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Abstract 

Common questions asked during the process of mine design are “how much geotechnical 

information is required for an acceptable design” and “how to measure its confidence”.  

These are key aspects associated not only with the determination of parameters but more 

generally with the definition of the geotechnical model for design. 

The definition of the geotechnical model for slope design is based on four main components 

including the geological, structural, rock mass and hydrogeological models. Each model is 

described by different sets of information and parameters and is defined at a scale of interest 

for the purpose of the analysis of slope behaviour. In the area of slope design in particular, 

the estimation of geotechnical parameters is normally supported by small data sets, which 

are evaluated with simple statistical procedures based on frequentist concepts. The 

geotechnical model defined in this manner lacks a proper measure of its confidence levels, 

which in turn complicates judging the sufficiency of data and precludes planning the data 

collection based on strategy at the various stages of project development. 

The Bayesian approach is an alternative route to the conventional probabilistic methods 

used in slope design. The approach is based on a particular interpretation of probability and 

provides a suitable framework to treat uncertainty in the geotechnical model for slope 

design. Two important features of the approach are the possibility of combining data with 

subjective information and the ability to quantify the uncertainty of the parameters or models 

given the available data. The first point is especially relevant in the area of mine slope design 

considering that subjective information such as expert opinion or engineering judgement is 

a common element present in the geotechnical design process. The second point provides 

a contrast with the situation within the frequentist approach where the uncertainty measures 

apply to the data rather than to the parameters or models, which are the objects of interest 

to the analyst. 

The first part of the research focused on reviewing the concepts of uncertainty and 

probability to derive the arguments supporting the statement that the Bayesian approach 

offers a better framework for the quantification of uncertainty in the slope design process. 

The result of this work is illustrated with simple examples and is described in detail in the 

two papers included as Chapters 3 and 4. The second part of the research was aimed at 
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demonstrating the use of the Bayesian approach for the inference of geotechnical 

parameters in typical situations encountered during the design of rock slopes. The examples 

presented in the papers included as Chapters 3 to 6 refer to the rock mass strength 

parameters of the Hoek-Brown criterion. These examples were used to highlight the 

advantages of the methodology for the quantification of geotechnical uncertainty.  

The core procedure of the Bayesian approach for the inference of parameters is the 

evaluation of the posterior probability function. There are various methods to evaluate this 

function as described briefly in Chapter 2. However, the specific method used in the 

research is the Markov Chain Monte Carlo (MCMC) simulation. This method was selected 

because it can be easily applied by the geotechnical practitioner using existing tools, without 

relying too much on the use of intricate mathematical procedures. Chapter 2 presents a 

summary of the principles of this technique and describes the more common MCMC 

algorithms. Nevertheless, all the analyses included in the thesis were carried out with a 

powerful MCMC sampler named ‘emcee’, which was developed and is used extensively by 

the astrophysics community. The sampler, as well as the models presented in the thesis, 

are coded in the Python programming language. 

The cases of Bayesian interference of parameters covered by the research include the intact 

rock strength parameters σci and mi, and the geological strength index (GSI) from the Hoek-

Brown strength criterion. The analysis of GSI was based on a correlation commonly used in 

the design of mine slopes that relates GSI with the rock mass factors block volume (Vb) and 

joint condition (Jc). Moreover, the research also included the use of the geotechnical 

parameters inferred with the Bayesian approach for the analysis of the reliability of the slope 

and the back-analysis of slope failure to illustrate how the observed performance of the slope 

could be used to update the parameters. The Bayesian analysis involving the stability of the 

slope require an explicit representation of the slope model that can be incorporated into the 

posterior function. Therefore, the topic of construction of a surrogate model using the 

response surface (RS) methodology is also discussed in detail.  

The research served to identify the main features of the Bayesian methodology that make it 

a suitable approach for the quantification of the geotechnical uncertainty in the slope design 

process in mining projects. The examples presented showed the benefits of the approach 

by contrasting the results with those from conventional frequentist methods.  
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Chapter 1 - Introduction 

1.1 Background 

Probabilistic methods are used to quantify uncertainty in engineering design. However, there 

are two approaches of analysis known as frequentist and Bayesian, which are based on 

different interpretations of probability (Christian, 2004). The frequentist approach relies on 

repeated sampling and produces point estimates and error measures of parameters. In 

comparison, the Bayesian approach uses prior knowledge and data to define posterior 

probability distributions to represent the uncertainty of parameters. The first part of the 

research was devoted to contrast the two approaches and to gather the arguments 

supporting the statement that Bayesian methods provide a better framework for the 

quantification of uncertainty in slope design. The second part of the research was aimed at 

demonstrating the use of the Bayesian approach for the inference of geotechnical 

parameters in typical situations encountered during the design of rock slopes. 

1.2 Statement of the problem 

A notable drawback of the design process of mine slopes is the lack of a suitable approach 

to quantify the confidence of the geotechnical information, including data, parameters and 

models used in the design. Probabilistic methods are commonly used to represent and 

quantify uncertainty in the slope design process. However, there are no clear guidelines with 

regard to the appropriate methods to use in specific situations, and most of the techniques 

of analysis used correspond to the frequentist approach, which has limitations when data is 

scarce and engineering judgement is required. A consequence of this situation is that the 

geotechnical engineer does not have the appropriate tools to judge the sufficiency of the 

available data, nor to define strategies for collection of additional data on a rational basis, 

as the project progresses. 

The research is guided by the argument that Bayesian statistical methods are a better option 

to quantify the uncertainty of the geotechnical model for slope design.  Methods of Bayesian 

statistics have been applied in many scientific fields such as physics, astronomy, biology, 

and social sciences, and in areas of engineering such as the oil and gas industries and in 

the dam and foundation design disciplines. However, these methods are not used in the 



2 

 

area of geotechnical analysis for mine design, either because they are unknown to this 

geotechnical community or because they are perceived as complicated and difficult to apply. 

Notable advantages of Bayesian methods over conventional frequentist methods in terms 

of the problems confronted in the geotechnical design process are: 

(1) Bayesian methods provide the answer to the question of interest to the geotechnical 

engineer, i.e. “what is the probability of the hypothesis (or model) being true given 

the data?”  Frequentist methods address the reverse question, i.e. “what is the 

probability of the data given the hypothesis?” 

(2) Bayesian methods make use of both, prior information on the hypothesis (or model) 

being examined and the likelihood of data, to provide a balanced answer to the 

question of interest.  Frequentist methods on the other hand only use the data, which 

is assumed to be the result of a random process. 

(3) The results of the Bayesian analysis are richer, including probability distributions and 

correlation characteristics of the parameters investigated.  The frequentist results 

consist of a point estimate and an error measure of the parameters. 

1.3 Research objectives 

The purpose of the research is to examine the use of Bayesian methods to deal with 

geotechnical uncertainty in the design of mine slopes and to provide recommendations in 

terms of procedures of analysis that could be incorporated into routine practices of slope 

design. The evaluation of these techniques shall focus on the ability of the approach to: 

(1) Quantify the confidence of the geotechnical parameters at different stages of the 

open pit development. 

(2) Combine in a rational way data from geotechnical investigations with subjective 

information from engineering judgment to produce a balanced result between the two 

inputs. 

(3) Facilitate judging the sufficiency and quality of data at different stages of open pit 

development. 
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1.4 Methodology 

The definition of the geotechnical model for slope design is based on four main components; 

including the geological, structural, rock mass and hydrogeological models (Stacey, 2009). 

Due to the extent and variety of aspects of the uncertainty map in the slope design process, 

the research focuses on those items used in routine slope design tasks, which are under 

the direct control of the geotechnical engineer. In particular, the research includes the intact 

rock and the rock mass quality parameters that form part of the rock mass model. The 

research also considers some aspects of the slope stability model required to incorporate 

performance measurements as an additional source of data to update the geotechnical 

parameters. 

The method of analysis is based on constructing a probability distribution function called a 

posterior function using the Bayes rule, and the evaluation of this function for the inference 

of the parameters of interest contained in the function. The posterior distribution function 

combines a model representing a particular behaviour of interest, data corresponding to 

measurements of this behaviour, and the prior information on the parameters defining the 

model. The inference of parameters requires the evaluation of the posterior function. The 

objective is to find the sets of values that produce the minimum differences between model 

predictions and data, i.e. minimum errors. This condition corresponds to the maximum 

values of the posterior function.  

There are various methods to evaluate the posterior function as described briefly in 

Chapter 2. However, the specific method used in the research is the Markov Chain Monte 

Carlo (MCMC) simulation. This method was selected because it can be easily applied by 

the geotechnical practitioner using existing tools, without relying too much on the use of 

intricate mathematical procedures. Chapter 2 presents a summary of the principles of this 

technique and describes the more common MCMC algorithms. The analyses included in the 

thesis were carried out with a powerful MCMC sampler named ‘emcee’, which was 

developed and it is used extensively by the astrophysics community (Foreman-Mackey et 

al., 2013). The sampler, as well as the models presented in the thesis, are coded in the 

Python programming language (Phyton Software Foundation, 2001). The sampler with the 

characteristics described was selected in order to focus the research on the applications 

rather than on the intricacies of the MCMC algorithm. The MCMC analysis is used to draw 
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representative samples of the parameters investigated, providing information on their best 

estimate values, variability and correlations. 

1.5 Thesis structure 

This thesis uses a format that incorporates published papers produced during the PhD 

candidature. It consists of seven chapters, with four of them containing the four papers 

covering the subject of the thesis. The papers included in Chapters 3 to 6 are arranged in a 

logical sequence consistent with the development of the topics studied. However, there is 

some degree of overlapping of the topics presented in these chapters because the papers 

were originally structured to be self-contained units for independent publication. This means 

that the papers contain basic concepts from the literature review required to build threads 

that facilitate the presentation of the subjects. 

The format of the published versions of the papers was slightly modified to be consistent 

with the format of the thesis. These changes include the numbering of the sections, figures, 

tables and equations, and the format of the references. Similarly, minor changes in the text 

of the first paper (Chapter 3) were required to maintain the coherence with the content of 

the subsequent papers. 

The first chapter introduces the thesis and includes the background of the subject, statement 

of the problem, research objectives, methodology, and thesis structure. 

The second chapter presents the literature review, including discussions on the nature of 

uncertainty, the probabilistic approaches to deal with uncertainty in geotechnical 

engineering, the Bayesian approach of statistical analysis and the Markov chain Monte Carlo 

(MCMC) algorithm used in Bayesian analysis. More specific aspects of the literature review 

are covered in the papers included in Chapters 3 to 6. 

The chapters third to sixth include the four papers produced during the PhD candidature. 

The purpose of these chapters is to present the topics covered during the research, 

highlighting the benefits of the proposed methods relative to the current approach, and 

giving a general perspective of the issue of the handling of uncertainty in slope design with 

the Bayesian approach of statistical analysis. The examples included in the papers only 

cover the rock mass strength part of the geotechnical model for slope design, as a large part 
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of the manuscripts were devoted to discussing the concepts of uncertainty quantification 

and the contrast between the Bayesian and classical approaches of statistical analysis. 

The seventh chapter presents a summary of the most significant findings and conclusions 

from the research, and discuss the aspects requiring a future study that serve as suggested 

topics for further research. These include the assessment of sufficiency of data and the 

hierarchical model for inference of parameters from slope performance, including the 

Bayesian analysis of the rock joint strength parameters. 

1.6 Links between included papers 

The thesis includes four papers presented in a logical and coherent order, supporting the 

objectives of the research. Table 1.1 shows the connection between the papers and the 

topics covered in the thesis. 

Table 1.1 Links between thesis topics and included papers 

Topic Paper description 

Geotechnical uncertainty 

in slope design 

Contreras, L.F., Ruest, M., 2016. Unconventional methods to treat 

geotechnical uncertainty in slope design. In: Dight P, editor. 

Proceedings of the First Asia-Pacific Slope Stability in Mining 

Conference, Brisbane, Australia. Perth: Australian Centre for 

Geomechanics, 315-330. 

Bayesian inference of 

intact rock strength 

parameters 

Contreras, L.F., Brown, E.T., Ruest, M., 2018. Bayesian data 

analysis to quantify the uncertainty of intact rock strength. Journal of 

Rock Mechanics and Geotechnical Engineering, 10(1), 11-31. 

Slope reliability using rock 

mass parameters from 

Bayesian analysis 

Contreras, L.F., Brown, E.T., 2018. Bayesian inference of 

geotechnical parameters for slope reliability analysis. Slope Stability 

Symposium 2018, Seville, Spain. Bco Congresos, 1998-2026. 

Updating of geotechnical 

parameters from back 

analysis of slope failure 

Contreras, L.F., Brown, E.T., 2019. Slope reliability and back 

analysis of failure with geotechnical parameters estimated using 

Bayesian inference. Journal of Rock Mechanics and Geotechnical 

Engineering, 11(3), 628-643. 
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Paper-I in Chapter 3 presents a general discussion on the types of uncertainty found in 

geotechnical engineering and describes two classes of unconventional approaches to deal 

with uncertainty in engineering design. The first corresponds to the Bayesian inference of 

parameters, highlighting the advantages of this approach over the conventional frequentist 

methods used in slope design. This is the approach treated in more detail in the remaining 

chapters. The second consists of non-probabilistic approaches especially suited to deal with 

uncertainty related to imprecision due to incompleteness of information. These methods 

include interval analysis and procedures based on the possibility and evidence theories. 

Paper-II in Chapter 4 presents a detailed description of the Bayesian method for inference 

of parameters applied to the analysis of the intact rock strength using the Hoek-Brown (H-B) 

strength criterion. The paper includes two case examples to illustrate different aspects of 

the Bayesian methodology and to contrast the approach with frequentist techniques. These 

include the nonlinear least-squares method of regression and the use of confidence and 

prediction intervals to measure uncertainty. The work for this paper was developed in 2017 

and for this reason, the regression analysis used tensile strength data, which was allowed 

with the 2002 edition of the H-B strength criterion (Hoek et al., 2002) valid at the time. The 

updated version of the H-B strength criterion published in 2019 (Hoek and Brown, 2019) 

excludes the use of data in the tensile region, which is a change that was incorporated in 

the example presented in Paper-IV. Nevertheless, the essence of the arguments and 

conclusions presented in Paper-II remain relevant, and the analyses using tensile strength 

data serve to show the capability of the Bayesian regression method to handle situations 

where the errors are defined in different directions of the model space. 

Paper-III in Chapter 5 describes a Bayesian methodology in which typical data from 

laboratory tests and site investigations are used to define representative distributions of the 

geotechnical parameters, and the use of these results for the evaluation of the reliability of 

a slope using the first-order reliability method (FORM). In addition to the estimation of the 

intact rock strength parameters described in the previous chapter, the paper also describes 

a methodology for the inference of the geological strength index (GSI) reflecting the rock 

mass quality. The Bayesian reliability procedure requires the use of a surrogate slope model 

constructed with the response surface (RS) methodology. The paper presents an example 

of a slope evaluated with an RS based on limit equilibrium analyses with the slope model, 

using H-B strength parameters as well as equivalent Mohr-Coulomb (M-C) parameters. This 
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example serves to highlight the advantages of using the posterior distributions from the 

Bayesian analysis for the assessment of the slope reliability using the FORM approach. 

Paper-IV in Chapter 6 extends the methodology presented in Paper-III for the analysis of 

the reliability of the slope, which is considered a forward analysis of stability, to include a 

back-analysis of slope failure. The back analysis is used within the Bayesian approach to 

update the estimation of the input parameters according to their uncertainty, which is 

determined by the amount of data supporting them. The methodology is illustrated using the 

same example of a rock slope described in the previous chapter, incorporating updates for 

the inference of the intact rock strength parameters according to the latest edition of the H-B 

strength criterion, as well as for the analysis of GSI data. This example is used to highlight 

the advantages of using Bayesian methods for the slope reliability analysis and to 

demonstrate the ability of the Bayesian approach to incorporate information from slope 

performance for the updating of the geotechnical parameters. In particular, the example 

shows how the amount of data from the geotechnical investigations affect the results of the 

updating process from the back analysis of failure. 
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Chapter 2 - Literature Review 

2.1 Introduction 

This chapter presents a summary of fundamental concepts from the literature review on 

uncertainty in general and with regard to the geotechnical model for slope design in 

particular. The topics discussed include the approaches to deal with uncertainty in 

geotechnical engineering design and the contrast between classical (frequentist) and 

Bayesian probabilistic methods of analysis. A description of the fundamental concepts of the 

Bayesian approach is presented, including an overview of the methods to solve the posterior 

distribution function, which is a central element of the approach. The chapter also discusses 

the Markov Chain Monte Carlo (MCMC) procedure, which is the method selected for the 

evaluation of the posterior function in the research. Finally, a discussion is presented on the 

available software packages to perform this type of analysis and the recommendations to 

verify the quality of the MCMC samples from a Bayesian analysis. 

2.2 The geotechnical model for slope design 

The geotechnical model for slope design is particularly complex because it incorporates 

information from different already complex models. The slope design model is based on the 

geological, structural, rock mass and hydrogeological models (Stacey, 2009). Each model 

is described by different sets of information and parameters and is defined at a scale of 

interest for the analysis of slope behaviour. Figure 2.1 describes the contribution of the 

component models used in the slope design process. The components under the direct 

control of the geotechnical engineer are the rock mass model and the aspects associated 

with systematic structures of the structural model. These elements are described briefly 

hereinbelow; however, the focus of the research was primarily on the application of the 

Bayesian approach for the analysis of data, and only the rock mass strength aspects were 

covered in the scope. 

2.2.1 Rock mass strength 

The methodology followed for the rock mass strength characterisation is based on the Hoek-

Brown (H-B) strength criterion (Hoek et al., 2002) as illustrated in the diagram of Figure 2.2. 

The H-B strength criterion includes the intact rock strength defined by the parameters σci 
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and mi, the rock mass quality described by the geological strength index (GSI) and the rock 

disturbance factor (D). 

 

Figure 2.1 Components of the geotechnical model for mine slope design 

The estimation of σci and mi is based on fitting Hoek-Brown failure envelopes to 

measurements of uniaxial (UCS) and triaxial (TCS) compression tests results. Occasionally, 

UCS data is estimated indirectly from point load test (PLT) results. The intact rock strength 

characterisation according to the latest version of the H-B strength criterion (Hoek and 

Brown, 2019) no longer uses tensile strength data. 

 

Figure 2.2 Rock mass strength estimation methodology 

The estimation of GSI is based on charts describing the structural characteristics of the rock 

mass on the vertical axis and the joint conditions on the horizontal axis. The original chart 



10 

 

proposed by Hoek and Brown (1997) was based on qualitative descriptions of the rock mass; 

however, various authors have proposed alternative charts based on measured factors to 

reduce the uncertainty of the estimation (Sonmez and Ulusay, 1999; Cai et al., 2004; Russo, 

2009; Hoek et al., 2013). The chart selected in this research for the Bayesian analysis is 

based on the block volume (Vb) and the joint condition rating from Palmström (1996), as 

described by Cai et al. (2004). 

The D factor is based on the assessment of the damage from blasting close to the surface 

of the excavation (Hoek, 2012). At deeper levels, the D factor is associated with the 

disturbance from the stress relief caused by the excavation of the slopes. The D factor can 

take values from 0.7 to 1.0 in slopes, with the larger values assigned to zones closer to the 

surface of the excavation. 

2.2.2 Rock joint strength 

The methodology followed for the joint strength characterisation is based on the Barton-

Bandis (1982) criterion as illustrated in the diagram of Figure 2.3. The system is a refinement 

of the original criterion described by Barton and Choubey (1977). 

 

Figure 2.3 Rock joint strength estimation methodology 

The base friction angle (Φb) and the residual friction angle (Φr) are derived from direct shear 

strength (DSS) tests on rock surfaces. Saw cut planes in unaltered rock are used for the 
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determination of Φb, whereas weathered surfaces subject to large shear deformations 

provide the measurements of Φr. 

The joint roughness coefficient (JRC) and the joint compression strength (JCS) are derived 

from borehole logs and mapping data. The JRC is based on the comparison of the observed 

roughness of the surfaces with rated profiles of reference. The JCS is based on rebound 

values from a Schmidt hammer acted on the surfaces. The hammer calibration graphs relate 

the rebound number with the compressive strength of the material tested. 

A scale factor (Ln/L0) based on the ratio between the estimated in-situ block size (Ln) and 

the reference size of specimens in the laboratory (L0), typically 10 cm, is used to adjust the 

JRC and JCS parameters to represent field conditions. 

2.2.3 Structural patterns 

The characteristics of the systematic structural patterns include the identification of the rock 

joint systems and the estimation of their orientation and spatial distribution characteristics 

as illustrated in the diagram of Figure 2.4. 

 

Figure 2.4 Joint structure estimation methodology 

The orientation of the joint systems is described by the dip direction (αi) and dip (ψi), which 

are derived from core orientation measurements and face mapping data. The data collected 

is represented in stereographic projection plots to facilitate the visualization of patterns and 

the analysis of the information (Hoek and Bray, 1981).  

The spatial distribution characteristics of the joint systems are based on data collected from 

the mapping of rock exposures (Priest and Hudson, 1981). The data include measurements 

of spacing (Si), length (Li) and persistence (Pi = length of joint / length of joint and rock 

bridge) for each discontinuity system.  
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The orientation and spatial distribution properties of the joint systems are used to define 

three-dimensional structural patterns that can be used for kinematic analysis of stability and 

for the direct representation of the structural systems in slope stability models. 

2.3 Uncertainty in the geotechnical model for slope design 

The discussion on the types of uncertainty and their occurrence in the geotechnical model 

for slope design was included in Paper-I (Section 3.2) and Paper-II (Section 4.2), and only 

a brief summary of key points is presented in this section. 

The concept of uncertainty refers to the attribute of being unpredictable, imprecise, variable, 

and similar concepts denoting lack of certainty. The uncertainty occurring in the geotechnical 

model for slope design, in particular, has various sources including: (1) approximations in 

the component sub-models, (2) inherent variability of properties assumed as random 

variables, (3) errors in the measurement of properties, and (4) approximations in the 

statistical representation of parameters. However, at a fundamental level, the uncertainty is 

due to lack of knowledge on the subject model and to the natural variability of the properties 

represented within it. This consideration defines the two basic types of uncertainty known 

as epistemic and aleatory, respectively. 

An important aspect of contrast between these two types of uncertainty is that the knowledge 

uncertainty (epistemic) can be reduced with the addition of information (i.e. data collection, 

model refinement), whereas the uncertainty due to natural variability (aleatory) is irreducible 

(Baecher and Christian, 2003). The amount of data supporting the geotechnical model for 

slope design in open pits is relatively small compared with the situation in other geotechnical 

fields. For this reason, the main type of uncertainty present in this area of design 

corresponds to epistemic uncertainty, which is susceptible to reduction with the availability 

of more data. 

2.4 Slope design approaches to deal with uncertainty 

There are three main approaches commonly used to account for the uncertainties in slope 

design: the factor of safety, the probability of failure and the risk analysis. Contreras (2015) 

describes the approaches, highlighting their benefits and limitations as summarised below.  
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2.4.1 The factor of safety approach 

In the slope design context, the factor of safety (FS) can be considered as the ratio between 

the resisting forces (strength) and the driving forces (loading) along a potential failure 

surface. Therefore, FS values larger than, equal to, or less than unity, correspond to slopes 

in stable, limit equilibrium, or unstable conditions, respectively. The FS is calculated with a 

deterministic model using the best estimate values, typically the mean, of the uncertain 

variables. Hence, the combined effect of the uncertainties on the stability evaluation is taken 

into account by using an FS for design larger than unity. Typical design values of FS in 

mining applications range between 1.2 and 2.0 (Wesseloo and Read, 2009).  

The more relevant benefit of the FS approach is its simplicity. In contrast, their main 

drawbacks are the difficulty of selecting the appropriate acceptability criterion in a particular 

geomechanical environment, and the fact that the FS does not vary linearly with the 

likelihood of slope failure. 

2.4.2 The probability of failure approach 

The Probability of Failure (PF) of the slope is generally based on the probability distribution 

of the FS, which is estimated with a deterministic slope model that uses probability 

distributions rather than point values to represent the uncertain parameters. The PF can be 

calculated as the ratio between the area of the FS distribution representing failure i.e. 

FS<1.0 and the total area of the distribution representing all the cases of stability. The Monte 

Carlo (MC) simulation is a technique commonly used to construct the distribution of FS 

values. Wesseloo and Read (2009) present a summary of acceptability criteria for PF from 

different sources, although these authors highlight the difficulty of prescribing general 

recommendations on the appropriate values to use in particular situations. 

A benefit of using the PF as a stability indicator is that it varies linearly with the likelihood of 

failure e.g. a slope with a PF of 5% is twice as stable as one with a PF of 10%. In contrast, 

the FS does not offer this useful reference. This means that a larger FS does not necessarily 

represent a safer slope, as the magnitude of the implicit uncertainties is not captured by the 

FS value e.g. a slope with an FS of 3 is not twice as stable as one with an FS of 1.5. The 

main drawbacks of the PF approach are the difficulties to select adequate acceptability 
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criterion for design and the limitations in predicting failure with the underlying deterministic 

model. 

2.4.3 The risk analysis approach 

In the context of slope design, risk is defined as the combined effect of the probability of 

failure of the slope and the consequence of the failure in terms of safety and economic 

impacts. The risk methodology attempts to solve the problem of defining the acceptability 

criteria present in the FS and PF approaches. In this case, the definition of acceptability is 

more intuitive because it is set directly on the impacts of failure. The calculation of the PF 

for a rick analysis requires a thorough evaluation because it should reflect the actual 

likelihood of failure of the slope. The conventional PF calculated with the slope stability 

model normally accounts for part of the uncertainties, hence, other sources of uncertainty 

not accounted for need to be included in the calculation. It is common to use information 

derived from engineering judgement and expert opinion for the estimation of the PF of the 

slope and for the evaluation of failure impacts. This type of analysis is carried out with 

methods based on the use of logic diagrams and event trees. Baecher and Christian (2003) 

describe these techniques with reference to dam and foundation engineering problems. 

Steffen et al (2008) and Contreras (2015) demonstrate the use of these methods in the 

context of the mine slope design. 

2.5 Strategies to treat uncertainty in geotechnical design 

The more common strategies to deal with uncertainty in geotechnical engineering are 

described by Christian (2004) and a brief summary is included here to provide the general 

framework to place the Bayesian approach proposed in the research. 

2.5.1 Conservative design 

A conservative design consists in the selection of high FS or low PF values as the 

acceptability criteria of the slope design. However, the difficulty to define the acceptability 

criteria with these design approaches is still present, which complicates the use of the 

strategy efficiently. This strategy is particularly inconsistent with the concept of design in 

mining projects where the steepest or highest slopes are often required to achieve the 

sought economic benefit of the project. 
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2.5.2 Observational method 

The observational method is based on measuring the slope performance as the project 

progresses, in order to verify the design assumptions and to implement the required 

adjustments that will ensure the achievement of the design objectives. However, the 

successful application of this strategy requires that the project has sufficient flexibility to 

accommodate the adjustments, but this attribute might not be present in mine slope 

situations. For example, when the observation of the slope performance suggests that the 

flattening of a slope is required to prevent a ramp failure, it may be too late to implement this 

measure. 

2.5.3 Quantification of uncertainty 

A straightforward strategy to treat uncertainty is to include it explicitly in the design. The 

Bayesian approach subject of the research fits into this strategy. In this case, probability 

measures are used to quantify uncertainties as they express the likelihood of occurrence of 

events. However, there are two main interpretations of probability, one as frequencies in a 

series of similar random trials, and the other as degrees of belief assigned directly to 

situations. There are various types of uncertainties in geotechnical engineering, which are 

better represented by either of these interpretations. For example, the uncertainty of a 

property determined from sampling results corresponds to a frequency situation, whereas 

any form of expert opinion represents a degree of belief case.  Baecher and Christian (2003) 

provide a detailed discussion on the topic of duality in the interpretation of uncertainty and 

probability in geotechnical engineering. 

The epistemic uncertainty can be associated with different aspects of lack of knowledge, 

some of which are not compatible with a representation based on conventional probability 

values (Helton et al. 2004). Examples of these special cases of epistemic uncertainty include 

vagueness and various types of ambiguity, which are better treated with alternative 

approaches outside the classical probability theory (e.g. possibility theory and evidence 

theory). These methods are briefly discussed in Section 3.5 to illustrate the variety of 

aspects that need to be considered when dealing with knowledge uncertainty. However, the 

topic is not treated any further as the focus of the research is on the contrast between the 

classical and Bayesian perspectives of probabilistic analysis to represent uncertainty. 
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2.6 Probabilistic methods to treat uncertainty 

There are two main approaches of statistical analysis known as frequentist (or classical) and 

Bayesian. These methodologies refer in particular to statistical inference analysis where 

data is used to draw conclusions on the characteristics of the population represented by the 

data. The objects of the inference analysis are the parameters used to describe the 

population. This process has uncertainty, which is measured with probability values. The 

conceptual basis of the two approaches differ in terms of what is considered uncertain (data 

or parameters), and on the interpretation of probability (VanderPlas, 2014a).  

2.6.1 The frequentist approach of statistical analysis 

The frequentist approach is based on the concept of data, which is used to characterise the 

population from which it is drawn, as being the result of a random sampling process. 

Therefore, in this approach data is considered uncertain whereas the parameters 

investigated are unknown fixed quantities.  In this case, probabilities are interpreted as 

relative frequencies of outcomes from randomised trials or samples. Meaningful probabilities 

require to be based on numerous trials; hence, it is implicit in the approach that many 

samples (data) are necessary for accurate characterisation of the population. 

The results of the inference analysis of parameters consist of point estimates (e.g. the mean) 

and error measures (e.g. the confidence interval) of the parameters investigated. Frequentist 

statistical methods are used by default in many areas of engineering design, including the 

geotechnical design of mine slopes; however, the implications of the conceptual basis are 

rarely comprehended by the analysis, leading to misinterpretation of results, as discussed 

in detail in Section 4.3.4.  

2.6.2 The Bayesian approach of statistical analysis 

In the Bayesian approach, data is combined with the existing prior knowledge on the 

parameters investigated into a so-called posterior distribution using the Bayes’ rule. In this 

case, data represents a particular state of information on the population and therefore are 

considered fixed, whereas the parameters sought to characterise the population are 

uncertain and represented by random variables. The posterior distribution reflects the 

probabilities of the parameters investigated for the particular state of knowledge included in 
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the data and priors used in the analysis. In this case, probabilities are interpreted as degrees 

of belief that can be assigned directly to situations or events. The posterior distributions are 

normally complicated functions that require special methods of evaluation.  

The results of the Bayesian inference of parameters are probability distributions reflecting 

their likelihood and uncertainty. The analysis also provides information on the correlation 

between these parameters. A description of the elements of the Bayesian approach for the 

inference of parameters is included in Section 4.3.2. However, a summary is presented 

below for completeness to introduce the methods of evaluation of the posterior function 

described later in this chapter.   

There are many books on Bayesian analysis with different levels of complexity in the 

presentation of the topic. Stone (2013) gives an introductory description of the subject 

including simple examples aimed at providing intuition on fundamental concepts. Hoff 

(2009), Kruschke (2015), and Sivia and Skilling (2006) give detailed presentations of the 

topic including mathematical descriptions and practical examples developed with 

specialized software. Gregory (2005) provides a good description of underlying concepts 

with examples from the physical sciences. The book by Gelman et al. (2013) is considered 

a classic textbook on the subject, contains practical examples mainly from the social 

sciences fields and includes detailed mathematical descriptions of the topic. 

2.6.3 Fundamentals of the Bayesian approach 

The Bayesian approach of statistical analysis refers to the method of statistical inference 

based on the Bayes’ rule, which describes a construct using the concept of conditional 

probability.  The rule takes its name from the English mathematician Thomas Bayes who 

described it in his work published in 1763, two years after his death (Bayes, 1763). 

Figure 2.5 shows the derivation of Bayes’ rule using Venn diagrams to have intuitive 

representations of the conditional probabilities. The three sets represented with the 

diagrams in Figure 2.5 correspond to the universe set (u) that contains the hypothesis (h) 

and data (d) sets.  The probabilities of the hypothesis (p[h]) and data (p[d]) are defined with 

reference to the universe set. However, the conditional probabilities of the hypothesis given 

the data (p[h|d]) or the data given the hypothesis (p[d|h]) are based on resizing the universe 

and making it equal to the respective conditional set. 
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The general form of the Bayes’ equation, using the definition of terms in Figure 2.5 is: 

 𝑝(ℎ|𝑑) =
𝑝(𝑑|ℎ)𝑝(ℎ)

𝑝(𝑑)
 (2.1) 

which can also be interpreted in the following manner (Kruschke, 2015): 

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 (2.2) 

The Bayes rule is used to update the knowledge of a hypothesis (i.e. a model or a set of 

parameters) from observations represented by the data, and from the available prior 

knowledge on the hypothesis (i.e. subjective information or older data sets). The following 

sections present a brief description of the four components of the Bayes’ rule shown in 

Eq. (2.2). 

 

Figure 2.5 Derivation of Bayes’ rule from definitions of conditional probability visualized with Venn 

diagrams 

2.6.3.1 The posterior distribution 

The “posterior” is a probability distribution that reflects the uncertainty of the hypothesis 

examined (e.g. the set of parameters of a regression model) after taking into account the 

relevant data and prior knowledge on the hypothesis. The posterior is the answer sought by 

the analyst, reflecting the balance between the knowledge provided by the data and prior 
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components. For this reason, the posterior is useful to gauge the sufficiency of data, as a 

strong data set outbalances the effect of the prior.  

2.6.3.2 The likelihood function 

The “likelihood” function defines the probability of obtaining the observations included in the 

data set given the hypothesis under examination (e.g. the set of parameters of a regression 

model). The likelihood is the answer given by classical statistical methods and reflects the 

likelihood of the hypothesis (i.e. the set of parameters) for that particular data set. 

Figure 2.6 shows an example extracted from Kruschke (2015) of the calculation of the 

likelihood of parameters of a normal distribution for a data set of three points, d = [85, 100, 

115]. In this case, the data points represent a variable x, which is assumed to follow a normal 

distribution with mean μ and standard deviation σ, hence:  

 𝑝(𝑥|𝜇, 𝜎) =
1

√2𝜎2𝜋
𝑒

−
(𝑥−𝜇)2

2𝜎2  (2.3) 

The likelihood of a particular set of parameters [μ, σ] for a data set of three points d = [x1, 

x2, x3] corresponds to the product of the three probabilities of the data points as expressed 

by the likelihood function:  

 𝑝(𝑑|𝜇, 𝜎) = ∏
1

√2𝜎2𝜋
𝑒

−
(𝑥𝑖−𝜇)2

2𝜎2

3

𝑖=1

 (2.4) 

Therefore, the likelihood of an arbitrary chosen normal distribution with parameters μ = 87.8 

and σ = 18.4, represented in blue in Figure 2.6, is 2.70E-06 for the data set of three points 

shown in this figure. It is possible to verify that the likelihood of the calculated mean and 

standard deviation of the data points (μ = 100, σ = 12.2), represented in grey in Figure 2.6, 

corresponds to the maximum possible likelihood value, which is a known attribute of these 

parameters from classical statistics.  
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Figure 2.6 Example of calculation of the likelihood of the mean (μ) and standard deviation (σ) of a 

normal distribution assumed to represent the variability of a data set of three points 

2.6.3.3 The prior distribution 

The “prior” represents the initial knowledge on the hypothesis, and it can be informative or 

vague. Informative priors can be any type of distribution that represents adequately the 

existing knowledge of the model or parameter examined. Before the widespread availability 

of numerical methods to sample the posterior distributions, the selection of informative priors 

was based on their affinity with the likelihood function to facilitate the analytical calculation 

of the posterior. These priors are known as conjugate distributions. 

The non-informative priors to express ignorance about a parameter value, are based on the 

range of the parameter domain, with the uniform distribution among the more commonly 

used for this purpose. However, there are situations where a uniform distribution might not 

be the best option to represent the lack of information because it could constrain the results 

of the analysis. In these cases, the definition of the prior distribution could be based on the 

principle of maximum entropy, also known as the principle of minimum prejudice, developed 

by E. T. Jaynes in 1957. 

Gregory (2005) provides a detailed presentation of the concept of maximum entropy 

probabilities. The maximum entropy principle states that “the least prejudiced assignment of 
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probabilities is that which maximizes Shannon's measure and agrees with the given 

information” (Tribus, 1988, p. 48). Shannon’s measure refers to the measure of entropy or 

disorder in information and it was described by C. Shannon as part of his mathematical 

theory of communication published in 1948 (Shannon, 1948). According to this theory, 

“entropy measures what we do not know when we have encoded our knowledge in a 

probability distribution. It measures what is left to learn when you are uncertain” (Tribus, 

1988, p. 45). Table 2.1 shows a list of common maximum entropy probability distributions 

for various constraints, adapted from Harr, 1987. 

Table 2.1 Maximum entropy probability distributions 

Constraints Maximum entropy probability 

distribution 

a ≤ x ≤ b Uniform 

x ≥ 0, mean known Exponential 

- ≤ x ≤ +, mean and standard 

deviation known 
Normal 

a ≤ x ≤ b, mean and standard 

deviation known 
Beta 

0 ≤ x ≤ n, mean occurrence rate of 

independent events known 
Poisson 

 

The selection of the prior is an important step in a Bayesian analysis. The prior could add 

valuable available information to the posterior if selected adequately, or it could bias the 

results if it over-constrains the data. Figure 2.7 shows a conceptual representation of the 

influence of the prior on the posterior. The left column plots illustrate the situation of a vague 

prior having no influence on the posterior regardless of the size of the data set. The middle 

column plots show the strong influence of an informative prior on the posterior when the 

data set is small. The right column plots represent the case of an informative prior out 

weighted by the strong influence of a large data set. The selection of inappropriate priors 

could result in over-constrained posterior distributions, in particular when data is scarce. 



22 

 

 

Figure 2.7 Conceptual representation of the influence of vague and informative priors on the 

posteriors depending on the size of the data set 

Siu and Kelly (1998) summarise the concepts of Bayesian analysis and maximum entropy 

and provide practical recommendations to define prior distributions in the context of risk 

analysis. Bozorgzadeh and Harrison (2014) discuss a practical example to illustrate the 

effect of informative and non-informative priors on the estimation of UCS values using 

different sizes of data sets. Cao et al. (2016) discuss approaches to define non-informative 

and informative prior distributions of soil parameters for the Bayesian analysis of site 

characterisation. 

2.6.3.4 The evidence function 

The “evidence” part in the denominator of Bayes equation (Eq. 2.1) is normally treated as a 

normalisation factor so that the posterior integrates to one. It is calculated as the integral of 

the numerator over the whole parameter space. The posterior distribution does not need to 

be normalized when the purpose of the Bayesian analysis is the inference of parameters 

and the posterior is evaluated using the Markov chain Monte Carlo (MCMC) method. In this 
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case, the calculation of the typically complex integral in the denominator of the Bayes 

equation can be skipped. However, the denominator is required when the objective of the 

analysis is the comparison of two alternative models, which is done through the calculation 

of the Bayes factor that relates the posteriors of the two models. 

2.6.4 Contrast between the frequentist and Bayesian approaches 

The comparison of key aspects of the two approaches was presented initially in Paper-I 

(Table 3.1) and was emphasised again in Paper-II (Table 4.1). The summary of contrasting 

features presented in these tables was a necessary element to explain the subtle differences 

in the interpretation of results of the inference analysis with both methods, which seems to 

coincide in many cases.  

