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EXECUTIVE SUMMARY 

Distributed acoustic sensing (DAS) is a novel technology that has been deployed in a board range 

of industries with a wide variety of applications in geophysical monitoring, pipeline protection, 

perimeter security and condition monitoring of industrial infrastructures. It has the capability of 

monitoring acoustic signatures continuously through the entire fibre over vast distances in harsh 

environments. Many studies have shown that temperature variations result in modifications in 

physical properties of an optical fibre. To obtain reliable information from the DAS system, it is 

significant to study if the temperature has an impact on DAS signal transmission. Furthermore, to 

monitor the condition of applications precisely by using DAS systems, it is necessary to define if 

the temperature is one of the factors that induce the amplitude variations in the acoustic signatures.  

This project aimed to investigate the temperature effects on the performance of DAS. A laboratory 

experiment and data analysis were conducted to meet the following project objectives: 

• to explore the effect of the temperature on frequency characteristics of the DAS system, 

and 

• to examine the impact of the temperature on the amplitude of acoustic signatures.  

The results from frequency plots showed that the temperature did not alter the frequency 

characteristics of the DAS system, but changed the amplitude of the acoustic signatures. The 

results from the temperature characterisation indicated that the ambient temperature is one of the 

factors that cause the amplitude variations in the acoustic signatures, but there was no distinctive 

correlation between them. The potential factors that may have an impact on the outcome of the 

experiment are identified in the paper. The following recommendations are proposed for future 

research:   

• conducting experiments using different types of optical fibre and comparing the results; 

• applying different types of DAS system and comparing the temperature effects on their 

performance; 

• utilising the metal coil with different diameters and comparing the results; 

• making sure that the temperature stays constant during the data recording; 

• increasing the range of the temperature variation and reducing the temperature interval; 

• placing a longer length of the optical fibre in the climatic chamber (minimum: 1.2 km).  
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 INTRODUCTION  

 BACKGROUND 

Distributed Acoustic Sensing (DAS) has been rapidly evolving as a compelling and breakthrough 

fibre-optic based technology with a wide variety of applications. DAS converts an optical fibre 

into an array of virtual microphones, detecting minute tensions induced by external sound and 

vibrations along an optical fibre in real time (Kimbell, 2013). DAS system requires an interrogator 

unit that generates a laser pulse propagating through a single mode optical fibre. The external 

disturbance enables laser pulses to scatter back along the entire length of the optical fibre towards 

the interrogator, resulting in light reflections known as Rayleigh backscatter (Jaaskelainen, 2009). 

The backscatter intensity is measured as a function of time-of-flight based on the principle of 

coherent optical time domain reflectometry (COTDR). Each backscattered signal is produced 

under a corresponding “bin” referred to as a discrete range along the fibre with the spatial 

resolution, which is defined by the laser pulse width (Hill, 2015). DAS technology is capable of 

monitoring acoustic signatures constantly through the entire fibre over vast distances in harsh 

environments (Koelman et al., 2011). 

In recent years, fibre optic DAS technology with the advantages of non-intrusive, low cost, easy 

installation and wide monitoring range has become widespread among many applications, such as 

geophysical monitoring, pipeline protection and perimeter security (Mateeva et al., 2014). In the 

mining industry, the DAS system has been applied in a conveyor condition monitoring to identify 

faulty idlers and to detect conveyor belt failure points. A fibre cable which is connected with an 

interrogator is installed along the conveyor so as to record the acoustic signals from each idler 

frame (Wilson et al., 2018). To reveal the acoustic signatures of the conveyor rollers and bearings, 

signal processing is involved to covert the raw data into the frequency domain. Any wear condition 

of the rollers and bearings is able to be evaluated by analysing the extracted characteristic 

frequency plots. The severity of the condition is determined by comparing the amplitude of the 

frequency pattern with a certain threshold (Wilson et al., 2018). However, variations occur 

occasionally in the amplitude of acoustic signatures that can influence the accuracy of evaluating 

the wear condition. Many factors potentially cause this issue, but they have not been fully 

identified yet.  
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 PROBLEM STATEMENT  

Effects of temperature fluctuations on the Rayleigh signal and therefore, the DAS signal was 

investigated. Research has shown that temperature fluctuations cause changes in the refractive 

index of an optical fibre, thus changing the speed of light through the fibre (Hartog, 2018). 

However, DAS systems assume the speed of laser propagating through the optical fibre is 

consistent. To obtain reliable information from the DAS system, it is significant to study if the 

temperature has an impact on DAS signal transmission. Furthermore, to monitor the condition of 

applications precisely by using DAS systems, it is necessary to define if the temperature is one of 

the factors that induce the amplitude variations in the acoustic signatures.  

 AIMS AND OBJECTIVES  

The project aims to investigate the temperature effects on the performance of DAS. In order to 

achieve this aim, the following main objectives are established: 

• to explore the effect of the temperature on frequency characteristics of the DAS system by 

designing and conducting a series of experiments and analysing the processed acoustic data; 

and  

• to examine the impact of the temperature on the amplitude of acoustic signatures via data 

processing and analysing.   

 SCOPE 

The inclusions and exclusions of the project are listed and shown in Table 1.1.  

Table 1.1. In Scope and Out of Scope of project 

In Scope Out of Scope 

Research on the principle of DAS. Research on the principle of distributed 

temperature sensing (DTS). 

Design and conduct a series of laboratory 

experiments. 

Investigate and test the other effects on DAS. 

Collect both raw acoustic sensing data and 

thermal data from Hawk integration of DAS 

and DTS interrogator. 

Compare the performance of DAS using 

various types of optical fibre and DAS 

interrogator. 
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Process data and generate frequency plots 

using MATLAB to determine the temperature 

effects on the frequency characteristic of the 

system. 

Conduct field experiments. 

Analyse acoustic signatures to examine the 

impact of various temperatures on the 

corresponding amplitude. 

Develop signal processing algorithms for 

DAS and DTS. 

Make theoretical calculations of the 

relationship between the temperature and the 

refractive index of the optical fibre using 

experimental parameters. 

Develop end-user software. 

Compare the theoretical results with the 

results obtained from experiments. 

Calibrate the bin location of the optical fibre 

in the software. 

 SIGNIFICANT TO INDUSTRY  

The outcomes of the project would provide the opportunity to allow the processed acoustic 

signatures more adaptable to the temperature effects, precisely map the discrete range along optical 

fibre onto the interrogator under temperature variations and make the software a better diagnostic 

and calibration to optimise the performance of DAS.  

 THESIS OUTLINE 

The study consists of five chapters, commencing with a background description of DAS systems, 

a statement of the problem that identifies the purpose of this study and the significance of study 

outcomes for the industry.  

Chapter 2 presents working principles, data acquisition and processing principles of DAS 

systems, the fundamental principles and the factors that influence the physical 

properties of the optical fibre. DAS applications, advantages and challenges are 

also reviewed in this chapter.  

Chapter 3 provides details of equipment, setup, conditions and procedures of the laboratory 

experiment. This chapter also introduces the methodology of data analysis. 
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Chapter 4 presents and analyses the experiment results corresponding to the project 

objectives.  

Chapter 5 summarises outcomes of the project and provides recommendations for future 

research.  
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 DISTRIBUTED ACOUSTIC SENSING SYSTEMS 

 INTRODUCTION 

DAS system is a fibre optic-based acoustic detection technology which has the ability to determine 

the spatially distributed measurements along a sensing fibre. A single mode optical fibre as the 

sensing element is connected to a laser source from an interrogator emitting a series of laser pulses 

(Silkina, 2014). These pulses are launched into the optical fibre and interact with the silica glass 

in the fibre. The atoms and molecules in the fused silica cause refractive index variations. The 

acoustic disturbance enables laser pulses to scatter back along the entire length of the optical fibre 

towards the interrogator, resulting in light reflections known as Rayleigh backscatter (Jaaskelainen, 

2009). The Rayleigh backscatter laser signal is precisely mapped to a fibre distance by measuring 

its arrival time based on the principle of coherent optical time-domain reflectometry (C-OTDR). 

This chapter aims to provide:  

• operational and measurement principles of fibre optic DAS technology, 

• performance parameters of DAS,  

• DAS data acquisition and signal processing, 

• the factors could influence the physical properties of an optical fibre, and 

• applications of DAS, their advantages and challenges. 

The gaps are identified at the end of the chapter based on the review of the literature. 

