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Many-body perturbation theory of frequency-dependent polarizabilities 
and van der Waals coefficients: Application to H20-H20 and Ar-NH3 

Paul E. S. Wormer and Hinne Hettema 
Institute of Theoretical Chemistry, University of Nijmegen, Toernooiveld, 6525 ED Nijmegen, 
The Netherlands 

(Received 17 January 1992; accepted 7 July 1992) 

Correlation contributions to the multipole moments and frequency dependent polarizabilities 
of molecules are described within the framework of time-dependent coupled 
Hartree-Fock and many-body perturbation theory. Computationally feasible expressions are 
given for the "true" correlation contributions to the multipole moments and frequency 
dependent polarizabilities. The polarizabilities of argon, ammonia and water and the van der 
Waals induction and dispersion coefficients of H2O-H20 and Ar-NH3 are presented. 

I. INTRODUCTION 

With the advent of far-infrared laser spectroscopy of 
van der Waals molecules in molecular beams l

-
3 a tool has 

become available that probes very sensitively intermolecu­
lar potential energy surfaces.4 In principle, one can obtain 
an energy surface from a rovibrational spectrum by first 
guessing a parametrized surface and then solving the rovi­
brational problem. Comparison of the solution with exper­
iment will then suggest an improved set of energy param­
eters and, by repeating the process, one can converge to an 
intermolecular interaction that fits the experimental spec­
trum. However, there are problems with this approach: In 
the first place, it is known that a reliable surface for inter­
acting molecules requires very many parameters; second, 
the number of lines measured is usually too small to estab­
lish all parameters unambiguously; and finally the solution 
of the rovibrational problem with a realistic surface is so 
expensive that one cannot afford many cycles in the itera­
tive procedure. Thus there is a great need for computa­
tional methods that establish reliably at least some of the 
parameters. 

The present paper describes a method to compute sur­
faces accurately in the asymptotic region where intermo­
lecular overlap is negligible. Our approach starts with the 
computation of frequency-dependent polarizabilities as a 
function of iw, after which we obtain dispersion coefficients 
very simply via the Casimir-Polder relation.5 

At the coupled Hartree-Fock level of theory one ob­
tains isotropic second-order time-dependent properties of 
reasonable quality for both closed-shell and high-spin 
states.6,7 Errors in the isotropic polarizabilities and disper­
sion coefficients are on the order of 10%. Errors in the 
corresponding anisotropic values may be much larger, 
however, and are very basis set dependent. For instance, 
the finite field SCF (self-consistent field) method in a mod­
erate size basis applied to NH3 gives the wrong sign for the 
anisotropy of the dipole polarizability. 8 So, already at the 
SCF level large basis sets are required. 

One can improve the results by considering the effects 
of electron correlation. Several of the existing electronic 
correlation methods have been extended so that they can 
be applied to the evaluation of linear response functions. 

We mention the multiconfigurational self-consistent field 
(MCSCF), the coupled cluster, and the many-body per­
turbation theory (MBPT) method. Olsen and J0rgensen9 

formulated an MCSCF linear response theory, which has 
been implemented as an extension to the SIRIUS pro­
gram.IO,11 Equations for MCSCF quadratic response prop­
erties were derived a few years ag09 and have very recently 
been implemented as an addition to SIRIUS. 12 Dalgaard and 
Monkhorst13 have derived equations for the coupled clus­
ter method, as have Koch and J 0rgensen. 14 Wormer and 
Rijks l5 formulated an MBPT method for molecules in the 
presence of a monochromatic electric field. Their method 
resembles the recent method of Rice and Handy,16 who 
considered a M011er-Plesset second-order (MP2) quasien­
ergy of a molecule perturbed by two fields: a static and a 
monochromatic (time-dependent) one. 

In this paper we give an improved derivation of the 
work of Ref. 15, which is based on a double perturbation 
theory with the electron correlation operator and a time­
dependent external field simultaneously perturbing the 
time-independent Hartree-Fock reference state. Second­
order correlation terms that are not accounted for by the 
time-independent coupled Hartree-Fock (TDCHF) 
method (the so-called "true correlation" terms l7

) are com­
puted and added to the TDCHF values (which include 
only "apparent correlation"). This derivation will show 
that the difference between true and apparent correlation is 
not as clear cut as it is often thought to be. Some Pauli 
exclusion principle violating (EPV) diagrams can be clas­
sified both as true and apparent. 

Our approach is aimed at polarizabiIities on the imag­
inary axis and will not give the correct global characteris­
tics of these functions on the real axis, since we introduce 
a double set of poles: TDCHF and MBPT poles. The latter 
are simply static orbital energy differences. Here we differ 
from Rice and Handy,16 who designed their method such 
that they only obtain TDCHF poles. 

We will present the final formulas in a computationally 
tractable form and show that the evaluation of most of the 
terms scales with the number of orbitals as n5

; only a few 
terms scale as n6

• Since very large basis sets are needed for 
the properties that we are interested in, the dependence on 
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n is an important factor in the success of any correlation 
method. 

In Sec. III we will discuss briefly an alternative deri­
vation of our theory for the static case. This derivation will 
show that our method can be looked upon as a generaliza­
tion of a static procedure consisting of the following steps: 
(i) Compute the finite-field SCF multipole polarizability. 
(ii) Compute the second-order correlation contributions to 
the expectation value of the appropriate multipole moment 
(the first-order contribution is zero). Use for that purpose 
orbitals that are first-order in the external field. (iii) Dif­
ferentiate this correlation contribution with respect to the 
external field. (iv) Add the result of (i) and (iii). 

In Sec. V we give numerical results for the calculation 
of the frequency-dependent polarizabilities of ammonia, 
water, and argon, and from these we compute the van der 
Waals coefficients for the complexes H2O-H20 and Ar­
NH3. We have chosen to study water because of the im­
portance of the water-water interaction for practically all 
branches of science. The Ar-NH3 system was chosen be­
cause of the rovibrational spectra recently measured in 
Berkeleyl and in Nijmegen.2,3 

Dispersion forces in the water dimer were studied very 
recently by Rybak, Jeziorski, and Szalewiczl8 with a 
method that is remotely related to ours. One of the main 
differences is that the present work is based on the multi­
pole (1/ R) expansion of the potential, which Rybak et al. 
do not employ. Use of the multipole expansion makes the 
calculations considerably cheaper since the monomers can 
be considered separately. Thus we can afford much larger 
atomic orbital basis sets and higher-order correlation ef­
fects. Our two monomers are simultaneously correlated 
through second order in the M0ller-Plesset correlation po­
tential and to infinite order in the TDCHF bubble dia­
grams and we have g orbitals in our bases. Furthermore, 
we obtain surfaces as expansions in known angular func­
tions, which is very convenient in further applications of 
the potential. On the other hand, the major problem with 
the multipole expansion is well known: It diverges in the 
region of non-negligible overlap and there is no well­
established prescription to damp it in this region. Also in 
the the long range it is not always evident how many terms 
must be included, we stop usually at R- IO terms, because 
higher dispersion terms require at least 1=5 orbitals for a 
reliable description. Note, however, that such a polariza­
tion basis is also necessary in supermolecule calculations if 
the correct asymptotic limit is required. 

II. MBPT FREQUENCY-DEPENDENT 
POLARIZABILITIES 

In this section we present our formulas for correlation 
corrections to the frequency dependent polarizability. Our 
derivation is based on double perturbation theory with a 
time dependent and a time-independent perturbation. The 
latter is the correlation potential V N in normal product 
form with respect to the Fermi vacuum. 19,20 The zeroth­
order operator is the Pock operator F N of the time­
independent problem, so that in a hole-particle formalism 
the unperturbed problem reads, 

(1) 

We follow the perturbation theory of Langhoff, Epstein, 
and Karplus21 in treating the time-dependent perturbation 
and consider arbitrary multipoles Q'm=~aZaS~(ra). The 
function S~(ra) is a real solid harmonic, normalized to 
41TI(21+ 1), which depends on the coordinate ra of point 
charge Za' We hit the molecule by a monochromatic mul­
tipolar wave 

F1)(t) =~W(eilOt+e-ilOt), 

where 

(2) 

W:=FmQ'm= WN+ (4)(0,0) I FmQ'm I 4>(0,0» (3) 

and Fm is the field strength. We may rewrite the time­
dependent SchrOdinger equation by making the ansatz2l 

IW(t»=e-iCO,Olta(t) 14>(t»· 

It is easily shown21 that 

e-iR(t)t 

aCt) = (4)(t) I 4>(t» 1/2 , 

(4) 

(5) 

where R(t) is a real function. Since it appears as a phase it 
does not concern us any further. The Schrodinger equation 
gets the form of an eigenvalue equation 

[H-i !) 14>(t»=AE(t) 14>(t» 

with H=FN+ VN+HO)(t). 