A fundamental difference consists in the interpretation of probability, which is associated 

with a frequency of outcomes in a series of repeated random trials in the frequentist 

approach, as opposed to a degree of belief assigned directly to a situation in the Bayesian 

approach. Another fundamental difference is that in the Bayesian approach data is 

considered a fixed entity whereas the parameters investigated are the uncertain objects 

represented by random variables. This assumption is reversed in the frequentist approach 

where data is random and the parameters sought are fixed, although intractable objects.  

Methodologically, the Bayesian method uses in addition to the data, which is the only input 

in a frequentist analysis, any prior knowledge available on the parameters investigated, 

including subjective information such as expert opinion. The result of a Bayesian analysis 

applied to the inference of parameters consists of a probability distribution of the parameters 

that reflects the balance between the prior information and data. This type of analysis is 

known as Bayesian updating because it can be applied in successive stages as more data 

is available, which is a feature that suits well the typical process followed in geotechnical 

design. In contrast, the frequentist analysis for the inference of parameters provides a point 

estimate (e.g. the mean) and an error measure (e.g. the confidence interval) of the 

parameter investigated, although the true value of the parameter is a fixed entity, and cannot 

be known. 

A consequence of the differences indicated above is that the Bayesian approach addresses 

the question of interest to the analyst, which is what is the probability of the parameter (or 



24 

 

model) given the data. The frequentist approach, in contrast, can only answer the reverse 

question, i.e. what is the probability of the data given the parameter (or model), which clearly 

is of less interest to the analyst (VanderPlas, 2014a). 

A common misinterpretation of the confidence interval (CI) in the frequentist approach is 

discussed in detail in Paper-I (Section 3.4.2) and Paper-II (Section 4.3.4), including an 

example to illustrate this point. In general, the CI is mistakenly used to quantify the 

uncertainty of parameters such as the mean value of a rock property, when in fact the CI 

really measures the uncertainty of the data supporting the parameter estimate. The 

confusion is the result of the intuitive interpretation by the analyst of data as fixed and 

parameters as random entities, which is inconsistent with the assumptions of the approach. 

However, this intuitive interpretation of data and parameters is consistent with the 

assumptions of the Bayesian approach, which suits better the interest of the analyst as a 

result.  

2.6.5 Arguments for using the Bayesian approach for the geotechnical design of 

mine slopes 

The main arguments supporting the use of the Bayesian approach for the geotechnical 

design of mine slopes include: 

 The suitability of the approach to represent the epistemic uncertainty, which is the 

prevailing type of uncertainty in the geotechnical model for slope design. This aspect 

contrast with the inconsistency of the frequentist approach to model this type of 

uncertainty as discussed in Paper-I (Section 3.4.3). 

 The ability of the approach to combine information from various sources to provide 

the best possible estimates of design parameters. The types of information that can 

be used with the approach include prior knowledge and data from different sources 

such as site and laboratory investigations and measurements of slope performance. 

This aspect is described in Paper-III (Section 5.2.6).  

Although the Bayesian methods of analysis have been known for more than two centuries, 

their use for practical applications involving multidimensional models was limited due to the 

difficulties of solving the posterior distributions. In contrast, the frequentist methods used 
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with large sample sizes have known asymptotic properties that made probabilistic inference 

easy (Zyphur and Oswald, 2015). However, the rapid development of modern computers 

and computing algorithms that have occurred during the past 50 years have made the 

Bayesian solutions equally attainable. The situation today is that the flexibility of the 

Bayesian methods allow the estimation of parameters in situations where traditional 

methods cannot provide a solution (Zyphur and Oswald, 2015). 

2.7 Methods of evaluating the posterior distribution 

The posterior distribution in a Bayesian analysis is generally difficult to evaluate because 

combines two different distributions representing the prior and likelihood components of the 

Bayes equation. In addition, the likelihood part contains the function that represents the 

model under examination, contributing to the complexity of the distribution. There are 

several methods used to evaluate the posterior distribution as described hereinafter. 

2.7.1 Conjugate prior 

This method corresponds to the case where the prior distribution is a function that can be 

easily multiplied by the likelihood function to obtain analytically a posterior distribution of the 

same type as the prior. The prior distribution is then called a conjugate prior for the likelihood 

function (Baecher and Christian, 2003). The posterior distribution obtained in this way is 

represented by a closed function whose evaluation is straightforward. The main limitation of 

this method is that in many real case situations the likelihood functions have no conjugate 

priors and the method is not applicable. The method is better illustrated with a simple 

example of inference of the mean (μ) and standard deviation (σ) of UCS based on a data 

set of n = 15 values in MPa (x = [130.7, 144.4, 121.8, 114.4, 95.8, 76.6, 144.0, 110.7, 113.0, 

172.0, 140.5, 131.1, 124.3, 165.6, 171.6]). The UCS is considered a random variable that 

follows a normal distribution for the solution of this problem. The available information on 

the parameter values indicates a prior mean μ0 = 100 MPa and a prior standard deviation 

σ0 = 20 MPa. In this case, the prior parameters represent a single observation (ν0 = 1). 

The inference of the joint distribution of μ and σ is based on the posterior distribution of these 

parameters given the data according to Bayes’ rule as follows: 
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 𝑝(𝜇, 𝜎|𝑑𝑎𝑡𝑎) =
𝑝(𝜇, 𝜎) 𝑝(𝑑𝑎𝑡𝑎|𝜇, 𝜎)

𝑝(𝑑𝑎𝑡𝑎)
=

𝑝(𝜇, 𝜎) 𝑝(𝑑𝑎𝑡𝑎|𝜇, 𝜎)

∬ 𝑝(𝜇, 𝜎) 𝑝(𝑑𝑎𝑡𝑎|𝜇, 𝜎)𝑑𝜇 𝑑𝜎
 (2.5) 

The denominator in Eq. (2.5) acts as a normalisation constant and corresponds to the 

integral over the whole parameter space of the product of the prior and likelihood terms in 

the numerator. The use of conjugate priors allows the analytical solution of this integral. 

The prior term p(μ,σ) in Eq. (2.5) corresponds to a bivariate distribution and can be 

represented as the product of a conditional probability and a marginal probability (Hoff, 

2009) as follows: 

 𝑝(𝜇, 𝜎) = 𝑝(𝜇|𝜎) 𝑝(𝜎) (2.6) 

The conjugate prior for the probability of μ conditioned to σ is the normal distribution with 

parameters μ0, σ (i.e. μ ~ Normal [μ0, σ]). The conjugate prior for the probability of the 

variance (σ2) is the inverse-gamma distribution with parameters ν0/2, ν0σ0
2/2 (i.e. σ2 ~ 

Inv.Gamma [ν0/2, ν0σ0
2/2]). Therefore, the informative prior distribution in Eq. (2.6) can be 

expressed as follows: 

 𝑝(𝜇, 𝜎|𝜇0, 𝜎0, 𝜈0) = [
1

√2𝜋𝜎2
𝑒

−
(𝜇−𝜇0)2

2𝜎2 ] [
(
𝜈0𝜎0

2

2 )
𝜈0
2

Γ (
𝜈0

2 )
 (

1

𝜎2
)

(
𝜈0
2

+1)

 𝑒
−

𝜈0𝜎0
2

2𝜎2 ] (2.7) 

The likelihood term p(data| μ,σ) in Eq. (2.5) is calculated from the data set as follows: 

 𝑝(𝑑𝑎𝑡𝑎|𝜇, 𝜎) = 𝑝(𝑥1, … 𝑥𝑛|𝜇, 𝜎) = ∏ (
1

√2𝜋𝜎2
𝑒

−
(𝑥𝑖−𝜇)2

2𝜎2 )

𝑛

𝑖=1

 (2.8) 

The posterior probability distribution function can be decomposed into the mean and 

standard deviation parts, in the same way as it was done with the prior distribution in 

Eq. (2.6) as follows:  

 𝑝(𝜇, 𝜎|𝑥1, … 𝑥𝑛) = 𝑝(𝜇|𝜎, 𝑥1, … 𝑥𝑛) 𝑝(𝜎|𝑥1, … 𝑥𝑛) (2.9) 

The result from applying the Bayes theorem and performing the mathematical analysis to 

the terms in Eq. (2.9) is that the posterior distribution is of the same type as the prior, i.e. 
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normal and inverse-gamma for the mean and variance parameters, respectively. In this 

case, the posterior distribution is defined by the following expression: 

 

𝑝(𝜇, 𝜎|𝑥1, … 𝑥𝑛, 𝜇𝑛, 𝜎𝑛, 𝜈𝑛)

= [
1

√2𝜋𝜎2
𝑒

−
(𝜇−𝜇𝑛)2

2𝜎2 ] [
(
𝜈𝑛𝜎𝑛

2

2 )
𝜈𝑛
2

Γ (
𝜈𝑛

2 )
 (

1

𝜎2
)

(
𝜈𝑛
2

+1)

 𝑒
−

𝜈𝑛𝜎𝑛
2

2𝜎2 ] 
(2.10) 

where: 

𝜈𝑛 = 𝜈0 + 𝑛 

𝜇𝑛 =
𝜈0𝜇0 + 𝑛𝑥̅

𝜈𝑛
 

𝜎𝑛 = √
1

𝜈𝑛
[𝜈0𝜎0

2 + (𝑛 − 1)𝑠2 +
𝜈0𝑛

𝜈𝑛
(𝑥̅ − 𝜇0)2] 

𝑥̅ = 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 

𝑠2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡 

The mean parameters of the posterior distribution in Eq. (2.10) are: 

 𝑀𝑒𝑎𝑛 𝜇 = 𝜇𝑛 (2.11) 

 𝑀𝑒𝑎𝑛 𝜎 = √
2𝜎𝑛

2

𝜈𝑛 (
𝜈𝑛

2 − 1)
 (2.12) 

Details of the mathematical analysis to derive the posterior function for the normal-inverse 

gamma prior case can be found in Hoff (2009). Although this analytical process can be 

tedious, the benefit of the method is that the result is a closed-form expression of the 

posterior distribution of parameters that can be easily evaluated. The graph in Figure 2.8 

shows the joint prior and posterior distributions of parameters (μ, σ) representing the mean 

and standard deviation of UCS, for the example of the data set of 15 values. The prior 

distribution is constructed with Eq. (2.7) using the available information on the parameters. 

The posterior distribution is based on Eq. (2.10) using the prior parameters and the data set. 
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Figure 2.8 Joint prior and posterior distributions of (μ, σ) corresponding to the mean and standard 

deviation of UCS for the example of a data set of 15 values and information on prior parameters  

The method of conjugate priors to solve the posterior is applicable to specific problems 

where the likelihood function has a conjugate prior, which in addition should be suitable to 

represent the available prior knowledge. In general, the range of applicability of this method 

is restricted to simple low dimensional problems. Therefore, this method is not used for the 

problems pertaining to the geotechnical model for slope design treated in the research. 

2.7.2 Direct integration 

This method consists in the use of numerical integration procedures to evaluate the integrals 

required to define the statistics of the posterior distribution. If θ is a vector containing the 

uncertain parameters in the posterior distribution, the statistics of these parameters are 

given by the following equations: 

 𝑀𝑒𝑎𝑛 𝜃𝑖 = ∫ 𝜃𝑖  𝑓(𝜃𝑖|𝑑𝑎𝑡𝑎) 𝑑𝜃𝑖 (2.13) 

 

𝑆𝑡𝑑𝑒𝑣 𝜃𝑖 = √∫(𝜃𝑖 − 𝑀𝑒𝑎𝑛 𝜃𝑖)2 𝑓(𝜃𝑖|𝑑𝑎𝑡𝑎) 𝑑𝜃𝑖 (2.14) 
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where Mean θi is the posterior mean of θi, Stdev θi is the posterior standard deviation of θi 

and f(θi|data) corresponds to the posterior PDF of the ith element of θ. 

There are different numerical procedures for the calculation of these integrals, but in general, 

the computational cost of these methods increases significantly with the dimension of θ. For 

this reason, direct integration methods are used for low dimensional problems. Juang and 

Zhang (2017) describe a simple method to solve the integrals for two-dimensional problems 

based on a grid calculation procedure.  The method is based on dividing the domain of the 

two uncertain variables in θ = [θ1, θ2] into a grid of points where the unnormalised posterior 

distribution is evaluated. The summation of all the values of the function calculated at the 

grid points is the numerical approximation of the integral of the posterior. Hence, the 

statistics of the parameters of the posterior distribution are calculated with the following 

equations: 

 𝑀𝑒𝑎𝑛 𝜃1 =  ∆1 ∑ 𝜃1𝑖 𝑓(𝜃1𝑖|𝑑𝑎𝑡𝑎)
𝑛1

𝑖=1
 (2.15) 

 

𝑆𝑡𝑑𝑒𝑣 𝜃1 = √∆1 ∑ (𝜃1𝑖 − 𝑀𝑒𝑎𝑛 𝜃1)2 𝑓(𝜃1𝑖|𝑑𝑎𝑡𝑎)
𝑛1

𝑖=1
 (2.16) 

 𝑀𝑒𝑎𝑛 𝜃2 =  ∆2 ∑ 𝜃2𝑗  𝑓(𝜃2𝑗|𝑑𝑎𝑡𝑎)
𝑛2

𝑗=1
 (2.17) 

 

𝑆𝑡𝑑𝑒𝑣 𝜃2 = √∆2 ∑ (𝜃2𝑗 − 𝑀𝑒𝑎𝑛 𝜃2)
2

 𝑓(𝜃2𝑗|𝑑𝑎𝑡𝑎)
𝑛2

𝑗=1
 (2.18) 

 
𝑓(𝜃1𝑖|𝑑𝑎𝑡𝑎) =  

∑ 𝑞(𝜃1𝑖𝑗 , 𝜃2𝑖𝑗)𝑛2
𝑗=1

∆1 ∑ ∑ 𝑞(𝜃1𝑖𝑗 , 𝜃2𝑖𝑗)𝑛1
𝑖=1

𝑛2
𝑗=1

 (2.19) 

 
𝑓(𝜃2𝑗|𝑑𝑎𝑡𝑎) =  

∑ 𝑞(𝜃1𝑖𝑗 , 𝜃2𝑖𝑗)𝑛1
𝑖=1

∆2 ∑ ∑ 𝑞(𝜃1𝑖𝑗 , 𝜃2𝑖𝑗)𝑛1
𝑖=1

𝑛2
𝑗=1

 (2.20) 

where: 

n1, n2 = number of grid points along the θ1 and θ2 axes, respectively 

Δ1, Δ2 = grid spacing along the θ1 and θ2 axes, respectively 
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θ1i, θ2j = ith point of θ1 and jth point of θ2 

q(θ1ij, θ2ij) = unnormalised posterior function evaluated at the point [θ1i, θ2j]  

In the example presented in the previous section, the posterior is defined by the parameters 

(μ, σ). Furthermore, the product of the prior in Eq. (2.7) and the likelihood in Eq. (2.8) defines 

the unnormalised posterior distribution function. For comparison purposes, the grid 

calculation method was used with the data and prior information from that example and the 

results are presented in Figure 2.9. 

 

Figure 2.9 Contours of the unnormalised posterior distribution of parameters (μ, σ) representing the 

mean and standard deviation of UCS for the example in Section 2.7.1, showing the statistics of the 

posterior evaluated with the grid calculation method 

The grid spacing used for the numerical calculation of the unnormalised posterior was 

Δ1 = Δ2 = 0.5, with μ varying between 70 and 160 and σ between 0 and 50, to include the 

domain of the prior distribution as indicated in Figure 2.8. The conjugate prior from the 

example presented in the previous section was used for comparison purposes; however, 

there are no restrictions in terms of the prior used for the grid calculation method. Typically, 

a non-informative prior represented by a uniform distribution would be used for this type of 

analysis. The main limitation of the direct integration methods is that their applicability is 

restricted to low dimensional problems and in particular, the grid calculation method is 
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limited to two-dimensional problems. This method was not considered for the problems 

studied in the research due to the advantages offered by the sampling-based methods 

described in the following sections. 

2.7.3 Markov chain Monte Carlo (MCMC) sampling 

The MCMC method to evaluate the posterior distribution consists of drawing samples of the 

uncertain parameters in the posterior function by means of an iterative random process 

called a Markov chain. The samples from the Markov chain can be used for inferring the 

properties of the posterior distribution, and as a representation of the uncertain parameters 

in subsequent probabilistic analysis.  

The more common algorithms used to implement an MCMC process are the Metropolis, 

Gibbs and Hamiltonian algorithms. There are other procedures developed as refinements 

of the previously mentioned, but in general, all the algorithms share common basic steps as 

follows: 

(1) Start with an initial guess of the set of parameters to sample 

(2) Evaluate a random jump of the set of parameters from their current values 

(3) Evaluate the probabilities of the proposed and current sets of values with the target 

distribution 

(4) Use the ratio between the probabilities of the proposed and current sets of values to 

define a criterion of acceptance of the jump. The criterion should favour moves 

towards the regions of higher probability, but should not eliminate the possibility of 

moves towards the regions of lower probability. 

(5) Apply the acceptance criterion to update or retain the current values and repeat the 

process from step 2 until a sufficient number of sets of values (samples) is defined. 

The main differences between the various algorithms are related to the way of defining the 

proposed jumps and the acceptance criteria of the jumps. The example of the UCS data set 

presented in Section 2.7.1 was used to illustrate the evaluation of the posterior distribution 

with the MCMC method. The method works with the unnormalised posterior; therefore, the 

posterior is calculated as the product of the prior in Eq. (2.7) and the likelihood in Eq. (2.8). 
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A simple Metropolis algorithm was implemented with reference to the generic MCMC 

procedure. In this case, the evaluation of the random jump in step (2) was based on a normal 

distribution centred at each location, and the acceptance criterion of the jump in step (4) 

consisting of acceptance proportional to the ratio of probabilities. Figure 2.10 shows the 

scatter plot of the 50,000 samples of the parameters (μ, σ) corresponding to the mean and 

standard deviation of UCS. The contour lines in the plot fine the regions containing 68% and 

95% of the sampled points, which were also used to calculate the mean and standard 

deviation of the distribution. These results are consistent with those from the conjugate prior 

(Figure 2.8) and grid calculation (Figure 2.9) methods. 

 

Figure 2.10 Scatter plot of parameters (μ, σ) sampled from the posterior distribution using the 

Metropolis MCMC procedure. The samples represent the mean and standard deviation of UCS for 

the example in Section 2.7.1. The contour lines define 68% and 95% high-density regions 

The increased use of MCMC methods during the last 20 years is related to the advances in 

computer hardware and numerical algorithms facilitating the use of these methods. MCMC 

sampling is the method selected in the research for evaluating the posterior distribution. The 

method is efficient, powerful and simple, and its use does not require special skills in 

mathematical analysis. The regular geotechnical practitioner, already familiar with the 

conventional Monte Carlo analysis, can easily apply the method for the inference of 

geotechnical parameters in slope design. The MCMC procedure is described in more detail 
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in Section 2.8 because it is the method selected for the Bayesian analysis included in the 

research. 

2.7.4 Other methods 

The evaluation of the posterior distribution using conjugate priors or direct integration 

techniques is limited to simple low-dimensional problems. The MCMC procedures are a 

simple and powerful tool normally used for the analysis of more complicated models with 

multiple dimensions. There are other methods based on mathematical procedures used to 

define the location of the maximum posterior densities or to construct simpler 

approximations of the posterior distribution that can be used for the inference of parameters. 

Some of these methods include the modal approximation technique, the expectation 

maximisation method and the variational Bayes method, which are described in detail in 

Gelman et al. (2013). In general, these methods are used to provide inferences utilised for 

verification of the results from simulation analysis.  However, these methods are not 

discussed in the thesis, considering that the aim of the research is to focus on a simple 

method such as the MCMC simulation that can be applied by the regular geotechnical 

practitioner. 

2.8 The Markov chain Monte Carlo (MCMC) method 

The MCMC sampling is the method of choice for the evaluation of the posterior distribution 

in the research, and for that reason, this section provides more details on this methodology. 

The section includes a brief description of the more common algorithms, provides some 

guidelines for the assessment of the quality of the MCMC results and describe software 

alternatives to carry out MCMC analysis.  

The rapid developments of MCMC techniques during the last 20 years has extended the 

range of application of the Bayesian approach for data analysis. Diaconis (2009) presents 

some examples of formerly intractable problems that can be solved today with this 

technique. Robert and Casella (2011) provide a brief history of MCMC, and Kruschke (2015) 

describes the basic concepts of the algorithms. A comprehensive treatment of MCMC 

techniques is presented in Robert and Casella (2004) and Gelman et al. (2013). 
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2.8.1 The Metropolis algorithm 

The Metropolis algorithm is a method to carry out a random walk through the parameter 

space of a target distribution in order to obtain representative samples of the parameters. 

The procedure is based on defining the possibility of moving the parameter value from the 

current location to a neighbouring location selected randomly with a proposal distribution. 

The acceptance of the move depends on the relative values of the target distribution at the 

current and proposed locations. The move is accepted if the value of the target distribution 

at the proposed location is larger than the value at the current location. However, if the value 

of the distribution at the proposed location is less than the value at the current location, the 

move is accepted with a probability that is proportional to the ratio of the two distribution 

values. For example, if a distribution has a value of five at the current location and a value 

of six at the proposed location, the move will be accepted. On the other hand, if the value of 

the distribution at the proposed location is four, the move will be accepted with an 80% 

probability reflecting the ratio 4/5 of the distribution values at the two locations. The current 

position will be maintained with the remaining 20% probability. 

The steps of the Metropolis algorithm to sample a variable x from a target distribution p, can 

be summarised as follows: 

(1) Initialize xt:    x0 for t = 0 

(2) Define a proposed position y from a symmetric probability distribution q centred at 

current position xt:   q(y|xt) 

(3) Evaluate the ratio r:   r = p(y) / p(xt) 

(4) Sample a uniform variable u in the range (0, 1), 

if u ≤ r, accept proposed location: xt+1 = y 

if u > r, reject proposed location: xt+1 = xt 

(5) Increment t and repeat steps (2) to (5) until a representative number of samples of x 

has been collected. 
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An example adapted from Kruschke (2015) illustrates the Metropolis sampling algorithm 

applied to a simple discrete distribution of a variable with 10 possible values. Figure 2.11 

shows the results of the process for two cases of the target function. The case shown to the 

left corresponds to a distribution with a single maximum in the middle of the range, whereas 

in the case to the right, the distribution has two local maxima. The plots at the bottom 

correspond to the target distribution to be sampled, the middle plots show the traces of the 

random walks of 3,000 steps followed by the Metropolis algorithm, and the plots at the top 

correspond to the resulting histograms of sampled values, which mimic the respective target 

distributions. 

 

Figure 2.11 Example of the Metropolis sampling algorithm applied to two cases of a discrete target 

function.  The case of a function with a single maximum (left) is compared with the case of a function 

with two local maxima (right) (adapted from Kruschke 2015) 

The proposed moves at each position during the walk are easy to define for the simple 

discrete distribution shown in Figure 2.11. They correspond to a 50% chance of moving to 

the neighbouring location on either side of the current location. However, when the target 

distribution is continuous, the definition of a proposed jump is not that simple. To achieve a 

proper sampling of the target distribution with a Metropolis algorithm, it is necessary to select 
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an appropriate proposal distribution to cover efficiently the domain of representative values 

of the parameters investigated. The acceptance rate of proposed locations is one of the 

various indicators used to verify the quality of the sample. Proposal distributions with small 

jumps have a high acceptance rate and require a large number of steps to produce an 

adequate sample. Proposal distributions with large jumps result in small acceptance rates 

and also require long chains to achieve proper coverage of the representative domain. 

2.8.2 The Metropolis-Hasting algorithm 

The Metropolis algorithm uses a symmetrical proposal distribution; however, a 

generalization of the method considers a non-symmetrical proposal distribution, which 

favours the incorporation of adjustments to achieve the efficiency of the process in particular 

problems. The generic method is known as the Metropolis-Hastings algorithm. In this case, 

the probability of acceptance of a move depends not only on the ratio between values of the 

target distribution at the two locations (proposed upon current) but also on the ratio between 

the probabilities of the move in the two directions (proposed to current upon current to 

proposed). 

The steps of the Metropolis-Hastings algorithm to sample a variable x from a target 

distribution p, can be summarised as follows: 

(1) Initialize xt:    x0 for t = 0 

(2) Define a proposed position y from a probability distribution q centred at current 

position xt:    q(y|xt) 

(3) Evaluate the ratio r:   r = [p(y) . q(xt|y)] / [p(xt) . q(y|xt)] 

(4) Sample a uniform variable u in the range (0, 1), 

if u ≤ r, accept proposed location: xt+1 = y 

if u > r, reject proposed location: xt+1 = xt 

(5) Increment t and repeat steps (2) to (5) until a representative number of samples of x 

has been collected. 
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Figure 2.12 illustrates how the Metropolis-Hastings algorithm handles the acceptance of 

proposed moves in the Markov chain process. In this example, it is possible to visualize the 

consequence of using a symmetrical proposal distribution, which reduces the method to the 

simple Metropolis algorithm. In this case, the acceptance of the move depends only on the 

value of the target distribution at the proposed and current locations. 

 

Figure 2.12 Illustration of the acceptance criteria in the Metropolis-Hastings algorithm for two 

opposite proposed moves in the Markov chain 

In the example illustrated in Figure 2.12 the value of the target function at the current location 

x=3 is 0.11, if a move is proposed say with probability 0.30 to location x=4 where the function 

has a value of 0.22, the probability of that move would be 1.13 and the move would always 

be accepted. On the other hand, if the proposal distribution suggests a move say with 

probability 0.17 to location x=2 where the target function has a value of 0.04, then the 

probability of the move would be 0.64 and the move would be rejected with a 36% 

probability. The non-symmetrical proposal distribution provides an additional mechanism to 

tune the random walk in order to achieve the efficient sampling of particular target 

distributions. 



38 

 

2.8.3 The Gibbs algorithm 

One drawback of the Metropolis algorithm is that the proposal distribution must be properly 

tuned to the target distribution for the algorithm to be efficient. The Gibbs algorithm is a more 

efficient variation of the Metropolis algorithm suited for probability functions with many 

parameters. In this case, the jumps with the proposal distribution are defined for each 

parameter separately and the conditional probability distribution of the parameter evaluated 

is used as the proposal distribution. The moves are always accepted with these proposal 

distributions and the procedure is applied cyclically through all the parameters in an 

organized manner. Kruschke (2015) explains in detail the method and only a brief 

description is included hereinafter. 

Figure 2.13 illustrates the two steps used with the Gibbs algorithm to sample a two-

dimensional target distribution. The current location is at a0 (x1=7, x2=3). First, a proposed 

x1 value (x1=6) is defined conditioned on the current x2 value (x2=3) using the respective 

probability distribution shown in red in Figure 2.12. Next, a proposed x2 value (x2=6) is 

defined conditioned to the newly defined x1 value (x1=6) with the distribution shown in blue 

in the figure. In this way, a move from the current position a0 to the new position a1 is 

completed in two steps. 

 

Figure 2.13 Illustration of the double-step used with the Gibbs algorithm for the sampling of a two-

dimensional target distribution.  The walk from the initial position a0 to position a1 is defined with the 

proposal distributions for the variables x1 (red) and x2 (blue) 
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One limitation of the Gibbs algorithm is that it is inefficient with highly correlated parameters 

because the progress of the walk can get trapped in narrow regions of the function, requiring 

small steps to achieve a proper coverage of the parameter space. Figure 2.14 shows an 

example of a probability distribution of two highly correlated variables that would be difficult 

to sample efficiently with the Gibbs algorithm. 

 

Figure 2.14 Example of a target distribution of two highly correlated variables x1 and x2 that would 

be difficult to sample efficiently with the Gibbs algorithm 

2.8.4 The Hamiltonian algorithm 

The Hamiltonian Monte Carlo (HMC) is a variation of the Metropolis algorithm where the 

proposal distribution changes depending on the current position. The algorithm shifts the 

proposal distribution in the direction in which the target distribution increases. This direction 

is called the gradient of the function. Kruschke (2015) provides a detailed description of the 

procedure from a practical perspective and Neal (2011) offers a more rigorous and 

comprehensive presentation of the method. 

Figure 2.15 illustrates the principles of the HMC sampling with the move from point a0 to a1 

in the domain of a two-dimensional target distribution with variables x1 and x2 (top left). The 

generation of proposal positions with this method is based on the analogy to the dynamics 

of a frictionless rolling marble on a concave surface, where the surface corresponds to the 
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negative logarithm of the target distribution (bottom left). A new proposed position a1 is 

generated by giving a random momentum to the marble and letting it roll on the surface for 

a certain defined duration (top right). The marble positions define sample points in the space 

x1, x2 reflecting the probabilities of the target distribution. The position of the marble at the 

end of the time step is the proposed position, which is accepted or rejected according to a 

defined criterion. The dynamics of the marble on the surface results in proposal distributions 

shifted towards the region of higher probabilities at every location (bottom right).  

 

Figure 2.15 Illustration of the principles of the Hamiltonian Monte Carlo.  Target distribution (top left). 

Potential energy of an analogous physical system of frictionless marble rolling on this surface 

(bottom left). The positions of the rolling marble after a specified time define reflect the probabilities 

of the target distribution (top right). Proposal distributions shifted towards the region of higher 

probabilities at every location (bottom right) 

The product between the probabilities of the position and the momentum at a given location 

is analogous to the total energy of the idealized marble moving on the surface. In this 
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analogy, those factors represent the potential and kinetic energies of the marble, 

respectively. The probability of acceptance is given by the ratio between the energy at the 

proposed and current locations. This ratio would always be one in the idealized frictionless 

system, which means that the new position would always be accepted. However, in reality, 

the trajectories are discretised into small time intervals and this approximation causes a 

certain percentage of proposal rejections. 

The way in which the HMC generates proposal positions results in proposal distributions 

specific for each location that favours the moves towards the higher probability regions of 

the target function. The bottom right plot in Figure 2.15 shows the proposal distributions for 

the positions a0 and a1 obtained after many testing jumps at each location. 

As with the Metropolis algorithm, the HMC requires tuning of parameters for efficient 

sampling. In this case, the time step, the number of steps, and the variance of the distribution 

used to generate the initial momentum are the parameters requiring adjustment. Time steps 

too small will result in a high acceptance rate but will require many steps to cover the 

parameter domain. Conversely, time steps too large will result in a lower acceptance rate 

with a rough coverage of the parameter domain. The number of steps controls the length of 

the path followed by the rolling marble. If the number of steps is too high, the proposed 

jumps might be too small as the marble tries to roll back towards the starting positions. A 

refinement of the HMC to prevent this situation is the algorithm known as the No-U-Turn 

Sampler (NUTS) that eliminates the need of tuning the number of steps and step size 

required in the normal HMC procedure. 

2.8.5 The affine-invariant ensemble algorithm 

A refinement of the Metropolis-Hastings (M-H) algorithm is the affine-invariant ensemble 

sampling method (Foreman-Mackey et al., 2013). The procedure consists of running a group 

of M-H samplers (walkers) in parallel generating the moves in a way that results in an 

efficient coverage of the domain with a proposal distribution that is auto-tuned during the 

process. The proposed move of a walker is generated by stretching along the straight line 

connecting the walker with another randomly selected walker used to create the alignment 

as illustrated in Figure 2.16. In this way, as the walkers start to move towards the higher 

probability regions, they will attract other walkers in that direction. This procedure of 

generating proposal locations has two consequences; first, it transforms the variable space 
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into an affine space where the steps from the proposal distribution are more efficient to 

explore the domain, and secondly, it promotes the auto-tuning of the proposal distribution 

as more walkers move toward the regions of high probability. 

 

Figure 2.16 The stretch move in the proposal algorithm used in the affine-invariant ensemble 

sampling method.  The position updating of walker xk is based on the position of another random 

walker xj.  The light grey dots represent other walkers not participating in this move (Goodman and 

Weare, 2010) 

This algorithm is very efficient with functions of highly correlated parameters, however, it 

has limitations in certain situations as pointed out by Foreman-Mackey et al. (2013). First, it 

will not perform adequately with multi-modal target functions, because the walkers can 

become stuck in different modes and secondly, it cannot be used with functions that contain 

discrete variables or that have certain types of integer constraints because it will not be 

possible to perform some vector operations within the algorithm. 

2.8.6 Assessment of quality of the MCMC analysis results 

In general, the implementation of the MCMC techniques requires adjustments of various 

parameters to achieve a stable solution in the form of representative independent samples 

from the parameters. In addition, it is common to throw away a portion of the early steps of 

the chain, known as the burn-in process, while the sampling sequence evolves into a stable 

process. An MCMC sample should be representative of the posterior distribution, should 

have sufficient size to ensure the accuracy of estimates and should be generated efficiently 

(Kruschke, 2015). There are some diagnostic checks carried out on graphs produced with 

the results of the analysis that serve to assess some of these requirements. Figure 2.17 
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shows an example of the diagnostic graphs associated with the sampling of a parameter 

from a posterior distribution. 

 

Figure 2.17 Diagnostic graphs to verify the quality of the MCMC sampling of a parameter 

The top-left graph in Figure 2.17 corresponds to the trace plot where the parameter values 

sampled with various chains are displayed as a function of the step number. The plot shows 

three chains that started at different values and progressed for some time before they 

reached stability. The total number of steps was 40,000 but only the last 20,000 were used 

to define a representative sample of the parameter. The first 20,000 discarded steps 

correspond to the burn-in period. The histogram of the sampled values is shown in the top 

right graph and includes the estimated mean and the 95% HDI. The bottom left graph is the 

autocorrelation plot and displays the autocorrelation characteristics of the sample as a 

function of the lag. The autocorrelation values are calculated as the correlation between the 
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sequence of sampled values and other sequences of the sample shifted a number of 

positions called the lag. The sample is perfectly correlated with itself and therefore the 

autocorrelation is one for a lag of zero. The autocorrelation reduces for increasing lags and 

autocorrelation values close to zero indicate independence of the values and therefore it is 

a wanted condition. The two results annotated in the autocorrelation graph are the total 

sample size (TSS) and the effective sample size (ESS). In this case, there are three chains 

with 20,000 samples each after the removal of the burn-in steps giving a total of 60,000 

samples. The ESS reduces the TSS according to the amount of autocorrelation of the chains 

yielding in this case 19,803 samples. Finally, the bottom right graph corresponds to the 

density plot, which displays smoothed histograms of the values sampled with each chain. If 

these plots overlap closely it is an indication of similar coverage of the parameter domain 

with the chains suggesting representative samples. The annotated value in this plot 

corresponds to the Monte Carlo standard error (MCSE) calculated as the standard deviation 

of the sample divided by the square root of the ESS. 

In general, the representativeness of the sample is evaluated with the trace plots and the 

density plots, and the accuracy of the estimates is evaluated with the autocorrelation plots 

and in particular, with the ESS which is a measure of the number of independent points 

defining the sample. The efficiency of the process is a function of the algorithm used and 

the hardware characteristics. 

For the algorithms based on acceptance of moves such as the Metropolis-Hastings and 

Hamiltonian Monte Carlo type of methods, there are some heuristic rules used to assess the 

quality of the MCMC result. These rules state recommended values for the acceptance rate 

at the end of the sampling process, to ensure that the samples are independent and 

representative of the posterior distribution. For example, for the HMC an acceptance rate of 

65% is commonly pursued (Kruschke, 2015, p.403) and for the affine-invariant assemble 

sampler, the recommendation is to have a rate between 20% and 50% (Foreman-Mackey 

et al., 2013, p.10). In general, an acceptance rate close to zero means that the chain was 

stuck for many steps at most locations, so there will be few independent points and the 

sample will not be representative. On the other hand, an acceptance rate close to one means 

that there is little influence of the target distribution on the chain walk and the sample will 

not be representative either. 
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2.8.7 Popular software for MCMC analysis 

Although it is important to understand the concepts behind the various algorithms used for 

the MCMC analysis to assess properly the quality of results, the analyst does not have to 

program these algorithms. There are already elaborated open source packages in various 

programming languages developed by computer scientists and related specialists that can 

be easily incorporated into ad doc code. Figure 2.18 shows the popular options currently 

available as described by Vincent (2014), supplemented with information from Smith (2014). 

 

Figure 2.18 Popular software packages for MCMC analysis and the programming languages and 

interface utilities required to use them (Vincent, 2014, Smith, 2014) 

The SAS/STAT is a commercial software system that includes an MCMC procedure based 

on a Metropolis algorithm. The Gibbs algorithm is incorporated within the JAGS (just another 

Gibbs sampler) system and can be accessed with packages written in the Mathlab and R 

programming languages. The system STAN (sampling through adaptive neighbourhoods) 

uses the HMC method and includes the NUTS algorithm that eliminates the need for tuning. 

The STAN system can be accessed through packages in Mathlab, R and Python 

programming languages. The LaplacesDemon and GRIMS packages are developed in R, 

the former uses a collection of various samplers and the latter is based on the HMC 

algorithm. The PyMC system uses the classic M-H sampler and the emcee system 
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incorporates the affine invariant ensemble sampler. The latter two systems are pure python 

packages (Python Software Foundation, 2001) that can be used directly within the python 

code. The Mamba package uses a Gibbs sampler and is developed in the Julia open source 

programming language. 

VanderPlas (2014b) presents a detailed comparison between the three Python systems 

using a relatively simple model to measure performance and features. His analysis indicates 

that PyStan is the more complex system with many features and options and emcee is the 

more basic and light, however, in terms of ease of installation and use, emcee is the best 

rated with PyStan the more difficult to handle. In terms of performance, the three systems 

are similar for relatively simple models, suggesting that the differences probably will only be 

relevant for complex models with many dimensions. Kruschke (2015) uses the two R 

systems in all the examples presented in his book. The description of the example cases 

suggests that both systems are powerful, although the JAGS system requires the rescaling 

of functions for models with highly correlated variables. The software used for the models 

described in this thesis was coded in the python programming language using the emcee 

sampler. An important point to note is that the emcee package, although described as basic 

in the evaluation by VanderPlas, is very powerful. The software was developed and it is 

used by the astrophysicist’s community with complex multidimensional models that exceed 

the expected complexity and dimensionality of the models for geotechnical analysis. 
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Abstract 

The definition of the geotechnical model for slope design is based on the geological, 

structural, rock mass and hydrogeological models. Each model is described by different sets 

of information and parameters and is defined at a scale of interest for the purpose of the 

analysis of slope behaviour. However, no clear guidelines exist in terms of the appropriate 

statistical methods to manage this information. Probabilistic methods are traditionally used 

to account for the uncertainty in engineering design, however, the base assumptions of 

these methods are not always fully understood, resulting in misinterpretations of results. 

There are two main approaches of statistical analysis known as frequentist (classical) and 

Bayesian, which are based on different interpretations of probability. In the classical 

approach, probabilities are considered as frequencies in a series of similar trials, whereas 

in the Bayesian approach, probabilities correspond to degrees of belief. One of the main 

characteristics of the Bayesian approach is that makes use of both prior information on the 

hypothesis (or model) being examined and the likelihood of the available data, to provide a 

balanced answer to the probability of that hypothesis (or model). Another aspect of the 

uncertainty characterization process is the understanding of the type of uncertainty present 

in the various components of the geotechnical model. At a broad level, there are two main 

types of uncertainty in geotechnical engineering, one due to random variation of the aspect 

evaluated (aleatory) and the second due to lack of knowledge of the subject under analysis 

(epistemic). The uncertainty is considered epistemic if it can be reduced with the collection 

of additional data or by refining models, otherwise, it is treated as natural variation. The 

majority of the uncertainty in the geotechnical model for slope design is epistemic, typically 

analysed with probabilistic methods. However, epistemic uncertainty has different aspects 

some of which (i.e. vagueness or non-specificity) can be represented more naturally with 

mailto:luis.contreras@uq.net.au


52 

 

alternative approaches outside the field of probability (i.e. interval analysis, possibility and 

evidence theories). Simple examples will be included to illustrate the merits of treating 

uncertainty in the mine slope design process with unconventional methods such as 

Bayesian statistics and non-probabilistic based approaches. 