 PRINCIPLE OF OPERATION AND MEASUREMENT 

Fibre optic DAS system is comprised of a fibre optic cable and an interrogator unit, working in 

conjunction to detect acoustic signals along the cable.   

2.2.1 Interrogator Unit 

The principal components applied in the DAS interrogator unit is illustrated in Figure 2.1, which 

consist of a laser source, a pulse generator, an acousto-optic modulator (AOM), a circulator, an 

avalanche photodiode (APD), an amplifier and a signal processor.  
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Figure 2.1. Block diagram of C-OTDR based DAS system (Pimentel, 2017). 

The C-OTDR based interrogator unit (presented in Figure 2.2) transmits a narrow light pulse 

generated by the laser source propagating along the fibre and captures the intensity of the Rayleigh-

backscattered signals with high sensitivity through a photodetector (Pimentel, 2017). The time it 

takes from sending the laser pulse to receiving a return Rayleigh backscattered signals is then 

recorded. As a laser pulse propagates along the fibre, acoustic signals transmitted to the fibre alter 

scattering properties (Moran). The speed of light through fibre for DAS systems being consistent 

at approximately two-thirds of the speed of the light through a vacuum can be applied to identify 

the position of optical loss on the fibre with the return time known as time-of-flight (Systems, 

2018). The interrogator employs a combination of Rayleigh backscatter and time of flight to 

determine the presence, location, intensity and frequency of vibrations along the fibre in real time 

(Systems, 2018).  

 

Figure 2.2. Principle of Operation of DAS (Moran). 
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2.2.2 Data Acquisition and Signal Processing  

An interrogator generally has an integrated signal analysis software that rapidly records, processes 

and analyses the raw data from the system, as well as detects and reports acoustic inputs and 

vibrations (Hawk, 2017). The data is displayed in a waterfall graph with the x-axis being fibre 

distance, y-axis being time and the colour representing the recorded signal intensity (Cannon and 

Aminzadeh, 2013). The operator is able to monitor any discrete range along the fibre. The waterfall 

display is adequate for most applications of DAS. However, to make the raw data meaningful for 

varies applications, it is necessary to extract and process the raw data using specific data processing 

algorithms and techniques such as Fast Fourier Transform and filtering.  

Pulse width, spatial resolution and sample rate are some of the essential performance parameters 

for DAS systems. Pulse width known as laser pulse duration must be long enough to guarantee 

that the laser produces adequate energy in order for the reflection to be detected by the receiver 

(Systems, 2018). The longer the pulse width, the more backscatter to be detected; however, the 

longer the pulse width, the longer section of fibre that responds to acoustic inputs and vibrations 

(Systems, 2018). The range resolution of the system mainly depends on the pulse width and the 

speed of light in the fibre, which can be obtained by using Equation 1: 

 
∆𝑅 =  

𝜏 × 𝑣

2
 Eq. (1) 

where ∆𝑅 is the range resolution, 𝜏 represents the transmitted pulse width, and 𝑣 is the speed of 

light in the fibre.  

The sample rate defines the number of pulses emitted from the laser per second and determines 

the delay between two pulses (Systems, 2018). The selection of the sample rate is required to base 

on frequencies produced under application conditions. The maximum frequency that the system 

can detect is half the sample rate following the rule of the Nyquist theorem. The amount of time it 

takes for the laser pulse to propagate along the fibre is determined by the speed of light in fibre 

and the length of the fibre. Thus, to attain the same dynamic range, the sample rate is inversely 

proportional to the length of the fibre.  

2.2.3 Optical Fibre 

An optical fibre is made of pure silica glass (silicon dioxide). The general structure of an optical 

fibre cable includes a core, cladding, coating and jacket shown in Figure 2.3. The amount of light 
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absorption depends on the purity of the glass fibre. The relationship between the refractive index 

and the speed of light travelling through the glass fibre is expressed as: 

 𝑛 =
𝑐

𝑣
 Eq. (2) 

where 𝑛 represents the refractive index of the glass fibre, 𝑐 is the speed of light in vacuum and 𝑣 is 

the speed of light in the glass fibre. The fibre jacket is made up of plastic, protecting the optical 

fibre from environmental and physical damage.  

 

Figure 2.3. The structure of an optical fibre (Hussaini, 2017). 

Optical fibre falls into three categories: single mode fibre, multimode step index fibre and 

multimode graded index fibre. The structure of these types of fibre is illustrated in Figure 2.4. 

Single mode fibre is currently employed for DAS systems, whereas the multimode optical fibre is 

mostly applied in DTS systems. 

  

Figure 2.4. The structure of multimode step index optical fibre, multimode graded index optical fibre and single 

mode optical fibre (Liu, 2014). 
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The core glass of a single mode fibre is approximately 3 to 10 µm in diameter, which is around 

ten times narrower than that of a multimode fibre (Liu, 2014). Only a single path is allowed for 

the light in the single mode fibre to transmit, eliminating the light pulse dispersion. These features 

make the single mode fibre possess a larger bandwidth and higher propagation speed (Liu, 2014). 

The performance of optical fibres can be improved by increasing the pulse transmission rate, which 

is achieved by shortening the pulse duration within limits (Ismail, 2009). 

 FIBRE CHARACTERISATION 

The main part of the DAS system is an optical fibre. In order to achieve the best performance of 

DAS in various applications, it is significant to identify the factors that have an impact on fibre 

characterisation. This section focuses on reviewing the effects of the wavelength of the light and 

temperature on the refractive index of fibre and the thermal effects on properties of optical fibre.  

2.3.1 Characterisation of Optical Refractive Index 

From Equation 2, it is known that the refractive index is inversely proportional to the velocity of 

light in the glass fibre. The relationship between the wavelength of the light (λ) and the velocity 

of light through the fibre (v) is given by: 

 𝑣 = 𝑓𝜆 Eq. (3) 

where 𝑓 is the frequency.  

Then the equation for the refractive index and the wavelength becomes:  

 𝑛 =
𝑐

𝑓𝜆
 Eq. (4) 

Equation 3 demonstrates that for the silica glass optical fibre, the refractive index is inversely 

proportional to the wavelength of light.  

By verifying the theory, Jasny et al. (2004) conducted an experiment by measuring the refractive 

index of fused silica with the UV light from 346 to 380 nm at temperatures from 143 K to 293 K. 

The experiment result shown in Figure 2.5 supported the theory that the refractive index of fused 

silica decreases with increasing of the wavelength.  
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Figure 2.5. A plot of the refractive index of fused silica as a function of wavelength at 143 K, 233 K and 293 K 

(Jasny et al., 2004). 

It can also be seen in Figure 2.5 that the refractive index changes with changing of the temperature. 

Jasny et al. (2004) generated a plot for the refractive index of fused silica as a function of 

temperature, as shown in Figure 2.6. It is shown that the refractive index of fused silica has a linear 

relationship with the temperature. A mathematical expression was obtained from the study of 

Jasny et al. (2004), as shown in Equation 5: 

 𝑛𝑠𝑖𝑙𝑖𝑐𝑎(𝑇) = (7.83 ± 0.99) × 10−6 𝑇 + 1.47219 ± 2.2 × 10−4 Eq. (5) 

 

Figure 2.6. A plot of the refractive index of fused silica as a function of temperature as the wavelength of the light 

being 365 nm (Jasny et al., 2004). 
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A theoretical model for presenting the relationship between the refractive index of fused silica (n) 

and the ambient temperature (T) in Kelvin was developed by Wang et al. (2014), as shown in 

Equation 6:  

 𝑛 ≈  7.0978 × 10
−6T + 1.47269   Eq. (6) 

The theoretical model was compared with the experimental result obtained by Jasny et al. (2004), 

further demonstrating that the refractive index of the glass fibre is linearly proportional to the 

temperature (Wang et al., 2014). 

2.3.2 Thermal Effects on Properties of Optical Fibres  

A study of Yeung and Johnston (1978) aimed to investigate the temperature effects on the 

transmission properties of various optical fibres. The experiments were carried out by testing 

different types of single-mode fibre in a temperature controlled chamber with the temperature 

range between -150°C and 30°C and in an oven with the temperature from 25°C to 150°C severally 

(Yeung and Johnston, 1978). The results indicated that the transmission power of silicone-cladding 

fibres was deficient as the temperature was below around -50°C due to the changing of the 

refractive index in the cladding, which implied that the silicone-clad fibre was not applicable to 

light transmission in this environment (Yeung and Johnston, 1978). Yeung and Johnston (1978) 

also tested temperature effects on the refractive index of various optical fibre. The result presented 

that the refractive index of the polymer-cladding fibre increased with decreasing temperature. The 

experiment results confirmed that the transmission loss was not affected by the fibre length, but 

caused by the numerical aperture of the fibre reduced with the decreasing refractive index (Yeung 

and Johnston, 1978).  

