rst-order scheme.

Results obtained using the third-oder FV-MLS MOOD-ADA scheme and the numerical

�ux of Roe.

methods [18, 21, 58, 59, 60, 61]. Roe �ux is used in the computations.

4.4.1. Setup of the problem

For this problem we solve the three dimensional Navier-Stokes equations

with γ = 1.4. We consider a computational domain that is a 2π × 2π × 2π

cube, which is discretized with an homogeneous grid with periodic boundary

conditions.

The �ow is de�ned by the turbulent Mach number (Mt) and Taylor's

microscale Reynolds number (Reλ), which are de�ned as
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Mt =

√
〈v′iv′i〉
〈c〉

(37)

Reλ =
〈ρ〉 v′rmsλ

〈µ〉
(38)

The symbol 〈〉 refers to mean value and primes denote �uctuating vari-

ables. Moreover, we de�ne the root mean square of the velocity (vrms) as

vrms =

√
〈v′iv′i〉

3
(39)

The initial three-dimensional kinetic energy spectrum is de�ned as

E3D ∼ k4exp

[
−2

(
k

k0

)2
]

(40)

where k is the magnitude of the wave number vector, and k0 = 4 is the

wavenumber at the peak of the spectrum. Using this initial energy spectrum,

λ0 = 0.5k0.

In this section we will solve two di�erent con�gurations of this problem.

The �rst case, referred henceforth as DEC1 corresponds with the case 6 of

[60]. For the DEC1 case, initial velocity �uctuations are parametrized by the

turbulent Mach number, and also by the fraction of energy in the dilatational

part of the velocity, χ = 0.2 [62]. The initial turbulent Mach number is taken

as Mt,0 = 0.4.

The initial density and temperature �elds are given by

(ρ′rms)
2
/ 〈ρ〉2 = 0.032 (41)

(T ′rms)
2
/ 〈T 〉2 = 0.005

The initial Taylor's microscale Reynolds number is chosen as Reτ,0 = 2157

which corresponds with a Reynolds number Re = 536.9 [63].
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The second con�guration, henceforth referred as DEC2, is taken from

[18, 21, 32]. In this case the density and pressure �elds are initially constant

(here we set ρ = 1, and the pressure �eld is obtained accordingly), with

Mt,0 = 0.6 and Reλ,0 = 100 as initial parameters.

These setups correspond to the nonlinear subsonic regime [1] and weak

shocklets develop spontaneously from the turbulent motion. This fact repre-

sents a challenge to the accuracy of any numerical scheme [18, 21, 32].

In the simulations of the decay problem, we have used an initial value

of the the dissipation coe�cient εini = 0.15. The reason is that a value of

εini = 1 introduce excessive dissipation in the beginning of the simulation,

that greatly a�ects the �nal results. We note that this is a speci�c problem

of this test case, with a speci�c set of initial conditions. In regular practice of

turbulent �ow computations it is usual to let the �ow develop before starting

the simulation. In that case, the period of development of the �ow is enough

to adjust the dissipation coe�cient.

4.4.2. DEC1 case results

We run this simulation using a time step of ∆t = 0.05 for the 323 grid

which corresponds to 150 time-steps per eddy turnover time τ , that is τ =

12.5 for this con�guration. For the 643 grid computation we keep the CFL

constant. The results obtained for the DEC1 con�guration of the decay

problem are shown in �gures 14 and 16. Two di�erent grids were used for the

computations. A coarse grid of 323 elements and a �ner one of 643. These

grids correspond to under-resolved simulations, since we are interested in

the behavior of the scheme for LES simulations. The obtained results are

compared with a reference solution computed with a sixth-order compact
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�nite di�erence scheme, with explicit �ltering using a tenth-order Padé �lter.

This solution follows closely the results of a DNS [64].

Figure 14: Decay of homogeneous isotropic turbulence. DEC1 Con�guration. Evolution

of the kinetic energy (top-left), mean-square density �uctuations (top-right), normalized

mean-square temperature �uctuations (bottom-left) and evolution of the numerical vis-

cosity (bottom-right), obtained with (indicated with ER in the legend) and without the

proposed scheme, using a 323 grid and compared with a reference solution [64]. The results

obtained with the proposed scheme using a 643 grid are also shown.

It is observed the general improvement obtained used the proposed scheme.

Moreover, in �gure 14 it is shown that the results converge to the reference

solution as the grid is re�ned. Noteworthy, the scheme is able to reproduce
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the thermodynamic variables of the �ow. This is important, since in [58]

it is shown that some methods proposed for Implicit LES are not able to

simultaneously predict the correct scaling and decay rates of thermodynamic

variables.

