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Abstract 

Muscovite is a hydrophilic, platy micaceous mineral, classified as a phyllosilicate. Previous 

research identified that micas and clays can have a deleterious effect on the flotation of 

sulfide minerals; for example, the presence of muscovite is associated with an increase in 

pulp viscosity, the formation of slime coatings and high recovery of muscovite through 

entrainment. The majority of previous studies relating to the effect of mica and clays on 

sulfide minerals were conducted using copper ores. Barrick Gold Corporation has a sub-

economic refractory gold orebody with a high content of muscovite. The flotation circuit 

designed for this project has a high capital cost, due to the high throughput and the relatively 

long residence time required to recover the gold-bearing sulfide mineral. In addition, 

muscovite is readily recovered to the concentrate, which affects downstream processes.  

The effect of the presence of muscovite on the flotation of pyritic gold-bearing minerals has 

not been reported in the literature. This work investigates the effect of muscovite on pyrite 

and arsenopyrite floatability at laboratory-scale using a synthetic ore consisting of pyrite, 

arsenopyrite, quartz (silica) and muscovite. The experimental program applied a Central 

Composite Rotatable Design (CCRD) to identify the potential causes for the detrimental 

effect of muscovite. The aim was to identify the most significant factors affecting to the 

floatability of pyrite and arsenopyrite in this synthetic system, with the factors investigated 

being frother dosage (ppm), the percentage of solids, the percentage of muscovite in the 

gangue, pH and muscovite size distribution (P80).  

In order to investigate the underlying mechanisms behind the effects observed in the CCRD, 

zeta potential measurements were done to investigate the formation of slime coatings, 

viscosity measurements of the pulp monitored any changes in viscosity, and Time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS) 

were used to investigate changes in surface chemistry of the pyrite and arsenopyrite. The 

froth height of selected experiments was measured to detect changes on froth stability.  

The results of the CCRD analysis indicated that the factors that significantly affected the 

kinetics of arsenopyrite and pyrite are the positive interaction of pH with frother and the 

interaction of %solids with muscovite size distribution which is a negative term. It can be 

speculated that positive effect of the term pH x frother dosage on the flotation rates of 
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arsenopyrite and pyrite is due to the combined effect of the frother and pH on the froth 

stability, as limited tests showed that the increase of pH increases the froth height.  

The results showed that the proportion of muscovite in the gangue has no effect on the 

flotation rate of arsenopyrite. Furthermore, the effect of the proportion of muscovite in the 

flotation kinetics of pyrite is not deleterious and has low significance, according to the 

regression. 

No direct correlation was found between the measured viscosity and the flotation rate of 

pyrite or arsenopyrite. In addition, the proportion of muscovite in the gangue does not affect 

significantly pulp viscosity. Therefore, the presence of muscovite may not affect the flotation 

kinetics through an increase in pulp viscosity. 

No evidence of muscovite slime coatings on the pyritic minerals was found by the zeta 

potential measurements. The ToF-SIMS and XPS analyses indicated that the increase in 

the particle size distribution of muscovite was related to an increase of the levels of K and 

Al, which originate from the muscovite lattice, on the surface of pyrite. A corresponding 

decrease of the level of Cu and collector, in the presence of coarser muscovite, leads to a 

decrease of particle hydrophobicity of pyritic minerals. The leaching of K and Al from 

muscovite was found to be size-dependent, increasing with the increase in muscovite 

particle size, which explains the effect of muscovite P80 on the kinetics of arsenopyrite and 

pyrite. These results suggest that the reason for the deleterious effect of the interaction term 

%solids x muscovite P80 is due to the increase in K and Al ions on the pyritic minerals 

surfaces. As the percentage of solids increases, more muscovite is available for leaching 

and less solution is available to carry those ions; therefore, the concentration of K and Al 

ions increases significantly, leading to the slower flotation kinetics.  

In conclusion, contrary to the expected, the deleterious effect of muscovite on the flotation 

rate is not caused by physical mechanisms, such as the increase of viscosity or the formation 

of slime coatings on the surface. The dominant deleterious effect of muscovite is due to the 

chemical modification of the surfaces of pyritic minerals by K and Al ions from its lattice.  
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1 Thesis Introduction 

1.1 Overview 

Hundreds of millions of dollars are typically spent to design and build processing plants 

to extract valuable minerals from ore. The flowsheet selection at the conceptual level 

of a greenfield project is based on diagnosing the process behaviour of a broad range 

of ore types to select the most viable. The variability of the deposit is tested using a 

range of samples based on a selected flow sheet. Prediction of the plant performance 

is based on bench-scale tests performed using the major ore types that will be treated, 

according to the mining plan. (Lane et al., 2012).  

Barrick Gold Corporation (‘Barrick’) is the world’s largest gold producer, with mines, 

advanced exploration and development projects on five continents (Barrick, 2014). 

Barrick has a significant data set for its operations and greenfield projects, based on 

metallurgical test programs conducted by various vendors, using different methods to 

design and optimise process facilities (B. Gorain, personal communication, April 14, 

2014). 

Barrick has requested the JKMRC to review the project design data of a currently 

unfeasible greenfield project to determine whether they could unlock new flow sheet 

options that would allow Barrick to reduce the capital cost. The project is commercially 

sensitive, so its identity is masked by using a code name: ‘White Mountain’.  

The White Mountain project consists of a Carlin-type gold refractory deposit with 

arsenopyrite and pyrite as the main gold carriers. It is currently not feasible due to its 

high capital and operating cost. The flowsheet includes a pre-concentration of the 

arsenopyrite and pyrite via flotation, followed by pressure oxidation and carbon in 

leach process. The flotation plant has a large footprint due to the high throughput, of 

2,397 t/h, and residence time of 105 minutes for the primary and secondary rougher 

banks. The engineering studies showed that the flotation circuit alone consists of 

seventy-two 160 m3 cells, arranged in four rows in the rougher banks, eight 160 m3 
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cells in the cleaner bank and six 160 m3 cells the cleaner–scavenger circuit (B. Gorain, 

personal communication, December 24, 2014; AMTEL, 2007).  

The feasibility of the White Mountain could be improved by the reduction of the 

footprint of the flotation circuit. The identification of alternatives to reduce the residence 

time of the flotation circuit could be the key to unlocking an alternative economic 

outcome for the project. 

The assessment of the White Mountain feasibility study reports showed that the 

elevated percentage of muscovite has deleterious effects on the flotation and pressure 

oxidation circuits. The QEMSCAN analysis of the flotation streams of the pilot plant 

shows that liberated muscovite is reporting to the flotation concentrate and, as it is the 

main carrier of chlorine and fluorine, it is affecting the pressure oxidation process by 

necessitating an elevated operating temperature in the autoclave to minimise the 

chloride effect (B. Gorain, personal communication, April 14, 2014; AMEC, 2011; 

AMTEL, 2007).  

The engineering studies acknowledged the issues of having the micas and clays but 

did not model alternative scenarios with a low content of phyllosilicates, to evaluate if 

the residence time of the flotation circuit could be reduced by effectively removing the 

micas from the flotation feed. It also did not consider alternative processing routes to 

remove micas. 

Muscovite is a hydrophilic, platy phyllosilicate, classified as part of the mica group. The 

recovery of muscovite to the concentrate can occur through a range of mechanisms 

such as natural floatability (‘true flotation’), entrainment, the formation of slime coatings 

on sulfide minerals or entrapment. According to Silvester et al. (2013), muscovite does 

not have inherent natural floatability, although significant amounts report to the 

concentrate. Li et al. (2014) describe the mechanism of recovery of muscovite as 

entrainment. There are a number of potential ways which muscovite could adversely 

affect the flotation of pyrite. He et al. (2009) observed a hetero-aggregation (slime 

coating) between muscovite and chalcopyrite. Forbes et al. (2014) observed that the 

presence of slime coatings reduced the flotation rate of the chalcopyrite.  
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Pulp rheology has been identified as a factor that affects flotation rates of sulfide 

minerals and gangue entrainment (Wang et al.; 2015). The increase of muscovite 

concentration in the slurry can result in a rise in pulp viscosity (Ndlovu, 2013). He et 

al. (2009) inferred that the increase of viscosity in the pulp could be a result of the 

formation of slime coatings and or change of surface charge of minerals.  

Forbes et al. (2014) observed the presence of kaolinite, a clay phyllosilicate, reduces 

the flotation rate of chalcopyrite. In their study, an increase of pulp viscosity and 

formation of slime coating was identified. Moreover, the increase of pulp viscosity and 

formation of slime coatings have a detrimental effect on the flotation rate of sulfide 

minerals. 

Based on the literature, it is expected that the presence of muscovite in the flotation 

could cause an increase of pulp viscosity, the formation of slime coating on the surface 

of pyrite and consequently a reduction of the flotation rate of the sulfide minerals. 

Therefore, the removal of muscovite in the early stages of the process could improve 

the White Mountain flow sheet by reducing the deleterious effect of muscovite in the 

flotation circuit, consequently reducing the capital cost of the project.  

Studies mainly considered copper minerals when reporting the behaviour of muscovite 

and its effects on sulfide minerals. No studies were found to correlate the behaviour 

of muscovite with the flotation rate of pyrite and arsenopyrite, which is one of the main 

carriers of gold in Carlin-type ores.  

This thesis focuses on an investigation of flotation behaviour of pyrite and arsenopyrite 

in the presence of muscovite.  

1.2 Research Questions 

1. Does the presence of a high proportion of muscovite in an ore adversely affect 

the flotation rate of arsenopyrite and pyrite? 

2. What is the mechanism by which muscovite effects arsenopyrite and pyrite 

flotation? 
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1.3 Hypotheses  

This study has three principal hypotheses. These are: 

Hypothesis 1:  

The presence of high concentrations of muscovite has a detrimental effect on the 

flotation rate of pyrite and arsenopyrite. 

Hypothesis 2:  

The presence of muscovite affects pyrite and arsenopyrite floatability by changing pulp 

viscosity. 

Hypothesis 3: 

The detrimental effect on muscovite in the flotation rate of pyrite and arsenopyrite is 

due to modification of pyrite and arsenopyrite mineral surfaces. 

1.4 Objectives 

The central objective of this research is to understand how muscovite affects the 

flotation rate of pyrite and arsenopyrite to understand the conditions that would 

minimise the effect of muscovite on the flotation rates of the pyritic minerals. From the 

literature, the presence of muscovite is associated with increases in pulp viscosity 

(Ndlovu, 2013), the formation of slime coatings (He et al., 2009) and high recovery of 

muscovite through entrainment (Li et al. 2014; Silvester et al., 2013). The increase in 

viscosity can reduce flotation performance, and the presence of slime coatings can 

adversely affect the flotation rate of sulfide minerals (Forbes et al., 2014). The 

understanding of the factors that drives the behaviour of gangue is useful since its 

behaviour can have a deleterious effect on the flotation rate of sulfide minerals  

The objectives of this research are to:  

 Determine whether the amount of muscovite in an ore affects the flotation rate 

of arsenopyrite and pyrite 

 Identify the main factors that have a deleterious effect on the flotation 

performance of arsenopyrite and pyrite in a system containing muscovite 
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 Determine whether an increase of pulp viscosity caused by the presence of 

muscovite has a detrimental effect on the flotation rate of pyrite and 

arsenopyrite 

 Determine whether the presence of muscovite is associated with the formation 

of slime coating on arsenopyrite and/or pyrite surfaces 

 Determine whether the effect of the poor flotation rate of pyrite and 

arsenopyrite is due to surface chemistry modification. 

1.5 Scope of Work 

The study of the flotation performance was done at laboratory scale, using a synthetic 

mineral mixture consisting of pyrite, arsenopyrite, quartz (silica) and muscovite. The 

use of a synthetic mineral mixture allows the identification of specific effects of the 

mineral of interest without the interference of the complex mineralogy of the ore. In 

addition, the composition of the synthetic mineral mixture can be easily modified to 

explore the effect of changes in composition, in contrast to real ores.  

To test the hypotheses of this thesis, a large number of batch laboratory flotation tests 

were performed using a synthetic ore according to a Central Composite Rotatable 

Design (CCRD) factorial design. Factors varied included the percentage of muscovite 

in the gangue, the percentage of solids in the flotation feed and the size distribution of 

the muscovite. The aim was to understand whether the amount and type of muscovite 

in the gangue affects the flotation rates of pyrite and arsenopyrite. Other variables 

tested in the CCRD included frother dosage and pH.  

The results from the CCRD were analysed using regression analysis and the key 

variables affecting flotation rate were identified. Measurements of viscosity, ToF-SIMS 

and XPS surface analysis, muscovite leachability and froth stability were conducted 

and analysed to help interpret the experimental results.  

According to Klimpel (1984), flotation performance is affected by machine, chemistry 

and operational factors that includes ore characteristics. This research focuses on 

specific flotation chemistry and operational factors that influence the effect of 

muscovite on the flotation rate of arsenopyrite and pyrite. Figure 1-1 highlights the 
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flotation parameters investigate in this research and indicates which parameters are 

not investigated in the scope of this work.  

 
Figure 1-1 – Research scope diagram 

1.6 Thesis Outline 

The thesis outline is as follow: 

Chapter 2: presents a literature review of the key factors that affect flotation and the 

behaviour of phyllosilicates in flotation with emphasis on the characteristics of 

muscovite and its behaviour in flotation.  

Chapter 3: presents the research methodology to test the hypothesis and details the 

materials and experimental procedure used to perform the CCRD flotation testwork 

program 

Chapter 4: describes the preliminary analyses of the samples used in the flotation 

tests. It involves determining what size and composition of minerals should be used in 

the synthetic ore to provide similar characteristics to those of the Barrick White 
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Mountain ore. It also involves an assessment of the purity of the minerals used to 

create the synthetic ore. 

Chapter 5: presents the key findings from the flotation tests. It describes the significant 

variables affecting the flotation rate constants of arsenopyrite and pyrite determined 

using the CCRD method. 

Chapter 6: investigates the effect of pulp viscosity in the flotation system studied. 

Chapter 7: investigates the effect of surface modification on the flotation rate of pyrite 

and arsenopyrite 

Chapter 8: presents the thesis conclusions, contributions to knowledge and 

suggestions for future work. 
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2 Literature Review  

2.1 Introduction 

The focus of the thesis is to understand how muscovite affects the flotation 

performance of pyrite and arsenopyrite in the context of Barrick’s White Mountain 

project.  

This literature review presents relevant information about Barrick’s White Mountain 

project to understand the flotation plant design challenges and the behaviour of non-

sulfide gangue in the ore.  

A brief review of flotation fundamental and the factors that affect the flotation of 

arsenopyrite and pyrite is provided to contextualise the factors that affect the flotation 

performance of the pyritic minerals studied. In addition, the mechanisms by which the 

presence of non-sulfide gangue minerals affect the flotation performance of sulfide 

minerals are outlined.  

A summary of the behaviour of non-sulfide gangue, classified as phyllosilicate 

minerals, in flotation is presented, focussing on how muscovite is possibly affecting 

the arsenopyrite and pyrite.  

This section closes with a summary of the literature and the gaps found.  

2.2 White Mountain Project 

The White Mountain Gold Project is a joint venture to build a gold mining project in 

North America. Currently, Barrick is continuing to monitor the long-term viability of its 

investment in White Mountain Gold. Although the White Mountain project contains 

large, mineral resources, with significant leverage to the price of gold, there is the 

uncertainty about it meeting Barrick’s investment criteria, given the required large 

initial capital investment (Barrick, 2014). 

The White Mountain flowsheet design is based on a life of plant of 20 years, with a 

throughput of over 50,000 t/d and production of approximately 4,000 ounces of gold 
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per day. The overall plant availability is 93%, with a nominal throughput of 2,397 t/h. 

The safety design factor applied is 1.35 to provide a maximum capacity of 4,630 t/h 

(AMEC, 2011). 

White Mountain is a refractory gold deposit. Pyrite is the dominant sulfide mineral, 

followed by arsenopyrite (the carrier of arsenic). The main host mineral of the gold is 

arsenopyrite, which carries 80% to 90% of the gold as a solid solution. Pyrite hosts 

10% to 20% of the gold, also in solid solution form. Less than 1% of the contained gold 

is free gold. The liberated particles are less than 20 µm in diameter (SGS, 2007b). The 

gold grade of the deposit is 2.58 g/t (AMEC, 2007a).  

The gold in White Mountain ores is exclusively in a submicron (‘sub-µ’) disseminated 

form in the crystal structure of arsenopyrite and pyrite. Arsenopyrite is the principal 

gold carrier, strongly enriched over pyrite, at a ratio of approximately 20. However, 

pyrite must be recovered to maximise gold recovery (SGS, 2007a).  

The flowsheet of White Mountain Project includes the following unit operations 

(AMEC, 2007b): 

 Primary crushing. 

 Pebble crushing. 

 Integrated grinding and flotation circuit. 

 Concentrate washing to remove soluble chorine. 

 Pre-acidification of flotation concentrate. 

 Pressure oxidation (POX). 

 Acid recovery via a CCD (counter-current decantation) circuit on POX 

discharge. 

 Carbon-in-leach (CIL) circuit for oxidised concentrate. 

 Neutralisation of acid liquor using flotation tailings. 

 CIL tailings detoxification.  

The integrated grinding and flotation circuit is based on a Mill-Chemistry-Float-Mill-

Chemistry-Float circuit (‘MCF2’). MCF2 is the name given to a circuit that takes the 

primary rougher concentrate directly to leaching and regrinds the primary rougher 
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tailings ahead of the secondary rougher flotation cells. A generic MCF2 flow sheet is 

shown in Figure 2-1. The primary grinding consists of a SAG mill. The target is a P80 

of 121 µm. The primary grinding product feeds the flotation rougher circuit. The 

rougher flotation tailings report to the secondary grinding, which consists of a ball mill, 

to be reduced to a product with a P80 of 50 µm. The secondary mill discharge feeds 

the secondary rougher flotation cells (AMEC, 2007b). 

 
Figure 2-1 - Illustration of MCF2 generic flow sheet (AMEC, 2007) 

The objective of the flotation circuits is to concentrate the gold-carrying minerals, which 

are pyrite and arsenopyrite. The flotation concentrate must have a sulfide-sulfur grade 

of about 7% for reducing the heat requirement of the autoclave. The composition of 

the flotation feed in shown in Figure 2-2. 

 
Figure 2-2 – Composition of White Mountain Flotation Feed (SGS, 2007b) 
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Figure 2-2 shows that pyrite is the most abundant sulfide in the flotation feed, 

representing 1.4% of the mineral content, followed by arsenopyrite. The most 

abundant gangue mineral is quartz, representing 55.2% of the total, followed by 

muscovite, accounting for 32.7%. Feldspar and calcite are the third most prevalent 

gangues. Kaolinite, chlorites and amphibole account for the clays, representing 1.7% 

of the feed.  

The sulfide mineral content increases significantly in the rougher concentrate. 

Muscovite is distributed in the concentrate and tailings streams, accounting 20% of 

the rougher concentrate, 37.1% of the scavenger concentrate, 38.8% of the cleaner 

concentrate and tailings, and 28.9% in the final tails (SGS, 2007b). According to SGS 

(2007b), muscovite has a preferential response in flotation in comparison with quartz, 

as indicated in the primary rougher concentrate stream. Therefore, it can be inferred 

that the mica species have either been activated or entrained in the flotation process.  

The flotation bench-scale testwork campaign indicated that a long retention time, of 

approximately 110 minutes, was found to be necessary to achieve maximum recovery 

of arsenopyrite. Pyrite and coarser arsenopyrite have higher kinetic flotation rates, but 

much of the gold is associated with the very fine and slower floating arsenopyrite 

(AMEC, 2007b).  

The testwork showed that a high mass pull of approximatively 20% plus was required 

for achieving high recovery. It indicated that the mass pull from the rougher and 

scavenger circuits were dictated by entrainment of clays during the long residence 

time (AMEC, 2007b). 

The equipment selection of the flotation circuit was based on the simulation work 

developed by JKTech (2007) and economic trade-offs. The 160 m3 flotation cells were 

selected over the 300 m3 flotation cells based on lip-loading data. The total residence 

time selected for the primary and secondary rougher banks was 105 minutes. To 

deliver the demanded throughput of 45,000 t/d at the selected residence time, 

seventy-two 160 m3 cells, arranged in four rows, are required for the rougher banks. 

The cleaner circuit consists of eight 160 m3 and the cleaner–scavenger circuit six 
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160 m3 cells. The flotation reagents used were potassium amyl xanthate (‘PAX’), 

frother, dispersant and copper sulfate. 

2.2.1 White Mountain Project Summary 

The White Mountain project is currently sub-economic. The project consists of 

refractory gold ore, with arsenopyrite and pyrite as the gold-bearing minerals. Pyrite is 

more abundant than pyrite. Gold is found as sub-microscopic, locked in the 

arsenopyrite and pyrite matrix. 

The main gangue minerals in order of abundance in the flotation feed are quartz and 

muscovite. Quartz accounts for 55.2%, while muscovite, 32.7%. Muscovite is a major 

contaminant of the concentrate, comprising 20% of the rougher concentrate, 37.1% of 

the scavenger concentrate and 38.8% of the cleaner concentrate. 

The flotation plant has a large footprint due to the high throughput, of 2,397 t/h, and 

residence time of 105 minutes for the primary and secondary rougher banks. The 

engineering studies acknowledged the issues of having the micas and clays. However, 

it did not evaluate if the residence time of the flotation circuit could be reduced by 

effectively removing the micas from the flotation feed, because one possible reason 

for the required long flotation residence tile is the high content of muscovite in the ore.  

The summarised flotation conditions and reagent dosage in grams per tonne of ore 

(g/t) are as follow (AMEC, 2007a): 

 pH: 5 to 7, adjusted using H2SO4. 

 Frothers: Methyl Isobutyl Carbinol (MIBC) at 95 g/t and F549 at 5 g/t. 

 Collector: Potassium Amy Xanthate (PAX) at 200 g/t. 

 Activator: CuSO4 at 100 g/t. 

 Depressant: Cytec E40, at 50 g/t. 

 Soda Ash: 50 g/t. 
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2.3 The Carlin Type Ore 

As the White Mountain is a Carlin-type deposit, this section summarises the definition 

of Carlin type-ores.  

The definition of a Carlin-type gold deposit is a sediment-hosted disseminated gold 

deposit in which invisible gold is disseminated in pyrite and arsenopyrite 

(Tabatabaei, 2011). Those ores containing gold encapsulated in the solid solution of 

the mineral matrix, generally sulphides, are classified as refractory (Thella, 2018; 

Fraser et al., 1991). Carlin-type ores are considered refractory ores, because of the 

presence of sulfides, tellurides, cyanides and carbonaceous matter. When the Carlin 

ore presents sulfides and carbonaceous matter, it can be classified as double-

refractory gold ore (Tabatabaei, 2011). 

These deposits were named Carlin after the first large deposit found with this 

composition in the Carlin Unconformity, Nevada, USA. These deposits can be found 

in western North America and south-west China (Tabatabaei, 2011; Chryssoulis & 

McMullen, 2005). The unique characteristics of Carlin-type gold deposits can be 

summarised as (Michaud, 2015): 

 Hosted in ‘dirty carbonate’ rocks. 

 Gold occurs in disseminated microscopic form, embedded in pyrite and 

arsenopyrite. 

 The absence of silver and base metals. 

 Large size (100s to 1000s of tonnes of Au) (Cline et al., 2005). 

The composition of Carlin-type pyrite contains 1 to less than 10 wt.% As and several 

hundred to several thousand parts per million of Au, Sb, Tl and Hg. The gold to silver 

ratios generally exceeds 10 and base metal contents are typically low (Meffre, et al., 

2016). 

The mineralogy of the deposits consists of associations of Au with As, Sb, Tl, and Hg 

in preference to base metals and Ag. Gold is mainly deposited in gold-bearing 

arsenian-pyrite and marcasite, quartz, kaolinite, dickite, and illite. These minerals are 

fine-grained and typically volumetrically minor to insignificant in comparison to the 
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host-rock minerals that include quartz, micas, and clay minerals, dolomite, calcite, 

pyrite, and various forms of carbon (Cline et al., 2005). The typical mineral groups in 

this type of ore are shown in Table 2-1. 

Because of the nature of gold in refractory ores, the recovery via cyanidation is not 

satisfactory, accounting for less than 80%, according to Fraser et al. (1991).  

Table 2-1 - Mineral grouping of the double-refractory gold ore (Tabatabaei, 2011) 

Mineral grouping of the double-refractory gold ore 

Pyrite  Pyrite Arsenopyrite Arsenian Pyrite     

Carbonaceous matter  

Carbonates Calcite Dolomite       

Quartz Quartz         

Clays Kaolinite Illite Mica Chlorite   

Others 
Apatite Barite Goethite Rutile Illmenite 

Pyrrhotite Realgar Chalcopyrite   

The processing routes to treat refractory ores, especially the Carlin-type is often 

complex and involves high capital and operating costs because of the high costs 

associated with the processes required to break the refractory matrix to liberate the 

gold. 

2.4 Pyrite and Arsenopyrite in Gold-Bearing Ores 

Pyrite is the sulfide mineral most commonly associated with gold, while arsenopyrite 

is the second (Marsden & Iain House, 2006). A list of pyrite and arsenopyrite physical 

and chemical properties is provided in Table 2-2.  
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Table 2-2 – Properties of pyrite (Hudson Institute of Mineralogy, 2018) 
Property Pyrite Arsenopyrite 

Formula FeS2 FeAsS 

Impurities Ni,Co,As,Cu,Zn,Ag,Au,Tl,Se,V Ag,Au,Co,Sn,Ni,Sb,Bi,Cu,Pb 

Transparency Opaque Opaque 

Colour Greenish-black, brassy yellow Silver-white to steel-gray 

Lustre Metallic Metallic, Sub-Metallic 

Hardness 6 - 6½ on Mohs scale 5½ - 6 on the Mohs scale 

Tenacity Brittle Brittle 

Fracture Irregular/Uneven Irregular/Uneven 

Density 4.8 - 5 g/cm3 6.07 g/cm3 

Cleavage cubic Distinct/Good 

Pyrite and arsenopyrite have the capacity of bearing significant amounts of gold in the 

solid structure. The capacity for bearing gold in arsenopyrite is higher than pyrite 

because of the atomic spacing in arsenopyrite structure. It has been found that the 

gold content in the arsenopyrite can vary from less than 0.2 to 15,200 g/t, while in 

pyrite Au has only been observed up to 132 g/t. This characteristic makes pyrite and 

arsenopyrite the main carrier of gold in some ores (Chryssoulis & McMullen, 2005). 

The beneficiation of refractory gold ores, in which gold is locked in arsenopyrite and 

pyrite, usually includes pre-concentration by flotation and a stage to break the sulfide 

matrix prior cyanidation. The process stage to break the sulfide matrix usually consists 

of the oxidation of the sulfide mineral to liberate gold. The oxidation can be done either 

via bacterial oxidation (BIOX process), pressure oxidation (POX) or roasting. Due to 

the high cost of the oxidation processes, a pre-concentration of the sulfide minerals 

prior to oxidation is usually required (Adams, 2016; Fraser et al., 1991). 

2.5 Fundamental Principles of Flotation of Pyrite and Arsenopyrite 

Flotation is commonly used to pre-concentrate pyrite and arsenopyrite in refractory 

gold-bearing ores. The flotation properties of arsenopyrite and pyrite are very similar 

(Adams, 2005).  

Flotation, according to Wills & Finch (2012), is defined as: 
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‘A separation process that exploits natural and induced differences in surface 

properties of the minerals, whether the surface is readily wetted by water, that is, 

hydrophilic, or repels water, that is, hydrophobic. If hydrophobic the mineral particle 

can attach to air bubbles and be floated.’  

Flotation is a physicochemical-based separation process involving three phases: solid, 

liquid and gas (Crozier, 1992). The process usually takes place in a tank, where the 

pulp consisting of valuable and gangue minerals and reagents is agitated and aerated. 

The hydrophobic particles attach to bubbles and are collected in the froth phase as a 

concentrate. Hydrophilic minerals are discharged as tailings (Crozier, 1992; 

Wills, 1988; Sutherland & Wark, 1955). This principle is illustrated in Figure 2-3. 

 
Figure 2-3 – Principles of flotation (Wills & Finch, 2016) 

The efficiency of the process depends on the valuable minerals selectively attaching 

to the bubbles, so that the particle-bubble aggregate can rise to the froth phase, while 

the gangue particles, which contain no-valuable minerals, are collected in the tailings 

(Vianna, 2004, Woods, 2003; Sutherland & Wark, 1955).  

The selective attachment of a particle to a bubble depends on the particle 

hydrophobicity. Figure 2-4 (a) illustrates the forces that hold the particle-bubble 

aggregate together. The terms s/a, s/w and w/a are the surface tensions between solid, 
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air and water (Ralston et al., 2001). Figure 2-4 (b) shows a representation of the 

contact angle .  

 
Figure 2-4 – (a) Particle attached to the bubble and, a classic representation of contact angle 

and surface tension forces (Wills & Finch, 2016). 

The contact angle can be used as a ‘proxy’ for particle hydrophobicity as it increases 

with the mineral hydrophobicity (Wills & Finch, 2016). Highly naturally hydrophobic 

minerals such as graphite, sulfur, molybdite, diamond, coal, and talc present a contact 

angle between 60o and 90o and therefore can be directly floated (Wills & Finch, 2016; 

Vianna, 2004; Woods, 2003). The hydrophobicity of a mineral particle is a surface 

property that is either defined by the natural composition of the mineral or created by 

surface modification by the use of reagents (Wills & Finch, 2016). 

The particles from the pulp can be recovered to the froth in flotation due to three 

mechanisms (Sutherland & Wark, 1955; Rickard & Ralston, 1917): 

1. Selective attachment to air bubbles, or ‘true flotation.’  

2. Entrainment in the water, which passes through the froth. 

3. Physical entrapment between particles in the froth attached to air bubbles.  

King (2012) proposed that the floatability of minerals is characterised by a series of 

flotation sub-processes in order to a particle being successfully collected to the froth 

phase: 

1. ‘The particle must achieve a level of hydrophobicity that will permit it to attach 

to a rising bubble.’ 

2. ‘The particle must be suspended in the pulp phase of the cell.’ 

3. ‘The particle must collide with a rising bubble.’ 
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4. ‘The particle must adhere to the bubble.’ 

5. ‘The particle must not detach from the bubble during passage through the pulp 

phase.’ 

6. ‘The particle must not detach from the bubble as the bubble leaves the pulp 

phase and enters the froth phase.’ 

These basic sub-processes governs the rate of recovery of the valuable minerals and 

can be represented by collection efficiency (Ecoll), which is a function of the efficiency 

of particle-bubble collision (Ec), attachment (Ea) and stability (Es) (Derjaguin & 

Dukhi, 1961):  

Ecoll = Ec x Ea x Es        (Equation 2-1) 

According to Duan et al. (2003): ‘Collision is dominated by bulk hydrodynamics inside 

the flotation cell (e.g., bubble velocity and turbulence), while attachment is dominated 

by the interfacial behaviour between the particle and bubble (e.g., particle 

hydrophobicity influences thin film drainage). As for stability, its efficiency depends on 

both hydrodynamics and interfacial events’. 

Flotation can be described by a pseudo-first-order kinetic model, by analogy with 

chemical reactions, in which the reactants are bubbles and particles and the product 

is the bubble-particle aggregate (Amelunxen & Runge, 2014; Sandoval-

Sambrano, 2013; Vianna, 2004; Beloglazov, 1939). Flotation recovery is calculated as 

per equation 2-2, where R is recovery, k is the flotation rate constant and t is time. 

𝑅 = 1 − 𝑒        (Equation 2-2) 

The collection efficiency, or flotation rate constant, is a function of particle size and 

contact angle, bubble size and velocity (Duan et al., 2003).  

2.6 Factors that Affect Flotation Performance 

Klimpel (1984) was the first to propose a diagram to summarise the factors that affect 

flotation performance. Figure 2-5 presents the Klimpel (1984) diagram modified by 
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Vianna (2004). Vianna (2004) describes the ore characteristics from the 

Klimpel (1984) diagram as mineralogy, texture and liberation.  

 
Figure 2-5 – Factors affecting flotation, modified from Klimpel (1984) and Vianna (2004) 

This section of the literature review discusses the factors presented by Klimpel (1984) 

and how they potentially affect flotation performance and the flotation rate constant (k) 

of arsenopyrite and pyrite, through their influence on particle-bubble collision, 

attachment and detachment.  

2.6.1 Role of Reagents in the Flotation of Arsenopyrite and Pyrite 

Reagents are used in flotation to enhance the selectivity of the valuable minerals from 

gangue. A summary of the reagent types and functions in flotation is shown in 
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Table 2-3 (Fuerstenau et al., 2007; Crozier, 1992; Fuerstenau and Herrera-Urbina, 

1989; Fuerstenau et al., 1985). 

Table 2-3 – Role of reagents in flotation  
Reagent type Function 

Activators Modify mineral surface to enhance floatability and collector adsorption 

Collectors Enhance hydrophobicity of minerals 

Frother Promote froth formation and preservation of bubbles 

Modifiers Changes the action of the collectors 

Depressants Increase the selectivity by preventing the flotation of gangue 

Dispersants Acts on aggregates to improve selectivity 

The role of the typical reagents used in the flotation of arsenopyrite and pyrite are 

summarised in this section. It focusses at presenting the mechanism of the action of 

the common reagents used for arsenopyrite and pyrite flotation.  

2.6.1.1 Activators 

Activators generally consist of inorganic salts that react with the mineral surface, 

resulting in a product that is more reactive with the collector, therefore enhancing the 

collector coverage of the particle. The selection of the appropriate activator depends 

on the mineral to be floated, and the collector selected (Fuerstenau et al., 2007).  