By knowing that the refractive index of the fibre can be expressed as a function of 

temperature (Equation 6), the time-of-flight (t) a laser pulse propagates through a fibre along a 

certain distance (d) is given by: 

 
t =

𝑑

𝑣(𝑇)
=

𝑑 × 𝑛(𝑇)

𝑐
 Eq. (7) 

Thus, the change in the time-of-flight (∆t) due to the change in refractive index becomes: 

 
∆t =

𝑑 × ∆𝑛(𝑇)

𝑐
=

𝑑

∆𝑣(𝑇)
  Eq. (8) 
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Tateda et al. (1980) studied the thermal characteristic of the phase shift in bare and jacked optical 

fibres both theoretically and experimentally. The phase shift caused by the change of temperature 

can be interpreted as the delay time of an optical pulse, as shown in Equation 8 (Tateda et al., 

1980). The results obtained from both the frequency method and pulse method indicated that the 

thermal effect on jacketed fibres is much higher than that on bare fibres (Tateda et al., 1980).  

Katsuyama et al. (1980) investigated the optical loss characteristics of coated single-mode fibres. 

It was found that transmission loss for the coated single mode fibre increased steeply at low 

temperatures (Katsuyama et al., 1980). 

Golnabi and Sharifian (2013) reported that the optical loss is affected by the fibre dimension, 

materials, the radius of the bent fibre and the wavelength of the light. The experimental setup is 

shown in Figure 2.7, where the light source used in the experiment was a white LED, and laser 

diode and the temperature was in a range from 20°C to 60°C (Golnabi and Sharifian, 2013).  

 

Figure 2.7. Setup of the experiment carried out by Golnabi and Sharifian (2013). 

The result in Figure 2.8 shows that the transmitted power of a rolled fibre is lower than that of an 

unrolled fibre, indicating that the bent fibre can result in fibre transmission loss. The other outcome 

of the experiment demonstrated that the transmitted power for a bent fibre varied with the 

temperature of the fibre (Golnabi and Sharifian, 2013).  
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Figure 2.8. The transmitted power comparison of the unrolled fibre and the rolled fibre using laser diode and white 

LED (Golnabi and Sharifian, 2013). 

 APPLICATIONS  

DAS is a rapidly evolving fibre-optic technology with numerous advantages widely applied in 

geophysical monitoring, pipeline protection, perimeter security and condition monitoring in 

mining industries.  

2.4.1 Geophysical Monitoring 

Mestayer et al. (2011) investigated the feasibility of utilising DAS as a Measurement-Monitoring-

Verification tool to record vertical seismic profile (VSP) data in a well and compared it with the 

conventional geophones. Results obtained from the field experiment indicated that DAS with the 

advantages of low cost, simplicity and non-intrusiveness was a feasible alternative for acquiring 

VSP data in down-hole geophysical surveillance (Mestayer et al., 2011). However, the frequency 

spectra result for the deep portion of the well in Figure 2.9 showed that the signal to noise ratio of 

DAS was lower than that of the geophone (Mestayer et al., 2011). The weakness of DAS was 

predicted to be caused by the weak sensitivity to reflections in the deep portion of the well.  
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Figure 2.9. The comparison of the frequency spectrum and the noise floor for DAS and geophone at shallow (left) 

and the deep (right) portion of the well (Mestayer et al., 2011).    

A study conducted by Molenaar et al. (2012) aimed to reinforce the detection and comprehension 

of hydraulic fracture treatments, using a combination of DTS and DAS. By observing the location 

and intensity of the noise from the waterfall graph of fluid flow, the events for the dropping of 

balls and the number of fluids for each hydraulic fracture stage could be identified and quantified. 

The results obtained from the two case studies demonstrated that the DTS and DAS measurements 

were beneficial to improving real-time hydraulic monitoring and the execution of fracture 

stimulation (Molenaar et al., 2012).  

Daley et al. (2013) conducted a series of field tests applying DAS technology to acquire seismic 

data in both borehole and surface. In the first field test, the fibre cable was deployed in a 2.9 km 

well with a short string of clamped geophones (Daley et al., 2013). The results indicated that the 

DAS system effectively monitored the seismic energy; however, compared to geophones, the DAS 

recorded data showed that the fluid-coupled fibres were relatively low in sensitivity and the signal 

to noise ratio was not sufficient to survey P-waves deeper than approximately 1600 m (Daley et 

al., 2013). In the last two field tests, both DAS sensitivity and signal to noise ratio were improved 

by replacing the previous fibre deployment with multiple runs of fibre and a loop of fibre cable 

cemented in place (Daley et al., 2013).  

In order to further enhance the signal to noise ratio of DAS, Li et al. (2015) suggested in the paper 

that a stronger acoustic source can be employed to minimise the noise floor of the interrogator unit, 
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and some signal processing techniques such as band-pass filter, median filter, wavelet and curvelet 

transform can be applied to remove the random noise and extract the expected signals in DAS 

measurements (Li et al., 2015).   

2.4.2 Pipeline Protection 

The third-party intrusion and fluid leaks, presenting a significant safety and environmental threat, 

are the most frequent cause of failure in oil and gas pipelines. However, the conventional 

approaches for protecting pipelines have been demonstrated to be deficient in leak detection and 

damage prevention. Giunta et al. (2011) and Tejedor et al. (2016) performed a field test severally 

by deploying the optical fibre along a certain distance of the pipeline section with DAS technique 

to identify the simulated third-party intrusion and leak events. The spectrogram of the pressure 

signal, histogram and waterfall graphs for several channels were analysed in the study of 

Giunta et al. (2011), showing that fibre optic DAS was able to detect, locate and classify the early 

stage of threats to the pipeline (Giunta et al., 2011). By evaluating and comparing various 

techniques of position selection and normalization, 8 out of 10 threat events were accurately 

recognised and 4 out of 10 times that the system presented a false positive (Tejedor et al., 2016).  

In order to demonstrate the feasibility of DAS monitoring system for pipelines in the oil and gas 

industry, conditions of the pipeline were monitored in the project of Hussels et al. (2016) by 

detecting acoustic signals in the environment of pipes using DAS system. Two sections of the 

optical fibre as sensors were installed in a 1 m steel pipe, as shown in Figure 2.10. The two sensor 

sections were separated by 30 m of fibre to prevent the backscattered signals generated in different 

sections from overlapping (Hussels et al., 2016). The signal generator was applied to produce 

sinusoidal test signals in a range of kHz to a piezo speaker that was pressed against the surface of 

the pipe (Hussels et al., 2016). C-OTDR based DAS system was set with a sample rate of 42 kHz 

and the pulse width ranging from 30 ns to 100 ns.  

 

Figure 2.10.Schematic of the experimental setup for condition monitoring of the pipeline (Hussels et al., 2016). 
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The acoustic signatures shown in Figure 2.11 were obtained by processing the raw acoustic data 

via fast Fourier transform (FFT) in time intervals of 0.05 s, illustrating that the signal intensity for 

section 1 was approximately 20 times higher than that of section 2 (Hussels et al., 2016). The 

comparison plot shown in Figure 2.11 indicated that the peak signal intensity for 100 ns is higher 

by a factor of approximately 3.8 than that for 30 ns (Hussels et al., 2016).  

These results revealed that the entire length of the optical fibre needs to be attached to the surface 

of the pipe (as the setup of section 1 in Figure 2.10) to ensure optimal acoustic signal transmission, 

and the short optical pulses can be used to achieve a high spatial resolution (Hussels et al., 2016). 

However, in order to make the fibre optic DAS system fully adapt to pipeline applications, the 

temperature effects on adhesives and the coating material are necessary to investigate, and 

different DAS configurations for the pipeline monitoring need to be explored (Hussels et al., 2016). 

2.4.3 Security Monitoring 

The installations for both commercial and governmental perimeter security are generally 

comprised of multiple sensors. Duckworth and Ku (2013) introduced an installation of DAS 

combining with fence sensors and multiple video cameras, which was able to provide early 

warning of threat activities at a perimeter boundary. DAS technology applied in perimeter 

monitoring not only enhances security but also reduces operating expenses (Duckworth and Ku, 

2013).  