The evolution of the numerical viscosity of the scheme with and without

the proposed methodology is shown in �gure 14. The numerical viscosity has

been computed as proposed in [65]. It is shown that for values of t/τ = 0

to t/τ = 0.4, the proposed algorithm with adaptive viscosity is clearly less

dissipative than the algorithm with �xed viscosity (that is, ε = 1). However,

it is observed that from t/τ = 0.4 to t/τ = 0.6 the numerical viscosity of the

adaptive viscosity algorithm is greater than that of the �xed viscosity algo-

rithm. The reason of this behavior is similar to that already explained in the

TGV test case, as can be seen examining the evolution of the kinetic energy.

In �gure 15 it is seen that the slope of the decay is bigger for the adaptive

scheme than for the �xed viscosity scheme. Moreover, the slope of the adap-

tive scheme agrees with that of the reference solution. The largest amount of

dissipation is introduced by the activation of the NAD. Since the solution is

under resolved, the presence of numerical oscillations induces a reduction of

the order in those cells, increasing the numerical dissipation. Note that the

dynamics of the decay is completely di�erent for each of the schemes, since

the distribution of energy dissipation through the scales is di�erent, as it can

be con�rmed examining the instantaneous three-dimensional energy spectra

(see �gure 16).

In order to compare with the results of [63, 64], the instantaneous three-

dimensional energy spectra for E(k) = ρ(u2 + v2 + w2)) at t/τ = 0.3 is
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Figure 15: Decay of homogeneous isotropic turbulence. DEC1 Con�guration. Zoom on

the evolution of the kinetic energy for the 323(left) from t/τ = 0.4 to t/τ = 0.6.

plotted in �gure 16. We note the two di�erent slopes appearing in the energy

spectrum, which agrees with the Eddy-Damped Quasi-Normal Markovian

Theory (EDQNM) [66]. The obtained spectra using the proposed scheme

�ts almost perfectly the reference solution. The reduction in the dissipation

of the smallest scales is clearly observed. This behavior holds as the grid is

re�ned, as observed in the results for the 643 grid. In both grids, no pile-up

of energy is detected. These results con�rm that the proposed methodology

is a good candidate for Implicit LES computations.

The values of the dissipation coe�cient ε at t/τ = 0.3 are shown in �gure

17. Most of the points are in the range 0.1− 0.6, and, it is observed that the

value ε = 1 is only reached in few zones of the whole computational domain.
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Figure 16: Decay of homogeneous isotropic turbulence. DEC1 Con�guration. Instanta-

neous three-dimensional energy spectra at t/τ = 0.3. Results for the 323(left) and 643

(right) grids.

4.4.3. DEC2 case results

The second con�guration of the decay problem present stronger shocklets

in the solution, and is a harder test case than the previous one. We run this

simulation using a time step of ∆t = 0.005. In this case, the eddy turn-over

time is τ = k0/vrms0 = 0.5.

The results obtained with the proposed scheme are shown in �gure 18. In

order to compare with [18, 21, 32], the evolution of the mean-square velocity,

enstrophy, normalized mean-square temperature �uctuations and evolution

of dilatation, obtained on a 643 grid are shown. The reference solution is the

DNS solution digitized from [18].

It is observed the excellent agreement between the results of the proposed

scheme and the reference solutions for the mean-square velocity and tempera-

ture �uctuations. We note that although the dilatation and enstrophy results

are somewhat over-dissipative, the results obtained are in the range of most

of the higher-order methods compared in [18].
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Figure 17: Decay of homogeneous isotropic turbulence. DEC1 Con�guration: 0.2 absolute

value of the vorticity iso-contours, colored with the instantaneous value of ε at t/τ = 0.3

on the 323 grid (top-left) and 643 grid (top-right). On the bottom the detected cells (in

yellow) at t/τ = 0.3 on the 323 grid (bottom-left) and 643 grid (bottom-right) are shown.

The instantaneous three-dimensional velocity spectra Eu(k) = u2+v2+w2

at the �nal time of the simulation t/τ = 4 is shown in �gure 19. As in

43



Figure 18: Decay of homogeneous isotropic turbulence. DEC2 Con�guration. Evolu-

tion of the mean-square velocity (top-left), dilatation (top-right), normalized mean-square

temperature �uctuations (bottom-left) and enstrophy (bottom-right), obtained with (in-

dicated with ER in the legend) and without the proposed scheme, using a 643 grid. The

reference solution is the DNS solution digitized from [18].

the previous case, a very good agreement is observed between the proposed

scheme and the DNS solution. Moreover, an improved accuracy is observed

at the smallest scales, compared to the third-order FV-MLS scheme without

the proposed method.

The values of the dissipation coe�cient ε at t/τ = 4 are shown in �gure

20. Most of the points are in the range 0 − 0.6, and it is observed that the
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Figure 19: Decay of homogeneous isotropic turbulence. DEC2 Con�guration. Instanta-

neous three-dimensional velocity spectra at t/τ = 4, obtained with (indicated with ER in

the legend) and without the proposed scheme, using a 643 grid. DNS results are digitized

from [18]

value ε = 1 is only reached in few zones of the whole computational domain.

In the same �gure (right) the cells where the a posteriori detection criteria

was activated are shown.