Keywords: uncertainty; probabilistic methods; Bayesian statistics; epistemic uncertainty. 

3.1 Introduction 

One of the major difficulties encountered by the geotechnical engineer is to deal with the 

uncertainty present in every aspect of the process of slope design. Uncertainty is associated 

with natural variation of parameters and properties, and the imprecision and unpredictability 

caused by insufficient information on parameters or models. Design strategies to deal with 

the problems associated with uncertainty include conservative design options with large 

factors of safety, adjustments during the implementation phases based on observations of 

performance, and the use of probabilistic methods that attempt to measure and account for 

the uncertainty in the design. However, one of the drawbacks of the probabilistic approach 

is related to the strong component of subjective information such as engineering judgement 

that is incorporated in the process without a formal framework to do so. Another weakness 

of the probabilistic approach is related to the misunderstanding of the basic assumptions of 

the classical statistical methods that commonly results in interpretations of statistical results 

that exceed the capabilities of these methods. Some examples that illustrate this point are 

the assignment of probability distributions derived from samples as unique representations 

of populations, or the use of confidence intervals (CIs) as a measure of data reliability. The 

Bayesian approach is based on a particular interpretation of probability and offers an 

adequate framework to treat uncertainty in the geotechnical model for slope design. It offers 

a formal way to combine hard data with subjective information, and provides the probability 

measures of the hypothesis, parameters or models given the data. These are the type of 

results needed by the geotechnical engineer, as opposed to the probability of data assuming 

that the hypothesis, parameters or models are true. 

The epistemic uncertainty associated with lack of information has a multifaceted character, 

and there are situations where probabilistic methods are incapable of adequately 

representing aspects such as non-specificity, fuzziness or ambiguity. Non-probabilistic 
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methods such as interval analysis, fuzzy set analysis and approaches based on possibility 

and evidence theories are indicated in these cases. The paper provides a brief description 

of some unconventional approaches to treat uncertainty that have the application potential 

during the construction of geotechnical models for slope design. 

3.2 Uncertainty in the geotechnical model for slope design 

The geotechnical model for slope design is particularly complex because it incorporates 

information from different already complex models. The slope design model is based on the 

geological, structural, rock mass and hydrogeological models (Stacey, 2009). Each model 

is described by different sets of information and parameters and is defined at a scale of 

interest for the analysis of slope behaviour. Intuitively, it is clear that there is uncertainty in 

the geotechnical model, but to have a better understanding of how this uncertainty affects 

the design process, it is necessary to look in more detail at its characteristics.  

3.2.1 Types of uncertainty 

Uncertainty is associated with various concepts such as unpredictability, imprecision, 

variability and so forth. At a basic level, uncertainty can be categorised into aleatory and 

epistemic. Baecher and Christian (2003) discussed these types of uncertainty in detail, 

indicating that aleatory uncertainty is associated with random variations, natural variability, 

occurring in the world, of external character; whereas epistemic uncertainty is associated 

with the unknown, derived from lack of knowledge, occurring in the mind, of internal 

character. The epistemic uncertainty can be reduced with the collection of additional data or 

by refining models based on a better understanding of the entities represented. The natural 

variation, on the other hand, cannot be reduced with more information, which will only serve 

to have a better representation of this type of uncertainty. 

The sketch in Figure 3.1 is adapted from Bedi and Harrison (2013) and shows the distinction 

between the two types of uncertainty in terms of the available information at a particular 

point in time. The limit state of precise information that defines the point of irreducible 

uncertainty, moves through time towards the end of complete certainty as a result of 

technological advances. This is a consequence of a better understanding of the processes 

perceived initially as random. An example of this situation is the distribution of fractures in a 

rock mass. Baecher and Christian (2003) indicated that the separation between epistemic 
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and aleatory uncertainty in a model is the result of a trade-off defined by the geotechnical 

engineer to treat the uncertainty. 

 

Figure 3.1 Relationship between types of uncertainty and information available (adapted from Bedi 

& Harrison 2013) 

3.2.2 Uncertainty in the geotechnical model 

The amount of geotechnical data typically available for slope design is small compared with 

that collected for mineral exploration and resource model estimation. Inferences on rock 

properties are based on limited data, uncertainty levels are perceived to be high, and the 

quantification of the confidence levels of model parameters is based on rudimentary 

methods or not evaluated at all. Moreover, the geotechnical model borrows information from 

other models with no measure of confidence, or with confidence levels assigned using 

rudimentary systems that cannot capture the complexities of spatial variations, and trends 

and cross-correlations in addition to data characteristics. The transfer of information across 

models is done in an intuitive manner, with a strong judgemental basis. The end result is 

that the levels of confidence of the geotechnical model and its components are unknown or 

defined in a rudimentary way. The implications of the lack of a suitable approach to quantify 

the confidence of the geotechnical model are the inability to judge whether the available 

data is sufficient to support the design at the various stages of project development and the 

difficulty to define strategies for site characterisation on a rational basis. 
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The uncertainty in the geotechnical model for slope design is present in all the component 

models in different forms. The sources of uncertainty include:  

• The inherent variability of the basic properties considered as random variables (i.e. 

structural features, Unconfined Compression Strength (UCS), Rock Quality 

Designation (RQD), etc.). 

• Measurement errors of the properties. 

• Estimation of the statistical parameters used to represent the variables (i.e. mean, 

standard deviation, etc.). 

• Approximations in the definition of sub-models to estimate derived variables (i.e. 

Hoek-Brown mi parameter from UCS, Brazilian Tensile Strength (BTS) and Triaxial 

Compression Strength (TCS) testing, Geological Strength Index (GSI) from the joint 

structure and joint condition descriptors, etc.). 

A large part of the uncertainty present in the geotechnical model for slope design 

corresponds to epistemic uncertainty that would be susceptible to reduction with increased 

data collection, but this is rarely achieved due to the typical constraints in the mining 

environment. 

3.3 Conventional ways to treat uncertainty in slope design 

The situation in the geotechnical model for slope design is that the levels of information are 

relatively low and the range of the epistemic uncertainty as sketched in Figure 3.1 is wide, 

and commonly treated as aleatory uncertainty by means of assuming large variances and 

wide distributions of parameters. However, the statistical methods used in this process are 

inconsistent with these practices, as will be discussed hereafter. Common strategies to deal 

with uncertainty in geotechnical engineering were described by Christian (2004) and a brief 

description of the strategies relevant to the slope design process is presented next.  

3.3.1 Conservative design 

The simplest (although not the most efficient) way to account for the uncertainty in the 

geotechnical model is through the implementation of conservative designs. This is done by 

selecting higher factors of safety or low probabilities of failure in the acceptability criteria of 
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the slope design. However, the difficulty of defining what are acceptable design values 

remains. Moreover, this strategy might not be effective in many mining projects where the 

steepest or highest slopes are often required to achieve the sought economic benefit of the 

project. A conservative design in this scenario likely would result in a financially unviable 

mine. 

3.3.2 Observational method 

The observational method is a common way to deal with uncertainty in geotechnical 

information in many types of engineering projects. The approach is part of the normal 

process of measuring the performance of the works as the project progresses, to verify the 

original assumptions and models, and to implement the pertinent design adjustments to 

ensure design objectives are achieved. However, there are situations in mine slope projects 

where changes are difficult to implement at the time they are identified as necessary, 

reducing the space for this strategy. For example, this is the case when the flattening of a 

slope is required to prevent a ramp failure, but the implementation might be unfeasible at 

the time the need for this measure is identified.  

3.3.3 Quantification of uncertainty 

Uncertainties are quantified with probabilities, which in turn can be interpreted as 

frequencies in a series of similar trials, or as degrees of belief. Some aspects of geotechnical 

engineering can be treated as random entities represented by relative frequencies and 

others may correspond to unique unknown states of nature better considered as degrees of 

belief. An example of the former is a material property evaluated with data from laboratory 

testing, and the latter can be represented by any form of expert opinion, for example when 

a geological section is constructed from site investigation data. Baecher and Christian 

(2003) provide a detailed discussion on the topic of duality in the interpretation of uncertainty 

and probability in geotechnical engineering. They indicate that both types of probabilities are 

present in risk and reliability analysis, and point out that the separation between them is a 

modelling artefact rather than an immutable property of nature. 

The two alternative interpretations of probability are at the base of the two approaches of 

statistical analysis known as frequentist (classical) and Bayesian. In mineral exploration, the 

approach to deal with uncertainty is based on classical statistics characterised by the 
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systematic collection of data and the use of geostatistics to model spatial variation. In the oil 

and gas industries, uncertainty is evaluated through risk analysis methods based on 

decision theory and Bayesian concepts. In the geotechnical engineering field for slope 

design, there is not a clear definition on the appropriate statistical approach to follow to 

quantify uncertainty. However, it is argued that Bayesian statistical methods are a better 

option to treat the geotechnical uncertainty in slope design, because they provide a formal 

framework to combine hard data, which is typically scarce, with other sources of information 

that may be available, including expert judgment. 

3.4 Probabilistic methods to treat uncertainty 

The basis of classical statistical methods is consistent with the concepts behind the aleatory 

type of uncertainty but less so with the epistemic uncertainty. The Bayesian statistical 

approach is well suited to deal with both types of uncertainty and will be of great benefit to 

treat the uncertainty in the geotechnical model for slope design. Unfortunately, its use in this 

particular area is rare, probably due to a lack of understanding of its conceptual basis. 

3.4.1 Frequentist versus Bayesian statistical methods 

The more relevant points of contrast between the frequentist and Bayesian approaches are 

summarised in Table 3.1. The first aspect constitutes one of the more important advantages 

of the Bayesian approach as it addresses the question of interest to the geotechnical 

engineer. This aspect is also at the base of the misunderstanding on the type of answer that 

the classical methods provide. A simple way to present Bayes’ equation, using the definition 

of terms in Table 3.1 is: 

 𝑝(ℎ|𝑑) =
𝑝(𝑑|ℎ)𝑝(ℎ)

𝑝(𝑑)
 (3.1) 

which can also be interpreted in the following manner (Kruschke 2015): 

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 (3.2) 
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Table 3.1 Key aspects of contrast between the frequentist (classical) and Bayesian approaches of 

statistical analysis 

Aspect Frequentist approach Bayesian approach 

Question answered 
with the approach 

What is the probability of the data 
if the hypothesis (parameter or 

model) examined is true ( p[d|h] ) 

What is the probability of the 
hypothesis (parameter or model) 

examined given the data 
observed ( p[h|d] ) 

Information used Only data collected with sampling 
( p[d|h] ) 

Prior information of any type 
( p[h] ) and data from sampling 

( p[d|h] ) 

Characteristics of the 
result from the 

inference process 

Point estimate (maximum 
likelihood) and standard error of 

the parameter (or model) 
evaluated 

Probability distribution of the 
parameter (or model) evaluated 

Assumptions regarding 
data and parameters 

(or models) 

Data are random, parameters (or 
models) are fixed 

Data are fixed, parameters (or 
models) are random 

Inference method Based on null hypothesis 
significance testing 

Based on the updating of prior 
information by adding the effect of 

observed data to provide a 
posterior distribution reflecting a 
balance between the two inputs 

 

The “posterior” is the answer of interest when defining the geotechnical model for design, 

the “likelihood” of data is the answer given by classical statistical methods, the “prior” 

represents the initial knowledge (or lack of it) on the hypothesis and the “evidence” of data 

normally treated as a normalisation factor so that the posterior integrates to 1.0. When p(h) 

is set to a uniform distribution representing the case of no previous knowledge, the equation 

reduces to p(h|d)  p(d|h) and the two approaches provide the same answer. For this 

reason, the frequentist method can often be viewed as a special case of the Bayesian 

approach for some (implicit) choice of the prior (VanderPlas 2014). 

The main criticism of the Bayesian approach is related to the use of prior information which 

in some cases could be subjective. However, this aspect is of little relevance in the area of 

mine slope design, where subjective information is important and continuously incorporated 

into the process, although in an intuitive and non-formal way. The Bayesian approach 

provides a framework to use this type of information in a formal and more rational way. 
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3.4.2 Common misinterpretations of results from frequentist statistical methods 

A consequence of the different interpretations of probability is the contrasting assumptions 

regarding data and parameters made by the approaches, which in turn affects how the 

boundaries of model parameters are determined. In the frequentist approach, CIs from data 

are used to define meaningful parameter boundaries, whereas in the Bayesian approach 

this is done with credible regions of the posterior distribution. 

The CI is defined by upper and lower bound values above and below the mean of a data 

sample, and is associated with good estimates of the unknown population parameter 

investigated. The CI is calculated from a particular sample and its width depends on the 

number of data points in the sample, and the chosen level of confidence for the estimation. 

For this reason, this result is commonly used as a measure of confidence of parameter 

estimates, without a full understanding of the meaning. A CI is specific to a data sample and 

its confidence level only has meaning in repeated sampling. For example, if the 95% CI for 

the mean UCS of a particular rock type is constructed, it either includes the true UCS value 

or it does not, but it is not possible to know the situation for that particular CI. The 95% 

confidence means that if the sampling process were repeated numerous times, and CI’s 

calculated for those various samples, 95% of the sample sets will have CI’s containing the 

true UCS value. However, because the true value is an unknown fixed parameter in the 

frequentist framework, it is not possible to identify the sample sets containing the true UCS. 

The uncertainty regarding the true UCS value remains. 

Figure 3.2 shows an example of repeated sampling that allows an appreciation of the 

meaning of the CI in the frequentist approach. The values could represent UCS results for 

a particular rock type, but the data was randomly generated to illustrate the point. A total of 

100 data sets of 15 values each were sampled from a normal distribution with a mean of 

120 and a standard deviation of 30, that represent the unknown fixed parameters of the 

population. Each data set has its own mean and standard deviation and the bars in 

Figure 3.2 correspond to the 95% CIs of the mean. However, for this particular group of data 

sets, 91 of the intervals contain the true mean. A larger number of data sets would be 

required to get a better approximation of the 95% level used for the construction of the 

intervals. Nevertheless, the important point with this example is that in terms of each 

individual data set, there is no probability associated with the inclusion of the true mean. 
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The interval either includes it or does not and in a real case situation, there would be only 

one data set and it would not be possible to estimate the true value.  

 

Figure 3.2 Frequentist interpretation of CIs for randomly generated UCS data sets of 15 values with 

a mean of 120 and a standard deviation of 30 

In the Bayesian approach, the situation is different because the unknown parameter 

investigated is considered a random variable that is updated for every new data set. The 

posterior probability distribution resulting from the Bayesian updating process is used to 

define the highest density interval with a particular level of precision, and this interval defines 

the bounds of the credible region for the estimation of the parameter. In many simple 

situations, the results from both approaches coincide, but the meaning of the result is 

different. The Bayesian result has a meaning consistent with the answer that is normally 

sought by the analyst, whereas the frequentist result responds to a different question that is 

of less interest to the analyst. 

Figure 3.3 compares the frequentist 95% CI for data set 27 in Figure 3.2 with the credible 

interval corresponding to the 95% highest density interval (HDI) of the posterior distribution. 

The posterior distribution is calculated with the Bayesian approach for the same data set, 

assuming a uniform prior distribution which is considered a non-informative prior in this case. 
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The results show that the likelihood of the data is not affected by the prior, yielding a result 

that seems to coincide with the frequentist result, although with different meanings. In this 

case, the Bayesian interval indicates a range for the sought mean with a 95% credibility. 

This is possible because in the Bayesian framework, the parameter investigated is not fixed 

and it changes as new data is available. The frequentist result corresponds to a point 

estimate of the mean and a measure of the error represented by the width of the CI, whereas 

the Bayesian results provide a full probability distribution for the mean based on the data 

used. 

 

Figure 3.3 Comparison between the frequentist (left) and Bayesian (right) results for the inference of 

the mean UCS of data set 27 in Figure 3.2 

3.4.3 Inconsistency of the frequentist approach with the epistemic uncertainty 

The definition of probability within the frequentist approach is inconsistent with the definition 

of epistemic uncertainty. Therefore, it seems inappropriate to model this type of uncertainty 

by means of repetition of trials with a particular probability distribution. Some aspects of this 

type of uncertainty are closer to the interpretation of probability as a degree of belief that 

can be assigned directly to states of nature. However, a common practice in geotechnical 

design is to include assumptions that enable the randomisation of epistemic uncertainty, 

and the modelling with frequentist methods. 

For this reason, the Bayesian approach seems better equipped to model uncertainty in 

general, including epistemic uncertainty. Subjective knowledge and expert opinion can 

formally be incorporated into this methodology through the selection of the appropriate 
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priors. The frequentist approach does not allow the use of information that is not the result 

of a random sampling process. Nevertheless, at least within the geotechnical engineering 

field in open pit mining, it is not conceivable to have a slope design where some form of 

previous knowledge is not used in the process. However, a drawback from this practice is 

the difficulty to quantify the uncertainty of the design, because the inclusion of this 

information is based on the intuition of individuals and carried out in a rather arbitrary way. 

3.4.4 A simple example of the Bayesian method 

The Bayesian approach is not meant to be used in simple cases like the UCS analysis 

presented above, where apart from the subtle differences in their meaning, numerical results 

seem to coincide. The real strength of this approach is shown in situations where the models 

examined are multidimensional, with a multitude of parameters that need to be inferred, 

where the frequentist methods would be less efficient and produce results more difficult to 

interpret. A few recent examples of the application of Bayesian analysis in rock mechanics 

and slope problems include: the estimation of the rock mass deformation modulus based on 

model selection and Bayesian updating by Feng and Jimenez (2015), the characterisation 

of the UCS from the Bayesian selection of a site-specific model based on the Point Load 

Index (IS50) by Wang and Aladejare (2015) and the back analysis of slope failure based on 

a Bayesian model solved with Markov Chain Monte Carlo (MCMC) analysis by Zhang et al. 

(2010). 

The example of the Bayesian approach included in this paper to illustrate the method 

corresponds to a linear regression analysis to estimate the Hoek–Brown parameters σci and 

mi for intact rock from UCS, TCS and BTS test results. The main advantages of the method 

compared with a conventional linear regression analysis are the proper handling of the 

outliers, with no requirement of judgments from the analyst, and the natural assessment of 

the confidence level of the estimation. 

The estimation of σci and mi as described by Hoek (2006) consists of fitting the test results 

on a graph of (σ1-σ3)2 versus σ3. The Hoek–Brown strength envelope is linear in this plot 

and a linear regression analysis provides the required values of σci and mi. The parameter 

σci is calculated as the square root of the intercept and mi as the slope divided by the 

calculated σci. Hoek indicates that this method is robust, reliable and has the advantage that 

it gives a good visual impression of the distribution and scatter of the data. 
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The formula that supports this procedure is derived by rearranging the terms in the original 

expression of the Hoek–Brown failure criterion for rock masses, after incorporating the 

parameter values for the condition of intact rock. The H-B failure envelope is given by: 

 𝜎1 =  𝜎3 +  𝜎𝑐𝑖√𝑚
𝜎3

𝜎𝑐𝑖
+ 𝑠 (3.3) 

For intact rock, s = 1.0 and the equation can be rearranged such that it forms a straight line 

with coordinate axes σ3 and (σ1 - σ3)2, as follows: 

 (𝜎1 − 𝜎3)2 = 𝑚𝑖 𝜎𝑐𝑖 𝜎3 + 𝜎𝑐𝑖
2 (3.4) 

where: 

σ1, σ3 = major and minor principal stresses 

σci  = unconfined compressive strength of intact rock 

m, s  = parameters of the Hoek–Brown strength criterion for rock masses 

mi  = parameter m of the Hoek–Brown strength criterion for intact rock 

The method relies on the estimation of the direct tensile strength (DTS) values from indirect 

measurements with BTS tests. Perras and Diederichs (2014) suggests the use of a factor 

of 0.9 for metamorphic rocks, 0.8 for igneous rocks and 0.7 for sedimentary rocks. 

The main difficulty with the conventional (frequentist) linear regression analysis is that it is 

affected by the presence of outliers, requiring different sorts of manipulation of the data set 

to avoid the bias they cause in the estimation. In addition, the result corresponds to a point 

estimation based on the data considered without proper measurement of the confidence of 

the estimated intercept and slope parameters. 

The sketch in Figure 3.4 shows a description of the generic Bayesian model used for the 

linear regression analysis. The original model is described in detail by Kruschke (2015) and 

was implemented in a software code for statistical analysis named R. The example 

presented in this paper was implemented in the Python programming language (Python 

Software Foundation, 2001) and was modified to account for the correct direction of 
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measurement of errors in the tensile strength tests. The method is robust in the true 

statistical sense because it uses a student t-distribution to model the spread of the data 

points in the direction of measurement of errors. The t-distribution is defined by three 

parameters that control the central value (mean µ), the width (scale σ) and the weight of the 

tails (normality ν). The possibility to set heavy tails with this distribution allows for 

accommodating outliers without shifting the mean. The model considers prior distributions 

on four parameters, the intercept (β0) and the slope (β1) of the regression line modelled with 

normal distributions, and the scale (σ) and normality (ν) parameters of the t-distribution 

modelled with uniform and exponential distributions, respectively, as sketched in Figure 3.4. 

 

Figure 3.4 Conceptual basis of the robust Bayesian linear regression model used for the estimation 

of credible σci and mi values from UCS, TCS and tensile strength test results (generic model from 

Kruschke 2015) 

The specification of the parameters of the prior distributions is based on the characteristics 

of the data set and consists of setting up values sufficiently vague to avoid constraining the 

result. The justification for the selection of these distributions as well as the selection of the 

prior constants is described by Kruschke (2015) and is not presented here. The Bayesian 

posterior distribution of the parameters sought with the regression analysis is shown at the 

bottom of Figure 3.4. However, the equation does not need to be expanded on further, as 
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the various components can be incorporated into specialised packages used to sample the 

distribution and get credible estimates of these parameters. The sampling process is carried 

out with a methodology known as MCMC, which in turn can be implemented with different 

algorithms. The example in this paper was solved with the affine-invariant ensemble sampler 

algorithm implemented in the emcee Python package developed by Foreman-Mackey 

et al. (2013).  

The σci and mi estimation analysis was carried out with a reduced data set of 31 points (8 

UCS, 8 DTS and 15 TCS) without outliers and with the extended data set of 60 points (15 

UCS, 15 DTS and 30 TCS) including a few outliers. The results of the analysis using a 

conventional least squares regression method (frequentist result) and the Bayesian 

approach are shown in Figure 3.5. The mi results for the case with 31 data points are similar 

(frequentist 15.4, Bayesian 16.6); however, they differ for the case of 60 data points with a 

difference of 5.3 points in the value of mi (frequentist 11.9, Bayesian 17.2) and a flatter line 

with the conventional regression method caused by the outliers. The Bayesian result, on the 

other hand, appears less affected by the outliers, showing the robustness of the method with 

estimated mi values of 16.6 and 17.2 for the two data sets. 

 

Figure 3.5 Comparison of results between frequentist and Bayesian linear regression analysis for 

data sets of 31 points without outliers (left) and 60 points with outliers (right) 

The result of the Bayesian analysis is richer than just the regression line; it includes various 

diagnostic graphs, probability distributions and scatter plots of the four parameters 

investigated. The diagnostic graphs are intended to ensure that a proper stable solution has 

been obtained, the probability distributions serve to define the ranges of credible values 



66 

 

defined by the 95% HDI and the scatter plots facilitate the identification of correlations 

between parameters. Due to space limitations not all of these results are included and 

discussed in this paper, and only a selection of them are shown in Figure 3.6 and Figure 3.7. 

Figure 3.6 shows the inferred posterior distributions for σci and mi with the respective 95% 

HDIs which define the ranges of credible values for these parameters. Figure 3.6 also 

includes the scatter plots of sampled values of intercept versus slope, showing a low 

correlation between these parameters, and the respective plot of σci versus mi showing a 

marked inverse correlation between these variables. Figure 3.7 shows a plot with the 95% 

confidence band of the regression lines, which considers the correlation between σci and mi 

indicated in Figure 3.6. The plot also includes the data points and a selection of the 

t-distributions used to model the scatter (noise) in the directions of measurement of errors, 

depicting how they can include the outliers without shifting the mean. 

 

Figure 3.6 Posterior distributions of σci and mi with mean and 95% HDI ranges indicated (top) and 

scatter plots of sampled values of intercept versus slope and corresponding values of σci versus mi 

(bottom) 
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Figure 3.7 Data points with a selection of credible regression lines including the mean and t-noise 

distributions superimposed 

3.5 Non-probabilistic methods for special cases of epistemic 

uncertainty 

Although the Bayesian probabilistic methods are capable of dealing with the general aspects 

of epistemic uncertainty, there are uncertainty sub-classes whose representation would be 

incompatible with the principles of probability theory. A probability assignment somehow 

implies a sharp definition of the element assessed. This is a consequence of the probability 

axiom that indicates that once the probability of occurrence of an event p is defined, its 

probability of no occurrence is automatically stated as equal to 1-p.  Alternative approaches 

based on theories that some authors (Klir 1989; Halpern & Fagin 1992) see as 

generalisations of the probability theory have been developed to deal with these situations 

as described hereafter. 

3.5.1 The multifaceted character of epistemic uncertainty 

A description of various aspects associated with imprecision in uncertainty-based 

information such as vagueness and ambiguity of various classes (for example non-

specificity, dissonance and confusion) was given by Klir (1989). He stated mathematical 

arguments for the suitability of various theories available at the time to treat uncertainty. 
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More recently, the same author (Klir & Wierman 1999; Klir 2004) provided a more detailed 

taxonomy of the existing theories to treat uncertainty related to information within the 

framework of the generalised information theory. Zimmermann (2000) provides a less formal 

and more practical classification of uncertainty properties in terms of four aspects: its 

causes, the type of available information, the type of numerical data and the requirements 

of the model output. Blockley (2013) argues that any type of uncertainty can be defined in 

terms of three basic aspects i.e. fuzziness, incompleteness (epistemic) and randomness 

(aleatory), which can be represented in a tridimensional space (Fuzziness, Incompleteness 

and Randomness space or FIR space). Other attributes of uncertainty such as ambiguity, 

dubiety and conflict, can be interpreted as complex mixes of interactions in the FIR space. 

Figure 3.8 shows a representation of the FIR space as presented by Blockley (2013) with 

the interpretation of some uncertainty attributes. 

 

Figure 3.8 Interpretations of uncertainty attributes in the FIR space (Blockley 2013) 

3.5.2 Description of non-probabilistic approaches 

Some of the more common alternative approaches to represent epistemic uncertainty 

include interval analysis (Moore et al. 2009), evidence theory also known as Dempster-

Shafer theory (Halpern & Fagin 1992) and possibility theory (Dubois & Prade 2009). A 

comparison of these approaches is presented by Helton et al. (2004) with some hypothetical 

simple problems to illustrate the main aspects of each methodology. Uncertainty 
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characterised by fuzziness is treated with a branch of methodologies based on a fuzzy 

representation of uncertain variables, which is not included in this paper. However, to 

illustrate the group of non-probabilistic approaches to treat uncertainty, a simple hypothetical 

example is used to show the main features of the interval, possibility and evidence theory 

approaches, which are compared with the traditional probabilistic result. 

A complete description of these approaches is outside the scope of this paper and the reader 

is referred to the documents cited above for more information on the mathematical 

formulations and procedures. A non-mathematical simple description of each approach is 

given with the aim of getting some intuition on the meaning of the results of the example 

included. The motivation to present these methods is to highlight certain situations where 

the representation of epistemic uncertainty might require techniques outside the 

conventional probability theory and to provide a brief description of three techniques typically 

used to deal with imprecision due to lack of information. 

3.5.2.1 Interval analysis 

This is the simplest approach, consisting of the evaluation of the propagation of the bounding 

values of the input parameters, with no attempt to infer the uncertainty of the result based 

on any assumption of the uncertainty of the input variables within the known boundary 

values (Helton et al. 2004). 

3.5.2.2 Possibility theory approach 

Possibility theory is defined by Dubois and Prade (2009, p. 6927) as “the simplest 

uncertainty theory devoted to the modelling of incomplete information. It is characterised by 

the use of two dual set functions that respectively grade the possibility and the necessity of 

events.” If A represents a particular set of information regarding an unknown value x, a 

qualitative description of these attributes would indicate that the necessity of A, Nec(A), is a 

measure of the amount of uncontradicted information that supports the proposition that A 

contains the correct value for x. Furthermore, the possibility of A, Pos(A), is a measure of 

the amount of information that does not refute the proposition that A contains the correct 

value for x (Helton & Sallaberry 2008). A key element of the possibility theory approach is 

the possibility measure (r), which is a function associated with the amount of likelihood that 

can be assigned to each element of a set. 
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3.5.2.3 Evidence theory approach 

Helton et al. (2004, p. 42) indicate that “Evidence theory provides an alternative to the 

traditional manner in which probability theory is used to represent uncertainty by allowing 

less restrictive statements about likelihood than is the case with a full probabilistic 

specification of uncertainty.” In this case, the two specifications of likelihood are represented 

by the belief and plausibility attributes of sets of information. Again, if A represents a 

particular set of information regarding an unknown value x, a qualitative description of these 

attributes would indicate that the belief of A, Bel(A), corresponds to the likelihood that must 

be associated with A regarding the value of x; and the plausibility of A, Pla(A), corresponds 

to the likelihood that could potentially be associated with A (Helton & Sallaberry 2008). In 

this case, the function associated with the amount of likelihood that can be assigned to each 

element of a set is the basic probability assignment (m). Although there are similarities 

between the concepts of necessity and belief, and possibility and plausibility, they are 

defined by different mathematical descriptions. 

3.5.3 Example of non-probabilistic approaches 

The example corresponds to the numerical estimation of GSI based on uncertain inputs of 

RQD and joint condition rating (JC), using the relationship proposed by Hoek at al. (2013). 

The condition of epistemic uncertainty in the RQD and JC values is represented in this 

example by assuming that only ranges of values from different sources are known with 

insufficient information on how these values may vary within the boundaries given. Three 

possible intervals for RQD and four for JC values are considered as listed at the right of 

Figure 3.9. Examples of sources supporting the various sets of data might include records 

from borehole logs, data from face mapping, back analysis of slopes performance, 

judgements from experts, and so forth. Figure 3.9 also shows the chart used for the 

calculation of GSI from RQD and JC values, with the shaded area indicating the range of 

possible GSI values associated with the input intervals. 

The conventional probabilistic approach to define GSI would assume a uniform distribution 

of the property for each interval and calculate the joint probability distribution for each 

parameter (RQD and JC). The density of the resulting distributions will reflect the relative 

support of the values within the range from the various input sets. A Monte Carlo simulation 

of the GSI calculation, based on sampling the input parameters from these distributions, 
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produce a distribution of GSI values. This result can be presented in the form of a reverse 

cumulative distribution to express the probability of exceeding a particular value, P(>GSI), 

as shown in the graphs of Figure 3.10.  

 

Figure 3.9 Example of treatment of epistemic uncertainty. Chart for the calculation of GSI from RQD 

and JC values (left). The shaded areas represent the likely GSI values proportionally to the support 

from the imprecise information according to the possibility theory 

 

 

Figure 3.10 Comparison of GSI results using a conventional probabilistic analysis with belief and 

plausibility curves from evidence theory (left) and with necessity and possibility curves from 

possibility theory (right). The wider bounds from interval analysis are also indicated in both graphs 
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The graphs in Figure 3.10 indicate probabilities of 100%, 50% and 0% of exceeding GSI 

values of 36, 52 and 69, respectively. The criticism of this approach is that any type of 

assumption on the values of the input parameters within the boundaries provided, are not 

supported and effectively means adding information that does not exist. In other words, the 

existence of epistemic uncertainty (lack of information) is being neglected and replaced with 

added data to enable a randomised simulation with the model. 

Figure 3.11 shows, in a simplified manner, the way in which the likelihood functions m 

(evidence theory) and r (possibility theory) are calculated for the variables RQD and JC from 

the input data. When these likelihood functions are incorporated into the GSI calculation 

model, they define distinct regions of the likelihood of GSI represented by the shaded areas 

in the GSI space. In the evidence theory approach, a product of the likelihoods of the input 

parameters is used to estimate the GSI likelihood, whereas in the possibility theory 

approach, this operation is based on the minimum logic operator. A Monte Carlo simulation 

was used to generate the GSI likelihood functions with either approach and to define belief 

and plausibility (evidence theory), and necessity and possibility (possibility theory) curves, 

which are presented in the form of reverse cumulative distributions in the graphs of 

Figure 3.10. 

 

Figure 3.11 Likelihood of GSI values derived from imprecise information in the input parameters 

RQD and JC, according to evidence (centre) and possibility (right) theory approaches 



73 

 

The results of Figure 3.10 allow an appreciation of the concept of imprecision associated 

with epistemic uncertainty reflected in the gap between the two envelopes either side of the 

conventional probability result. For reference, Figure 3.10 also includes the result of the 

interval analysis, which consists in the definition of the maximum interval defined by the 

propagation of the bounding values of the input parameters through the GSI calculation 

model. The results of the interval analysis are conservative and might be unjustified in many 

situations. On the other hand, the probabilistic result might be inappropriate in many risk-

based analysis, where an explicit separation between the aleatory and epistemic 

components of uncertainty is required to interpret results and to identify mitigation measures. 

3.6 Summary and conclusion 

Uncertainty is a common occurrence in geotechnical engineering and two main types of 

uncertainty are normally identified. These are the irreducible aleatory uncertainty associated 

with the natural variation of parameters, and the epistemic uncertainty related to lack of 

knowledge on parameters and models that can be reduced with the collection of information. 

The geotechnical model for slope design takes information from different complex models 

and typically contains a large proportion of epistemic uncertainty due to the relative scarcity 

of data available for design. 

There are two interpretations of probability for the frequentist and Bayesian approaches of 

statistical analysis. Probabilistic methods are commonly used to represent and quantify 

uncertainty in the slope design process. However, there are no clear guidelines with regard 

to the appropriate methods to use in specific situations, and most of the techniques of 

analysis used correspond to frequentist methods. Nevertheless, the adopted methods are 

not always fully understood and their results are commonly misinterpreted. Common 

misuses of frequentist methods include the characterisation of population parameters based 

on reduced sampling, and the use of CIs from single data sets to measure the reliability of 

data. Bayesian methods can be used to represent both types of uncertainty and are 

especially suited for situations where data is scarce and previous knowledge exist. However, 

they are rarely used in the mine slope design process where they could be of great benefit. 

Some aspects of the epistemic uncertainty cannot be represented with probabilistic methods 

and alternative approaches are required in those cases. Interval analysis and methods 
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based on evidence theory and possibility theory can provide the tools required to deal with 

situations where imprecision due to incomplete information exists. 

Two examples of unconventional methods to treat uncertainty in the slope design process 

were presented. The first example corresponded to the Bayesian estimation of the mi 

parameter of the H-B strength criterion using a robust linear regression method for UCS, 

TCS and tensile strength data plotted in a (σ1 - σ3)2 versus σ3 space. A generic model 

implemented in Python code and solved with an MCMC methodology based on the affine-

invariant ensemble sampler algorithm using the emcee Python package was used for this 

purpose. The results were useful to highlight the benefits of the method over a traditional 

frequentist regression method. The benefits are related to the adequate handling of the 

outliers in the data and the proper quantification of the confidence of the estimates. Further 

work will be carried out to improve the method using real data sets to validate results. 

The second example consisted of the use of three non-probabilistic approaches to deal with 

epistemic uncertainty related to the incompleteness of information represented by sets of 

intervals of input parameters. The estimation of GSI values from RQD and JC parameters 

using the model by Hoek et al. 2013, was carried out with interval analysis, and procedures 

based on the evidence and possibility theories and included the assessment of the likelihood 

of the estimates. These results were compared with the conventional probability distribution 

curve to highlight the implications of the incompleteness aspect of the uncertainty. The 

results showed the importance of having a separation between the aleatory and epistemic 

components of uncertainty, which are of relevance for risk-based design procedures. 
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Abstract 

One of the main difficulties of the geotechnical design process lies in dealing with 

uncertainty. Uncertainty is associated with natural variation of properties, and the 

imprecision and unpredictability caused by insufficient information on parameters or models. 

Probabilistic methods are normally used to quantify uncertainty. However, the frequentist 

approach commonly used for this purpose has some drawbacks. First, it lacks a formal 

framework for incorporating knowledge not represented by data. Secondly, it has limitations 

in providing a proper measure of the confidence of parameters inferred from data. The 

Bayesian approach offers a better framework for treating uncertainty in geotechnical design. 

The advantages of the Bayesian approach for uncertainty quantification are highlighted in 

this paper with the Bayesian regression analysis of laboratory test data to infer the intact 

rock strength parameters σci and mi used in the Hoek-Brown strength criterion. Two case 

examples are used to illustrate different aspects of the Bayesian methodology and to 

contrast the approach with a frequentist approach represented by the nonlinear least 

squares method. The paper discusses the use of a Student’s t-distribution versus a normal 

distribution to handle outliers, the consideration of absolute versus relative residuals, and 

the comparison of quality of fitting results based on standard errors and Bayes factors. 

Uncertainty quantification with confidence and prediction intervals of the frequentist 

approach is compared with that based on scatter plots and bands of fitted envelopes of the 

Bayesian approach. Finally, the Bayesian method is extended to consider two improvements 

to the fitting analysis. The first is the case in which the Hoek-Brown parameter, a, is treated 

as a variable to improve the fitting in the triaxial region. The second is the incorporation of 

mailto:luis.contreras@uq.net.au
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the uncertainty in the estimation of the direct tensile strength from Brazilian test results within 

the overall evaluation of the intact rock strength. 

Keywords: uncertainty; intact rock strength; Bayesian analysis; Hoek-Brown criterion. 

4.1 Introduction 

One of the major difficulties encountered by the rock engineer is dealing with the 

uncertainties present in every aspect of the geotechnical design process. Uncertainty is 

associated with natural variation of properties, and the imprecision and unpredictability 

caused by the lack of sufficient information on parameters or models (Baecher and Christian, 

2004). Design strategies to deal with the problems associated with uncertainty include 

conservative design options with large factors of safety, which can be adjusted during the 

implementation phase based on observations of performance, and the use of probabilistic 

methods that attempt to measure and account for uncertainty in the design (Christian, 2004). 

The probabilistic methods commonly used to treat uncertainty in rock mechanics design 

belong to the so-called frequentist approach, but this methodology has some drawbacks 

(VanderPlas, 2014). First, the approach lacks a formal framework to incorporate subjective 

information such as engineering judgement. Secondly, it has limitations in providing a proper 

measure of the confidence of parameters inferred from data. The Bayesian approach 

provides an alternative route to the conventional probabilistic methods used in geotechnical 

design; some examples are presented by Miranda et al. (2009), Zhang et al. (2009, 2012), 

Brown (2012), Bozorgzadeh and Harrison (2014), Feng and Jimenez (2015) and Wang et 

al. (2016). The approach is based on a particular interpretation of probability and offers an 

adequate framework for the treatment of uncertainty in geotechnical design. 