Figure 2.11. Acoustic signatures (frequency vs. time) for the two sensor sections and a plot for comparing the 

signal intensity at 4 kHz of the two sensor sections are presented on the left-hand side. A plot on the right-hand side 

is for comparing the signal intensity at 4 kHz as the pulse width being 100 ns with that as the pulse width being 

30 ns (Hussels et al., 2016). 
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He et al. (2018) investigated the reliability of DAS applying to the railway intrusion detection by 

conducting a one-week field test. The DAS was performed with a spatial resolution of 10 m and 

the total sensing distance of 9 km (He et al., 2018). Video cameras were used to verify the DAS 

alarms. The results showed that all the intrusion events were detected and low false alarm 

frequency was occurred during the field test, demonstrating the high reliability of using DAS 

system for monitoring the intrusion into the railway (He et al., 2018). 

 

In addition to the perimeter security, the DAS system can also be implemented to the railroad for 

detecting, locating and alarming on rock falls. A waterfall graph (shown in Figure 2.12) generated 

from DAS system with the vertical axis being time and the horizontal axis being the channel 

number displays the track of falling rocks and the location of the rockfall event (Akkerman and 

Prahl, 2013). By conducting a series of field tests, the average nuisance alarm rate (NAR) obtained 

by Akkerman and Prahl (2013) was approximately one per day. However, the NAR  became higher 

during the changing seasons, which was caused by temperature fluctuations increasing the thermal 

expansion and contraction of the railway track. (Akkerman and Prahl, 2013).  

2.4.4 Condition Monitoring in Mining Industry 

A typical conveyor in underground coal mine can have up to 6,000 bearings per kilometre, making 

the bearing failure detection in conveyor rollers especially tricky, time-consuming and labour 

intensive (Wilson et al., 2016). A DAS-based conveyor monitoring system (Figure 2.13) as a 

newly emerging solution was developed for assisting the conveyor maintenance. It is demonstrated 

that the DAS technology is capable of monitoring the health of the rollers in every section of the 

conveyor, detecting the different stages of wearing rollers and determining the type of idler damage 

(Wilson et al., 2016). 

Figure 2.12. The rock fall event (right) and the corresponding waterfall graph (left) (Akkerman and Prahl, 2013). 
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Figure 2.13. The layout of the DAS-based conveyor condition monitoring system (Wilson et al., 2016).  

Hicke et al. (2017) investigated the usability of DAS for acoustic condition monitoring of rollers 

in conveyor belt systems in the mining industry by diagnosing three different representative rollers 

in an acoustic test stand (Hicke et al., 2017). Figure 2.14 shows the setup of one of the rollers in 

the acoustic test stand that was acoustically isolated from the external environment. A DAS system 

was applied using the optimal pulse width for measuring the acoustic signals. The time-dependent 

spectrograms in Figure 2.14 illustrate that the worse the roller damaged, the broader the acoustic 

emission spectrum. The result demonstrated that the DAS is applicable to machine condition 

monitoring, and the spectrogram can be used as an indicator of the condition of industrial 

infrastructures (Hicke et al., 2017).  

Figure 2.14. Setup for one of the examined conveyor rollers in the acoustic test stand (left) and the time-dependent 

acoustic signatures (right) for (a) new roller (b) moderately damaged roller and (c) heavily damaged roller (Hicke et 

al., 2017). 
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However, in the real-life condition, the conveyor cannot be fully isolated. Hicke et al. (2017) 

found that applying the DAS condition monitoring system in the temperature unstable 

environments would result in low DAS sensitivity and even total loss of sensitivity.   

 

Figure 2.15. Spectrograms for the original optical fibre and the modified optical fibre, with an input acoustic 

frequency of 100 Hz (Hicke et al., 2017). 

A possible solution for it was to modify the fibre segment and increase the amplitude of 

backscattering (Hicke et al., 2017). For validating this method, an experiment was conducted by 

measuring the acoustic signal from an original fibre and a modified fibre under a 2°C fluctuating 

temperature environment. A function generator was used to produce an input frequency of 100 Hz 

with a voltage amplitude of 200 mV. The outcome displayed in Figure 2.15 shows that the fibre 

with altered backscattering has a higher power spectral density (PSD) in average, which implies 

that DAS sensitivity was enhanced (Hicke et al., 2017).  

 RESEARCH GAP 

In the review of previous research on temperature effects on properties of an optical fibre and 

applications of the DAS system, several research gaps are identified as follows: 

• an investigation of thermal effects on the frequency characteristic of the DAS system; and 

• a study on thermal effects on the amplitude of DAS acoustic signatures.  
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 EXPERIMENTAL METHODOLOGY 

 INTRODUCTION  

This chapter provides detailed experimental setup, including the introduction to the apparatus 

applied in the laboratory experiment, equipment selection and layout. The experiment conditions, 

an overview of experimental procedure and data analysing methodology are also described in the 

chapter.  

The equipment used in the laboratory experiment includes:  

• an ACS climatic test chamber 

• a 4-inch woofer speaker, 

• a TTI 40 MHz DDS function/arbitrary generator, 

• two 20 m long single-mode optical glass fibre, 

• two aluminium coils with a diameter of 9.6 cm, 

• a Polyurethane foam soundproofing sheet, and 

• a Hawk Praetorian Fibre Optic Sensing DAS/DTS Sensing system. 

 EXPERIMENTAL SET-UP 

3.2.1 Climatic Test Chamber  

An ACS climatic test chamber shown in Figure 3.1 is safety and eco-friendly innovation, allowing 

both temperature and humidity to be controlled within limits: 

• the temperature range is between -40°C and 200°C, fluctuating between ±0.1°C and ±0.3°C; 

and 

• the relative humidity is in the range of 10% to 98%, fluctuating between ±1% and ±3%. 

A cable notch located on the side of the door provided a space for connections to the exterior of 

the chamber. A test tray inside the chamber allows the objects on it to receive uniform temperature 

and humidity gradient.  
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3.2.2 Distributed Acoustic Sensing System  

HAWK Praetorian Fibre Optic Sensing DAS/DTS system shown in Figure 3.2 allows applications 

such as pipelines, railways and conveyors to be measured in real time by detecting distributed 

disturbances that occur in a fibre optic cable attached to the application (Hawk, 2017).  

The system converts a single-mode fibre optic core into numbers of microphones and 

thermometers (presented in Figure 3.2), detecting, locating and analysing sounds, vibrations and 

different temperature at every half meter (the size of the bin) along the fibre (Systems, 2018). The 

speed of light through a fibre is assumed to be consistent in the DAS system at approximately two-

thirds of the speed of light through a vacuum (Systems, 2018). The DTS system scans through 

various temperatures along with the optical path, providing temperature profiles of the fibre at 

every point along the application (Systems, 2018).  

The fundamental system specifications are: 

• the maximum detectable optical path range of DAS is 40 km, and 

• the maximum sample rate when the length of fibre < 833 m is 120,000 Hz (Systems, 2018).  

 
Figure 3.1. ACS climatic test chamber. 
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Figure 3.2. HAWK Praetorian Distributed Acoustic and Temperature Fibre Optic Sensing system and its 

functional diagram (Systems, 2018). 

3.2.3 Speaker and Function Generator  

A 4-inch woofer speaker connecting with a 40 MHz DDS function/arbitrary generator (shown in 

Figure 3.3) produces acoustic signals with different frequencies. 

 

Figure 3.3. A 4-inch woofer speaker is attaching to a TTI 40 MHz DDS function/arbitrary generator. 

The key specifications of the speaker and function generator are summarised in Table 3.1 and 

Table 3.2, respectively. 

Table 3.1. 4-inch woofer speaker specifications. 

Parameter Value Unit 

Frequency Response 70 – 7000 Hz 

Resonant Frequency 59.9 Hz 

Nominal Impedance 8 Ω 

RMS Power Rating 27 W 
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Table 3.2. 40 MHz DDS function/arbitrary generator specifications. 