Copper sulfate is a widely used activator in pyrite flotation because copper acts as an 

activator for pyrite. The hydrophobicity of pyrite is enhanced significantly when 

activated by copper, in a range of pulp potentials from -505 to +595 mV, and in the 

range of pH from 4.7 to 11 (Moslemi & Gharabaghi, 2017). 

The proposed mechanism of activation is that Cu2+ adsorbs on the sulfide sites at 

slightly acidic pH and is reduced to Cu+ as the disulfide is oxidised (Moslemi & 

Gharabaghi, 2017; Fuerstenau et al.; 2007). The formation of Cu(OH)2 is observed at 

pH values greater than 6 (Fuerstenau et al.; 2007). In alkaline pH conditions, the 

activation of pyrite by copper occurs by the adsorption of Cu2+ as Cu(OH)2, followed 

by formation of Cu(I)S through the oxidation of sulfide S21- or polysulfide Sn2- (Moslemi 

& Gharabaghi, 2017).  
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The adsorption of cupric ions decreases with the increase of pulp potential because 

of the increase of pyrite surface oxidation, reducing the sites available for copper 

adsorption (Moslemi & Gharabaghi, 2017).  

As well as pyrite, copper ions activate arsenopyrite. The activation occurs due to the 

formation of copper arsenosulfide (CuAsS) at low pH and copper arsenate 

(Cu3(AsO4)2) or arsenite (Cu3(AsO3)2) at high pH (Valdivieso et al., 2006; Wang et al.; 

1989). 

2.6.1.2 Collectors 

The hydrophobicity of minerals can be enhanced by collectors, which facilitates the 

attachment of the mineral particle to the bubbles. Collectors are organic compounds 

with polar and non-polar components (Fuerstenau et al., 2007; Fuerstenau and 

Herrera-Urbina, 1989). The polar component adsorbs to the mineral, and the non-

polar fraction facilitates the adsorption to air bubbles. A diagram of collector adsorption 

on the mineral surface is shown in Figure 2-6.  

 
Figure 2-6 - Adsorption of the collector on the mineral surface showing the hydrocarbon chain 

oriented toward the water and making the site hydrophobic (Wills & Finch, 2016) 

Collectors such as xanthates, dithiophosphates, dithiocarbamates, fatty acids, and 

amines are widely used in the flotation of sulphide minerals. The xanthates are the 

most commonly used collector for arsenopyrite and pyrite. Potassium amyl xanthate 

(PAX) is the collector selected for the flotation of arsenopyrite and pyrite in the White 

Mountain project. The formula of PAX is C6H11KOS2, and its structure is shown in 

Figure 2-7. 
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Figure 2-7 - Potassium Amyl Xanthate structure (Harrison, 2018) 

The mechanisms by which xanthates adsorb on the pyrite surface is dependent on the 

pulp potential, surface oxidation and degree of activation of pyrite. In non-activated 

pyrite, the xanthate adsorption process happens in four steps, as described by Wang 

(1995): 

1- Surface oxidation of pyrite. 

2- Xanthate ion adsorption on pyrite surfaces and formation of ferric xanthates. 

3- Xanthate ion oxidation and dixanthogen formation. 

4- Dixanthogen adsorption on pyrite through ferric xanthates. 

A schematic of the oxidation of pyrite and dixanthogen formation in non-activated 

pyrite in the presence of xanthate is shown in Figure 2-8. 

 
Figure 2-8 - Dissolution of surface ferric hydroxide and dixanthogen formation on the non-
activated pyrite surface with xanthate addition (Original picture from Valdivieso et al., 2005, 

redrawn by Moslemi & Gharabaghi, 2017) 
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The mechanism of adsorption of xanthate on arsenopyrite surfaces is associated with 

the oxidation of xanthate ions (X-) to dixanthogen (X2). The formation of dixanthogen 

on arsenopyrite is favourable at lower pH values. As reported by Gaudin (1957) and 

Sirkeci (2000), the highest flotation recovery of arsenopyrite when using xanthates 

occurs at pH 4 to 5 (Valdivieso et al., 2006).  

The mechanism of adsorption of xanthates when pyrite is activated by copper occurs 

by the formation of a monolayer of cuprous xanthate, which is a hydrophobic product 

of the reaction of xanthate with the copper-activated surface (Moslemi & Gharabaghi, 

2017; Chandra & Gerson, 2009; He, Fornasiero, & Skinner, 2005).  

In addition, Valdivieso et al. (1994) observed that the activation by copper ions reduces 

the xanthate dosage required for arsenopyrite flotation. 

The review presented in this section indicated that in the presence of Cu ions, the 

preferential mechanism of collection of pyrite and arsenopyrite is via the formation of 

cuprous xanthate instead of the adsorption of dixanthogen (Moslemi & Gharabaghi, 

2017). Consequently, as pointed by Valdivieso et al. (1994), it can be advantageous 

using Cu ions as an activator for pyrite and arsenopyrite as it can reduce the 

consumption of xanthate.  

2.6.1.3 Frother 

According to Klimpel and Isherwood (1991), the key functions of frothers in flotation 

are:  

 Aid formation and preservation of small bubbles. 

 Reduce the bubble rise velocity. 

 Aid formation of froth. 

Frothers promote the formation of a stable froth so that valuable minerals are collected 

concentrate, and the return of these minerals to the pulp via drainage is minimised. 

The frother type and frother dosage also affect the bubble size in the pulp. Increase in 

frother concentration can result in an increase in the number of bubbles, which 

increases the total surface area of bubbles, leading to an increase of the collision 
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probability between particles and bubbles, thus increasing flotation kinetics (Zhang et 

al., 2012; Cho & Laskowski, 2002) 

Examples of the structures of three frothers widely used in flotation are shown in 

Figure 2-9. The White Mountain project is designed to use a mixture of Methyl Isobutyl 

Carbinol (MIBC) and F549.  

 
Figure 2-9 - Example structures of three frothers: MIBC, DF250, and F150 (Wills & Finch, 2016) 

The increase of frother concentration in a flotation system leads to the reduction of the 

bubble Sauter mean diameter (D32). An illustration of the reduction of bubble Sauter 

diameter (D32) with an increase of frother concentration is shown in Figure 2-10.  
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The frother critical coalescence concentration (CCC) is the minimal concentration of 

frother, where the minimum (D32) is reached (Cho & Laskowski, 2002). Any increase 

in frother dosage above the CCC has no effect on the pulp bubble size.  

 
Figure 2-10 - Reduction in bubble size (Sauter mean diameter) as a function of frother 

concentration illustrated with images and number frequency distribution. (Wills & Finch, 2016; 
adapted from Nesset and Finch, 2013). 

Jiang and Holtham (1986) studied the particle-bubble collision efficiency. The study 

concluded that the collision efficiency is inversely proportional to the bubble size and 

directly proportional to particle size. Thus, the reduction of bubble size increases the 

collision probability, for the same feed size distribution. Later, this relationship was 

found to be true for fine particles (<75 µm) by Igusti-Ngurah (1989).  

Tan et al., (2013); Gupta et al. (2007) and Harvey et al. (2005) observe that by  

increasing the frother dosage, the bubble size decreased and the air holdup and 

foamability increased, as shown in Figure 2-11. 
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(a) 

(b) 

(c) 

Figure 2-11 – (a) Mean bubble diameter versus surfactant concentration (Gupta et al. 2007); (b) 
Foam lifetime versus surfactant concentration measured at 4.4 cm/s superficial airflow rate 
(Harvey et al. 2005); (c) Foamability as a function of frother concentration (Gupta et al. 2007) 

2.6.1.4 Modifiers 

A broad range of reagents can be classified as modifiers according to the mechanism 

by which it changes the action of the collector. There is no consensus of a single 

classification of modifiers with it including pH modifiers, froth modifiers, depressants, 

dispersants activators, deactivators, promoters, viscosity modifiers and slime-blinding 
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modifiers (Fuerstenau et al.; 2007). According to Nagaraj (2005), the modifiers consist 

of the third apex of the reagents triangle, as per Figure 2-12. 

Flotation 
Reagents

Collector

FrotherModifier
 

Figure 2-12 – Flotation reagent triangle 

The modifiers used in the White Mountain flotation design consisted of pH modifiers 

and dispersant. The pH is the most important modifier in the flotation of pyrite and 

arsenopyrite because it affects pulp potential, the mechanism of activation by copper 

ions and the mechanism of adsorption of xanthate, the dispersion of the pulp and the 

degree of oxidation of the sulfide minerals (Kawatra and Eisele, 2001). 

2.6.1.5 Depressants 

Depressants are used in flotation to improve the selectivity of flotation to the mineral 

of interest and inhibit the collection of undesirable minerals to the froth. There are 

several mechanisms by which depressants can inhibit the flotation of a given mineral, 

such a deactivation by removing the activating species and inhibition of the collector 

from the mineral surfaces (Fuerstenau et al., 2007).  

The pH can act as an activator or depressant, as it controls the collector adsorption 

reactions at the mineral surface. The optimum flotation pH for pyrite is in the range 

from pH 4 to 8 due to the presence of dixanthogen on the surface of pyrite. Depression 

is observed below pH 2 and above pH 12. The depression at an acidic pH is due to 

decomposition of xanthate, while at an alkaline pH it is because of the thermodynamic 

instability of the dixanthogen at high concentrations of OH- (Fuerstenau et al., 2007).  
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The depression of pyrite is associated with the increase of hydrophilic ferric hydroxide 

coverage on the surfaces of pyrite. This can occur in the range from pH 5 to 9 at low 

concentrations of xanthate. The increase of xanthate concentration leads to the 

dissolution of surface-ferric hydroxide phase, increasing the floatability of pyrite (Deng 

et al., 2013; Valdivieso et al.,2005). 

Cyanide is used to depress pyrite because it reacts with the pyrite surface, forming 

ferric ferrocyanide complex, a more stable species than ferric xanthate, which is 

hydrophilic and capable to dissolving metal xanthates from sulfide surfaces, blocking 

the collector adsorption sites. (Fuerstenau et al., 2007).  

Arsenopyrite is depressed at high pH and under oxidising conditions. Reagents such 

as hydrogen peroxide (H2O2), potassium permanganate (KMnO4), manganese dioxide 

(MnO2) and hypochlorous acid (HClO), ammonium–magnesium salts, strontium and 

barium ions promote the depression of arsenopyrite and inhibit activation by copper 

ions (Valdivieso et al., 2006). 

2.6.1.6 Dispersants 

Dispersants act on the surface of the particles by modifying the surface charge, which 

makes the particles less prone to aggregation. Dispersants can also be used in 

conjunction with depressants. Some examples of reagents used as dispersants 

include sodium silicate, sodium hydrosulfide and sodium sulfide (Fuerstenau et 

al., 2007). 

2.6.2 Pulp density and Viscosity 

Shi and Napier-Munn (1995) affirms that the viscosity of the pulp is a function of 

particle size, solids concentration, temperature and pH. The composition of the slurry, 

not studied by the former, is also a factor that affects viscosity, as suggested by the 

studies of Cruz et al. (2013) that observed an increase in viscosity when the proportion 

of clays increased in the mineral system. 
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According to Ralston et al. (2007), the slurry viscosity affects both the energy 

dissipation profile through the cell and bubble rise velocity. Hence, it will directly affect 

the bubble-particle collision frequency, consequently the flotation kinetics.  

Shabalala et al. (2011) found an increase in solids concentration led to a decrease in 

the gas holdup, accompanied by a decrease in bubble size. The decrease of bubble 

size was attributed to the effect of solids concentration on slurry viscosity. The 

increase in viscosity results in the formation of a ‘cavern’ of slurry around the impeller. 

This phenomenon resulted in poor dispersion of bubbles throughout the cell, resulting 

in low gas hold-ups (Shabalala et al., 2011).  

2.6.3 Ore Characteristics 

2.6.3.1 Particle size 

Flotation performance is strongly related to ore properties such as particle size, 

liberation and surface properties. These relationships are interconnected; therefore, 

the discussion about the effect of particle size assumes that the particles are fully 

liberated. 

Flotation performance is strongly related to ore properties with particle size, liberation 

and surface properties all play a role. These relationships are interconnected; 

therefore, the discussion about the effect of particle size assumes that the particles 

are fully liberated.  

The effect of particle size in flotation has been known since the work of Gaudin et al. 

(1931), who studied the optimum particle size for the recoveries of lead, zinc and 

copper. Trahar (1981) proposed a size-by-size floatability relationship (cited by 

Vianna, 2004).  

According to Trahar (1981), as shown in Figure 2-13, the intermediate sizes presented 

higher recoveries. The low recovery of the fine sizes was attributed to insufficient 

collision rates due to the low inertia of the particles. Figure 2-14 illustrates this 

reduction in the kinetics of fine particles by converting the recoveries of Figure 2-13 to 

flotation rate constants (Wills & Finch 2016). 
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Figure 2-13 - Typical recovery trend as a function of particle size and time (Wills & Finch, 2016; 

adapted from Trahar, 1981). 

As per Figure 2-13 and Figure 2-14, the coarse particles also present poor flotation 

kinetics. This is associated with a decrease of stability of attachment, which increases 

the detachment probability (Wills & Finch 2016; Cheng & Holtham, 1995). 

 

 
Figure 2-14 - Trend in Figure 2-13 converted to the relative rate constant (relative to the 

maximum rate constant, k/kmax) as a function of particle size (Wills & Finch, 2016). 
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2.6.3.2 Mineralogy and Particle Composition 

The hydrophobicity of a particle depends on its composition. The flotation separability 

of a composite particle, expressed as flotation rate constant, as proposed by 

Evans (2010), is a proportional sum of the flotation rate of the mineral components on 

the particle surface. An example of this approach for a three-component particle is 

shown in Figure 2-15. The calculation is shown in equation 2-3 (Wightman & 

Sandoval, 2011).  

 
Figure 2-15 - Schematic representation of a composite particle containing three minerals (A, B 

and C) and their corresponding exposed perimeters LA, LB and LC (Evans, 2010) 

𝑘 =         (Equation 2-3)  

2.6.3.3 Liberation 

Liberation and composition are interconnected particle properties. The term liberation 

represents the extent to which a particle is composed of one mineral component and 

increases with size reduction. A liberated particle contains one mineral (Evans & 

Morrison, 2016).  

An increase in liberation is usually associated with an increase in mineral surface 

exposure. An increase in the proportion of the floatable mineral on the particle 

surfaces, according to equation 2-3, increases the particle flotation rate.  
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The flotation rate constant has been shown to be a strong function of liberation is 

shown in Figure 2-16, based on the recovery-by-size-by liberation, data reproduced 

by Welby et al. (2010). Figure 2-16 shows that as liberation increases, the flotation 

rate increases.  

Liberation is usually poorer for the coarser particles than the fines, and this is another 

reason for the observed decrease in the flotation rate of coarser particles.  

 
Figure 2-16 - (a) Rate constant-by-size-by-liberation, and (b) same data but as rate constant 
relative to the maximum rate constant showing a common trend among size classes (Data 

from Welsby et al.,2010 cited by Wills & Finch, 2016). 

2.6.3.4 Particle shape 

Vizcarra (2010) found that particles of chalcopyrite with angular shape have faster 

flotation kinetics compared with rounded shaped chalcopyrite particles. The angular 

shaped particles of chalcopyrite had higher coverage of hydrophobic polysulfide 

species, which could be enhancing the particle attachment to the bubbles.  

2.6.3.5 Surface chemistry 

As discussed in the previous sections of this literature review, the particle 

hydrophobicity has a fundamental role in flotation efficiency and kinetics. Collectors, 

activators and depressants are agents that modify the surface chemistry of particles 

to enhance (or inhibit) the particle hydrophobicity. Ions in solution originated from the 

dissolution of gangue minerals can also modify the surface chemistry of the interest 

minerals, therefore, affecting the flotation performance and kinetics.  
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Brito e Abreu (2010) studied the correlation between the chemistry of chalcopyrite 

surfaces, surface hydrophobicity and chalcopyrite recovery. The hydrophobicity 

property measure was the contact angle. The surface chemistry properties were 

obtained via Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS).  

The work of Brito e Abreu et al. (2010) classified the species found on the surface of 

chalcopyrite into hydrophobic or hydrophilic categories, according to the effect of the 

presence and concentration of those species on the contact angle of chalcopyrite 

particles. The higher the contact angle, the higher the flotation recovery. Table 2-4 

summarises the species found in the hydrophobic and hydrophilic categories. 

Table 2-4 – Hydrophobicity classification of the chemical species found on the surface of 
chalcopyrite based on Brito e Abreu et al. (2010)  

Hydrophobic Hydrophilic 

Cu, S, SO2/S2, CuO, and collector fragment C7H7O 
F, Na, Ca, O, Si, Mg, and K 

Fe, FeO, FeOH, FeOOH, and SO3 

The hydrophilic species F, Na, Ca, O, Si, Mg, and K originated from oxidation and 

gangue minerals, such as clays, while the species Fe, FeO, FeOH, FeOOH, and SO3 

originated from the oxidation of the chalcopyrite surface (Brito e Abreu et al., 2010). 

Basnayaka et al. (2017) studied the effect of the concentration of Ca2+ ions on the 

flotation kinetics of gold-bearing pyrite ore. It was observed that the flotation rate of 

pyrite decreases with the increase of Ca2+ ions in solution. The origin of the Ca2+ ions 

in the flotation feed was the leaching of Ca from kaolin and bentonite. The results of 

Basnayaka et al. (2017) align with the Brito e Abreu et al. (2010) proposition that Ca 

ions are hydrophilic species that can reduce the hydrophobicity of sulphide minerals.  

2.6.4 Equipment Factors 

The equipment factors listed by Klimpel (1984), which affects flotation kinetics include:  

 Airflow rate. 

 Bubble size. 

 Impeller speed. 
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The airflow rate and bubble size affect the flotation rate constant because they affect 

the bubble surface area flux (Sb). The bubble surface area flux (Sb) is given by 

equation 2-4 (Finch & Dobby, 1990; Jamerson & Allum, 1984, cited by Gorain, 1998). 

𝑆 =           (Equation 2-4) 

Where Jg is the superficial gas (air) velocity, airflow rate divided by the cell cross-

section area, and D32 is the bubble Sauter mean diameter.  

The bubble surface area flux has been found to be directly proportional to the flotation 

rate constant, as shown in Figure 2-17 (Alexander et al., 2000).  

 
Figure 2-17 - First-order rate constant and Sb relationship in a 60 L pilot cell and a 100 m3 cell 

(Wills & Finch, 2016, adapted from Alexander et al., 2000). 

Therefore, increases in airflow and/or reduction in bubble size increases the flotation 

rate constant.  

Increased impeller speed promotes suspension of the particles in the cell and 

dispersion of the gas in the pulp, therefore, promoting particle collision and attachment 

to bubbles. It is believed to increase the degree of turbulence in the cell, which 

promotes bubble-particle attachment. The detachment probability increases with an 

increase in particle size and the degree of turbulence in the flotation cell. The impeller 
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speed can increase the recovery of fines but decrease recovery of the coarse particles, 

which are more susceptible to detachment (Xu et al., 2011; Cheng & Holtham, 1995; 

Sutherland, 1948; cited by Gorain, 1998).  

2.6.5 Froth Phase and Stability 

In the froth phase, only a fraction of particles that attach to bubbles are effectively 

transported to the concentrate launder are hydrophobic.  

The structure and stability of the froth affect the concentrate mineral grade and 

recovery to the concentrate. Moreover, the factors that affect the froth structure and 

stability affects the flotation performance (Farrokhpay, 2011).  

The froth recovery (Rf) is given by Savassi et al. (1997) in equation 2-5: 

𝑅 =  
𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑟𝑒𝑝𝑜𝑟𝑡𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒 𝑣𝑖𝑎 𝑡𝑟𝑢𝑒 𝑓𝑙𝑜𝑡𝑎𝑡𝑖𝑜𝑛

𝑀𝑎𝑠𝑠 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑎𝑡𝑡𝑎𝑐ℎ𝑒𝑑 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑢𝑙𝑝 − 𝑓𝑟𝑜𝑡ℎ 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 
 

(Equation 2-5) 

The froth stability can be quantified by using the dynamic stability factor, Σ, calculated 

by equation 2-6. 

Σ =  =          (Equation 2-6) 

Where Vf is the froth volume, Q is the gas volumetric flow rate, Hmax is the maximum 

equilibrium height achieved, and A is the cross-sectional area of the column (Sheni et 

al., 2018; Bikerman, 1973).  

The residence time of the bubbles in the froth phase is a function of the superficial gas 

velocity, froth depth and cell characteristics (Zanin et al., 2009). Furthermore, gas flow 

rate and cell geometry are key parameters affecting the froth recovery.  

Hadler et al. (2012) in the study of the relationship of gas flow rate and flotation 

performance suggested that the highest cumulative grade and recovery was obtained 

when the flotation circuit was operating at an intermediate gas flow rate.  
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The frother type and concentration play an important role of bubble coalescence and 

froth stability. According to Subrahmanyam & Forssberg (1988), cited by Aktas et al. 

(2008), frothers reduce the surface tension of the air-liquid interface to produce stable 

bubbles.  

The froth stability is also a function of the nature, size and hydrophobicity of particles. 

The froth height in a froth stability column increases with the increase of the proportion 

of fine particles in a froth (Zanin et al., 2009; Aktas et al., 2008). The froth can be 

destabilised and destroyed by a particle of all sizes when they are extremely 

hydrophobic (Dippenaar, 1982; Harris, 1982; cited by Farrokhpay, 2011). According 

to Ata et al. (2003), the maximum froth stability is achieved when the froth phase is 

loaded with moderately hydrophobic particles (Zanin et al., 2009).  

Sheni et al. (2018) observed the effect of pulp potential (Eh), pH, dissolved oxygen 

(DO) and ionic strength (IS) in the froth stability of PGM bearing ores from South Africa 

via stability column and batch flotation tests. The study concluded that the increase of 

IS, pH and Eh, and the decrease of DO, improved the froth stability and changes in 

the bubble size in the froth, with the exception of changes in DO resulting in no 

perceived effect on bubble size. 

Farrokhpay and Zanin (2012) have shown that the concentration of ions such as Al 

and Ca in the slurry changes froth stability as the froth height increases with the 

increase of ions in the slurry.  

2.7 The Role of Non-Sulfide Gangue in Flotation 

2.7.1 Definition of gangue 

‘As generally used, gangue minerals have no commercial importance in a particular 

period of time, possibly becoming ore minerals at a later date. They are commonly 

silicates, carbonates, or fluorides, more rarely sulfides.’ (Fairbanks, 1981) 

2.7.2 Mechanisms of recovery 

Gangue minerals can report to the concentrate via the following mechanisms (Duarte 

& Grano, 2007): 
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 ‘True flotation’ (attached to bubbles due to hydrophobicity). 

 Entrainment. 

 Entrapment. 

 Slime coating of valuable mineral. 

2.7.2.1 True flotation 

Gangue can be recovered to the concentrate by natural flotation when in composite 

with a floatable mineral, and/or due to its natural or induced hydrophobicity (Johnson 

et al., 1974). Talc, pyrophyllite and carbonaceous minerals are examples of gangue 

minerals recovered in flotation due to hydrophobicity and attachment to bubbles (Wills 

& Finch, 2016; Chesworth, 2008; Vianna, 2004).  

2.7.2.2 Entrainment 

Entrainment is the most common mechanism of recovery of non-sulphide gangue 

smaller than 50 µm in particle size. The recovery by entrainment is due to suspended 

gangue minerals being carried to the froth phase by water (Wang, 2016; Johnson, 

2005; Savassi, 1998). 

According to Wang (2016), valuable and gangue minerals experience entrainment. 

The mass transfer throughout a flotation cell is shown in Figure 2-18 follows as:  

1. ‘Transfer of valuable mineral particles to the froth from the pulp by true flotation.’ 

2. ‘Transfer of valuable mineral particles to the concentrate from the froth by true 

flotation.’ 

3. ‘Transfer of mineral particles to the froth from the pulp by entrainment.’ 

4. ‘Transfer of entrained mineral particles to the concentrate from the froth by 

entrainment.’ 

5. ‘Transfer of mineral particles from the froth to the pulp due to the drainage of 

detached particles and entrained particles.’ 
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Figure 2-18 - Mechanisms of transfer of fully liberated mineral particles in a flotation cell 

(Wang, 2016) 

Wang (2016) presented in his work an in-depth review of entrainment modelling. 

Therefore, this thesis comments on the fundamental factors that affect entrainment 

instead of giving a detailed discussion on this subject.  

According to the work of Johnson et al. (1974), the degree of entrainment of gangue 

tends to 1 for the -10 µm size-fraction, decreases sharply with the increase of gangue 

particle size, and increases with a rise in pulp density.  

Wang, Runge, & Peng (2015), as well as Johnson et al. (1974) and Johnson (2005), 

observed that particle size affects the degree of entrainment. The work of Wang, 

Runge, & Peng (2015) noted that entrainment was not only a function of particle size, 

but it also remarked that particle density, frother type and concentration, feed grade, 

and the interaction between gas rate and froth height affects the degree of 

entrainment. Those factors were not listed in the research of Johnson et al. (1974) and 

Johnson (2005). 

Entrainment is also a function of particle shape and pulp viscosity, parameters not 

investigated by Wang, Runge, & Peng (2015). Wiese at al. (2015) investigated the 

relationship between entrainment and shape using a range of hydrophilic minerals, 

including ballotini, mica, talc (coated with a hydrophilic resin), vermiculite and 
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wollastonite. These materials represented groups of particles with different aspect 

ratios as per Figure 2-19 and Table 2-5. 

 
Figure 2-19 - SEM images (3000x magnification) of the minerals used: (A) – ballotini, (B) – 

mica, (C) – talc, (D) – vermiculite, (E) – wollastonite, (Wiese et al., 2015). 

Table 2-5 – Aspect ratio for the different minerals used in Wiese et al. (2015) study (particle 
size 40 µm) 

Sample Ballotini Talc Vermiculite Mica Wollastonite 

Aspect Ratio (short/long axis) 0.83 0.59 0.53 0.50 0.32 

The study of Wiese et al. (2015) demonstrated that particles with different shapes in 

the same size class have different entrainment rates, as shown in Figure 2-20. 

Note that the degree of entrainment can be inferred by the slope of the relationship 

between and mass recovery.  

According to Figure 2-20 shape types more prone to entrainment are the acicular and 

platy, represented by Wollastonite in Figure 2-19 and, Wollastonite and 

Wollastonite/Ballot in Figure 2-20. This shape type has the lowest aspect ratio, 

according to Table 2-5. The effect of shape on entrainment was sustained even at 

different pH conditions, as shown in Figure 2-21. 
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Figure 2-20 - Mass of solids recovered as a function of the mass of water recovered for the 

minerals used in this study at pH 8 (Wiese et al., 2015). 

 
Figure 2-21 - Mass of solids recovered as a function of the mass of water recovered for 

ballotini and wollastonite at different pH and d80 values (Wiese et al., 2015). 

2.7.2.3 Entrapment 

Entrapment is an additional mechanism associated with entrainment in which gangue 

is entrapped in the plateau borders at highly mineralised froths, not able to drain back 

to the pulp phase. The diagram presented in Figure 2-22 illustrates the mechanism of 

gangue entrapment (Johnson, 2005; Vianna, 2004).  
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Figure 2-22 – Diagram illustrating the entrapment, Vianna (2004). 

The mechanism of gangue recovery by entrapment can be detected by high values of 

entrainment (ENTi), greater than 1 unit, and recovery of coarse liberated gangue in 

the size range between 50 and 200 µm (Johnson, 2005).  

2.7.2.4 Slime coating of valuable mineral 

Fine gangue can attach to valuable minerals surface due to electrostatic attraction 

forces, forming an agglomerate. Slime coatings can affect the flotation rate constant 

and final recovery of the valuable minerals (Forbes et al. 2014; Ndlovu, 2013, He et 

al., 2009). 

2.8 The Effect of Phyllosilicates in Flotation 

This section is focussed on reviewing the behaviour of phyllosilicates in flotation. It 

defines phyllosilicate minerals, the problems associated with phyllosilicate minerals in 

the flotation of sulphide ores, the classification of muscovite in the phyllosilicate 
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mineral group, the behaviour of muscovite in flotation and a potential explanation of 

its recovery mechanisms.  

2.8.1 Definition of Phyllosilicate Minerals 

Phyllosilicate minerals consist of a group of silicate minerals built of tetrahedral ‘T’ and 

octahedral ‘O’ layers. Figure 2-23 shows the classification of several groups of 

phyllosilicate minerals (Ndlovu et al., 2014; Farrokhpay & Bradshaw, 2012; Vaughan 

& Pattrick, 1995).  

 
Figure 2-23 – Classification of clay minerals (Brindley, 1951; Farrokhpay & Bradshaw, 2012) 

The groups of phyllosilicates are classified according to the proportion of tetrahedral 

and octahedral layers, and the connectors between the successive layers. The ‘T’ and 

‘O’ layer configuration for several clay and mica minerals is shown in Figure 2-24.  
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Figure 2-24 – Tetrahedral layer structure of phyllosilicate minerals (Ndlovu et al., 2014) 

According to Grafe et al. (2017), ‘clays have been variously described as particles of 

any composition below a certain size and/or as the phyllosilicate mineral group or part 

thereof and/or as materials that display certain physical properties such as plasticity 

when wet or hardening upon drying.’ Therefore, the chosen definition of clays is 

‘naturally occurring fine-grained phyllosilicate minerals plastic when wet harden on 

drying or firing’.  

Clay minerals can also be classified as swelling and non-swelling clay minerals. The 

swelling behaviour is associated with the capacity of the clay mineral to absorb a large 

amount of water, increasing in volume. Vermiculite and smectite present this property 

and are consequently classified as swelling clays, while kaolinite and illite are 

classified as non-swelling (Ndlovu et al., 2014; Ndlovu et al., 2011).  
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Mica minerals present perfect cleavage and have a flaky shape, formed by numerous 

stacked sheets, easily separated to as thin as 20 µm by delamination (Schoeman, 

1989). The layer structure of micas presents the form ‘X+..T-O-T. X+’ as shown in 

Figure 2-24. Muscovite is a typical mica mineral classified as a genuine dioctahedral 

mica, and it is considered a non-swelling clay. The octahedral inter-layer sites of 

muscovites are occupied by Al3+ and Si4+ in a ratio close to 1:3. Illite is an interlayer-

deficient mica with a layer structure very similar to muscovite, differing by the inter-

layer species H3O+ replacing K+. Micas can be transformed into swelling clays by 

weathering. Muscovite can be converted to illite, later transformed into vermiculite and 

smectite, resulting in a swelling behaviour, as shown in Figure 2-25 (Brigattia, et al., 

2013; Bergaya & Lagaly, 2013; Ndlovu et al., 2011).  

 
Figure 2-25 – Schematic illustrating the transformation of muscovite to vermiculite (Ndlovu et 

al., 2011) 

Because of the platy nature of phyllosilicates, the mineral particles have distinct basal 

faces and edges, which presents different surface charge, becoming charge 

anisotropic. The basal plane charge is not solely negative. Its charge is pH-dependent. 

The edges faces are dominated by negative charges over most of the pH range 
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(Forbes and Chryss, 2017). The aluminol (-AlOH) and silanol (−SiOH) groups exposed 

on the edges of the particle may protonate or deprotonate, by H+ and OH- ions, 

depending upon pH (Forbes and Chryss, 2017; Nosrati et al., 2012). The illustration 

of the influence of pH on the surface charge of the faces and edges of kaolinite 

particles, expressed as zeta potential, is shown in Figure 2-26. 

 
Figure 2-26 - The zeta potential properties of the edge and face surfaces of kaolinite in the 

presence of 0.01M NaCl background (Ndlovu, 2013) 

Estimation of the surface charge of anisotropic minerals is not trivial. The use of zeta 

potential measurements to determine the surface charge of anisotropic minerals is not 

the most appropriate method because it represents an apparent value, which is the 

average zeta potential of the particle planes. Potentiometric titrations are the most 

accepted and widely used method to estimate the net surface charge density of 

anisotropic minerals, as it accounts for the H+ and OH- on the mineral surface (Forbes 

and Chryss, 2017). 

The particle-particle association of phyllosilicate minerals depends on the surface 

charge of particle facets and the pH. The possible orientation of particle-particle 

association is shown in Figure 2-27.  
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Figure 2-27 - Possible orientation of clay particles (van Olphen, 1951; cited by Forbes and 

Chryss, 2017) 

The orientation of the particle associations, as shown in Figure 2-27, is pH-dependent 

and influence the rheological behaviour of the system, as shown in Figure 2-28.  

 
Figure 2-28 - Schematic representation of the modes of particle interaction inhomogeneous 
mineral suspensions as a function of pH and Bingham yield stress (Rand and Melton (1977) 

cited by Ndlovu, 2013). 

2.8.2 The Detrimental Effect of Phyllosilicate Minerals in Mineral Processing  

Clays and phyllosilicate minerals are typical gangue minerals associated with many 

valuable minerals, such as copper, nickel, iron, gold and uranium. Many processing 

problems in slurry transportation, beneficiation, dewatering and disposal are 
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associated with phyllosilicate-bearing ores because they are ‘sticky’ and viscous 

(Ndlovu et al., 2013; Ndlovu et al., 2014; Connelly, 2011).  

The presence of phyllosilicate minerals in slurry transportation processes reduces the 

pumping capacity because of the increase in slurry viscosity. In comminution circuits, 

the presence of phyllosilicate minerals can be detrimental, by blinding screens, and 

reducing the sharpness of cyclone separation. Because phyllosilicate minerals cause 

an increase in pulp viscosity, the grinding process should be operated at a lower 

density to flush the clays from the mill. (Connelly, 2011). 