The quasienergy is given by 
AE(t) = (4)(0,0) IHI4>(t». 

(6) 

(7) 

The exact wave function is expanded in a double pertur­
bation series, which through first-order in W N and infinite 
order in V N reads 

OJ 

4>(t) = I [4>(k,O) +4>(k,l) (CtJ )eilOt +4>(k,l) ( -CtJ )e- ilOt ]. 
k=O 

(8) 

The intermediate normalization condition 

(9) 

implies that we expand the perturbation corrections to the 
wave function in the orthogonal complement of 4>(0,D). De­
fining a resolvent on this space 

(10) 

we derive easily the following corrections through second 
order in VN : 

14>(1,0» = -R (0) V NI 4>(0,0», 

14>(2,0» =R(O) V NR(O) V NI4>(O,O», 

1 4>(0,1) (±CtJ» = -R( ±CtJ) W NI 4>(0,0», 

14>(1,1)( ±CtJ» = -R( ±CtJ) W NI 4>0,0» 

-R( ±cu) V NI 4>(0,1) (±cu», 

(11a) 

(11b) 

(llc) 

(lId) 
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I ,p(2,1) ( ±w» = -R( ±w) W NI ,p(2,0» 

-R( ±w) V NI ,p0,I) (±w» 

+aE(2,0)R( ±w) 1,p(0,1)( ±w». (11e) 

Since our Hamiltonian is invariant under the substitu­

tions (U-+ -wand t-+ -t, the expectation value of Q~, 
(which we take to be in normal product form) with respect 
to 'I'(t) is a symmetric function of wand t. Thus the terms 
linear in Fm in this expectation value are of the form [f( w) 
+ f( - (U )] cos wt. The factor multiplying cos (Ut is the fre-

quency dependent 21_21'_pole polarizability a(w)~:m" 
Numerator and denominator of the expectation value 

of Q~, are expanded by expanding corresponding bras and 
kets and collecting all terms of the same perturbation or­
der. Terms of order k in V N and of order I in W N are 
designated by Q(k,l) and S(k,l) in, respectively, the numer­
ator and the denominator. Then 

('I'(t) I d~, I 'I'(t» 

(,p(t) I d~, I ,p(t» 

(,p(t) I ,p(t» 

Q(O,O) + QO'O) + Q(O, I) + Q(2,O) + QO,I) + Q(2,1) 

- S(o,o) +S(l,Q) +S(O,I) +S(2,O) +S(l,1) +S(2,1) 

(12) 

Noting that S(O,O) = 1, we expanded the denominator up to 
and including second order in V N and first order in W N 

and used Q(O,O) =Q(I,O)=S(i,Q) =S(O,I)=O. In order to ob-
tain the total expectation value of the operator we must 
add its Fermi vacuum expectation value, i.e., its HF con­
tribution, to Eq. (12). The time-independent part of Eq. 
(12) is the usual second order correlation contribution of 
the permanent moment, 

Q(2,O) = (,p(O,O) I Q~, I ,p(2,O» + (,p(2,0) I d~, 1,p(O,O» 

+ (,p(i,O) I Q~, 1,p0'O». (13) 

We obtain an unlinked contribution from 

S(2,O) = (,p0'O) I ,p0'O» = (,p(O,O) I V NR (0)2 V NI ,p(O,O». 
(14) 

The time-dependent terms in Eq. (12) appearing with 
exp (i(Ut) are 

Q(O,I) = ( (,p(O,O) I d~, I ,p(O,I) (w» 

+ (,p(O,I) (-(U) I d~, I ,p(0,0» )iwt, 

QO,I) = «,p(O,O) I d~, I ,p0,I) (w» 

+ (,p0,I)( -w) I Q~, 1,p(O,O» 

+ (,p(i,0) I Q~, I ,p(O, I) (w» 

+ (,p(O,I) ( -(U) I d~, I ,p0'O» )eiwt, 

(15a) 

(15b) 

Q(2,1) = ( (,p(0,0) I d~, I ,p(2,1) (w» + (,p(2,1) ( -(U) I Q~, I ,p(O,O» + (,p(2,O) I d~, I ,p(O,I) (w» + (,p(0,1) ( -(U) I Q~, 1,p(2,O» 

+ (,p(i,O) I d~, I ,p0,l) (w» + (,p(i,l) ( -(U) I d~, I ,p(I,O» )eiwt• (15c) 

Note that the factors of exp(iwt) in Eq. (15) are invariant under the substitution (U-+ -(U' Since the very same terms arise 
from Eq. (12) with exp ( - iwt), we find that indeed the time dependence is given by cos (Ut. Substitution of Eqs. (11) into 
expressions (15) yields the frequency dependent polarizability up to and including terms in V~ 

a«(U )~:m' = (,p(O,O) I d~,R«(U)e~(2,O) + Q~,R2«(U)Q~aE(2,0) -d~,R(w )em+d~,R(w) V NR«(U )em 

-d~,R«(U) VNR(w) VNR(w)em- VNR(O)Q~,R«(U)e~(O) VN+Q~,R«(U)e~(O) VN 

r ~ r ~ r ~ + V NR(O)Qm,R«(U)~m- V NR(O) V NR (O)Qm,R(w)~m- Qm,R«(U)~;.,R(O) V NR(O) V N 

- V NR(O)d~,R«(U) V NR(w)em-d~,R «(U) V NR(w)e~ (0) V NI ,p(O,O» 

+same terms with W-+ -w. 

Since the Hartree-Fock ground state is real and all oper­
ators in Eq. (16) are Hermitian, the order in the operator 
products may be reversed. 

Expression (16) contains N-electron operators. In or­
der to reduce it to one containing only integrals over (un­
perturbed) molecular orbitals, different routes can be 
taken. One obvious route is the expression of the reduced 

(16) 

resolvent R «(U) in a basis of Slater determinants, followed 
by repeated application of the Slater-Condon rules. In our 
opinion a much more convenient approach proceeds by the 
aid of Hugenholtz/Goldstone diagrams; see Refs. 22 and 
23. In these references it is shown that the unlinked terms 
containing the factors AE(2,O) and S(2,O) cancel against the 
other unlinked terms arising in Eq. (16). For an outline of 
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the diagrammatic method one may for instance consult the 
work of CiZek and Paldus. 19 

Caves and Karplus24 have shown that the TDCHF 
approach leads diagrammatically to an infinite summation 
of "bubble" diagrams. Since we are looking for a correction 
to TDCHF we must remove all bubble terms from Eq. 
(16), including the uncoupled HF polarizability Q(O,I). 

The terms of zeroth- and first-order in V N are accounted 
for by TDCHF (as are a few of the second-order terms), so 
we omit these. 