Probabilistic data analysis using the Bayesian approach involves numerical procedures to 

estimate parameters from posterior probability distributions. These distributions are the 

result of combining prior information with available data through Bayes’ equation (Kruschke, 

2015). The posterior distributions are often complex, multidimensional functions whose 

analysis requires the use of a class of methods called Markov chain Monte Carlo (MCMC) 

(Robert and Casella, 2011). These methods are used to draw representative samples of the 

parameters investigated, providing information on their best estimate values, variability and 

correlations. The understanding of the concepts behind the various algorithms used to 
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perform MCMC analysis is important to properly assess the quality of results. However, the 

analyst does not have to develop the software in order to use the method. There are already 

elaborated open source packages in various programming languages (Foreman-Mackey et 

al., 2013; Smith, 2014; Vincent, 2014) developed by computer scientists and related 

specialists, which have been tested extensively by these communities. These packages can 

be easily incorporated into ad-hoc codes for different modelling applications. 

The paper presents initially the concepts of geotechnical uncertainty and provides a contrast 

between the frequentist and Bayesian approaches to quantify uncertainty. The description 

of the Bayesian approach with reference to the case of the inference of parameters is used 

to highlight the advantages of this methodology over the frequentist approach. The Bayesian 

methodology is applied to estimating the intact rock strength parameters σci and mi of the 

Hoek-Brown strength criterion, through the analysis of data from compression and tensile 

strength tests. Two data set examples are presented to compare the Bayesian approach 

with the nonlinear least squares regression method representing the frequentist approach. 

The results of these example cases are used to discuss different aspects of the analysis, 

including the advantages of evaluating errors with a Student’s t-distribution to handle 

outliers, the implications of using absolute and relative residuals, and the measure of the 

quality of the fitting results. The second example is used to emphasise the advantages of 

the uncertainty quantification with the scatter plots and bands of fitted envelopes of the 

Bayesian approach, in contrast to the use of confidence and prediction intervals in the 

frequentist method. Finally, the versatility of the Bayesian method is illustrated with two 

situations that require the model to be extended to include additional parameters for 

inference. The first case corresponds to the consideration of the Hoek-Brown parameter, a, 

as a free variable so that the fitting in the triaxial compression region is not constrained by 

that obtained in the tensile and uniaxial compression regions based on a two-parameter 

model. The second case is the inclusion of the uncertainty in the conversion from Brazilian 

tensile strength (BTS) to direct tensile strength (DTS) into the overall uncertainty evaluation 

of the intact rock strength. 

The distributions of σci and mi resulting from the Bayesian analysis can be used as inputs 

for the analysis of the reliability of geotechnical structures such as slopes and tunnels. The 

first-order reliability method (FORM) is the most common technique used for this purpose 

(Low and Tang, 2007; Lu and Low, 2011; Goh and Zhang, 2012; Zhang and Goh, 2012; 
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Low, 2014; Liu and Low, 2017). The FORM typically considers predefined probability 

distributions to represent the variability of uncertain parameters and a limit state surface 

(LSS) defining the condition of failure of the structure. The LSS is derived from a 

performance function that may be available in explicit form, or alternatively, could be 

approximated with a response surface for complex models. 

The purpose of this paper is to explain the essential differences between frequentist and 

Bayesian statistics in quantifying the inevitable uncertainty in experimentally-determined 

rock mechanics parameters. While the paper uses the parameters in the Hoek-Brown peak 

strength criterion for intact rock material for illustration purposes, it does not explore the 

relationships between those parameters or their physical meanings.  

4.2 Uncertainty in geotechnical design 

The geotechnical design process implies the existence of a geotechnical model. This model 

is understood as the collection of elements representing different aspects of a geotechnical 

environment (i.e. geology, rock strength, structural features, etc.). These components 

include models and data used to calibrate those models by adjusting certain parameters of 

interest. For example, the intact rock strength can be represented by the Hoek-Brown 

criterion defined by the σci and mi parameters (Hoek and Brown, 1997). The values of these 

parameters are defined through regression analysis of data from compression and tensile 

strength tests on intact rock specimens. The quantification of the uncertainty of the 

parameters representing particular aspects of the geotechnical model is of interest to the 

analyst using this information for design purposes in order to assess the reliability of the 

system analysed. 

4.2.1 Types of uncertainty 

Uncertainty is associated with various concepts such as unpredictability, imprecision and 

variability. At a basic level, it can be categorised into aleatory or epistemic uncertainty. 

Aleatory uncertainty is associated with random variations, present in natural variability, 

occurring in the world or having external character, whereas epistemic uncertainty is 

associated with the unknown, derived from lack of knowledge, occurring in the mind or 

having an internal character, as discussed by Baecher and Christian (2003). Therefore, 

epistemic uncertainty can be reduced with the collection of additional data or by refining 
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models based on a better understanding of the entities represented. On the other hand, 

natural variation cannot be reduced with the availability of more information that will only 

serve to provide a better representation of this type of uncertainty.  

4.2.2 Sources of uncertainty in geotechnical design 

Uncertainty is present in all aspects of the geotechnical design process. The sources of 

uncertainty include:  

(1) The inherent variability of the basic properties considered as random variables (e.g. 

uniaxial compressive strength (UCS), DTS, etc.). 

(2) Measurement errors of the properties. 

(3) Estimation of the statistical parameters used to represent the variables (i.e. mean, 

standard deviation, etc.). 

(4) Approximations in the definition of sub-models to estimate derived variables (e.g. 

Hoek-Brown parameters σci and mi estimated from UCS, BTS and triaxial 

compressive strength (TCS) testing; geological strength index (GSI) estimated from 

structure and discontinuity condition descriptors). 

A large part of the uncertainty present in the geotechnical design process corresponds to 

epistemic uncertainty that would be susceptible to reduction with increased data collection. 

However, this is often difficult to achieve in practice because of the constraints typically 

operating during the site investigation stage. 

4.2.3 Quantification of uncertainty 

Uncertainties may be quantified as probabilities, which in turn can be interpreted as 

frequencies in a series of similar trials, or as degrees of belief. Some aspects of geotechnical 

engineering can be treated as random entities represented by relative frequencies while 

others may correspond to unique unknown states of nature, better considered as degrees 

of belief. An example of the former is a material property evaluated with data from laboratory 

testing, and any form of expert opinion represents the latter (e.g. a geological section that is 

constructed from site investigation data). Baecher and Christian (2003) provided a detailed 

discussion on the topics of duality in the interpretation of uncertainty and of probability in 
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geotechnical engineering. They indicated that both types of probability are present in risk 

and reliability analyses, and pointed out that the separation between them is a modelling 

artefact rather than an immutable property of nature. 

4.3 Probabilistic methods to treat uncertainty 

Two alternative interpretations of probability provide the bases of the frequentist (classical) 

and Bayesian approaches of statistical analysis. The conventional approach for dealing with 

uncertainty in geotechnical design is based on classical statistics. In this case, data are 

collected and used as the only element to infer parameters and models. It will be argued 

that Bayesian statistical methods are a better option for treating uncertainty in geotechnical 

design, because they provide a formal framework for combining hard data, which are 

typically scarce, with other sources of information that may be available, including expert 

judgment. 

4.3.1 The frequentist approach of statistical analysis 

The frequentist approach of statistical analysis is based on the interpretation of probability 

as frequencies of outcomes of random trials repeated many times. The trials are the essence 

of the random sampling process central to the approach. The objective of the analysis is to 

infer the characteristics of a hypothesis or model, from the relevant data collected randomly. 

The process involves the estimation of values of parameters that are assumed to be 

unknown, fixed quantities, whereas data are considered to be a set of random variables. 

This framework allows the definition of point estimates and errors of the parameters 

investigated that are data set-dependent. Common techniques of data analysis within the 

frequentist approach include maximum likelihood estimation, confidence intervals analysis 

and null hypothesis significance testing. The first is a method used for the estimation of point 

estimates of parameters. The second provides ranges used to assess the spread of point 

estimates in recurring sampling. The third is a procedure used to define whether a particular 

value of a parameter can be accepted or rejected based on the agreement with the trend 

suggested by data. Frequentist statistical methods are used by default in many areas of 

engineering design and in many cases without a full appreciation of the implications of their 

conceptual basis. Only recently has the Bayesian approach become a popular alternative in 

geotechnical design (Miranda et al., 2009; Zhang et al., 2009, 2012; Brown, 2012; 
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Bozorgzadeh and Harrison, 2014; Feng and Jimenez, 2015; Wang et al., 2016), as it is 

based on a conceptual framework suited for the treatment of geotechnical uncertainty. 

4.3.2 The Bayesian approach of statistical analysis 

The Bayesian approach of statistical analysis is based on the interpretation of probability as 

degrees of belief. The inference process with this approach combines existing information 

on the model or hypothesis to be examined, known as priors, with the data from sampling 

using Bayes’ rule. An important aspect of the Bayesian approach is that the sought 

parameters of the models or hypothesis being examined are considered to be random 

variables, whereas data is assumed to be a fixed known quantity. The results of Bayesian 

analyses are probability distributions known as posteriors. 

Bayes’ rule was proposed by Thomas Bayes in 1763 (Bayes, 1763). Bayes’ rule can be 

derived from basic definitions of conditional probability and allows the calculation of the 

probability of the hypothesis given the data p(h|d), from the probabilities of the data given 

the hypothesis p(d|h), the hypothesis p(h), and the data p(d).  

The general form of Bayes’ equation is 

 𝑝(ℎ |𝑑) =
𝑝(𝑑|ℎ)𝑝(ℎ)

𝑝(𝑑)
 (4.1) 

which can also be interpreted in the following manner (Kruschke, 2015): 

 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒
 (4.2) 

The Bayes’ equation is used to update knowledge of a hypothesis or model from 

observations represented by the data. The updating process is done by quantifying the 

uncertainties of the model parameters when there is no information on the characteristics of 

their distributions. Detailed information on Bayesian analysis at introductory to advanced 

levels can be found in several texts (e.g. Gregory, 2005; Sivia and Skilling, 2006; Stone, 

2013; Gelman et al., 2013; Kruschke, 2015).  
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4.3.2.1 The posterior distribution 

The “posterior” is a probability distribution that balances the knowledge provided by the prior 

information and the data. If sufficient data are available, data will drive the result. If the data 

component is weak, prior knowledge will have a strong effect. All of this is handled within 

the Bayesian approach in a rational manner, without external manipulation. The posterior is 

the answer of interest to the data analyst, but this distribution is typically complex and its 

evaluation requires the use of special numerical techniques.  

4.3.2.2 The likelihood function 

The “likelihood” function defines the probability of obtaining the observations included in the 

data set given the model or hypothesis under examination.  The likelihood is the answer 

given by classical statistical methods.  Figure 4.1 adapted from Kruschke (2015) shows an 

example of the calculation of the likelihood of a data set of three points, d = {85, 100, 115}, 

assuming that its variability is represented by a normal distribution with mean, μ, and 

standard deviation, σ.  The likelihood is calculated for three values of μ (87.8, 100, 112) 

shown in the column plots and three values of σ (7.35, 12.2, 18.4) shown in the row plots.  

The probability of an individual point is represented by the vertical dotted line over the point 

and the probability of the data set p(d| μ, σ) is the product of the three individual probabilities 

as expressed by the likelihood function.  As expected, the maximum likelihood result 

(7.71×10-6) corresponds to the mean (μ = 100) and standard deviation (σ = 12.2) of the data 

points. 

4.3.2.3 The prior distribution 

The “prior” represents the initial knowledge, or lack of it, in the hypothesis, and therefore can 

be either informative or vague. Informative priors can be any type of distribution that 

represents adequately the existing knowledge of the model or parameter being examined. 

However, the usual situation is that there is little information available, so the goal becomes 

to encode this lack of knowledge in a non-informative or vague probability distribution to 

avoid constraining the results. This is done with distributions derived by applying the 

maximum entropy principle (Jaynes, 1957). In this case, entropy refers to disorder or 

randomness in the information and has a similarity with the concept of entropy in physical 

systems. The uniform distribution is a common maximum entropy distribution and 

corresponds to the situation in which only the limits of the parameter are known. The 
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selection of the prior is an important step in Bayesian data analysis. The prior could add 

valuable available information to the posterior if selected adequately, or it could bias the 

results if it over-constrains the data. 

 

Figure 4.1 Example of the calculation of the likelihood of a data set of three points, assuming a 

normal distribution and testing different values of mean, μ, and standard deviation, σ. Columns show 

different values of μ and rows show different values of σ. The middle plot shows the maximum 

likelihood result (adapted from Kruschke, 2015) 

4.3.2.4 The evidence function 

The “evidence” part in the denominator of Bayes’ equation is normally treated as a 

normalisation factor so that the posterior integrates to one. It is calculated as the integral 

over the whole parameter space of the numerator, i.e. as the product of the likelihood 

function and the prior distribution. The posterior distribution does not need to be normalised 

when the purpose of the Bayesian analysis is the inference of the uncertain parameters 
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using a numerical approach such as the MCMC. Therefore, the calculation of the typically 

complex integral in the denominator of the Bayes’ equation can be omitted. The denominator 

is required when the objective of the analysis is the comparison of two alternative models 

which is done through the calculation of the Bayes factor. 

4.3.3 Contrast between the frequentist and Bayesian approaches 

The more relevant points of contrast between the frequentist and Bayesian approaches are 

summarised in Table 4.1 (Contreras and Ruest, 2016). The second aspect constitutes one 

of the more important advantages of the Bayesian approach as it addresses the question of 

interest to the geotechnical engineer. This aspect is also at the base of misunderstanding 

about the type of answer that classical statistical methods provide. The results of Bayesian 

analyses are richer and more informative than the conventional point estimates and error 

measurements given by the frequentist approach. The conceptual framework of the 

Bayesian approach is better suited to the task of the inference of model parameters. 

Table 4.1 Key aspects of contrast between the frequentist (classical) and Bayesian approaches to 

statistical analysis (adapted from Contreras and Ruest, 2016) 

Aspect Frequentist approach Bayesian approach 

Interpretation of 
probability 

Frequency of outcomes in 
repeated trials 

Degrees of belief 

Question answered 
with the approach 

What is the probability of the data 
if the hypothesis (parameter or 

model) examined is true 
( p[d|h ])? 

What is the probability of the 
hypothesis (parameter or model) 

examined given the data 
observed ( p[h|d] )? 

Information used Only data collected with sampling 
( p[d|h] ) 

Prior information of any type 
(p[H]) and data from sampling 

( p[d|h] ) 

Characteristics of the 
result from the 

inference process 

Point estimate (maximum 
likelihood) and standard error of 

the parameter (or model) 
evaluated 

Probability distribution of the 
parameter (or model) evaluated 

Assumptions regarding 
data and parameters 

(or models) 

Data are random, parameters (or 
models) are fixed 

Data are fixed, parameters (or 
models) are random 

Inference method Based on maximum likelihood, 
confidence interval and null 

hypothesis significance testing 

Based on the updating of prior 
information by adding the effect of 

observed data to provide a 
posterior distribution reflecting a 
balance between the two inputs 
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4.3.4 Example to contrast the results from the two approaches 

A consequence of the different interpretations of probability is the contrasting assumptions 

regarding data and parameters made by the approaches. This, in turn, affects how the 

boundaries of model parameters are determined. In the frequentist approach, confidence 

intervals (CI) from data are used to define meaningful parameter boundaries, whereas in the 

Bayesian approach this is done with credible regions of the posterior distribution. 

The CI is defined by upper and lower bound values above and below the mean of a data 

sample, and is associated with good estimates of the unknown population parameter 

investigated. The CI is calculated from a particular sample with its width depending on the 

number of data points in the sample, and the chosen level of confidence for the estimation. 

For this reason, this result is commonly used as a measure of confidence of parameter 

estimates without having a full understanding of its meaning. A CI is specific to a data set 

and its confidence level only has meaning in repeated sampling. For example, if the 95% CI 

for the mean UCS of a particular rock type is constructed, it either includes the true UCS 

value or does not, but it is not possible to know the situation for that particular CI. The 95% 

confidence means that if the sampling process is repeated numerous times, and CIs are 

calculated for those various samples, 95% of the sample sets will have CIs containing the 

true UCS value. However, because the true value is an unknown fixed parameter in the 

frequentist framework, it is not possible to identify the sample sets containing the true UCS. 

The uncertainty regarding the true UCS value remains. 

Figure 4.2 shows an example of repeated sampling that provides an appreciation of the 

meaning of the CI in the frequentist approach. The values could represent UCS results for 

a particular rock type, but the data were randomly generated to illustrate the point. A total of 

100 data sets of 15 values each were sampled from a normal distribution with a mean of 

120 and a standard deviation of 30 that represent the unknown fixed parameters of the 

population. Each data set has its own mean and standard deviation and the bars in 

Figure 4.2 correspond to the 95% CIs of the mean. However, for this particular group of data 

sets, 91 of the intervals contain the true mean. A larger number of data sets would be 

required to obtain a better approximation of the 95% level used for the construction of the 

intervals. Nevertheless, the important point with this example is that in terms of each 

individual data set, there is no probability associated with the inclusion of the true mean. 
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The interval either includes it or does not. In a real case, there would be only one data set 

and it would not be possible to estimate the true value.  

 

Figure 4.2 Frequentist interpretation of CIs for randomly generated UCS data sets of 15 values with 

a mean of 120 and a standard deviation of 30 

In the Bayesian approach, the situation is different because the unknown parameter being 

investigated is considered to be a random variable that is updated for every new data set. 

The posterior probability distribution resulting from the Bayesian updating process is used 

to define the highest density interval with a particular level of precision. This interval defines 

the bounds of the credible region for the estimation of the parameter. In many simple 

situations, the results from both approaches coincide, but the meanings of the results are 

different. The Bayesian result has a meaning consistent with the answer that is normally 

sought by the analyst, whereas the frequentist result responds to a different question that is 

of less interest to the analyst. 

Figure 4.3 compares the frequentist 95% CI for data set 27 in Figure 4.2 with the credible 

interval corresponding to the 95% highest density interval (HDI) of the posterior distribution 

from a Bayesian estimation of the mean. The posterior distribution is calculated for the same 

data set, assuming a uniform prior distribution, which is considered to be a non-informative 

prior in this case. The results show that the prior does not affect the likelihood of the data, 
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yielding a result that appears to coincide with the frequentist result, although with a different 

meaning. In this case, the Bayesian interval indicates a range for the sought mean with a 

95% credibility. This is possible because, in the Bayesian framework, the parameter 

investigated is not fixed but changes as new data become available. The frequentist result 

corresponds to a point estimate of the mean and a measure of the error represented by the 

width of the CI, whereas the Bayesian result provides a full probability distribution for the 

mean based on the data used.   

 

Figure 4.3 Comparison between the frequentist (left) and Bayesian (right) results for the inference of 

the mean UCS of data set 27 in Figure 4.2 

4.4 Bayesian inference of uncertain parameters 

 Three elements are required for the construction of a Bayesian model for the inference of 

parameters. Figure 4.4 shows a conceptual representation of this model. First, there must 

be a model in the form of a mathematical function that represents the performance of a 

particular system of interest. This model includes a predictor variable, x, and the parameters 

for inference, . Secondly, there must be data that normally correspond to measurements 

of the actual performance of the system, yactual, to compare with the model predictions, ymodel. 

Thirdly, there is the prior knowledge available on the parameters; this means any type of 

information, for example valid ranges or credible values. These elements are combined in a 

probabilistic function that contains the set of uncertain parameters for inference,  1 to  k. 

This function effectively corresponds to a posterior probability distribution using the Bayes 

formula and gives probability values, p, for particular sets of uncertain parameters, . The 
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objective of the analysis is to define the sets of  that produce the largest p values. In other 

words, the objective is to define the most probable parameter values. 

 

Figure 4.4 Conceptual representation of the Bayesian model for inference of parameters 

4.4.1 Generic formulation of the model for Bayesian inference of parameters 

Zhang et al. (2009, 2012) described the concepts of characterisation of geotechnical model 

uncertainty in a Bayesian framework. The following presentation uses some elements of 

that account but it is adapted to fit the case of the intact rock strength model discussed in 

Section 4.5. 

A model can be represented by a function f( ) used to predict a system response, ymodel: 

 𝑦𝑚𝑜𝑑𝑒𝑙 = 𝑓(𝜃, 𝑟) (4.3) 

The function depends on  and r, which are vectors with the uncertain and certain 

parameters of the model, respectively. The certain parameters include the predictor 

variables x, which are those variables used to define the predicted variable y, whose 

behaviour is targeted with the model. If there are measurements of the actual system 

response, yactual, then it is possible to define the error, ε, which accounts for model 

uncertainty: 

 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 = 𝑦𝑚𝑜𝑑𝑒𝑙 + 𝜀 = 𝑓(𝜃, 𝑟) + 𝜀 (4.4) 

The error, ε, is assumed to have a Gaussian (normal) distribution, with mean, μ, and 

standard deviation, σ. Alternatively, a t-distribution can be used to represent the variability 

of ε and to give improved handling of any outliers. In this case, an additional parameter 
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called normality, ν, is required, which controls the weight of the tails of the distribution. The 

t-distribution coincides with the normal distribution when ν is equal to or greater than 30. For 

simplicity, a normal distribution is considered in the description of the method that follows. 

The errors are assumed to be normally distributed around the model prediction so that we 

have  

 𝜇 = 𝑦𝑚𝑜𝑑𝑒𝑙 (4.5) 

and 

 𝜀 = 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑦𝑚𝑜𝑑𝑒𝑙 = 𝑦𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑓(𝜃, 𝑟) (4.6) 

In this case, the standard deviation of the errors, σ, is the only so-called nuisance parameter 

that needs to be inferred together with the model parameters of interest in the vector, . 

The Bayesian approach can be used to evaluate the posterior probability p(, σ|d) of the 

uncertain parameters used in the model given the data d on the actual performance of the 

system modelled: 

 𝑝(𝜃, 𝜎 |𝑑) =
𝑝(𝑑 |𝜃, 𝜎)   𝑝(𝜃, 𝜎)

∬ ∙∙∙ ∬ 𝑝(𝑑 |𝜃, 𝜎)   𝑝(𝜃, 𝜎)   𝑑𝜃 𝑑𝜎
 (4.7) 

Eq. (4.7) is an extended version of the Bayes’ equation shown in Eq. (4.1). Vague priors are 

used if there is little information on the values of the uncertain parameters. In this case, the 

prior term p(, σ) is defined with uniform distributions for σ and the k uncertain parameters 

in : 

 𝑝(𝜃,  𝜎) =  
1

(𝜎𝑢𝑝 − 𝜎𝑙𝑜)
× ∏

1

(𝜃𝑢𝑝 𝑗 − 𝜃𝑙𝑜 𝑗)

𝑘

𝑗=1

 (4.8) 

The subscripts in this equation refer to upper (up) and lower (lo) values defining credible 

ranges of the uncertain parameters. The likelihood term p(d| , σ) is defined using a normal 

distribution to reflect the Gaussian variability of the errors, ε. The calculation is carried out 

for the n measurements of the system response: 
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 𝑝(𝑑 |𝜃,  𝜎) =  ∏
1

√2𝜎2𝜋

𝑛

𝑖=1

 𝑒
−

(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙)2

2𝜎2  (4.9) 

The likelihood term is defined as the probability of the data given the uncertain parameters, 

but it can also be presented as the likelihood of the parameters given the data: 

 𝑝(𝑑 |𝜃,  𝜎) ∝ 𝐿(𝜃, 𝜎|𝑑) (4.10) 

The denominator in Eq. (4.7) is calculated as the integral of the numerator across the whole 

parameter space. This is the normalisation term not required for inference of parameters 

with an MCMC procedure. This term is required for the calculation of the Bayes factor used 

for model comparison. The formula for the posterior distribution in Eq. (4.7) can become a 

complex expression if the model in Eq. (4.3) is itself a complex formula with many uncertain 

parameters. An efficient way of evaluating this function is by obtaining representative 

samples of the parameter values using the MCMC procedure. 

4.4.2 The Markov Chain Monte Carlo (MCMC) method 

The MCMC method is a procedure for sampling a probability distribution based on the 

selection of representative samples according to a random process called a Markov chain. 

In a Markov chain, every new step of the process depends on the current state and is 

completely independent of previous states (Kruschke, 2015). One of the main applications 

of the MCMC method is the evaluation of complex probability distribution functions of many 

dimensions such as those encountered in the posterior or likelihood functions of Bayesian 

data analysis. The Markov chain also called the random walk, in spite of being a random 

process, will always mimic the target distribution in the long run. The increased use of MCMC 

methods during the last 15 years is related to advances in computer hardware and numerical 

algorithms facilitating the use of these methods. There are numerous books and papers 

devoted to the subject of the MCMC method. For example, Diaconis (2009) provided some 

examples of formerly intractable problems that can now be solved using this technique. 

Robert and Casella (2011) presented a brief history of MCMC and provided a 

comprehensive treatment of MCMC techniques (Robert and Casella, 2004).  
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Several algorithms are used to implement an MCMC process, with the Metropolis, Gibbs 

and Hamiltonian algorithms being among the more commonly used ones (Kruschke, 2015). 

In general, all the algorithms share the following basic steps: 

(1) Start with an initial guess of the set of parameters to sample. 

(2)  Evaluate a random jump of the set of parameters from their current values. 

(3)  Evaluate the probabilities of the proposed and current sets of values with the target 

distribution. 

(4)  Use the ratio between the probabilities of the proposed and current sets of values to 

define a criterion of acceptance of the jump. The criterion should favour moves 

towards the regions of higher probability, but should not eliminate the possibility of 

moves towards the regions of lower probability. 

(5)  Apply the acceptance criterion to update or retain the current values and repeat the 

process from step 2 until a sufficient number of sets of values (samples) are defined. 

One advantage of this procedure is that it works even if the target function is not normalised 

to conform to the definition of a probability distribution. 

4.4.3 Assessment of the quality of the MCMC analysis results 

An MCMC sample should be representative of the posterior distribution, should have 

sufficient size to ensure the accuracy of estimates, and should be generated efficiently 

(Kruschke, 2015). In general, the implementation of an MCMC process requires some 

adjustments to achieve a stable solution in the form of representative independent samples 

from the parameters. It is common to discard a portion of the early steps of the chain, known 

as the burn-in process, while the sampling sequence evolves into a stable process. 

Diagnostic checks carried out on graphs produced with the results of the analysis serve to 

assess the quality of results. Some algorithms have heuristic rules on the acceptance rate 

of the steps of the chain to ensure that the samples are independent and representative of 

the posterior distribution. For example, for the affine-invariant assemble sampler used for 

the examples discussed in this paper, the recommendation is to have a rate of between 20% 

and 50% (Foreman-Mackey et al., 2013). 
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4.4.4 Software for MCMC analysis 

Although it is important to understand the concepts behind the various algorithms used for 

the MCMC analysis to properly assess the quality of the results, the analyst does not have 

to programme these algorithms. There are already elaborated open source packages in 

various programming languages developed by computer scientists and related specialists 

that can be easily incorporated into ad-hoc code.  Vincent (2014) listed some currently 

available popular packages for MCMC. The models described in this paper were coded in 

the Python programming language (Phyton Software Foundation, 2001) and the posterior 

distributions were sampled with the ‘emcee’ Python package developed by Foreman-

Mackey et al. (2013). The software includes an algorithm known as the affine-invariant 

ensemble sampler characterised by the use of multiple chains running simultaneously to 

explore the domain of the function. The software was developed and is used by the 

astrophysics community with complex multidimensional models that exceed the expected 

complexity and dimensionality of the models normally used for geotechnical analysis. 

4.5 Bayesian inference of intact rock strength parameters 

4.5.1 Description of the method 

The Bayesian estimation of intact rock peak strength parameters is based on the Hoek-

Brown strength criterion (Hoek and Brown, 1997) defined by the following equation: 

 𝜎1 =  𝜎3 + 𝜎𝑐𝑖  (𝑚𝑖

𝜎3

𝜎𝑐𝑖
+ 1)

0.5

 (4.11) 

where σci is the UCS of intact rock; mi is a constant of the intact rock material; and σ1 and σ3 

are the major and minor principal stresses, respectively. σci and mi are the parameters 

investigated with the analysis. Using this criterion, the intact tensile strength, σt, is given by 

 𝜎𝑡 =  
𝜎𝑐𝑖

2
(𝑚𝑖 − √𝑚𝑖

2 + 4) (4.12) 

The data correspond to the results of TCS and UCS tests and DTS estimates made from 

BTS test results. These results correspond to measurements of one of the principal stresses 

at failure for particular values of the other principal stress. For example, the results of TCS 

and UCS tests provide measurements of the major principal stress, σ1, at failure for fixed 
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values of the minor principal stress, σ3, with compression taken as positive. The DTS values 

correspond to σ3 measurements at failure when σ1 is zero. The estimation of DTS is normally 

based on indirect measurements made using the BTS test. Perras and Diederichs (2014) 

found good rock type-dependent correlations between DTS and BTS results with suggested 

correlation factors of α = DTS/BTS of 0.9 for metamorphic rocks, 0.8 for igneous rocks, and 

0.7 for sedimentary rocks. 

Langford and Diederichs (2013, 2015) discussed the estimation of Hoek-Brown intact rock 

strength envelopes from laboratory test results using a frequentist approach. In their latter 

paper, they compared three regression methods to estimate the best-fit envelope, namely, 

two variants of ordinary least squares with the linearised form of the Hoek-Brown strength 

equation, and a nonlinear regression method with the equation in its original form. These 

two versions of linear regression refer to the inclusion or otherwise of the adjustment for the 

measurement of errors in the tensile zone. The nonlinear method includes this adjustment. 

Langford and Diederichs (2013, 2015) considered nonlinear regression to be the preferred 

method of producing the best fits. In terms of uncertainty evaluation, they used the concept 

of prediction interval (PI) to quantify the uncertainty of data. Subsequently, they made 

assumptions regarding the correlation characteristics between UCS and mi to fill the PIs with 

Hoek-Brown envelopes in order to assess the variability of these parameters. However, as 

will be discussed in Section 4.5.5, the use of PIs to assess the uncertainty of the fitted 

envelopes is not consistent with the standard concept of PI in the frequentist approach. 

As indicated in Section 4.3.2, in the Bayesian approach, data are fixed whereas parameters 

are random. This characteristic results in a much clearer and sounder assessment of the 

uncertainty of the parameters. The result of the Bayesian analysis consists of probability 

distributions of σci and mi as well as scatter plots of sampled values providing information on 

their correlation characteristics. This information is used to produce the band of plausible 

failure envelopes reflecting the uncertainty of the intact rock strength. 

The Bayesian analysis in this paper is compared with the nonlinear least squares regression 

method used by Langford and Diederichs (2015). Both methods consider the correct 

direction of measurement of errors, i.e. errors in σ1 are calculated for UCS and TCS data, 

whereas errors in σ3 are evaluated for DTS data. Figure 4.5 shows the way in which errors 

are measured in the Bayesian analysis. The linear regression method is not considered with 
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the Bayesian analysis because the indirect estimation of the parameters causes some 

drawbacks with regard to the selection of vague priors. This is because the parameters 

inferred using the linear regression approach are the intercept and the slope of the Hoek-

Brown linearised equation, and the vague condition of their priors is not transferred to the 

parameters of interest, σci and mi. 

 

Figure 4.5 Measurement of errors in the tensile and compressive strength regions with a t distribution 

to handle outliers 

The diagram in Figure 4.6 illustrates the structure of the Bayesian model for the robust 

estimation of intact rock strength parameters. The model combines the prior and the 

likelihood parts to define the posterior function according to Bayes’ rule. The Hoek-Brown 

criterion represents the model whose predictions are compared with data to define errors, 

which are evaluated with a t-distribution to construct the likelihood function. 

A problem commonly met in regression analyses is the bias in the estimation of parameters 

caused by the presence of outliers in the data. A way to deal with this situation is to consider 

a t-distribution to represent the spread of the data points in the direction of measurement of 

errors. The t-distribution is defined by three parameters that control the central value (mean, 

μ), the width (scale, σ) and the weight of the tails (normality, ν). The possibility to set heavy 

tails with this distribution allows outliers to be accommodated without shifting the mean. This 
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point is illustrated in Figure 4.7 (taken from Kruschke, 2015) where the advantage of the 

t-distribution over the normal distribution is highlighted. The use of the t-distribution for 

modelling errors makes the method robust in the true statistical sense. 

 

Figure 4.6 Conceptual basis of the Bayesian model for the robust estimation of the Hoek-Brown 

intact rock strength parameters, σci and mi 

 

Figure 4.7 Illustration of the advantage of the t-distribution over the normal distribution to 

accommodate outliers in robust statistical inference (Kruschke, 2015) 
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The Bayesian model considers prior distributions of four parameters – the rock mechanics 

parameters, σci and mi, modelled with uniform distributions, and the scale, σ, and normality, 

ν, parameters of the t-distribution modelled with uniform and exponential distributions, 

respectively, as shown in Figure 4.6. The uniform distributions are defined within valid 

ranges of the parameters determined by lower and upper bound values. The vague priors 

of the rock mechanics parameters are intended to limit their variations to plausible values 

without constraining the estimation within those limits. The ranges used for the examples in 

this paper are 10–500 MPa for σci and 1–50 for mi.  

The range for the σ parameter is based on the characteristics of the data set with lower and 

upper values defined as the standard deviation of data in the y-axis (stdev. σ1) divided and 

multiplied by 100, respectively. The prior for the parameter ν is an exponential distribution 

with mean 1/29 because the majority of the changes of the t-distribution occur for values 

between 1 and 30. When ν is greater than 30, the t-distribution coincides with the normal 

distribution. In this way, the full range of tail shapes of the t distribution has similar chances 

of being selected. The one added to the value sampled from the distribution is intended to 

convert the range of the exponential distribution from 0 to infinity to the valid range of ν from 

1 to infinity. 

The details of the definition of the posterior distribution function for the conditions of analysis 

presented in this paper are included in Appendix A. The posterior is a cumbersome four-

dimensional function that is better evaluated by sampling the parameters with an MCMC 

algorithm. The model was implemented in the Python programming language, using the 

MCMC sampler “emcee”. 

Finally, in this account of the methods of analysis to be used in the illustrative examples to 

follow, it is important to offer a qualification about the UCS data used in the examples. It has 

been established that the value of the UCS parameter, σci, used in fitting the Hoek-Brown 

criterion to peak strength TCS data for intact rock, should be the value obtained from the 

intercept of the peak strength curve with the σ3 = 0 axis (Hoek and Brown, 1997; Bewick et 

al., 2015; Kaiser et al., 2015). This value may correspond to the results of well-conducted 

UCS tests in which shear failure occurs, but is usually higher than the UCS value obtained 

from tests in which splitting failure occurs. It should be noted that in the data analysed here, 
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no attempt has been made to differentiate between samples showing these different modes 

of failure.  

4.5.2 Example of fitting data with outliers 

The methodology is illustrated using a “typical” intact rock strength data set of 60 points (15 

UCS, 15 DTS and 30 TCS), including a few outliers, which was generated using random 

numbers between pre-defined limits. The analysis was carried out with a reduced data set 

of 31 points (8 UCS, 8 DTS and 15 TCS) without outliers, and with the complete data set of 

60 points, in order to highlight the effect of the outliers. Figure 4.8 shows the data points 

together with the fitted envelopes using the nonlinear least squares (NLLS) regression 

method and the Bayesian approach. The NLLS method is based on the numerical estimation 

of the set of parameters that minimizes the squared residuals function. The Bayesian 

method is denoted as MCMC_S in Figure 4.8 to indicate that the MCMC sampling was done 

on a posterior function using a t-distribution to model the errors. The two methods shown in 

Figure 4.8 consider the actual (absolute) residuals for the calculation of errors. The results 

of the analyses are similar for the case with 31 data points but differ for the case of 60 data 

points with a marked effect from the outliers on the NLLS envelope. On the other hand, the 

Bayesian result appears to be less affected by the outliers, demonstrating the robustness of 

the method. 

 

Figure 4.8 Comparison of fitted Hoek-Brown failure envelopes with nonlinear least squares (NLLS) 

and Bayesian sampling (MCMC_S) methods, considering absolute residuals. Data sets of 31 points 

without outliers (left) and 60 points with outliers (right) were used 
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One aspect of the data set that has an impact on the fitting result is the fact that the errors 

in the tensile region are one order of magnitude smaller than the errors in the compressive 

region. For example, the case without outliers in Figure 4.8 shows that the range of tensile 

strength values is about 5 MPa whereas the compressive strength values are 10 times more 

variable. One way of accounting for this imbalance with the Bayesian model would be to set 

up separate t-distributions to model tensile and compressive errors. This adjustment would 

imply the addition of two uncertain variables to be inferred. However, a simpler alternative 

also available to the frequentist method is the normalisation of errors with the respective 

model values. The relative residuals calculated in this way would have similar orders of 

magnitude in the tensile and compressive regions. 

Figure 4.9 shows the data points for the case of 60 test results and the six fitted envelopes 

using three methods of analysis with absolute and relative residuals. The methods include 

the NLLS, the Bayesian sampling of a posterior function based on a t-distribution for the 

errors (MCMC_S), and the Bayesian sampling of a simpler function using a normal 

distribution to model the errors (MCMC_N). The reason for using a model with the normal 

instead of the t-distribution is to appreciate the real effect that the use of relative errors has 

on the bias caused by the outliers. 

 

Figure 4.9 Comparison of fitted Hoek-Brown failure envelopes with nonlinear least squares (NLLS) 

and Bayesian sampling (MCMC_S and MCMC_N) methods, considering absolute and relative 

residuals and the data set of 60 points 
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The results in Figure 4.9 show coincidence of the envelopes defined by the three methods 

when the errors are normalised (relative residuals). The results of the analysis with absolute 

residuals show the strong effect of the outliers on the envelopes fitted with the NLLS and 

the Bayesian with normal distribution methods. These results also highlight the robust effect 

of the t-distribution in the Bayesian model indicated by the closeness of the result to the 

fitted envelopes using relative residuals. 

4.5.3 Comparison of regression methods 

The quantification of the goodness of fit with the NLLS method is based on the standard 

error (SE), which can be calculated for absolute and relative residuals. The SE of the fitted 

envelopes defined with two parameters from n data points is calculated as  

 𝑆𝐸 = √
𝛴(𝑒𝑟𝑟𝑜𝑟𝑠2)

𝑛 − 2
 (4.13) 

The SE can also be calculated for the envelopes obtained from the Bayesian analysis. 

However, in this case, a more adequate indicator of the goodness of fit is the maximum 

likelihood value (MxL) that measures the likelihood of the estimated parameters. The MxL 

is calculated with the model described in Figure 4.6. Likelihood values correspond to the 

product of small probabilities of the individual data points; therefore, they are very small 

numbers. For this reason, the maximum likelihood estimations are normally reported as the 

logarithms of the values. The comparison of the maximum likelihood values to assess the 

effectiveness of the regression models is meaningful when the two competing models have 

the same numbers of parameters. If the models have different numbers of parameters, the 

appropriate way to compare the models is through the Bayes factor K, defined as the ratio 

of the evidence terms of the two competing models: 

 𝐾 =
𝑝(𝑑|𝑚𝑜𝑑𝑒𝑙1)

𝑝(𝑑|𝑚𝑜𝑑𝑒𝑙 2)
 (4.14) 

The evidence term p(d|model) corresponds to the integration of the numerator of the Bayes 

posterior over the parameter domains (see Eq. (4.7)). A model with more parameters having 

a greater maximum likelihood due to smaller errors is not necessarily better than a model 
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with a lesser maximum likelihood but with fewer parameters. The Bayes factor, K, provides 

the appropriate measure of the relative effectiveness of the two models. 