In tailings dams, the presence of clays reduces the water recovery, geotechnical 

stability and slows the drying process. High clay content in tailings leads to an 

increased dam footprint and selection of complex tailing treatment circuits due to the 

increased pulp viscosity and amount of fines (Ndlovu et al., 2013; Connelly, 2011).  

Due to the high surface area, phyllosilicates are very reactive, being detrimental to the 

flotation performance through (Ndlovu et al., 2013; Farrokhpay et al., 2013): 

 Slime coating on the mineral surfaces and air bubbles. 

 Increasing reagent consumption, reduction of selectivity and impeded flotation 

kinetics. 

 Entrainment of gangue to concentrate. 

 Increasing pulp viscosity. 

 Increasing or decreasing froth stability. 

Farrokhpay et al. (2014) studied the deleterious effect of the different phyllosilicates in 

chalcopyrite flotation. The study investigated the effect of selected phyllosilicate 

minerals on the froth stability, copper grade in the concentre and copper recovery. It 

concluded that the presence of phyllosilicates affects froth stability. The effect of the 

different phyllosilicate minerals can be ranked in the following order: talc >> 

montmorillonite > muscovite > kaolinite > illite. The study observed a significant 

decrease in the copper concentrate grade, from 32% to 1–4%, in the presence of the 

phyllosilicates. The copper grade is affected by phyllosilicate minerals in the following 

order: talc > montmorillonite > kaolinite> illite and muscovite, at a P80 of 90 μm.  
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The study of Farrokhpay et al. (2014), at the addition of the maximum amount of illite, 

kaolinite and muscovite tested (30%) the Cu recovery decreased from 90% to about 

88%. The Cu recovery decreased to about 80% when 10% talc or 15% montmorillonite 

was added. Talc and montmorillonite have shown the most significant effect of the 

phyllosilicate minerals on the flotation recovery and grade, as well as froth stability. 

Montmorillonite also causes rheology issues. The increase of the content of talc, 

montmorillonite and muscovite in the ore leads to an increase of maximum froth height 

and froth half lifetime. Kaolinite is also shown to affect the froth height at increased 

levels.  

Phyllosilicate minerals also affect the zeta potential of chalcopyrite particles. The effect 

varies with the type of phyllosilicate mineral and concentration. According to 

Farrokhpay & Ndlovu (2013), at 30% montmorillonite and kaolinite concentration, 

there was a very minimal effect, while the addition of 30% muscovite to the 

chalcopyrite slurry resulted in the zeta potential values being closer to that of pure 

muscovite. It suggested that muscovite coated the full surface of chalcopyrite particles. 

Farrokhpay et al. (2013) investigated the effect of clays on the rheology and flotation 

of a Carlin Trend ore. The dominant clay minerals identified in the samples used for 

the study were illite, muscovite and kaolinite. The study compared the viscosity values 

of the ore slurry as a function of pulp density for three different P80 values, 53, 106 and 

125 μm. The grade–recovery relationship was measured at different flotation pulp 

densities for gold, sulfur, arsenic and iron. The study found a significant increase of 

apparent viscosity with solids concentration, with a critical solids’ concentration of 

25% (w/w). The viscosity increased with the P80 following the order 125 μm < 106 μm 

< 53 μm.  

These results obtained by Farrokhpay et al. (2013) agrees with the observations of 

Shi & Napier-Munn (1995), in which the viscosity rises with the increase of fines and 

percentage of solids. It was found that the recoveries of Au, As S and Fe were higher 

at higher pulp densities. The study reported that the recoveries of Au, As S and Fe, 

increases with the increase of pulp densities in the following order: 18% ≈ 25% <32% 

<38% solids (Farrokhpay et al., 2013).  
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The research of Forbes et al. (2014) showed that when the concentration of kaolinite 

exceeds 30% of the gangue phase, the floatability of chalcopyrite reduces. The 

flotation rate of the slow floating chalcopyrite significantly decreases. The negative 

effect of kaolinite is exacerbated in acidic pH regions (below pH 6). Figure 2-29 shows 

the decrease in copper recovery as the ratio of kaolinite increases in the gangue.   

 
Figure 2-29 – Recovery of Cu for various ratios of quartz/kaolinite in the gangue fraction 

(Forbes et al., 2014). 

Forbes et al. (2014) and Farrokhpay et al. (2014) found an equivalent decline in 

chalcopyrite recovery when the concentration of kaolinite in the pulp was 30%. 

However, the work of Farrokhpay et al. (2014) did not observe a further decline in 

recoveries, nor in flotation rates, because as demonstrated by Forbes et al. (2014), it 

required higher concentration kaolinite to observe a significant difference.  

The presence of kaolinite increases the viscosity of the pulp because there is an 

increase in the effective volume of solids due to the plate-like geometry of kaolinite. 

The rheology effect reduced the probability of particle-bubble collision through 

turbulence dampening, which was used to explain the reduced flotation rate of 

chalcopyrite (Forbes et al., 2014).  

It was not possible to isolate the effect of pulp rheology and slime coating as the two 

are inherently related. The two effects appear to have approximately equivalent 
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magnitudes, although the measured magnitude of the slime coatings effect is 

combined with the rheological effect (Forbes et al., 2014).  

2.8.3 The Effect of Muscovite in Flotation 

2.8.3.1 Muscovite 

Muscovite is occasionally referred to as sericite in the literature. Sericite is defined as 

white fine-grained potassium mica, commonly muscovite or another mineral similar in 

composition to muscovite, including paragonite and illite (Hudson Institute of 

Mineralogy, 2016; American Geological Institute, 1997). It also includes a variety of 

phyllosilicates (sheet silicates) with the formula K2Al4[Si3AlO10]2(OH)2 formed from the 

alteration of feldspar by either hydrothermal alteration or later-stage weathering 

(Allaby, 2015). Mica is defined as the name for a group of complex sheet-layered 

phyllosilicate minerals, such as muscovite, biotite, phlogopite, zinnwaldite, lepidolite, 

roscoelite, paragonite, illite and sericite (Manutchehr-Danai, 2008). 

Muscovite is a mica phyllosilicate. It is known to be an insulator. It has been used in 

biological research. Besides, because of its reactive surface and affinity for DNA, 

oligonucleotides, and lipids, muscovite become a possible template to investigate the 

origin of life (Leiro et al., 2017; de Poel et al., 2013; Franchi et al., 2003). The 

properties of muscovite are listed in Table 2-6.  

Table 2-6 – Properties of muscovite (Hudson Institute of Mineralogy, 2018) 
Property Muscovite 

Formula KAl2(AlSi3O10)(OH)2 

Impurities Cr,Li,Fe,V,Mn,Na,Cs,Rb,Ca,Mg,H2O 

Transparency Transparent, Translucent 

Colour White, Gray, Silver white, Brownish white, Greenish white 

Lustre Vitreous, Silky, Pearly 

Hardness 2½ on the Mohs scale 

Tenacity Elastic 

Fracture Micaceous 

Density 2.77 - 2.88 g/cm3  

Cleavage Perfect 
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Muscovite, as a dioctahedral phyllosilicate, has a 2:1 structure, consisting of an 

octahedral layer ‘O’, Al – O – M (where M is Al, or Fe, Mg), in between two tetrahedral 

‘T’ layers, ‘T-O-T’, stabilised through electrostatic attraction of the interlayer cations 

such as K+ or Na+ (Nosrati et al., 2012; Ndlovu, 2013). As described by Ndlovu, (2013): 

‘The continuous stacking of successive T-O-T units results in the platy morphology of 

muscovite particles which typically exist as long, thin flaky sheets. Each plate has a 

distinct ‘T’ faces and ‘TO-T’ edges’. The tetrahedral basal plane (face) is characterised 

by the K cations and the edge by Al.  

The platy morphology of muscovite is shown in Figure 2-30 though SEM images 

obtained by Ndlovu (2013). 

 
Figure 2-30 – SEM images demonstrating the platy morphology, high aspect ratio and smooth 

surface structure of muscovite (Ndlovu, 2013) 
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The atomic structure of muscovite is shown in Figure 2-31. 

 
Figure 2-31 – Atomic structure of muscovite, Christenson and Thomson (2016) 

Although muscovite is a phyllosilicate, it does not present ‘clay-like’ characteristics, 

according to the definition of Grafe et al. (2017), as ‘naturally occurring fine-grained 

phyllosilicate minerals plastic when wet and harden on drying or firing’, because it does 

not present swelling properties.  

Figure 2-32 shows the surface charge of muscovite obtained via potentiometric 

titration by Ndlovu (2013). Ndlovu (2013) found an isoelectric point for muscovite at 

pH 4.6 + 0.3, which is different from Scales et al. (1990) who found the zeta potential 

of muscovite to be negative over the pH range from 3 to 10.  

 
Figure 2-32 - The zeta potential of gibbsite and silica, compared to the electrokinetic zeta 

potential of muscovite (obtained in NaCl 0.001-0.1 M). The error bars represent 95% confidence 
interval of average values (Ndlovu, 2013) 
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The contribution of the edge faces of muscovite to the overall particle surface charge 

is approximately 5–10%, because the aspect ratio of muscovite is approximately 20, 

because of the high ratio of the surface area of basal to edge face (Maslova et al., 

2004). 

Muscovite can exchange the surface potassium ions for several ions in a solution 

including Ag, Ca, V, Mn, Fe, Ni, Cu, Zn, Co, Cs, Li, La and Cd. The occupancy of those 

ions on the surface of muscovite is proportional to the total ion concentration in solution 

(de Poel et al., 2017; Nosrati et al., 2012; Maslova et al., 2004; Scales et al.,1990). 

Nosrati et al. (2009) studied the leaching of Al3+, Si4+, and K+ species from muscovite 

to the solution in the pH range from 9 to 2, at 8% and 57% solids by weight. The ion 

concentration in the solution is shown in Figure 2-33. 

(a) (b) 
Figure 2-33 - Concentration of Al(III), Si(IV), Fe(III) and K ions leached into solution as a 

function of pH from muscovite dispersions in 10−3 M KNO3, measured with ICP. For both 8 
wt.% (a) and 57 wt.% solid (b) dispersions (Nosrati e. al, 2009) 

As shown in Figure 2-33, the leaching of K and Al increases with a decrease of pH. 

The increase in the percentage of muscovite in the pulp increased the concentration 

of K and Al ions in solution greatly.  

2.8.3.2 Muscovite Behaviour in Flotation 

According to Silvester et al. (2013), muscovite does not have inherent floatability but 

reports strongly to the concentrate.  

Muscovite can be readily recovered via flotation using cationic or anionic collectors. 

Cationic collectors, such as amines like DTAB (Silvester et al., 2013; Nishimura et al., 
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2000; Browning, 1973), can recover muscovite because the it has an overall negative 

charge across the entire pH range (Silvester et al., 2013; Scales et al., 1990). It also 

can be separated via anionic collectors, like fatty acids (Rao et al., 1995; Gaudin, 

1957), and alkyl sulphates over a pH range from 2 to 8 (Sutherland and Wark, 1955).  

The use of depressants, such as polysaccharides does not improve the selectivity of 

muscovite significantly. There is no general agreement on its primary mechanism of 

recovery. It is an issue that should be analysed case by case (Silvester et al., 2013). 

Li et al. (2014) investigated the recovery behaviour of muscovite and the effect of 

hydrophobic microcrystalline graphite on water recovery through batch flotation tests 

and contact angle measurements. The batch flotation tests showed a linear 

relationship between sericite recovery and water for all size fractions tested, which 

indicates that entrainment is the mechanism of recovery. This evidence is supported 

by the contact angle measurement, which is 16.78°, which is characteristic of a 

hydrophilic material.  

Li et al. (2014) found that the degree of entrainment of sericite is higher than quartz 

for the same size fraction. This behaviour is likely to be due to the platy nature of 

sericite, as demonstrated by Wiese at al. (2015), that has been shown to increase 

entrainment. The entrainment factor of particles -18 µm was founded to be 0.98 in Li 

et al. (2014) work.  

The results of Li et al. (2014) also showed that the particle size of sericite affected 

water recovery. The water recovery decreased from 50.16% to 34.99% when the size 

fraction was increased from -18 µm to -97+74 µm. This phenomenon indicated that 

the froth containing fine sericite is more stable than with coarse particles. Li et 

al. (2014) concluded that entrainment of sericite affects the selectivity of graphite. As 

the particle size goes finer, the enrichment rate was sharply decreased because of the 

increase of the entrainment of muscovite.  

The interaction of sericite and chalcopyrite has been investigated by He et al. (2009). 

They observed that a hetero-aggregation of sericite and chalcocite occur when both 

minerals are negatively charged, as indicated by the values of zeta potential between 
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pH 5 and 11. The presence of hydrolyzed Cu2+ ions in solution when pH varies from 

5-11 invert the signal of the surface charge of sericite, as indicated by the zeta potential 

measurements. An increase of shear stress was also observed when the 

concentration of Cu2+ ions rose for pH values higher than 8, as shown in Figure 2-34.  

 
Figure 2-34 – Zeta potential (a) and shear yield stress (b) of sericite in the presence and 

absence of Cu2+ ions (He et al., 2009). 

Figure 2-35 illustrates the effect observed by He et al. (2009). The presence of Cu2+ 

ions in solution is due to the oxidation of the chalcocite. An effective solution for the 
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aggregation problem is to reduce the degree of oxidation of the chalcocite by 

increasing the pH and introducing nitrogen for flotation.  

 

Figure 2-35 – Hetero aggregation of sericite and chalcocite in the presence of Cu2+ (He et 
al., 2009). 

2.9 Literature Review Summary and Gaps Identified 

It is suspected that the poor flotation rates obtained in Barrick’s White Mountain project 

were due to the high percentage of muscovite in the feed. As such, the literature was 

reviewed aimed to understand the effect of the presence of muscovite in the flotation 

of sulfide ores and the factors that affect the flotation performance of pyritic minerals. 

The objective of the review was to gather information about the effect of the presence 

of muscovite in flotation, and the factors that drive the flotation performance of pyritic 

minerals and muscovite, in the context of the flotation conditions of the White Mountain 

project. 

The key finding of the literature review are presented as follows:  

1. Muscovite is a micaceous platy phyllosilicate mineral, with high aspect ratio and 

a high capability for exchanging of ions in solution. It can liberate Al, Si, and K 

ions to solution by leaching at pH 2 to 9. Because muscovite is a platy mineral, 
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the surface charge of the face differs from the edges. The isoelectric point is 

pH 4.6.  

2. Muscovite is a hydrophilic mineral. The recovery of muscovite in flotation is due 

to entrainment. Because of its platy nature, the entrainment of muscovite is 

higher than spherical minerals. 

3. The presence of muscovite in the flotation of copper minerals is associated with 

a decrease in copper recovery and concentrate grade, an increase in pulp 

viscosity and flotation of slime coatings. 

4. The increase in viscosity with muscovite is a function of the particle size 

distribution, solids concentration, temperature, chemical factors, and particle 

aggregation. Increases in viscosity can affect the flotation performance by 

affecting the degree of energy dissipation in the cell, the bubble rising velocity 

and the gas hold up. 

5. Muscovite forms slime coatings on the surface of chalcocite. The coverage of 

muscovite increases under acidic pH conditions and high copper concentration.  

6. The formation of slimes coatings decreases the flotation rate of chalcopyrite. 

The detrimental effect of the kaolinite coating on chalcopyrite is exacerbated by 

the increase of kaolinite proportion in the gangue and at pH below 6. The 

increase in the percentage of kaolinite led to an increase in pulp viscosity. 

7. The presence of hydrophilic ions, such as F, Na, Ca, O, Si, Mg, and K on the 

chalcopyrite surface decreased its hydrophobicity, consequently affecting the 

flotation performance.  

8. The leaching of phyllosilicates, such as kaolinite and muscovite, can increase 

the presence of some hydrophilic ions, including Ca and K, in the flotation, 

which could affect the flotation rate of sulfide minerals.  

The gaps identified in the literature review are presented as follows:  

1. All the work reporting the effects of muscovite in flotation were done in the 

context of copper minerals, including chalcopyrite and chalcocite. No literature 

was found about the effect of the presence of muscovite on arsenopyrite and 

pyrite. 

2. No study was found to quantify the effect of the proportion and size distribution 

of muscovite in the flotation feed on the flotation rate of arsenopyrite and pyrite 
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3. The effect of the viscosity, caused by the increase of the proportion of 

muscovite in the gangue, on the flotation rate of arsenopyrite and pyrite has not 

been reported in the literature 

4. The formation of muscovite slime coating on the surface of arsenopyrite and 

pyrite has not been investigated 

5. No studies using CCRD factorial design were found to investigate the combined 

effect of the proportion of muscovite, size distribution , %solids of the flotation 

feed, pH and frother dosage 

It will be the objective of this thesis to investigate the effects of muscovite on pyrite 

and arsenopyrite flotation to determine the reason for the observed results.  

  



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar 

88 

 

 

 

Chapter 3  
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3 Experimental Method 

3.1 Introduction 

The objective of this research is to understand whether the presence of muscovite in 

the flotation feed affects the flotation rate constant of pyrite and arsenopyrite and the 

mechanisms involved.  

This chapter describes the research and experimental method, including sample 

preparation method and the experimental procedure used to investigate the influence 

of muscovite in the flotation of pyrite and arsenopyrite. 

3.2 Research Method 

To address the research hypotheses, the experimental work is divided into two 

phases: 

 Phase 1: Determine whether the presence and the amount of muscovite in 

gangue are key factors affecting the flotation rate of pyrite and arsenopyrite. 

 Phase 2: Identify the mechanisms affecting the flotation rate of pyrite and 

arsenopyrite. 

The initial phase of the research consists of performing a large number of batch 

flotation tests using a synthetic ore according to the CCRD factorial design. This 

approach will identify to screen the significant variables, that adversely affect the 

flotation rate of pyrite and arsenopyrite from the range tested which is the proportion 

of muscovite in the gangue, percentage of solids in the flotation feed, size distribution 

of muscovite, frother dosage and pH. The assessment of the significant variables 

affecting the flotation rates is done through regression analysis that evaluates the 

statistical significance of the regression terms. The flotation rates used in the 

regression analysis were calculated through the flotation recoveries of arsenopyrite 

and pyrite observed in the flotation batch tests. Recovery data of water and muscovite 

were also collected. The results of this initial phase of the research allow hypothesis 1 
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(that the presence of a high concentration of muscovite has a detrimental effect on the 

flotation rate of arsenopyrite and pyrite) to be tested.  

The second phase of the research is aimed at identifying the mechanisms by which 

muscovite affects the flotation rate of pyrite and arsenopyrite. The potential 

mechanisms investigated are viscosity and/or surface modification via hetero-

aggregation and changes in surface chemistry.  

The effect of viscosity is investigated by measuring the viscosity of the flotation feed 

pulp, which allows Hypothesis 2 (that the presence of muscovite affects arsenopyrite 

and pyrite floatability by changing pulp viscosity) be tested. The viscosity analysis was 

performed on samples of the flotation feed that were collected during the development 

of the batch flotation tests of the CCRD factorial design. The effect of pulp viscosity 

was evaluated through regression analysis that evaluated the statistical significance 

of the viscosity on the flotation rates of arsenopyrite and pyrite. In addition, an 

investigation to identify the significant factors from the CCRD factorial design that drive 

pulp viscosity is included to support the observed effects of viscosity on the flotation 

rates.  

The investigation of the surface modification mechanisms examined both physical 

surface modification via hetero-aggregation, and chemical modification via the 

presence of metal ions, collector coverage, and oxidation. Zeta potential 

measurements were undertaken to investigate if the flotation conditions used 

promotes hetero-aggregation between muscovite and the pyritic minerals. Time-of-

flight resonance-ionisation mass spectrometry (ToF-SIMS) and XPS analysis 

investigated the presence of metal ions, collector coverage and oxidation on the 

surface of the pyritic minerals. The results of the zeta potential, ToF-SIMS, and X-ray 

Photoelectron Spectroscopy (XPS) analysis allows Hypothesis 3 (that the detrimental 

effect of muscovite in the flotation rate of arsenopyrite and pyrite is due to surface 

modification of arsenopyrite and pyrite mineral grains) to be tested.  

A summary of the steps of the experimental work performed in this research is 

provided in Figure 3-1. 
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Figure 3-1 – Schematic of the research method 
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3.2.1 Central Composite Rotatable Design (CCRD) for Flotation Experiments 

During the first phase of the research, a central composite rotatable design (CCRD) is 

the Design of Experiment (DOE) approach used to determine the most important 

factors that drive the effect of muscovite on the flotation rate of arsenopyrite and pyrite. 

The CCRD factorial design was selected because of its ability to provide a regression 

model that can be used to predict and understand the relationship between the factors 

for the measured response, using a reduced number of experiments.  

The CCRD is a surface response method that provides a 3D response surface for the 

chosen variables, making it possible to build a model and to analyse the interaction 

between the variables. CCRDs are based on 2-level factorial designs with its origin at 

the centre and with additional axial points that are apart from the centre at a distance 

of α. The value of α is selected to provide rotatability to the design. The value of α for 

rotatability is calculated by: 

𝛼 =  2  

Where k is the number of factors.  

Figure 3-2 shows the structure of a 3-factor CCRD. And Figure 3-3 shows an example 

of the surface curves generated. (Napier-Munn, 2014). 

 
Figure 3-2 – Structure of 3-factor CCRD (Napier-Munn, 2014). 
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Figure 3-3 – Example of 3D surface response curved generated from a CCRD design (Napier-

Munn, 2012) 

The objective of the CCRD designed for this research is to understand whether the 

presence of muscovite affects the flotation rate of arsenopyrite and pyrite and if other 

factors that drive the flotation behaviour of muscovite and the pyritic minerals affect 

the flotation kinetics. Five flotation parameters that may affect the flotation behaviour 

pyrite and arsenopyrite in the presence of muscovite were selected, based on the 

literature.  

The factors evaluated were:  

 Frother dosage. 

 pH. 

 Percentage of muscovite in the synthetic ore. 

 P80 of muscovite. 

 Percentage of solids in the flotation feed.  

A full 5 factor central composite rotatable design (CCRD) of experiments was selected 

for this research. Given the number of factors investigated, the CCRD design required 

significantly fewer tests than a multilevel factorial design. The full 5-factor CCRD 

design involved 54 flotation batch tests, rather than 160 tests as required by the 

multilevel factorial design. The selected CCRD design included repeats and centre 

point runs. The order of the experiments was blocked to minimise the effect of the 

length of time taken to complete all tests from the CCRD design. The design was 

generated in using the commercial statistical software Minitab® version 18 

(Minitab, 2019). A detailed list of the tests and conditions is provided in Appendix 1. 
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Table 3-1 shows the ranges of the factors investigated in the CCRD.  

Table 3-1 – Range of the factors tested in the CCRD  
Factor / Range Minimum value Maximum value 

Frother dosage 10 ppm* 30 ppm 

pH 4 10 

Percentage of muscovite in the synthetic ore 0% 45% 

P80 of muscovite 50 µm 150 µm 

Percentage of solids in the flotation feed 10% 45% 

*The frother critical coalescence concentration (CCC) is 8.6 ppm. 

These parameters were selected based on operational parameters that could 

potentially be changed to minimize the deleterious effect of muscovite on the flotation 

rate of arsenopyrite and pyrite. The flotation rate is also affected by cell parameters, 

such as geometry, air rate, impeller speed, cell size (Gorain, 1998; Wang, 2016), 

particle composition, reagent regime, and pulp rheology. Note that equipment and 

operating parameters, such as airflow, cell geometry, froth height (due to lip height) 

and impeller speed are not the focus of this thesis.  

Table 3-2 lists the objective of testing each of the selected parameters in flotation.  

Table 3-2 - Basis of the selection of the parameters tested 
CCRD Parameters  Objective 

Muscovite P80 
Evaluate if the size distribution of muscovite affects the flotation rate of the 

sulfide minerals 

Muscovite proportion (%) Evaluate the critical components of the gangue in terms of % of muscovite 

Frother dosage (ppm) 
Evaluate how the increase of gangue entrainment can affect flotation rate 

without an increase in viscosity 

pH Evaluate how the surface charge of the muscovite affects flotation rate 

% solids of the pulp Evaluate the effect of viscosity or the flotation rate 
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Figure 3-4 – Schematic of the flotation tests of the CCRD 

The data measured in each test of the CCRD experiments included timed concentrate 

and tailings total masses, water content, solids content, and viscosity of the pulp. The 

recoveries and rate constants of pyrite and arsenopyrite were calculated based on 

arsenic and sulfur assays. The recovery of muscovite was calculated based on the 

assays of aluminium. A schematic of the flotation tests of the CCRD program are 

shown in Figure 3-4. The detailed flotation procedure is presented in Section 3.4. 

The collector dosage used in the 5-factor CCRD design was held constant. It is well 

known that the recovery of pyrite is a function of collector dosage and pH (Fuerstenau, 

Kuhn and Elgillani, 1968), as shown in Figure 3-5. Because pH is one of the factors 

evaluated in the CCRD design, an appropriate dosage of collector needed to be 

selected to keep the recovery of pyrite constant over a wide range of pH values.  
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Figure 3-5 – Recovery of pyrite as function of pH with potassium ethyl xanthate of (empty 

circle) 1 x 10-5 M, (filled circle) 2 x 10-5 M and (triangle) 2 x 10-4 M (Fuerstenau, et al., 2007).  

Barrick used potassium amyl xanthate (PAX) as the flotation collector of pyrite and 

arsenopyrite in the White Mountain project. Therefore, to maintain the conditions of 

the experiments performed in this research similar to the Barrick flotation test 

conditions, PAX was selected as the collector. To select the appropriate dosage of 

potassium amyl xanthate (PAX), an initial 2-factor CCRD experimental design was 

performed separately. Including the collector dosage as a factor in the full CCRD 

program would require a 6-factor CCRD which would increase the number of flotation 

batch tests from 54 to 90. Through performing those tests separately, the total number 

of tests required to perform the 2-factor and 5-factor CCRD is 68 rather than 90 tests 

to perform a full 6-factor CCRD design.  

This initial 2-factor CCRD design was performed with a synthetic ore. The composition 

of the synthetic ore used consisted of 35 g of pyrite, 16 g of arsenopyrite and 980 g of 

silica. The pH was varied from 4 to 7, and the concentration of PAX evaluated was 

between 30 g/t and 300 g/t. This procedure consisted of 14 flotation tests. Table 3-3 

details the pH and the PAX dosage evaluated in these tests. 
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Table 3-3 – Details of the 2-factor CCRD runs performed to optimise PAX dosage 
Run Order Blocks pH PAX dosage (g/t) 

1 2 7.0 165 

2 2 7.0 30 

3 2 4.0 165 

4 2 7.0 165 

5 2 7.0 300 

6 2 10.0 165 

7 2 7.0 165 

8 1 4.9 260 

9 1 7.0 165 

10 1 9.1 260 

11 1 7.0 165 

12 1 4.9 69 

13 1 9.1 69 

14 1 7.0 165 

3.3 Sample Preparation and Characterisation 

The study of flotation performance was done using a synthetic ore created by 

combining pure minerals. The advantage of using a synthetic ore system is that it 

allows the identification of specific effects of the mineral of interest without the 

interference of the complex mineralogy of a ‘real’ ore. In addition, the composition of 

the synthetic mineral mixture can be easily modified, in contrast to real ores.  

The mineral composition of the synthetic ore used in this study is designed to 

approximate the characteristics of the minerals in Barrick’s problematic ore. The 

sulfide minerals selected for this study, arsenopyrite, and pyrite, are the gold-bearing 

minerals in the problematic ore from Barrick with slow flotation kinetics. The gangue 

minerals used are silica and muscovite. Silica is the most abundant gangue mineral in 

the problematic ore and muscovite is the gangue mineral of interest in this study. Other 

gangue minerals from Barrick’s problematic ore are not included in this study. Their 

percentage in the composition of the gangue is replaced by silica in the synthetic ore. 

This allows the observations of the effect of muscovite on the flotation rates to be made 

with the exclusion of the interference of other minerals that are not the focus of this 

research.  
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The synthetic ore mixture was prepared to create a similar mineral size distribution 

characteristic to the problematic ore of Barrick. Barrick supplied data of the size 

characteristics of the sulfide minerals in the problematic ore, and a sample of a 

reference ore which allowed measurements of the gangue minerals size distribution 

and liberation characteristics.  

This section describes the experimental procedure involved in the sample preparation. 

Chapter 4 presents the liberation and size distribution analysis completed as part of 

the sample characterisation procedure.  

3.3.1 Reference ore from Barrick 

The reference ore of Barrick contained 22% of muscovite by mass, and in this 

research, the reference ore has been used to provide data for the size distribution and 

liberation of the gangue minerals of interest, which are muscovite and quartz, at 

different grind sizes.  

The available reference ore sample consisted of a composite sample, totalling 51.6 kg 

of the ore crushed to −3.35 mm. The samples were representatively split into 1 kg 

bags. 

Representative samples of the ore were split in a riffle splitter and pulverised. The 

pulverised samples were divided and sent for assay and QXRD to determine 

elemental and mineral composition.   

To assess the liberation characteristics of silica and muscovite in the reference ore, 

the samples were ground at a range of time intervals to determine the point at which 

the samples achieved the P80 values of 350 µm, 125 µm, and 50 µm. These P80 values 

were chosen to identify the range of liberation stages of the ore. The objective of 

grinding at different P80 values is to observe if there could be an advantage in using a 

coarser grinding size to facilitate the rejection of muscovite. 

After the grinding calibration curve was established, three 1 kg samples were ground 

to the required P80 values, and the products were sized. A representative sample of 

each size fraction was assayed and sent for mineralogical analysis by MLA to 
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determine the liberation of muscovite, sulfide minerals and other gangue minerals. The 

size fractions selected were + 150, - 150 + 75, - 75 + 38, - 38 + 20, - 20 + 10 µm, and 

- 10 µm. These data are presented in Chapter 4.  

3.3.2 Pure mineral samples 

3.3.2.1 Pyrite and Arsenopyrite 

The pure samples of pyrite used in this work were purchased from GEO Discoveries 

(Discoveries, 2012) and originated from Peru. They were provided as coarse rocks 

that required crushing in a Boyd crusher using a closed size setting of 2 mm. The 

crushed material was screened on an 850 µm sieve with coarse material returned to 

the crusher. The material finer than 850 µm was split into 35 g subsamples and sealed 

in individual bags. The bags were stored in the freezer at -18oC to minimise oxidation 

of the sulfide minerals.  

The arsenopyrite was received from GEO Discoveries (Discoveries, 2012) in 2.5 cm 

cubes, which were crushed in a Boyd crusher to -850 µm and split into 16 g 

subsamples and sealed in individual bags. The bags were also stored in the freezer 

at -18oC.  

The pyrite and arsenopyrite samples were characterised using the Mineral Liberation 

Analyser (‘MLA’) extended back-scatter electron detector (‘XBSE’) method to 

determine their purity are presented in Chapter 4.  

To prepare the flotation feed prior to each flotation test, pyrite and arsenopyrite were 

ground together with 75 ml of Brisbane tap water in a 20.5 cm diameter, 23.3 cm long 

stainless steel rod mill for 5 minutes, using 4 mild steel rods, each 2 cm in diameter 

and 23.3 cm long. The weight of the grinding media used was 2841 g. The picture of 

the rod mill used is shown in Figure 3-6. 

To minimise contamination between tests, the rods were cleaned by performing a 

5 minutes grind using 200 g of silica and 300 ml of tap water.  

Preliminary grinding tests were performed at a range of grinding times, to determine 

the appropriate grinding time to produce pyrite and arsenopyrite with a similar size 
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distribution to that of the White Mountain ore. The grinding size results are shown in 

Chapter 4.  

 
Figure 3-6 – Rod mill used for the grinding of pyrite and arsenopyrite 

3.3.2.2 Silica  

The silica samples were purchased as 25 kg bags from Sibelco Australia and did not 

require crushing. To perform all the flotation tests, approximately 100 kg of silica was 

required. Four 25 kg bags of Sibelco Silica 60G were blended by performing multiple 

passes through a rotary Essa splitter. The bags combined in the Essa splitter feeder 

were split into 8 fractions. The opposite fractions from the split were recombined in the 

feeder and them re-split. The procedure was repeated three times to ensure thorough 

blending. The blended sample was subsampled using a rotary sample divider to obtain 

the amount of silica required for each flotation test. 

The size distribution of the silica purchased was compared to the grain size distribution 

of the silica in the reference ore and the data from White Mountain. No further 

adjustment of the size distribution of the purchased silica was required. The 

comparison of the size distribution of the purchased silica with the size distribution of 

the quartz White Mountain is provided in Chapter 4.  

3.3.2.3 Muscovite 

Muscovite was received from Wards Science® (Ward’s Science, 2019) in 1 kg sheets. 

The size reduction of this material was challenging, requiring multiple steps. The aim 

was to produce muscovite in different size classes that could be combined in ratios 
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that would replicate the size distribution which would be expected after grinding of the 

White Mountain ore. The samples of muscovite were first delaminated using a jaw 

crusher followed by manual delamination, as shown in Figure 3-7. The delaminated 

material was comminuted for approximately 2 minutes in a conventional 800 W 2 L 6 

blades Sunbeam blender, using the pulse function to generate sheets smaller than 

4 cm2. This material was dry sieved at 850 and 600 µm. This stage of grinding aimed 

to generate -850+600 µm muscovite for the entire testing campaign, as shown in 

Figure 3-8.  

The remaining delaminated material was comminuted for approximately 2 minutes in 

a conventional 2000 W 2 L 4 blade Sunbeam blender to generate sheets smaller than 

1 mm2. This blended material was wet sieved at 53 µm and 38 µm, as shown in 

Figure 3-8. The +53 µm and +38 µm fraction were when dry sieved using 600, 425, 

300, 212, 106, 75, 53 and 38 µm screens.  