We will now list the non-TDCHF terms contributing 

to the symmetrized polarizability [a Uw) 1,1' , m,m 
+ a Uw) ~;,m]/2 and to that end group the 48 different 
second-order (in V N) Hugenholtz diagrams into 4 different 
contributions A l> ... ,A4 which-when summed-yield the 
required correction to the TDCHF polarizability. The 48 
Hugenholtz diagrams together with the corresponding 
Goldstone versions can be found in Ref. 22. We use the 
convention that i, j, k .,. run over occupied orbitals, a, b, 
e .. , run over virtual orbitals, and p, q, r, .. , run over 
arbitrary orbitals. The corresponding spinorbitals are given 
by capital letters. Denominators containing differences of 
unperturbed orbital energies are written as 
llai:=Ei-Ea' We define the quantity 

Defining 

2(ail bj) - (ajl bi) 

llai+llbj 

we find the second contribution 

A2=4L [L (aelbj)Pci;bj- L (kilbj)Pak;bj] :ai. 
ai cbj kjb ai 

This is an nS term. 

with 

(pqlrs):= (p(1)r(2) Ir:2I q(1)S(2) ) 

and the matrix 

Fai;bj: = - L [(be 1 ki)Pak;cj+ (bil ke )Paj,ck 
ck 

+ (ael kj)Pbk;ci+ (ajl ke)Pbi;ck] 

(17) 

+ L (kilfj)Pak;bl+ L (aelbd)PCi;dj' (18) 
kl cd 

Note that it takes n6 operations to compute the matrix F, 
but note also that the matrix is independent of the multi­
poles and the frequency w, so that it has to be calculated 
only once. This is indeed a great saving. For instance, in 
the case of the water dimer, where we calculate dispersion 
coefficients through CIO, we need 66 different H20 polar­
izabilities at 11 frequencies. 

The first contribution is then 

Al =4 L Fai;bj 
aibj 

llbj( (il emla) UI Q~, 1 b) + (ij d~, la) UI dmlb» 
X 2 2 

(Abj+w )(Aai+Ab) 

(19) 

~ Aa/ (il em Ij) (jl d~, 1 a) + (il d~, jj) UI em 1 a» 
£.. (A2 2) , 
j aj+w 

(20) 

(21) 

The following auxiliary quantities can be evaluated by nS algorithms: 

._ ~ (aijbk)[2(ailbj)-(ajlbi)] 
Tjk·- £.. All' abi ai+ bj 

(22a) 

(22b) 

Sbc:= L (ailej)[2(ailbj)-(ajlbi)] , 

aij llai+ llbj 
(22c) 

(22d) 

In terms of these the third contribution is, 
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~ [(jldmIC)(Cld~'lk)+(jld~'IC)(Cldmlk) { I1c~ck-()i , }] 
A3= -2 £.J A2 + 2 Tjk A2 + 2 + Tj~cj 

~ u~ m u~ m 

(23) 

The last contribution is written in terms of the following vectors indexed by (a,i) < (bJ). As a matter off act these vectors 
are wave functions that are first order, both in the correlation and in the external field. (See Fig. 1 for their diagrammatic 
representation.) Their evaluation is an nS process, 

..1._ 1;".-

u/ ·-m'-

v' .-m'-

x' .-m'-

y~:= 

if (a,i)=I=(bJ), 

otherwise; 

if (a,i)=1= (bJ) , 

otherwise; 

- L [11211bk 2 (bldmlk)(ailkj)+ 11211ak 2 (aldmlk)(bjlki)] if (a,i)=1= (bJ) , 
k bk+m ak+ m 

- ~ L [11211ak 2 (al dml k)(ail ki) ] 
k ak+ m 

otherwise; 

- L [112 m 2 (bldmlk)(ailkj) + 112 m 2 (aldmlk)(bjlki)] if (a,i)=I=(bJ), 
k bk+m ak+ m 

- ~L [112 m 2 (aldmlk)(ailki)] 
k ak+ m 

otherwise; 

[ 11· 11· ] L 112 CJ 2 (cldmU)(ailbc)+ 112 c, 2 (cldmli)(bjlac) if (a,i)=1= (bJ), 
c ~+m d+ m 

~L [112~d 2 (Cldmli)(ailac)] 
c c,+m 

otherwise; 

L [112 m 2 (cl Q'mlj)(ailbc) + 112 m 2 (C1Q'mli)(bj1aC)] if (a,i)=1= (bJ) , 
c ~+m d+ m 

~L [112.m 2 (Cldmli)(ailac)] otherwise. 
c c,+m 

In order to present concisely the contribution from these vectors, we define the following weighted contractions: 

t·s:= L l1ai+l1bj 
(l1ai+l1b)2+m2 tai;bfai;bj' (a,i»(bJ) 

L 
m 

tos:= (l1ai+ I1bj ) 2 + m2 tai;bfai;bj , (a,i»(bJ) 

t·s:= L l1ai+l1bj 
(l1ai+l1b)2+m2 tai;bfaj;bi' (a,i»(bJ) 

L 
m 

tos:= 
Cl1ai+l1b)2+m2 tai;bfaj,bi, (a,i»(bJ) 

so that the final contribution to the symmetrized polarizability can be written as 

J. Chern. Phys., Vol. 97, No.8, 15 October 1992 
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The evaluation of these contractions is an n4 aigorithm. 
It may be observed that in the equations for Al to A4 

the summations are unrestricted, Le., the fact is not taken 
into account that the spin orbitals occur only once in every 
bra and ket when the resolvent R (CJ) is expressed in a basis 
of Slater determinants. We seem to include contributions 
from EPV diagrams. However, at this point there is a un­
determinacy in the theory. In a consistent MBPT formal­
ism all EPV diagrams cancel mutually, whereas in the di­
agrammatic analysis of the TDCHF method24 some EPV 
diagrams do appear. So it is debatable whether we must 
include the EPV terms that arise from bubble diagrams. 
This point is exemplified in Fig. 2, where we find some 
apparent correlation diagrams side by side with closely 
related true correlation diagrams. 17 Also the overall sign 
(- )/+h of the Goldstone diagrams is shown (the number 

~=>i ~:>r g ~ I + • I B> ;:> 
J • 

f 
:>. :>. 

~ I + • I J:>J :> B • 

U + iv 
;~ 

~ I + ~~ 
~~ ;~ 

x + iy 

FIG. 1. Goldstone diagrams representing the first-order correlated, first­
order externally perturbed wave functions ofEqs. (24)-(29). The inter­
action with the external field is represented by a crossed circle. The de­
nominators to the left of this one-particle vertex are (l) dependent. 

(31) 

of hole lines h = 3 is odd in the cases of Fig. 2, the number 
of closed loops I varies). If we take K = I in both sets of 
diagrams, we see that they cancel each other. This exhibits 
two points: (i) EPV true and apparent correlation dia­
grams are undistinguishable, and (ii) if we take the above 
formulas as they stand, the second-order EPV TDCHF 
terms will be canceled. In the next section we will give a 
derivation that also yields this cancellation, but since the 
theory is undetermined, we will study this point from the 
numerical point of view. We therefore present the formulas 
for the second-order EPV bubble diagrams. 

With the auxiliary quantity 

0._ ~ {[2(ai Ub)-(ab Ui)](ci 1bj ) 
Gacl·- £.. A + A 

bj LJ.bj LJ.ci 

+ [(abUi) - (ailjb) ](bil Cj )} 

t::..bJ+t::..ci 

the first bubble EPV contribution can be written as 

BI =4 L Gaci ( <il em 1 a) <iI d~, 1 c) 
lac 

Define 

, ._ ~ [[2(akljb)-(ablkj)](ailbj) 
G °k.- £.. A A 

al bj LJ.bj+ LJ.ai 

[Cab 1 kj) - CakUb)] (ajl bi») 

+ t::..bj+t::..ai ' 

then the second bubble EPV contribution is, 

B2=4 L G~ik«ilemla)(kIQ~,la) 
ika 

i=1=k 

(32) 

(33) 

(34) 

The restriction in the sum (35) is due to the fact that some 
EPV terms would be accounted for twice if both sums (34) 
and (35) would run freely. This can happen for the terms 
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with a = c and i = k. Since these terms are already taken 
into account in sum (34), they are explicitly excluded in 
sum (35). Defining 

and 

Qai;b} 
(ail bj) 

aai+abj 

F".,ka1 := I {[2(bjlak)-(bk laj)]Qai;bj 
I jb 

+ [(bklaj) - (bjlak) ] Qaj,bi}, 

(36) 

11a:= I (A 1 A ) {[2(bjlak)-( bk laj)]Qai;bj 
jb bj+ ak 

+ [(bk I aj) - (bjl ak)] Qaj,bi}, (37) 

we may write the third bubble EPV contribution as 

B3=2 I [(il dmla)(al d~,lk)+(il d~, la)(al dml k )] 
ika 
i,# 

X [(a~i~w2) (a~t:~~2 F;L+AaR'L)]. (38) 

Define finally 

~l:= I ([2(dl bj) - (cjl bi) ] Qai;bj 
lac jb 

+ [(bi I cj) - (eil bj)] Qaj;bJ, 

1 
~2:= I (a a) {[2(dlbj)-(cjlbi)]Qai;bj 

lac jb bj+ ci 

+ [(bil cj) - (eil bj) ] Qaj;bi}, 

then the last bubble EPV becomes 

(39) 

B4=2 I [(cl dml i) (il Q~, la) + (cl d~, I i)(il dmla)] 
iac 

[ 
1 (aai

a
ci-

W2 ~l a;l:2 ) ] (40) 
X (a~i+w2) a~i+w2 iac+ a iac . 