Parameter Value Unit 

Frequency Range 1 – 40 mHz – MHz 

Resolution 1 mHz 

Harmonic Distortion to 20 kHz <-60 dBc 

 

3.2.4 Apparatus Set-up 

Figure 3.4 illustrates the overview of apparatus setups and explicit connections between each 

equipment. The interior installation of the climatic chamber is displayed in Figure 3.5a. Two 20 m 

single-mode fibre cables, beginning with 5 m from the cable aft, were looped on the aluminium 

coils separately. 1.7 m of the fibre cables were formed into a DAS fibre coil and a DTS fibre coil, 

locating on the test tray of the chamber. 8 m of the DAS fibre in total were placed in the chamber, 

as shown in Figure 3.6.  

Polyurethane foam was placed at the bottom of the DAS fibre coil to minimise vibrations from the 

chamber. The speaker with its membrane downwards was installed on the top of the DAS fibre 

coil, ensuring that the consistent frequency and signal intensity were received at every point along 

with the fibre coils. A BNC to alligator clip cable was used to connect the speaker to the function 

generator through the cable notch, as shown in Figure 3.5b.  

Two fibre coils were connected through the cable notch to the Hawk DAS/DTS interrogator unit, 

as shown in Figure 3.4 and Figure 3.5c so that acoustic and thermal signatures could be monitored 

and recorded. The thermal signatures were used to compare the temperature in the chamber with 

the actual temperature that the fibre received.  

 

Figure 3.4. The layout of the laboratory experiment. 
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Figure 3.6.Outline of DAS (top) and DTS (bottom) fibre installations. 

 EXPERIMENTAL CONDITIONS 

Table 3.3 presents the configuration of independent variables that were the input frequency of the 

function generator and ambient temperatures inside the climate chamber in the experiment. The 

function generator produced an input sine wave ranging from 100 Hz to 1500 Hz that were in the 

range of the speaker frequency response shown in Table 3.1. The temperature of the climatic test 

chamber was set within limits.  

Table 3.3. Independent variable settings. 

Parameter Range Interval Unit 

Input Acoustic Frequency 

(sine wave) 
100 – 1500 100 Hz 

Temperature -10 – 50 10 °C 

(a) (b) (c) 

Figure 3.5. (a) Installations inside the climatic chamber (b) Function generator installation (c) Hawk DAS/DTS 

system was installed in a control room next to the climatic chamber. 
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Experiment control variables and their settings are summarised in Table 3.4. The relative humidity 

in the climatic chamber was controlled at 50% with an accuracy of ±2% as the temperature above 

0°C, however, when the temperature in the chamber below 0°C, the humidity could not be 

controlled. The input voltage from the function generator was tested to be at least 4 V to produce 

detectable acoustic intensities. The laser pulse width was selected based on spatial resolution. 

According to Equation 1, 5 ns pulse width provided 0.5 m range resolution that was the same as 

the system spatial resolution. The selection of the sample rate was chosen based on the input 

acoustic frequency transmitted to the fibre. Table 3.3 shows that the maximum acoustic frequency 

in the experiment was 1500 Hz; thus, the sample rate had to be equal or higher than twice of the 

maximum acoustic frequency following the rule of the Nyquist theorem. 5 min recording time with 

the climatic chamber turned off was sufficient to record raw acoustic data; however, the 

temperature of the chamber could decrease by 1°C to 2°C within the period. 

Table 3.4. Experimental control variable settings. 

Apparatus Parameter Value Unit 

Climatic Test Chamber 
Relative humidity 

(For temperatures above 0°C) 
50 ± 2 % 

Function Generator Input acoustic voltage 4 V 

Interrogator 

Spatial resolution (size of the bin) 0.5 m 

Laser pulse width 5 ns 

Sample rate 5 kHz 

Temperature resolution 1 °C 

Data recording time 5 min 

 

 EXPERIMENTAL PROCEDURES  

Figure 3.7 presents the overall experimental procedures for the project. At first, a ‘tap test’ was 

done by taping the coiled fibre cable and recording their corresponding bins to match the actual 

location of the DAS fibre coil with the positions along the fibre in the system. All the control 

variables were set after the tap test. Then, the temperature of the chamber was set at -10°C and the 

function generator was initially turned off. Once the temperature became stable, the chamber was 

paused, and DAS/DTS data were recorded for 5 minutes as the reference data. Next, the input 
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frequency was regulated from 100 Hz to 1500 Hz, incrementing 100 Hz each time, and DAS/DTS 

data were recorded 2 times with the climatic chamber turned off. The chamber was restarted to 

reach the required temperature if the temperature of the climatic chamber tended to decrease 

The third stage shown in Figure 3.7 was repeated for the chamber temperature varying from -10°C 

to 50°C with 10°C interval.   

 

Figure 3.7. A flow chart for experimental procedures. 

 DATA ANALYSING METHODOLOGY  

The outline of the data analysing methodology applied in the project is shown in Figure 3.8. In 

order to produce frequency plots for each bin, the saved acoustic raw data that was in the time 

domain was pre-processed and post-processed using the processing algorithms supplied by 

Mining3. The frequency resolution was calculated to be: 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒
2

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
2

≈ 0.0763 Hz 

The whole experiment was repeated two times; thus, the optimal repeatability frequency plots were 

selected. The frequency plots for the same condition were compared with the reference plots to 

identify the system artefacts.  

After the system artefacts were filtered using MATLAB, the frequency with the highest peak in 

the frequency plot was compared with the input acoustic frequency to determine if the temperature 

affected frequency characteristics of the DAS system.  

The peak amplitude at the corresponding input acoustic frequency in the plot for each experiment 

condition was recorded in Excel. Bode plots of amplitude vs frequency at different temperatures 
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were developed to characterise frequency responses of the system. The 3D plot was generated in 

MATLAB to analyse the correlation between the ambient temperature and the amplitude of 

acoustic signatures at various acoustic frequency. 

 

Figure 3.8. A flow chart for data analysis. 
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 RESULTS AND DISCUSSION 

 INTRODUCTION 

This chapter summarises and analyses the core findings of the laboratory experiment. First, a tap 

test result is presented to determine the targeted bin location of the fibre in the experiment. 

Frequency plots are then provided to investigate the temperature effects on frequency 

characteristics of the DAS system. Finally, the temperature characteristics of the DAS system were 

examined to identify if the temperature has an impact on the amplitude of acoustic signatures. 

Potential challenges and constraints of the laboratory experiment are identified based on the results 

of the experiment.  

 TAP TEST RESULT 

The tap test result is displayed in a waterfall graph (shown in Figure 4.1) with the x-axis being the 

fibre distance, y-axis being time and the colour representing the recorded signal intensity, 

illuminating that the coiled DAS fibre was located within bin 41 to bin 44 that had the highest 

intensities.  

According to fibre installation in Figure 3.6, 1.7 m fibre cable was looped into the DAS fibre coil, 

and the size of the bin was 0.5 m, meaning that the DAS fibre coil contained 3.4 bins. Therefore, 

the data acquisition and processing were aimed at bin 42, bin 43 and bin 44 on the fibre. 

 

Figure 4.1. A waterfall graph of the tap test result. 
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 FREQUENCY PLOTS  

A total of 336 frequency plots were generated in the project; the details shown below:  

Total Number of  Major Frequency Plots  

= Number of bins × (Number of Input Frequencies + Reference) 

× Number of Temperatures = 3 × (15 + 1) × 7 = 336 

The reference frequency plots were acquired by processing the raw acoustic data that was recorded 

when the function generator did not generate an acoustic signal to the DAS fibre coil.   

Due to a large number of frequency plots being produced, this section only offers the reference 

frequency plots for bin 43 and the frequency plots for bin 43 when the raw acoustic data were 

recorded in the condition of an 800 Hz input acoustic frequency transmitted into the DAS fibre 

coil. The rest of the frequency plots are provided in Appendix.  

The reference frequency plot for the temperature of the fibre being 0°C is illustrated in Figure 4.2. 

It clearly shows that the peaks occur at 0 Hz, 187.1 Hz, 561.1 Hz, 1122 Hz and 1309 Hz even if 

the reference raw acoustic data was collected without transmitting any input acoustic frequency 

into the fibre. 

 

Figure 4.2.Reference frequency plot for bin 43 at 0°C. 

The frequency plot with the temperature of the fibre being 0°C is shown in Figure 4.3. The peak 

at 800 Hz was highlighted in the plot, indicating that the system successfully captured the acoustic 

signal. By comparing the plot in Figure 4.3 with the one in Figure 4.2, it can be observed that the 
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peaks exist at 0 Hz, 187.1 Hz, 561.1 Hz, 1122 Hz and 1309 Hz in both frequency plots. It 

demonstrates that these peaks were generated from the DAS system, which can be identified as 

system artefacts.  