(a)

(b) 

Figure 3-7 – (a) Muscovite as received from Wards Science® in 1 kg sheets (b) Delaminated 
muscovite 
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Figure 3-8 – Muscovite sheets after 2 minutes in the 800 W blender 

 
Figure 3-9 - Sunbeam blender 2000 W with 4 blades for the comminution of muscovite 

The excess coarse fractions were reground in a laboratory pulveriser for 5 minutes to 

generate the – 38 µm material. The pulverising procedure was repeated until the 

required amount of material reported to the – 38 µm fraction. A sample preparation 

diagram for muscovite is provided in Figure 3-10. 
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A representative sample of muscovite was submitted for quantitative x-ray diffraction 

(‘QXRD’) analysis to determine its mineral composition. Results of this analysis are 

presented in Chapter 4. 

 
Figure 3-10 – Sample preparation diagram of muscovite 
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3.4 Flotation Experimental Procedure 

3.4.1 Flotation Reagents 

The reagents used in the flotation tests were based on the flotation reagents used by 

Barrick in the White Mountain project. The reagents used by Barrick in the White 

Mountain project are shown in Table 3-4. 

Table 3-4 – Barrick Flotation Reagents (AMEC, 2007) 
Type Reagent Dosage 

Collector Potassium Amyl Xanthate (PAX) 200 g/t 

Activator CuSO4 100 g/t 

Frothers 
F549 

MIBC (Methyl Isobutyl Carbinol) 

5 g/t  

95 g/t 

The pH adjustment of the slurry of the flotation tests performed for the thesis was made 

using a 5% weight solution of sodium hydroxide prepared using solid sodium 

hydroxide from Rowe Scientific, and a 1% volume solution of sulphuric acid 98% from 

Ajax Chemicals.  

100 ml of PAX solution 20 g/L was prepared daily from solid PAX, of 90% purity 

sourced from Qingdao LNT Chemical CO LTD.  

The CuSO4 used in the flotation tests was as a 10 g/L solution from solid CuSO4 from 

Ajax Finechem (ThermoFisher Scientific, 2019). 

Dowfroth 250, a polypropylene glycol-type frother from Dow Chemical Company, was 

used instead of the mixture of F549 and Methyl Isobutyl Carbinol (MIBC) used in the 

White Mountain because it has a higher dynamic foamability index (DFI) than MIBC 

(Laskowski, 2004). The aim was to prevent the froth collapsing and maintain a stable 

froth throughout the duration of each batch laboratory flotation test. Dowfroth 250 was 

used undiluted and dosed with a graduated 100 µL pipette. The minimum frother 

dosage used in the CCRD flotation experiments was 10 ppm, which is above the CCC 

of Dowfroth 250, that is 8.7 ppm, according to Cho & Laskowski (2002). 
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All reagent solutions were prepared using Brisbane tap water. The composition of 

Brisbane tap water, as per the Queensland Urban Utilities (2018) is shown in 

Table 3-5. 

Table 3-5 - Brisbane tap water (Queensland Urban Utilities, 2018) 
Element Aluminium Chloride Fe TDS Total Hardness 

ppm 0.046 62 0.011 290 120 

3.4.2 Flotation Procedure 

Flotation batch tests were performed to obtain the mineral recovery and water 

recovery, as a function of time. This information was used to obtain kinetic floatability 

data.  

The mass of pyrite and arsenopyrite in each synthetic ore mixture remained constant 

at 35 g and 16 g per test, respectively. The quantities of silica and muscovite used in 

the flotation batch tests were varied according to the desired percentage of solids and 

the proportion of muscovite to be achieved. Appendix 1 presents the specific amount 

used in each test. The flotation tests completed in the CCRD were performed using 

the same operating parameters. All tests were conducted in a 5 L bottom driven 

laboratory scale flotation cell employing an agitair impeller and stator, run with an 

impeller speed of 800 rpm, an air rate 11 L/min and a froth depth of 1 cm below the 

cell lip.  

The batch flotation tests were performed according to the following procedure: 

1. Clean the rod mill prior to grinding the flotation feed material: add 250 g of 

cleaning silica and 250 mL of water to the mill. Grind for 5 minutes. Wash mill 

thoroughly. 

2. Pyrite and arsenopyrite grinding: add 35 g of pyrite, 16 g of arsenopyrite and 

75 mL of water. Grind for 5 minutes. 

3. Measure Eh of pyrite pulp immediately after grinding. Collect the thick pulp in a 

vial and measure the potential. Wash mill thoroughly. 

4. Pre-fill the flotation cell with 2 L of Brisbane tap water. 

5. Add Dow Froth 250 using a micropipette to achieve the desired test dosage. 
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6. Adjust the impeller speed of the cell to 800 rpm. 

7. Add dry silica to the cell. 

8. Add dry muscovite to the cell. 

9.  Add the pyrite and arsenopyrite slurry to the cell. 

10.  Add the remaining amount of water required for the test level. 

11. Conditioning for 6 minutes and adjust pH with NaOH for the tests above pH 7 

or H2SO4 solution for tests below pH 7. 

12.  Add CuSO4 and condition for 2 minutes. 

13. Add PAX and condition for 2 minutes. 

14. Turn air to 11 L/min and start stopwatch used to time the test. 

15.  Collect concentrates at: 0.5, 1, 2, 6 and 10 minutes. 

16. The pulp volume in the cell was maintained by the addition of Brisbane tap 

water pre-conditioned with frother at the same dosage of the given test. 

17.  Weigh flotation cell which contains tailings and to obtain the wet weights of 

each product to concentrate containers to calculate the water recovery. 

18.  The concentrates were filtered, dried and re-weighed to obtain the dry solids 

mass of each product to calculate the solids recovery and weight %solids.  

The flotation cell and the concentrate containers were tared prior to each batch 

flotation tests. 

3.5 Zeta Potential 

The zeta potential is a measurement of the surface charge of the minerals involved in 

flotation. The measurements were carried out to identify the surface charge of pyrite, 

arsenopyrite, silica and muscovite individually and as a mixture. The zeta potential 

measurements of the mineral mixture were performed under similar conditions of the 

centre point runs of the full CCRD, in which the muscovite P80 = 100 µm, 22% 

muscovite and 27% solids. The detailed size distribution of pyrite, muscovite and silica, 

and used in the zeta potential test can be found respectively in Table 4-4, Table 4-7 

and Table 4-9, in Chapter 4. 
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The zeta potential measurements were performed as a potentiometric titration series 

using the Colloidal Dynamics Zetasizer, at the Julius Kruttschnitt Mineral Research 

Centre.  

The Colloidal Dynamics ZetaProbe can measure directly samples up to 60% volume, 

using a patented multi-frequency electroacoustic technology, and operates without 

entering the particle size of the sample, from a range of 1 nm to greater than 30 µm. 

The ZetaProbe has no limit on particle size. The instrument automatically 

compensates for the effect of particle inertia for large particles and has no lower limit 

in particle size. (Colloidal Dynamics, 2019a; Colloidal Dynamics, 2019b). 

Two potentiometric titrations were performed per sample, an acid-to-base, and a base-

to-acid pH. The series were conducted over a range of pH values from pH 3 to 11.  

3.6 Pulp viscosity 

Rheological measurements were performed on the flotation feed slurry using an 

AR1500EX (from Thermal Analysis, Germany), at the Julius Kruttschnitt Mineral 

Research Centre, with a CC27/P1-SN10897 vane. This geometry was selected 

because it can measure more accurately the shear stress at a low shear rate of low 

solid content slurries. The particles of the slurry tested were 100% passing 850 µm. 

Rheological measurements were conducted on 25 mL of flotation feed, extracted from 

the flotation cell using a 30 mL syringe with an aperture of 2 mm, which is larger than 

the largest particle in the flotation slurry being analysed. The samples of the flotation 

feed for rheology were collected during the conditioning time after all reagents had 

been added and prior to the addition of air. The rheology measurement involved 

adjusting the shear rate at decreasing intervals within the range of 400-0 s-1, over a 

60 s time period. For minimising the effect of the slurring settling during the test, the 

pulp was stirred for 15s at the shear rate of 400 s-1 prior to the measurement, and 

shear stress was taken in decrease intervals. The rheological time dependency of the 

behaviour of the pulp is not evaluated in this research. Therefore, to minimise this 

effect, all viscosity measurement was conducted with the same time interval between 

sample collection and analysis, which was 25 minutes.  
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3.7 Assaying 

The quantities of the minerals present in the concentrates and tailings of the flotation 

tests were determined via assay of Al, S, and As. Table 3-6 shows the elements 

assayed and the ratios used to calculate the mineral assays in the synthetic ore.  

Table 3-6 – Assayed Elements 

Mineral  Formula Assayed Element 
% of Assayed Element in the 

Mineral (Webmineral 2019a,b,c) 

Muscovite KAl2(Si3Al)O10(OH,F)2 Al 20.30 

Pyrite FeS2 S 53.45 

Arsenopyrite FeAsS As, S As = 46.01, S = 19.69 

The percentages of each mineral in the streams tested were calculated via element-

to-mineral conversions, using the percentage weight of the assayed elements. Silica 

content was obtained by the difference between the sample mass and the mass of the 

minerals calculated via the assayed elements because assaying SiO2 would not 

distinguish between the content of SiO2 in muscovite and quartz (silica).  

The assay methods used to quantify sulfur, aluminium and arsenic are presented in 

Table 3-7. All assays were conducted at ALS Global, Brisbane (ALS, 2019).  

Table 3-7 – Assaying Method Used 
Element Method description 

Total Sulphur LECO 

Arsenic Aqua regia digestion with ICP-ES finish  

Aluminium  Oxidising flux with XRF finish 

3.8 Surface analysis 

3.8.1 Time of Flight Secondary Ion Mass Spectrometry 

The Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) instrument used in 

this study was a model PHI TRIFT V nanoTOF from Physical Electronics Inc, located 

the Future Industry Institute of the University of South Australia. Mineral particles were 

mounted on indium foil on a silicon wafer and loaded into the instrument introduction 

chamber. A pulsed liquid metal gold primary ion gun (LMIG) was used for the analysis 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar 

109 

 

in imaging mode operating at 30 kV energy. “Unbunched” beam settings were used to 

optimise spatial resolution. Data was acquired for 3 minutes per spot. The typical 

raster sizes were from 100 x 100 µm to 300 x 300 µm depending on particle sizes. 

3.8.2 X-ray photoelectron spectroscopy  

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive analytical technique 

that uses the photoelectric effect to identify and quantify elements on the surface of 

materials. The instrument focuses an X-ray beam at the target material; 

photoelectrons are ejected from the atoms of the material with specific kinetic energy 

depending on their atom of origin. By measuring this kinetic energy, the identity of the 

original atom is found, and the number of electrons measured at that energy provides 

quantitative information about the elements (C. Bassel, personal communication, 

August 15, 2018).  

Two spectral regimes can be produced by XPS, survey spectra and high-resolution 

spectra. The survey spectra allow the identification and quantification of the elements 

on the surface, while the high-resolution spectra allow the identification and 

quantification of the chemical environment associated with an element (C. Bassel, 

personal communication, August 15, 2018).  

The XPS instrument used was a Kratos AXIS Ultra DLD spectrometer, at the Future 

Industry Institute of the University of South Australia. The X-ray was a monochromatic 

aluminium X-ray running at 225 W with a characteristic energy of 1486.6 eV. The area 

of analysis (Iris aperture) was a 0.3 mm x 0.7 mm slot; the analysis depth was 

approximately 15 nm into the surface of the sample. The binding energy range 

selected was from -10 to 1110 eV. The analysis vacuum was 4 x, 10-8 Torr. The 

electron take-off angle was normal to the sample surface. Spectra were interpreted 

using the software package CasaXSP. Peak position references are as per the 

Handbook of X-ray Photoelectron Spectroscopy and the XPS of Polymers Database 

(C. Bassel, personal communication, August 15, 2018). 
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3.9 Water Chemistry 

The solution samples were prepared to investigate the Al and K leaching from the 

muscovite in the flotation feed. The leaching tests were conducted using 16.4 g of 

muscovite, with the size fractions -300/+212 µm, -106/+75 µm, at pH 4 and pH 10. The 

leaching solution consists of deionised water with pH-regulated with H2SO4 and NaOH. 

The size fractions were leached for 10 minutes (as per the flotation conditioning time) 

in a beaker agitated in a magnetic agitator, then filtered. The filtrated solution samples 

were submitted for assay of Cu, K, and Al via ICP – AES, at ALS Global, Brisbane 

(ALS, 2019). Triplicates of the samples were assayed to ensure the repeatability of 

the results.  

3.10  Froth Stability 

According to equation 2-6, the froth stability is directly proportional to the maximum 

froth height reached in a froth stability column. A number of tests were performed to 

gain an understanding of how the factors used in the CCRD affected the froth. An 

extensive study of the effect of all the studied factors of the CCRD is not part of the 

scope of this research due to time constraints.  

The maximum froth height was measured using a transparent flotation column with 

the same cross-section area as the 5 L cell used in the CCRD experiments. 

Figure 3-11 shows the device used. The device was built at the Julius Kruttschnitt 

Mineral Research Centre for these specific measurements. A sample was prepared 

under a specific set of conditions, and 11 L/min air was then added. The height of the 

froth was measured after the equilibrium froth height had been reached. The lip was 

sufficiently tall not to allow spillage of material.  
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Figure 3-11 – Flotation column used for froth height measurement 
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4 Sample Characterisation for Synthetic Ore 

Preparation 

4.1 Introduction 

This chapter discusses the basis of the sample preparation of the synthetic ore mixture 

used in the CCRD. The results of the analyses used to check the quality of the minerals 

in the synthetic ore, and the results of the preliminary experimental analyses used to 

characterise the mineral samples prior to preparation of the synthetic ore samples to 

be used in flotation tests are presented.  

It was decided to use a synthetic ore mixture to develop this study because the 

composition of the mineral mixture could be easily modified by allowing different 

proportions of muscovite to be tested. It excludes the effect of other gangue minerals 

that may interact with the pyritic mineral that, which could mask the key effects of 

muscovite in the ore. Another advantage is that the elemental assays could be used 

to estimate the mineral content of the muscovite in the products of the flotation batch, 

reducing the cost significantly. The limitations of using the synthetic ore system include 

the lack of composite particles that may be playing a major role in the poor 

performance of the flotation rate in a real ore.  

The sample preparation of synthetic ore mixture aims to resemble key characteristics 

of the real ore of Barrick. For that purpose, Barrick provided mineralogy reports of the 

problematic ore that could be used to gather the mineral size distribution and liberation 

of the sulfide mineral, which is used as the basis for the sample preparation of 

arsenopyrite and pyrite used in the batch flotation tests. In addition, a sample of a 

reference ore was provided to allow measurements of gangue mineral characteristics, 

including liberation and mineral size distribution which are used as a basis for the 

sample preparation of muscovite and silica.  
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4.2 The reference  

The reference ore provided by Barrick is used for measuring the bulk liberation of 

muscovite, in given grinding sizes, in the absence of information from the problematic 

White Mountain ore. This section describes the composition of the reference ore, the 

degree of liberation of silica and muscovite at similar grind sizes to the problematic ore 

and details the mineral size distribution to be used as a reference to produce pure 

mineral samples.  

4.2.1 Sample characterization 

The mineral composition of the reference ore samples was determined via quantitative 

phase analysis using quantitative X-ray diffraction (QXRD), and the results shown in 

Table 4-1.  

Table 4-1 – Mineral composition of the reference ore from QXRD 
Phase  Formula Weight % 

Quartz SiO2 35.0 

Muscovite KAl2(Si3Al)O10(OH, F)2 30.8 

Plagioclase feldspar (labradorite) (Na,Ca)(Al,Si)4O8 9.9 

K-feldspar (microcline) K(AlSi3O8) 9.7 

Smectite (montmorillonite) Al2O3·4SiO2·xH2O 3.5 

Fluorite CaF2 2.8 

Kaolin Al2(Si2O5)(OH)4 2.2 

Cordierite Mg2Al4Si5O18 2.1 

Pyrite FeS2 2.0 

Chlorite (Mg,Al,Fe)6(Si,Al)4O10(OH)8 1.4 

Chalcopyrite CuFeS2 0.5 

The QXRD data shows that the reference ore containing 30.8% of muscovite and 

35.0% of quartz. The proportion of muscovite in the reference ore is similar to the 

problematic ore, White Mountain (which is 32.8%). The proportion of quartz is 

significantly lower than White Mountain (55.2%), due to the presence of other gangue 

minerals, such as feldspar, which are significantly higher than at White Mountain 

(3.3%).  
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4.2.2 Grinding calibration of the reference ore 

Two grinding times were selected to produce P80 values that would resemble the size 

distribution of White Mountain reported in Barrick’s data, which was 121 µm in the 

primary grind and 50 µm in the secondary grind. A third P80 was introduced to 

investigate the state of liberation of muscovite at a coarser grind size than presented 

in the White Mountain data. The objectives of this were to evaluate the liberation of 

muscovite and silica in the ore at these different particle size distributions and to obtain 

the grain size distribution of the mineral components in the ore to assist in creating a 

synthetic version of the flotation feed using pure minerals. Table 4-2 presents the three 

grinding sizes selected with the respective grinding times.  

Table 4-2 – Selected grinding sizes for reference 

Grinding time (min) P80 ore (µm) 

2 370 

10 125 

35 55 

The coarser grinding size presented in Table 4-2 was selected arbitrarily as 

approximately three times the primary grinding P80 of Barrick’s, 125 µm, to follow 

approximately the same difference between the grinding at P80 50 µm and P80 125 µm. 

Figure 4-1 displays the size distributions of each grinding time selected.  

 
Figure 4-1 – Size distribution of reference ore for the three grinding times 
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The size distribution of the three grindings indicates that there is no overlapping of size 

distribution curves obtained. It indicates that the particle size distribution obtained in 

the three grindings are significantly different, which suggests potential differences in 

the mineral liberation degree between each grinding.  

4.2.3 Liberation by Mineral of Size Fractions 

The size fractions of each grinding product were submitted for mineralogical analysis 

by MLA XBSE to determine the state of liberation of muscovite and quartz. The size 

fractions analysed were +600 µm, -600+425 µm, -425+300 µm, -300+150 µm, 

- 150+75 µm, -75+38 µm, -38 µm +C1, C2+C3, C4+C5, -C5, where C1 to C5 

correspond to each fraction collected from the cyclosizer cyclones. The equivalent size 

cut sizes of the cyclosizer fractions were calculated based on the reference ore 

density, 2.85 g/cm3. The equivalent sizes are C1 = 29 µm, C3 = 14 µm and 

C5 = 11 µm. The liberation of the cyclosizer fractions of the 2-minute grind material 

was not evaluated due to a lack of sufficient sample. In this case, only a combined 

- 38 µm fraction was analysed.  

Figure 4-2 to Figure 4-7 show the liberation by size fraction of muscovite and silica in 

the reference ore for the grinding sizes presented in Table 4-2. Figure 4-2 to 

Figure 4-7 were plotted in a way that the sum of the mass percentage of all size 

fractions in the liberation classes is 100. The liberation tables related to Figure 4-2 to 

Figure 4-7 are presented in Appendix 2. 

Figure 4-2, Figure 4-3 and Figure 4-4 show the mass percentage of muscovite in each 

size fraction and liberation class.  

Figure 4-2 shows that at coarsest grinding size tested, the mass of muscovite in the 

reference ore concentrate on the liberation classes greater than 90% liberated across 

all size fractions tested.  
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Figure 4-2 - Muscovite bulk liberation of reference ore at 2 minutes, P80 370 µm 

 
Figure 4-3 – Muscovite bulk liberation of reference ore at 10 minutes, P80 125 µm 
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Figure 4-4 - Muscovite bulk liberation of reference ore at 35 minutes, P80 55 µm 

 

Muscovite is well liberated at the three grinding sizes tested because, in Figure 4-2, 

Figure 4-3 and Figure 4-4 the mass of muscovite concentrates in the liberation classes 

greater than 90% liberation for all size fractions. Therefore, the degree of liberation of 

muscovite in Barrick’s reference ore is high, greater than 90%.  

The liberation of silica in the reference ore sample is shown in Figure 4-5, Figure 4-6 

and Figure 4-7.  
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Figure 4-5 - Silica (quartz) liberation of reference ore at 2 minutes, P80 370 µm 

 
Figure 4-6 - Silica (quartz) liberation of reference ore at 10 minutes, P80 125 µm 
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Figure 4-7 - Silica (quartz) liberation of reference ore at 35 minutes, P80 55 µm 

Silica is also well liberated at the three grinding sizes tested, as the mass of silica 

concentrates in the liberation classes greater than 90% liberation for all size fractions, 

as shown in Figure 4-5, Figure 4-6 and Figure 4-7. A significant improvement of the 

liberation of silica is noted from Figure 4-5 to Figure 4-6, as the mass of silica in the 

liberation class of 100% increases.  

Figure 4-2 to Figure 4-7 suggested that silica and muscovite are highly liberated (over 

90% liberation) at the three grinding sizes of interest. On the basis of that muscovite 

and silica should present similar liberation characteristics in the problematic ore of 

Barrick, it is reasonable to use a synthetic ore mixture using pure minerals to represent 

the real ore, because results would be not be biased due to the presence of composite 

particles. Therefore, the size distribution of gangue in the synthetic ore mixture is 

based on the size distribution of fully liberated muscovite and silica in the reference 

ore. 
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4.3 Pure Mineral Samples 

4.3.1 Pyrite and Arsenopyrite 

4.3.1.1 Pyrite and arsenopyrite purity 

The purity of pyrite and arsenopyrite samples supplied by GEO Discoveries (GEO 

Discoveries, 2019) were tested via MLA XBSE to identify and quantify the 

contamination by other minerals. Figure 4-8 shows the classified MLA XBSE images 

of pyrite and arsenopyrite.  

(a)  (b) 

  Arsenopyrite   Sphalerite 

  Pyrite   Unknown 

  Quartz   Galena 

  Chalcopyrite   Calcite 

  Dolomite   Muscovite 

Figure 4-8 – Classified MLA XBSE images. (a) Arsenopyrite (light green), (b) Pyrite (dark 
green).  

The modal mineralogy of the pyrite and arsenopyrite samples, obtained by MLA XBSE, 

is presented in Table 4-3. 
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Table 4-3 Composition of Pyrite and Arsenopyrite via MLA XBSE 
Pyrite Arsenopyrite 

Mineral % Mineral % 

Pyrite 98.87 Arsenopyrite 98.45 

Pyrrhotite 0.35 Galena 0.46 

Sillimenite 0.14 Unknown 0.28 

Muscovite 0.14 Muscovite 0.21 

Quartz 0.10 Sphalerite 0.19 

Unknown 0.08 Quartz 0.16 

Galena 0.07 Chalcopyrite 0.07 

Gypsum 0.06 Pyrite 0.05 

Sphalerite 0.05 Sillimenite 0.03 

Siderite 0.04 Biotite 0.02 

Chalcopyrite 0.03 Chlorite 0.02 

Apatite 0.02 Siderite 0.01 

Calcite 0.01 Pyrrhotite 0.01 

Amphibole 0.01 Plagioclase 0.01 

Arsenopyrite 0.01 Amphibole 0.01 

Plagioclase 0.01 Calcite 0.01 

The MLA XBSE data in Table 4-3 and Figure 4-8 showed that the pyrite and 

arsenopyrite purchased from GEO Discoveries have high purity levels, over 98%.  

4.3.1.2 Pyrite and arsenopyrite grinding calibration 

The grinding calibration of the samples of pure pyrite and arsenopyrite was primarily 

designed to determine the grinding time to achieve the target P80 and size distribution 

of the respective minerals in Barrick’s White Mountain ore. The size distribution of 

pyrite, arsenopyrite are based on the QEMSCAN data of White Mountain pilot plant 

flotation feed from the 2007 campaign provided by Barrick. 

Table 4-4 and Figure 4-9 presents the size distribution of arsenopyrite and pyrite 

samples used in the flotation tests. The grinding curves were produced from a 

reproducible grinding procedure, which was carried out throughout the testwork 

program. 
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Table 4-4 – Size distribution of the samples of pyrite and arsenopyrite used in the flotation 
tests in cumulative percentage passing  

Size (µm) %Passing Solids %Passing Arsenopyrite %Passing Pyrite 

150 99.94 99.98 99.93 

106 99.60 99.76 99.57 

75 97.86 98.51 97.45 

53 92.75 93.53 91.84 

38 87.30 88.04 85.87 

27 62.44 54.00 63.73 

19 46.65 38.85 47.22 

13 31.86 28.00 30.86 

9 21.25 20.52 19.72 

7 17.34 16.77 15.76 

-7 0.00 0.00 0.00 

Figure 4-9 displays the size distribution obtained in the grinding of the pyrite and 

arsenopyrite for the flotation tests as per Table 4-4.  

 
Figure 4-9 – Size distribution of the samples of pyrite and arsenopyrite used in the flotation 

tests as cumulative percentage passing 

The reproducibility of the arsenopyrite and pyrite grinding procedure is shown in 

Figure 4-10, which displays the cumulative percentage passing of the combined 

solids. The grinding time selected to achieve those curves is 5 minutes. Grinding times 

shorter than 5 minutes did not present grinding repeatability.  
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Figure 4-10 – Arsenopyrite and pyrite grinding repeatability 

Figure 4-11 compares the size distribution of arsenopyrite and pyrite obtained by 

grinding procedure with the grain size distribution of arsenopyrite and pyrite in the 

White Mountain ore.  

 
Figure 4-11 - Size distribution of the samples of pure pyrite and arsenopyrite used in the 

flotation tests compared to the pyrite and arsenopyrite size distribution in the White Mountain 
ore 

It shows that the size distribution obtained by the grinding procedure is finer than the 

presented at Barrick’s ore. Because of the reproducibility limitations of grinding low 

weight samples in a conventional laboratory-scale rod mill, a finer grinding size of 

pyrite and arsenopyrite was selected for the flotation tests.  
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4.3.2 Muscovite 

The muscovite sample supplied by Wards Science was tested to identify and quantify 

any contaminants via QXRD by Sietronics . The XRD patterns were produced using a 

Bruker-AXS D4 XRD with copper radiation at 40 kV and 30 mA. A graphite 

monochromator was used in the diffracted beam. Powder mounts were run over a 

range of 3 to 70o2q, with a 0.02 degree step and a 2 second per step count time. The 

search/match was carried out using the Bruker Diffracplus Search/Match software and 

the ICDD PDF-2 database (2006). The quantitative phase analysis was performed 

using SIROQUANT TM version 4 software. 

The QXRD analysis revealed that the sample is 100% muscovite. 

The density of muscovite sample supplied measured in a helium pycnometer is 

2.90 g/cm3. 

According to, Figure 4-2 to Figure 4-4 muscovite in the reference ore is highly liberated 

for all grinding times performed. This indicates that the use of pure liberated muscovite 

in the CCRD experiments provides a valid approximation of the characteristics of 

muscovite in a real ore.  

The size distribution of fully liberated muscovite in reference ore is summarised in 

Figure 4-12.  

 
Figure 4-12 – Size distribution of 100% liberated muscovite in reference ore 
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The P80 of muscovite fully liberated in reference ore for each grinding product is shown 

in Table 4-5. 

Table 4-5 – P80 Muscovite fully liberated in the reference ore 
Grinding time 

(min) 

P80 of Muscovite Reference 

ore (µm) 

P80 of solids of the 

reference ore (µm) 

2 142 370 

10 59 125 

35 47 55 

The P80 of muscovite in the reference ore varies from 47 µm to 142 µm. This data 

supports the proposed muscovite P80 range to be investigated in the CCRD program. 

A comparison with the size distribution of muscovite in the White Mountain (WM) ore 

is shown in Figure 4-13.  

 
Figure 4-13 – Comparison of the size distribution of muscovite in White Mountain ore to the 

100% liberated muscovite in Reference ore  

Figure 4-13 shows that the size distribution of the muscovite in White Mountain is 

similar to the size distribution of that in reference ore, obtained with 10 minutes 

grinding. It suggests that the properties of muscovite in the White Mountain ore are 

similar to the reference ore and that the muscovite size distribution in the White 

Mountain ore is included in the range studied.  
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The muscovite sample preparation for the CCRD tests is based on the size distribution 

range presented by the reference ore and White Mountain ore information. The 

muscovite size distribution in the reference ore is used as a basis to create the 

muscovite samples for the limiting conditions of P80 investigated, 50 µm and 150 µm. 

The CCRD factorial design investigates 5 levels of each factor tested. The P80 values 

of muscovite were then interpolated using the method described below based on α = 

2.38 to provided rotatability to the CCRD design.  

The complete size distributions for the interpolated P80 values were generated through 

fitting the muscovite size distributions of White Mountain and the reference ore to a 

commonly used size distribution function, the Rosin-Rammler equation 4-1. The size 

distributions of the muscovite presented in Figure 4-13 were fitted using the Rosin-

Rammler Distribution (Napier-Munn et al. 1996): 

𝑊𝑟 = 100 𝑒 %         (Equation 4-1) 

Where: 

Wr = weight % cumulative retained 

x = size 

a = size which (100/e) = 36.8% of particles retained 

b = constant = slope of plot ln ln (100/Wr) versus ln x 

The slope of the plot, parameter b, did not vary widely for the fine grinding between 

the reference ore and the White Mountain. It differed slightly for the coarse size only. 

It was decided arbitrarily based on the low variability of b, to use a single value to fit 

all size curves, which is the White Mountain value. The parameter an of the size curves 

with P80 50 µm and 150 µm were obtained directly from the size distribution of the 

reference ore. Those from interpolated P80 values were calculated based α to provided 

rotatability to the CCRD design, and the parameter in the reference ore.  
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Table 4-6 shows the select Rosin-Rammler parameters used to calculate the size 

distribution of muscovite by P80 value included in the CCRD.  

Table 4-6 - Rosin-Rammler parameters used to calculate the complete size distribution of 
muscovite  

P80 (µm) 150 121 100 79 50 

b 0.7504 0.7504 0.7504 0.7504 0.7504 

a (µm) 82 65.0 52.6 40 23 

Figure 4-14 shows the Rosin-Rammler fit of the size distribution of muscovite in the 

reference ore and White Mountain.  

 
Figure 4-14 – Rosin-Rammler fit of the size distribution of muscovite in the reference ore and 

White Mountain 
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Table 4-7 shows the size distribution used to assemble the samples of muscovite for 

the CCRD tests.  

Table 4-7 – Size distribution of muscovite fitted using the Rosin-Rammler method 
Percentage Retained Rosin-Rammler calculated 

P80 (µm) 150 121 100 79 50 

Size 

(µm) 

600 1.17% 0.50% 0.20% 0.05% 0.00% 

425 2.06% 1.17% 0.62% 0.23% 0.01% 

300 3.88% 2.61% 1.66% 0.80% 0.09% 

212 5.93% 4.54% 3.31% 1.98% 0.40% 

150 7.74% 6.55% 5.32% 3.73% 1.18% 

106 9.01% 8.25% 7.28% 5.79% 2.61% 

75 9.50% 9.23% 8.70% 7.63% 4.53% 

53 9.39% 9.56% 9.46% 8.95% 6.57% 

38 8.39% 8.85% 9.10% 9.13% 7.88% 

-38 42.93% 48.75% 54.34% 61.71% 76.72% 

Total 100.00% 100.01% 99.99% 100% 99.99% 

To verify if the calculated size distribution presented in Table 4-7 are distributed 

between the required range, the size curves of muscovite are plotted in conjunction 

with the reference ore curves, as shown in Figure 4-15.  

 
Figure 4-15 – Size distribution of muscovite obtained via Rosin-Rammler and in Reference ore 
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Figure 4-15 compares the fitted size distributions using the Rosin-Rammler method 

with the reference data. It shows that the fitted curves fall between the limiting size 

distributions of reference ore. It indicates that the size distributions obtained via this 

method are valid to represent the different P80 evaluated in the CCRD factorial design.  

4.4 Silica 

The silica used to create the synthetic ore is Sibelco’s Silica Flour 60G, supplied in 

25 Kg bags. It is produced from chemically treated, and water washed high purity silica 

sand. The specific gravity of the product is 2.66.  

Table 4-8 shows the composition of the Sibelco’s Silica Flour 60G, as provided by the 

manufacturer. The silica is 99.7% pure. The alumina contaminant present is at a low 

enough level to not interfere in the interpretation of the flotation assays. This is 

important, given that aluminium is the assay marker for muscovite.  

Table 4-8 – Silica Composition (Sibelco datasheet) 
Mineral Formula Per cent by Weight 

Silica SiO2 99.70% 

Alumina Al2O3 0.09% 

Ferric Oxide Fe2O3 0.02% 

Titania TiO2 0.02% 

Lime CaO <0.1% 

Loss on Ignition 1000oC 0.2% 

Table 4-9 shows the size distribution of the Sibelco’s Silica Flour 60G. The size 

distribution was obtained via Malvern sizer. The calculated P80 of the silica is 95 µm. 

The size distribution showed that 52% of the silica is below 38 µm.  