Again we need to be careful not to take into account some 
of the EPV terms twice. Hence there is a correction in Eq. 
(38), where we restrict the sum by imposing i=l=k. 

To end this section we point out that in the earlier 
results of Rijks et af. 22,23 the terms BI> .•. ,B4 have been in­
cluded. 

III. STATIC DOUBLE PERTURBATION THEORY 

In order to put our method in a different perspective 
and to relate it to existing procedures for calculating static 
polarizabilities, we sketch an alternative derivation for the 
special case w=O. The time-independent analysis of this 
section will be based on uncoupled HF orbitals, but could 
equally well be given in terms of coupled HF orbitals. The 
use of coupled HF orbitals is tantamount to "dressing" the 
one-electron interaction with an infinite series ofRPA-type 
correlation diagramsP Since the dressed one-electron in-

TDCHF type 'true' correlation 

Goldstone versions 

@KII -- ~(_) 
I I I (+) • I I I 

,. I I ~ , 
~ I 
~ • 
~f?r I 

I I 
I , 

(-I &,., 
• K 

(-I ~'.' 
• 

FIG. 2. An example of true and apparent correlation diagrams that be­
come undistinguishable when they are EPV, i.e., if I=K. In that case the 
two diagrams cancel mutually. 

teraction is linear in the field the discussion of this section 
holds equally well for coupled HF orbitals. However, we 
have chosen to use the "bare" interaction in the discussion 
because our computational method is based on it. It is 
possible to extend the formalism of Sec. II to coupled HF 
orbitals, but this would increase the cost of the calculations 
considerably, since the one-electron interactions are then w 
dependent. We first observe that for w=O our perturbation 
theory becomes ordinary Rayleigh-Schr6dinger perturba­
tion theory (RSPT), so that we may use the usual RSPT 
expressions. Quite generally we may define a first order 
static multipole moment as the first derivative of the exact 
energy of the system (in the field Fmdm) at Fm=O, 

(41) 

If we separate the energy into a Hartree-Fock energy plus 
a correlation contribution, vH'~ is split likewise in a 
Hartree-Fock and a correlation part. We will consider 
finite-field SCF and we recall that in the static case 
TDCHF is the same as finite-field SCF. 

In order to find the correlation contribution to the 
moments vH'~ we start from the approximate M0ller­
Plesset second order (MP2) correlation energy 

(42) 
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where 

(PQIIRS) = (P(1)Q(2) Iri2IIR(1)S(2» 

where <p(O) is of zeroth order in V N and, in principle, of 
infinite order in W N. Consider arbitrary spin orbitals P and 
Q with corresponding orbital energies, both perturbed up 
to first order in W N -(P(1)Q(2)lr12IIS(1)R(2» (45) 

l€p=€p+Fm(PlemIP), and 

(46) 
liP) = IP) +Fm 2. I Q) (Q'fm'

P
) (43) 

Q¥=P QP 

The quantities not preceded by a superscript are of zeroth­
order in W N. The MP2 energy in terms of these uncoupled 
Hartree-Fock quantities is 

1 (I]IJWAIB) (IAIBIII]IJ) 
EMP2(Fm ) =4 2. lAAI+ lABJ (44) 

I,J,A,B 

With orbitals perturbed to first order the numerator of the 
MP2 energy is of eighth order in the field, but is, of course, 
incomplete as higher than first-order contributions from 
the orbitals are lacking. Under differentation of EMP2 with 
respect to the field at F~=O, only the terms survive that 
are first order in the field. The expansion of the denomina­
tor to first order is 

1 F. (AlemIA)+(BlemIB)-(llemll)-(JlemlJ) 

lAA/+ lABJ AAI+ABJ + m (AAI+ABJ)2 
(47) 

If we substitute Eq. (43) into Eq. (44) two kinds of first-order terms are obtained: The first kind arises from the first-order 
terms in the numerator and the zeroth-order terms in the denominator of Eq. (44). The second kind consists of the 
zeroth-order numerator terms multiplied by the first-order terms of Eq. (47). All the terms of the second kind will cancel 
against some terms of the first kind. In order to clarify this, we consider temporarily only terms due to the substitution of 
I I I). If the sum in this orbital is split into one over occupied and virtual orbitals, we get as terms of the first kind 

+~Fm 2. 
I,J,K,A,B 
(Kf=l) 

+!Fm 2. 
I,J,A,B,C 

(I I em I K) (KJlIAB) (ABIiIJ) + (IJlIAB) (ABIiKJ) (K I em I I) 

AKI(AAI+ABJ) 

(I I em I C) (CJlIAB) (ABI!IJ) + (IJlIAB) (ABU CJ) (C\ em I ]) 
ACI(AAI+ABJ) 

We rewrite the first term of Eq. (48) 

=+~Fm 2. (IlemIK)(KJ]IAB)(ABIIIJ)[~ (A ~A 1)] 
I,J,K,A.,B KI AI BJ AAK+ ABJ 
(I=I=K) 

=-iFm 2. (II emlK) (KJlIAB) (ABI!IJ) (A +A )~A +A ») 
I,J,K,A,B AI BJ AK BJ 
(I=I=K) 

(I I em I I) (IJlIAB) (ABIIIJ) 

(AAI+ABJ)2 

(48) 

(49) 

The very last term of Eq. (49) cancels against the term containing (I I em I I) that occurs among the terms of the second 
kind. In the same way, the restrictions in the expansions of the orbitals II J), II A), and I I B) lead to cancellations against 
terms of the second kind. 

The expression for the MP2 contribution to the moment 1~ becomes then 

_ 2. (A I em IK)(KB I! IJ)(IJlIAB) +~ 2. (IJlICB)(C\emIA)(ABI!IJ) 

2 I,J,K,A,B AAK(AAI+ABJ) 2 I,J,A,B,C (AAI+ABJ)(ACI+ABJ) 
(50) 
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The diagrams corresponding to this expression are given in 
Fig. 3 and are the same as those given by Sadlej.17 Al­
though the MP2 energy is derived from a wave function 
that is first order in V N, differentiation gives all the second­
order (in V N) contributions to the multi pole moment. This 
also means that the following equality holds through V~, 
cf. Eqs. (13) and (41): 

[
aEMP2(F'm)] = (</J(O,O) +</J(I,Q) + </J(2,O) I em I </J(O,O) 

aF'm F =0 
m 

(51) 

so, the Hellmann-Feynman theorem is satisfied up to and 
including second order in the correlation. 

We will present values for the correlated multipole mo­
ments, which can be evaluated by n5 algorithms. We have 
used the following formulas: 

(ailbj) 
F:k= -2 L A. A .Pak;bj' 

jab 0/+ bJ 

h (bklm (~I~) 
~i = -2 L A. Pcj,bk+ 2 L A. Pbi;cj' 

jkb al jbc al 

(52) 

where Pai;bj is defined by Eq. (17). The multipole moment 
in terms of these quantities is 

(..ff~)MP2= LF:k(ileml k )+ L~a(clemla) 
ik ca 

(53) 
ai 

Returning now to polarizabilities, we start from the 
expression for (..ff~)MP2 given in Eq. (50), substitute the 
uncoupled HF orbitals of Eq. (43), and differentiate the 
moment to the external field. This yields the correlation 
correction to be added to the finite-field SCF value of the 
static polarizability, 

(54) 

We worked out all the nonvanishing terms of Eq. (54), 
wrote them down diagrammatically, and found that they 
are exactly the static forms of the 48 Hugenholtz diagrams 
which arose from Eq. (16). In order to test our program 
we used Eq. (54) by differentiating numerically Eq. (50). 