 

Figure 4.3. Frequency plot for bin 43 at 0°C when the input acoustic frequency was 800 Hz. 

To verify the assumption of system artefacts, the reference frequency plot with the fibre 

temperature of 50°C, and the frequency plot with the input acoustic frequency of 800 Hz and fibre 

temperature of 50℃ are provided in Figure 4.4 and Figure 4.5 respectively. It is visible that the 

peaks appear at 0 Hz, 187.1 Hz, 561.1 Hz, 1122 Hz and 1309 Hz for both plots, confirming with 

the ones in Figure 4.2 and Figure 4.3. Thus, the identification of system artefacts is further certified. 

 

Figure 4.4. Reference frequency plot for bin 43 at 50°C. 
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Figure 4.5. Frequency plot for bin 43 at 50°C when the input acoustic frequency was 800 Hz. 

In order to analyse the temperature effects on frequency characteristics of the DAS system, the 

system artefacts were filtered during data processing. The frequency plots for the temperature of 

the fibre being 10°C, 20°C, 30°C and 40°C are shown in Figure 4.6. Combining with the frequency 

plots in Figure 4.3, Figure 4.5 and Figure 4.6, it can be observed that a single peak occurs at 800 Hz 

in each frequency plot, indicating that the system detected the acoustic signal within the fibre with 

varying temperatures during the experiment. It demonstrates that the ambient temperature does 

not affect frequency characteristics and signal transmission of the DAS system. 

 

Figure 4.6. Frequency plots for bin 43 at 10°C, 20°C, 30°C and 40°C with the input acoustic frequency of 800 Hz. 
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 TEMPERATURE CHARACTERISATION  

Although the temperature did not have an impact on frequency characteristics of the DAS system, 

it can be observed from the frequency plots in section 4.3 that the amplitude of the 800 Hz peak is 

different under various temperatures. To obtain a better understanding of how the system 

performed at different temperatures, a Bode plot of amplitude against frequency for bin 43 as the 

temperature of the fibre at 10°C intervals from -10°C to 50°C was developed and shown in 

Figure 4.7.  

 

Figure 4.7. A Bode plot of amplitude against frequency as the temperature at 10°C intervals from -10°C to 50°C. 

The amplitude for 10°C, 20°C, 30°C, 40°C and 50°C increases dramatically with the input acoustic 

frequency from 300 Hz up to 400 Hz and declines rapidly as the frequency changing from 400 Hz 

to 500 Hz. The system appears to respond intensely to the 400 Hz acoustic signal when the 

temperature of the fibre was above 0°C. It is speculated that the aluminium coil with 9.6 cm in 

diameter might produce a resonant frequency that intensified the acoustic signal.  

However, it can be seen in Figure 4.7 that the amplitude for -10°C and 0°C rises as the acoustic 

frequency changes from 400 Hz to 500 Hz and the amplitudes decrease when the acoustic 

frequency changes from 500 Hz to 600 Hz. It seems that the system highly reacted to the 500 Hz 

acoustic signal as the temperature of the fibre was under 0°C. One of the possibilities is that the 

frequency response of the speaker was altered with the temperature. The second conjecture is that 
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the signal attenuated and lost at low temperatures for the single mode jacked optical fibre, as 

mentioned in Chapter 2 fibre characterisation section. These may explain why the system did not 

have the same frequency response to the 400 Hz acoustic signal below 0°C and above 0°C. 

In Figure 4.7, it shows that the amplitude for the most temperatures fluctuates two times except 

for that for 20°C that has three fluctuations. The amplitude fluctuates at: 

• 400 Hz and 600 Hz, where fibre temperature ≥ 40°C, 

• 400 Hz and 1000 Hz, where 0°C < fibre temperature < 40°C, and 

• 500 Hz and 1200 Hz, where fibre temperature ≤ 0°C.  

A 3D plot was generated and presented in Figure 4.8 to evaluate if the amplitude of the acoustic 

signature, the ambient temperature and the acoustic frequency have any correlations. It can be seen 

in Figure 4.8 that three distinct peaks appear at 10°C 400 Hz, 40°C 400 Hz and −10°C 500 Hz. 

 

Figure 4.8. A 3D plot generated by using MATLAB for investigating the correlation between amplitude, 

temperature and frequency. 

It is surmised that the variations were caused by the following factors: 

• Temperature affected the signal transmission of the speaker. 

• Temperature altered the physical property of the aluminium coil. 
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• Signal attenuation and backscattered light absorption occurred at low temperatures due to 

the structural properties of the fibre optic cable. 

• The DAS fibre was bent onto the aluminium coil, causing the bending loss and signal 

attenuations. 

• The aluminium coil with 9.6 cm in diameter generated the resonant frequency. 

By utilising the curve fitting in MATLAB, a polynomial surface was obtained and shown in 

Figure 4.9. The corresponding equation was generated as follows: 

 Amplitude = 80500 + 107.9 × Temperature - 25.71 × Frequency 

The R-square obtained for that equation was 0.0256, which was far less than one. The higher 

degree of the polynomial surface was also tested, but the R-square could only reach a maximum 

of around 0.2. Based on these results, it can be concluded that there was no correlation among the 

input acoustic frequency, the ambient temperature and the amplitude of acoustic signatures. 

 

Figure 4.9.  Curving fitting for the 3D plot. 
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 CONCLUSIONS AND RECOMMENDATIONS 

This project focuses on the study of temperature effects on frequency characteristics of the DAS 

system and the amplitude of DAS acoustic signatures. A series of laboratory experiments were 

conducted by transmitting a sine-wave frequency from 100 Hz to 1500 Hz into the coiled fibre at 

temperatures ranging from -10°C to 50°C.  An integrate DAS and DTS system was applied to 

record the acoustic signals and monitor the temperature of the fibre. By analysing the extracted 

characteristic frequency plots, the system artefacts were identified. It was also observed that the 

temperature did not alter the frequency characteristics of the DAS system, but changed the 

amplitude of the acoustic signatures. A Bode plot was generated to investigate the acoustic 

transmission characteristics of the DAS system under various temperature. It was found that the 

amplitude fluctuated at 400 Hz and 600 Hz as the temperature was equal to or greater than 40°C. 

The amplitude fluctuation occurred at 400 Hz and 1000 Hz, as the temperature being between 0°C 

and 40°C, and at 500 Hz and 1200 Hz when the temperature was less than or equal to 0°C. The 

3D plot and curve fitting plot with its corresponding equation indicated that there was no 

distinctive correlation between the amplitude of acoustic signatures and the ambient temperature.   

In summary, although the temperature has an impact on the properties of an optical fibre, it does 

not affect the DAS signal transmission. The ambient temperature is one of the factors that cause 

the amplitude variations in the acoustic signatures. However, many potential factors may influence 

the results; thus, the relationship between the amplitude of acoustic signatures and the temperature 

cannot be determined. The potential factors that impacted the outcome of the experiment could be:  

• structural properties of the fibre optic cable altered at low temperatures, resulting in the 

signal attenuation and backscattered light absorption; 

• temperature effects on the signal transmission of the speaker; 

• the change in physical properties of the aluminium coil at various temperatures; 

• the bent fibre causing the bending loss and signal attenuations;  

• the resonant frequency generated from the aluminium coil with 9.6 cm in diameter; and 

• the temperature fluctuation during the 5 min experimental recording.   
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The outcome of this project can be served as a starting point for future research. In order to increase 

the reliability of the DAS system at various temperatures, some recommendations for the future 

study are provided. It is necessary to conduct a series of experiments using different types of 

optical fibre and compare their outcomes to determine if different fibre types have distinct effects 

at various temperatures. The results from the frequency plots identified that the Hawk DAS/DTS 

system has system artefacts. It is recommended that different types of DAS system can be applied 

for recording the acoustic data, and the temperature effects on their performance can be compared 

and characterised. It was surmised that the aluminium coil with 9.6 cm in diameter applied in the 

experiment generated the resonant frequency, thus intensifying the signal transmission. To verify 

this hypothesis, it is recommended to utilise the metal coil with different diameters in the 

experiment and compare the results. It was noticed that the temperature of the chamber could 

decrease by 1°C to 2°C during the 5 min recording time in the experiment, which could result in 

transmission loss and changes in the refractive index of the fibre. Therefore, it is essential to make 

sure that the temperature stays constant during the data recording in the future experiment. The 

theoretical expression shows that temperature variations cause changes in the refractive index of 

an optical fibre, thus changing the time-of-flight. The changes of time-of-flight also depend on the 

distance a laser pulse propagating through the fibre. Therefore, it is worthwhile placing a longer 

length of the optical fibre (a minimum of 1.2 km) in the climatic chamber to investigate the 

distinction it produces. Because of the time constraints, the performance of the DAS system was 

not tested at a broader range of temperatures. For future research, it is suggested to increase the 

range of the temperature variation and reduce the temperature interval.  
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APPENDIX A  PROJECT MANAGEMENT 

A.1 PROJECT TIMELINE  

The project is separated into four major stages:  

• research and experiment preparation, 

• experimentation, 

• data processing and analysing, and  

• final report generation and presentation.  