Figure 4-16 compares the size distribution of the Sibelco silica with the size distribution 

of silica in the White Mountain ore. The curves are sufficiently similar to allow the use 

of the silica Sibelco Flour 60G as the quartz component of the flotation samples without 

size distribution adjustment.  
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Table 4-9 – Size distribution of silica (Malvern sizer) 

Size (µm) Cumulative %Passing %Retained 

300 100% 0% 

212 97% 3% 

150 92% 5% 

106 83% 8.5% 

75 73% 10% 

53 62% 11.5% 

38 52% 10% 

24 40% 12% 

14 30% 10% 

7 20% 10% 

1.5 8% 12% 

0.1 1% 7% 

 

 
Figure 4-16 – Comparison of the size distribution of the quartz in White Mountain ore with the 

silica 60G from Sibelco 
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Chapter 5  

 

DETERMINING THE SIGNIFICANCE 

OF THE FACTORS ON THE 

FLOTATION RATE CONSTANT OF 

ARSENOPYRITE AND PYRITE  

 

___________________________________________________________________ 
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5 Determining the Significance of the Factors 

on the Flotation Rate Constant of 

Arsenopyrite and Pyrite Using a Central 

Composite Rotatable Design 

5.1 Introduction  

This chapter presents the key findings from the flotation tests performed using the 

Central Composite Rotatable Design (CCRD) method. It describes the significant 

variables affecting the flotation rate constants of arsenopyrite and pyrite found through 

regression analysis.  

The objectives of the full CCRD experiments is to understand which of the variables 

investigated have a significant effect on the flotation kinetics of arsenopyrite and pyrite 

and to determine whether muscovite has a deleterious effect on flotation rates. 

Therefore, this chapter is focussed on testing Hypothesis 1, whether  

The presence of a high concentration of muscovite has a detrimental effect on the 

flotation rate of pyrite. 

The Chapter is divided into two parts. The first part presents the results of the 

preliminary 2-factor CCRD to evaluate the appropriate collector dosage to use in 

subsequent CCRD tests. The second part describes the analyses of the significant 

variables affecting the flotation rate of arsenopyrite and pyrite based on the main 

CCRD program.  

5.2 Identifying the Appropriate Collector Dosage for the CCRD 

The relationship between the recovery of pyrite, PAX dosage and pH have been 

reported by Fuerstenau et al. (1968) and Monte et al. (2002).  



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

134 

 

According to Fuerstenau et al. (1968), the recovery of pyrite is a function of pH and 

the collector dosage, as shown in Figure 5-1. The collector dosages of PAX presented 

by Fuerstenau et al. (1968) are between 3 x 10-6 and 1 x 10-5 M (approximately 8 g/t), 

without the presence of CuSO4 as the activator. 

 
Figure 5-1 – Recovery of pyrite as a function of flotation pH with various additions of 

potassium amyl xanthate (Fuerstenau et al. 1968) 

Monte et al. (2002) observed that the recovery of pyrite and arsenopyrite increased 

significantly with the PAX concentration, at pH 6.5, using CuSO4, as shown in 

Figure 5-2. The effect of pH was not investigated.  

 
Figure 5-2 - Effect of PAX concentration on the recovery of gold, pyrite and arsenopyrite 

(Monte et al., 2002) 
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The observations of Fuerstenau et al. (1968) and Monte et al. (2002) suggested that 

the interaction of pH and collector dosage could affect the recovery of the pyritic 

minerals, consequently affecting the flotation rates in CCRD.  

The slurry pH included in the main CCRD factorial design as a factor of interest to 

investigate values that would promote hetero-aggregation of muscovite by changing 

its surface charge. The effect of the interaction of pH and collector dosage shall be 

understood and mapped in the developed tests, so it would not mislead the 

interpretation of the mechanism behind the pH effect. 

The collector dosage could be introduced in the CCRD design as a factor. However, 

this could complicate the evaluation of the mechanism by which pH affects the flotation 

rate. In addition, it would increase significantly the number of tests required. To 

develop a 6-factors CCRD factorial design, 90 batch flotation tests are required, 

instead of 54 for a 5-factors CCRD factorial design, this number was not practical due 

to time, and sample constraints. 

In order to keep the number of tests at a feasible number and to reduce the complexity 

of the full CCRD experiments, the full CCRD experiments were conducted at a fixed 

collector dosage. This minimises the effect of the interaction of pH and collector 

dosage on the recovery and flotation rates of pyrite and arsenopyrite. It simplifies the 

investigation of the mechanism behind any effect of pH because excludes the 

possibility of being combined with the effect of the collector dosage.  

Thus, a preliminary set of experiments based on a 2-factor CCRD design was 

performed to determine the optimum concentration of PAX in which the final recovery 

and the flotation rate constant would present minimal variation over a range of pH from 

4 to 10. The concentrations of PAX evaluated were in the range 30 g/t and 300 g/t, 

and the flotation feed composition was constant at 1.6% arsenopyrite, 3.5% pyrite and 

95% silica. Muscovite was not introduced in these tests. The range was selected to 

include the PAX dosage used in the feasibility study of White Mountain conducted in 

2007 (AMEC, 2007a; AMEC, 2007b). Table 5-1 shows the order and conditions of the 

tests of the 2-factor CCRD design.  
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Table 5-1 - Preliminary CCRD Test Program 

Run Order Blocks pH PAX dosage 

1 2 7.0 165 

2 2 7.0 30 

3 2 4.0 165 

4 2 7.0 165 

5 2 7.0 300 

6 2 10.0 165 

7 2 7.0 165 

8 1 4.9 260 

9 1 7.0 165 

10 1 9.1 260 

11 1 7.0 165 

12 1 4.9 69 

13 1 9.1 69 

14 1 7.0 165 

5.2.1 Evaluation of the Effect of Collector Dosage on the Cumulative Recovery 

of Arsenopyrite and Pyrite 

A total of 14 flotation batch tests were developed according to the 2-factor CCRD 

design. The cumulative recoveries of arsenopyrite and pyrite other time are shown 

respectively in Figure 5-3 and Figure 5-4. 

 
Figure 5-3 – Cumulative recovery of arsenopyrite in the preliminary CCRD 
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Figure 5-4 - Cumulative recovery of pyrite in the preliminary CCRD 

The final recoveries of pyrite at the end of the flotation time are generally higher than 

the arsenopyrite. The final pyrite recoveries varied between 90% and 100%, while 

arsenopyrite recoveries varied between 70 and 90%. Arsenopyrite final recoveries 

show a larger spread of values than pyrite. It suggests that changes in pH and collector 

dosage may have a more significant effect on the recoveries of arsenopyrite than 

pyrite.  

Regression models for the recovery of pyrite and arsenopyrite were developed to 

investigate the effect of pH and collector dosage on the recovery of arsenopyrite and 
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The models were fitted using the stepwise regression tool of the Minitab® 18 software. 

The stepwise regression method starts with an empty model and adds terms with P-

values that are less than or equal to the specified alpha to remove the term in the 

model. It excludes all terms with P-values corresponding to an alpha value greater 

than the chosen value from inclusion in the model. The alpha value of 0.15 was 

selected arbitrarily for these analyses, and only terms with P-values lower than 0.05 

(95% significance) were considered for the regression equations.  
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Table 5-2 shows the model statistics obtained for the recovery models of pyrite and 

arsenopyrite. The predictors selected for the regression analyses were: PAX dosage 

in g/t, pH, the square of PAX concentration in (g/t)2, pH2 and the interaction term PAX 

concentration x pH.  

Table 5-2 - Model statistics of the pyrite flotation recovery  
Model Summary Standard error Confidence Interval at 95% Predictive uncertainty R2 

Arsenopyrite - - - - 

Pyrite 0.55 1.21% 5.0 32% 

The stepwise regression analysis did not return terms for the recovery model of 

arsenopyrite. Hence, pH and collector dosage are not significant predictors of the final 

recovery of arsenopyrite. This is unexpected, considering the spread of recoveries 

observed in Figure 5-3. 

The model of recovery of pyrite obtained in equation 5-1 can be used to understand 

the significance of pH. The coefficient of determination (R2) for the recovery model of 

pyrite is too low to provide a good prediction of the final recovery.  

The model of the recovery of pyrite is presented in equation 5-1: 

𝑅 = 99.971 − 0.01551𝑝𝐻       (Equation 5-1) 

Where pH is the absolute pH of the test.  

The level of significance of the terms of equation 5-1 is presented in Table 5-3.  

Table 5-3 Model coefficients statistics of the pyrite flotation recovery 
Term Coefficient SE of Coefficient Coded Coefficient P-value 

Constant 99.97 0.368 99.171 0.000 

pH2 -0.015 0.0065 -0.365 0.035 

The results of the preliminary CCRD tests indicated that the collector dosage is not a 

significant factor affecting the recovery of pyrite. The constant and the pH are the most 

significant predictors of the recovery of pyrite in equation 5-1 because it has the 

highest coded coefficient absolute value and the lowest P-value. The pH has a 
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deleterious effect on the recovery of pyrite, as indicated by the negative sign of the pH 

term.  

Comparing the PAX concentrations used by Fuerstenau et al. (1968), which were 

between 3 x 10- 6 and 1 x 10-5 M, to those used in the preliminary CCRD 

(30 g/t = 3.6 x 10-5 to 300 g/t = 3.8 x 10-4 M), it is expected that the collector dosage 

would not affect the final recovery of pyrite.  

The regression analyses indicated that the PAX concentration from 30 to 300 g/t does 

not affect the final recovery of the pyrite and arsenopyrite in the pH range studied, 

from 4 to 10. However, the pH had a deleterious effect on the pyrite recovery. 

Considering the pH range studied, from pH 4 to 10, the expected variation in pyrite 

recovery predicted by the model presented in Equation 5-1 is from 99.722% to 

98.420%. This variation is expected because the mechanism of formation of 

dixanthogen and oxidation of pyrite are pH-dependent, thus affecting the recovery and 

potentially the flotation rate of pyrite. 

The flotation rates of arsenopyrite and pyrite were then evaluated to define the most 

appropriate PAX dosage to conduct the CCRD experiments. 

5.2.2 Evaluation of the Effect of Collector Dosage on the Flotation Rate of 

Arsenopyrite and Pyrite 

The flotation rate constants were estimated based on the equation: 

𝑅 = 𝑅 1 −  𝑒( )         (Equation 5-2) 

Where R is the flotation recovery at a given time, R∞ is the final flotation recovery, t is 

the flotation time, and k is the flotation rate constant.  

The effect of collector dosage and pH in the calculated flotation rate of arsenopyrite 

and pyrite, for each of the 14 tests, was investigated by regression models obtained 

using the stepwise regression tool of Minitab® 18 software.  
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Table 5-4 shows the model statistics of the regression model of the flotation rate 

constants of pyrite and arsenopyrite.  

Table 5-4 - Model statistics of the flotation rate constant 
Model Summary Standard error Confidence Interval at 95% Predictive uncertainty R2 

Pyrite 0.256 0.57 2.21 76% 

Arsenopyrite 0.264 0.59 2.16 77% 

Table 5-4 shows that the models of the flotation rate constant of pyrite and 

arsenopyrite presented a high coefficient of determination (R2) and low predictive 

uncertainty. Hence, the flotation rate models present a good predictive capacity.  

The flotation rate regression equations of arsenopyrite and pyrite are presented as 

equation 5-3 and 5-4 respectively: 

𝑘 = 1.190 + 0.1563𝑝𝐻 − 0.01320𝑃𝐴𝑋 + 0.000029𝑃𝐴𝑋   (Equation 5-3) 

𝑘 =  −0.605 + 0.367𝑝𝐻 + 0.000018𝑃𝐴𝑋 − 0.001286𝑝𝐻 𝑥 𝑃𝐴𝑋  (Equation 5-4) 

Where pH is the absolute pH of the test and PAX is the dosage of potassium amyl 

xanthate in grams per tonne of feed.  

The statistics of the coefficient for the flotation rate constant regressions presented by 

equations 5-3 and 5-4 are shown in Table 5-5 and Table 5-6.   

Table 5-5 Model coefficients statistics of the flotation rate constant of arsenopyrite 
Term Coefficients SE of Coefficient Coded Coefficients P-value 

Constant 1.19 0.425 1.0498 0.002 

pH 0.1563 0.044 0.26 0.005 

PAX -0.0132 0.00364 -0.989 0.005 

PAX2 0.000029 0.000011 0.747 0.021 

The stepwise regression method selected pH, PAX dosage and the square of PAX 

dosage as the most significant predictors of the flotation rate of the arsenopyrite, as 

shown in Table 5-5 by the P-values of these predictors being lower than 0.05.  
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The coded coefficients in Table 5-5, showed that the most significant predictor for the 

regression of the flotation rate constant of arsenopyrite is the constant, followed by the 

PAX dosage, the square of PAX dosage and pH. The terms with a high absolute value 

of the coded coefficient are the most significant terms of the model. 

These results show that the effect of PAX dosage on the flotation rate of arsenopyrite 

is greater than the effect of pH. Those effects are not correlated, as no interactive 

terms such as pH x PAX dosage, are observed in the regression analysis.  

It is important to note that, although the pH and PAX dosage were not significant 

predictors for the final recovery of arsenopyrite, these factors are significant predictors 

of the flotation rate constant. The results of the analysis show that the effect of the 

collector dosage on the flotation rate of arsenopyrite is not dependent on the pH.  

Table 5-6 Model coefficients statistics of the flotation rate constant of pyrite 
Term Coefficients SE of Coefficient Coded Coefficients P-value 

Constant -0.605 0.407 1.0491 0.019 

pH 0.367 0.0778 0.611 0.005 

PAX2 0.000018 0.000008 0.452 0.005 

pHxPAX -0.00129 0.000394 -0.775 0.021 

The stepwise regression analysis selected the following as the most significant 

predictors of the flotation rate of the pyrite: pH, the square of PAX dosage, and the 

interaction of pH x PAX (as shown in Table 5-6 by the P-values of the predictors lower 

than 0.05).  

The most significant predictors for the pyrite flotation rate constant are the constant, 

followed by the interaction of pH x PAX dosage, the pH and the square of PAX 

dosage, as shown by the standardised coefficients in Table 5-6.  

The effect of the collector dosage on the flotation rate of pyrite is correlated to the pH, 

as the interaction term pH x PAX dosage shown to be a significant factor through the 

regression analysis.  
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In conclusion, the selection of the appropriate collector dosage should minimise the 

effect of this interaction on the flotation rate of pyrite, as it is not relevant to the flotation 

rate of arsenopyrite.  

5.2.3 Selecting the Collector Dosage for the Full CCRD Tests 

As per Table 5-2 and Table 5-3, the collector dosage is not a predictor of the found 

recovery of pyrite and arsenopyrite at the end of the flotation test. Thus, the selection 

of the appropriate collector dosage via recovery analysis is not relevant.  

However, the flotation rate constants of arsenopyrite and pyrite are a function of the 

pH and the PAX dosage, as shown by equations 5-3 and 5-4. Therefore, 

understanding the effect of collector dosage on the flotation rate constant is essential, 

as the flotation rate constants of pyrite and arsenopyrite are key characteristics which 

are the focus of the full CCRD experimental program. 

The selection of the optimum collector dosage should be the value at which the 

variation of the flotation rate constant with the pH is minimal. This is required to 

minimise the effect of collector dosage in the full CCRD tests.  

The selection of collector dosage that presents the minimal variation of the flotation 

rate constants with pH is made through the analysis of the response surfaces 

generated by equations 5-3 and 5-4.  

The response surface of the flotation rate constant of arsenopyrite is shown in 

Figure 5-5. It indicates that there is a gradient of variation of the flotation rate constant 

of arsenopyrite versus the pH throughout the range of collector dosage tested. Clear 

plateaus of collector dosage, where the flotation rate does not change significantly 

with the pH were not identified in Figure 5-5.  
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Figure 5-5 – Response surface of the flotation rate constant of arsenopyrite as a function of pH 

and collector dosage 

Figure 5-6 presents a 2D perspective of Figure 5-5, plotting the relationship between 

flotation rate constant of arsenopyrite and pH at the collector dosages 30 g/t, 165 g /t, 

and 300 g/t. The confidence intervals at 95% confidence are displayed as error bars.  

 
Figure 5-6 - Flotation rate constant of arsenopyrite versus pH for the PAX dosage of 30 g/t, 

165 g/t, and 300 g/t. 
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Through Figure 5-6, it can be observed that there are no significant differences 

between the flotation rates constants of arsenopyrite at 165 g/t and 300 g/t of PAX. 

The highest flotation rate constants for arsenopyrite happen at the PAX dosage of 

30 g/t. The gradient of variation of the flotation rate constant of arsenopyrite from pH 

4 to 10 is approximately the same at all the displayed PAX dosages in Figure 5-6.  

Figure 5-7 shows the response surface of the flotation rate constant of pyrite versus 

pH and PAX dosage. It can be observed that the gradient, by which the flotation rate 

constant of pyrite increases with the increase of pH, reduces with the increase of PAX 

dosage. The response surface indicated that at high PAX dosages, the variation of the 

flotation rate constant of pyrite with the pH is minimum. Therefore, this is the desirable 

PAX dosage range to use in the full CCRD tests, as the PAX dosage would have a 

minimal effect on the rate constant due to the variation of pH.  

Figure 5-8 presents a 2D perspective of Figure 5-7 displaying the relationship between 

the flotation rate constant of pyrite and pH at the PAX dosages of 30 g/t, 165 g/t, and 

300 g/t.  

 
Figure 5-7 – Response surface of the flotation rate constant of pyrite 
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Figure 5-8 - Flotation rate constant of pyrite versus pH for the PAX dosage of 30 g/t, 165 g/t, 

and 300 g/t. 

In Figure 5-8, it is easier to observe the gradient by which the flotation rate constant 

of pyrite changes with pH due to the variation of the PAX dosage, compared with 

Figure 5-7. The flotation rate constant of pyrite at the PAX dosage of 300 g/t does not 

change significantly with pH according to Figure 5-8, because it falls within the 95% 

confidence intervals. 

The PAX dosage of 300 g/t provides a statistically invariable flotation rate constant of 

pyrite across the pH range tested. Thus, the PAX dosage of 300 g/t is the desirable 
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study of White Mountain is 200 g/t (AMEC, 2007). Barrick’s pilot plant campaign tests 

reported collector dosages up to 500 g/t (SGS, 2007). Based on this observation, the 

use of high collector dosage in the full CCRD tests would represent better the system 

of White Mountain.  

At 300 g/t, the variation of the flotation rate constant of pyrite with pH was minimal. 

Despite the evidence that the flotation rate constant of arsenopyrite does not present 

the same behaviour of the flotation rate constant of pyrite at the PAX dosage of 30 g/t, 
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same throughout the range collector dosages tested. In conclusion, any of the PAX 

dosages tested would have a similar effect on the gradient of the relationship of 

flotation rate constant of arsenopyrite versus pH. Moreover, the variation of the 

flotation rate constant of arsenopyrite could not be used as the parameter of selection 

for the optimum collector dosage of the full CCRD.  

This section aimed to minimise the effect of the pH in the mechanisms of activation of 

arsenopyrite and pyrite and formation of dixanthogen through the evaluation of the 

collector dosage, considering the work of Fuerstenau et al. (1968) presented in 

Figure 5-1, that indicates that the increase of the dosage of PAX increased the flotation 

recovery of the pyrite across a wide range of pH. Thus, it was expected that the 

evaluation of the collector dosage would present a suitable value by which the effect 

of the pH, in the range studied, on the mechanism of activation of pyrite and 

arsenopyrite would be minimised.  

Therefore, as the pyrite is in larger proportions in the flotation test and at 300 g/t the 

variation of the flotation rate constant of pyrite with pH was minimal, the collector 

dosage used in the full CCRD experiments is 300 g/t.  

5.3 Central Composite Rotatable Design (CCRD) of the experiments 

The flotation rate is affected by cell parameters, such as geometry, air rate, impeller 

speed, cell size (Gorain, 1998; Wang, 2016), and by other physical and chemical 

factors such as particle composition, reagent regime, and pulp rheology. Note that 

equipment and operating parameters, such as airflow, cell geometry, froth height (due 

to lip height) and impeller speed are not the focus of this thesis.  

As noted in the description of the flotation protocols in Chapter 3, the flotation tests 

completed in the CCRD utilised constant equipment and operating parameters. All 

tests were conducted in a 5 L flotation cell, with an impeller speed of 800 rpm, air rate 

11 L/min and froth depth 1 cm.  

A total of 54 flotation batch tests were completed in the main CCRD factorial design, 

which included repeat tests to estimate the experimental error.  
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This section presents the results of the flotation tests in terms of the recoveries, which 

were the basis of the calculation for the flotation rates, and an analysis of the flotation 

rates.  

5.3.1 Flotation Recovery measurements 

There is evidence in the literature that the presence of clays and micas affects the final 

recovery and rate constant of sulfide minerals (Basnayaka et al., 2017; Forbes et al., 

2014). In this research firstly, an assessment of the final recovery of pyrite and 

arsenopyrite was done to identify if it was affected by any of the factors evaluated in 

the CCRD. The recovery assessment was made by observing the cumulative 

recoveries of arsenopyrite and pyrite by time plots, and through the assessment of the 

final recovery by regression analysis.  

The cumulative recoveries of arsenopyrite and pyrite by time plots of all 54 tests of the 

full CCRD experiments were compiled in Figure 5-9 and Figure 5-10, respectively. As 

the final recoveries at the time, t=10 minutes seems to be overlapping and are over 

95%, the differences in overall recoveries are not easily identified in Figure 5-9 and 

Figure 5-10. The results suggest that the factors investigated in the CCRD, %solids of 

the flotation feed, proportion of muscovite in the gangue, pH, frother dosage and 

muscovite size distribution did not reduce the final recovery of pyrite and arsenopyrite 

to less than 95%.  
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Figure 5-9 – Arsenopyrite Recovery in the 54 Tests of the Full CCRD Design 
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Figure 5-10 - Pyrite Recovery in the 54 Tests of the Full CCRD Design 
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Figure 5-11 and Figure 5-12 show the final recovery of arsenopyrite and pyrite for each 

of the tests in the CCRD. The confidence intervals displayed in Figure 5-11 are 

presented in Table 5-7. The details of the repeatability assessment are presented in 

Appendix 3.  

Table 5-7 – Confidence interval at 95% confidence for arsenopyrite and pyrite flotation 
recovery 

Component Average Final recovery (%) 95% Confidence Interval 

Arsenopyrite 98.15 0.61 

Pyrite 98.92 0.33 

Table 5-7 shows that the average recovery of arsenopyrite and pyrite are not 

statistically different, considering the confidence interval at 95% confidence.  

 
Figure 5-11 – Final recoveries of arsenopyrite in each test of the CCRD 

 
Figure 5-12 – Final recoveries of pyrite in each test of the CCRD 
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The spread of the recovery data in Figure 5-11 and Figure 5-12 indicates that the 

factors studied in the CCRD may have affected significantly the final recovery of 

arsenopyrite and pyrite, at time t = 10 minutes.  

The contribution of entrainment for the overall recovery of arsenopyrite and pyrite was 

calculated based on Savassi (1998) equation, presented in Equation 5-5: 

𝑅 =   . 𝐸𝑁𝑇  . 𝑅       (Equation 5-5) 

where ENTm is the degree of entrainment of mineral m, Rent is the recovery of mineral 

m by entrainment, Roverall is the recovery of mineral m by both entrainment and true 

flotation, and Rwater is the water recovery. Figure 5-13 shows the calculated recovery 

of the non-floating component obtained via equation 5-5, the floating component and 

the final recovery of arsenopyrite and pyrite.  

 
Figure 5-13 - Recovery of arsenopyrite and pyrite non-floating component obtained via 

equation 5-5, floating component and the final experimental recovery of arsenopyrite and 
pyrite 
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The calculation of the recovery of the non-floatable component, entrainment, of 

arsenopyrite and pyrite indicated in Figure 5-13 that are insignificant for the overall 

recovery. In addition, the recovery of the floatable component is equivalent to the final 

measured recovery. Therefore, the recovery by entrainment of pyrite and arsenopyrite 

are not significant to the final recovery. 

Regression models of the final recovery of pyrite and arsenopyrite were developed to 

assess which factors affecting recovery were the most significant. The models were 

fitted using the stepwise regression tool of Minitab® 18. The alpha value of 0.15 was 

selected arbitrarily for these analyses, and only terms with P-values lower than 0.05 

(95% significance) were considered for the regression equations. 

The predictors selected for testing the effect on the final recovery of arsenopyrite and 

pyrite are pH, %Muscovite, Frother, %Solids, P80, pH2, %Muscovite2, Frother2, 

%Solids2, P802, pH * muscovite, pH * Frother, pH * %solids, pH * P80, 

%Muscovite * frother,  %Muscovite * %Solids, %Muscovite * P80, Frother * %Solids, 

Frother*P80, Solids*P80, and the measured viscosity of the flotation feed pulp at 100 s- 1 

measured in mPa.s. 

The stepwise regression analyses returned the following models for the recovery of 

arsenopyrite and pyrite: 

Equation 5-6, recovery of arsenopyrite: 

Raspy = 98.205 - 0.01629 pH2 + 0.1355 Frother x  %Solids   (Equation 5-6) 

Equation 5-7, recovery of pyrite: 

Rpy = 99.23 – 5.87 %Solids2         (Equation 5-7) 

The statistics of the two regressions models are shown in Table 5-8. 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

153 

 

Table 5-8 - Model statistics of the flotation final recovery  
Model Summary Standard error Confidence Interval at 95% Predictive uncertainty R2 

Pyrite 0.59 1.36 19.36 12.9% 

Arsenopyrite 0.73 1.68 30.56 22.6% 

The results in Table 5-8 show that the models of the final recovery of arsenopyrite and 

pyrite present high standard error and predictive uncertainty in addition to a low 

coefficient of determination (R2). The recovery models have limited predictive capacity 

but are useful to indicate the significant factors affecting the recovery. 

Table 5-9 shows the model coefficients of the final recovery of arsenopyrite.  

Table 5-9 Model coefficients statistics of the final recovery of arsenopyrite 

Term Coefficient SE of Coefficient P-value 

Constant 98.205 0.473 0.00 

pH2 -0.016 0.006 0.007 

Frother*%solids 0.1355 0.059 0.026 

According to Table 5-9, the constant, pH2 and the interaction Frother x %solids are 

significant predictors of the recovery of arsenopyrite in equation 5-6. The pH has a 

negative effect on the recovery, while the interaction term Frother x %solids has a 

positive effect. Contrary to the observation in Section 5.2, pH is a prediction of the 

flotation recovery of arsenopyrite in the system containing muscovite. The effect of pH 

in the recovery can be due to another mechanism other than the effect of the 

chemisorption of xanthate, given that no effect was observed in the system in the 

absence of muscovite.  

The level of significance of the terms of equation 5-7 is presented in Table 5-10.  

Table 5-10 Model coefficients statistics of the final recovery of pyrite 

Term Coefficient SE of Coefficient P-value 

Constant 99.23 0.0804 0.00 

%Solids2 -5.87 0.0812 0.01 

According to Table 5-10, the constant and the %Solids2 are the most significant 

predictors of the recovery of pyrite in equation 5-7. The %Solids2 has a negative effect. 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

154 

 

The deleterious effect of the increase of the term %Solids2 in the recovery of pyrite 

could be due to the increase of pulp viscosity 

The range of variation of the recoveries of arsenopyrite and pyrite due to the effects 

of viscosity, pH, frother dosage and %solids are shown in Table 5-11. 

The range of variation of the recoveries presented on Table 5-11 is similar to the 

confidence intervals of recoveries present in Table 5-8.  

Table 5-11 Model coefficients statistics of the final recovery of pyrite 

Recovery Maximum Minimum 

Arsenopyrite 99.8 96.7 

Pyrite 99.0 97.6 

5.4 Evaluation of the Flotation Rate Constant of Arsenopyrite and 

Pyrite 

This section assesses the effect of the flotation factors tested on the flotation rate of 

arsenopyrite and pyrite. The analyses are performed through regression analyses that 

aim to identify the significant factors affecting the flotation rates. The models obtained 

through the regression analysis are not used for prediction. 

5.4.1 Repeatability of the Flotation Rate Constant Estimate through the 

Experiments 

The reproducibility of the flotation tests in the full CCRD design was assessed via 10 

repeats of the centre point. The flotation operation conditions in the repeat tests were 

35 g of pyrite, 16 g of arsenopyrite, 20 ppm of Dowfroth 250, 300 g/t of PAX, 27.5% 

w/w solids. The repeats were performed as part of the main body of the full CCRD 

design. The tests were performed in blocked order, which minimises the effect of the 

length of time to complete the experimental program. Due to operational problems 

during the tests, one of the 10 repeat tests was rejected. The objective of the repeats 

was to estimate the experimental error of the flotation rate constant.  
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Table 5-12 shows the average arsenopyrite and pyrite flotation rate observed in the 9 

repeat tests, the confidence interval and the percentage of error (confidence interval) 

represented as the percentage of the average.  

The results show that the average flotation rate constant of pyrite is higher than 

arsenopyrite. The confidence interval of the pyrite is wider than the arsenopyrite. The 

experimental error of the flotation constant rate of arsenopyrite is 8.4%, and the pyrite 

is 11.7%. 

Table 5-12 – Experimental confidence interval at 95% level of confidence for arsenopyrite and 
pyrite flotation rate 

Component 
Average 

ki 
Standard 
Deviation 

95% Confidence 
Interval* 

% of the variation of confidence 
interval compared to the average 

Arsenopyrite 1.67 0.18 0.14 8.4 

Pyrite 1.83 0.28 0.21 11.7 

5.4.2 Flotation Rate constant measurements 

The flotation batch tests were performed using a pure mineral system, consisting of 

single mineral liberated particles. The system does not contain composite particles. 

Therefore, a single flotation rate is evaluated. 

Figure 5-14 shows the distribution of the rates across the 54 tests of the CCRD. The 

error bars represent the confidence interval at 95% level of confidence.  

 
Figure 5-14 – Arsenopyrite and Pyrite Flotation Rates in each test in the Full CCRD tests 
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The results presented in Figure 5-14, show that the differences between the flotation 

rate of arsenopyrite and pyrite across the 54 tests are greater than the confidence 

interval at 95% confidence. This indicates that the variation of the flotation rate across 

the tests is real and that the factors studied in the CCRD affected the flotation rate of 

both minerals.  

5.4.3 Flotation Rate Constant Regression Analysis 

The significance of the variables was assessed via CCRD analysis and the regression 

model tools in Minitab® 18. The main advantage of using a CCRD for the experiments 

versus a factorial design is that a CCRD is able to identify the significant variables and 

to provide a model of the behaviour of the system.  

For the development of the model, a stepwise analysis was done. The stepwise 

analysis eliminated all non-significant terms at a 95% level of confidence from the 

model. The models obtained through the regression analyses are used solely to 

identify the level of significance of the factors and their potential interactions, providing 

a comprehensive understanding of the effect of the factors investigated on the flotation 

rates.  

The stepwise analysis evaluated the five factors of the CCRD factorial design. The 

candidate terms of the stepwise analysis for the regression model of arsenopyrite and 

pyrite were:  

 Single terms: pH, %muscovite, frother (ppm), %solids w/w, P80, %solids (v/v). 

 Quadratic terms: pH2, muscovite2, frother2,  %solids2 w/w, P802. 

 Two-way interaction terms: pH x %muscovite, pH x frother, 

pH x %solids (w/w), pH x P80, %muscovite x frother, 

%muscovite x %solids (w/w), %muscovite x P80, frother x %solids (w/w), 

frother x P80, %solids (w/w) x P80. 

Where the terms are as follows: 

 The frother is the dosage in ppm. E.g., 30 ppm, then frother = 30. 
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 %solids: the percentage value expressed as a range from 0 to 1. Eg: 20% 

solids, %solids = 0.2.  

 %muscovite: is the percentage of muscovite in the gangue, expressed as a 

range from 0 to 1. Eg: 12% muscovite, %muscovite = 0.12. 

 P80: P80 of muscovite in µm. 

 pH: the absolute value of pH. 

5.4.4 The regression model of arsenopyrite flotation rate 

The regression model for the flotation rate of the arsenopyrite is represented by the 

regression equation 5-8: 

kaspy = 1.127 + 0.00739 pH x frother - 0.01881 %solids x P80   (Equation 5-8) 

5.4.4.1 Goodness-of-fit of the arsenopyrite regression model 

The model summary of the regression model for the flotation rate of arsenopyrite is 

given in Table 5-13.  

Table 5-13 – Arsenopyrite Model Statistics Summary 
S R2 Predictive uncertainty 

0.38 43% 8.4 

The coefficient of determination R2 in Table 5-13 shows that only 43% of the data is 

explained by the model presented on equation 5-8. The low R2 presented by the 

regression analysis can be due to experimental factors which were not controlled, such 

as the composition of the ions in the tap water composition used in the flotation batch 

tests and temperature. The standard deviation of the model is given by the term S 

(Minitab 18 Support, 2018), which is used to assess the goodness of the model, by 

comparing the term S with the standard deviation of the experimental data. This 

showed that the standard deviation of the flotation rate constant of the arsenopyrite is 

0.18.  

Figure 5-15 shows the measured versus predicted plot for the arsenopyrite flotation 

rate constant. The points shown in Figure 5-15 are randomly distributed and 
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reasonably following the diagonal line (where the experimental value is equal to the 

predicted value). The distribution of the points on both sides of the diagonal line 

indicates that the experimental data is responding to the variables evaluated in the 

CCRD with reasonable accuracy. Therefore, despite the low R2 presented on 

Table 5-13, the model presented in equation 5-8 is adequate to describe the system.  

 
Figure 5-15 – Measured versus Predicted Plot for the Arsenopyrite Flotation Rate Constant 

5.4.4.2 Significant factors which affect the flotation rate constant of arsenopyrite 

Table 5-14 shows the model coefficients and P-values of the significant factors that 

affect the flotation rate of arsenopyrite. 