Note finally that the Pauli principle does not play a 
role in the derivations of this section. The MP2 energy, 
written in terms of antisymmetric integrals, satisfies the 
exclusion principle and also the orbital expansions do not 
violate this principle. So, the derivation of this section sug­
gest that we correct the finite-field SCF values by A 1,oo.,A4 
of Eqs. (19), (21), (23), and (31), respectively, and do 
not add the EPV bubble diagrams BI to B4 [Eqs. (33), 
(35), (38), and (40)]. Below we will present numbers 

illustrating the importance of these terms. These numbers 
are obtained by the use of bare interactions. Use of dressed 
interactions will change the magnitudes of the different 
terms, but does not resolve the choice between methods 
with or without inclusion of B I " ·B4• 

IV. COMPUTATIONAL DETAILS 

In this section we present the details of the calculations 
on Ar, NH3, and H20. With the methods described above, 
the multipole moments and polarizabilities of ammonia 
and water are computed through second order in the cor­
relation. Using the moments and polarizabilities, we calcu­
late the induction and dispersion coefficients by means of 
equations presented earlier.23,25 The Casimir-Polder inte­
gral, appearing in these equations, is computed by a ten­
point Gauss-Chebyshev quadrature, so that every polariz­
ability must be computed for ten different (j) values. We 
routinely compute also the static polarizabilities. 

A. Basis sets and geometries 

For the integral evaluation, SCF, and four-index trans­
formation the ATMOL26 suite of programs was used. All 
calculations are based on spherical Gauss-type orbitals 
(GTO's). 

The Ar basis set was used earlier in a TDCHF study of 
the potential energy surface of the Ar-H20 complex.27 It is 
a (13s lOp 5d 3/3g/9s 7p 5d 3/3g) basis of dimension 
103. 

For the H20 calculations we used 157 basis func­
tions:28 a primitive (14s 9p 4d 3/ 19) basis contracted to 
[lOs 7p 4d 3/ Ig] on oxygen, and a (9s 3p 3d 1//7s 3p 3d 
1/) basis on hydrogen. The oxygen (13s,8p) basis set of 
Van Duijnevelde9 was extended with a diffuse s (as 
=0.07419) and p orbital (ap=0.0492); all GTO expo­
nents in this paper are in bohr-2. The six most compact s 
orbitals were contracted in a [4,2] contraction and the four 
most compact p orbitals in a [2,2] contraction. The four d 
functions have exponents 4.0, 1.21887,0.36102,0.10, the 
three/functions have 1.0,0.3,0.1, and a g=O.16. The hy­
drogen basis set is derived from an 8s set,29 with the four 

B 

r9. 
(I)~I I I I 

K I • 
(III) 

A 

~ 
!~!. 
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(II)~ 
<::> 
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J 

rC:? (Iv) I I 

~ 
.~ . 

• 
FIG. 3. Brandow diagrams representing the second order correlation 
contributions to the multi pole moment. Also the mirror images of terms 
(ii) and (iii) must be included. The diagrams correspond to the four 
respective terms of Eq. (50). 
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most compact orbitals contracted in a [2,2] contraction. A 
diffuse s orbital with exponent 0.0292 was added. The p 
orbitals have exponents 1.5, 0.4, 0.1, and the d exponents 
are 1.2, 0.3, 0.075. The f orbital has exponent 0.1. 

The OH distance is 1.8088 aQ and the HOH angle is 
104.52·, as in an earlier study on the Ar-H20 complex.27 

The origin was kept on the center of mass with the oxygen 
atom on the positive z axis and the protons in the xz plane, 
in accordance with the geometry used in Ref. 27. 

For NH3 the bases N( 12s 8p 3d If/lOs 7p 3d If) and 
H(7s 2p Id/6s 2p Id) were used. The resulting 104-
dimensional ammonia basis is a more loosely contracted 
version3o of basis A of Diercksen and Sadlept with af 
=0.25. This basis set supports an accurate calculation of 
C6 and to some extent of C8, but not of the higher van der 
Waals coefficients, since g orbitals on N andforbitals on H 
are lacking. 

The center of mass was kept at the origin with the N 
atom lying on the positive z axis and one of the protons in 
the xz plane. The NH bond makes an angle 112.5" with the 
threefold symmetry axis, which corresponds to an HNH 
angle of 106.27°. The experimental32 angle is 106.67°. The 
NH bond distance is 1.9132 aQ' 

B. Computational requirements 

All calculations were performed on an IBM RS/6000 
Model 320 workstation with 32MB main memory. The 
CPU times quoted below refer to this machine. The tim­
ings will show that the evaluation of the correlation con­
tribution to the polarizability using the MBPT method can 
be done with large basis sets on this modest computer. 

We have put no restrictions on the correlating orbitals; 
all orbitals, including those in the core, are included. Point 
group symmetry is used: only symmetry unique compo­
nents of the polarizabilities are computed. 

The correlation contribution to the permanent mo­
ments of water are evaluated in about three minutes of 
CPU time with the help of Eqs. (51) and (52). 

The major part of the CPU time necessary to evaluate 
the correlation contribution to the polarizabiIity is spent on 
the contributions A I and A4• This is because A t is evaluated 
by an n6 process, and indeed about 90% of the time spent 
on Al is in the evaluation of the matrix elements ofF in Eq. 
( 18). The contributions to A4 are obtained by contracting 
the wave functions of Eqs. (20)-(29), see Eq. (31). Al­
though the evaluation of these wave functions is an n5 

process, the wave functions depend on the (I,m) quantum 
numbers of the multipoles and also on the frequency cu, so 
that a large number of them have to be calculated. 

For argon the total computer resources needed are 
about 40 CPU min and 15MB of memory space. The water 
calculation required 9 CPU h and 10MB of memory space. 
The argon atom, with its 18 electrons, requires more mem­
ory than water with its 10 electrons, as the required array 
size scales with the number of occupied and virtual orbitals 
squared. 

TABLE I. Argon properties. All values in a.u. See the text for the defi­
nition of the correlation methods A and A + B. 

SCF 

-526.807189 

TDCHF 

aM 10.736 
aM 50.973 
aM 548.88 

Energy 
MP2 

-0.414391 
Static polarizabilities 

A A+B 

11.120 
53.160 

11.369 
53.366 

568.53 570.49 

Literature 

-526.8175,· -0.706b 

11.17: 11.08d 

Argon-argon dispersion coefficients 
C6 61.947 65.334 68.456 64.30; 64.20r 

Cg t 564.5 1666.0 1711.7 
CJO 48506.0 51697.0 52699.0 

"Reference 33, numerical SCF. 
bReference 34, estimate of the MP2 limit in the correlation energy. 
cReference 35, CCSD (Tl value corrected for core correlation. 
dReference 36, value from dipole oscillator strength distribution. 
<Reference 47, value from dipole oscillator strength distribution. 
rReference 48, value from dipole oscillator strength distribution. 

v. RESULTS AND DISCUSSION 

In Sec. II we defined the following contributions to the 
polarizability: A. i= 1, ... ,4, [Eqs. (19), (21), (23), and 
(31)] and Bio I::: 1, ... ,4 [Eqs. (33), (35), (38), and (40)]. 
In the present section method A will refer to ~1= I Ai and 
hence this method does not include corrections for the 
bubble EPV diagrams Bi. Method A + B refers to ~i= I (Ai 
+Bi )· 

The energies and first and second order properties for 
the three systems argon, water, and ammonia are given and 
compared to literature values in Tables I to III. 

A. Argon 

Argon results are presented in Table I. Our SCF en­
ergy is c. 0.01 a.u. higher than the Hartree-Fock limit 
calculated by Froese-Fischer.33 We recover about 60% of 
the limit of the MP2 energy estimated by Termath, Klop­
per, and Kutzelnigg. 34 Note here that our basis is primarily 
meant to describe the polarization of argon; a much larger 
basis would be needed to describe reliably the ground state 
correlation energy as well. 