Table 4.2 shows a summary of the results of the six regression analyses presented in 

Figure 4.9. The table includes the main characteristics of each regression model, the 

estimated parameters, the SE for absolute and relative errors, and the natural logarithm of 

MxL for the Bayesian analysis. As expected, the minimum SEs with absolute residuals are 

obtained with the methods that use the absolute residuals in the calculation process, and 

similarly occur with the minimum SE with relative residuals. The MxL results of the four 

Bayesian models indicate a better fit with the models that use relative residuals as compared 

with the models based on absolute residuals. A proper comparison of the effectiveness of 

the Bayesian models is shown in Table 4.3, which includes the Bayes factors for all the 

model pairs.  

Table 4.2 Comparison of results of the fitting analysis 

Model 

no. 
Method 

Type of 

residuals 

Distribution 

of errors 

No. of 

parameters 

σci 

(MPa) 

mi 
SE 

abs 
SE rel Ln(MxL) 

1 NLLS Abs  2 72 11.2 26.0 0.34  

2 NLLS Rel  2 75 15.7 28.8 0.31  

3 MCMC Abs Student’s 4 64 16.8 27.1 0.34 -293.0 

4 MCMC Rel Student’s 4 75 15.6 28.8 0.31 -23.5 

5 MCMC Abs Normal 3 72 11.7 26.0 0.33 -279.8 

6 MCMC Rel Normal 3 76 15.9 29.4 0.31 -13.3 

 

Table 4.3 Effectiveness of Bayesian regression models based on Bayes factor comparisons 

Bayesian 

model 

MCMC_S (abs) MCMC_S (rel) MCMC_N (abs) MCMC_N (rel) 

MCMC_S (abs) 1 <1 123 <1 

MCMC_S (rel) >100 1 >100 <1 

MCMC_N (abs) <1 <1 1 <1 

MCMC_N (rel) >100 1.3 >100 1 

 

A commonly used interpretation of the Bayes factor for model comparison is indicated in 

Table 4.4 (Kass and Raftery, 1995). According to this interpretation, the Bayes factors in 
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Table 4.3 indicate very strong support of the models based on relative residuals as 

compared to the models that use absolute residuals.  In terms of the type of distribution used 

to model the errors, the models based on the t-distribution and the normal distribution are 

effectively equivalent. However, the calculated Bayes factors are specific to the data set 

used for the analysis. Therefore, it is concluded that the model based on the t-distribution 

with relative residuals is the preferred fitting method since it will provide superior handling of 

potential outliers in any of the test results. 

Table 4.4 Interpretation of Bayes factors (Kass and Raftery, 1995) 

K Strength of evidence 

< 1 Negative (supports model 2) 

1 to 3 Not worth more than a bare mention 

3 to 20 Positive 

20 to 150 Strong 

> 150 Very strong 

 

4.5.4 Additional results from the Bayesian approach  

A notable feature of the Bayesian analysis is that the parameters are defined from complete 

probability distributions that not only provide information on the reliability of the estimates 

but also indicate their correlation characteristics. In this respect, the Bayesian method can 

provide a complete quantification of the parameter uncertainty. 

Figure 4.10 shows the scatter plots of mi versus σci values obtained from the Bayesian 

analysis using the four models implemented. The graphs at the left are from the analysis 

with absolute residuals and those at the right are from the analysis with relative residuals. 

The graphs at the top correspond to the models based on the t-distribution and those at the 

bottom are from models using the normal distribution to evaluate the errors. The contours 

define the 95 and 68 percentiles of sampled points and the crosses mark the mean values. 

The calculated coefficients of correlation (CC) are indicated in the upper right corner of each 

plot. The parameters show a negative correlation for the analysis with absolute residuals, 

which is a consequence of the difference in the order of magnitude of the errors in the tensile 

and compressive strengths. The normalisation of the errors causes the narrowing of the 

likely tensile strength, which translates to the reduction in the spread of the σci and mi values. 
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This effect is better appreciated in the graphs of Figure 4.11 showing the bands of envelopes 

corresponding to the 95% of sampled values for the cases of absolute and relative residuals. 

The results in Figure 4.11 and Figure 4.12 confirm the benefit of normalising the errors for 

the regression analysis and the indifference of the results with relative residuals to the type 

of distribution used to evaluate these errors. 

 

Figure 4.10 Scatter plots of mi versus σci from the Bayesian regression analysis with absolute (left) 

and relative (right) residuals. Models based on t-distribution (top) and normal distribution (bottom) 

were used to evaluate the errors 

Figure 4.12 shows the histograms of the representative samples of σci and mi drawn from 

the posterior distribution, for the case of relative residuals evaluated with the t-distribution. 

The histograms define the ranges of credible values corresponding to the 95% HDIs and 

the more likely estimates represented by the mean values (σci = 75 MPa and mi = 15.6). 
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Figure 4.11 Fitted envelopes with bands corresponding to the 95% of sampled points from the 

analysis with absolute (left) and relative (right) residuals and the model based on the t-distribution to 

evaluate errors 

 

Figure 4.12 Posterior distributions of σci and mi with mean and 95% HDIs indicated, for the case of 

relative residuals evaluated with a t-distribution 

Figure 4.13 shows the complete set of results of the MCMC analysis for the case of relative 

residuals evaluated using a t-distribution. The graph includes the scatter plots between all 

the parameters sampled from the posterior distribution as well as the histograms of those 

parameters. The graph shows not only the results of the parameters of interest, σci and mi, 

but also the nuisance parameters, σ and ν, used in the model to characterise the 

t-distribution. The parameter ν is plotted in logarithmic form to facilitate an appreciation of 

its variability. These plots are useful for identifying correlations and for detecting possible 

anomalous situations that might suggest instability of the chains or other problems with the 

sampling process. 
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The specification of the MCMC sampling process included fifty chains, also known as 

walkers, with two thousand steps per walker and excluding half of the steps as part of the 

burn-in process. An important diagnostic graph to verify the validity of the results is the trace 

plot shown in Figure 4.14. Trace plots show the progress of the fifty chains sampling each 

parameter through the total number of steps specified. They indicate that a stable process 

was reached in a few steps, suggesting that fewer steps may have been sufficient to sample 

the function. The acceptance rate of the sampling process was 0.47 which is within the limits 

recommended for the affine invariant assemble algorithm (Foreman-Mackey et al., 2013). 

 

Figure 4.13 Corner graph showing the scatter plots of pairs of all the sampled parameters and their 

individual histograms 
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Figure 4.14 Trace plots of the MCMC chains for the four parameters sampled from the posterior 

distribution. Each plot includes the traces of the 50 walkers used for the sampling giving a total of 

one hundred thousand samples per parameter. The first fifty thousand steps correspond to the 

burn-in process and were excluded from the results 

4.5.5 Comparison between the uncertainty evaluations with the frequentist and 

Bayesian approaches – a second example 

Given the merits of considering relative residuals to obtain the best estimation of the intact 

rock strength parameters, the focus in this section is on the quantification of the uncertainty 

of these parameters. The example presented in the preceding sections showed coincidence 

between the NLLS and Bayesian results for the analysis with relative residuals. The example 

also served to highlight the main features of the quantification of uncertainty of the 

parameters inferred with the Bayesian approach. Sections 5.5 to 5.7 illustrate the contrast 

between the uncertainty quantification with the two approaches, by analysing a data set of 



108 

 

166 test results on samples of a homogenous granite in Sweden. The data set includes 70 

BTS, 59 UCS and 37 TCS tests with confining pressures of between 2 MPa and 50 MPa. 

The tests were carried out at the Swedish National Testing and Research Institute (SP) for 

the Swedish Nuclear and Fuel Waste Management Company (SKB). The data were 

extracted from 14 publically available data reports concerning the Oskarshamn site 

investigation in Sweden (Jacobsson, 2004, 2005, 2006, 2007). All of the results in the data 

set correspond to tests on intact rock with failure modes not affected by local defects. 

The two regression methods considered for the comparison of uncertainty quantification are 

the NLLS and the Bayesian sampling with the model based on a t-distribution to evaluate 

the errors (MCMC_S). In both cases, the analyses are carried out with relative residuals. 

4.5.6  Confidence interval (CI) and prediction interval (PI) in the frequentist approach 

The conventional way of measuring the uncertainty of a parameter estimate within the 

frequentist approach is to construct a CI around the inferred point estimate. In this case, the 

parameter is non-random and unknown. The interpretation of a 95% CI is that in repeated 

sampling, 95% of the intervals constructed around their respective point estimates will 

contain the true fixed but unknown value of the parameter. In the Hoek-Brown strength 

envelope case, the fitted envelope defined by the parameters σci and mi is the point estimate 

and the 95% CI is defined as follows for the compressive and tensile strength regions: 

 𝐶𝐼 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 = 𝜎1 ± (𝑡2.5%,   𝑛−2)𝑆𝐸𝑟𝜎1√
1

𝑛
+

(𝜎3 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2

∑ (𝜎3 𝑑𝑎𝑡𝑎 𝑖 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2𝑛
𝑖=1

 (4.15) 

 𝐶𝐼 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = 𝜎𝑡 ± (𝑡2.5%,   𝑛−2)𝑆𝐸𝑟𝜎𝑡√
1

𝑛
+

(𝜎3 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2

∑ (𝜎3 𝑑𝑎𝑡𝑎 𝑖 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2𝑛
𝑖=1

 (4.16) 

where σt is the tensile strength for the fitted strength envelope; t2.5%, n-2 is the 2.5 percentile 

of the t-distribution with n-2 degrees of freedom, which defines the interval that includes 95% 

of the area of the t-distribution with a zero mean; SEr is the standard error as defined by 

Eq. (13) considering normalised (relative) errors; n is the number of data points; and μ is the 

mean of the σ3 data values. 
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The PIs within the frequentist approach have a different meaning and refer to the uncertainty 

of data values which are considered to be random variables. The interpretation of a 95% PI 

is that there is a 95% probability that the next data value to be observed will fall within the 

interval. In the Hoek-Brown strength envelope case, the fitted envelope defined by the 

parameters σci and mi can be used to predict individual strength values. A 95% PI 

constructed around this envelope defines the limits where future strength observations will 

be with a 95% probability. The 95% PI is defined as follows for the compressive and tensile 

strength regions: 

 𝑃𝐼 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒 = 𝜎1 ± (𝑡2.5%,   𝑛−2)𝑆𝐸𝑟𝜎1√1 +
1

𝑛
+

(𝜎3 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2

∑ (𝜎3 𝑑𝑎𝑡𝑎 𝑖 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2𝑛
𝑖=1

 (4.17) 

 𝑃𝐼 𝑡𝑒𝑛𝑠𝑖𝑙𝑒 = 𝜎𝑡 ± (𝑡2.5%,   𝑛−2)𝑆𝐸𝑟𝜎𝑡√1 +
1

𝑛
+

(𝜎3 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2

∑ (𝜎3 𝑑𝑎𝑡𝑎 𝑖 − 𝜇𝜎3 𝑑𝑎𝑡𝑎)2𝑛
𝑖=1

 (4.18) 

The PI and CI are centred on the fitted envelope, but the PI is wider than the CI, because 

the PI refers to the variability of individual data points, whereas the CI is associated with the 

variability of the whole envelope. In both cases, it is implied that there must be additional 

sampling for the levels of confidence to have a meaning. In the case of the PI, a future data 

point is required, whereas for the CI, many similar data sets need to be collected. 

Figure 4.15 shows the data set and the results of the frequentist analysis that include the 

fitted envelope with the 95% CI and PI around the mean. The intervals are narrower towards 

the mean of the σ3 data range. This effect is compounded with the widening of the interval 

relative to the model fit value that multiplies the SEr. Langford and Diederichs (2015) used 

the PI to quantify the uncertainty of the fit. However, as indicated above, within the 

frequentist approach, the uncertainty of the fit is measured with the CI, whereas the 

uncertainty of the data points is associated with the PI (Hyndman, 2013). 
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Figure 4.15 Uncertainty quantification of the Hoek-Brown intact rock strength envelope with the 

frequentist approach (NLLS method with relative residuals). Fitted envelope, 95% CI reflecting the 

uncertainty of the mean envelope and 95% PI reflecting the uncertainty of individual data points 

4.5.7 Scatter plots and envelope bands in the Bayesian approach 

Figure 4.16 shows the results of the fitting analysis of the data set using the Bayesian 

approach. In this case, the samples drawn from the posterior function with the MCMC 

procedure are represented in the scatter plot of mi versus σci on the left in Figure 4.16. This 

graph indicates a positive correlation between the two parameters and provides a complete 

description of their uncertainty. The outer contour in the scatter plot corresponds to the 95 

percentile of the sampled values and the envelopes constructed with these values define 

the envelope band represented in the graph on the right in Figure 4.16. The narrow band 

suggests a sharp definition of the Hoek-Brown strength envelope supported by the 166 test 

results in the data set. This is not a typical number of test results available in many projects. 

Fewer data will result in wider uncertainty bands. 

The results presented in Figure 4.15 and Figure 4.16 show coincidence in the estimation of 

the mean envelope, but highlight the differences in the evaluation of the uncertainty of the 

intact rock strength parameters. The frequentist approach provides intervals where the 

envelope or a data point may be found with a level of confidence. However, for this 

approach, the level of confidence only has meaning if repeated future sampling is carried 

out. The Bayesian method provides a representative sample of parameter values with the 

highest probability of occurrence based on the set of test results used in the analysis. The 
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sampled values allow the definition of the range of credible envelopes for a particular level 

of confidence. The Bayesian method offers a richer and clearer evaluation of the uncertainty 

of the intact rock strength parameters.  

 

Figure 4.16 Uncertainty quantification of the Hoek-Brown intact rock strength envelope with the 

Bayesian approach (model based on relative residuals with t-distribution). Scatter plot of sampled 

values of mi versus σci with 68 and 95 percentile contours (left). Fitted envelope and the band of 

envelopes corresponding to the 95% of sampled parameter values (right) 

4.5.8 Improving the fit in the triaxial region 

The Hoek-Brown parameters σci and mi inferred from the fitting analysis define the intercepts 

of the peak strength envelope with the tensile and uniaxial compressive strength axes. 

However, the fit in the triaxial region is constrained by the assumption that the parameter, 

a, in the generalised criterion for rock masses is 0.5 for intact rock, as indicated by the 

exponent in Eq. (11). The Bayesian approach provides a convenient way to assess the 

merits of including the a parameter as an additional uncertain variable for inference. 

Langford and Diederichs (2015) described the improvement of the fit with a frequentist 

approach when the a parameter is included in the analysis. They also pointed out the 

practical difficulties of implementing this modification to the criterion for intact rock strength. 

Figure 4.17 shows the corner plot of the three rock mechanics parameters inferred with the 

Bayesian analysis for the Swedish granite data set. The model considers a t-distribution to 

evaluate the relative errors, which adds two nuisance parameters for inference. The scatter 

plots show a negative correlation of the parameter a with both σci and mi. The improvement 

of the fit in the triaxial region when the parameter a is free to vary can be appreciated in the 
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graph of Figure 4.18, in which the fitted envelope with a = 0.58 is compared to the envelope 

resulting from the analysis when a is fixed to 0.5. The histogram of parameter a in 

Figure 4.17 shows a range of probable values between 0.48 and 0.66. This variability 

compounded with the correlation with σci and mi results in a larger uncertainty in the triaxial 

region. Figure 4.19 shows the mean fit and the band of envelopes defined by the 95 

percentile of the parameters σci, mi and a. This result is an indication of insufficient data 

points with high confining stresses to confirm the strength envelope in that stress region. 

 

Figure 4.17 Corner plot from the analysis of the Swedish granite data set considering the Hoek-

Brown parameter a as variable. The plot shows the scatter plots and histograms of the rock 

mechanics parameters 
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Figure 4.18 Comparison of the fitted envelopes from the analysis with the parameter a fixed to 0.5 

and for the case in which a is variable 

 

Figure 4.19 Uncertainty of the Hoek-Brown intact rock strength envelope when the parameter a is 

considered variable (model based on relative residuals with t-distribution). The band of envelopes 

corresponds to 95% of the sampled parameter values 

4.5.9 Accounting for the uncertainty in the estimation of DTS from BTS 

The test data for the Swedish granite used to illustrate the Bayesian fitting method include 

70 BTS test results. These results were converted to DTS values using a factor of 0.83 

derived from data for igneous rocks. This correlation factor is based on a linear regression 

analysis of 40 pairs of BTS and DTS test results mainly on granite samples, extracted from 

Perras and Diederichs (2014). The uncertainty of this correlation factor is not transferred to 

the fitting analysis of the strength envelope when the DTS values are calculated using a 
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fixed conversion factor. The Bayesian model allows for the incorporation of this uncertainty, 

by using the data set of BTS versus DTS to define the correlation factor (α) within the 

posterior function. Therefore, during the sampling process, each trial value of α is used 

within the model to convert BTS data into DTS values required for the fitting analysis of the 

Hoek-Brown envelope. 

The extended Bayesian model to include the uncertainty in the correlation between BTS and 

DTS uses two data sets, one consisting of 40 BTS versus DTS test results and the second 

the 166 σ1 versus σ3 values from BTS, UCS and TCS test results. The model uses 

t-distributions with parameters σ and ν to evaluate relative errors in the strength envelope 

and normal distributions with standard deviation σα to evaluate absolute errors in the BTS-

DTS correlation. Therefore, the model has six uncertain parameters for inference (σci, mi, σ, 

ν, α, σα). Effectively, the Bayesian model uses the angle of the slope in radians (αrad) for the 

inference process, to facilitate the setting of vague priors with a uniform distribution. This is 

because the factor α in the form of tan(αrad) does not change uniformly between 0 and ᴨ/2, 

and a uniform distribution on this factor would favour flatter slopes. 

Figure 4.20 shows the corner plot with the results of the analysis considering the uncertainty 

in the correlation between BTS and DTS. This figure only includes the rock mechanics 

parameters of immediate interest; the parameters used to define the distributions for the 

evaluation of errors are nuisance parameters and are not displayed. The scatter plot 

between α and mi shows a strong negative correlation between these parameters. In terms 

of the variability of α, the analysis considers the possibility of errors in both DTS and BTS 

(Hogg et al., 2010). Accordingly, errors are evaluated with the normal distributions in a 

direction orthogonal to the fitted lines as shown in Figure 4.21. The plot in Figure 4.21 shows 

the band of fitted envelopes corresponding to the 95% HDI of α values sampled. The 

uncertainty of α is transferred within the Bayesian model and added to the uncertainty of the 

fitted Hoek-Brown strength envelope. Figure 4.22 shows the results of the fitting analysis 

where the larger spread of σci and mi causes a wider band of 95 percentile of envelopes. 

The results shown in Figure 4.22 can be contrasted with those in Figure 4.16 to illustrate the 

effect of including the uncertainty in the correlation between BTS and DTS on the uncertainty 

of the intact rock peak strength envelope. 
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Figure 4.20 Corner plot from the analysis of the granite data set including the uncertainty in the 

correlation between DTS and BTS. The plot shows the scatter plots and histograms of the rock 

mechanics parameters 

 

Figure 4.21 Correlation between DTS and BTS for igneous rocks (data from Perras and Diederichs, 

2014). Normal distributions orthogonal to the fitted line are used to evaluate the errors with 

components in DTS and BTS. The mean fit corresponds to α =0.81 with a 95% HDI=±0.06, but this 

variability is linked to that of mi as indicated in the scatter plot of Figure 4.20 
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Figure 4.22 Uncertainty quantification of the Hoek-Brown intact rock strength envelope with the 

Bayesian approach, including the uncertainty in the correlation between BTS and DTS (model based 

on relative residuals with t-distribution). Scatter plot of sampled values of mi versus σci with 68 and 

95 percentile contours (left). Fitted envelope and the band of envelopes corresponding to the 95% 

of sampled parameter values (right) 

4.6 Summary and conclusions 

Uncertainty is a common occurrence in geotechnical design with two types of uncertainty 

being normally identified. Aleatory uncertainty is associated with the natural variation of 

parameters, and epistemic uncertainty is related to the lack of knowledge on parameters 

and models. Epistemic uncertainty can be reduced with the collection of more information 

but aleatory uncertainty is irreducible.  

Probabilistic methods are commonly used to represent and quantify uncertainty in 

geotechnical design. There are two approaches of statistical analysis based on two 

interpretations of probability. The frequentist approach considers probability as a frequency 

of outcomes in repeated trials, and treats data as a random entity and parameters or models 

as fixed quantities. In contrast, probability in the Bayesian approach is interpreted as 

degrees of belief, and considers data as fixed whereas parameters are random entities. The 

frequentist approach is generally used in geotechnical design to quantify uncertainty; 

however, the methods of analysis have limitations and the results are often misinterpreted. 

Frequentist methods rely only on sampling and produce point estimates and error measures. 

The Bayesian approach provides a better framework within which to quantify uncertainty in 

geotechnical design. The approach combines prior knowledge with data using Bayes’ rule 
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to define posterior probability distributions of inferred parameters. The result of Bayesian 

analysis is richer than the frequentist result, providing information on parameter correlations 

and offering a clearer quantification of the uncertainty of parameters. 

The Bayesian approach was applied to the case of the Hoek-Brown intact rock strength 

estimation using results of compressive and tensile strength tests. The Bayesian model was 

used to estimate the parameters σci and mi with different variants of the model, including the 

use of absolute and relative residuals and the use of normal and t-distributions to evaluate 

the errors. The results of the Bayesian analysis were compared with those obtained for 

equivalent conditions using a frequentist approach represented by the NLLS method. The 

analysis of a data set including outliers highlighted the effectiveness of the t distribution to 

model the errors resulting in a true robust estimation. The difference in the order of 

magnitude of the errors in the tensile and compressive regions has an effect on the results 

of the analysis using absolute residuals. In this case, the larger error in the compressive 

region prevails and causes a larger uncertainty in the tensile strength. The use of relative 

residuals equates the order of magnitude of errors in the tensile and compressive regions, 

diminishes the effect of the outliers and reduces the uncertainty of the mean fit. The fitted 

envelopes obtained using the Bayesian and frequentist methods are effectively equivalent 

when the analysis is based on relative residuals. The relative effectiveness of the Bayesian 

models was evaluated using the Bayes factor. The conclusion from this analysis is that the 

model based on the t-distribution with relative residuals is the preferred fitting method since 

it provides superior handling of potential outliers in the test results. 

A second example with a real data set for a homogeneous granite from Sweden was used 

to highlight the differences in the evaluation of the uncertainty with the two approaches. The 

limitations of CIs and PIs to quantify the uncertainty of the fitted envelope in the frequentist 

approach are contrasted with the richness of the evaluation with the scatter plots and band 

of envelopes in the Bayesian approach. The CI is related to the uncertainty of the mean fit 

but implies repeated systematic sampling for the confidence level to be meaningful. The PI 

is associated with the uncertainty of data points in future observations. The scatter plots and 

band of envelopes from the Bayesian analysis measure the uncertainty of the fitted envelope 

(and of the parameters σci and mi) based on the observed data. Future observations will be 

used to update the results of the analysis, but are not required to give a meaning to the 

present results. Finally, the strength of the Bayesian method to evaluate variations to the 
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regression analysis was demonstrated by two analyses incorporating new features. The first 

is the addition of the Hoek-Brown parameter, a, to the inference analysis to improve the 

fitting in the triaxial region. The second is the consideration of the uncertainty in the factor 

used to convert BTS data to DTS results, by incorporating this regression analysis into the 

posterior function used in fitting the intact rock strength parameters. 
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Appendix A – Mathematical formulation of posterior distributions 

Tables A1 to A4 summarize the equations used for the definition of the posterior distribution 

for the regression analysis of intact rock strength data with the Bayesian approach. Each 

table corresponds to a particular set of conditions of analysis. The mathematical formulation 

for the cases of relative residuals with a t-distribution and absolute residuals with a normal 

distribution can be easily deduced from the equations presented in Tables A1 and A2. 
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Table A1 Equations used to define the posterior distribution for regression analysis with 

absolute residuals and t-distribution 

Bayesian 
component 

Equations 

Prior 

p(σci) =  
1

(σci upper − σci lower)
 

p(mi) =  
1

(mi upper − mi lower)
 

p(σ) =  
1

(100 stdev(σ1 data) − 0.01 stdev(σ1 data))
 

p(ν) =  
1

29
e−

1
29

(ν−1)
 

p(σci, mi, σ, ν) =  p(σci) p(mi) p(σ) p(ν) 

Likelihood 

If σ3 data > 0: 

σ1 model =  σ3 data +  σci (mi

σ3 data

σci
+ 1)

0.5

 

error =  σ1 data − σ1 model 

If σ3 data < 0: 

σ3 model =  
σci

2
(mi − √mi

2 + 4) 

error =  σ3 data − σ3 model 

p(data|σci, mi, σ, ν) =  ∏
Γ (

ν + 1
2

)

Γ (
ν
2) √πνσ

(1 +
1

ν
(

errorj

σ
)

2

)

−
(ν+1)

2
n

j=1

 

Posterior 
(un-normalized) 

p(σci, mi, σ, ν|data) =  p(data|σci, mi, σ, ν) p(σci, mi, σ, ν) 
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Table A2 Equations used to define the posterior distribution for regression analysis with 

relative residuals and normal distribution 

Bayesian 
component 

Equations 

Prior 

p(σci) =  
1

(σci upper − σci lower)
 

p(mi) =  
1

(mi upper − mi lower)
 

p(σ) =  
1

(100
stdev(σ1 data)
mean(σ1 data)

− 0.01
stdev(σ1 data)
mean(σ1 data)

)
 

p(σci, mi, σ) =  p(σci) p(mi) p(σ) 

 

Likelihood 

If σ3 data > 0: 

σ1 model =  σ3 data + σci (mi

σ3 data

σci

+ 1)
0.5

 

error =  
(σ1 data − σ1 model)

σ1 model

 

If σ3 data < 0: 

σ3 model =  
σci

2
(mi − √mi

2 + 4) 

error =  
(σ3 data − σ3 model)

σ3 model

 

p(data|σci, mi, σ) =  ∏
1

√2σ2π
e

−
1
2

(
errorj

σ
)

2n

j=1

 

Posterior 
(un-normalized) 

p(σci, mi, σ|data) =  p(data|σci, mi, σ) p(σci, mi, σ) 

  



121 

 

Table A3 Equations used to define the posterior distribution for regression analysis with 

relative residuals, t-distribution and Hoek-Brown parameter, a, as an uncertain variable 

Bayesian 
component 

Equations 

Prior 

p(σci) =  
1

(σci upper − σci lower)
 

p(mi) =  
1

(mi upper − mi lower)
 

p(a) =  
1

(a upper − a lower)
 

p(σ) =  
1

(100
stdev(σ1 data)
mean(σ1 data)

− 0.01
stdev(σ1 data)
mean(σ1 data)

)
 

p(ν) =  
1

29
e−

1
29

(ν−1)
 

p(σci, mi, a, σ, ν) =  p(σci) p(mi) p(a) p(σ)p(ν) 

Likelihood 

If a = 0.5: 

σt =  
σci

2
(mi − √mi

2 + 4) 

If a  0.5: 

Find σt from:    0 =  σt + σci (mi
σt

σci
+ 1)

a

 

If σ3 data > 0: 

σ1 model =  σ3 data + σci(mi

σ3 data

σci

+ 1)a 

error =  
(σ1 data − σ1 model)

σ1 model

 

If σ3 data < 0: 

σ3 model =  σt 

error =  
(σ3 data − σ3 model)

σ3 model

 

p(data|σci, mi, a, σ, ν) =  ∏
Γ (

ν + 1
2

)

Γ (
ν
2

) √πνσ
(1 +

1

ν
(

errorj

σ
)

2

)

−
(ν+1)

2
n

j=1

 

Posterior 
(un-normalized) 

p(σci, mi, a, σ, ν|data) =  p(data|σci, mi, a, σ, ν) p(σci , mi, a, σ, ν) 
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Table A4 Equations used to define the posterior distribution for regression analysis with 

relative residuals, t-distribution and including the uncertainty in the correlation between BTS 

and DTS 

Bayesian 
component 

Equations 

Prior 

p(σci) =  
1

(σci upper − σci lower)
 

p(mi) =  
1

(mi upper − mi lower)
 

p(σ) =  
1

(100
stdev(σ1 data)
mean(σ1 data)

− 0.01
stdev(σ1 data)
mean(σ1 data)

)
 

p(ν) =  
1

29
e−

1
29

(ν−1)
 

p(α𝑟𝑎𝑑) =  
1

(α rad upper − α rad lower)
 

SDT =  √stdev(DTSdata)2 + stdev(BTSdata)2 

p(σ𝛼) =  
1

(100 SDT − 0.01SDT)
 

p(σci, mi, σ, ν, αrad, σα) =  p(σci) p(mi) p(σ) p(ν) p(αrad) p(σα) 
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Table A4 (Continued) 

Bayesian 
component 

Equations 

Likelihood 

Hoek-Brown criterion: 

If σ3 data > 0: 

σ1 model =  σ3 data + σci (mi

σ3 data

σci

+ 1)
0.5

 

error =  
(σ1 data − σ1 model)

σ1 model

 

If σ3 data < 0: 

σ3 model =  
σ𝑐𝑖

2
(𝑚𝑖 − √𝑚𝑖

2 + 4) 

error =  
(α σ3 data − σ3 model)

σ3 model

 

 

DTS versus BTS correlation: 

α =  Tan(αrad) 

errorDTS_BTS =  Sin(αrad)(
DTSdata

α
− BTSdata) 

p(data|σci, mi, σ, ν, α𝑟𝑎𝑑 , σα) =  

∏
Γ (

ν + 1
2

)

Γ (
ν
2

) √πνσ
(1 +

1

ν
(

errorj

σ
)

2

)

−
(ν+1)

2

 

n

j=1

∏
1

√2σ𝛼
2π

e
−

1
2

(
errorDTS_BTS j

σ𝛼
)

2m

k=1

 

Posterior 
(un-normalized) 

p(σci, mi, σ, ν, αrad, σα|data) =  p(data|σci, mi, σ, ν, αrad, σα) p(σci, mi, σ, ν, αrad, σα) 

 

Notations 

σci, mi, a Parameters of the Hoek-Brown intact rock strength criterion 

σ  Standard deviation of normal distribution or scale parameter of t-distribution 

used to evaluate errors in the Hoek-Brown intact rock strength fitting 

ν  Normality parameter of t-distribution used to evaluate errors in the Hoek-

Brown intact rock strength fitting 

σ1, σ3  Major and minor principal stresses 

σt  Tensile strength in the Hoek-Brown strength envelope 
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DTS, BTS Direct tensile strength and Brazilian tensile strength 

n  Number of data points for Hoek-Brown intact rock strength fitting 

m  Number of data points for DTS versus BTS fitting 

αrad  Slope of DTS versus BTS fitted line in radians 

α  Slope of DTS versus BTS fitted line 

σ Standard deviation of normal distribution used to evaluate errors in the DTS 

versus BTS fitting 

Γ()  Gamma function 
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Abstract 

Probabilistic methods are traditionally used to account for the uncertainty in engineering 

design. However, conventional probabilistic methods have limitations when representing 

uncertainty. There is an alternative approach, based on Bayesian statistical methods, that 

has advantages in treating uncertainty in the geotechnical model for slope design. 

Probabilistic data analysis using the Bayesian approach involves numerical procedures for 

estimating parameters from posterior probability distributions. These distributions are the 

result of combining prior information with available data through Bayes equation. The 

posterior distributions are often complex, multidimensional functions whose analysis 

requires the use of Markov Chain Monte Carlo (MCMC) methods. These methods are used 

to draw representative samples of the parameters investigated, providing information on 

their best estimate values, variability and correlations. The paper describes a methodology 

in which typical data from laboratory tests and site investigations are used to define 

representative distributions of the geotechnical parameters and the use of these results for 

the evaluation of the reliability of a slope. The first-order reliability method (FORM) is a 

common technique used for reliability analyses of geotechnical structures such as slopes 

and tunnels. The FORM typically considers predefined probability distributions to represent 

the variability of uncertain parameters and a limit state surface (LSS) defining the condition 

of failure of the structure. The LSS is derived from a performance function that may be 

available in explicit form, or alternatively, could be approximated with a response surface 

(RS) for complex models. The paper presents an example of a slope evaluated with an RS 

based on limit equilibrium analyses with the slope model. The example is used to highlight 

mailto:luis.contreras@uq.net.au
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the advantages of using the posterior distributions from the Bayesian analysis for the 

assessment of the slope reliability using the FORM approach. 

Keywords: Bayesian analysis; Hoek-Brown criterion; response surface method, slope 

reliability 

5.1 Introduction 

It is generally accepted that probabilistic methods are the best way to represent uncertainty 

in engineering design. However, there are two approaches of analysis known as frequentist 

and Bayesian, which are based on different interpretations of probability. The frequentist 

approach relies on repeated sampling to produce point estimates and error measures of 

parameters. In comparison, the Bayesian approach uses prior knowledge and data to define 

posterior probability distributions to represent the uncertainty of parameters. Contreras et al 

(2018) discuss the contrast between the two approaches in terms of the inference of 

parameters. They argue that Bayesian methods provide a better framework for the 

quantification of uncertainty in slope design. The Bayesian analysis of data involves 

numerical procedures for estimating parameters from posterior probability distributions. The 

posterior distributions are often complex, multidimensional functions whose analysis 

requires the use of a class of methods called Markov Chain Monte Carlo (MCMC). These 

methods are used to draw representative samples of the parameters investigated, providing 

information on their best estimate values, variability and correlations.  

The paper presents an example of the characterisation of rock mass strength using a 

Bayesian approach to data analysis and the use of these results for the evaluation of the 

reliability of a slope. The methodology uses the results of laboratory and site investigations 

for the inference of the rock strength parameters normally used in slope design. The results 

of the analysis consist of representative samples of the more probable values of the 

parameters, informing their variability and correlation characteristics. The samples define to 

the so-called posterior probability distributions within the Bayesian framework and 

correspond to a balanced result between the data used and the prior information available 

on the parameters. Contreras et al (2018) describe in detail the methodology with reference 

to the inference of the intact rock strength parameters. Other examples of Bayesian analysis 
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in rock mechanics are given by Miranda et al. (2009), Zhang et al. (2010), Feng and Jimenez 

(2015) and, Wang and Aladejare (2015). 

The emphasis of the present paper is on the use of the results of a Bayesian analysis of 

rock strength parameters for the evaluation of the reliability of slopes. There are two main 

approaches for the evaluation of the reliability of slopes. One is based on the variability of 

the factor of safety (FS) and the second is based on the variability of the uncertain 

parameters in the slope model.  The second approach, known as first order reliability method 

(FORM), is a technique suitable for the use with the posterior distributions of parameters 

from a Bayesian analysis. The FORM typically considers predefined probability distributions 

to represent the variability of uncertain parameters (Low and Tang, 1997, 2004) and a limit 

state surface (LSS) defining the condition of failure of the structure. The LSS is derived from 

a performance function that may be available in explicit form, or alternatively, could be 

approximated with a response surface (RS) for complex models. The slope example 

presented in this paper considers an RS constructed with a slope model based on limit 

equilibrium analyses. The RS is used for direct calculation of the slope reliability from the 

variability of FS and for the definition of the LSS with the FORM. Different conditions of 

analysis are arranged in six procedures used to discuss different aspects of the analysis, 

highlighting their advantages and limitations. The procedures are the result of combining the 

two main approaches of reliability analysis with various options of representing the input 

parameters, i.e. beta distributions fitted to the posteriors, or Monte Carlo (MC) samples from 

the fitted distributions or the posterior samples from the Bayesian analysis. 

5.2 Bayesian inference of geotechnical parameters 

The characterisation of rock mass strength for slope design is commonly based on the Hoek-

Brown (H-B) strength criterion, whose definition requires four parameters as illustrated in 

the diagram of Figure 5.1. The process includes the assessment of the intact rock strength, 

the rock mass quality and the disturbance factor. Sometimes it is convenient to use 

equivalent Mohr-Coulomb (M-C) parameters for particular stress levels.  The estimation of 

parameters is based on data collected with site or laboratory investigations, which is fitted 

to models to obtain point estimate values and sometimes variability characteristics of these 

parameters. However, with the conventional approach, most of the information on parameter 

uncertainty is lost or crudely represented. The Bayesian approach provides an adequate 
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method to capture the uncertainty of parameters, balancing data and knowledge in all the 

component sub-models. 

 

Figure 5.1 Characterisation of rock mass strength for slope design 

There are several recent examples of the application of Bayesian analysis in rock mechanics 

and slope problems. Miranda et al. (2009) use a Bayesian approach to update the 

deformability modulus in a large underground structure considering two cases of initial 

knowledge. Zhang et al. (2010) consider the back analysis of slope failures based on a 

Bayesian model solved with MCMC analysis. Feng and Jimenez (2015) describe the 

estimation of the rock mass deformation modulus based on model comparison and Bayesian 

updating. Wang and Aladejare (2015) study the characterisation of the UCS from site-

specific data on Point Load Index using a Bayesian method to compare alternative models 

and select the most appropriate. 

5.2.1 Concept of Bayesian inference of parameters 

The concept of Bayesian inference of parameters is illustrated in the diagram of Figure 5.2 

(Contreras et al, 2018).  There are three elements required in this process. First, there is a 

model in the form of a mathematical function that represents the performance of a particular 

system of interest.  The model function includes predictor variables, x, and the parameters 

for inference, θ. Secondly, there is data that normally corresponds to measurements of the 

actual performance of the system to compare with the model predictions. Thirdly, there is 

prior knowledge of the parameters; this means any type of information, for example, valid 

ranges of credible values. These three elements are used to construct a probabilistic 
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function that contains the uncertain parameters for inference θ1 to θk in the vector θ. This 

function effectively corresponds to a posterior probability distribution using Bayes’ formula 

and gives probability values, p, for particular sets of uncertain parameters, θ. The objective 

of the analysis is to define the sets of θ that produce the largest p values, in other words, to 

define the more probable parameter values. 

 

Figure 5.2 Conceptual representation of the Bayesian process for inference of parameters 

(Contreras et al, 2018) 

The posterior distribution is a multidimensional and normally complicated function. The more 

efficient way of evaluating this function is by obtaining representative samples of the 

parameter values using the MCMC technique. The typical result of an MCMC analysis is a 

graph showing scatter plots of sampled values and histograms of the θi parameters.  

Contreras et al (2018) include the details on the formulation of the model for Bayesian 

inference of parameters, with reference to the case of intact rock strength characterisation. 

The Bayesian analyses presented in the present paper were implemented in the Python 

programming language, using the MCMC algorithm known as the affine-invariant ensemble 

sampler developed by Foreman-Mackey et al. (2013). 