Table 5-14 – Arsenopyrite Model Coefficients 
Term Coefficient SE Coefficient Coded Coefficient P-value 

Constant 1.1270 0.2770 1.6528 0 

pH x frother 0.00739 0.00144 0.2687 0 

%solids x P80 -0.01881 0.00611 -0.1613 0.003 

The significance of the terms in the regression is determined by the in P-values. As 

the results of the analysis in Table 5-14 show, all terms in the model have a level of 

significance higher than 95%, as all P-values are lower than 0.05. The order of 

significance to the model is given by the absolute value of the coded coefficients. The 

coded coefficients on Table 5-14 were obtained by running the stepwise regression 

using predictors standardised by subtracting the mean and dividing by the standard 

deviation.  
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The most significant factors affecting the flotation rate constant of arsenopyrite, as 

shown in Table 5-14 are, in order of significance, the constant, the interaction 

pH x frother followed by the interaction %solids x P80.  

The proportion of muscovite in the gangue does not affect the flotation rate constant 

of arsenopyrite directly, as it does not appear as a significant term in Table 5-14. 

However, the size distribution of muscovite is a significant term as an interaction with 

the percentage of solids. The term %solids x P80 is negative, which suggests that the 

increase in the percentage of solids and the P80 of muscovite have a deleterious effect 

on the flotation rate of arsenopyrite. The increase of % of solids could be related to an 

increase in viscosity.  

The deleterious effect of the increase of muscovite P80 is counter-intuitive because it 

is expected that fine muscovite would have a greater deleterious effect on the flotation 

rate of arsenopyrite through an increase in the viscosity and the probability of slime 

coatings formed on the surface of arsenopyrite. 

The interaction effect of pH x frother is positive. The increase of pH and frother dosage 

has a positive effect on the flotation rate constant of arsenopyrite, which is two times 

greater than the negative effect of the interaction %solids x P80.  Therefore, an increase 

in frother dosage and pH can compensate for the deleterious effect of an increase of 

%solids and muscovite P80.  

The effect of pH could be linked to a change of hydrophobicity through oxidation or 

the presence of hydrophilic ions in the double-layer of arsenopyrite. The effect of the 

frother dosage could be liked with an increase of froth stability. Note that all 

experiments of the CCRD were run with frother concentration above the critical 

coalescence concentration of Dowfroth 250, which suggests that the reduction if 

bubble size and the increase of the bubble-particle collision probability is not likely to 

be the mechanism by which the increase of frother dosage is affecting the flotation 

rates. The effect of pH and frother dosage will be discussed in detail in Chapter 7. 
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5.4.5 The regression model of Pyrite 

The regression model for the flotation rate of the pyrite is represented by the 

regression equation 5-9: 

kPy = 1.484 + 2.45 %muscovite2 + 0.00571 pH x Frother - 0.02206 %solids x P80 

(Equation 5-9) 

5.4.5.1 Goodness-of-fit of the pyrite regression model 

The model summary is given in Table 5-15. 

Table 5-15 – Pyrite Model Summary 
S R2 Predictive uncertainty 

0.35 44% 7.3 

The coefficient of determination in Table 5-15 shows that 46% of the data is explained 

by equation 5-9. The value of S in Table 5-15 is relatively similar to the standard 

deviation of kpy in the repeats, which is 0.28 and as a result. It suggests that the error 

of the flotation rate of the pyrite model is similar to the experimental error. It suggests 

that the model have a good predictive capacity.  

Figure 5-16 shows the measured versus predicted plot for the pyrite flotation rate. 

 
Figure 5-16 - Measured versus Predicted Plot for the Pyrite Flotation Rate 
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The points shown in Figure 5-16 are randomly distributed and reasonably following 

the diagonal line (where the experimental value is equal to the predicted value). The 

distribution of the points on both sides of the diagonal line indicates that the 

experimental data is responding to the variables evaluated in the CCRD with 

reasonable accuracy. 

The regression model of the pyrite flotation rate presented similar trends to the 

regression model of arsenopyrite. It suggests that those minerals present similar 

kinetic behaviour in the flotation conditions investigated. 

5.4.5.2 Significant factors affecting the flotation rate of pyrite 

Table 5-16 shows the model coefficients and P-value of the significant factors that 

affect the flotation rate constant of pyrite.  

Table 5-16 – Pyrite Model Coefficients 
Term Coefficient SE Coefficient Coded Coefficient P-value 

Constant 1.484 0.269 1.8245 0 

%muscovite2 2.45 1.23 0.0975 0.052 

pH x frother 0.00571 0.00135 0.2074 0 

%solids*P80 -0.02206 0.00571 -0.1892 0 

The results presented in Table 5-16 shows that all 5 factors tested in the CCRD were 

significant at a 95% level of significance to the flotation rate of pyrite. The most 

significant terms for the regression are the constant followed by pH x frother, 

%solids x P80, and %muscovite2. The P-value of the interaction %muscovite2 is slightly 

higher than 0.05. It could be considered not significant at a level of confidence of 95%. 

However, because it is in the borderline of the level of significance, it was decided to 

include it in the regression analysis. It suggests that the percentage of muscovite in 

the gangue is the least significant parameter for the flotation rate constant of pyrite.  

Analysing the regression data of arsenopyrite and pyrite, it indicated that the 

percentage of muscovite in the gangue has little or no influence on the flotation 

kinetics. On the other hand, the size distribution of muscovite has a significant effect 

combined with the percentage of solids. The effect of the interaction %solids x P80 is 
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deleterious to the flotation rate constant because it is a negative term. The interaction 

pH x frother is beneficial to the pyrite rate constant.  

The increase in % of solids could be related to an increase in viscosity. The viscosity 

is discussed in more details in Chapter 6. 

The similarity of the regression terms suggests that the flotation rates of pyrite and 

arsenopyrite are affected by the same mechanisms.  

5.5 The Effects of the Investigated Factors on the Flotation Rates 

The CCRD analysis allowed the calculation of the individual effect of the factors on the 

flotation rate constants of arsenopyrite and pyrite. Figure 5-17 presents the plots of 

the individual effect of the factors on the flotation rate constants of arsenopyrite and 

pyrite. These plots were obtained by averaging the responses for all tests that contain 

the given factor.  

The following observations can be drawn from Figure 5-17: 

 pH: the flotation rates increase with the increase of pH of the pulp, peaking 

around pH 8, with a slight decrease from pH 8 to 10. The relationship between 

flotation rate and pH is non-linear. 

 Muscovite proportion (%): the increase of the proportion of muscovite in the 

gangue mixture from 0% to approximately 22% decreases the flotation rate of 

arsenopyrite and pyrite but increases the flotation rate when the % of muscovite 

increases from 22% to 45%. The confidence intervals at 95% showed that 

muscovite proportion in the gangue has a low significance to the flotation rate. 

 Frother dosage: the increase of frother dosage increases the flotation rate 

across the whole range tested, which is from 10 ppm to 30 ppm. 

 %solids: the increase of % solids has a deleterious effect on the flotation rate 

for both pyrite and arsenopyrite. 

  P80 of muscovite: the flotation rate decreases with increase in P80 of muscovite 

from 50 µm to 100 µm. The flotation rates of pyrite and arsenopyrite do not 

change significantly from the muscovite P80  100 µm to 150 µm. 
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Figure 5-17 - Effect of the Individual Factors on the Flotation Rate of Arsenopyrite and Pyrite 

The trends presented in Figure 5-17 are similar for the two sulfide minerals in regards 

to the effect of each factor on the flotation rate constant. This behaviour is expected 

because the regression equations 5-8 and 5-9 presented the same terms. 

The effects showed in Figure 5-17 gives a simplified view of the effect of the invested 

factors on the flotation rate because they do not account for interactions. The 

interaction terms are the most significant to the flotation kinetics, as indicated by the 

stepwise regression analyses. The interaction terms are better displayed in 3-D 

response surface plots, which are shown in the following section. 
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5.6 Response Surface of the Flotation Rate Constant of Pyrite and 

Arsenopyrite 

The interactions pH x frother and %solids x P80 were found to be significant to the 

flotation rate constant of arsenopyrite and pyrite. The term muscovite2 was only 

significant to the flotation rate constant of pyrite. The effect of the interaction terms can 

be visualised in the surface response plots presented in this section. 

Response surfaces for the flotation rate constant of arsenopyrite and pyrite as a 

function of the significant factors of the full CCRD were plotted using the regression 

equations 5-8 and 5-9. Despite their limited predictive capability, the empirical models 

of the flotation rate constant are useful to understand the behaviour of the system.  

5.6.1 Response Surface of the Flotation Rate Constant of Arsenopyrite 

The response surfaces of the arsenopyrite flotation rate constant are shown in 

Figure 5-18 and Figure 5-19.  

 
Figure 5-18 - Arsenopyrite flotation rate response surface of the interaction pH x frother, at 

muscovite P80 100 µm, 27% solids.  
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Figure 5-18 shows the effect of the interaction pH x frother. The response surface in 

this figure was plotted at the centre point conditions: muscovite P80 100 µm, 27% 

solids. The equation 5-8 showed that the interaction pH x frother has a positive effect 

on the flotation rate of arsenopyrite. The positive effect of the interaction pH x frother 

can be observed by the lift of the surface in the region of high pH and high frother 

dosage in Figure 5-18. Because the term pH x frother is linear, the surface does not 

present curvature. 

The effect of pH on the flotation rate of arsenopyrite could be due to surface 

modification by oxidation which reduces the floatability of the mineral. The highest 

flotation recoveries of arsenopyrite should occur at pH 4-5 (Valdivieso et al., 2006; 

Sirkeci, 2000 and Gaudin, 1957). The pH could also modify the surface charge of the 

muscovite and promote slime coating of arsenopyrite, which could be deleterious to 

the flotation kinetics.  

The pH of the flotation can also affect froth stability. Sheni et al. (2018), in their study 

using a sample of Platinum Group Metal (PGM) ore, suggested that the increase of 

pH increases froth stability. The hydrophobicity of the particles plays an important role 

in the froth stability as highly hydrophobic particles can destabilise the froth 

(Farrokhpay, 2011; Zanin et al., 2009). 

Because the regression equation for arsenopyrite flotation rate (equation 5-8) shown 

that pH x frother is a significant term and both factors affect froth stability, it could be 

indicating that the mechanism by which this interaction affects the flotation kinetics is 

through the froth stability. 

As per equation 5-8, the interaction %solids x P80 has a negative effect on the flotation 

rate of arsenopyrite. The increase of the percentage of solids or the muscovite P80 

would move the surface presented in Figure 5-18 down, parallel to the original position 

of the surface. The opposite happens by decreasing the %solids or the P80 the surface 

presented would move up. The proportion of muscovite in the gangue does not affect 

the flotation rate of arsenopyrite. Therefore, the response surface in Figure 5-18 

remains the same for all muscovite proportions.  
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Figure 5-19 shows the effect of the interaction %solids x P80. The response surface is 

plotted for pH 7 and frother dosage 20 ppm. The term %solids x P80 is negative in 

equation 5-8; therefore, the increase of %solid or/and P80 has a deleterious effect on 

the flotation rate constant. This effect is observed through the drop of the flotation rate 

constant with the simultaneous increase of the %solids x P80.  The response surface 

shown in Figure 5-19 does not present curvature. 

An increase of pH and or frother dosage would lift the response surface, and the 

decrease of pH and or frother dosage would drop the response surface on Figure 5-19.  

According to Figure 5-18 and Figure 5-19, the maximum flotation rate constant of 

arsenopyrite would be observed at pH 10, frother dosage of 30 ppm, 10% solids and 

muscovite of P80, independent of the percentage of muscovite in the gangue.  

 
Figure 5-19 – Arsenopyrite flotation rate response surface of the interaction term 

%solids x P80, at pH 7, frother dosage 20 ppm. 

Based on the literature, the percentage of solids of the pulp and muscovite size 

distribution are factors that are expected to affect the viscosity of the pulp, 

consequently affecting the flotation performance. An increase in %solids and a 
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decrease of muscovite P80 could cause an increase in the pulp viscosity, that would 

appear in turn to be the cause of the deleterious effect on the flotation kinetics. 

The literature also indicates that the formation of hetero-aggregation of muscovite and 

the pyritic minerals could lead to poor flotation kinetics. This mechanism may be 

suggested by a decrease of the flotation rates with the increase of fines in the pulp 

(low muscovite P80). However, in the results of this research, the increase of muscovite 

P80 is deleterious to the flotation rate, rather than the decrease of particle size. This 

appears to contradict the explanation for the effect of the muscovite particle size to be 

due to an increase of pulp viscosity, or the formation of slime coating on the surface 

of arsenopyrite. 

The underlying cause of the deleterious effect of the size distribution of muscovite on 

the flotation kinetics is not yet clear. The magnitude of this effect appears to be 

amplified by the effect of the %solids, as the regression equation presents those 

factors as a single interaction term.  

5.6.2 Response Surface of the Flotation Rate Constant of Pyrite 

The response surfaces of the pyrite flotation rate are shown in Figure 5-20 to 

Figure 5-27. Figure 5-20 shows the effect of the interaction pH x frother on pyrite 

flotation rate, which is positive according to equation 5-9. The flotation rate increases 

with the increase of the pH and frother dosage. This trend is similar to the arsenopyrite 

flotation rate response surface presented in Figure 5-18.  



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

168 

 

 
Figure 5-20 - Pyrite flotation rate response surface of the interaction pH x frother, at muscovite 

P80 100 µm, 27% solids, and 22% muscovite. 

 
Figure 5-21 - Pyrite flotation rate response surface of the interaction pH x frother, at muscovite 

P80 100 µm, 27% solids and 45% muscovite 
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Figure 5-22 - Pyrite flotation rate response surface of the interaction term %solids x P80, at pH 

7, frother dosage 20 ppm, 22% muscovite. 

Figure 5-22 shows the effect the interaction %solids x P80. The term %solids x P80 is 

negative in equation 5-9; therefore, the increase of %solid and/or P80 has a deleterious 

effect on the flotation rate.  

Figure 5-20 and Figure 5-22 show that pyrite and arsenopyrite presented similar 

response surface shapes in regards to the terms pH x frother and %solids x P80. The 

key difference between the behaviour of pyrite and arsenopyrite in regard to the 

pH x frother and %solids x P80 terms is that pyrite flotation rate is affected by the 

presence of muscovite.  

Therefore, the potential causes for the effect of the interactions pH x frother and 

%solids x P80 on the flotation rate of pyrite may be the same of the presented for the 

arsenopyrite, given the similar behaviour of the flotation rate constant to these 

variables.  

In the regression equation for the flotation rate of pyrite, the increase of the proportion 

of muscovite suggests a positive effect on the flotation rate constant of pyrite. The 
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increase of muscovite proportion increases the flotation rate of pyrite by moving the 

response surface in Figure 5-21 and Figure 5-23 up without changing its shape. 

 
Figure 5-23 - Pyrite flotation rate response surface of the interaction term %solids x P80, at 

pH 7, frother dosage 20 ppm, 45% muscovite 

The term for the proportion of muscovite term in equation 5-9 is quadratic, which 

introduces curvature to the response surface. The muscovite proportion is not part of 

any interaction terms in equation 5-9. Therefore, the response surfaces, including the 

muscovite term can be presented versus the other four significant factors of the CCRD, 

as shown in Figure 5-24 and Figure 5-27.  

Figure 5-24 shows the response surface of the pyrite flotation rate as a function 

percentage of muscovite in the gangue and pH. The curvature due to the quadratic 

term for the muscovite proportion can be observed in Figure 5-25, Figure 5-26 and 

Figure 5-27. Because of the positive relationship of the muscovite term in 

equation 5- 9, the increase of muscovite proportion leads to an increase in the flotation 

rate. The graph presented in Figure 5-24 is plotted at muscovite P80 100 µm, 27% 

solids and frother dosage 20 ppm. Changing the muscovite P80 and % solids would 
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move the surface up or down to a parallel position and would not change the 

relationship %muscovite versus pH. The alteration of the frother dosage would 

intensify the effect of pH because the effect of pH is a function of the frother dosage.  

 
Figure 5-24 - Pyrite flotation rate response surface of the pH versus the percentage of 

muscovite, at muscovite P80 100 µm, 27% solids and frother dosage 20 ppm 

Figure 5-25 shows the response surface of pyrite flotation rate for the percentage of 

muscovite in the gangue versus muscovite P80. The major effect on the flotation rate 

is caused by the P80 of muscovite, rather than of the proportion of muscovite. The 

increase of muscovite proportion leads to an increase in the flotation rate, independent 

of the effect of the muscovite size distribution. The presented graph in Figure 5-25 is 

plotted at muscovite pH 7, 27% solids and frother dosage 20 ppm. Changing the pH 

and frother dosage would move the surface up or down to a parallel position. The 

alteration of the frother dosage would intensify the effect of muscovite P80 because the 

effect of P80 is a function of the percentage of solids. 
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Figure 5-25 - Pyrite flotation rate response surface of the muscovite P80 versus percentage of 

muscovite, at 27% solids, pH 7 and frother dosage 20 ppm 

Similar observations from Figure 5-25 applies to Figure 5-26. Figure 5-26 shows the 

response surface of pyrite flotation rate of percentage of muscovite versus muscovite 

percentage of solids. The surfaces in Figure 5-25 and Figure 5-26 presented similar 

shapes. Comparing the effect of %solids versus muscovite P80, the effect of the latter 

is greater than the former, as the decline of the flotation rate is steeper in Figure 5-25 

than in Figure 5-26.  

Figure 5-27 shows the response surface of pyrite flotation rate as a function of the 

percentage of muscovite in the gangue and frother dosage. It can be observed that 

the dominant effect on the flotation rate constant in Figure 5-27 is caused by frother 

dosage, instead of the proportion of muscovite.  

Figure 5-27 was plotted at muscovite P80 100 µm, pH 7 and 27% solids. The effect of 

changing muscovite P80 and percentage of solids would move the surface up or down, 

while a change of pH would intensify the effect of frother dosage.  



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

173 

 

 
Figure 5-26 - Pyrite flotation rate response surface of the percentage of solids versus the 

percentage of muscovite, at muscovite P80, pH 7 and frother dosage 20 ppm 

 
Figure 5-27 - Pyrite flotation rate constant response surface of the percentage of solids versus 

the percentage of muscovite, at muscovite P80 100 µm, pH 7 and 27% solids. 
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As shown in Figure 5-20 to Figure 5-27, the effect of muscovite proportion on the 

flotation rate constant appears to be less significant than the effect of the other factors. 

this is because the proportion of muscovite term in equation 5-9 is less significant than 

the other terms. 

5.7 Conclusions 

This chapter has discussed the outcomes of the CCRD experimental program in terms 

of the factors that affected the flotation rates of arsenopyrite and pyrite.  

The regression analysis indicated that the flotation rate of arsenopyrite and pyrite are 

affected by the interactions of pH with frother and %solids with muscovite P80. 

The effect of the interaction pH with frother is positive in both the arsenopyrite and 

pyrite flotation rate model, which means an increase of the flotation rate constant when 

either pH or frother dosage increased. This effect of pH can be related to the 

hydrophobicity of the pyritic minerals studied. The hydrophobicity is related to the level 

of particle oxidation, activator and collector coverage at a given pH. The effect of the 

pH could also be linked to froth stability. Chapter 7 examines the surface oxidation, 

collector and activator coverage based on the results from the XPS and ToF-SIMS 

analyses. The effect of the frother dosage could be related to froth stability and bubble 

size, which is discussed further in Chapter 7.  

The effect of the interaction of %solids with muscovite P80 is negative in the 

arsenopyrite and pyrite flotation rate model, which means that the flotation rate 

decreased when either the percentage of solids or muscovite P80 increased. The 

increase in %solids could be increasing pulp viscosity, and this could be the 

mechanism by which the %solids is affecting the flotation rates. However, the 

underlying mechanism which the effect of the size distribution of muscovite is not clear 

from the results of the CCRD.  

The positive effect of the interaction between pH and frother on the flotation rate of 

arsenopyrite is twice the deleterious effect of the interaction between %solids and 

muscovite P80, as shown by the coded coefficients in Table 5-14. In relation to the 
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pyrite flotation rate, the positive effect of the interaction between pH and frother is 

equal to the magnitude of the %solids and muscovite P80 interaction, according to the 

coded coefficients in Table 5-16. 

The results indicated that the proportion of muscovite in the gangue does not affect 

the flotation rate of arsenopyrite. On the other hand, it has a small positive effect of 

the flotation rate constant of pyrite. However, the effect of the proportion of muscovite 

on the flotation rate constant of pyrite is half the magnitude of the term pH x frother, 

as per the coded coefficients in Table 5-16.  

Although the proportion of muscovite has no effect on the arsenopyrite flotation rate 

and minimal effect on the flotation rate of pyrite, the size distribution of muscovite has 

a significant deleterious effect. Because a coarse size distribution of muscovite 

particles is associated with the detrimental effect of the flotation rate constant, slime 

coatings are less likely to be observed in the system. Zeta potential measurements 

were undertaken to assess whether the formation of slime coatings is likely to be 

occurring in a given pH range, and the results of these analyses are described in 

Chapter 7.  

The increase in the percentage of solids in the flotation feed has a detrimental effect 

on the flotation rate constant of both arsenopyrite and pyrite. The percentage of solids 

effect is associated with the muscovite P80 in the interaction term %solids x muscovite 

P80 in equations 5-8 and 5-9.  

The first hypothesis of this research stated that:  

The presence of high concentrations of muscovite has a detrimental effect on the 

flotation rate of pyrite and arsenopyrite.  

Based on the evidence from the results of the flotation tests in the full CCRD presented 

in this chapter, the proportion of muscovite in the gangue appears to have no effect 

on the flotation rate of arsenopyrite, and a positive effect with low significance on the 

flotation kinetics of pyrite.  
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Despite the fact that the proportion of muscovite has no deleterious effect, the increase 

of the size distribution of muscovite has a deleterious effect on the flotation rate 

constant of arsenopyrite and pyrite. The deleterious effect of the increase in muscovite 

particle size appears to be amplified by the percentage of solids. To investigate the 

mechanisms by which those factors affect the flotation rate. Zeta potential 

measurement and ToF-SIMS analysis are undertaken, and the results of these 

analyses are presented in Chapter 7. 
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Chapter 6  

 

Investigating the Effect of Pulp 

Viscosity 
___________________________________________________________________ 
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6 Investigating the Effect of Pulp Viscosity  

6.1 Introduction 

This chapter investigates the mechanisms by which the variables studied in the CCRD 

experiments affect the flotation rate of pyrite and arsenopyrite. Based on previous 

research published in the literature, it was expected that the presence of muscovite 

could have a deleterious effect on the flotation rate of pyrite and arsenopyrite by 

causing a change in pulp viscosity (Farrokhpay et al., 2013, Ndlovu, 2013). 

The results presented in this chapter allow Hypothesis 2 (that the presence of 

muscovite affects arsenopyrite and pyrite floatability by changing pulp viscosity) to be 

tested and provides a discussion of the significant factors affecting the viscosity of the 

pulp.  

6.2 Investigating the Effect of Pulp Viscosity  

The effect of feed pulp viscosity on the flotation of arsenopyrite and pyrite is expected 

to be observed in the CCRD by changing the percentage of solids of the pulp, 

increasing the percentage of muscovite in the gangue, and increasing the content of 

fines as - 38 µm particles by changing the P80 of the muscovite.  

An increase in the percentage of solids and a decrease in muscovite P80 are expected 

to increase pulp viscosity (Shi & Napier-Mann, 1995), resulting in a detrimental effect 

on the flotation rate constant. Other factors, such as the chemical environment and 

temperature, can also affect the rheology of pulp (Shi & Napier-Mann, 1995). A strong 

rheology effect was expected to be observed as the output of the CCRD, given that 

the factors studied are expected to cause large changes in the pulp viscosity. 

6.2.1 Pulp Viscosity Measurements 

All 54 CCRD tests had the flotation viscosity of the feed measured. The results of 

these measurements presented as flow curves the flotation feed pulp are shown in 
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Figure 6-1. The list of conditions in each of the 54 tests is presented in Appendix 

Table 2, in Appendix 1. 

 
Figure 6-1 –Shear Rate versus Shear Stress of the flotation feed of the CCRD test 

The characteristic rheological behaviour of the flotation feed pulp is shear thickening 

since in Figure 6-1 the shear stress increases with the shear rate. Shear thickening 
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occurs only in moderately to highly concentrated multi-phase mixtures, which are 

usually observed to have yield stress as well. Shear thickening does not occur in 

typical clay suspensions, but the presence of an additional coarse solid phase at high 

enough concentration may produce this effect (Forbes and Chyss, 2017).  

From the literature, the shear stress versus shear rate relationship of pure muscovite 

slurry follows the Bingham plastic model, which is a linear relationship. The fitted yield 

stress is the Bingham yield stress (Farrokhpay et al. 2013; Ndlovu, 2013; Ndlovu et 

al., 2014).  

The curves presented in Figure 6-1 were fitted to the data using Excel®, and the 

equation of the curves are presented in Appendix 4. All tests fitted a second-order 

polynomial equation, which is characteristic of a dilatant fluid. However, the polynomial 

relationship does not have a physical meaning other than the constant, which is the 

yield stress of the pulp.  

Figure 6-2 shows the measured viscosity of the flotation feed pulp at the shear rate of 

100 s-1 for all 54 flotation tests in the main CCRD.  

 
Figure 6-2 – Apparent viscosity of the flotation feed pulp at the shear rate of 100 s-1 (viscosity 

of centre point and confidence interval at 95% confidence: 2.08+0.1 Pa) 
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The error bars represent the confidence interval at 95% confidence. The confidence 

interval was calculated based on the repeat tests executed as part of the CCRD 

program. The viscosity measurement error was calculated through the centre point 

repeats provided in the CCRD. The average viscosity of the flotation feed pulp at the 

shows the measured viscosity of the flotation feed pulp at the shear rate of 100 s-1 is 

2.09 mPa.s, and the confidence interval is 0.1 mPa.s.  

The spread of the flotation feed viscosity shown in Figure 6-2 suggested that 

significantly different viscosity levels were achieved in the CCRD; therefore, an effect 

of viscosity may be observed in the system.  

6.2.2 Pulp Viscosity Regression Analysis 

The viscosity of each test of the CCRD was measured at the shear rate of 100 s-1. The 

shear rate of 100 s-1 was selected as the best point to estimate the shear stress of the 

pulp, based on the literature. According to Ralston et al. (2007), the value of 100 s−1 

could be the average shear rate in a flotation cell. The viscosity, given by the shear 

stress divided by the shear rate, was added as an extra predictor on the stepwise 

regression analysis of flotation rate of arsenopyrite and pyrite.  

In Chapter 5 the regression analysis of the flotation evaluated the five factors of the 

CCRD, including pH, frother dosage, muscovite P80, the proportion of muscovite and 

%solids of the flotation feed. In these new regressions, the stepwise analysis 

evaluated the five factors of the CCRD and the measured viscosity of the flotation feed 

of each test. The viscosity was selected to be part of the stepwise regression analysis 

to identify if it would present as an independent term not related to the percentage of 

solids in the regression equation. The percentage of solids was modified in the CCRD 

experiments to be the proxy for viscosity. However, the mechanism, which the 

percentage of solids affects, the flotation rate constant can be different from the 

increase of viscosity. By having both terms in the stepwise regression, this difference 

can be observed.  



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

182 

 

Therefore, the candidate terms of the stepwise analysis for the regression model of 

arsenopyrite and pyrite were:  

 Single terms: pH, %muscovite, frother (ppm), %solids w/w, P80, viscosity, pulp 

density, %solids (v/v). 

 Quadratic terms: pH2, muscovite2, frother2,  %solids2 w/w, P802, viscosity2, 

pulp x density2. 

 Two-way interaction terms: pH x %muscovite, pH x frother, 

pH x %solids (w/w), pH x P80, %muscovite x frother, 

%muscovite x %solids (w/w), %muscovite x P80, frother x %solids (w/w), 

frother x P80, %solids (w/w) x P80, viscosity x pH, viscosity x %solids (v/v), 

viscosity x %muscovite, viscosity x frother, viscosity x P80. 

Where the terms are as follows: 

 The frother is the dosage in ppm. E.g., 30 ppm, then frother = 30. 

 %solids: the percentage value expressed as a range from 0 to 1. Eg: 20% 

solids, %solids = 0.2.  

 %muscovite: is the percentage of muscovite in the gangue, expressed as a 

range from 0 to 1. Eg: 12% muscovite, %muscovite = 0.12. 

 P80: P80 of muscovite in µm. 

 pH: the absolute value of pH. 

 Viscosity: viscosity of the flotation feed in mPa.s measured at a shear rate of 

100 s-1. 

 Pulp density: calculated pulp density in kg/L based on the pure minerals’ 

density.  

The stepwise regression analysis, including viscosity as a predictor, returned the same 

regression models presented in Chapter 5 equations 5-8 and 5-9. Surprisingly this 

indicated that the viscosity is not a significant factor affecting the flotation rate of 

arsenopyrite and pyrite. This result was unexpected because the models generated 

by the data analysis from the CCRD indicated that the increase in % solids decreases 
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the flotation rates. Therefore, it suggested that the mechanism behind the increase in 

the percentage of solids would be a change in pulp viscosity.  

However, the regression analysis of the final recovery of pyrite indicated that the 

viscosity of pulp has a deleterious effect on the recovery, as shown in equation 6-1: 

Rpy = 99.057 - 0.1020 viscosity        (Equation 6-1) 

The level of significance of the terms of the equation 6-1 is presented in Table 6-1 

Table 6-1 Model coefficients statistics of the final recovery of pyrite 

Term Coefficient SE of Coefficient P-value 

Constant 99.057 0.133 0.00 

Viscosity -0.10 0.0368 0.0008 

According to Table 6-1, the constant and the viscosity are the most significant 

predictors of the recovery of pyrite in equation 6-1. The viscosity has a negative effect. 

Comparing equation 6-1 to equation 5-7, the viscosity term in equation 6-1 is replacing 

the term %Solids2 in equation 5-7. It may suggest the deleterious effect of the 

percentage of solids in equation 5-7 is related to the effect of the viscosity.  

To verify if the viscosity calculated at the shear rate of 400 s-1 is more adequate to be 

used in this thesis, the regression analysis in Minitab was repeated using the new 

viscosity values calculated at a shear rate of 400 s-1. The regression analysis using 

the viscosity values calculated at the shear rate of 400 s-1 returned the same 

regression models presented in Chapter 5 equations 5-8 and 5-9. It indicated that the 

use of a shear rate of 400 s- 1 or 100 s-1 does not change the conclusion that pulp 

viscosity does not have a significant effect on the flotation rate of pyrite and 

arsenopyrite. 

The analyses presented in this chapter aim to investigate the significant factors that 

affect the pulp viscosity and understand if the effect of viscosity is embedded in other 

factors that have a significant effect on the flotation rates of arsenopyrite and pyrite. 
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6.2.2.1 Pulp Viscosity Regression Analysis 

To understand the drivers of pulp viscosity, an empirical relationship is proposed 

based on the factors studied in the CCRD. Due to the change in rheological behaviour 

of the system in the given conditions of the CCRD, the pulp viscosity is evaluated at a 

shear rate of 100 s-1.  

The assessment of the empirical relationship between the pulp viscosity and the 

CCRD factors is done through stepwise regression analysis. The model generated by 

the regression analysis was used to obtain insightful information about the drivers of 

flotation feed pulp viscosity. The candidate terms selected for the stepwise regression 

analysis of pulp viscosity were pH, %muscovite, frother dosage (ppm), muscovite P80, 

%solids (v/v), pulp density, %passing 38 µm. The quadratic and two-way interaction 

terms were also included in the regression.  

The fitted equation for the pulp viscosity at the shear rate of 100 s -1 is shown in 

equation 6-2:  

Pulp viscosity @ 100 s -1 = 9.309 - 2461 %solids (v/v) - 0.03330 pH2 - 3539 %solids2 

+ 2327 density*%solids + 3.44 pH*%solids - 15.68 (% passing 38 µm)2 

(Equation 6-2) 

Where: 

 %solids: the volumetric percentage (v/v) value expressed as a range from 0 to 

1. Eg: 20% solids, %solids = 0.2. The percentage of solids by volume was 

calculated based on the percentage of solid by mass and the volumes of the 

individual minerals and the water. The range tested from 0.04 to 0.23. 

 Density = pulp density in kg/L, range tested from 1.13 to 1.97. 

 %passing 38 µm = mass fraction of the gangue (silica and muscovite 

combined) passing 38 µm expressed as a range from 0 to 1, the range tested 

from 0.096 to 0.4320. 

 pH: the absolute value of pH, range tested from 4 to 10. 
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The pulp viscosity model summary is shown in Table 6-2.  

Table 6-2 – Shear Stress Model Summary 

S R2 Predictive Uncertainty 

0.38 96.9% 23.5 

The coefficient of determination (R2) in Table 6-2 shows that 96.9% of the data is 

explained by the regression model presented in equation 6-2. The model coefficients 

and P-values of the significant factors that affect the shear stress are shown in 

Table 6-3. 

Table 6-3 – Pulp Viscosity Model Coefficients 

Term Coefficient 
Standard Error 

Coefficient 
Coded 

Coefficient 
P-value 

Constant 9.309 0.896 2.7664 0 

%solids (v/v) -2461 228 -87.11 0 

pH2 -0.0333 0.00892 -0.581 0.001 

%solids2 (v/v) -3539 413 -32.54 0 

density x %solids(v/v) 2327 229 120 0 

pH x %solids (v/v) 3.44 1.05 0.985 0.002 

(%passing 38 µm)2 -15.68 5.52 -0.2513 0.007 

Table 6-3 showed the terms %solids (v/v), %solids2 (v/v), density x %solids(v/v), 

%passing 38 µm x pH were significant at a 95% level of significance to the flotation 

feed pulp viscosity.  

The most significant terms for the regression are density x %solids(v/v) followed by 

%solids(v/v), %solids2 (v/v), constant, pH x %solids (v/v), pH2 and (%passing 38 µm)2, 

according the absolute values of the coded coefficient. 