In order to accomplish the project within the allocated time, it is critical to managing the project 

efficiently with schedules. A project timeframe is presented in Figure A.1, including tasks, 

milestones, dependencies, their corresponding dates, percent complete and durations.  
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Figure A.1 Gantt Chart for project timeline 
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A.2 RISK MANAGEMENT 

The project risks are categorised as technical uncertainties (shown in Table A.1) that may affect 

the achievement of the project goals and potential hazards related to safety, cost and planning 

(shown in Table A.2). Table A.3 measures the potential severity with levels of likelihood and 

consequence of these risks and thus defines the overall risk level. 

A.2.1 Technical Risks 

To promote the success rate of the project, it is essential to recognise and mitigate the uncertainties 

and concerns that would arise during the experimental investigation. The uncertainties, risk 

rankings and the corresponding risk mitigation strategies are addressed in Table A.1. 

Table A.1. Technical risk ranking and the corresponding mitigation strategies 

Uncertainty 

/Concern 

Initial 

Proposed 

Control 
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Risk 

Ranking 

Mitigation 

Strategy 

R
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R
es
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C
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Residual 

Risk 

Ranking 

The actual 

temperature  

that the optical 

fibre receives 

from the 

environment 

chamber. 

Compare the 

DTS profile with 

the temperature 

setting of the 

environmental 

chamber 

C 1 22 

Low 

Thermistors can 

also be utilised for 

double checking 

the temperature of 

the optical fibre 

inside the 

chamber 

E 1 25 

Low 

The frequency and 

intensity of the 

signal in speaker 

transmission are 

attenuated.   

The same 

speaker is 

applied 

throughout the 

experiment to 

keep experiment 

consistency 

C 2 18 

Medium 

Read the 

frequency 

response curve of 

the speaker on the 

datasheet before 

commencing the 

experiment  

C 1 22 

Low 

The consistency 

of the frequency 

and intensity of 

the signal that the 

optical fibre in the 

environmental 

chamber receives 

Test with a 

tightly 

aluminium-

coiled fibre coil 

and a speaker 

placed on the top 

of the coil 

C 2 18 

Medium 

Additional test 

with a loosely 

coiled fibre and 

the speaker placed 

in the middle of 

the fibre 

D 2 21 

Low 

The connection of 

the speaker is not 

stable. 

Check the 

connection each 

time before 

recording the 

data 

A 2 10 

High 

 

Solder the speaker 

wire to make the 

connection more 

stabilized. 

E 2 23 

Low 
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A.2.2 Safety, Cost and Scheduling Risks  

Table A.2 identifies, evaluates and controls the potential risks associated with safety, cost and project schedule.  

Table A.2. Safety, cost and schedule risk ranking and the corresponding mitigation strategies 

Task Activity 
Potential  

Hazard 

Initial Proposed 

Control 
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Residual 

Risk 

Ranking 

Working with 

fibre optic 

DAS/DTS 

interrogator 

When the interrogator is on, the fibre 

optic laser behind the interrogator has 

sufficient optical power to damage 

human eyes. 

Read the fibre optic 

safety rule. Avoid 

looking straight into 

the laser light. 

 P 

A 

S 

C 3 13 
High 

Wear safety glasses 

and avoid working 

with the bare fibre. 

D 2 21 

Low 

  Fibre is damaged. The fibre must, 

therefore, be reordered and replaced. In 

addition, the tap test must be redone. 

Read the installation 

manual. 

 A 

S 

C 2 18 

Medium 

Ask the experienced 

person to assist in 

connecting the fibre. 

D 1 22 

Low 

Connecting 

electric cables 

An electrical fault occurs due to earth 

leakage, causing injury. 

UQ conducts ELCB 

testing every six 

months. 

 P 

A 

S 

E 4 16 

Medium 

Double check the cable 

prior to power 

connection. 

E 4 16 

Medium 

Operating 

environmental 

chamber 

Open the chamber at high temperature 

without disconnecting power, causing 

scalding. 

Pause/stop the chamber 

before opening its 

door. 

 P 

A 

S 

C 2 18 

Medium 

Remove the fibre until 

the chamber 

temperature is cooled 

down. 

D 2 21 

Low 

 Environmental chamber power failure, 

terminating the experiment. 

Report the issue to the 

supervisor 

immediately. 

 S C 3 13 

High 

Avoid setting the 

temperature above 

50°C. 

D 3 17 

Medium 

Processing data Laptop memory is full due to the 

massive data files. The laptop freezes 

up, causing project delay 

Clean up the memory 

space before 

processing data. 

 S C 3 13 
High 

Process the data in 

parts to achieve the 

fastest performance 

D 2 21 

Low 
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 Table A.3. Risk matrix (Mining3, 2016) 

  

Consequence 

1 

Insignificant 

2 

Minor 

3 

Moderate 

4 

Major 

5 

Catastrophic 

D
ef

in
it

io
n

 

(P) 

People 

Slight injury or health 

effects – first aid 

Minor injury or health 

effects – minor medical 

treatment 

Significant injury or 

health effects – restricted 

work 

Permanent disability Fatality or multiple 

fatalities 

(A) 

Asset Damage 

Slight damage less than 

$5000 

Minor damage $5000 to 

$50,000 

Local damage $50,000 to 

$500,000 

Major damage $500,000 

to $1M 

Extreme damage more 

than $1M 

(S) 

Schedule 

Insignificant project delay Minor delays but able to 

meet critical milestones 

Project delays, but the 

timeline is recoverable 

with further effort 

Major delays. The project 

timeline is critically 

affected 

The project is not 

completed and cannot 

meet key milestones 

(T)  

Technical  

Slight impact on 

achieving project 

objectives but can still be 

met in full   

Minor impact on 

achieving project 

objectives but core 

objectives can still be met 

Core objectives will not 

be met. There is an 

alternative solution but 

are undesirable 

Severe impact on 

achieving project 

objectives. There is no 

alternative solution 

Significant impact on 

achieving project 

objectives. The objectives 

are not realisable 

L
ik

el
ih

o
o

d
 

A 

Almost 

certain 

15 (M) 10 (H) 6 (H) 2 (Ex) 1 (Ex) 

B 

Likely 
19 (M) 14 (M) 9 (H) 4 (Ex) 3 (Ex) 

C 

Possible 
22 (L) 18 (M) 13 (H) 8 (H) 5 (Ex) 

D 

Unlikely 
24 (L) 21 (L) 17 (M) 12 (H) 7 (H) 

E 

Rare 
25 (L) 23 (L) 20 (M) 16 (M) 11 (H) 

Risk Ranking  Risk Level 

Extreme (1-5) Immediate correction required -Eliminate, avoid or implement specific plans/ Standards to manage & monitor 

High (6-13) Should receive attention as soon as possible - Proactively manage 

Medium (14-20) Should be dealt with as soon as possible but the situation is not an emergency - proactively manage 

Low (21-25) The risk usually is acceptable - Monitor & manage as appropriate 
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A.3 OPPORTUNITIES 

In addition to analysing negative project risks, it is also crucial to identify opportunities that may 

provide the project with a positive impact. The potential opportunities are described below:  

• the outcome of the investigation further enhances the precision of DAS performance, 

which offers broad prospects for many applications;  

• the project outcome has an opportunity to provide a platform for product implementation; 

and  

• the final report can be published in a research journal on this project topic in order to extend 

the current literature.    
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APPENDIX B PROFESSIONAL DEVELOPMENT 

B.1 KEY LEARNING EVENT IN FEBRUARY – GIVEN TASK ASSIGNMENT 

Table B.1. EA Stage 1 competencies developing for key learning event in February 

Situation:  

In the first week of the placement, I was given a task assignment to theoretically estimate the 

length that a 10 km optical fibre would expand when the temperature increases 40 degrees. I was 

not provided with any references or formula. I had limited background knowledge about optical 

fibre at that time, so I read many papers to get a better understanding of the principles of it before 

commencing the task. However, I was still struggling to find the related formulas. 