5.2.2 Intact rock strength parameters σci and mi 

The intact rock strength is characterised with the generalised Hoek-Brown (H-B) strength 

criterion (Hoek and Brown, 1997) defined by the following equation: 

 𝜎1 =  𝜎3 + 𝜎𝑐𝑖 (𝑚𝑖

𝜎3

𝜎𝑐𝑖
+ 1)

𝑎

 (5.1) 
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where σci is the uniaxial compressive strength of intact rock, mi is a constant of the intact 

rock material, σ1 and σ3 are the major and minor principal stresses, respectively, and the 

index a takes a value of 0.5 for the rocks being considered here.  Using this criterion, the 

intact tensile strength of the intact rock, σt, is given by: 

 𝜎𝑡 =  
𝜎𝑐𝑖

2
(𝑚𝑖 − √𝑚𝑖

2 + 4) (5.2) 

Eq. (5.1) and Eq. (5.2) correspond to the model function for the Bayesian analysis, with σci 

and mi the parameters for inference. The data corresponds to the results of triaxial (TCS) 

and uniaxial (UCS) compression strength tests, and estimates of direct tensile strength 

(DTS) made from Brazilian tensile strength (BTS) tests results. The prior information is 

provided with uniform distributions defining plausible ranges of variation of the parameters 

investigated, without constraining the estimation within those ranges. The ranges used for 

the example in this paper are 10 MPa to 500 MPa for σci and 1 to 50 for mi.  

The posterior probability function uses Bayes’ equation to combine the prior probability of 

parameters with the likelihood of data. The likelihood calculation uses the model function for 

the evaluation of errors. The differences between the predictions with the model function 

and actual data values define errors, which are evaluated with Student’s t-distributions. In 

this way, small errors result in large probability values and vice versa. The t-distribution is 

similar to the normal distribution but has an additional parameter that controls the shape of 

the tails allowing a better handling of outliers. The posterior function takes a set of 

parameters as input and yields a probability value. 

The methodology is illustrated using a typical intact rock strength data set of 31 points (8 

UCS, 8 DTS and 15 TCS), that was generated using random numbers between pre-defined 

limits. The data set is assumed to correspond to an igneous rock. Figure 5.3 shows the data 

points and describes the way in which errors are evaluated with t-distributions in the 

Bayesian analysis. The estimation of DTS is normally based on indirect measurements with 

BTS tests. Perras and Diederichs (2014) found that the correlation between DTS and BTS 

is rock type dependent, and suggested correlation factors of α = DTS/BTS of 0.9 for 

metamorphic rocks, 0.8 for igneous rocks and 0.7 for sedimentary rocks.  
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Figure 5.3 Measurement of errors in the tensile and compressive strength regions with a t-distribution 

to handle outliers (Contreras et al, 2018) 

For the case of igneous rocks, α is based on a linear regression analysis of 40 pairs of BTS 

and DTS test results mainly on granite samples, as shown in Figure 5.4. The uncertainty of 

this correlation factor is not transferred to the fitting analysis of the strength envelope when 

the DTS values are calculated using a fixed value. The Bayesian model allows for the 

incorporation of this uncertainty, by using the data set of BTS versus DTS to define α within 

the posterior function. Therefore, during the sampling process, each trial value of α is used 

within the model to convert BTS data into DTS values required for the fitting analysis of the 

H-B envelope. 

The example of Bayesian inference of intact rock strength parameters presented in this 

paper uses two data sets, one consisting of 31 σ1 versus σ3 values from BTS, UCS and TCS 

test results (Figure 5.3) and the second the 40 BTS versus DTS test results for igneous 

rocks (Figure 5.4). The analysis considers t-distributions to evaluate relative errors in the 

strength envelope and normal distributions to evaluate absolute errors in the BTS-DTS 

correlation. Contreras et al (2018) give the details of this analysis. 
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Figure 5.4 Correlation between DTS and BTS for igneous rocks (data from Perras and Diederichs, 

2014). Normal distributions orthogonal to the fitted line are used to evaluate the errors with 

components in DTS and BTS. The mean fit corresponds to α = 0.85 with a 95%HDI = ±0.07, but this 

variability is linked to that of mi as indicated in the scatter plot of Figure 5.5 

Figure 5.5 shows the corner plot with the results of the intact rock strength analysis including 

the uncertainty in the correlation between BTS and DTS. In general, the scatter plots show 

a low correlation between the inferred parameters. In terms of the variability of α, the 

analysis considers the possibility of errors in both DTS and BTS. Accordingly, errors are 

evaluated with the normal distributions in a direction orthogonal to the fitted lines 

(Figure 5.4). The plot in Figure 5.4 shows the band of fitted envelopes corresponding to the 

95% highest density interval (HDI) of α values sampled. The uncertainty of α is transferred 

within the Bayesian model and added to the uncertainty of the fitted H-B strength envelope.  
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Figure 5.5 Corner plot from the analysis of the intact rock strength data including the uncertainty in 

the correlation between DTS and BTS. The plot shows the scatter plots and histograms of the rock 

mechanics parameters 

Figure 5.6 shows more details of the histograms of sampled values of σci and mi from the 

posterior probability function. The histograms represent the posterior distributions of the 

inferred parameters.  The 95% HDIs define the ranges of credible values and the mean 

values (σci = 60.5 MPa, mi = 11.8) represent the more likely estimates. Figure 5.7 shows the 

scatter plot of the 50,000 sampled values of σci and mi with the 68 and 95 percentile 

contours. The sampled values produce a spread of H-B envelopes around the mean fit as 

indicated in the graph of σ1 versus σ3 to the right of Figure 5.7. The plot includes the data 

points and the band of envelopes reflecting the uncertainty of parameters corresponds to 

the 95% HDI. 
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Figure 5.6 Posterior distributions of σci and mi with mean and 95% HDIs indicated 

 

 

Figure 5.7 Scatter plot of sampled values of mi versus σci with 68 and 95 percentile contours (left) 

and mean fitted envelope with the band of envelopes corresponding to the 95 percentile of sampled 

parameter values 

5.2.3 Geological strength index GSI 

The GSI index carries the information on rock mass quality within the H-B failure criterion 

for rock masses. The index was originally linked to the 1976 version of Bieniawski’s rock 

mass rating (RMR) index. However, Hoek and Brown (1997) redefined the index as an 

independent parameter with the chart shown in Figure 5.8. The chart includes qualitative 

descriptions of rock mass structure and joint conditions in the vertical and horizontal axis, 

respectively. This definition was intended to solve some drawbacks of deriving the GSI value 
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from Bieniawski’s RMR. First, the RMR included the intact rock strength and water 

conditions aspects, which are treated separately in the H-B criterion.  Secondly, the ratings 

of the RMR components were continuously updated demanding adjustments to the GSI 

definition.  For example, if RMR was based on the 1989 ratings, GSI was calculated as 

RMR89 minus 5 points. 

The chart in Figure 5.8 is used to estimate credible ranges of GSI with a typical precision of 

± 5 points; however, one drawback of this method is the strong subjective component in the 

estimation, which introduces an additional uncertainty due to the human factor.  Several 

authors have proposed alternative charts for the quantitative estimation of GSI based on 

measured factors as a way of reducing the subjectivity of the estimation.  

 

Figure 5.8 Charts with the original definition of GSI (Hoek and Brown, 1997, based on Hoek, 1994) 
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Sonmez and Ulusay (1999) propose a chart based on ad hoc structure and joint condition 

ratings for the vertical and horizontal scales, respectively. Cai et al. (2004) use the block 

volume (Vb) in the vertical axis to define structure and the joint condition factor (JC) from 

Palmström (1996) in the horizontal axis.  Russo (2009) proposes an alternative chart based 

on Palmström (1996) definitions of the block volume and joint condition factor for the vertical 

and horizontal axes, respectively. The most recent proposal by Hoek et al (2013) uses a 

chart based on RQD/2 as a measure of structure and the joint condition rating of the 1989 

version of Bieniawski’s RMR (Bieniawski, 1989) to assess surface conditions. However, 

none of the quantitative charts has gained general acceptance because they do not appear 

to fit the historical records in all situations. This is probably due to the fact that besides GSI, 

the H-B system includes the disturbance factor D, which is a second parameter with a strong 

subjective component. Each mine operation handles these parameters in different ways and 

uses them together to calibrate slope performance. 

The Bayesian inference of GSI requires a model whose results can be compared with actual 

measurements through a probabilistic function. A comparative analysis of all the GSI 

calculation methods carried out by Duran (2016) indicates that the method of Cai et al (2014) 

appears to provide the best results. Cai et al’s (2004) GSI chart can be interpreted as a 

surface defined by a two-dimensional function as follows (Cai and Kaiser, 2006): 

 𝐺𝑆𝐼 =  
26.5 + 8.79𝑙𝑛𝐽𝐶 + 0.9𝑙𝑛𝑉𝑏

1 + 0.0151𝑙𝑛𝐽𝐶 − 0.0253𝑙𝑛𝑉𝑏
 (5.3) 

Figure 5.9 shows the chart and its geometrical interpretation. In this case, the variables are 

Vb and JC, and the parameters subject to estimation are the five coefficients ρ0 to ρ4. These 

parameters take the values 26.5, 8.79, 0.9, 0.0151 and -0.0253, respectively, in Cai et al’s 

(2004) proposed chart model. 

In order to illustrate the Bayesian estimation of GSI parameters, a synthetic data set of 50 

measurements of GSI covering the whole chart area was randomly generated as shown in 

the plot to the right of Figure 5.9. A random Gaussian variation centred at Cai et al’s (2004) 

chart plane, with a standard deviation of 5, was incorporated to the data points as illustrated 

in the graph to the left of Figure 5.10. The data set represents the result of a hypothetical 

face mapping exercise in which Vb and JC estimates are collected independently from GSI 

determinations with the original chart in Figure 5.8. The data set is used for calibration of 
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the chart by means of obtaining credible estimates of the coefficients ρ0 to ρ4. In this 

example, the estimated values from the 50 calibration points should be close to the original 

Cai et al (2004) values used to generate the data. The data for calibration of the chart may 

also include information from various project sites where measurements of the input factors 

are available together with GSI determinations from the performance of the rock mass. 

 

Figure 5.9 Proposed chart (Cai et al, 2004) for the numerical estimation of GSI from Vb and JC 

indexes (left) and interpretation of the chart as a two dimensional model with variables Vb and JC and 

parameters ρ0 to ρ4 subject to estimation from data (right). The dots correspond to a synthetic data 

set of 50 measurements 

The Bayesian model is based on a comparison of the GSI values calculated with the chart 

with those representing actual measurements.  The particular GSI model used for this 

exercise considers priors of ρ0 to ρ4 represented by uniform distributions with ranges around 

the Cai et al’s (2004) chart values. The differences between model and actual values are 

represented with a t-distribution with scale σ and normality ν used as additional estimation 

parameters. A side view of the fitted chart is shown at the right of Figure 5.10 with the 

calibration points used in the analysis. The Bayesian analysis was implemented in the 

Python programming language and the results are summarised in the scatter plots and 

histograms of ρ0 to ρ4 shown in Figure 5.11. These results suggest that for this particular 
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data set, there are many possible combinations of the coefficients ρ0 to ρ4, including that 

from Cai et al’s (2004) chart, that would be equally plausible. 

 

Figure 5.10 Random Gaussian spread with a standard deviation of 5 centred at Cai et al’s (2004) 

chart model used to generate the calibration data set shown in Figure 5.9 (left) and calibration data 

set with the fitted chart (right) 

A second synthetic data set of 100 points clustered around a GSI of 40 was generated to 

represent the data collected with core logging for the slope design. In this case, only Vb and 

JC measurements are available for the estimation of GSI for design with the chart. The graph 

to the left of Figure 5.12 shows the data points on the mean fitted chart. The chart is 

constructed with the mean coefficients from the posterior distributions in Figure 5.11. Each 

set of ρi coefficients represents a plausible chart, which is used to generate a mean value 

of GSI from the data points.  

The variability of the chart is illustrated in the graph to the left of Figure 5.12 with the outlines 

of a selection of those plausible charts. The histogram of the mean values of GSI calculated 

in this manner is shown at the right of Figure 5.12, with the mean and the 95% HDI indicated. 

The distribution of GSI mean values in Figure 5.12 represents the uncertainty of this parameter 

and can be used for the analysis of the reliability of the slope. 
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Figure 5.11 Result of the Bayesian analysis of calibration data. The corner plot shows the scatter 

plots and histograms of the coefficients ρ0 to ρ4 hat best represent the calibration data with Cai et 

al’s model function. The marked central points correspond to the original Cai et al’s (2004) chart 
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Figure 5.12 Synthetic data set of 50 measurements of Vb and JC in a local region of GSI 40, displayed 

on the chart fitted to the calibration observations (left). Histogram of mean values of GSI from the 50 

data points (right). Each value in the histogram corresponds to a set of chart coefficients from the 

MCMC analysis as indicated in Figure 5.11. The outlines of a selection of plausible charts causing 

the variability of the mean values of GSI are displayed on the isometric view of the chart on the left 

5.2.4 Disturbance factor D 

The rock mass disturbance factor (D) is based on the assessment of the damage from 

blasting and stress relief close to the surface of the excavation. At deeper levels, the D factor 

is associated with the disturbance from the stress relief caused by the excavation of the 

slopes. The D factor typically takes values from 0.7 to 1.0 in slopes, although values outside 

this range are possible. Larger values represent more disturbance and are assigned to 

zones closer to the surface of the excavation. The D factor has a great effect on the 

estimated strength of the rock mass.  Therefore, different combinations of GSI and D values 

could produce the same estimated strength. The subjective component in the estimation of 

GSI and D complicates the validation of GSI estimates using measurements of slope 

performance. The Bayesian analysis can be used to obtain parameter estimates with the 

right balance between data and adjudications. 

5.2.5 Equivalent Mohr-Coulomb parameters c and  

The characterisation of the rock mass strength with the H-B model requires four parameters 

(σci, mi, GSI, and D). Sometimes it is convenient to estimate equivalent M-C parameters 

36           38           40           42           44
GSI mean

Vb (cm3)
JC

10

1

0.1

GSI

Data for slope design 
on fitted chart



144 

 

represented by the cohesion, c and friction angle, . However, the approximation of the non-

linear H-B model with the linear M-C criterion requires the definition of the level of confining 

stresses where the equivalence is calculated. The calculation of equivalent M-C parameters 

is carried out in this paper because there are some advantages of using a two-parameter 

model in terms of visualising some aspects of the reliability and RS analysis discussed in 

Sections 5.3 and 5.4.  The expressions given by Hoek et al (2002) were used to calculate 

the equivalent c and  values from the H-B parameters defined with the Bayesian analysis. 

The scatter plot and the posterior distributions of the equivalent M-C parameters are shown 

in Figure 5.13.  

 

Figure 5.13 Scatter plot of equivalent c and  and the respective posterior distributions with mean 

and 95% HDIs indicated 

The H-B parameters are in general uncorrelated or with low correlation coefficients. 

However, the calculated M-C parameters have a strong positive correlation. This result 

sometimes surprises geotechnical engineers with soil mechanics experience, because it is 

common to find a negative correlation between c and  in soils. However, the result for a 

rock mass is consistent with the situation in soil mechanics when the M-C equivalence is 

calculated for different zones of increased confining stresses as illustrated in Figure 5.14.  
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Figure 5.14 Correlation characteristics of equivalent M-C parameters for a slope in a rock mass 

modelled with H-B parameters. (a) Zones of similar confining stresses within the slope. (b) H-B 

strength envelope and equivalent M-C envelopes for the three zones of the slope. (c) Variability of c 

and  for the three equivalent M-C envelopes. (d) Interpretation of the correlation characteristics 

within each zone and for the overall rock mass 

The increase of the average confining stress with the depth from the slope face 

(Figure 5.14a), results in larger c and smaller  values to match the increasingly flatter H-B 

strength envelope (Figure 5.14b). The variability of the H-B parameters causes a positive 

correlation between c and  values. However, when the results from all the slope zones are 

considered, it is possible to observe a negative correlation similar to that seen in soils 

(Figure 5.14c and Figure 5.14d). 

5.2.6 The Bayesian approach in the context of the geotechnical model for slope 

design 

The ability of the Bayesian approach to combine information from various sources and to 

provide a good measure of the uncertainty of parameters and models can be used to 

improve the methods used to define geotechnical models for slope design. Wang et al. 

(2015) provide a general perspective on the use of Bayesian methods to represent 

uncertainty during the site characterisation process. Figure 5.15 shows a diagram from 

Straub and Papaioannou (2015) that illustrates the way in which Bayesian methods can be 
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incorporated into the typical geotechnical investigation process to update the parameters. 

The approach uses information from site and laboratory investigations as well as the 

measurements of performance of the built structures.  The methods described by Straub 

and Papaioannou are presented in the context of soil mechanics problems such as 

foundations and retaining walls, but they can equally be applied to the case of mine slopes. 

The approach outlined in Figure 5.15 can be adapted to the case of the geotechnical model 

for slope design, where data from laboratory tests and site investigations can be used in 

conjunction with slope performance observations to update the geotechnical parameters. 

The process could provide the best possible estimates consistent with the information 

available at any time. This approach is well suited to the continuous process of design, 

implementation, measuring of performance and feedback followed during the development 

of the mine. 

 

Figure 5.15 The Bayesian updating process in the context of geotechnical models (Straub and 

Papaioannou, 2015) 

The methods described in the present paper deal with the classical Bayesian updating and 

the use of this information for the assessment of the reliability of the slope. 

5.3 Analysis of reliability of a slope 

The analysis of the reliability of a slope is one of the possible applications of the results of 

the Bayesian analysis for inference of the geotechnical parameters for slope design. In this 

context, reliability can be defined as the probability of successful performance of the slope 

and corresponds to the complement of the probability of failure (PF). In geotechnical 
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practice, it is common to define the reliability index (β) in terms of the variability 

characteristics of the FS (Baecher and Christian, 2003) using the following equation: 

 𝛽 =  
𝐹𝑆𝑚𝑒𝑎𝑛 − 1

𝐹𝑆𝑠𝑡𝑑𝑒𝑣
 (5.4) 

where FS mean and FS stdev are the mean and standard deviation of the FS. An alternative 

definition of β corresponds to the structural engineering measure proposed by Hasofer and 

Lind (1974), which is based on the variability characteristics of the uncertain variables rather 

than the FS. In this case, β can be interpreted as the minimum distance in a dimensionless 

space between the peak of the multivariate distribution of the uncertain parameters and a 

function defining the failure condition. The method of analysis based on this definition of 

reliability is commonly known as the first order reliability method or FORM.  

5.3.1 Reliability analysis with FORM 

The FORM approach is explained in detail by Baecher and Christian (2003), and Duncan 

and Sleep (2015). Low and Tang (1997) developed an efficient procedure to apply the 

FORM based on reinterpreting β as an expanding ellipsoid centred in the peak multivariate 

distribution of input parameters and touching the limit state surface representing failure. The 

procedure uses tools normally available in spreadsheets, it is applicable to correlated or 

uncorrelated variables, and it is able to handle other distributions besides the traditional 

normal and lognormal.  The procedure is described in detail with application examples in 

rock mechanics problems by Low and Tang (2007), Low (2008) and Goh and Zhang (2012). 

The mathematical expression to calculate β according to the interpretation of Low and Tang 

(1997) is 

 𝛽 =  𝑚𝑖𝑛𝒙∈𝑭√[
𝒙𝒊 − 𝝁𝒊

𝝈𝒊
]

𝑇

 𝑹−1  [
𝒙𝒊 − 𝝁𝒊

𝝈𝒊
] (5.5) 

where xi are the uncertain variables, μi and σi are their respective means and standard 

deviations, and R is the correlation matrix. The set of xi values that minimizes Eq. (5.5) and 

satisfies the condition of failure (x ∈ 𝑭), correspond to the design point. This interpretation is 

illustrated in Figure 5.16 for the case of two variables represented by the cohesion (c) and 
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friction angle () with a negative correlation. The figure shows an ellipsoid centred at the 

mean values of c and  that touches the limit state surface (LSS) at the design point. 

 

Figure 5.16 Interpretation of the reliability index β for a two-variable case corresponding to c and  

negatively correlated (Low, 2014) 

Eq. (5.5) applies to the situation of variables with normal distributions. For other types of 

distributions, the methodology to calculate β requires a modification where the non-normal 

distributions are replaced by equivalent normal distributions centred at the equivalent normal 

mean values. The modified equation is 

 𝛽 =  𝑚𝑖𝑛𝒙∈𝑭√[
𝒙𝒊 − 𝝁𝒊

𝑁

𝝈𝒊
𝑁

]

𝑇

 𝑹−1  [
𝒙𝒊 − 𝝁𝒊

𝑁

𝝈𝒊
𝑁

] (5.6) 

where μi
N and σi

N are the mean and standard deviation of the equivalent normal 

distributions. Low and Tang (2007), present this equation in the form 

 𝛽 =  𝑚𝑖𝑛𝒙∈𝑭√[𝒏]𝑇 𝑹−1 [𝒏] (5.7) 

where [n] is the vector with the equivalent standard normal values ni, which can be 

calculated in the following manner 
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 𝑛𝑖 =  Φ−1[𝐹(𝒙𝒊)] (5.8) 

where Φ-1[·] is the inverse of the standard normal cumulative distribution (CDF) and F(xi) is 

the original non-normal CDF evaluated at xi. The square root term in Eq. (5.7) can be 

interpreted as the distance in units of directional standard deviations from the mean to the 

point evaluated. The procedure proposed by Low and Tang (2004, 2007) is implemented in 

an Excel spreadsheet and includes a menu of probability distributions that can be converted 

to equivalent normal distributions. The technique offers three alternative ways of minimizing 

β subject to the constraint of the LSS, using the solver built-in in Excel. 

5.3.2 Use of posterior distributions with the FORM 

The methodology proposed by Low and Tang (2004, 2007) requires the probability 

distributions of the geotechnical parameters as inputs.  It is customary to fit probability 

distributions to observed data hoping that they represent adequately the variability of the 

geotechnical parameters.  However, the posterior distributions of parameters resulting from 

a Bayesian analysis of data provide a better representation of their uncertainty. The posterior 

distributions can be used for the reliability analysis with the FORM, using the same concepts 

described by Low and Tang (2004, 2007), with some added benefits derived from working 

with a populated parameter sample rather than with a theoretical probability distribution.  For 

example, the calculation of the performance function (i.e. FS) and the square root term in 

Eq. (5.7) can be done for every point of the sample.  In this way, the constrained minimization 

reduces to screening the points where the performance function indicates failure (FS = 1) 

and the selection of the point with the minimum value of the square root term in Eq. (5.7). 

The use of a posterior distribution for the reliability analysis with the FORM described by 

Low and Tang (2004, 2007) is illustrated in Figure 5.17. The plot in Figure 5.17 shows a 

typical scatter plot of c and  values resulting from a Bayesian analysis of data from a soil 

deposit indicating a negative correlation between these parameters.  The sample includes 

50,000 values of c and  defining the posterior probability distribution, with mean values of 

50 kPa and 30°, respectively. The points provide sufficient information to define the CDF 

values of any point in the sample, as well as the correlation matrix (R) of the parameters. 

Therefore, Eq. (5.7) and Eq. (5.8) can be used to calculate, at every point of the sample, the 

distance term whose minimum value represents the β index.  
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Figure 5.17 Calculation of the reliability index β for the infinite slope example with the FORM as 

described by Low and Tang (2004, 2007), using the posterior distributions of c and  with a negative 

correlation 

To illustrate the method, the sampled c and  values plotted in Figure 5.17 are used with an 

example of the reliability calculation of an infinite slope. The slope has a 30° angle (ψ), with 

soil depth (ds) of 10 m, water level 2 m below the surface (dw = 8 m), saturated water content 

(w) of 30%, dry unit weight of soil (γd) of 15 kN/m3, and unit weight of water (γw) of 10 kN/m3. 

The performance function of the slope corresponds to the expression to calculate the FS as 

follows: 

 𝐹𝑆 =  
(𝛾𝑑𝑑𝑠 + (1 − 𝑤)𝛾𝑤𝑑𝑤)𝑐𝑜𝑠𝜓 𝑡𝑎𝑛𝜑 + 𝑐/𝑐𝑜𝑠𝜓

(𝛾𝑑𝑑𝑠 + (1 − 𝑤)𝛾𝑤𝑑𝑤)𝑠𝑖𝑛𝜓 + 𝛾𝑤𝑑𝑤𝑠𝑖𝑛𝜓
 (5.9) 

The FS is calculated with Eq. (5.9) for every point in the sample. The screened points from 

the posterior sample where FS = 1.0 are shown in the plot as blue dots and they define the 

LSS. The red point (c = 40.9 kPa,  = 26.1°) corresponds to the minimum distance term and 

defines the design point with β = 1.59. 
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5.4 Performance function of the slope with response surface 

Typically, the performance function of the slope is not available in an explicit form as in the 

example of the infinite slope. The slope models used for mine design are usually complex, 

assembled in matrix form for the solution with numerical methods and therefore cannot be 

used directly for the reliability analysis with the FORM. However, one option is to create a 

surrogate model expressed in polynomial form by fitting mathematical models to 

observations consisting of results of planned runs with the numerical models. These runs 

are arranged to cover the expected ranges of variation of the uncertain input parameters.  

This methodology is often referred to as the response surface methodology. The 

development of the methodology was originally motivated by the need to model responses 

from physical experiments (Box and Draper, 2007) to extract the maximum knowledge from 

the experimental process. The methodology was later extended to the evaluation of 

numerical models. 

A wide variety of methods may be used to construct surrogate models from a limited number 

of observations such as polynomial regression, radial basis function models, kriging and 

support vector regression (Forrester et al, 2008). They vary in accuracy, efficiency and 

simplicity and their performance is determined by the characteristics of the problem such as 

non-linearity, number of dimensions, number of observations and domain scale (Jin et al, 

2000). However, the polynomial regression method is the most commonly used in 

geotechnical engineering to approximate the slope performance function. Two common 

types of polynomial methods are the quadratic polynomial without cross terms and the 

product of the quadratic functions defined for each variable. 

5.4.1 Quadratic polynomial without cross terms  

The RS based on a polynomial regression usually considers a second-order polynomial 

function as follows: 

 𝑦 = 𝑏0 + ∑ 𝑏𝑖𝑥𝑖

𝑛

𝑖=1

+ ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

+ ∑ 𝑏𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

 (5.10) 

where y is the response of interest, x is a vector representing the n uncertain variables and 

bi, bij and bii correspond to the unknown coefficients that need to be determined to fit the 
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function to the observation values. The number of coefficients is (n+1)(n+2)/2, which defines 

the minimum number of observations required to determine the coefficients.  A common 

practice used to reduce the number of observations required to fit the polynomic function is 

to drop the cross terms in Eq. (5.10), which reduces the number of coefficients to 2n+1. In 

this case, the observations correspond to model results obtained by changing one variable 

at a time at two level positions located on both sides of the mean value. The central point 

corresponding to the mean of all variables is also included in the analysis. This arrangement 

of observation points is known as a central design.  It is particularly well-suited for situations 

where the variables are uncorrelated because no observations resulting from the interaction 

of variables are included in the process.  

Other common arrangements of observation points used to create surrogate models with 

the RS method are the 2n factorial design, the central composite design and the 3n factorial 

design. As suggested by the name, the 2n factorial design uses the 2n combinations of two 

levels of values per variable. However, the 2n factorial design requires a first order 

polynomial for the solution. The central composite design considers the observation points 

from the central design and the 2n factorial design together. The 3n factorial design considers 

all the combinations of three levels of values per variable.  

The polynomial function in Eq. (5.10) can be expressed in matrix form as follows: 

 𝑌 = 𝑋𝐵 (5.11) 

where Y is the vector of k observation points, X is a matrix of the xi terms taking the values 

of the uncertain variables used to get each observation point in Y, and B is a vector of 

coefficients b. The matrix X has k rows by p columns, where p is the number of terms of the 

polynomial function. The solution of the system requires that k ≥ p and p = (n+1)(n+2)/2 for 

a complete second-order polynomial, or p = 2n+1 if the polynomial excludes the cross terms. 

When k > p the solution of the system is based on a least-squares analysis aimed at 

minimizing the residuals |XB – Y|. The matrix representation of the least squares solution is: 

 𝐵 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (5.12) 

The calculation of the coefficients is normally carried out with the input variables and 

responses normalised to their mean values. A central design arrangement of observation 
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points fitted with a polynomial function without cross terms results in a function that matches 

the observation points because the number of points (k = 2n+1) is equal to the number of 

coefficients (p) of the function.  

5.4.2 Product of quadratic functions 

Steffen et al. (2008) describe an alternative RS procedure for the calculation of the PF in 

mine slope design. The technique uses a central design arrangement of values of FS 

calculated with a slope model. The input variables xi and the FS responses are normalized 

to their mean values, defining the input factors ξ and the response factors δ as follows: 

 𝜉𝑖 =
𝑥𝑖

𝑥𝑖 𝑚𝑒𝑎𝑛
 (5.13) 

 
𝛿𝑖 =

𝐹𝑆𝑖

𝐹𝑆𝑚𝑒𝑎𝑛
 

(5.14) 

The trends of δ versus ξ for each uncertain variable are fitted with second order polynomial 

functions  

 𝛿𝑖 = 𝑎𝑖𝜉𝑖
2 + 𝑏𝑖𝜉𝑖 + 𝑐𝑖 (5.15) 

The group of n polynomial functions of δ versus ξ constitutes the RS and can be used as a 

replacement of the model to estimate FS values for any combination of input variables using: 

 𝐹𝑆 = 𝐹𝑆𝑚𝑒𝑎𝑛 𝛿1(𝜉1) 𝛿2(𝜉2) … . 𝛿𝑛(𝜉𝑛) (5.16) 

Figure 5.18 illustrates the methodology for a situation with four uncertain variables used for 

the calculation of the FS of a slope. The curves represent the response of the FS to 

variations of each of the uncertain variables. The respective quadratic polynomial function 

is indicated at the top of each graph.  The method effectively corresponds to the fitting of a 

polynomial function of order 2n which is the result of incorporating the n quadratic polynomial 

functions given by Eq. (5.15) into Eq. (5.16). The graphs were constructed using the data 

listed in Table 5.1. The intervals of variation of the input parameters defining the ‘+’ and ‘-‘ 

cases correspond to the bounds of the 95% HDI of the posterior probability distributions of 

σci, mi and GSI described in Section 5.2. The factor D is modelled with a triangular 

distribution and in this case, the points of analysis correspond to the maximum and minimum 
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values. The slope stability analyses correspond to the case example described in 

Section 5.5.   

 

Figure 5.18 Illustration of derived influence coefficients δ for RS of FS from data in Table 5.1. 

 

Table 5.1 Input values and FS results for construction of RS. 

 
No. 

 

Uncertain 
variable 

Input values FS 

‘-‘ case mean ‘+’ case ‘-‘ case mean ‘+’ case 

Hoek-Brown strength model 

1 σci (MPa) 54.3 60.5 67.7 1.17 1.21 1.25 

2 mi 9.8 11.8 14.0 1.14 1.21 1.27 

3 GSI 38.0 40.1 42.2 1.15 1.21 1.27 

4 D 0.60 0.80 1.00 1.42 1.21 0.96 

Mohr-Coulomb strength model 

1 c (kPa) 227.6 278.6 330.1 1.11 1.19 1.26 

2  (°) 33.7 38.7 43.1 1.06 1.19 1.31 
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5.4.3 Comparison of RS predictions of FS 

The effectiveness of the two RS methods described in this paper is evaluated with a 

comparative analysis of the errors in the predictions of FS, using the actual FS results from 

the slope model as the reference. The slope stability evaluation consisted of a probabilistic 

analysis of the slope example described in Section 5.5 using the program Slide from 

Rocscience. The MC trials included 100,000 samples drawn from beta distributions fitted to 

the respective posterior distributions described in Section 5.2. Table 5.2 summarises the 

input data used for the stability analysis with the slope model. The FS were also calculated 

with the RSs constructed with the two methods described in this paper, using the same MC 

trial inputs of the slope model analysis. These results were used to calculate the errors in 

the prediction of FS with the RS method.  

Table 5.2 Input data for slope stability analyses with program Slide 

No. Uncertain 

variable 
Distribution Mean Standard 

deviation 

Relative 

minimum 

Relative 

maximum 
CC 

Hoek-Brown strength parameters 

1 σci (MPa) Beta 60.5 3.5 10.5 12.5  

2 mi Beta 11.8 1.1 3.6 4.0  

3 GSI Beta 40.1 1.1 3.7 3.9  

4 D Triangular 0.80  0.2 0.2  

Mohr-Coulomb strength parameters 

1 c (kPa) Beta 278.6 26.6 76.6 81.4 
0.99 

2  (°) Beta 38.7 2.5 8.7 6.3 

Note: CC – Coefficient of correlation 

Figure 5.19 shows a summary of the results of the analysis of errors in the FS prediction 

with the RS for the case of the slope in a rock mass characterised with the four H-B strength 

parameters. Figure 5.20 shows similar results for the case of the slope with M-C parameters. 

RSa corresponds to the polynomial function without cross terms solved with Eq. (5.12). RSb 

corresponds to the product of quadratic functions described by Eq. (5.16) and represented 

in Figure 5.18 for the H-B model case. The RSs are based on observations with a central 

design arrangement, i.e. nine points for the H-B model case and five points for the M-C 

model case. 
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Figure 5.19 Distributions of the relative errors in FS prediction with RSa and RSb at the MC trial 

points of the slope stability analysis. Slope modelled with H-B parameters. (a) Errors for all the MC 

trials, (b) errors for the data points within one standard deviation of the mean and (c) errors for the 

points on the LSS. The table on the lower right corner summarizes the errors mean and standard 

deviation values 

The graph (a) in Figure 5.19 and Figure 5.20 shows the histograms of the errors over the 

whole domain of the input parameters. The distribution of errors with the two RSs is similar, 

with a slight advantage of RSb over RSa for the M-C model case. Both RSs appear to 

underestimate the FS as indicated by the skewness of the distributions towards the positive 

errors and this effect is more marked in the M-C model case. Typically, the central design 

points are defined with variations of ± one standard deviation from the mean. However, a 

wider range was used for the present work, which is based on the 95% HDI bounds from 

the posterior distributions. For this reason, the precision of the prediction in a region closer 

to the centre of the RS was investigated. The graph (b) in Figure 5.19 and Figure 5.20 

corresponds to histograms of errors for the data points within one standard deviation of the 

mean values. In this region, again RSb shows a slight advantage over RSa for the M-C 

model case. The graph (c) in Figure 5.19 and Figure 5.20 represents the distribution of errors 

-1.0           -0.5              0               0.5            1.0            1.5            2.0

Relative error (%)

(a) Overall FS estimation
(100,000 points)

-1.0           -0.5              0               0.5            1.0            1.5            2.0

Relative error (%)

(b) FS estimation within one
stdev. of mean input data
(18,786 points)

-1.0           -0.5              0               0.5            1.0            1.5            2.0

Relative error (%)

(c) FS estimation on the LSS
(1,516 points)    

Relative errors in FS estimation with RS
Slope with Hoek-Brown parameters

RSa                                 RSb
Estimation

domain       Mean         Stdev.          Mean         Stdev.

(a)            0.15%        0.38%          0.14%        0.34%

(b)            0.05%        0.15%          0.05%        0.15%

(c)            0.65%        0.60%          0.11%       0.43%

RSa: Quadratic polynomial without cross terms

RSb: Product of quadratic functions 
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in the domain region where FS = 1.0. This is an important evaluation because the FORM 

analysis uses the RS for the estimation of the LSS where the design point is sought. In this 

case, there is a clear advantage of the RSb over RSa as suggested by the comparatively 

smaller bias and narrower distribution of errors shown by the histograms. In general, the 

errors with RSb are small, with values between -0.5% and 1.0% for the H-B model case, 

and between 0% and 1.0% with the M-C model case. 

 

Figure 5.20 Distributions of the relative errors in FS prediction with RSa and RSb at the MC trial 

points of the slope stability analysis. Slope modelled with M-C parameters. (a) Errors for all the MC 

trials, (b) errors for the data points within one standard deviation of the mean and (c) errors for the 

points on the LSS. The table on the lower right corner summarizes the errors mean and standard 

deviation values 

Based on the previous results, the RS method selected for the analysis of the reliability of 

the slope described in this paper is the product of quadratic functions reflecting the sensitivity 

of each variable. The procedure is easily incorporated into the code for the FORM analysis 

with posterior distributions and the number of model runs with a central design is relatively 

small. 

Relative errors in FS estimation with RS
Slope with Mohr-Coulomb parameters

RSa                                 RSb
Estimation

domain       Mean         Stdev.          Mean         Stdev.

(a)            0.40%        0.47%          0.21%        0.25%

(b)            0.12%        0.12%          0.07%        0.09%

(c)            0.16%        0.17%          0.46%       0.15%

RSa: Quadratic polynomial without cross terms

RSb: Product of quadratic functions -1.0           -0.5              0               0.5            1.0            1.5            2.0

Relative error (%)

(c) FS estimation on the LSS
(1,827 points)

-1.0           -0.5              0               0.5            1.0            1.5            2.0

Relative error (%)

(a) Overall FS estimation
(100,000 points)

-1.0           -0.5              0               0.5            1.0            1.5            2.0

Relative error (%)

(b) FS estimation within one
stdev. of mean input data
(62,055 points)
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5.4.4 Use of RS for the analysis of reliability with FORM 

The purpose of the RS in the context of the present work is to have an explicit way of 

calculating the FS of the slope for every set of geotechnical parameters in the posterior 

probability distributions.  In this way the points where FS = 1.0 within a specified precision 

range define the LSS that separates the stable and failure regions of the parameter space. 

The design point defining the reliability of the slope can be found in this subset of the 

posterior distributions. However, due to the errors in the FS prediction with the RS, the actual 

FS at the calculated design point might be different from one. Therefore, the procedure 

needs to be repeated with a new RS centred at a new point near the calculated design point, 

until there is consistency in the result. The convergence of the process is facilitated by 

defining the new RS centre from linear interpolation using the following equation (adapted 

from Bucher and Bourgund, 1990):  

 𝑥1 = 𝑥0 + (𝑥∗ − 𝑥0)
(𝐹𝑆0 − 1)

(𝐹𝑆0 − 𝐹𝑆∗)
 (5.17) 

where x1 is the new midpoint for the new RS, x0 is the initial midpoint (mean), x* is the 

calculated design point, FS0 is the FS at the initial midpoint and FS* is the FS at the design 

point calculated with the slope model. The reliability index calculated with the second RS 

centred near the design point should converge to a stable solution, unless the LSS is highly 

nonlinear, in which case the use of the second order reliability method (SORM) is more 

appropriate. Tang et al (2013) describe this iterative procedure to improve the efficiency of 

the reliability analysis with various RS methods and sampling techniques. 

5.5 Illustrative example 

The reliability analysis using the posterior distributions of the geotechnical parameters is 

illustrated with an example of a 52° mine slope with a height of 210 m, excavated in a rock 

mass characterised with an H-B strength criterion. The characteristics of the slope, the 

groundwater surface and the mean rock mass strength properties are indicated in 

Figure 5.21. The stability of the slope was evaluated with the program Slide from Rocscience 

using the limit equilibrium method.  
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Figure 5.21 Geometry of the slope for the example of the analysis of reliability. The homogeneous 

rock mass is characterised by H-B strength parameters (σci, mi, GSI, D) and the respective equivalent 

M-C parameters (c,) 

The uncertainty of the strength parameters σci, mi and GSI is represented by the posterior 

probability distributions derived from the Bayesian analysis of data described in Section 5.2. 

The variability of the factor D is represented by a set of values drawn from a triangular 

distribution to have a sample of equal size to the posterior distributions of the other 

parameters. The slope reliability evaluation is carried out for the two strength models, H-B 

with four parameters and M-C with two parameters to facilitate the visualization of certain 

aspects of the procedure. The purpose of this example is to illustrate various ways of using 

the results of the Bayesian analysis described in Section 5.2 to evaluate the reliability of the 

slope. The reliability calculations were implemented in the Python programming language. 