6.2.3 Pulp Rheology Discussion 

The regression analysis presented in Table 6-3 suggests that the main driver of the 

viscosity of the flotation feed pulp is the interaction term pulp density x %solids (v/v). 

The term is positive; therefore, the increase of pulp density led to an increase in pulp 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

186 

 

viscosity. The pulp density of the present system is a function of the percentage of 

solid by mass, the density of the minerals in the pulp and the density of the water.  

Silica and muscovite present the largest mass proportion of the gangue. The density 

of those minerals is reasonably similar. The density of the silica provided by Sibelco 

is 2.66 g/cm3, while muscovite density is 2.90 g/cm3. Therefore, the effect of pulp 

density observed is likely not be due to the variation of the proportion of muscovite in 

the gangue, given the similarity of the densities of muscovite and silica.  

In addition, the concentration of CuSO4, PAX, and frother present in solution are not 

sufficiently high to increase the density of the liquid phase of the pulp (Laliberté, 2007). 

It suggested that the percentage of solids by mass should be the major contributor to 

the density of the pulp because the density of muscovite and silica are very similar. 

The relationship between solids concentration and pulp density is linear, as indicated 

by Figure 6-3.  

 
Figure 6-3 – Relationship between solids concentration and pulp density 

The terms %solids (v/v) and %solids2 (v/v) are negative. The relationship between the 

percentage of solids and pulp viscosity was obtained as main effect plot, to compare 

with the negative relationship observed by the regression analysis. The main effect 

plot of the effect of the percentage of solids on the viscosity is shown in Figure 6-4.  
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Figure 6-4 – Effect of the percentage of solids on the viscosity 

Figure 6-4 indicates that the viscosity increases with the percentage of solids and that 

the relationship between the percentage of solids and pulp viscosity is non-linear. 

Therefore, it suggests that the negative sign of the terms %solids (v/v) and 

%solids2 (v/v) are introducing curvature in the regression model.  

The regression analysis classifies the interaction pH x %solids (v/v), and pH2 (as a 

negative term) as significant terms affecting pulp viscosity. The effect of pH on pulp 

viscosity might be due to modification of the solids surface charge that promotes 

agglomeration or dispersion of the pulp. These interactions occur due to van der Waals 

forces of attraction or repulsion between the particles (Chhabra, 2010). The viscosity 

of suspensions is highly dependent on those inter-particle forces (Ndlovu, 2013).  

The degree of coagulation or dispersion of the particles is a resultant of the net inter-

particle force (VT), which is a combination of the van der Waals attractive forces (VA) 

and the repulsive forces of the particle double layer (VR), as per the DLVO theory 

(Derjaguin and Landau, 1941; Verwey and Overbeek, 1948). The formation of 

aggregates, the degree of coagulation and attraction between the particles can lead 

to an increase in viscosity. In addition, the opposite, repulsion between the particles 

can occur (Ndlovu, 2013; Johnson et al., 2000; Laskowski and Pugh, 1992), as shown 

in Figure 6-5.  
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Figure 6-5 – Representation of the relationship between surface charge and rheological 

properties (Laskowski and Pugh, 1992 cited by Ndlovu, 2013)  

It was expected that, by increasing the proportion of muscovite in the flotation feed, 

pulp viscosity would increase, resulting in a decrease of flotation rate. The regression 

analysis the pulp viscosity did not include the proportion of muscovite in the gangue 

as a predictor, which suggested that it does not affect the pulp viscosity significantly. 

In addition, the regression analysis of the flotation rate in Chapter 5 indicated that the 

proportion of muscovite does not affect the flotation rate of arsenopyrite and has low 

significance to the flotation rate of pyrite. This suggests that hypothesis 2: ‘The 

presence of muscovite affects pyrite and arsenopyrite floatability by changing pulp 

viscosity’ is not supported by the results of the regression analysis presented in this 

chapter, as the proportion of muscovite does not affect pulp viscosity.  
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However, the percentage of solids, which is the main predictor of the pulp viscosity, 

does have a significant deleterious effect on the flotation rate of arsenopyrite and 

pyrite. Hence, because the percentage of has a deleterious effect on the flotation rates 

and it is the main predictor of pulp viscosity, it suggested that increase of viscosity may 

be the mechanism by with the increase of the percentage of solids affects the flotation 

rates.  

According to Ralston et al. (2007), the slurry viscosity affects both the energy 

dissipation profile through the cell and bubble rise velocity. Hence, it will directly affect 

the bubble-particle collision frequency. The effect of percentage of solids observed in 

Figure 5-17 could be due to the “crowding effect” of the gangue, affecting the mobility 

of the pyrite, arsenopyrite, and air in the pulp, therefore, decreasing the probability of 

collision of the sulfide minerals with the bubbles and decreasing the bubble-raising 

velocity. This may be a possible explanation for the deleterious effect of the %solids 

of the flotation on the flotation kinetics of arsenopyrite and pyrite.  

The relative velocity between the particle and the bubble can be considered as a factor 

of the detachment energy. Another possible effect of the percentage of solids on the 

flotation rate of arsenopyrite and pyrite is the increase of bubble detachment 

probability due to the shear between loaded bubbles and gangue (Wang, 2016). 

Alternatively, the lack of a statistical correlation of between viscosity and flotation rates 

may suggest that the mechanism behind the deleterious effect of the interaction 

%solids x P80 on flotation kinetics, is not solely due to the viscosity effect caused by 

the increase of the percentage of solids. The deleterious effect of the increase of 

muscovite P80 is not well understood and is investigated in Chapter 7.  

6.2.4 Pulp Rheology Analysis Conclusions 

The following conclusions can be drawn from the pulp rheology analysis presented in 

this chapter: 

1. The regression analysis of the flotation rates including the measured pulp 

viscosity as a predictor indicated that the viscosity does not have a 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

190 

 

significant effect on the flotation rates; however, the percentage of solids, 

which is the driver of the increase in pulp viscosity does have a deleterious 

effect on the flotation kinetics. 

2. The regression analysis of the pulp viscosity suggested that the proportion 

of muscovite in the gangue does not affect the pulp viscosity significantly. 

In addition, the regression analysis of the flotation rate in Chapter 5 

indicated that the proportion of muscovite does not affect the flotation rate 

of arsenopyrite and has low significance to the flotation rate of pyrite. This 

suggests that hypothesis 2: ‘The presence of muscovite affects pyrite and 

arsenopyrite floatability by changing pulp viscosity’ is not supported by the 

results of the regression analysis presented in this chapter, as the proportion 

of muscovite does not affect pulp viscosity.  

3. The mechanism by which the percentage of solids affects the flotation rate 

of arsenopyrite and pyrite may be due to the increase of viscosity, and/or 

another mechanism that involved the P80 of muscovite because the 

measured viscosity did not present a statistical correlation with the flotation 

rates. 
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Chapter 7  

 

Investigating the Effect of Surface 

Modification on the Flotation Rate 
___________________________________________________________________ 
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7 Investigating the Effect of Surface 

Modification on the Flotation Rate 

7.1 Introduction 

This chapter investigates the mechanisms by which the variables studied in the CCRD 

experiments affect the flotation rate of pyrite and arsenopyrite. The data presented in 

this chapter allows Hypothesis 3 (‘The detrimental effect of muscovite in the flotation 

rate of pyrite is due to surface modification of pyrite and arsenopyrite mineral grains’) 

to be tested. 

The evidence presented aims to understand whether surface modification via hetero-

aggregation or chemical modification is the dominant mechanism affecting the 

floatability of the pyritic minerals.  

According to the observations of the main effect plots and the regression analyses in 

Chapter 5, more than one mechanism could be affecting the flotation rate of pyrite and 

arsenopyrite. To decouple these mechanisms, this chapter investigates the role of 

hetero-aggregation (presented in section 7.3), surface chemistry (section 7.4), and 

reagents (specifically frother and pH modifier, in section 7.5) on the flotation rate of 

pyrite and arsenopyrite. 

7.2 Investigating the Effect of Hetero-Aggregation on the Flotation 

Rate 

He et al. (2009) observed the presence of hydrolysed Cu2+ ions in solution from the 

oxidation of the chalcocite inverts the sign of the surface charge of muscovite, resulting 

in hetero-aggregation of muscovite on the surface of chalcocite. In the system studied 

in this research, pyrite and arsenopyrite are intentionally activated by Cu2+ ions from 

the addition of copper sulfate to the flotation feed. The presence of Cu2+ ions on the 

surface of pyrite and arsenopyrite could promote the hetero-aggregation of pyrite 

and/or arsenopyrite and muscovite.  
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The presence of a muscovite coating on the pyrite and arsenopyrite particles could be 

detected by: 

 The decrease of final recovery of pyrite and/or arsenopyrite. 

 The decrease of final recovery of pyrite and/or arsenopyrite with the increase 

of muscovite fines. 

 Zeta potential tests indicating aggregation of the muscovite particles with pyrite 

and arsenopyrite. 

 Increase in viscosity at a given pH. 

The CCRD results presented in Chapter 5 showed that, at the range of conditions 

tested, no decrease of final pyrite and arsenopyrite recovery was observed, nor the 

decrease of flotation rate, with an increase the proportion of muscovite fines in the 

system, as shown in Figure 7-1. Contrarily, the flotation rate of pyrite and arsenopyrite 

increase with the decrease of muscovite particle size. The mechanism behind this 

effect is not yet understood.  

 
Figure 7-1 – Effect of muscovite P80 on the flotation rate of arsenopyrite and pyrite, at the 
CCRD centre point conditions: pH 7, 27.5% solids, 22.5% of muscovite in the gangue and 

muscovite P80 100 µm. 
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In addition, the pulp viscosity regression, presented in Chapter 6, suggested that the 

increase of muscovite fines and pH appears to increase pulp dispersion, which 

suggests a decrease of pulp viscosity.  

The increase of the flotation rate with the decrease of the size distribution of muscovite 

indicated that hetero-aggregation of the muscovite and pyritic mineral is not likely to 

be the cause of the poor kinetic performance. 

This section presents the zeta potential measurements to assess the possibility of 

hetero-aggregation between muscovite and pyrite and arsenopyrite particles via zeta 

potential analysis.  

7.2.1 Zeta Potential Analysis 

The zeta potential describes the charging behaviour of the solid-liquid interface 

(Luxbacher, 2014). The magnitude of the zeta potential indicates the degree of 

electrostatic repulsion between particles in suspension (Greenwood & Kendall, 1999). 

Aggregation and electrostatic attraction between particles are characterised by zeta 

potential values equal or close to zero. The greater the distance of the zeta potential 

value from zero, the greater is the repulsion between the particles (Ndlovu, 2013). 

Zeta potential analysis is a technique for the measurement of the surface charge of 

minerals and has been used in this work to measure the surface charge of pyrite, 

arsenopyrite, silica and muscovite minerals, individually and as a mixture.  

A series of potentiometric titration was conducted over a range of pH values between 

pH 3 and 11 to identify the pH range of potential aggregation between muscovite and 

pyrite/arsenopyrite particles. The pH range of the titrations covered the same the pH 

range as the CCRD tests.  

Muscovite is a plate-like anisotropic mineral, for which the charge of the edges differs 

from that of the flat surface. Hence the value of zeta potential measured represents 

an average charge of the whole particle. (Forbes et al., 2014; Ndlovu, 2013).  
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The zeta potentials of pyrite, arsenopyrite, muscovite and silica minerals were 

measured individually via potentiometric titration. NaOH and H2SO4 were used as the 

pH modifiers in the ZetaProbe. The results are shown in Figure 7-2. The zeta potential 

measurements were performed under conditions to the flotation tests undertaken in 

the CCRD. Therefore, the background electrolyte consisted of 100 g/t of CuSO4 and 

300 g/t of PAX. The measurements of silica and muscovite were done at 27.5% solids, 

which is the solids content of the centre point of the CCRD. The size distribution of the 

silica used is presented in Table 4-9, and the muscovite is in Table 4-7, P80 100 µm.  

The measurement of the pyrite and arsenopyrite was done using 5g of each of the 

minerals ground separately. The grinding consisted of 35g of pyrite and 16g 

arsenopyrite ground separately in a laboratory rod mill for 5 minutes in 75 mL of 

Brisbane tap water. This method of grinding pyrite and arsenopyrite does not account 

for the galvanic interactions amongst the sulfide minerals in the mill and may have 

achieved a finer size distribution than the grinding for the flotation tests. However, it 

was the best approach to test the zeta potential of the sulfide minerals individually.  

 
Figure 7-2 - Zeta potential of pyrite, arsenopyrite, muscovite and silica 

According to the results in presented Figure 7-2, the zeta potential of pyrite is neutral 

over the whole pH range tested. The zeta potential of arsenopyrite is similar but slightly 

negative. The zeta potentials of muscovite and silica are highly negative compared to 

the sulfide minerals. The zeta potential of muscovite becomes less negative with 

decreasing pH and tends to net-zero potential below pH 4, where the poor kinetics 
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performance of the pyritic minerals was observed in the CCRD. The tendency to attain 

the net-zero potential in the acidic region of the pH spectrum, indicates favourable 

conditions for agglomeration, as shown in Figure 7-3. Therefore, according to 

Figure 7-2, the pH region that could favour the formation of hetero-aggregation by 

muscovite coating pyritic minerals is around pH 3-4. 

 
Figure 7-3 – Reproduced from Figure 2-28 - Schematic representation of the modes of particle 
interaction inhomogeneous mineral suspensions as a function of pH and Bingham yield stress 

(Rand and Melton (1977) cited by Ndlovu, 2013). 

The muscovite isoelectric point was not detected in the zeta potential measurements 

in Figure 7-2. In addition, the zeta potential values showed in Figure 7-2 are high when 

compared to He et al. (2009) and Ndlovu (2013). Ndlovu (2013) measured the 

isoelectric point of muscovite around pH 4.6; however, this was obtained for a different 

background electrolyte, NaCl solution. In this research, the zeta potential conditions 

mimicked the flotation feed conditions, using CuSO4 and PAX as the background 

electrolyte.  

The presence of cations and anions from the electrolyte can change the magnitude 

and sign of the zeta potential considerably. For example, previous studies have found 

that the presence of sulphate ions increased the negative charges of sulphide minerals 

(Bulut and Yenial, 2016). The additional presence of collector in the measurements 

performed in this thesis is likely to have a more complex effect on zeta potential, 

however, in order to understand the overall effects in the real system, it is important to 
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make these measurements in the same conditions as the flotation testwork. The zeta 

potential results are strongly dependent and variable with the water chemistry and 

minerals present in the pulp, and therefore, cannot be directly compared with 

measurements performed under different conditions. 

An extended investigation of the mechanisms leading to the high zeta-potential of the 

muscovite and silica and the effects of CuSO4 and PAX would be helpful work but was 

not part of the scope of this thesis. 

The zeta potential of muscovite presented in Figure 7-2 represents the average zeta 

potential of muscovite at P80 100 µm. To investigate if a particular size fraction would 

potentially be more likely to coat the pyritic minerals, the zeta potential of each size 

fraction of muscovite is measured, and the results of these analyses are shown in 

Figure 7-4. The potentiometric titrations presented in Figure 7-4 were obtained using 

10g of muscovite in the designated size fraction, 100 g/t of CuSO4 and 300 g/t of PAX 

as the background electrolytes and NaOH and H2SO4 was used as the pH modifiers. 

 
Figure 7-4 – Zeta potential by the size of muscovite 

In Figure 7-4, the average zeta potential of muscovite -38 µm is positive below pH 4-

3, which reinforces the possibility of coating. The muscovite at the size fraction of 

- 450/+300 µm presented a positive zeta potential value through the investigated pH 
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range. The zeta potential value of muscovite from pH 5-10 appears to decrease, with 

the increase in muscovite particle size, with the exception of the material at - 38 µm. 

This behaviour can be expected due to the anisotropic nature of muscovite.  

The interactions between the minerals were observed by comparing the zeta 

potentials of the individual minerals with the zeta potential of the mixtures. If the zeta 

potential of the mixture is overlapping the zeta potential of an individual component, 

this component is coating the other (Yu et al., 2017; Forbes et al., 2014).  

As suggested by the data presented in Figure 7-2 and Figure 7-4, the most likely pH 

region to observe hetero-aggregation would be between pH 3-4. To confirm the 

likelihood of formation presence of muscovite coatings on the pyrite surface at pH 4, 

the zeta potential of the individual minerals at pH 4 was compared to the mineral 

mixture, containing pyrite, muscovite and silica, according to the method proposed by 

Yu et al. (2017). This method compared the calculated zeta potential of the mixture 

obtained via the weighted average of the zeta potential of the single minerals, to 

measured zeta potential of the mixture. The calculation is as follows:  

Zeta potential (mixture) = Wt%Mineral A x (Mineral A measured zeta potential) + ... + 

Wt%Mineral N x (Mineral N measured zeta potential). 

The comparison is provided in Table 7-1 and Figure 7-5. Arsenopyrite was not 

included in the test because of the limitation of subsampling representative amounts 

of this mineral for the test. Therefore, the conclusions are drawn sorely for pyrite. 

Table 7-1 presented the measure zeta potential of the minerals of interest (pyrite, 

muscovite and silica) and the mixture, which was prepared with the same proportion 

as the minerals of the flotation test performed at pH 4, consisting of 22.5% of 

muscovite at P80 = 100 µm and 27% solids. The background electrolytes were CuSO4 

and PAX, the pH was adjusted with H2SO4. 
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Table 7-1 - Zeta potentials of the individual minerals (measured) and mixture (calculated) 
at pH 4 

Measured potential 

Mineral or mixture Zeta potential pH 

Pyrite 0.89 4 

Muscovite -28.88 4 

Silica -94.32 4 

Pyrite + Muscovite +Silica -103.2 4 

Calculated potential based on the individual minerals 

Mineral or mixture Zeta potential pH 

Pyrite + Muscovite +Silica -81.68 4 

Figure 7-5 is a graphic representation of the zeta potential values presented in 

Table 7-1. The formation of gangue coating on pyrite would be indicated in Figure 7-5 

by the zeta potential of the mineral mixture overlapping/approaching the zeta potential 

of muscovite (coating of muscovite) or silica (coating of silica). Figure 7-5 also 

presents the calculated zeta potential of the mixture based on the zeta potential of the 

individual minerals and its proportions in the mixture.  

 
Figure 7-5 – Zeta potential of the mineral mixture, individual minerals and calculated zeta 

potential of the mixture 

As shown in Figure 7-5, the zeta potential of the mixture does not overlap with the 

gangue zeta potential. Moreover, the zeta potential of the mixture (-103 mV) is more 

negative than would be expected (-82 mV). This indicates that the system is dispersed. 

Therefore, no evidence of hetero-aggregation is found under flotation conditions.  
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7.2.2 Hetero-Aggregation Analysis Conclusions 

The following conclusions can be drawn from the zeta potential analysis: 

1. The most likely pH range to observe hetero-aggregation of muscovite and 

pyrite would be pH 4-3; however, the zeta potential analysis of the mineral 

mixture under the same flotation conditions does not indicate hetero-

aggregation at pH 4. 

2. The low flotation rates observed at pH 4 compared to pH 10 cannot be 

explained by the formation of slime coating of muscovite or silica on the 

surface of the pyrite. 

Therefore, there is no strong evidence to confirm that hetero-aggregation of fine 

particles of muscovite has a deleterious effect on the flotation rate of pyrite and 

arsenopyrite in this system. 

7.3 Investigating the Effect of Surface Chemistry on the Flotation 

Response 

This section presents the results of the surface chemistry analyses from via ToF-SIMS 

and XPS analysis of pyritic minerals. The ToF-SIMS analysis consisted of a qualitative 

investigation of the presence of metal ions and collector on the surface of the pyritic 

minerals. The XPS analysis presents complementary information about the state of 

oxidation of the arsenopyrite and pyrite.  

7.3.1 Sample Preparation for the Surface Analysis 

To investigate the mechanism by which the proportion of muscovite, the muscovite 

P80 and pH affect the flotation rate, a 3-factor factorial experiment was undertaken to 

provide flotation feed samples for surface analysis via ToF-SIMS and XPS techniques. 

The factors investigated were pH, muscovite size distribution and proportion of 

muscovite in the feed. Table 7-2 lists the tests of the 3-factor factorial experiment and 

the range of the factors investigated.  
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Table 7-2- Three-factor factorial experiment for surface analysis 
Test pH The ratio of %Muscovite/%Silica (in the gangue) P80 of Muscovite (µm) 

S1 10 0/100 - 

S2 10 45/55 50 

S3 4 45/55 50 

S4 4 0/100 - 

S5 10 45/55 150 

S6 4 45/55 150 

The reagents added in tests S1 to S6 were PAX at 300 g/t, Dowfroth 250 at 20 ppm 

and 100 g/t of CuSO4. The reagent regime in the 3-factor factorial experiment reflects 

the centre point of the CCRD tests.  

The samples of the flotation feed were collected after the reagents had been added 

and 10 minutes conditioning time completed. Air was not injected in the feed pulp prior 

to the collection of the samples. Approximately 20 mL of feed samples collected in 

plastic vials were snap-frozen in liquid nitrogen and stored at -18 oC for transport.  

7.3.2 ToF SIMS Results 

The aim of the surface analysis by ToF-SIMS was to identify the species present on 

the surface of sulfide minerals that promotes its hydrophobicity, such as collector, and 

Cu activator, and also the presence of hydrophilic metal ions originated from the 

gangue, which are Si, Al, K ions. 

ToF-SIMS is a qualitative analysis technique that reports relative changes in 

abundance of a given ion on the outer 1-2 layers of atoms of the surface of a particle, 

measured as normalised ion intensity (Vizcarra, 2010; Boulton et al., 2003). The ToF-

SIMS analysis was done in a particle by particle basis. A minimum of 15 particles was 

analysed for gathering the spectrum data of each sample, as per Table 7-3. 
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Table 7-3 – Number of Particles Analysed by ToF-SIMS 
Test S1 S2 S3 S4 S5 S6 

Number of particles 24 21 21 22 21 15 

The results are presented as normalised ion intensity with the respective error bars 

(95% confidence interval). The ions selected for analysis of the positive SIMS were 

Fe, Cu, Si, Al, K. The C3H7 species was also included to account for the collector 

molecule fragment, because the whole molecule of the collector, because C6H11KOS2 

was not identified, as shown in Figure 7-6. 

 
Figure 7-6 – Normalised ion intensity of the organic fragments of the collector identified in the 

ToF-SIMS analysis 

The elements analysed through the negative SIMS were O, S, and SiO2. In the 

synthetic ore used in this work, Fe and S are related exclusively to the surface of the 

pyrite (FeS2), while Al and K relate to the composition of muscovite (KAl3Si3O10(OH)2). 

The K can also be related to the collector PAX, which can be observed through tests 

S1 and S4, in the absence of muscovite. Cu accounts for the CuSO4 added to the 

system. Si can be related to both silica and muscovite. Arsenic presented a very low 

normalised ion intensity, which could not be comparable with the other ions. As a 

result, the arsenopyrite could not be distinguished from pyrite in the ToF-SIMS 

analysis. For simplification, the results are commented in relation to pyrite.  
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7.3.2.1 Tests in the absence of muscovite 

Tests S1 and S4 were performed at pH 10 and pH 4, respectively, in the absence of 

muscovite. The normalised ion peak intensity with 95% confidence intervals of Fe, Cu, 

Al, K and C3H7 in the flotation feed with no added muscovite is shown in Figure 7-7.  

 
Figure 7-7 – Statistical comparison of ToF-SIMS normalised intensities for pyrite particles at 

pH 4 and pH 10. Error bars represent 95% CI. 

The surface analysis results shown in Figure 7-7 indicated that the pH level does not 

affect the ion intensities of the Fe and Al. The main differences between pH 4 and 10 

are observed in Cu, K, and collector (C3H7). In the absence of muscovite, Al ions are 

not expected to have notable ion intensity, as these ions originated from muscovite. 

The presence of K can be related to the collector PAX. 

The Al observed on the surface of pyrite at the tests run in the absence of muscovite 

are likely to have originated from the tap water used in the flotation and Al 

contamination of silica and pyrite, as no muscovite or another source of Al was added 

to S1 and S4. The silica used contains 0.09% Al2O3. Pyrite samples have 0.08% of Al, 

while arsenopyrite contains 0.06%, which are originated from the contamination of 

phyllosilicate minerals (as shown in Table 4-3). The flotation tests were performed 

using Brisbane tap water, which contains 0.046 mg/L of aluminium (Queensland 

Urban Utilities, 2018).  
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The sources of K observed on the surface of pyrite could originate from the Brisbane 

tap water used in the experiment and the collector. Liu and Peng (2014) reported 

3.16 mg/L of K in Brisbane tap water. However, no information about traces of K found 

in Brisbane tap water was supplied by Queensland Urban Utilities (2018). The signal 

of K does not follow the same trend of Al; therefore, the difference observed is 

assumed to be due to the collector PAX (CH3(CH2)4OCS2K) dissolution in water, as 

no other source of K was identified.  

The levels of Al and K observed in Figure 7-7 sets minimum baseline levels of those 

ions in the system in comparison with the system with muscovite.  

The concentration of Cu ions on the surface of pyrite at pH 4 is significantly higher 

than at pH 10. The normalised ion intensity of Cu on the surface of pyrite at pH 4 is 

approximately 3 times higher than at pH 10. The ion intensity of the collector fragment 

C3H7 on the surface of the pyrite at pH 4 is significantly higher than at pH 10. It 

indicates a higher copper activation of the pyrite surface and consequently, higher 

collector coverage at pH 4 when compared to pH 10.  

7.3.2.2 The effect of muscovite P80 at pH 10 

The effect of the presence of muscovite on the surface chemistry of the pyrite can be 

observed by comparing the normalised ion intensities of Fe, Cu, Si, Al, K, O, S, and 

C3H7, for the two levels of pH investigated. The normalised ion intensities on the 

surface of pyrite at pH 10 are shown in Figure 7-8.  
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Figure 7-8 –ToF-SIMS normalised ion intensities for pyrite particles at pH 10. (a) Positive ions. 

(b) Negative ions. Error bars represent 95% CI. 

Overall, according to the results presented Figure 7-8(a), it appears that the presence 

of muscovite leads to a decrease in Fe and C3H7 and an increase of Al and K levels 

on the surface of pyrite. The size distribution of muscovite affects the levels of Fe, Cu, 

K and C3H7 on the surface of pyrite.  

No significant differences were observed in the O and S signals, as presented in 

Figure 7-8(b).  

The level of Fe on the surface of pyrite seems to decrease with an increase of particle 

size of muscovite, as indicated by the normalised ion intensity on Figure 7-8(a). The 

test with muscovite at P80 50 µm, appears to have more Fe on the surface of pyrite 

than a test at muscovite P80 150 µm; however, test with muscovite at P80 50 µm has a 

large data spread, as indicated by the error bars.  
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The size distribution of muscovite appears to affect the level of Cu on the surface of 

the pyrite. The level of Cu appears to be lower in the presence of muscovite at P80 

50 µm compared to muscovite at P80 150 µm. It indicates that the size distribution of 

muscovite could be affecting the level of pyrite activation at pH 10.  

The same trend is observed in the collector fragment ion intensity signal. The level of 

collector (C3H7) coverage on the surface of the pyrite appears to be lower when 

muscovite at P80 50 µm is present, compared to muscovite at P80 150 µm.  

The intensity of K ions on the surface of pyrite when muscovite is present increases 

significantly compared to the baseline observed in the absence of muscovite. The level 

of K on the surface of pyrite is higher when muscovite size distribution is coarse (P80 

150 µm).  

The increase of K on the surface of pyrite appears to follow the decrease of Fe. It may 

suggest that K ions in solution could affect the level of Fe ions on the surface of pyrite.  

The mean level of Al on the surface of pyrite when finer muscovite (P80 50 µm) is 

present seems to be higher than when coarse muscovite (P80 150 µm) is present. 

However, this difference is not statistically significant, at 95%.  

7.3.2.3 The effect of muscovite P80 at pH 4 

The levels of Fe, Cu, Si, Al, K and C3H7 (normalised ion intensities) on the surface of 

pyrite at pH 4 are shown in Figure 7-9. 
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Figure 7-9 - ToF-SIMS normalised ion intensities for pyrite particles at pH 4. (a) Positive ions. 

(b) Negative ions. Error bars represent 95% CI. 

Overall, according to Figure 7-9(a), it appears that the presence of muscovite leads to 

a decrease in C3H7 and an increase of Al and K levels on the surface of pyrite. The 

size distribution of muscovite affects the levels of Fe, Cu, Al, K and C3H7 on the surface 

of pyrite. However, no statistically significant changes were observed in Figure 7-9(b). 

The levels of Al and K on the surface of pyrite appears to increase when muscovite is 

present at pH 4. The levels of K appear to increase significantly with the increase of 

muscovite size. The level of Al appears to increase significantly when coarse 

muscovite (P80 150 µm) is present.  

The level of Fe on the surface of pyrite seems to increase when muscovite at P80 

50 µm is present. The Fe ion intensity appears to decrease considerably in the 
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presence of coarse muscovite (P80 150 µm), as suggested by the normalised ion 

intensity in Figure 7-9 (a).  

There are no significant differences between the levels of Cu in the absence of 

muscovite and presence of finer muscovite (P80 50 µm), contrary to the behaviour 

observed at pH 10, in which the level of Cu appears to decrease. The levels of Cu 

decreased significantly in the presence of coarse muscovite (P80 150 µm). Therefore, 

the trends presented in Figure 7-9(a) suggests that the size distribution of muscovite 

appears to affect the activation of pyrite at pH 4.  

The collector (C3H7) coverage on the surface of the pyrite appears to decrease with 

the increase of the levels of K and Al observed. The extent of this decrease in coverage 

depends on the size distribution of muscovite. As muscovite size distribution gets 

coarser, a lesser coverage of collector on the surface of pyrite was observed.  

At pH 10, it seems that fine muscovite was more detrimental to the activation of pyrite 

and collector coverage. At pH 4, the coarse muscovite appears to be more detrimental 

to the activation by Cu and collector coverage. As well as at pH 10, the presence of 

coarse muscovite at pH 4 decreases the exposure of Fe in the surface of pyrite. 

However, the exposure of Fe increased in the presence of fine muscovite at pH 4. 

7.3.3 XPS Results 

The XPS technique does not analyse the surface of specific particles. It analyses the 

atomic percentages of the chemical species present in the bulk sample surface 

(Vizcarra, 2010) quantitatively.  

The surface analysis by the XPS presented in this section investigates the level of 

oxidation of the pyritic minerals, quantifies the presence of hydroxides and detects 

collector levels on the sample. Arsenic was not visible in the surface analysis due to 

the low grade of arsenopyrite in the flotation feed. Therefore, the conclusions of the 

surface analysis are valid only for pyrite.  
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7.3.3.1 Tests in the absence of muscovite 

The effect of pH in the floatability of pyrite can be observed comparing the level of 

oxidation of pyrite in tests 1 and 4 through the Fe spectra. Table 7-4 compares 

information on the high-resolution spectrum of Fe 2p of pH 10 versus pH 4. Tests 1 

and 4 were conducted in the absence of muscovite.  

Table 7-4 - High-resolution spectrum of Fe 2p in the absence of muscovite 
Binding Energy (eV) 710.46 712.74 715.29 

Test pH FeS+ FeO Fe2O3 FeOOH 

S1 10 59.08 31.86 9.06 

S4 4 61.76 23.89 14.35 

According to Table 7-4, the proportion of FeS+ FeO is similar at pH 4 and pH 10. The 

percentage of Fe2O3 appears to increase from pH 4 to pH 10, while the proportion of 

FeOOH seems to decrease. Therefore, it suggests that pyrite is more oxidised at pH 

10 than at pH 4.  

7.3.3.2 The effect of the presence and P80 of muscovite 

Table 7-5 compares the high-resolution spectrum of Fe 2p between samples 1, 2 and 

5 at pH 10. 

Table 7-5 – High-resolution spectrum of Fe 2p at pH 10 
Binding Energy (eV) 710.46 712.74 715.29 

Test % Muscovite P80 of Muscovite FeS+ FeO Fe2O3 FeOOH 

1 0 - 59.08 31.86 9.06 

2 45 50 54.71 24.11 8.85 

5 45 150 38.35 32.95 22.86 

Table 7-5 suggested that the presence of fine muscovite did not affect greatly the 

levels of FeS+ FeO and FeOOH observed. The level of FeOOH appears to increase 

with the increase of the particle size of muscovite. The level of Fe2O3 seems to 

decrease with the reduction of the size distribution of muscovite.  
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The signal for the binding energy of the organic C-O bond, referent to the collector, in 

the high-resolution spectra of the O 1s for the tests conducted at pH 10 is shown in 

Table 7-6. 

Table 7-6 - High-resolution spectrum of O 1s at pH 10 
Binding Energy (eV) 531.90 

Test % Muscovite P80 of Muscovite Organic C-O 

1 0 - 44.59 

2 45 50 35.68 

5 45 150 34.50 

The atomic intensity of the collector, shown in Table 7-6, appears to decrease when 

muscovite is present. This result aligns with the observations of the ToF-SIMS in 

Figure 7-8 (a).  

Table 7-7 compares the high-resolution spectrum of Fe 2p between samples 4, 3 and 

6 at pH 4. 

Table 7-7 - High-resolution spectrum of Fe 2p at pH 4 
Binding Energy (eV) 710.46 712.74 715.29 

Test % Muscovite P80 of Muscovite FeS+ FeO Fe2O3 FeOOH 

4 0 - 61.76 23.89 14.35 

3 45 50 44.55 27.93 14.89 

6 45 150 57.37 21.39 18.06 

Table 7-7 suggests that the presence of fine muscovite decrease levels of FeS+ FeO 

and increase the levels of Fe2O3. The level of FeOOH observed seems not to be 

affected by the presence of muscovite.  