The total number of cells activated during each time step by the a posteri-

ori algorithm is shown in �gure 21. At the beginning of the computation, the

number of cells marked by the algorithm reachs its maximum, with around

48% of the total cells at the �rst iteration. However, the number of detected

cells decreases very quickly, and it remains stable at around 0.5% for most

of the computation time. It is seen that the number of cells to recompute

is small, and thus, the additional dissipation introduced in order to stabilize

the scheme is not excessive. Moreover, since the number of detected cells is

small, the number of cells to be recomputed is also small, and the computa-
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Figure 20: Decay of homogeneous isotropic turbulence. DEC2 Con�guration. Q-criterion

contours (8 contours from -2 to 1) colored with the instantaneous value of ε at t/τ = 4

(left) and detected cells (in yellow) with the NAD and PAD criteria (right).

tional cost of the proposed scheme is not greatly increased. This behavior of

the a posteriori techniques has also been reported in [30].

4.5. 2D Mach 3 wind tunnel with a step

In order to address a case with stronger shocks, we solve here the 2D

supersonic �ow across a wind tunnel, as proposed in [67]. In this test case, a

supersonic �ow at Mach 3 across a wind tunnel of 1 length unit wide and 3

length units long is considered. A step is located at 0.6 length units from the

in�ow, and it is 0.2 length units wide. This is an inviscid case, in order to

consider an in�nite Reynolds number. We use slip wall boundary conditions

along the walls, and supersonic in�ow and out�ow boundary conditions. The

initial value of the velocity is set to u = 3, v = 0, whereas the initial values
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Figure 21: Decay of homogeneous isotropic turbulence. DEC2 Con�guration. Troubled

cells detected by the a posteriori algorithm.

of density and pressure are de�ned as ρ = 1.4, p = 1, and γ = 1.4. This

setup corresponds to a Mach 3 �ow. Following [68], the singularity point

at the corner is managed by re�ning the mesh in this region. The mesh

is built by setting the biggest size of the elements away from the corner as

∆x = ∆y = 1/160, and the size of elements near the corner is one-half that.

A paving algorithm has been used to build the mesh. A detail of the grid is

plotted in �gure 22. We solve the two-dimensional Euler equations using the

Rusanov scheme given in equation (16).

The results are shown in �gures 23 and 24. We show that the method is

stable and it obtains very accurate results using the ADA method combined

with the a posteriori approach. In particular, it is shown that, using the

proposed method, we are able to reproduce the Kelvin-Helmholtz instability

that forms after the shock. Using the same numerical discretization scheme
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Figure 22: Mach 3 wind tunnel problem. Detail of the grid.

but without the ADA and the a posteriori detection, (that is, a classical

approach based on slope limiters), the Kelvin-Helmholtz instability is not

captured. Moreover, the Mach stem at the step wall, is much shorter using

the proposed approach.

Figure 24 shows that in most of the domain, the value of ε is small,

and that the number of cells with the reduced order is also small. The area

where the Kelvin-Helmholtz instability develops is solved with the third-order

scheme with reduced numerical viscosity.

Conclusions

We have presented an a posteriori high-order �nite volume scheme us-

ing Roe and Rusanov numerical �uxes for the computation of compressible

turbulent �ows. An Implicit LES scheme has been proposed by combining

an automatic dissipation adjustment (ADA) method with the a posteriori
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Figure 23: Mach 3 wind tunnel problem. Density contours from 0.212 to 6.22 at time

t = 4 contours obtained with the proposed approach (top) and using an approach based

on slope limiters (bottom).
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Figure 24: Mach 3 wind tunnel problem. Detected cells (in red) with the a posteriori

approach (top) and value of ε (bottom). We also plot 30 density contours from 0.212 to

6.22 at time t = 4.

paradigm. It has been demonstrated that the proposed methodology is able

to implicitly de�ne a subgrid scale model and it also keeps the stability of the

computations. The numerical dissipation is adjusted by adding a multiplica-

tive factor to the dissipative part of the numerical �ux. The a posteriori ap-

proach allows for detecting the cells where the stability is compromised, and

thus where dissipation must be added to ensure the stability of the scheme.

Through the Taylor-Green vortex and the isotropic decay of turbulence test

cases, we shown that the proposed methodology is a promising candidate for

ILES simulations, since the physics of the decay is reproduced by our simu-

lations. The proposed method is able to obtain comparable results to those

50



obtained using numerical methods with higher order of accuracy. Moreover,

the Mach 3 step �ow case shows the accuracy and robustness of the the

proposed numerical scheme, which is capable to work with shock waves of

considerable strength. We note that the proposed methodology presents a

way to greatly improve the accuracy of existing second or third-order �nite

volume codes. This work is a �rst step in the development of a complete ILES

methodology for compressible �ows. However, further research is required for

non-isotropic turbulence, particularly for wall-bounded compressible turbu-

lent �ows using unstructured grids.
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