The slope reliability analysis using the FORM approach is examined with three variants of 

the method. The first variant corresponds to the constrained minimization using the beta 

distribution functions with the spreadsheet from Low and Tang (2007). The second variant 

uses the MC trial inputs from the slope model analysis derived from the same beta 

distributions. The third variant uses the MCMC samples from the Bayesian analysis of 

Section 5.2. Table 5.3 shows the main results of the analysis for the slope characterised 

with the H-B parameters. The analyses include two iterations to ensure that the design point 

is on the LSS as predicted with the RS. The first iteration uses RS1 centred at the mean 

values and constructed with a central design arrangement of points and the second iteration 

uses RS2 centred at a point close to the design point from iteration 1.  

Hoek-Brown strength parameters:
σci = 60.5 MPa
mi = 11.8
GSI = 40
D = 0.8

Equivalent Mohr-Coulomb parameters:
σ3max = 1.0 MPa
c = 280 MPa
φ = 39°
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Table 5.3 Summary of results of FORM analyses of the slope with H-B parameters 

Iteration RS 

Centre of RS Design point 

σci 

(MPa) 
mi GSI D 

FS 

RS 
β 

σci* 

(MPa) 
mi* GSI* D* 

FS 

model 

Beta distributions with Low and Tang (2007) spreadsheet 

1 RS1 60.5 11.8 40.1 0.80 1.000 1.85 58.9 11.0 39.5 0.93 0.998 

2 RS2 59.0 11.1 39.5 0.93 1.000 1.84 59.0 11.1 39.4 0.93 1.000 

MC trials from beta distributions 

1 RS1 60.5 11.8 40.1 0.80 1.001 1.84 59.0 11.0 39.5 0.93 1.003 

2 RS2 59.0 11.0 39.5 0.93 0.999 1.84 59.0 11.0 39.5 0.93 1.003 

MCMC samples from Bayesian analysis 

1 RS1 60.5 11.8 40.1 0.80 1.001 1.85 59.5 11.2 39.5 0.94 0.992 

2 RS2 59.6 11.2 39.5 0.93 1.001 1.85 58.9 10.9 39.3 0.92 1.007 

 

For the analysis based on the MCMC samples, every set of input parameters in the posterior 

distributions is used to calculate an FS with the RS1 and the distance term with Eq. (5.7) 

and Eq. (5.8). Screening the points where FS = 1.0 with a tolerance of ±0.001 identifies the 

location of the LSS in the parameter space. The point in the LSS with the minimum distance 

to the mean defines the design point represented in this case by σci*=59.5MPa, mi*=11.2, 

GSI*=39.5 and D*=0.94. However, the Slide slope model indicates an FS = 0.992 at this 

point, which is partly due to the prediction error with RS1. Therefore, Eq. (5.17) is used to 

calculate the centre for a new RS named RS2, which is used for the second iteration of the 

analysis. The results of the second iteration are shown in Figure 5.22. 

Figure 5.22 shows the scatter plots of the input parameters and the FS values calculated 

with the RS2 in iteration 2. The plots include the mean value of each parameter and the 

points on the LSS represented by the blue dots. The LSS cannot be associated with a 

particular geometrical shape because it is defined in a four-dimensional space. The design 

point is indicated with the red dots. 
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Figure 5.22 Scatter plots of the H-B strength parameters and FS values, including the mean values 

(white dots), the points on the LSS (blue dots) and the design point (red dots). The results correspond 

to the second iteration of analysis considering an RS centred in the calculated design point from the 

first iteration 

The visualisation of the results of the FORM analysis is facilitated with the two-dimensional 

model using the M-C parameters. Table 5.4 shows the relevant results of the three variants 

of the analysis for this model case. Figure 5.23 shows a comparison of the RSs used for 

each iteration of the analysis. RS1 is generated with the five points centred at the mean 

values of c and , whereas RS2 is based on a closer arrangement of points centred at the 

design point identified with the first iteration. 
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Table 5.4 Summary of results of FORM analysis of the slope with M-C parameters 

Iteration RS 

Centre of RS Design point 

c 

(kPa) 
 (°) FS RS β 

c* 

(kPa) 
* (°) 

FS 

model 

Beta distributions with Low and Tang (2007) spreadsheet 

1 RS1 278.6 38.7 1.000 1.80 231.6 34.1 0.996 

2 RS2 232.5 34.2 1.000 1.80 231.8 34.2 1.001 

MC trials from beta distributions 

1 RS1 278.6 38.7 1.001 1.80 231.7 34.2 0.994 

2 RS2 233.1 34.3 1.001 1.80 231.7 34.2 0.998 

MCMC samples from Bayesian analysis 

1 RS1 278.6 38.7 1.001 1.76 231.9 34.2 1.000 

2 RS2 231.9 34.2 1.001 1.76 232.1 34.2 1.001 

 

 

Figure 5.23 Comparison of RSs, RS1 centred at the mean values and RS2 centred at the design 

point from the second iteration of analysis 

Figure 5.24 shows the scatter plots of c,  and FS from the second iteration of the analysis 

based on the MCMC samples. The LSS is defined in these plots only at the location of the 

sampled values.  Figure 5.25 shows a comparison between the MC trial values drawn from 

the beta distributions and the original MCMC samples from the posterior distributions. The 

graphs are presented in a normalized space and correspond to the second iteration of the 

analyses. Although in both cases there is a high correlation between c and  there are 

differences in the density of points near the LSS, which contributes to the small differences 

in the results. 

c/cmean

φ/φmean

FS 
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Figure 5.24 Scatter plots of the M-C strength parameters and FS values, including the mean values 

(white dots), the points on the LSS (blue dots) and the design point (red dots). The results correspond 

to the second iteration of analysis considering an RS centred in the calculated design point from the 

first iteration 

 

 

Figure 5.25 Comparison of normalised values of c and  from MC trials (left) and from the MCMC 

samples (right) showing a high correlation. The sampled values are shown on the RS2 centred at 

the design point on the LSS 
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Table 5.5 shows a summary of the results of the six procedures of analysis of reliability used 

with the two cases of rock mass characterisation of the slope example.  The procedures 

include: 

1. MC analysis with the slope model based on the limit equilibrium method. 

2. MC analysis with the RS based on the product of quadratic functions using the trial 

inputs from procedure 1. 

3. Similar to procedure 2 but using the MCMC samples from the Bayesian analysis 

instead of the MC trial inputs. 

4. FORM analysis with two iterations using the method of Low and Tang (2007) with the 

beta distributions used in procedure 1.  

5. FORM analysis with two iterations using the MC trial inputs from procedure 1.  

6. Similar to procedure 5 but using the MCMC samples from the Bayesian analysis 

instead of the MC trial inputs. 

Table 5.5 Summary of results of reliability analysis 

No. Procedure Input 

distribution 
FS det FSmean PF β n Δ PF Δ β 

Hoek-Brown model 

1 Slide + MC trials Beta (1) 1.207 1.203 2.79% 1.915 100,000 ±0.10% ±0.016 

2 RS + MC trials Beta (1) 1.207 1.201 2.86% 1.880 100,000 ±0.10% ±0.016 

3 RS+MCMCpoints Posterior (2) 1.205 1.199 3.06% 1.842 50,000 ±0.15% ±0.022 

4 FORM+ beta dist. Beta (3) 1.207  3.32% 1.836    

5 FORM+ MC trials Beta (1) 1.207  3.29% 1.840 100,000 ±0.11% ±0.015 

6 FORM+MCMCpoints Posterior (2) 1.207  3.22% 1.849 50,000 ±0.15% ±0.021 

Mohr-Coulomb model 

1 Slide + MC trials Beta (1) 1.194 1.196 3.18% 1.835 100,000 ±0.11% ±0.015 

2 RS + MC trials Beta (1) 1.194 1.194 3.59% 1.836 100,000 ±0.12% ±0.015 

3 RS + MCMC points Posterior (2) 1.194 1.194 3.81% 1.825 50,000 ±0.17% ±0.020 

4 FORM + beta dist. Beta (3) 1.194  3.63% 1.795    

5 FORM + MC trials Beta (1) 1.194  3.56% 1.804 100,000 ±0.11% ±0.015 

6 FORM+MCMCpoints Posterior (2) 1.194  3.90% 1.762 50,000 ±0.17% ±0.020 

Notes: 

(1) Sampled with the MC method (2) Sampled with the MCMC algorithm (3) Defined with function 



165 

 

Procedures 1, 2 and 3 are based on defining the characteristics of the distribution of FS to 

estimate β and PF independently. These procedures yield a mean value of FS, besides the 

usual deterministic result. Procedures 4, 5 and 6 use the variability characteristics of the 

input parameters to calculate β and the PF value is estimated from β assuming an equivalent 

unitary normal distribution for FS. The number of MC trials or the number of MCMC samples, 

denoted as n, were used to calculate the maximum absolute errors Δ, in the estimation of 

PF and β for a 95% confidence level, using the following expressions: 

 𝛥𝑃𝐹 = 𝑧𝛼/2√
(1 − 𝑃𝐹)𝑃𝐹

𝑛
 (18) 

 Δ𝛽 =
𝛷−1(𝑃𝐹 + Δ𝑃𝐹) − 𝛷−1(𝑃𝐹 − Δ𝑃𝐹) 

2
 (19) 

where zα/2 is the value of the standard normal distribution where the probability is half the 

complement of the confidence level (2.5%), and ϕ-1(·) is the inverse of the standard normal 

distribution. Figure 5.26 shows plots of the results of PF and β with the estimated maximum 

errors associated with the number of trials or points in the posteriors. The reason to calculate 

these errors is to have a better appreciation for the differences between the various 

procedures, not affected by the number of trials or sample points of the iterative procedures. 

 

Figure 5.26 Results of PF (left) and β (right) from the procedures listed in Table 5.5, with the 

estimated errors associated with the number of sampled inputs where applicable 

The estimated maximum errors associated with the number of sampling points are small 

compared to the differences due to the procedure of analysis. In general, the analyses based 

2%

3%

4%

5%

1 2 3 4 5 6

P
F

Procedure of analysis

H-B model

M-C model

1.7

1.8

1.9

2.0

1 2 3 4 5 6

β

Procedure of analysis

H-B model

M-C model

FS variability FORM FS variability FORM



166 

 

on sampling from fitted distributions produce smaller PF and larger β values than those 

using the original posteriors, for comparable procedures of analysis (i.e. comparison of 

results from procedures 2 with 3 and from procedures 5 with 6). However, the authors argue 

that the posterior distribution samples from the Bayesian analysis provide a more accurate 

representation of the uncertainty of the input parameters than that given by the fitted beta 

distributions. The structure of the posterior samples carries the information provided by the 

data used in the analysis, but this structure is not reproduced in complete detail with the MC 

sampling as shown in Figure 5.25 for the c versus  samples. For the H-B model case, the 

slight correlation between σci and mi shown in the scatter plot of Figure 5.7 could not be 

included in the slope model analysis due to limitations of the Slide program to account for 

this feature.  

The reasonable differences between the results from procedures 1 and 2 suggest an 

acceptable performance of the RS as a surrogate model. There is good agreement between 

the results from procedures 4, 5 and 6, which are based on the FORM. These results confirm 

the consistency of the adaptation of the FORM for the use with sampled distributions rather 

than with functions describing those distributions. There are slight differences between 

results from procedures based on the variability of FS and those based on a FORM analysis 

i.e. procedure 2 compared with 5, and procedure 3 with 6. None of the procedures has all 

the desirable features that would make it the procedure of choice with the expected best 

results. However, it is suggested that the FORM applied to the MCMC samples (procedure 

6) combines the best set of conditions of analysis to provide consistent measures of the 

reliability of the slope. The procedure uses the best representation of the uncertainty of the 

input parameters and does not depend on the precision of the RS over the whole parameter 

domain. The RS is only used to estimate FS on the LSS near the design point and it can be 

conveniently constructed with few model runs. Moreover, the results from procedure 6 have 

good agreement with those from the conventional FORM analysis using the distribution 

functions (procedure 4). 

5.6 Summary and conclusion 

The Bayesian approach was applied for the inference of the H-B rock mass strength 

parameters using typical data from laboratory testing and site investigation results. The 

results of the Bayesian analysis of data includes the sets of representative samples of 
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parameter values drawn from posterior distributions with an MCMC algorithm. The rock 

mass strength characterisation included the intact rock strength parameters σci and mi, and 

the rock mass quality parameter GSI. The disturbance factor D is not supported by 

measurements and was modelled with a triangular distribution between 0.6 and 1.0 with a 

mean of 0.8. Equivalent M-C parameters c and  were calculated for the analysis of a slope 

with confining stresses represented by σ3max = 1.0 MPa. The use of the 2-parameter M-C 

model equivalent to the 4-parameter H-B model was intended to facilitate the visualization 

of certain aspects of the reliability analysis with the FORM and to include an analysis case 

with correlated parameters.  

The use of the results of rock mass characterisation with a Bayesian approach was 

illustrated with the reliability analysis of a 52° slope with a height of 210 m excavated in this 

rock mass. Two RS methods based on polynomial fitting of a central design arrangement of 

points were compared in terms of the effectiveness to predict FS values on the LSS. The 

method based on the product of quadratic functions for each uncertain variable was found 

to have advantages over the second order polynomial function without cross terms and was 

selected for the analysis of the reliability of the slope. The central design includes 9 runs 

with the slope model for the H-B case and 5 runs for the M-C case. There are two main 

approaches of reliability analysis; one based on the variability characteristics of the FS and 

the second on the variability characteristics of the uncertain parameters. The latter 

corresponds to the method of analysis known as FORM. The two approaches were used 

with different representations of the input parameters, including the posterior samples from 

the Bayesian analysis of data, to conform six procedures of reliability evaluation aimed at 

evaluating the effect of specific aspects of the analysis.  

The slope stability analysis with the program Slide was carried out by sampling from beta 

distributions fitted to the posterior samples from the Bayesian analysis. The MC sampling 

from the beta distributions included 100,000 trials, whereas the posterior samples from the 

MCMC sampling had 50,000 points. The conventional FORM analysis is based on the 

constrained minimization of a function that uses the characteristics of the beta distributions. 

However, the use of the FORM with the distribution samples is straight forward as the FS 

and distance to the mean is calculated for every point of the sample. The constrained 

minimization is reduced to screening the samples where FS = 1 and finding the design point 

as that with the minimum distance to the mean. The results of the analyses with the FORM 
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were consistent, confirming the validity of the adaptation of the method for the use with 

sampled distributions rather than with functions describing those distributions. 

In general, the analyses based on sampling from fitted distributions resulted in slight 

differences, with smaller PF and larger β values than those using the original posteriors. It 

was argued that the posterior distribution samples from the Bayesian analysis provide a 

more accurate representation of the uncertainty of the input parameters than that given by 

the fitted beta distributions. The structure of the posterior samples carries the information 

provided by the data used in the analysis, but this structure is not reproduced in complete 

detail with the MC sampling.  

There are slight differences between results from procedures based on the variability of FS 

and those based on a FORM analysis. None of the procedures has all the desirable features 

that would make it the procedure of choice with the expected best results. However, it is 

suggested that the FORM approach applied to the MCMC samples (procedure 6) has the 

best set of conditions of analysis to provide consistent measures of the reliability of the 

slope. The procedure uses the best representation of the uncertainty of the input parameters 

and does not depend on the precision of the RS over the whole parameter domain. The RS 

is only used to estimate FS on the LSS near the design point and can be conveniently 

constructed with few model runs. 
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Abstract 

A Bayesian approach is proposed for the inference of the geotechnical parameters used in 

slope design. The methodology involves the construction of posterior probability 

distributions that combine prior information on the parameter values with typical data from 

laboratory tests and site investigations used in design. The posterior distributions are often 

complex, multidimensional functions whose analysis requires the use of Markov Chain 

Monte Carlo (MCMC) methods. These procedures are used to draw representative samples 

of the parameters investigated, providing information on their best estimate values, 

variability and correlations. The paper describes the methodology to define the posterior 

distributions of the input parameters for slope design and the use of these results for the 

evaluation of the reliability of a slope with the first order reliability method (FORM). The 

analysis of reliability corresponds to a forward analysis of stability of the slope where the 

factor of safety (FS) is calculated with a surrogate model from the more likely values of the 

input parameters. The Bayesian model is also used to update the estimation of the input 

parameters based on the back analysis of slope failure. In this case, the condition FS=1.0 

is treated as a data point that is compared with the model prediction of FS. The analysis 

requires a sufficient number of observations of failure to outbalance the effect of the initial 

input parameters. The parameters are updated according to their uncertainty, which is 

determined by the amount of data supporting them. The methodology is illustrated with an 

example of a rock slope characterised with a Hoek-Brown rock mass strength. The example 

is used to highlight the advantages of using Bayesian methods for the slope reliability 

mailto:luis.contreras@uq.net.au
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analysis and to show the effects of data support on the results of the updating process from 

the back analysis of failure. 

Keywords: Bayesian analysis; Hoek-Brown criterion; slope reliability; back analysis of 

failure 

6.1 Introduction 

Probabilistic methods are normally used to represent uncertainty in engineering design. 

However, there are two interpretations of probability, which give rise to the two main 

approaches to statistical analysis known as frequentist and Bayesian. Contreras et al. (2018) 

discuss the contrast between the two approaches in terms of the inference of parameters 

for mine slope design, highlighting the advantages of using Bayesian methods in this 

context. The Bayesian analysis includes the construction of a probabilistic function using 

data, models and previous information on the values of the parameters. The function is 

called a posterior distribution within the Bayesian framework and it is evaluated with a 

Markov Chain Monte Carlo (MCMC) procedure in order to obtain representative samples of 

the parameters investigated. The posterior samples represent a balanced result between 

the data used and the prior information available on the parameters. Contreras et al. (2018) 

described in detail the methodology with reference to the inference of the intact rock strength 

parameters, and Contreras and Brown (2018) discussed the analysis of the reliability of the 

slope with the results from a Bayesian analysis of data. Other examples of Bayesian analysis 

in rock mechanics are given by Miranda et al. (2009), Zhang et al. (2010), Feng and Jimenez 

(2015), Wang and Aladejare (2016) and Aladejare and Wang (2017). 

The paper discusses three aspects of the slope design process. First, the Bayesian 

inference of the rock mass strength parameters required for the slope stability analysis; 

secondly, the use of these results for the evaluation of the reliability of the slope; and thirdly, 

the Bayesian updating of the parameters based on observations of slope failure. Contreras 

and Brown (2018) covered the first two aspects in detail. Part of that material has been 

updated and it is summarised in the present paper to facilitate the presentation of the steps 

of the slope design process.  

The main changes in the paper relative to the material presented by Contreras and Brown 

(2018) are: 
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•  Section 6.2.1 includes a simplified presentation of the formulae for the 

implementation of the Bayesian inference procedure. 

•  Section 6.2.2 includes the update of the inference of the intact rock strength 

parameters considering the latest developments to appear in the next version of the 

Hoek-Brown (H-B) criterion (Hoek and Brown, 2019). This means excluding tensile 

strength data and using the tensile cut-off instead. 

•  Section 6.2.2 also includes a simplified presentation of the likelihood formula and a 

brief discussion on the relationship between data quantity and uncertainty of the intact 

rock strength estimation. 

•  Section 6.2.3 incorporates an update to the Geological Strength Index (GSI) chart 

calibration using a simpler three-parameter model, instead of the five-parameter 

model of the original Cai et al. 2004 chart and includes a simplified presentation of 

the likelihood formula for chart calibration. 

•  Section 6.3 excludes the comparison of various methods of slope reliability analyses 

and uses the first order reliability method (FORM) validated by Contreras and Brown 

(2018). 

•  Section 6.4 excludes the comparison of methods of response surface (RS) analysis 

and uses the method recommended by Contreras and Brown (2018) on the basis of 

the comparison. 

•  Section 6.5 includes a description of the Bayesian back analysis of slope failure as a 

way to update the parameters from observations of slope performance, and 

discusses the relationship between data support, parameter uncertainty and updating 

the results. 

6.2 Bayesian inference of geotechnical parameters for slope design 

The methodology commonly used for the rock mass strength characterisation for slope 

design is based on the H-B criterion as illustrated in Figure 6.1 (Contreras and Brown, 2018). 

The intact rock strength is defined by the H-B parameters σci and mi, derived from uniaxial 

(UCS) and triaxial (TCS) compression strength test data. The GSI is based on charts 
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describing the structural characteristics of the rock mass on the vertical axis and the joint 

conditions on the horizontal axis. The chart used in this paper is based on the block volume 

(Vb) and the joint condition rating (JC) from Palmström (1996), as described by Cai et al. 

(2004). The rock mass disturbance factor (D) represents the reduction of strength due to 

damage from blasting close to the surface of the excavation or from stress relief at deeper 

levels. It is common to calculate equivalent Mohr-Coulomb (M-C) parameters for particular 

stress levels to simplify the analysis of stability with a two-parameter strength model, which 

allows the visualisation of certain aspects of the slope reliability calculation.   

The conventional method to estimate the geotechnical parameters used in slope design 

considers fitting data to models to obtain point estimates and sometimes variability 

characteristics of these parameters. However, this approach has limitations in providing 

adequate representation of the uncertainty of parameters (Contreras et al. 2018). In 

contrast, the uncertainty of parameters quantified with the Bayesian approach reflects the 

balance between the data and prior knowledge used in the analysis. 

 

Figure 6.1 Characterisation of rock mass strength for slope design (Contreras and Brown, 2018) 

6.2.1 Concept of Bayesian inference of parameters 

The concept of Bayesian inference of parameters is illustrated in Figure 6.2 (Contreras and 

Brown, 2018).  This diagram describes the structure of the posterior probability function 

constructed with Bayes’ formula. The posterior function includes a model function, the data 

and the prior knowledge of the parameters for inference. The model function provides a 

model prediction, ymodel, of the performance of the system it represents, based on the 
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parameters for inference, θ, and the predictor variables, x. The data correspond to actual 

measurements of performance of the system, yactual, to compare with the model predictions. 

The prior knowledge refers to available information on the parameter values and typically 

corresponds to valid ranges defined by low and high bound values.  The posterior function 

takes as input a set of parameters for inference θ1 to θk and yields a probability value, p, for 

that set. The evaluation of the posterior function gives, as a result, the sets of θ associated 

with the largest p values, in other words, the more probable parameter values. 

 

Figure 6.2 Conceptual representation of the Bayesian process for inference of parameters 

(Contreras and Brown, 2018) 

The posterior function according to the Bayes rule defines the probability of the parameters 

for inference contained in the vector θ as follows: 

 𝑝(𝜽|𝑑𝑎𝑡𝑎) = 𝑘 𝐿(𝜽|𝑑𝑎𝑡𝑎)𝑝(𝜽) (6.1) 

where L(θ|data) is the likelihood of the parameters given the data, p(θ) corresponds to the 

prior distributions of those parameters and k is a normalisation factor so that the posterior 

function integrates to one. The value of k is not required for the inference of parameters with 

an MCMC procedure. The vector θ contains the parameters of interest included in the model 

function and the parameters defining the Student or normal distributions commonly used to 

model the errors. If a normal distribution with standard deviation σ is used to evaluate the 

errors and the probability density function (pdf) of the normal distribution at x is expressed 

as Npdf (x, mean, standard deviation), then the likelihood function for a data set with n values 

is: 
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 𝐿(𝜽|𝑑𝑎𝑡𝑎) = ∏ 𝑁𝑝𝑑𝑓(𝑦𝑎𝑐𝑡𝑢𝑎𝑙 𝑗; 𝑦𝑚𝑜𝑑𝑒𝑙; 𝜎)

𝑛

𝑗=1

 (6.2) 

If the priors are represented by uniform distributions, then: 

 𝑝(𝜃) =
1

(𝜃1 ℎ𝑖𝑔ℎ − 𝜃1 𝑙𝑜𝑤)
 

1

(𝜃2 ℎ𝑖𝑔ℎ − 𝜃2 𝑙𝑜𝑤)
… . .

1

(𝜃𝑘 ℎ𝑖𝑔ℎ − 𝜃𝑘 𝑙𝑜𝑤)
 (6.3) 

The evaluation of the posterior function is carried out with MCMC procedures due to the high 

dimensionality and complexity of the function. The result of the MCMC analysis consists of 

representative samples of the parameter values, which are normally displayed in a graph 

that collects the scatter plots and histograms of the sampled values. The Bayesian analyses 

presented in the paper were implemented in the Python programming language, using the 

MCMC algorithm known as the affine-invariant ensemble sampler developed by Foreman-

Mackey et al. (2013). Additional information of the Bayesian approach can be found in 

Baecher (2017) and Juang and Zhang, (2017).  

6.2.2 Bayesian inference of intact rock strength parameters σci and mi 

The Bayesian inference of the intact rock strength parameters is discussed in detail by 

Contreras et al. (2018) and Contreras and Brown (2018). The intact rock strength is 

characterised with the Hoek-Brown (H-B) strength criterion (Hoek and Brown, 1997) defined 

by the following equation: 

 𝜎1 =  𝜎3 + 𝜎𝑐𝑖 (𝑚𝑖

𝜎3

𝜎𝑐𝑖
+ 1)

0.5

 (6.4) 

where σci is the uniaxial compressive strength of intact rock, mi is a constant of the intact 

rock material, σ1 and σ3 are the major and minor principal stresses, respectively. The latest 

edition of the Hoek-Brown strength criterion (Hoek & Brown, 2019) indicates that the criterion 

is not applicable to tensile failure and recommends using the tensile cut-off proposed by 

Hoek and Martin (2014) as a practical solution to define the strength envelope for design 

purposes. The tensile cut-off suggested by Hoek and Brown (2018) is given by the ratio 

between σci and the intact tensile strength of the rock, σt, as follows: 
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𝜎𝑐𝑖

|𝜎𝑡|
=  0.81𝑚𝑖 + 7 (6.5) 

The components of the Bayesian model described in Figure 6.2 are the function model 

represented by Eq. (6.4) with σci and mi being the parameters for inference; the data 

represented by the results of TCS and UCS tests; and the prior information consisting of 

uniform distributions defining plausible ranges of variation of the parameters. A typical intact 

rock strength data set of 23 points (8 UCS and 15 TCS) was randomly generated to illustrate 

the methodology. The example presented in this paper considers prior ranges between 

10 MPa and 200 MPa for σci, and between 1 and 40 for mi.  

The core calculation within the posterior probability function is the evaluation of errors within 

the likelihood function. The errors are defined as the difference between the actual data 

values and the H-B model predictions using a particular set of parameters. The errors are 

evaluated with Student’s t-distributions for better handling of outliers. Small errors result in 

high probability values and vice versa. The t-distribution is defined by three parameters; 

hence, the pdf at x can be expressed as tpdf (x; mean; scale; normality). The likelihood 

function L1 for the intact rock strength estimation is: 

 

𝐿1(𝜎𝑐𝑖, 𝑚𝑖 , 𝜎𝑠, 𝜈𝑠|(𝑈𝐶𝑆, 𝑇𝐶𝑆)𝑗)

= ∏ 𝑡𝑝𝑑𝑓(𝜎1𝑗 𝑓𝑟𝑜𝑚 𝑈𝐶𝑆, 𝑇𝐶𝑆; 𝜎1 𝑗𝑓𝑟𝑜𝑚 𝑒𝑞. 4; 𝜎𝑠; 𝜈𝑠)

𝑛1

𝑗=1

 
(6.6) 

In this case, x is defined by the UCS and TCS data points, n1 is the number of data points, 

the mean is determined by the H-B model given by Eq. (6.4), σs is the scale and νs is the 

normality parameter of the t-distribution. Figure 6.3 shows the data points and explains the 

way in which errors are evaluated with the t-distribution in the Bayesian analysis. 

The results of the intact rock strength analysis are summarised in the corner plot of 

Figure 6.4. The scatter plot shows the correlation between the inferred parameters and the 

histograms define the ranges of likely values. The intact rock strength analysis was carried 

out for three stages with increased levels of data to show the relationship between data 

quantity and the uncertainty of the estimation. The data correspond to simulated 

compression test results representing typical values of intact strength of a particular rock 
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type. The data sets included 10 (5 UCS + 5 TCS), 18 (8 UCS + 10 TCS) and 23 (8 UCS + 

15 TCS) data points and the results of the fitting analysis are shown in Figure 6.5. 

 

Figure 6.3 Measurement of errors with a t-distribution to handle outliers (adapted from Contreras 

and Brown, 2018) 

 

Figure 6.4 Corner plot from the analysis of the intact rock strength data. The plot shows the scatter 

plot of σci and mi and the histograms of these parameters 



180 

 

 

Figure 6.5 Mean fitted envelopes with bands including the 95 percentile of sampled parameter values 

for three levels of data (top) and the corresponding scatter plots of mi versus σci from the Bayesian 

regression analysis with 68 and 95 percentile contours and coefficients of correlation CC (bottom) 

The graphs of σ1 versus σ3 at the top of Figure 6.5 show the data points and the band of 

envelopes corresponding to the 95% highest density intervals (HDIs) reflecting the 

uncertainty of parameters. The 95% HDIs define the ranges of credible values and the mean 

values represent the more likely estimates. The scatter plots of the 50,000 sampled values 

of σci and mi with the 68 and 95 percentile contours are shown at the bottom of Figure 6.5. 

These results show the reduction in the uncertainty of the estimated envelopes with the 

increase of the number of TCS results used for the regression analysis. This reduction is 

particularly noticeable in the high confining stress region. In the low confining stress region, 

the intercept of the envelope associated with σci is well defined with relatively few UCS data 

points.  
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Figure 6.6 shows a comparison of the mean fitted envelopes from the analysis with the three 

levels of data.  The envelopes are close in the low confining stress region and the differences 

are associated with the number of TCS data points used in the analysis. These results 

suggest that at least 10 TCS data points are required in this particular case to define a 

reliable mean envelope. A sufficient number of TCS results is required to outbalance the 

effect of the vague priors of σci and mi as seems to be the case for the second and third 

stages with 10 and 15 TCS results, respectively. 

 

Figure 6.6 Mean fitted envelopes for three stages with increased levels of data 

6.2.3 Bayesian inference of GSI chart parameters 

The Bayesian inference of the GSI chart parameters is discussed by Contreras and Brown 

(2018). The GSI index describes the rock mass quality within the H-B failure criterion for 

rock masses. Hoek and Brown (1997) defined the index as an independent parameter with 

the look-up chart shown in Figure 6.7. The chart includes qualitative descriptions of rock 

mass structure and joint conditions on the vertical and horizontal axes, respectively. The 

chart is used to estimate credible ranges of GSI with a typical precision of ±5 points. The 

main drawback of this method of estimation is the subjectivity that increases the uncertainty 

of the index due to the human factor. Several authors have proposed alternative charts for 

the quantitative evaluation of GSI based on measured factors as a way of reducing the 

subjectivity of the estimation (Sonmez and Ulusay, 1999; Cai et al. 2004; Russo, 2009; Hoek 
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et al., 2013). Unfortunately, none of the quantitative charts has gained general acceptance 

because they do not appear to fit the historical records in all cases. One possible cause of 

this situation is that the H-B system includes two subjective parameters, namely GSI and D, 

which are handled differently by different mine operations. In many cases, these parameters 

become eventually used as calibration parameters of slope performance. 

 

Figure 6.7 Charts with the original definition of GSI (Hoek and Brown, 1997, based on Hoek, 1994) 

The Bayesian inference of GSI requires a model whose results can be compared with actual 

measurements through a probabilistic function. Contreras and Brown (2018) consider the 

chart proposed by Cai et al. (2004) to describe the Bayesian inference of GSI because it is 

the chart that appears to provide the best results (Duran, 2016). Cai et al. (2004)’s GSI chart 

corresponds to a surface defined by the following two-dimensional function with parameters 

JC and Vb (Cai and Kaiser, 2006): 
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 𝐺𝑆𝐼 =  
26.5 + 8.79𝑙𝑛𝐽𝐶 + 0.9𝑙𝑛𝑉𝑏

1 + 0.0151𝑙𝑛𝐽𝐶 − 0.0253𝑙𝑛𝑉𝑏
 (6.7) 

Contreras and Brown (2018) use Eq. (6.7) to describe the Bayesian regression analysis for 

calibration of the chart with site-specific data. In this case, the five coefficients defining the 

chart surface are inferred with the Bayesian approach. The uncertainty of the chart is then 

used to define the variability of the mean GSI of a particular rock unit based on JC and Vb 

data collected for design. Cai and Kaiser (2006) point out that the chart represented by 

Eq. (6.7) is very close to a planar surface; therefore, for the purpose of a regression analysis 

with site specific data it is acceptable to use a simplified chart model based on three 

parameters as follows: 

 𝐺𝑆𝐼 = 𝜌0 + 𝜌1𝑙𝑛𝐽𝐶 + 𝜌2𝑙𝑛𝑉𝑏  (6.8) 

where ρ0, ρ1 and ρ2 are the coefficients. 

A planar surface estimated from Eq. (6.8) is a good approximation of the Cai et al (2004) 

model chart calibrated to local conditions. Figure 6.8 shows the Cai et al. (2004) chart and 

its geometrical interpretation. The Bayesian estimation of GSI using the three-parameter 

model chart is illustrated with the same calibration data set of 50 measurements used by 

Contreras and Brown (2018), as shown in the graphs on the right of Figure 6.8 and the left 

of Figure 6.9. The data set represents the result of a hypothetical face mapping exercise in 

which Vb and JC estimates are collected independently from GSI determinations with the 

original look-up chart in Figure 6.7. The Bayesian analysis uses the data set and the model 

predictions with Eq. (6.8) to derive credible estimates of the coefficients ρ0, ρ1 and ρ2. In a 

real case situation, the data for calibration of the chart may also include information from 

various project sites where measurements of the input factors are available together with 

GSI determinations from the performance of the rock mass. 
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Figure 6.8 Chart (Cai et al., 2004) for the numerical estimation of GSI from Vb and JC indices (left) 

and interpretation of the chart as an approximate planar surface in a logarithmic space of the 

variables Vb and JC (right). The dots correspond to a synthetic data set of 50 measurements used 

for calibration of the chart (Contreras and Brown, 2018) 

The posterior function combines the likelihood function with the prior information. The 

difference between the actual GSI measurements and the model predictions using particular 

sets of chart parameters define the errors, which are evaluated with t-distributions within the 

likelihood function. The t-distribution is defined by three parameters and the pdf at x can be 

expressed as tpdf (x; mean; scale; normality). The likelihood function L2 for the inference of 

the GSI chart parameters is: 

 

𝐿2(𝜌0, 𝜌1, 𝜌2, 𝜎𝑔, 𝜈𝑔|(𝐽𝑐, 𝑉𝑏, 𝐺𝑆𝐼)𝑐𝑎𝑙 𝑗)

= ∏ 𝑡𝑝𝑑𝑓(𝐺𝑆𝐼𝑗  𝑓𝑟𝑜𝑚 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎; 𝐺𝑆𝐼𝑗𝑓𝑟𝑜𝑚 𝑒𝑞. 8; 𝜎𝑔; 𝜈𝑔)

𝑛2

𝑗=1

 
(6.9) 

In this case, x is defined by the chart calibration data points, n2 is the number of data points, 

the mean is determined by the three-parameter chart model in Eq. (6.8), σg is the scale and 

νg the normality parameter of the t-distribution. The priors of ρ0, ρ1 and ρ2 are represented 

by uniform distributions with wide ranges around the values in the numerator of Eq. (6.7) to 
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avoid constraining the results. The Bayesian analysis was implemented in the Python 

programming language and the MCMC sampling was carried out with the emcee sampler. 

The results are summarised in the scatter plots and histograms of ρ0, ρ1 and ρ2 shown in 

Figure 6.10.  

  

Figure 6.9 Random Gaussian spread with a standard deviation of 5 centred at Cai et al.’s (2004) 

chart model used to generate the calibration data set shown in Figure 6.9 (left) and calibration data 

set with the three-parameter fitted chart (right) 

 

Figure 6.10 Result of the Bayesian analysis of calibration data. The corner plot shows the scatter 

plots and histograms of the coefficients ρ0, ρ1 and ρ2 that best represent the calibration data with the 

three-parameter chart model function 
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Once the uncertainty of the chart has been defined with the calibration analysis, the results 

can be used to determine the variability of GSI for design. The analysis is illustrated using 

the same synthetic data set of 100 points used by Contreras and Brown (2018) for the 

analysis with the five-parameter model. The data set represents the data normally collected 

with core logging for the slope design; therefore, only Vb and JC measurements are available 

for the estimation of GSI for design with the chart. The graph to the left of Figure 6.11 shows 

the data points on the mean fitted chart, which is constructed with the mean coefficients 

from the posterior distributions in Figure 6.10. The posterior samples have 50,000 sets of ρi 

coefficients and each set represents a plausible chart, which is used to generate a mean 

value of GSI from the n3 data points as follows: 

 𝐺𝑆𝐼𝑚𝑒𝑎𝑛 =
1

𝑛3
∑ 𝐺𝑆𝐼𝑗  𝑓𝑟𝑜𝑚 𝑒𝑞. 8 𝑤𝑖𝑡ℎ (𝐽𝑐, 𝑉𝑏)𝑑𝑒𝑠𝑖𝑔𝑛 𝑗  

𝑛3

𝑗=1

 (6.10) 

The histogram of the mean values of GSI calculated in this manner is shown at the right of 

Figure 6.11, with the mean and the 95% HDI indicated. The distribution of GSI mean values 

in Figure 6.11 represents the uncertainty of this parameter and can be used for the analysis 

of the reliability of the slope. 

 

Figure 6.11 Synthetic data set of 100 measurements of Vb and JC in a local region of GSI 40, 

displayed on the chart fitted to the calibration observations (left). Histogram of mean values of GSI 

from the 100 data points with the 95% HDI indicated (right). Each value in the histogram corresponds 

to a set of chart coefficients from the MCMC analysis as indicated in Figure 6.11. The outlines of a 

selection of plausible charts causing the variability of the mean values of GSI are displayed on the 

isometric view of the chart on the left 
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6.2.4 Disturbance factor D 

The D factor is based on the assessment of the damage from blasting close to the surface 

of the excavation. At deeper levels, D is associated with the disturbance from the stress 

relief caused by the excavation of the slopes. Typically, D takes values from 0.7 to 1.0 in 

slopes, although values outside this range are possible. Larger values represent more 

disturbance and are assigned to zones closer to the surface of the excavation. This 

parameter is not supported by data and it is commonly assessed from observation of the 

conditions of the excavation faces. The variability of D is represented in this paper by a 

triangular distribution between 0.6 and 1.0 with mean of 0.8. This distribution corresponds 

to prior information within the Bayesian framework that is not complemented with data. A 

set of 50,000 values were drawn from the distribution with a common Monte Carlo (MC) 

procedure to mimic a posterior sample of the same size as that of the inferred posteriors of 

the other H-B parameters. 

6.2.5 Equivalent Mohr-Coulomb parameters c and  

The equivalent M-C parameters represented by cohesion, c and friction angle,  were 

calculated with the expressions given by Hoek et al. (2002). Due to the non-linearity of the 

H-B criterion, the analysis requires the range of confining stresses for which the equivalence 

is calculated. A maximum confining stress of 1.0 MPa was considered for the slope example 

presented in this paper. Figure 6.12 shows the scatter plot and histograms of c and  

equivalent to the H-B parameters defined with the Bayesian analysis. The advantage of 

using the equivalent M-C parameters is that the rock mass can be characterised with two 

instead of four parameters, which allows the visualisation of certain aspects of the slope 

reliability calculation. 

The H-B parameters are in general uncorrelated or with low correlation coefficients. 