Although the differences are not large between method 
A and method B, the static dipole-dipole polarizability ob­
tained by method A agrees best with accurate literature 
values. The computed dipole polarizability is close to the 
CCSD(T) value of Rice et aL 35 (which includes an esti­
mated correction for the core correlation effect) and to the 
half-empirical value of Kumar and Meath. 36 

B. H20 

The results for the H20 molecule are presented in Ta­
ble II. A list of mUltipole moments and polarizabilities 
together with references to experimental data can be found 
in Bulski et al. 27 and Maroulis.37 Our SCF and MP2 ener­
gies are of a good quality: the SCF energy is close to the 
SCF limit estimate (see, e.g., Ref. 38) and the MP2 energy 
is about 90% of the estimated MP2 energy limit. 38 
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TABLE II. Properties (in a.u.) ofHp. See Eq. (50) for definition of the 
MP2 moments and the text for the definition of correlation methods A 
and A+B. 

Energy 
SCF MP2 Literature 

-76.066810 -0.320580 - 76.0658,' -0.3605b 

Multipole moments 
L M SCF MP2 Total Literature 

0 -0.7792 0.05146 -0.7277 0.7268±0.OOO4c 

2 0 -0.1038 0.00005 -0.1037 0.10 ±0.02d 
3 0 1.9379 0.36365 2.3016 
2 2 2.1333 -0.23248 1.9008 2.205 ±0.02d 
3 2 -3.5833 -0.35704 -3.9403 

Static polarizabilities 
TDCHF A A+B Literature 

aM 8.510 9.470 9.624 9.64: 9.75/ 9.77g 

all 9.174 9.988 10.108 9.81: 10.00/ 1O.02g 

all 7.891 8.910 8.961 9.59: 9.56/ 9.64g 
-1-1 

a 8.525 9.456 9.565 9.68: 9.77/9.818 

9.64±0.14h 
9.642<Y 

aM -1.959 -2.598 -2.633 -2.194J 
a2l 

20 -2.717 -2.737 -2.853 -3.43Ji 
ail -7.143 -7.760 -7.843 -7.789 
a 21 

-1-1 -1.822 -2.498 -2.509 -2.062i 

a~~ 40.732 45.407 45.947 
a22 

20 1.228 1.707 1.843 
an 46.425 51.254 51.375 

aM 37.149 42.018 42.368 
an 

-1-1 38.043 43.356 43.398 
a~2_2 37.604 42.777 42.809 

"Reference 38: SCF value. 
bRef. 38: Explicitly correlated MP2 energy. 
cReference 40: Experimental value. Conversion factor: 1 D=0.394487 
a.u. 

dReference 41: Experimental value. 
<Reference 43: Calculated with CEPA. 
fReference 37: MP2 values. 
8Reference 49: MP2 values. 
hEstimate of Ref. 37. 
iReference 50: Value from dipole oscillator strength distribution. 
iReference 42: CI value. 

The dipole moment 0.7277 a.u. is in good agreement 
with the value 0.725 ± 0.005 estimated by Maroulis37 and 
in very good agreement with the experimental value of 
0.7268 a.u. due to Clough et al. 40 The quadrupole moment 
Q6 is close to the old value measured by Verhoeven and 
Dymanus.41 The correlation correction to Q6 is surpris­
ingly small. The computed ~ value falls outside the ex­
perimental error bars,41 so that the reliability of this num­
ber is open to discussion. Note in this respect that the SCF 
value is closer to experiment than the MP2 value. 

An extensive review of the literature values of the 
static dipole polarizabilities is given by Maroulis. 37 We list 
here only part of these values. Our TDCHF results are 
close to the finite-field SCF values that Maroulis obtained 
with his largest basis set W5. The SDQ-MP4 value ob­
tained by Maroulis for a:\,_l is not particularly close to 

TABLE III. Properties (in a.u.) of NH3. See Eq. (50) for definition of 
the MP2 moments and the text for the definition of correlation methods 
A andA+B. 

Energy 
SCF MP2 Literature 

-56.2198510 -0.260 5413 -56.22285,' -0.320 65b 

Multipole moments 
L M SCF MP2 Total Literature 

0-0.644 52 0.03396 -0.61056 -0.5995,c -0.5898d 

-0.5789< 
2 o -2.11891 -0.040 88 -2.15979 _2.250,c -2.2IOd 

3 0 2.50499 0.01763 2.52262 
3 3 4.25962 -0.08482 4.17480 

Static polarizabilities 
TDCHF A A+B Literature 

aM 13.277 14.668 14.841 15.66d 

all 
II 12.769 13.591 13.784 13.73d 

ar 12.938 13.950 14.136 14.37d 

l!.af 0.508 1.077 1.057 1.93d 

aM 0.413 -0.492 -0.441 
at) -5.345 -5.705 -5.783 
aM 75.629 83.236 84.072 77.01,890.48d 

a~~ 70.967 76.207 76.493 71.52,g 78.96d 

an 79.916 88.105 88.259 80.84,g 95.88d 

afI -7.068 -7.118 -5.783 

'SCF result from Klopper et al., Ref. 38. 
~P2-RI21A result from Klopper et aI., Ref. 38. 
"MP2 result from Diercksen and Sadlej, Ref. 31. 
dMP4 value from Diercksen and Sadlej, Ref. 31. 
"Reference 39, experimental value. 
fDefinitions used are a=1(aA.\+2all) and l!.a=alx\-all. 
gSCF value from Diercksen and Sadlej, Ref. 31. 

either of our numbers, with both our methods yielding a 
value that seems to be on the low side. This has the con­
sequence that our isotropic values are also somewhat too 
low. Since method A+B generally seems to overshoot, its 
average value falls now within the conservatively estimated 
error bars for the averaged dipole polarizability,37 whereas 
method A gives the corresponding number just outside 
these error bars. Maroulis' SDQ-MP4 anisotropy seems to 
be better reproduced by the values of method A, although 
all the values are too low. In any case, addition of second 
order correlation to TDCHF gives a large improvement for 
the static polarizabilities with the remaining errors being at 
most 3%. 

The dipole--quadrupole polarizabilities for H 20 are 
compared in Table II to earlier values of John et ai.,42 who 
used a smaller basis and the single-double CI method. We 
also present values for the quadrupole polarizabilities of 
H 20 in this table. 

c. NH3 

We consider the SCF and MP2 energy in Table III. 
Our SCF energy is in reasonable agreement with the best 
value of Klopper and Kutzelnigg,38 and our MP2 approach 
recovers about 80% of the MP2 energy limit.38 

In the calculations we have used a more loosely con­
tracted and spherical version of the basis set A of Diercksen 
and Sadlej31 (DS). Also our ammonia geometry differs 
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slightly from theirs (the HNH angles differ by 0.40°). 
These facts explain that our SCF dipole is 0.0075 a.u. lower 
than the corresponding value of DS. This also means that 
the origin of the difference between the respective MP2 
values for the dipole lies primarily in the SCF number. A 
further small discrepancy is caused by the fact that we 
have used the second order formula (50), whereas DS 
differentiate twice the MP2 energy computed with finite 
field orbitals. Since DS show that the MP2 method yields 
the main part of the correlation correction to the dipole 
moment, the present MP2 dipole can be expected to be an 
accurate number. 

Our SCF and MP2 quadrupole are, respectively, 0.033 
and 0.090 a.u. higher than the corresponding ones of DS. 
The small disagreement between the MP2 corrections must 
be attributed either to the use of finite field orbitals by DS 
or to the greater flexibility in our basis. The analysis of DS 
indicates that third and fourth order correlation raises the 
quadrupole by 0.040 a.u., so that our MP2 value differs 
somewhat fortuitously only by 0.0050 a.u. from the MP4 
value of DS. As remarked by DS, their basis set is not 
flexible enough to provide reliable estimates of the octupole 
and higher properties. Since we have used essentially the 
same basis, the same remark applies also to our results. 