Effect:  

I felt frustrated that I spent almost one day on searching and reading the related journal articles but 

still could not find any useful ones. I realised that I should stop to think of the reason causing this 

problem, whether it was due to the difficulty of the task or the wrong keywords that I put in the 

search engine.  

Action:  

To solve this problem, I asked one of the co-workers what keywords he would put in the search 

engine if he had the same task as mine. By taking his suggestions, I found some pieces of the 

literature demonstrated that the temperature would affect the reflective index of the optical fibre 

and some other journal articles proved that the change of the reflective index would have an impact 

on the length of the optical fibre. By knowing these concepts, I quickly searched out the derivations 

of formulas. I collected three related papers, utilised the summarised equations to develop a 

MATLAB code and generated plots. The other co-workers confirmed the results I got. 

EA Stage 1 competencies 

developing 
Description 

EA 1.2 Conceptual understanding of the mathematics, numerical analysis, 

statistics and computer and information sciences which underpin 

the engineering discipline. 

EA 1.4 Discernment of knowledge development and research directions 

within the engineering discipline.  

EA 3.5 Orderly management of self, and professional conduct. 

EA 3.6 Effective team membership and team leadership. 
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Learning:   

From this task assignment, not only my computational skills and modelling skills that I have 

already gained at the university were developed, but also my research skills were significantly 

improved. I learnt that it is essential to have good literature searching ability for students, 

researchers or any experts. Search competency is like learning a language, and it has to be 

established through exercise and with the guidance of mentors. Mastering this skill will strengthen 

my capability for critical thinking and highly increase my work efficiency in the future. 

B.2 KEY LEARNING EVENT IN MARCH – CONDUCTING AN EXPERIMENT 

Table B.2. EA Stage 1 competencies developing for key learning event in March 

Situation:  

I was assigned a task of planning and conducting an experiment using Distributed Acoustic 

Sensing (DAS) interrogator and conveyor test equipment to compare three types of the clip that 

attach optical fibre on the conveyor frame.  When I was about to do the experiment, a DAS team 

member stopped me and guided me to complete Take Five risk assessment.  

Effect:  

EA Stage 1 competencies 

developing 
Description 

EA 1.2 Conceptual understanding of the mathematics, numerical analysis, 

statistics and computer and information sciences which underpin 

the engineering discipline. 

EA 1.3 In-depth understanding of specialist bodies of knowledge within 

the engineering discipline. 

EA 1.6 Understanding of the scope, principles, norms, accountabilities 

and bounds of sustainable engineering practice in the specific 

discipline. 

EA 2.1 Application of established engineering methods to complex 

engineering problem solving. 

EA 2.2 Fluent application of engineering techniques, tools and resources. 

EA 3.1 Ethical conduct and professional accountability. 
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This experience cautioned me the importance of safety and necessity of having risk management 

prior to the experiment. I felt ashamed that I forgot to apply what I learnt from the student induction 

to practice.  

Action:  

I took the Take Five booklet with me whenever I used the lab and filled it out seriously. 

Learning:   

From this experience, I appreciated the significance of applying the risk management concept to 

practice and the principle of health and safety responsibilities. I will take this lesson and keep 

safety in mind whenever I need to conduct an experiment.  I believe that this lesson will be 

integrated into my future engineering career. 

B.3 KEY LEARNING EVENT IN APRIL – CONDUCTING PROJECT EXPERIMENT 

Table B.3. EA Stage 1 competencies developing for key learning event in April 

Situation:  

At the end of March, I conducted my placement project in the fibre-optic sensing laboratory at 

QCAT. During the experiment setup, I only tested a speaker once before I placed it inside an 

environmental chamber. I spent a week to record the acoustic data from the Distributed Optical 

Fibre Acoustic Sensing system. However, when I processed the data, I could not find a peak at a 

specific frequency (the input frequency of the speaker in the frequency plot). In order to detect the 

problem, I modified the experiment method and recording time.  I spent another two days to record 

enough data and then implemented the data processing, but the issue was not resolved. 

I started to check the fibre and speaker connection; then I found that the problem was caused by 

the unstable speaker connection. 

Effect:  

EA Stage 1 competencies 

developing 
Description 

EA 2.2 Fluent application of engineering techniques, tools and resources. 

EA 2.3 Application of systematic engineering synthesis and design 

processes. 

EA 3.5 Orderly management of self and professional conduct. 
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I was very disappointed in myself that the time I spent on collecting the raw acoustic data was far 

longer than I expected. If I could check the setup and the connection every time before recording 

the data, the experiment would be finished by now.  

Action:  

I reconnected the speaker, ensuring that the connection is stable and tested it every time before I 

started a new recording. I also adjusted my project timeline to make sure that I have enough time 

to complete the experiment and analyse results.   

Learning:   

From this event, I appreciated the preciousness of time and the importance to be circumspection 

during the experiment. I realised that it is significantly essential to check the experiment setup and 

cable connections every time prior to recording the data. To redeem the amount of time that I 

wasted in the experiment, I will manage the time efficiently from now on and learn from this lesson 

to avoid making the same mistake in the future. 

B.4 KEY LEARNING EVENT IN MAY – DISCUSSING THE EXPERIMENT RESULTS 

WITH SUPERVISOR 

Table B.4. EA Stage 1 competencies developing for key learning event in May 

Situation:  

In the mid-April, all the resulting data were collected and plotted using Excel.  I generated 15 plots 

for examining temperature effects on bin locations of the optical fibre, but I did not find any 

correlations.   

Effect:  

EA Stage 1 competencies 

developing 
Description 

EA 1.4 Discernment of knowledge development and research directions 

within the engineering discipline. 

EA 2.1 Application of established engineering methods to complex 

engineering problem solving. 

EA 2.2 Fluent application of engineering techniques, tools and resources. 

EA 3.6 Effective team membership and team leadership. 
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I was a bit disappointed with this experiment result. Theoretically, the fibre length would be 

expanded as the temperature increased, thus shifting the bin locations within the optical fibre.  

Action:  

I talked to my placement supervisor about the experiment results to seek advice. From the 

discussion, I realised that not all the experiment results comply with the theory due to experimental 

limitations. If I utilised 1 km of fibre in the climatic chamber, which was not realistic in the 

laboratory experiment, I would see a precise result. The supervisor suggested that I could write 

this issue in the discussion section of the report and make some recommendations for future 

experiments.  

Learning:   

From this event, I gained the experience of how to deal with the unexpected experiment results in 

the future. This experience also built up my confidence in writing the project final report.  

B.5 KEY LEARNING EVENT IN JUNE – HAVING A PRESENTATION IN THE 

TECHNICAL GROUP MEETING 

Table B.5. EA Stage 1 competencies developing for key learning event in June 

Situation:  

At the end of May, my placement supervisor provided me with an opportunity to present placement 

project outcomes in a technical group meeting. I prepared PowerPoint slides that included the 

experimental methodology, results, discussion, conclusion and recommendations. I also rehearsed 

my presentation several times before the technical meeting.  

Effect:  

When it came to the presentation, I was a bit nervous at the beginning, and my English 

pronunciation became unclear. I tried to stay calm and adjust this speech impediment. As the 

presentation progressed, I felt much more confident.  

Action:  

EA Stage 1 competencies 

developing 
Description 

EA 3.2 Effective oral and written communication in professional and lay 

domains. 

EA 3.5 Orderly management of self and professional conduct. 

EA 3.6 Effective team membership and team leadership. 
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After the presentation, I asked my supervisor and the other members for the feedback. They 

provided me with suggestions on how I could present the results more convincingly. 

Learning:   

From this experience, I appreciate the opportunity and valuable advice that my supervisor and the 

other technical team members provided. I gained experience in presenting experimental outcomes 

succinctly and clearly in front of experts. My communication skills have improved, and I feel more 

confident to prepare for my upcoming oral presentation at university. 
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APPENDIX C MATLAB CODE FOR THEORETICAL 

COMPUTATION 
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APPENDIX D PLOTS OF AMPLITUDE VERSUS TEMPERATURE AT DIFFERENT FREQUENCIES 