However, the calculated M-C parameters have a strong positive correlation. Although it is 

common to find a negative correlation between c and  in soils, the result shown in 

Figure 6.12 is the expected situation in rock mechanics. Contreras and Brown (2018) 

discuss why the positive correlation for a rock mass is consistent with the situation in soil 

mechanics. 
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Figure 6.12 Scatter plot of equivalent c and  and the respective posterior distributions with mean 

and 95% HDIs indicated 

6.3 Analysis of reliability of a slope 

Contreras and Brown (2018) described in detail the analysis of the reliability of a slope using 

the geotechnical parameters inferred with the Bayesian approach. The reliability of the slope 

is represented by the reliability index (β), which is a parameter that measures how distant 

the mean condition of the slope is from the failure situation. There are two methods of 

evaluating β, one is based on the variability characteristics of the factor of safety (FS) and 

the second based on the variability characteristics of the uncertain variables. The first 

method is the conventional procedure (Abramson et al., 2002) used in geotechnical 

programs and is the method used within the program Slide for slope stability analysis. The 

second method is known as the structural engineering method proposed by Hasofer and 

Lind (1974), also known as the FORM (Low and Tang, 1997, 2007; Baecher and Christian, 

2003; Low, 2008; Goh and Zhang, 2012; Duncan and Sleep, 2015). 

Low and Tang (1997) developed an efficient procedure to apply the FORM based on the 

interpretation of β shown in Figure 6.13 for the case of two variables represented by the 

cohesion (c) and friction angle (). The figure shows an ellipsoid centred at the mean values 

of c and  that touches the limit state surface (LSS) at the design point. The mathematical 

expression to calculate β according to this interpretation is 
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 𝛽 =  𝑚𝑖𝑛𝒙∈𝑭√[
𝒙𝒊 − 𝝁𝒊

𝝈𝒊
]

𝑇

 𝑹−1  [
𝒙𝒊 − 𝝁𝒊

𝝈𝒊
] (6.11) 

where xi is the set of uncertain variables; μi and σi are the sets of their respective means 

and standard deviations, respectively; R is the correlation matrix; and F is the failure domain. 

The set of xi values that minimizes Eq. (6.11) and satisfies the condition of failure (x ∈ 𝑭) 

corresponds to the design point.  

 

Figure 6.13 Interpretation of the reliability index β for a two-variable case corresponding to c and  

negatively correlated (Low, 2008)  

In case of non-normal distributions, they need to be replaced by equivalent normal 

distributions centred at the equivalent normal mean values and the modified equation is 

 𝛽 =  𝑚𝑖𝑛𝒙∈𝑭√[
𝒙𝒊 − 𝝁𝒊

𝑁

𝝈𝒊
𝑁

]

𝑇

 𝑹−1  [
𝒙𝒊 − 𝝁𝒊

𝑁

𝝈𝒊
𝑁

] (6.12) 

where μi
N and 𝝈i

N are the mean and standard deviation of the equivalent normal distributions, 

respectively. Eq. (6.12) can be written as (Low and Tang, 2007): 

 𝛽 =  𝑚𝑖𝑛𝒙∈𝑭√[𝒏]𝑇 𝑹−1 [𝒏] (6.13) 
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where [𝒏] is the vector with the equivalent standard normal values ni, which can be 

calculated by 

 𝑛𝑖 =  Φ−1[𝐹(𝒙𝒊)] (6.14) 

where Φ-1 is the inverse of the standard normal cumulative distribution function (CDF) and 

F(xi) is the original non-normal CDF evaluated at xi. The procedure proposed by Low and 

Tang (2004, 2007) is implemented in an Excel spreadsheet and the constrained 

minimization of Eq. (6.13) to calculate β uses the solver built-in in Excel. 

The conventional way to apply the FORM procedure proposed by Low and Tang (2004, 

2007) requires, as inputs, the probability distributions representing the variability of the 

geotechnical parameters. However, the procedure can also be applied to the posterior 

distributions of the geotechnical parameters estimated with a Bayesian analysis as 

described by Contreras and Brown (2018). In this case, the FS and the square root term in 

Eq. (6.13) can be calculated for every point of the sample. In this way, the constrained 

minimisation reduces to screening the points where FS = 1 and selecting the point with the 

minimum value of the square root term. 

The plot in Figure 6.14 illustrates the application of the method to the posterior samples of 

the equivalent M-C parameters shown in Figure 6.12. The sample includes 50,000 sets of c 

and , with mean values of 280 kPa and 39°, respectively. The points provide sufficient 

information to define the CDF values of any point in the sample, as well as the correlation 

matrix (R) of the parameters. Therefore, Eqs. (6.13) and (6.14) can be used to calculate, at 

every point of the sample, the distance term whose minimum value represents the β index. 

The sampled c and  values plotted in Figure 6.14 are used to calculate the reliability of the 

slope of the example case described in Section 6.5. The performance function of the slope 

is represented by a polynomial function derived with the RS methodology as described in 

Section 6.4. The FS is calculated with this function for every point in the sample. The 

screened points from the sample where FS = 1 are shown in the plot as blue dots and they 

define the LSS. The red point (c = 234 kPa,  = 34°) corresponds to the minimum distance 

term and defines the design point with β = 1.62. 
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Figure 6.14 Calculation of the reliability index β with the FORM as described by Low and Tang (2004, 

2007), using the posterior distributions of c and  from the equivalent H-B parameters inferred with 

a Bayesian analysis 

6.4 Performance function of the slope with response surface 

The analysis of reliability with the FORM procedure using the MCMC posterior samples 

requires the slope stability model in an explicit form. This requirement can be satisfied by 

creating a surrogate model expressed in polynomial form using the RS methodology. The 

procedure is based on fitting polynomial functions to a limited number of results of planned 

runs with the main model. There are various types of methods used to construct surrogate 

models with the RS methodology; those methods more commonly used in geotechnical 

engineering are based on polynomial regression. Two common types of polynomial methods 

are the quadratic polynomial without cross terms and the product of the quadratic functions 

defined for each variable. Contreras and Brown (2018) compared the two methods in terms 

of the errors in the predictions of FS for the same case example described in this paper. The 

results indicate that the product of quadratic functions is the more effective method of 

producing smaller errors in the prediction of FS values. 

The RS method based on the product of quadratic functions is described by Steffen et al. 

(2008) in the context of the probability of failure (PF) calculation in mine slope design. The 

technique uses an arrangement of values of FS calculated with a slope model resulting from 

changing one variable at a time from its mean value. The input variables xi and the FSi 
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responses are normalised to their mean values, defining the input factors ξi and the response 

factors δi as follows: 

 𝜉𝑖 =
𝑥𝑖

𝑥𝑖 𝑚𝑒𝑎𝑛
 

 

(6.15) 

 
𝛿𝑖 =

𝐹𝑆𝑖

𝐹𝑆𝑚𝑒𝑎𝑛
 

(6.16) 

The trends of δ versus ξ for each uncertain variable are fitted with the second order 

polynomial function: 

 𝛿𝑖 = 𝑎𝑖𝜉𝑖
2 + 𝑏𝑖𝜉𝑖 + 𝑐𝑖 (6.17) 

The group of n polynomial functions of δi versus ξi constitutes the RS and can be used as a 

replacement of the model to estimate FS values for any combination of input variables using 

 𝐹𝑆 = 𝐹𝑆𝑚𝑒𝑎𝑛 𝛿1(𝜉1) 𝛿2(𝜉2) … . 𝛿𝑛(𝜉𝑛) (6.18) 

Figure 6.15 illustrates the methodology for a situation with the four uncertain variables from 

the H-B criterion used for the calculation of the FS of a slope. The curves represent the 

response of the FS to variations of each of the uncertain variables. The respective quadratic 

polynomial function is indicated at the top of each graph. The graphs were constructed using 

the data listed in Table 6.1. The intervals of variation of the input parameters defining the ‘+’ 

and ‘-’ cases correspond to the bounds of the 95% HDI of the posterior probability 

distributions of σci, mi and GSI described in Section 6.2. The factor D is modelled with a 

triangular distribution and in this case, the points of analysis correspond to the maximum 

and minimum values. The slope stability analyses correspond to the case example 

described in Section 6.5. 
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Figure 6.15 Illustration of derived influence coefficients δi for RS of FS from data in Table 6.1 

The RS is used within the FORM process to calculate the FS of the slope for every set of 

input parameters. However, the RS is centred at the mean values and an error in the 

estimation is expected at points not close to the mean, for example where the LSS is located. 

For this reason, the FORM calculation is repeated with a new RS centred at a point close to 

the calculated design point from the previous iteration. This procedure is repeated until there 

is consistency between the actual FS and the RS prediction at the design point. The 

convergence of the process is facilitated by defining the new RS centre from linear 

interpolation using the following equation (Contreras and Brown, 2018, adapted from Bucher 

and Bourgund, 1990): 

 𝑥1 = 𝑥0 + (𝑥∗ − 𝑥0)
(𝐹𝑆0 − 1)

(𝐹𝑆0 − 𝐹𝑆∗)
 (6.19) 

where x1 is the new midpoint for the new RS, x0 is the initial midpoint (mean), x* is the 

calculated design point, FS0 is the FS at the initial midpoint, and FS* is the FS at the design 

point calculated with the slope model. The reliability index calculated with the second RS 

centred near the design point generally converges to a stable solution. 
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Table 6.1 Input values and FS results for construction of RS 

 
Model 

 

Uncertain 
variable 

Input values FS 

‘-‘ case mean ‘+’ case ‘-‘ case mean ‘+’ case 

H-B 

σci (MPa) 50.3 59.3 68.7 1.17 1.23 1.29 

mi 7.1 13.3 20.0 1.03 1.23 1.38 

GSI 37.9 39.7 41.5 1.18 1.23 1.29 

D 0.60 0.80 1.00 1.44 1.23 0.98 

M-C 
c (kPa) 226.1 280.3 335.3 1.11 1.20 1.29 

 (°) 33.1 39.1 44.6 1.05 1.20 1.36 

 

6.5 Back analysis of slope failure 

The reliability analysis of the slope corresponds to a forward analysis where the expected 

performance of the slope is estimated from the input parameters and the slope model. The 

Bayesian approach can also be used to incorporate the observed performance of the slope 

to improve the estimation of the input parameters. This is the case of a back analysis of 

slope failure where the condition FS = 1 can be incorporated into the analysis as observed 

data. In this case, the more likely values of the input parameters are sampled from a 

posterior function that includes the posteriors from the intact rock strength analysis, the GSI 

chart calibration and the FS calculation. 

The posterior function according to the Bayes’ rule defines the probability of the parameters 

for inference contained in the vector θ as expressed in Eq. (6.1). In the back analysis of 

failure case, θ = (σci, mi, σs, νs, ρ0, ρ1, ρ2, σg, νg, D, σf), which includes the geotechnical 

parameters described in Section 6.2, and the parameters of the Student’s t and normal 

distributions used to model the errors. The likelihood functions L1 corresponding to the intact 

rock strength estimation and L2 to the GSI chart calibration, are defined by Eqs. (6.6) and 

(6.9), respectively. The likelihood functions L1 and L2 use t-distributions to evaluate the 

errors. The likelihood function L3 describing the observations of failure in the FS calculation 

is based on a normal distribution to evaluate the errors. The normal distribution is defined 

by two parameters and its pdf at x can be expressed as Npdf (x, mean, standard deviation). 

Hence, L3 is written as 
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𝐿3(𝜎𝑐𝑖, 𝑚𝑖 , 𝐺𝑆𝐼𝑚𝑒𝑎𝑛, 𝐷, 𝜎𝑓|𝐹𝑆1𝑗)

= ∏ 𝑁𝑝𝑑𝑓(𝐹𝑆1𝑗  𝑓𝑟𝑜𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠; 𝐹𝑆𝑓𝑟𝑜𝑚 𝑅𝑆 𝐸𝑞. (18); 𝜎𝑓)

𝑛4

𝑗=1

 
(6.20) 

where FS1 represents the observation of a failure event and n4 corresponds to the number 

of observations of this event. The compounded posterior function used for the inference of 

parameters with the back analysis of the slope failure is expressed as follows: 

 𝑝(𝜃|𝑑𝑎𝑡𝑎) = 𝑘 𝐿1𝐿2𝐿3 𝑝(𝜃) (6.21) 

The prior probabilities of the parameters are represented by uniform distributions defined 

with the boundaries of credible ranges of variation of each parameter. The disturbance factor 

D is defined with a triangular distribution as described in Section 6.2.4. The posterior function 

in Eq. (6.21) is evaluated with an MCMC procedure to obtain representative samples of the 

parameters in θ. 

6.6 Illustrative example 

The use of the geotechnical parameters inferred with the Bayesian approach is 

demonstrated with the reliability analysis and the back analysis of failure of the slope shown 

in Figure 6.16. This example was used by Contreras and Brown (2018) to compare various 

procedures of reliability evaluation. The same example is included in the present paper in 

order to update various aspects of the rock mass characterisation process and to extend 

the analysis to the updating of parameters from observed slope performance. The slope is 

210 m high, with a 52 overall angle and it is excavated in a rock mass characterised with 

an H-B strength criterion. 

The stability analysis was based on the limit equilibrium method and was carried out with 

the program Slide from Rocscience (2016). The analyses include deterministic calculations 

of FS for the construction of the RS and the probabilistic analysis of reference to compare 

with the FORM evaluation. The probabilistic analysis includes 100,000 MC trials with inputs 

drawn from beta distributions fitted to the respective posterior distributions described in 

Section 6.2. Table 6.2 summarises the input data used for the stability analysis with the 

program Slide. The FS was also calculated with the RS described in Section 6.4, using the 
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same MC trial inputs of the slope model analysis to verify the efficacy of the RS as a 

surrogate slope model. 

 

Figure 6.16 Geometry of the slope for the example of the analysis of reliability. The homogeneous 

rock mass is characterised by H-B strength parameters σci, mi, GSI and D; and the respective 

equivalent M-C parameters c and  (Contreras and Brown, 2018) 

 

Table 6.2 Input data for slope stability analyses with program Slide 

Model 
Uncertain 

variable 
Distribution Mean 

Standard 

deviation 

Relative 

minimum 

Relative 

maximum 
CC 

H-B 

σci (MPa) Beta 59.3 4.7 15.3 18.7 
0.00 

mi Beta 13.3 3.5 8.3 13.7 

GSI Beta 39.7 0.9 3.5 3.1  

D Triangular 0.80  0.2 0.2  

M-C 
c (kPa) Beta 280.3 28.3 90.3 89.7 

0.99 
 (°) Beta 39.1 3.0 10.1 8.9 

Note: CC – Coefficient of correlation 

6.6.1 Analysis of the reliability of the slope 

Contreras and Brown (2018) examined the slope reliability analysis with the FORM 

approach using different variants of the method. They validated the procedure using the 

MCMC samples from a Bayesian analysis presented in this paper. Table 6.3 shows the main 

results of the analysis for the slope characterised with the H-B parameters. The analyses 
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include two iterations to ensure that the design point is on the LSS as predicted with the RS. 

The first iteration uses RS1 which is constructed with points arranged around the mean 

values, and the second iteration uses RS2 which is based on points arranged around the 

design point from iteration 1. The scatter plots shown in Figure 6.17 correspond to the results 

of the second iteration and include the mean values, the LSS and the design point. The 

distance between the mean and design points provides a visual indication of the available 

contribution from each parameter to the strength of the rock mass. The results of Figure 6.19 

suggest that D and mi are the parameters with more capacity for stability. 

Table 6.3 Summary of results of FORM analyses of the slope with H-B parameters 

Iteration RS 

Centre of RS Design point 

σci 

(MPa) 
mi GSI D 

FS 

RS 
β 

σci* 

(MPa) 
mi* GSI* D* 

FS 

model 

1 RS1 59.3 13.3 39.7 0.80 0.999 1.72 60.1 10.4 39.2 0.92 0.996 

2 RS2 60.1 10.5 39.2 0.92 1.001 1.78 61.1 9.0 39.5 0.89 1.003 

Note: The parameters followed by an asterisk correspond to the design point. 

Similarly, the results of the FORM analysis with the equivalent M-C parameters are shown 

in Table 6.4 and Figure 6.18. The visualisation of the elements of the FORM analysis is 

much simpler with the two-dimensional rock strength model. In this case, the more relevant 

feature of the results is the high correlation between c and  and the clear outlining of the 

LSS. The similarity between the distances from the design point to the mean indicates a 

balanced contribution from both parameters to the stability of the slope. 
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Figure 6.17 Scatter plots of the H-B strength parameters and FS values, including the mean values 

(white dots), the points on the LSS (blue dots) and the design point (red dots). The results correspond 

to the second iteration of analysis considering an RS centred in the calculated design point from the 

first iteration (Contreras and Brown, 2018) 

 

Table 6.4 Summary of results of FORM analysis of the slope with M-C parameters 

Iteration RS 

Centre of RS Design point 

c 

(kPa) 
 (°) FS RS β 

c* 

(kPa) 
* (°) 

FS 

model 

1 RS1 280.3 39.1 1.001 1.68 233.5 34.0 0.999 

2 RS2 233.7 34.0 1.001 1.62 234.6 34.2 1.014 

 



199 

 

 

Figure 6.18 Scatter plots of the M-C strength parameters and FS values, including the mean values 

(white dots), the points on the LSS (blue dots) and the design point (red dots). The results correspond 

to the second iteration of analysis considering an RS centred in the calculated design point from the 

first iteration (Contreras and Brown, 2018) 

Table 6.5 shows a summary of the results of the reliability analyses for the two strength 

models considered. The direct calculations of PF and  from the probabilistic analysis with 

the program Slide (procedure 1) is compared with the FORM analysis using the MCMC 

samples from the Bayesian inference of parameters (procedure 4). The MC trials from 

procedure 1 were also used with the RS model to verify its efficacy as a surrogate slope 

model (procedure 2). The MCMC samples were also used for the direct calculation of PF 

and  with the RS (procedure 3) to validate the results with the FORM approach. 

The results from procedures 1 and 2 are similar, suggesting an acceptable performance of 

the RS as a surrogate model. These procedures are based on the MC trials with the slope 

model, which cannot represent the correlation between σci and mi due to limitations of the 

program Slide. This situation may be a factor contributing to the difference with the result 

based on the MCMC samples, for the H-B model case. However, the results from all the 

procedures have a good agreement for the M-C model case. The results from procedures 3 

and 4 are similar in all cases, indicating the adequate performance of the FORM approach. 

The argument in favour of the results based on the posterior samples from the Bayesian 
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analysis is that they correspond to a more accurate representation of the uncertainty of the 

input parameters as compared with the case of the fitted beta distributions used to draw 

samples with the MC procedure in Slide. The weakness of the procedures based on the 

MCMC samples is that they use a surrogate model to represent slope performance; 

however, the effect of this drawback is minimised in the FORM approach with the iterative 

procedure used to update the RS so that the new RS is centred closely to the design point. 

Table 6.5 Summary of results of reliability analysis 

Model No. Procedure 
Input 

distribution 
CC FS det FSmean PF β 

H-B 

1 Slide + MC trials Beta a 0 1.229 1.216 6.03% 1.561 

2 RS + MC trials Beta a 0 1.229 1.217 6.01% 1.536 

3 RS + MCMC points Posterior b -0.59 1.229 1.214 4.01% 1.711 

6 FORM + MCMC points Posterior b -0.59 1.229  3.76% 1.779 

M-C 

1 Slide + MC trials Beta a 0.97 1.201 1.204 4.77% 1.648 

2 RS + MC trials Beta a 0.97 1.201 1.206 4.49% 1.646 

3 RS + MCMC points Posterior b 0.97 1.201 1.207 4.66% 1.644 

6 FORM + MCMC points Posterior b 0.97 1.201  5.23% 1.623 

a Sampled with the MC method; b Sampled with the MCMC algorithm. 

 

6.6.2 Back analysis of slope failure 

The reliability analysis described in the previous section corresponds to a forward stability 

analysis of the slope where the FS is calculated with a surrogate model from the more likely 

values of the input parameters. These values are defined within the Bayesian framework as 

a balanced outcome between prior information and data. Figure 6.19 shows the scatter plots 

and histograms of the input parameters and the calculated FS of the slope example. This 

plot is equivalent to the corner plot in Figure 6.17, where the sample points have been 

replaced by density contours. The Bayesian model can also be used to update the 

estimation of the input parameters based on the performance of the slope for the situation 

when slope failure is observed. In this case, the condition FS = 1 is treated as a data point 

that can be compared with the model prediction of FS. Figure 6.20 shows the scatter plots 

and histograms of the input parameters and the FS of the slope for a back analysis of slope 

failure supported by 10 observations of this event. 
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Figure 6.19 Scatter plots and histograms from the forward stability analysis of the slope based on 

the Bayesian inference of geotechnical parameters 

 

Figure 6.20 Scatter plots and histograms from the back analysis of slope failure including the 

Bayesian updating of geotechnical parameters for the case of 10 observations of slope failure 
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The back analysis of slope failure requires a sufficient number of observations to outbalance 

the effect of the initial input parameters. The input parameters are updated according to their 

uncertainty, which is determined by the amount of data supporting them. For example, factor 

D is based on prior information, without any data support, and for this reason, it is the 

parameter that is more affected by the updating process. Nevertheless, the other 

parameters sustain minor adjustments based on their data support. The plot in Figure 6.21 

shows the relationship between the number of slope failure observations included in the 

analysis and the variability of the calculated FS. The forward analysis corresponds to the 

case of zero observations of failure and the graph indicates that for this example, at least 

five observations of failure are required to enforce the slope failure condition. 

 

Figure 6.21 Relationship between the number of observations of failure and the variability of the FS 

from the back analysis of slope failure. At least five observations are required to outbalance the effect 

of the initial input parameters 

The updating of the input parameters from the back analysis of failure can be better 

appreciated with their histograms as shown in Figure 6.22. The graph includes the 

distributions of the parameters used in the forward analysis and the updated distributions 

when the failure condition is imposed with 10 observations of failure. The analysis 

corresponds to the case where the intact rock strength estimation is based on 23 data points 

(8 UCS + 15 TCS), as described in Section 6.2.2. The prior distributions of these parameters 

are also included in the graph. The main adjustment occurs in the factor D, which is not 
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supported by data. The second major adjustment occurs in the parameter mi, which is 

supported by TCS data. The GSI is slightly affected by the updating process, suggesting 

adequate data support. The σci parameter is hardly modified, indicating that the number of 

UCS values provides strong support of this parameter. 

 

Figure 6.22 Histograms of input parameters and FS, including the forward analysis of stability and 

the back analysis based on 10 observations of slope failure. Intact rock strength parameters based 

on 23 data points (8 UCS + 15 TCS) 

The effect of data support on the updating process can be appreciated in Figure 6.23, which 

includes the histograms of parameters from the forward and back analyses of failure for the 

case where the intact rock strength parameters are supported by 10 data points (5 UCS + 5 

TCS), as described in Section 6.2.2. In this case, there is a larger uncertainty in the H-B 

envelope, which is manifested in the wider spread of mi values as compared with the case 

shown in Figure 6.22. For this reason, a larger adjustment of mi occurs during the updating 

process, highlighting the relationship that exists between data support, the uncertainty of 

the parameter and its updating potential. 
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Figure 6.23 Histograms of input parameters and FS, including the forward analysis of stability and 

the back analysis based on 10 observations of slope failure. Intact rock strength parameters based 

on 10 data points (5 UCS + 5 TCS) 

The Bayesian back analysis of slope failure can be used for the calibration of parameters 

that are difficult to quantify such as the factor D, provided that there is good data support for 

the remaining parameters. The methodology is also useful to identify deficiencies in data 

support indicated by larger adjustments from the updating process. 

6.7 Conclusions 

The Bayesian inference of the geotechnical parameters has advantages over the 

conventional methods of statistical analysis used for this purpose. The Bayesian approach 

provides an adequate quantification of the uncertainty of the rock mass strength parameters 

used for slope design. The results of the analysis include representative samples of σci, mi 

and GSImean values, with information on their variability and correlations. The methodology 

also shows the relationship between data quantity and the uncertainty of the inferred 

parameters. The posterior samples of the H-B parameters from the Bayesian analysis can 
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be used to create posterior samples of equivalent M-C parameters c and φ for a specified 

maximum confining stress level. The result carries the high correlation structure typical of 

the M-C parameters. 

The conventional FORM analysis of reliability considers predefined probability distributions 

to represent the variability of the uncertain parameters and it is based on a constrained 

minimisation of a function. The distributions are commonly the result of a fitting analysis 

where data or samples of parameter values are used as the source information. In contrast, 

the FORM method presented in this paper for the slope reliability assessment uses the 

posterior distributions from the Bayesian analysis to represent the input parameters and the 

FS and distance to the mean are calculated for every point of the sample. In this way, the 

constrained minimization is reduced to screening the samples where FS = 1.0 and finding 

the point with the minimum distance to the mean. The method uses a surrogate slope model 

defined with the RS methodology as the performance function to define the LSS. 

There are slight differences between the results from the analysis with the program Slide 

and the FORM, for the H-B model case. The analyses based on MC sampling from fitted 

distributions resulted in smaller PF and larger β values than those using the original MCMC 

posteriors. The argument in favour of the results based on the posterior samples from the 

Bayesian analysis is that they correspond to a more accurate representation of the 

uncertainty of the input parameters as compared with the case of the fitted beta distributions 

used to draw samples with the MC procedure in Slide. The structure of the posterior samples 

carries the information provided by the data used in the analysis, but this structure is not 

reproduced in complete detail with the MC sampling due to limitations of the program Slide 

to represent the correlation between σci and mi. In contrast, the results from both procedures 

have a good agreement for the M-C model case. 

The Bayesian approach is also used to update the estimation of the input parameters from 

the back analysis of slope failure. In this case, the condition FS = 1.0 is treated as a data 

point that can be compared with the model prediction of FS. The back analysis of slope 

failure requires a sufficient number of observations of slope failure to outbalance the effect 

of the initial input parameters. For the slope example presented in this paper, at least five 

observations of failure are required to enforce the failure condition. The input parameters 

are updated according to their uncertainty, which is determined by the amount of data 
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supporting them.  For example, the D factor is based on prior information, without any data 

support, and for this reason, it is the parameter that is more affected by the updating process. 

The influence of data support on the results of the updating process was confirmed for the 

slope example case by comparing the updating results for the cases of intact rock strength 

supported by 10 and 23 data points. The example of parameter updating from back analysis 

of slope failure illustrates the relationship that exists between data support, uncertainty of 

the parameter and its updating potential. The methodology is useful for the calibration of the 

D factor, which is difficult to quantify, and for the identification of deficiencies in data support 

indicated by larger adjustments from the updating process.  

The examples of slope reliability and back analysis of failure presented in this paper serve 

to illustrate the potential of the Bayesian approach for the inference of geotechnical 

parameters. The methodology combines prior information, data from laboratory and site 

investigations, and observed performance of the slope, to provide a balanced result. 
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List of abbreviations 

CDF  Cumulative distribution function 

FORM  First order reliability method 

FS  Factor of safety 

GSI  Geological Strength Index 

H-B  Hoek-Brown (strength criterion or parameters) 

HDI  Highest density interval 
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LSS  Limit state surface 

M-C  Mohr-Coulomb (strength criterion or parameters) 

MC  Monte Carlo 

MCMC  Markov chain Monte Carlo 

pdf  Probability density function 

PF  Probability of failure 

RS  Response surface 

TCS  Triaxial compression strength 

UCS  Uniaxial compression strength 
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Chapter 7 - Conclusions and Future Research 

7.1 Conclusions 

The overall objective of the PhD thesis was to explore the Bayesian approach of statistical 

analysis for the inference of parameters and to assess its applicability for the 

characterisation of the geotechnical model for slope design in open pit mining. The main 

tasks for the attainment of this objective included the understanding of the conceptual basis 

of the approach, the comparison with the conventional classical approach used in slope 

design, and the application of the approach to simple problems found in the slope design 

process. The outcome of these tasks is reflected in the four papers included in Chapters 3 

to 6.  

The Bayesian approach is normally presented in the literature using a formal mathematical 

framework, which has precluded its diffusion within the mining geotechnical community. 

Therefore, the presentation of the approach in the thesis favours intuitive descriptions aiming 

to a wider audience of geotechnical practitioners. The specific outcomes of the topics treated 

in the papers were summarised in the previous chapter and can also be found in the 

conclusions section of each paper. The most significant overall conclusions from the work 

presented in the thesis are summarised as follows. 

(1) The Bayesian approach of statistical analysis is more suitable for the quantification 

of the geotechnical uncertainty in slope design as compared with the classical 

approach (frequentist). The two approaches are based on different definitions of 

probability and different sets of assumptions that suit different types of uncertainty. 

The scarcity of data is a common occurrence in the slope design process and the 

corresponding knowledge uncertainty (epistemic) derived from this situation is better 

treated with Bayesian methods. In contrast, classical methods are meant to treat 

aleatory uncertainty (natural variation), which implies the availability of abundant 

information for its characterisation. 

(2) The use of the classical approach of statistical analysis is generalized in the mine 

slope design process mainly because it is perceived as the only available option. In 

addition, most geotechnical engineers have a rudimentary understanding of the 
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conceptual framework of the approach, which normally causes the misinterpretation 

of its results. A notorious example of this situation is the incorrect interpretation of the 

CI, whose actual meaning differs from that normally assigned by the analyst based 

on his/her needs. Interestingly, the wished interpretation of the CI in the classical 

approach is the actual interpretation of the HDI in the Bayesian approach. This 

observation supports the statement that the Bayesian approach addresses the 

question of interest to the geotechnical engineer. 

(3) One of the more attractive features of the Bayesian approach for the inference of 

geotechnical parameters is the possibility of using other sources of information not 

represented by data, in addition to the conventional data sets. This means that 

subjective information such as expert opinion or engineering judgement can be 

incorporated formally into the slope design process. In contrast, the classical 

approach of statistical analysis only allows the use of data, which ideally should be 

the result of a random sampling process to have meaningful results. 

(4) The Bayesian model for the inference of parameters is not constrained by the number 

of uncertain variables. Therefore, the data sets, geotechnical parameters and prior 

information conventionally used in the mine slope design process can be encoded in 

a posterior pdf that captures the interdependencies between all the parameters. The 

samples drawn from this distribution with an MCMC procedure are a good 

representation of the geotechnical parameters for design, reflecting the balance 

between data and prior information.  

(5) The method for the Bayesian inference of parameters can be applied to a range of 

situations from single rock properties and basic characterisation models through to 

higher-level models that combine the simpler models. Examples of these types of 

applications include inference of the mean UCS (paper-I), inference of the intact H-B 

strength parameters σci and mi (paper-II), inference of the GSI chart parameters 

(papers III and IV) and inference of the H-B rock mass strength parameters using 

observations of slope performance (paper-IV). 

(6) The results of the Bayesian analysis enable a rational assessment of the sufficiency 

of data at different stages of project development. The results reflect the balance 

between prior information and data; therefore, if data is weak the prior knowledge 
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dominates the result. As more data is collected the Bayesian results move toward 

stable values that are unaffected by the prior component. The prior serves in this 

case to test the strength of data and this behaviour provides the analyst with a good 

reference to judge the adequacy of the data set. 

7.2 Future research 

The research work presented in the thesis enabled the identification of specific benefits of 

using the Bayesian approach for the inference of the geotechnical parameters for slope 

design in open pit mining. However, some of these benefits need more evaluation as 

explained in this section.  

The specific benefits of using the approach for mine slope design are:  

(1) It allows the formal use of prior knowledge (engineering judgement, expert opinion). 

(2) It provides richer and intuitive quantification of the confidence of parameters (i.e. HDI 

from posterior distribution is better than CI). 

(3) It facilitates the adequate handling of outliers without subjective manipulation of data 

sets. 

(4) It produces results where the correlation between parameters is an output, not an 

assumption. 

(5) It enables a rational assessment of the sufficiency of data from the updating process 

(e.g. by checking the balance between prior knowledge and data at different stages). 

(6) It allows the construction of hierarchical models that incorporate multiple sub-models 

with numerous parameters into a single high-level model to improve the updating 

process (e.g. rock mass characterisation sub-models embedded into slope stability 

model). 

(7) It can make use of data from slope performance for model calibration to support the 

inference of geotechnical parameters (e.g. observations of slope failure or slope 

displacements). 
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All these benefits have been discussed in varying degrees of detail, including illustrative 

examples, in the papers of Chapters 3 to 6. However, points (5) to (7) require further 

evaluation using data sets from actual mine sites as a necessary step to define criteria to 

judge data requirements and to develop more elaborated models for inference of 

parameters. These topics are described in more detail next. 

7.2.1 Assessment of sufficiency of data 

The relationship between data quantity and the uncertainty of the inferred parameters was 

illustrated for the case of the H-B intact strength parameters σci and mi, in the example 

presented in Section 6.2.2. The graphs in Figure 7.1 correspond to that example and show 

the changes in the mean value and the width of the 95% HDI of the inferred parameters for 

an increase in the number of data points from five to twenty-three. The data points include 

UCS and TCS test results, which have a predominant influence on σci and mi, respectively. 

These graphs show that the mean values and the variability of the parameters tend to a 

stable situation after a certain number of data points, which is a behaviour that could be 

used to assess the sufficiency of data. The issue of determining the minimum number of 

laboratory tests required to define the mechanical properties of rocks was investigated by 

Gill et al. (2005) using concepts of classical statistics. 

 

Figure 7.1 Relationship between the number of data points and the variability of the intact H-B rock 

strength parameters σci and mi from the example presented in Section 6.2.2 
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The graphs in Figure 7.1 provide a qualitative reference to define the sufficiency of 

laboratory testing data for the characterisation of the intact rock strength. However, they 

could also be useful to derive specific criteria to assess the number of test results required 

for a particular project stage. For example, the percentages of change of the mean and width 

of HDI could serve as a measure of the degree of convergence of the estimates. Table 7.1 

shows the percentages of change relative to the previous data stage, normalised to the 

number of added data points, for the intact rock strength parameters inferred according to 

the stages depicted in Figure 7.1. 

Table 7.1 Percentages of change of inferred parameters with the number of data points 

Data stage 

No. data 

points Type of data 

% change σci % change mi 

mean HDI width mean HDI width 

1 5 5UCS+0TCS     

2 10 5UCS+5TCS 6.6% -21% -4.2% -12% 

3 18 8UCS+10TCS -0.3% -2% -2.3% -10% 

4 23 8UCS+15TCS 0.1% -0% -1.0% -4% 

 

The study of the relationship between parameter variability and data quantity, including the 

definition of criteria to assess the sufficiency of data, could be a topic for further research. 

This study could include analyses similar to that presented in Figure 7.1, using different 

databases and considering other geotechnical parameters. 

7.2.2 Hierarchical model for inference of parameters from slope performance 

The concept of Bayesian updating of geotechnical parameters described in Section 2.6.6 

can be applied to the geotechnical model for slope design. In this case, classical Bayesian 

updating can be used for the estimation of parameters such as UCS, σci, mi, GSI, base 

friction angle (Φb), joint roughness coefficient (JRC) and joint compressive strength (JCS).  

These analyses imply the fitting of data from laboratory or in-situ measurements to 

predictions with the pertinent models such as Hoek-Brown intact rock strength, GSI and 

Barton-Bandis joint strength.  The Bayesian updating model based on slope performance 

can be implemented by comparing the deformation measurements routinely taken during 
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the mine operation, with predictions encoded in a polynomic function defined with a 

response surface methodology. This slope performance model is a hierarchical Bayesian 

model that includes the rock characterisation models as component sub-models. 

Figure 7.2 illustrates how the Bayesian updating of geotechnical parameters can be 

incorporated into the conventional mine slope design process.  This concept is developed 

further in the diagram of Figure 7.3, which shows the structure of the component modules 

of the overall hierarchical model. The major components include the intact rock strength, the 

rock mass quality and the joint strength modules that feed information into the slope 

performance model.  Each module includes one or more sub-models for the estimation of 

specific parameters. Every sub-model comprises the prior information on the target 

parameters, the model function and the data set to fit the function. The data sets can be 

global or local as required. For example, if the objective is to define the factor α1 that relates 

UCS and PLT, a global database can be used to establish an ad hoc factor. The estimated 

α1 factor not only honours the data but also accounts for the constraints imposed by the 

other components of the model. The approach of using global databases linked to the overall 

model to re-evaluate parameters provides estimates tailored for the project under 

evaluation. These parameters would otherwise be pre-defined deterministic values. 

The intact rock strength module in Figure 7.3 uses the Hoek-Brown strength criterion to fit 

data from UCS and TCS testing with the purpose of estimating σci and mi and their 

correlation characteristics. The local database of PLT is used to supplement the UCS data 

set using the correlation factor estimated from the global database. 

The rock mass quality module uses the definition of the GSI system to fit measurements of 

Vb and JC to GSI data collected for calibration purposes. The estimated factors ρ1, ρ2, and 

ρ3 are used with a local database of Vb and JC measurements to supplement the GSI 

database. The rock mass quality result corresponds to the mean GSI used for the slope 

stability analysis. 

The joint strength module uses the Mohr-Coulomb strength criterion to fit data from direct 

shear tests on saw-cut surfaces, yielding estimates of the base friction angle (Φb) as a result. 

These estimates are used by the second model in the module that uses the Barton-Bandis 

joint strength criterion to fit data from direct shear tests on natural joints to get estimates of 

JRC and JCS. 
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Figure 7.2 Bayesian updating of geotechnical parameters in the mine slope design process  
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Figure 7.3 Component sub-models of the hierarchical model for Bayesian updating of geotechnical parameters 
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The slope performance model defined with the response surface methodology uses the rock 

parameters estimated with the various sub-models as outlined in Figure 7.3. The predictions 

with the slope performance model are compared with actual field measurements and this 

process introduces an additional constraint that is informed back into the component sub-

models, resulting in a better estimation of the geotechnical parameters. Juang et al. (2013) 

describe a similar approach to update soil parameters using field measurements of 

deformation of braced excavations. 

An important factor having an influence on the predicted deformations of the slope is the 

modulus of deformation of the rock mass (Erm). The conventional way to estimate the 

modulus of deformation for the mine slope design is based on the empirical correlation 

proposed by Hoek and Diederichs (2006), which relates modulus measurements with 

various rock mass properties.  The modulus depends on GSI and D when the simplified 

correlation is considered. If there is a local database of Erm versus GSI, the modulus 

correlation can be used as an additional criterion to estimate D. In this case, the rock mass 

modulus module in Figure 7.3 should be linked with the slope performance model. If local 

modulus data is not available then the rock mass modulus should be updated consistently 

with changes of GSI and D within the slope analysis. 

The model outlined in Figure 7.3 considers 25 parameters including seven rock mechanics 

parameters (σci, mi, GSI, D, Φb, JRC, JCS), four model calibration parameters (α1, ρ1, ρ2, ρ3) 

and fourteen nuisance parameters (νi and σi for i = 1 to 7 to model the errors with Student 

t-distributions). 

The sub-models depicted in this diagram can be implemented in the appropriate computer 

code and can be tested independently before they are incorporated into the overall model. 

The intact rock strength sub-model is completed and it was described in papers II and IV. 

The rock mass quality sub-model is completed and it was described in papers III and IV. A 

simple slope performance model including the two previous sub-models was described in 

Paper-IV, considering a single rock unit and the slope performance represented by 

observations of failure. A topic for further research could include the development of the 

hierarchical model described conceptually in Figure 7.3, including the joint strength module. 

This model could be tested with actual datasets of slopes with multiple geotechnical units. 
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