We can also compare static polarizabilities with the 
work of DS. Their and our SCF values of aM differ by 0.05 
a.u. and the SCF all values agree within rounding errors. 
For aM DS found at the MP2 level a value of 15.73 a.u.; 
their full MP4 value is 15.66 a.u. We find 14.67 a.u. in 
method A and 14.84 a.u. in method A+D. So, our result 
disagrees with the OS value. Moreover, contrary to our 
experience so far, method A +D seems to perform better. 
The correlated values for all show better agreement. 
Method A: 13.59, method A +D: 13.78, MP2: 13.74, MP4: 
13.73, all values in a.u. In order to see if we could explain 
the relatively large difference in the MP2 values of aM we 
computed the correlated dipole moment by means of finite­
field orbitals and differentiated this moment with respect to 
the field. It can be shown that this procedure gives dia­
grammatically the dressing of one of the external field ver­
tices by an infinite series of bubbles. Our results from this 
calculation are aM= 14.82 and all = 13.52 a.u., and we see 
that the operator dressing cannot explain the fairly large 
disagreement between the OS value of aM and ours. The 
differentiation of the moment gives a few terms that the 
differentiation of the energy does not give. This fact or the 
differences in the basis must be responsible for the disagree­
ment. 

In Table III we also present quadrupole-quadrupole 
polarizabilities and compare these with the corresponding 
numbers of OS. In order to facilitate comparison with the 
DS numbers, which are given in the Buckingham44 con­
vention, we present the following formulas which are de­
rived under the assumption of C3v symmetry. The negative 
m values refer to sine-type harmonics and the positive val­
ues to cosine types, 

2,2 3C ao,o = zz;zz , 

2,2 2,2 4C 4C -a_2,_1 =a2,1 = XX;xz= - yy;xz' 

(55) 

Note that OS present values for Cxy;xY' which are redun­
dant, but do not give Cxx;xz values, so that we can compare 
only three out of the four linear independent components. 
Again we find a larger disagreement with the work of DS 
than might be expected from the close similarity of bases 
and methods. It is quite conceivable that we find here yet 
another illustration of the sensitivity of polarizahilities for 
AO basis sets. 

D. van der Waals coefficients 

General expressions for the van der Waals coefficients 
are given by Van der Avoird, Wormer, Mulder, and 
Berns2s and in Ref. 45. We will present induction and dis­
persion coefficients for the complexes Ar-Ar, H2O-H20, 
and Ar-NH3 that are computed as described in these ref­
erences. The coefficients are for use in the following expres­
sion for the long range energy: 

10 1 
AE= I Rn 

n=6 

~) 

where the quantity between large brackets is a Wigner 3j­
symbol, U) A and U) B are the Euler angles of monomers A and 
D, ~,K(U» is a Wigner D matrix in the convention of Ref. 
46 and CXt(.n) is a spherical harmonic function normal­
ized to 41T12L+ 1. The quantity .n refers to the polar an­
gles of the vector R that points from the mass center of A 
to the mass center of D. R is its length. Note that the 
angular function can be reduced considerably if one of the 
monomers, say A, is an atom. Since then LA=KA=O, the 
3j-symbol shrinks to a phase times II ~2L+ 1. This factor 
may be incorporated into the definition of the van der 
Waals coefficient, cf. Ref. 27. 

Both methods, A and D, overcorrect a little the TD­
CHF value for the C6 coefficient of Ar-Ar, which lies be­
low the most reliable literature values,47,48 see Table I. 
Again method A is more accurate and overshoots by only 
1.5%. Since the higher polarization function space is less 
saturated than the s p d space, the errors in C8 and CIO are 
probably larger, but, nevertheless, we believe our values 
obtained by method A to be the most accurate ones pub­
lished to date. 

We expect our basis set for H20 to support rather 
reliable calculations of the van der Waals coefficients for 
the water dimer up to and including CIO' This is confirmed 
by the isotropic C6 obtained by method A, which is only 
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TABLE IV. Correlation effects on the most important van der Waals coefficients for the H 2O-H20 com­
plex. 

o 
2 

3 
o 
2 
1 
3 
o 
1 

o 
2 
o 
2 
o 
2 
o 
2 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
1 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

L 

o 
2 
1 
3 
o 
2 
1 
3 
o 
2 

n 

6 
6 
7 
7 
8 
8 
9 
9 
10 
10 

TDCHF 

39.437 
3.065 

79.552 
33.841 

947.39 
162.27 

2514.9 
2394.6 

26507.0 
-5162.0 

'Reference 45, method A+B in a 91-dimensional basis. 

A 

46.443 
3.003 

102.16 
36.55 

1 141.7 
134.6 

3275.3 
2742.0 

33441.0 
-7236.0 

A+B Literature' 

47.623 48.794 
3.207 3.178 

104.58 170m 
38.11 40.32 

1 161.6 1227.5 
141.9 170.5 

3 335.4 5 357.2 
2 809.5 3 062.4 

33 855.0 32357.0 
-7376.0 -17818.0 

2.3% higher than the accurate value 45.37 a.u. of Zeiss and 
Meath.50 They obtained this number from an empirical 
dipole oscillator strength distribution. In Table IV we il­
lustrate the importance of correlation and basis set for dis­
persion coefficients. A true correlation effect of as much as 

20% is found in the first C7• Note also that this coefficient 
is extremely basis dependent: by going from a 91-
dimensional water basis to the present 157-dimensional 
one, it drops from 170.01 to 104.58 a.u. (in methodA+B)! 
We wish to reiterate that this is not an artifact of the mul-

TABLE V. Selected dispersion coefficients (a.u.) of H 2O-H20 computed by method A. A coefficient 
c;AKALsKsL x% smaller in absolute value than the largest with the same n is discarded, where x= 1 for C6 
and C7; x = 5 for Cs and C9; and x = 10 for Cw. 

o 
2 
2 
2 
2 
2 
1 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
o 
1 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
1 
2 
2 

o 
-2 

2 
-2 

2 
2 
o 

-2 
2 

-2 
o 
2 

-2 
-2 

o 
o 
2 
2 
o 
o 

-2 
o 
2 

-2 
2 

-2 
o 
o 
2 
2 
2 

-2 
o 
2 
o 

-2 
2 

o 0 0 
o 0 2 
o 0 2 
2 -2 4 
2 -2 4 
2 2 4 
o 0 1 
1 0 3 
103 
o 0 3 
o 0 3 
o 0 3 
2 -2 5 
225 
2 -2 5 
2 2 5 
2 -2 5 
2 2 5 
o 0 0 
1 0 2 
o 0 2 
o 0 2 
o 0 2 
1 0 4 
1 0 4 
3 -2 6 
3 -2 6 
3 0 6 
3 -2 6 
3 0 6 
3 2 6 
o 0 4 
o 0 4 
o 0 4 
o 0 

o 3 
o 3 

n 

6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
9 
9 
9 

46.443 
3.003 
3.003 
0.52 
0.52 
0.52 

102.16 
-4.70 
-4.70 
36.55 

-28.39 
36.55 
6.96 
6.96 

-5.40 
-5.40 

6.96 
6.96 

1141.7 
-186.8 

134.6 
71.5 

134.6 
-68.8 
-68.8 

-116.3 
90.3 

-70.2 
-116.3 

90.3 
-116.3 

98.7 
-111.5 

98.7 
3275.3 

-240.8 
-240.8 

3 -2 
3 0 
3 2 
3 -2 
3 -2 
3 2 
3 2 
4 -2 
4 0 
4 2 
4 -4 
4 -4 
4 -2 
4 -2 
4 -2 
4 0 
4 0 
4 0 
4 2 
4 2 
4 2 
4 4 
4 4 
5 -4 
5 4 
o 0 
1 0 
3 -2 
3 0 
3 2 
3 -2 
3 2 
3 2 
4 -2 
4 0 
4 2 

o 0 3 
003 
003 
2 -2 5 
225 
2 -2 5 
2 2 5 
105 
105 
105 
3 -2 7 
3 2 7 
3 -2 7 
3 0 7 
327 
3 -2 7 
3 0 7 
327 
3 -2 7 
307 
3 2 7 
3 -2 7 
3 2 7 
o 0 5 
o 0 5 
o 0 0 
102 
104 

o 4 
104 
3 -2 6 
3 -2 6 
3 2 6 
o 0 4 
o 0 4 
o 0 4 

n 

9 2742.0 
9 -1976.4 
9 2742.0 
9 188.9 
9 188.8 
9 188.8 
9 188.9 
9 -216.2 
9 244.3 
9 -216.2 
9 -184.0 
9 -184.0 
9 -403.0 
9 313.2 
9 -403.0 
9 454.7 
9 -353.4 
9 454.7 
9 -403.0 
9 313.2 
9 -403.0 
9 -184.0 
9 -184.0 
9 299.7 
9 299.7 

10 33441.0 
10 -7236.0 
10 -5980.0 
10 4308.0 
10 -5980.0 
10 -4308.0 
10 -4301.0 
10 -4308.0 
10 6413.0 
10 -7048.0 
10 6413.0 

J. Chern. Phys., Vol. 97, No.8, 15 October 1992 



P. E. S. Wormer and H. Hettema: Theory of frequency dependent polarizabilities 5605 

TABLE VI. Selected induction coefficients (a.u.) of H20-HzO computed with MP2 moments and static 
polarizabilities from method A. A coefficient S;AKALoKaL x% smaller in absolute value than the largest with 
the same n is discarded, where X= 1 for C6 and C7 and x=5 for Cs. 

LA KA LB KA L n LA KA LB 

0 0 0 0 0 6 5.0076 3 -2 
2 0 0 0 2 6 11.1974 3 2 
2 0 2 -2 2 6 0.1393 3 -2 3 
2 0 2 -2 4 6 1.5044 3 0 3 
1 0 0 0 1 7 -4.451 3 0 3 
2 0 I 0 7 3.997 3 2 3 
2 0 0 3 7 -19.938 3 2 3 
3 -2 0 0 3 7 43.774 3 2 3 
3 0 0 0 3 7 -4.532 4 -4 0 
3 2 0 0 3 7 43.774 4 -2 0 
3 -2 2 -2 5 7 6.610 4 0 0 
3 -2 2 2 5 7 6.610 4 2 0 
3 0 2 -2 5 7 -0.684 4 4 0 
3 0 2 2 5 7 -0.684 4 -4 2 
3 2 2 -2 5 7 6.61 4 -4 2 
3 2 2 2 5 7 6.61 4 -2 2 
0 0 0 0 0 8 110.93 4 -2 2 
2 -2 0 0 2 8 174.45 4 0 2 
2 0 0 0 2 8 -206.22 4 0 2 
2 2 0 0 2 8 174.45 4 2 2 
2 0 2 0 4 8 12.86 4 2 2 
3 -2 1 0 2 8 17.65 4 4 2 
3 2 0 2 8 17.65 4 4 2 

tipole expansion, supermolecule calculations will show the 
same sensitivity in the long range. 

In order to keep the number of H2O-H20 coefficients 
within reasonable limits, Tables V and VI are reduced by 
deleting all coefficients that are smaller than the largest 
value of the same n by a certain percentage and further­
more by using the symmetry relationship 

cfAKALoKoL= (_ ) ncfBKoLAKAL = (_ )LcfBKoLAKAL. 
n n n 

(57) 

An additional requirement, following from the symmetry 
of the water molecule, is that KA and KB must be even in 
order to obtain a nonvanishing coefficient. Since the lead­
ing dispersion coefficients are an order of magnitude larger 
than the corresponding induction coefficients, Table VI 
contains only induction coefficients through n = 8. Note, 
however, that the anisotropic induction coefficients are not 

TABLE VII. van der Waals coefficients (a.u.) for the complex Ar-NH3 
with Ar as monomer A. 

LB KB n TOCHF A A+B 

0 0 6 69.170 75.216 78.143 
2 0 6 -1.864 -0.359 -0.484 
1 0 7 -88.926 -105.70 -108.98 
3 -3 7 76.215 78.78 82.68 
3 0 7 62.579 59.95 63.35 
3 3 7 -76.215 -78.78 -82.68 
0 0 8 1917.5 2115.0 2165.3 
2 0 8 153.9 342.8 348.5 
4 -3 8 -289.4 -303.0 -318.4 
4 0 8 -61.3 -79.3 -77.5 
4 3 8 289.4 303.0 318.4 

KA L n 

0 4 8 -91.12 
0 4 8 -91.12 

-2 6 8 -157.49 
-2 6 8 16.31 

0 6 8 -12.86 
-2 6 8 -157.49 

0 6 8 124.20 
2 6 8 -157.49 
0 4 8 91.88 
0 4 8 135.76 
0 4 8 -113.40 
0 4 8 135.76 
0 4 8 91.88 

-2 6 8 17.33 
2 6 8 17.33 

-2 6 8 21.31 
2 6 8 21.31 

-2 6 8 -17.29 
2 6 8 -17.29 

-2 6 8 21.31 
2 6 8 21.31 

-2 6 8 17.33 
2 6 8 17.33 

smaller than their dispersion counterparts. Finally, we de­
cided, because of space limitations, to present in Table V 
only dispersion coefficients obtained by method A. We be­
lieve this to be a theoretically sounder method and also it 
seems to give somewhat better results than method A+B. 

For the Ar-NH3 complex we present the van der 
Waals coefficients up to and including Cs in Table VII, the 
ammonia basis being inadequate for the computation of 
higher dispersion coefficients. Even for the polarizability 
a~m" which contributes to the Cs coefficients, g orbital(s) 
are required. However, its components are relatively small 
and do not affect the accuracy of the Cs coefficients too 
much. In Table VIII the corresponding induction coeffi­
cients are listed. 

VI. SUMMARY AND CONCLUSIONS 

We have presented a method for correcting TDCHF 
frequency-dependent polarizabilities and van der Waals co-

TABLE VIII. Induction coefficients for Ar-NH3 obtained from (i) the 
SCF moments combined with TOCHF polarizabilities, (ii) MP2 mo-
ments combined with polarizabilities from method A, and (iii) MP2 mo-
ments with polarizabilities from method A + B. 

LB KB n SCF A A+B 

0 0 6 4.4597 4.2382 4.1454 
2 0 6 9.9723 9.4770 9.2694 
1 0 7 -91.421 -93.482 -91.434 
3 0 7 -93.099 -95.197 -93.112 
0 0 8 125.24 129.28 127.35 
2 0 8 80.14 90.89 90.50 
4 -3 8 -118.16 -116.18 -113.63 
4 0 8 37.35 54.46 53.27 
4 3 8 118.16 116.18 113.63 
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efficients by true second-order correlation. The approach is 
based on a double perturbation theory with one perturba­
tion being the monochromatic external electric field and 
the other the M011er-Plesset correlation potential. 

The final formulas are given in the form in which they 
are implemented in our new computer code, which is al­
most 3 orders of magnitude faster than our earlier code. 
Calculations are now possible for closed shell molecules in 
basis sets large enough to give accurate values for the van 
der Waals coefficients. For instance, for the water molecule 
a basis (including a g orbital) of dimension 157 was used 
and the complete second order correlation contribution for 
66 polarizability components and II frequencies was com­
puted on a RS/6000-320 work station in about 9 h of CPU 
time. 

As we noted in Sec. II, a fully consistent MBPT treat­
ment of correlation effects yields a cancellation of all the 
exclusion principle violating (EPV) terms. The TDCHF 
method, on the other hand, includes terms that from the 
point of view of MBPT are EPV, although from the point 
of view of TDCHF they are not, of course. Since it is thus 
not a priori clear whether these terms must be included, we 
computed polarizabilities with (method A +B) and with­
out (method A) the TDCHF EPV terms. On the whole, 
method A seems to give the more reliable results, with both 
methods giving large improvements to TDCHF. Since in 
an exact theory all the EPV terms are absent, we believe A 
to be the better method. 

We have also given an n5 expression for multipole mo­
ments correct to second order in the correlation. For water 
and ammonia the moments obtained by this formula are 
close to the experimental values, and we may conclude that 
MP2 seems to account for the majority of the correlation 
effects on the multi poles. From the correlated moments 
and polarizabilities we obtain rather simply correlated in­
duction coefficients. 

In all our calculations we found that large basis sets, 
including many polarization functions, are required. We 
believe that further quantitative improvement of our re­
sults will be found sooner in the use of larger bases than in 
better correlation methods. 
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