The signal for the binding energy of the organic C-O bond, referent to the collector, in 

the high-resolution spectra of the O 1s for the tests conducted at pH 10 is shown in 

Table 7-8. 
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Table 7-8 - High-resolution spectrum of O 1s at pH 4 
Binding Energy (eV) 531.90 

Test % Muscovite P80 of Muscovite Organic C-O 

4 0 - 43.93 

3 45 50 36.76 

6 45 150 31.36 

The atomic intensity of the collector, showed in Table 7-8, appears to decrease with 

the presence of muscovite, as well as the effect shown in Table 7-6. This result aligns 

with the observations of the ToF-SIMS in Figure 7-9(a). 

7.3.4 Muscovite Leaching Tests 

The CCRD analyses indicated that the size distribution of muscovite affects the 

flotation rate of pyrite, leaching tests were conducted on the muscovite to identify the 

species leached by size fraction. The leaching tests were conducted using 16.4 g of 

muscovite, with the size fractions -300/+212 µm, -106/+75 µm, at pH 4 and pH 10. The 

size fractions were leached for 10 minutes (as per the flotation conditioning time) in a 

beaker agitated in a magnetic agitator, then filtered. The leaching solution consists of 

deionised water with pH-regulated with H2SO4 and NaOH. Triplicates of the filtrated 

solution samples were submitted for assay of Cu, K, and Al to ensure repeatability of 

the results.  

7.3.5 Muscovite Leaching Results 

The assay results of the leaching of the size fractions of muscovite are presented in 

Figure 7-10 and Figure 7-11. The standard deviation of the assays is shown in 

Table 7-9 and Table 7-10. Because of the small number of repeat samples for the 

assays of the muscovite leaching, it was chosen to discuss the error of the assays as 

standard deviation instead of the confidence interval.  



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

212 

 

 
Figure 7-10 – Average potassium concentration in solution from muscovite leaching under the 

pH conditions of flotation 

Table 7-9 – Standard deviation of K assays from the muscovite leaching tests 

Size fraction -300/+212 µm -106/+75 µm -38 µm 

pH 4 0.0 0.6 0.0 

pH 10 0.0 0.0 0.0 

According to Figure 7-10 and the standard deviation analysis in Table 7-9, the 

dissolution of potassium does not depend on pH. The highest dissolution of K from the 

muscovite occurs at the size fraction -106/+75 µm, followed by – 38 µm and 

- 300/+212 µm.  

The differences observed in assays values of the size fractions – 38 µm and 

- 300/+212 µm were not significant, because they are within the experimental error. 

The standard deviation of the K assays for the size fraction - 106/+75 µm is 0.6, which 

indicates that the assays at pH 4 and 10 are statistically the same; therefore, the 

results of these tests indicated that the dissolution does not depend on pH, but the 

particle size.  
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Figure 7-11 – Average aluminium concentration in solution from muscovite leaching under the 

pH conditions of flotation 

Table 7-10 – Standard deviation of Al assays from the muscovite leaching tests 

Size fraction -300/+212 µm -106/+75 µm -38 µm 

pH 4 0.1 1.3 0.7 

pH 10 0.2 0.4 0.8 

According to Figure 7-11, the highest dissolution of Al to solution occurs at the size 

fraction -106/+75 µm, followed by - 38 µm and -300/+212 µm. The dissolution of 

aluminium to solution follows the pattern of potassium, as per Figure 7-10. 

Comparing the standard deviation in Table 7-10, the effect of pH is not significant for 

the aluminium leaching of the size fractions - 106/+75 µm and - 38 µm. However, at 

the size fraction -300/+212 µm, the higher pH 10 enhanced the leaching of aluminium.  

The leaching analysis in Figure 7-10 and Figure 7-11 showed that the leaching of K 

and Al from muscovite is size-dependent. Comparing the average concentration of 

aluminium and potassium in solution versus pH, the size fractions - 106/+75 µm and 

- 38 µm present similar values for both pH values tested. The size fraction 

- 300/+212 µm present similar concentration of Al and K in solution at pH 10. The 

concentration of K is higher than Al at pH 4.  
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The K atoms are located on the faces of muscovite, while Al on the edges. Maslova et 

al. (2004) described that the aspect ratio of muscovite is approximately 20, as the ratio 

of the surface area of basal to edge face. It was expected that given the high aspect 

ratio of muscovite, the leaching of Al would be associated with the edges, while K with 

the faces. The leaching of the K and Al indicates that the anisotropic nature of the 

muscovite affects the flotation by releasing ions into the solution. The proportion of K 

and Al leached to the solution were similar in all size fractions. However, no distinction 

amongst the size fractions can be associated to the leach of K or Al exclusively. 

The size fraction - 106/+75 µm liberated the highest concentrations of K and Al to the 

solution in all leaching tests conducted. Therefore, in the flotation tests, the effect of 

muscovite P80 due to the increase of Al and K ions to the solution could be related to 

the amount of the size fraction - 106/+75 µm present in the flotation feed pulp.  

The percentage of -106/+75 µm in the muscovite size distributions used in the flotation 

tests to collect samples for the surface analysis via ToF-SIMS and XPS are shown in 

Table 7-11.  

Table 7-11 – Percentage of the size fractions used in the leaching tests in the size distributions 
of muscovite used in flotation tests 

P80/Size fraction µm -300/+212 µm -106/+75 µm -38 µm 

P80 = 150 µm 1.2 9.5 42.9 

P80 = 50 µm 0.0 4.5 76.7 

Table 7-11 showed that the muscovite at P80 150 µm has two times more muscovite 

in the size fraction -106/+75 µm than muscovite at P80 50 µm. Furthermore, more K 

and Al are available in solution at the tests that muscovite is present at a coarse size 

distribution. 

7.3.6 Surface Analysis Discussion 

ToF-SIMS analysis suggested that the presence of the muscovite in the flotation feed 

leads to a reduction of Cu coverage on the surface of pyrite, resulting in less collector 

on the surfaces. In addition, the increase of the particle size of muscovite leads to an 

increase of K and Al on the surface of pyrite.  
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The effect of the presence of muscovite in the surface chemistry of pyrite appears to 

be size-dependent, as shown by the ToF-SIMS analyses in comparing the ion 

intensities of the tests containing fine muscovite (P80 50 µm) versus coarse muscovite 

(P80 150 µm). 

At both pH levels observed, the increase of the particle size of muscovite in the pulp 

increased the levels of K+ on the surface of pyrite. In addition, the ToF-SIMS analyses 

suggested that the increase in particle size of muscovite decreases the level of Cu 

and collector on the surface of pyrite. Muscovite has the capacity to exchange K and 

Al ions from the surfaces for ions available in an aqueous solution, including Fe and 

Cu (Nosrati et al., 2012; Nosrati et al., 2009). Given the capacity of muscovite 

exchange Fe and Cu ions in solution for K, it may suggest that the muscovite may 

uptake Cu ions from the solution, which might be the cause for the lower levels of Cu 

on the surface of pyrite.   

The potassium ions are located on the faces of muscovite, while aluminium originates 

at edges (Forbes & Chryss, 2017; Ndlovu et al., 2014). It suggests that the effect of 

the faces of muscovite, loaded with K, is observed when the coarse muscovite 

(P80 150 µm) is present, as more K is transferred to the pyrite surface. The effect of 

the muscovite edge seems to be more prominent when fine muscovite is present (P80 

50 µm). The effect can be observed by the higher Al intensity on the pyrite compared 

with coarse muscovite.  

The water chemistry tests, comparing the amount of Al and K leached from different 

size fractions of muscovite, showed that the muscovite at P80 150 µm liberates much 

more K and Al ions to a solution than muscovite at P80 50 µm. Moreover, more K and 

Al are available for adsorption at the surface of pyrite when muscovite at P80 150 µm 

is present in the flotation feed. However, the water chemistry tests did not provide 

sufficient evidence to support the suggestion that the effect of the edges of muscovite 

is observed when muscovite at P80 50 µm is present. Nor the effect of the face, when 

muscovite at P80 150 µm is present because there were no differences on the levels 

of Al and K leached to the aqueous phase on the size fractions tests.  
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The CCRD showed that the increase in the size distribution of the muscovite leads to 

a decrease in flotation rate. This decrease in flotation rate is aligned with the 

observations in the ToF-SIMS results by the reduction of Cu and C3H7 coverage on 

the surface of the pyrite and the increase of K and Al. Potassium and aluminium are 

hydrophilic species, the increase of K and Al concentration on the surface of pyrite 

reduces it hydrophobicity resulting in slower flotation rates. 

Table 7-4 showed the XPS results for the samples in the absence of muscovite at pH 

4 and pH 10 aiming to indicate the differences in the oxidation of pyrite that is leading 

to flotation behaviour at pH 4 and 10. According to Table 7-4, the level of Fe2O3 on the 

pyrite at pH 10 is higher than at pH 4. In addition, the ToF-SIMS results presented in 

Figure 7-7, shows that at pH 10, the levels of Cu and collector on the surface of pyrite 

are lower at pH 10 than at pH 4. The formation of Fe2O3 layer on pyrite surface at high 

pH should prevent sulfide-collector interaction, which is a common industry practice to 

use high pH to depress fresh pyrite in many other sulfide separations. However, it does 

not explain the behaviour observed in the CCRD. Therefore, it can’t be concluded that 

the reason for the poor floatability is the high levels of Fe2O3.  

7.3.7 Surface Chemistry Analysis Conclusions 

The following conclusions can be drawn from the surface analysis via ToF-SIMS and 

XPS: 

1. The level of oxidation of pyrite at pH 10 is higher than at pH 4. Lesser Cu 

and collector coverage are observed at pH 10 than at pH 4. Therefore, the 

flotation rates at pH 10 should be slower than at pH 4, contrary to the data 

presented in the CCRD.  

2. The increase in flotation rate with the increase of pH is not due to the surface 

chemistry of the pyrite. 

3. The increase in particle size of muscovite increases the levels of K+ on the 

surface of pyrite. In addition, the increase in particle size of muscovite 

decreases the level of Cu and collector on the surface of pyrite. Moreover, 

the increase of muscovite particle size in the flotation feed is detrimental to 

the flotation rate, as observed by the CCRD.  
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4. The extent of the detrimental effect of those ions is indicated to be size-

dependent, as muscovite at P80 150 µm liberates much more K and Al ions 

to a solution than muscovite at P80 50 µm 

5. The presence of muscovite did not overwrite the effect of pH. It amplified 

the oxidation effect of the pH.  

7.3.8 Conclusions of the Effect of Surface Modification on the Flotation Rate 

This chapter investigated the potential mechanisms by which the variables studied in 

the CCRD experiments affect the flotation rate of pyrite and arsenopyrite, which allows 

Hypothesis 3 to be tested:  

The detrimental effect of muscovite in the flotation rate of pyrite is due to surface 

modification of pyrite and arsenopyrite mineral grains 

The nature of surface modification investigated in this thesis consisted of hetero-

aggregation and surface chemistry modification. 

The zeta potential analysis was conducted to verify the hetero-aggregation between 

the pyritic minerals and muscovite. The analyses suggested that the most likely range 

of pH to observe hetero-aggregation of fine particles of muscovite are pH 3-4. 

However, the analyses of the zeta potential of the mixture under the same flotation 

conditions of the centre point of the CCRD does not indicate hetero-aggregation at 

pH 4.  

In addition, even if hetero-aggregation of the fine particle was likely to be occurring, it 

doesn’t have an effect on the flotation rate of pyrite and arsenopyrite, because the 

CCRD analysis showed that the flotation rate increases with the decrease of 

muscovite particle size. Therefore, the flotation rate of arsenopyrite and pyrite is not 

affected by hetero-aggregation.  

The regression analysis in Chapter 5 indicated that the proportion of muscovite in the 

feed is not deleterious to the flotation rate of arsenopyrite and has a minor effect on 

the flotation rate of pyrite. However, it is suggested that the increase of the P80 of 
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muscovite combined with the increase of %solids is deleterious to the flotation rate of 

arsenopyrite and pyrite.  

The ToF-SIMS analyses suggested that when muscovite is present, the increase in 

particle size of muscovite increases the levels of K and Al on the surface of pyrite and 

decreases the level of Cu and collector at the levels of pH tested pH 4 and 10. These 

observations align with the observations of the CCRD analysis that showed a 

decrease of the flotation rate of arsenopyrite and pyrite with the increase of muscovite 

particle size.  

This indicates that the detrimental effect of muscovite is due to surface chemistry 

modification of pyrite and arsenopyrite caused the Al and K ions, which originate from 

muscovite leaching. The extent of the detrimental effect of those ions is indicated to 

be size depended, as muscovite at P80 150 µm releases much more K and Al ions into 

solution than muscovite at P80 50 µm. Moreover, more K and Al are available for 

adsorption at the surface of pyrite when muscovite at P80 150 µm is present in the 

flotation feed. 

The XPS results indicated the level of Fe2O3 on the pyrite at pH 10 is higher than at 

pH 4. The formation of Fe2O3 layer on the pyrite surface at high pH should prevent 

sulfide-collector interaction. In addition, the ToF-SIMS showed that at pH 10, the levels 

of Cu and collector on the surface of pyrite are lower at pH 10 than at pH 4, which 

indicated that at high pH the floatability of pyrite should be lower. However, it is 

contrary to the observations of the CCRD. Therefore, it could not be concluded that 

the effect of pH in de CCRD is due to oxidation through the formation Fe2O3 leading 

to the poor floatability. 

As the CCRD regression analyses showed that the deleterious effect of muscovite P80 

is dependent on the increase of %solids. It suggests that the percentage of solids 

‘amplifies’ the deleterious effect of muscovite in the surface chemistry of the pyritic 

minerals. In the set of tests completed in the CCRD, the percentage of muscovite in 

the pulp increases proportionally to the percentage of solids. This would suggest that 

more muscovite is available for leaching in the pulp, leading to a significant increase 
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in the concentration of Al and K ions, which may be the reason for the amplifying effect 

of the %solids. 

Therefore, hypothesis 3, that the detrimental effect of muscovite in the flotation rate of 

arsenopyrite and pyrite is due to surface modification is partially supported by the 

evidence presented in this chapter.  

7.4 Other Factors Affecting the Flotation Rate: Frother Dosage and 

pH 

7.4.1 Introduction 

The regression analysis of the CCRD from Chapter 5 showed that the flotation rate of 

arsenopyrite and pyrite increases with the interaction denoted by the product of frother 

dosage and pH, as shown in Figure 7-12. 

 
Figure 7-12 – Effect of pH and frother dosage on the flotation rate constant of arsenopyrite and 

pyrite 

The potential causes for the poor flotation kinetics at low pH included the formation of 

slime coating of muscovite on the surfaces of pyrite and arsenopyrite, and/or chemical 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

220 

 

modification of the surface of the pyritic mineral that would decrease the 

hydrophobicity, consequently, reducing the flotation rates.  

The zeta potential analysis indicated that it was most likely to observe the formation 

of slime coatings of muscovite on the pyritic minerals is at pH 4. However, the 

measurements of the zeta potential of the mineral mixture at pH 4 indicated that the 

system is dispersed at this pH. Therefore, it suggests that the low flotation rates 

observed at pH 4 are not the formation of a slime coating on the pyritic minerals.  

The surface analysis via XPS and ToF-SIMS indicated that the level of oxidation of 

pyrite at pH 10 is higher than at pH 4. Lesser Cu and collector coverage are observed 

at pH 10 than at pH 4. Therefore, the flotation rates at pH 10 should be slower than at 

pH 4, contrary to the results observed in the CCRD. 

Because the surface analyses via zeta potential, XPS and ToF-SIMS suggested that 

the causes of the low flotation kinetics of the pyritic minerals at low pH are not due to 

surface modification mechanisms that would reduce the hydrophobicity of the pyritic 

minerals, it suggests other factors are causing this response. One possible cause is 

that the pH is actually affecting froth stability. This is reinforced by the suggestion 

shown by the regression equation that the interaction term pH x frother is significant 

because both factors are affecting the froth stability.  

This section aims to verify the effect of pH and frother on the froth phase.  

7.4.2 Effect of pH on the Froth Height and its Effect on the Flotation Rate 

Throughout the execution of the CCRD flotation tests, froth height differences were 

observed visually. Due to limitations of the flotation cell used, the froth height was not 

recorded as part of the flotation experiments.  

To understand the effect of pH on the froth stability, froth height measurements were 

conducted at selected pH conditions. Ideally, the froth height measurements should 

be performed using a factorial design that would include the evaluation of the effect of 

frother dosage, pH, the proportion of muscovite and muscovite P80 and %solids. 
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However, due to time constraints and limited muscovite samples available, the froth 

height measurements were performed in the absence of muscovite, at selected pH 

conditions. 

Because no concentrate is collected in the froth height tests, the flotation conditions 

selected to perform these tests should be the same conditions of flotation batch-test 

performed previously, so the froth height measured could be compared to the flotation 

rates of pyrite and arsenopyrite from those tests.  

7.4.2.1 Froth Height Measurement 

The froth height was measured, in the absence of muscovite, at pH 4, 7 and 10, using 

the conditions of the flotation tests in the preliminary CCRD stage: 30 ppm of Dowfroth 

250, 100 g/t of CuSO4, 165 g/t of PAX (collector dosage as per the centre point of the 

preliminary CCRD) and 20% of solids.  

Although Figure 5-6 and Figure 5-8, in Chapter 5, indicated there are differences 

between the effects of the pH on the flotation kinetics using 165 g/t and 300 g/t of PAX, 

the flotation rates obtained directly from the experimental data, of the preliminary 

CCRD (at 165 g/t of PAX) and CCRD (300 g/t of PAX), are following similar trends 

with the increase of pH, as suggested in Figure 7-13. 

 
Figure 7-13- Flotation rates of arsenopyrite and pyrite versus pH 
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The overlap of the trends and confidence intervals suggests that the effect of the 

collector dosage on the rates was not very significant. Therefore, the selected flotation 

conditions to evaluate the froth height should be sufficient to detect significant 

differences in the froth due to the pH. 

Two tests with silica only (absence of pyrite and arsenopyrite) were run at pH 4 and 

pH 10 as a blank test to distinguish the effect of the hydrophobicity of the pyrite and 

arsenopyrite on the froth stability. 

The maximum froth height was measured in a custom-made flotation column with the 

same cross-section area of the flotation cell used in the flotation tests campaign. The 

same impeller stator mechanism used in the flotation test campaign was adopted in 

the column to replicate the conditions of the previous flotation tests.  

Figure 7-14 shows the maximum froth height of the tests without sulfides. The 

maximum froth height at pH 4 is 3 cm and at pH 10 is 15 cm. The height of the froth 

increases with the pH independently of the presence of sulfides.  

 
Figure 7-14 –Froth height of silica at pH 4 and pH 10, 30 ppm of Dowfroth 250, 100 g/t of 

CuSO4, 165 g/t of PAX and 20% solids 
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Dark solids appeared to contaminate the froth in Figure 7-14. Those dark solids 

reporting to the froth phase during tests with silica only could be a precipitate of copper 

xanthate that would form upon mixing of xanthate with copper sulfate, as the cell was 

carefully cleaned between tests, discarding the possibility of residues from other 

experiments. 

Figure 7-15 shows the maximum froth height of the tests which include arsenopyrite 

and pyrite, at pH 4, 7 and 10.  

 
Figure 7-15 - Froth height of the system pyrite, arsenopyrite and silica at pH 4, 7 and 10, 30 

ppm of Dowfroth 250, 100 g/t of CuSO4, 165 g/t of PAX and 20% solids 

Table 7-12 shows the maximum froth height at pH 4, 7 and 10.  

pH 4 pH 7 

pH 10 
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Table 7-12 – Froth height versus pH 

pH Maximum Height (cm) Eh 

4.24 4.7 279 

7.14 12 210 

10.01 27 77 

 
Figure 7-16 - Froth height versus pH 

The froth height significantly increased with the pH, as shown by Figure 7-15 and 

Table 7-12. Figure 7-15 shows the graphic representation of Table 7-12.  

Low froth heights were visually observed throughout the completion of flotation tests 

at tests conducted at low pH, and high froth height at high pH tested, which were 

confirmed by the measured data, in Figure 7-15. 

Prior to the froth height tests presented on Figure 7-14 and Figure 7-15, a sighter test 

was performed in a standard flotation cell, using silica and frother, in the exclusion of 

PAX and CuSO4, to identify if the pH and frother would be in interacting to increase 

the froth depth or volume. Those tests suggested that the froth height or volume 

increases with the rise in pH, as shown in Figure 7-17. 
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Figure 7-17 - Froth height of silica in the flotation cell used to perform the CCRD test at pH 4 

and 10, using 30 ppm of Dowfroth 250 and 20% solids 

The froth height measurements for pH values over 7 were not very accurate using a 

conventional flotation cell because the froth overflowed through the lip. The complete 

profile of froth depth versus pH measured in the conventional flotation cell using silica 

and frother in the absence of PAX and CuSO4 is shown in Figure 7-18, which suggests 

that even in the absence of PAX and CuSO4, the froth height increased with the 

increase of pH. 

 
Figure 7-18 - Froth height of silica in the conventional flotation cell used to perform the CCRD 

test versus pH, using 30 ppm of Dowfroth 250 and 20% solids 
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difference been related to the chemical instability of xanthate at low pH versus high 

pH because no xanthates were present.  

The mechanism causing the froth height to rise could be the adsorption of frother 

molecules on the surfaces of silica. However, the tests presented in the scope of this 

thesis are not able to confirm this mechanism. 

The froth height test was repeated in a two-phase system to verify if the pH was 

changing the surface tension of the water-air interface. The two-phase system test, 

with water and frother and water and flotation reagents, was performed in an aerated 

measuring cylinder, using a fixed dosage of frother, 30 ppm. The froth depth obtained 

in the two-phase is shown in Figure 7-19.  

 
Figure 7-19 – Froth depth measured in the two-phase system using deionised water and 

flotation reagents  

It was observed a visual difference of froth height across the range of pH tested in the 

two-phase (air-solution) system that could suggest a modification of the surface 

tension with the pH. Interestingly, no precipitate was observed in the system with PAX 

and CuSO4, which suggests that the solids observed in Figure 7-15, could be 

impurities. 

These are extremely complex systems, and yet the conclusions from these tests could 

be enriched with more investigation. The study of the froth phase was outside the 

scope of the thesis. 
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7.4.2.2 Comparison of the Flotation Rate and the Froth Height Measurement 

Figure 7-20 compares the increase of the froth height with the flotation rate of pyrite 

and arsenopyrite at pH 4, 7 and 10. The flotation rates shown in Figure 7-20 

corresponded to the rates using 165 g/t of PAX, 30ppm of Dowfroth 250, 27% solids, 

in which no muscovite was added in those tests. It seems that the froth height and the 

flotation rate versus pH follow the same trend, suggesting that the flotation rate 

increased with the froth height.  

 
Figure 7-20 – Flotation rate in the of pyrite and arsenopyrite at pH 4, 7 and 10, at 30ppm of 

Dowfroth 250 and 300 g/t of PAX, versus froth height 

In the absence of froth height tests with muscovite, the water recovery at the first 

concentrate is used as a proxy for the froth height because it gives an indication of the 

volume of froth recovered at the beginning of the tests. The mass of water pulled at 

the first concentrate from the CCRD tests performed at 27% solids, 22.5% of 

muscovite in the gangue, 30 ppm of frother and 300 g/t of PAX is shown in Figure 7-21. 

It suggests that the froth height at the tests conducted at the CCRD, using 300 g/t of 

PAX, 30 ppm of frother, at 27% solids and 22.5% of muscovite in the gangue, 

increased with the increase of pH because of the increase of froth height is also 

associated with the increase of water recovery.  
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Figure 7-21 – Water recovery in the first concentrate (0.5 minutes) in the CCRD tests, in the 

presence of 22.5% of muscovite in the gangue composition 

7.4.2.3 Conclusions on the Effect of pH 

The increase of pH led to an increase of froth stability, thus the increase of froth height. 

Consequently, an increase in flotation kinetics was observed.  

The increase of froth height with pH observed in the experiments developed in this 

study align with the observation of Sheni et al. (2018), which observed an improvement 

in froth stability with pH, on the study of the froth stability in a PGM ore, using frother 

Senfroth 516, which is also a polyglycol frother (Ngoroma, 2015), and NaOH as the 

pH modifier.  

According to Ata et al. (2009), the maximum froth stability is achieved when the froth 

phase is loaded with moderately hydrophobic particles. The ToF-SIMS analysis 

showed that at pH 4, pyrite has the highest collector coverage, compared to pH 10. 

The lowest froth height observed was at pH 4. Froth collapsing was not observed in 

the experiments. As per Figure 7-15, at pH 4, a visible froth phase with 4.7 cm is 

observed. The high hydrophobicity of the pyrite and arsenopyrite particles at pH 4 was 

not sufficient to destroy the froth phase, but it may affect the froth stability due to the 

low froth height observed.  

Moreover, the experiments conducted could not properly differentiate the mechanism 

by which it affects froth stability between the high hydrophobicity of pyrite and the 

decrease of the surface tension of the interface air-liquid. The froth height obtained in 
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the two-phase system suggests that the decrease of the surface tension of the 

interface air-liquid is likely to be a significant mechanism. However, further studies are 

required to understand the effect of the hydrophobicity of the pyritic minerals and the 

increase of pH and frother dosage on the surface tension of the interfaces.  

Froth transport and viscosity were not inferred as part of the main experimental 

program as it was outside the scope of work in the original experimental design. Those 

factors could potentially be related to flotation performance and should be investigated 

as future work.  

The effect of the presence of muscovite in the froth stability was not studied due to the 

limited availability of pure mineral samples. However, the water recovery analysis of 

the first concentrate at the flotation test with 22.5% muscovite in the gangue 

composition showed that the water recovery increases with the pH, which is an 

indication that froth height rises with pH, similarly to the tests presented in the absence 

of muscovite. 

7.4.3 The Effect of Frother Dosage on the Flotation Rate 

The effect of the frother dosage on the flotation rate of arsenopyrite is pH-dependent, 

as shown in Figure 7-12. The froth height tests performed suggested that the increase 

of pH led to an increase of froth stability, thus the increase of froth height. 

Consequently, an increase in flotation kinetics was observed.  

The increase of pyrite and arsenopyrite kinetics with the increase of frother dosage is 

not due to the concentration of frother reaching the critical bubble coalescence 

concentration (CCC), as it was set above the CCC in all flotation tests performed. The 

minimum frother dosage used in the CCRD flotation experiments was 10 ppm, which 

is above the CCC of Dowfroth 250, that is 8.7 ppm, according to Cho & Laskowski 

(2002).  

According to Gupta et al. (2006), froth stability increases with the pH because of the 

high surface activity of polyglycol frothers. This statement agrees with the froth height 
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increase observed with the increase of pH at the experiments performed in the 

previous section.  

Subrahmanyam & Forssberg (1988), cited by Aktas et al. (2008), indicate that the 

surface tension of the air-liquid is lowered by frothers to produce stable bubbles. 

Johansson & Pugh (1991) observed an increase of maximum froth height and a 

decrease of surface tension with the increase of frother dosage, using a polyglycol 

frother.  

The flotation experiments were conducted using Dowfroth 250, which is a polyglycol 

frother and an increase of the froth height was observed with the pH. It can be 

speculated that the enhancement of froth stability reduces the probability detachment 

of pyrite and arsenopyrite particles followed by drainage into the pulp, which could be 

linked to higher flotation rates.  

The two-phase froth height test indicated that the pH affects the surface tension as it 

changed the froth height. However, surface tension analysis was not conducted as 

part of this research. Therefore, the mechanism by which pH and frother act on the 

froth stability could not be confirmed as the reduction of surface tension.  

7.4.3.1 Effect of Frother Dosage Conclusions 

The regression analysis indicates that the most significant term for the increase of the 

flotation rates of arsenopyrite and pyrite is the multiplication term pH x frother dosage.  

The literature indicated that froth stability increases with the pH because of the high 

surface activity of polyglycol frothers. In addition, surface tension decreases with the 

increase of frother dosage when a polyglycol frother, which is related to an increase 

of maximum froth height. Therefore, it suggests the more stable bubbles are formed.  

It can be speculated that positive effect of the term pH x frother dosage on the flotation 

rates of arsenopyrite and pyrite is due to the combined effect of the frother and pH on 

the decrease of the surface tension of the liquid interface that produces stable bubbles, 

reducing the probability of particle drainage and perhaps detachment.  
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8 Conclusions and Future Work 

8.1 Introduction  

The research undertaken in this thesis aimed to understand how muscovite affects the 

flotation rate of pyrite and arsenopyrite and to understand the conditions that would 

minimise the effect of muscovite on the flotation rates of the pyritic minerals. The 

effects of muscovite on the flotation kinetics of arsenopyrite and pyrite were 

investigated by performing flotation batch tests using a CCRD design. The results from 

the CCRD were analysed using regression analysis to identify the key variables 

affecting the flotation rate. Measurements of viscosity, ToF-SIMS and XPS surface 

analysis, muscovite leachability and froth stability were conducted to investigate the 

underlying mechanism of the significant effects observed through the regression 

analysis. 

The conclusions drawn from the results of this research are presented in this chapter. 

The conclusions are discussed in the context of the hypotheses, which the research 

set out to test. These hypotheses are:  

Hypothesis 1:  

The presence of high concentration of muscovite has a detrimental effect on the 

flotation rate of arsenopyrite and pyrite. 

Hypothesis 2:  

The presence of muscovite affects arsenopyrite and pyrite floatability by changing pulp 

viscosity  

Hypothesis 3: 

The detrimental effect of muscovite in the flotation rate of arsenopyrite and pyrite is 

due to surface modification of pyrite and arsenopyrite mineral. 
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8.1.1 The Effect of Muscovite Content in the Gangue on Pyrite and Arsenopyrite 

Flotation Rates 

The results of the 54 flotation experiments performed in the CCRD showed that there 

was very little difference in the final recovery of arsenopyrite and pyrite achieved in all 

tests but that there were discernible differences in the flotation rates. 

Regression analyses of the factors studied in the CCRD, %muscovite by weight in the 

gangue, %solids, frother dosage (ppm), P80 of muscovite in gangue and pH were 

performed to assess which of these factors affected the flotation rate of arsenopyrite 

and pyrite at a level of significance of 95%.  

The results of the regression analysis indicated that the factors that significantly 

affected the kinetics of arsenopyrite and pyrite were the interactions of pH with frother 

and of %solids with muscovite P80. The positive effect of interactions of pH with frother 

is the most significant, followed by the deleterious effect of the interaction %solids with 

muscovite P80. The similarity of the regression models for pyrite and arsenopyrite 

indicates that the two minerals present analogous flotation kinetics.  

The regression analysis of the arsenopyrite flotation rate indicated that the proportion 

of muscovite in the gangue has no effect on the flotation rate of arsenopyrite. In the 

case of pyrite, the effect of the proportion of muscovite in the flotation feed on the 

flotation kinetics of pyrite is not deleterious and has low significance, according to the 

regression. Therefore, the hypothesis that the high concentration of muscovite has a 

detrimental effect on the flotation rate of arsenopyrite and pyrite appears not to be 

supported.  

Despite the fact that the proportion of muscovite has no deleterious effect, the increase 

of the size distribution of muscovite does have a deleterious effect on the flotation rate 

constant of both arsenopyrite and pyrite. The deleterious effect of the increase in 

muscovite particle size appears to be amplified by the increase in the percentage of 

solids.  
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In conclusion, the although the regression analysis indicated that the proportion of 

muscovite is not significant to the flotation kinetics, the increase of muscovite particle 

size has a deleterious effect, which appears to be amplified by the %solids of the pulp. 

Moreover, the hypothesis that the high concentration of muscovite has a detrimental 

effect on the flotation rate of arsenopyrite and pyrite is partially supported because the 

increase in muscovite size distribution has a deleterious effect on the flotation kinetics 

of the pyritic minerals. 

8.1.2 The Effect of Muscovite on Pulp Viscosity 

When the viscosity of the flotation feed slurry was included as a factor in the flotation 

rate regression analysis, the regression analysis results indicated that the pulp 

viscosity is not a significant factor affecting to the flotation rate of arsenopyrite and 

pyrite. 

However, although viscosity appears not to affect the flotation rate of arsenopyrite and 

pyrite, the increase of %solids does have a deleterious effect. Since the solids content 

of a slurry is known to affect viscosity, a regression analysis was run to investigate the 

most significant factors affecting the pulp viscosity. 

The results of this analysis indicated that the proportion of muscovite in the gangue 

does not significantly affect the pulp viscosity. In addition, the regression analysis of 

the flotation rate indicated that the proportion of muscovite does not affect the kinetics 

of arsenopyrite significantly. This suggests that Hypothesis 2 is not supported, 

because the proportion of muscovite does not affect pulp viscosity significantly, 

according to the regression analysis.  

The percentage of solids, which also has a deleterious effect on the flotation rate, 

appears to be the most significant factor affecting pulp viscosity. It could suggest that 

the deleterious effect of the percentage of solids in the flotation rate is due to the 

increase in viscosity.  

However, because the pulp viscosity was not shown to be a significant factor on the 

regression analysis of the flotation rates, it is suggested that the mechanism by which 
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the increase of the percentage of solids is deleterious to the flotation rate is not solely 

the increase of viscosity and further work is required in this area.  

8.1.3 The Effect of Muscovite on the Flotation of Pyrite and Arsenopyrite 

Through Modification of Particle Surfaces 

The nature of surface modification investigated in this thesis consisted of hetero-

aggregation and surface chemistry modification. 

Analyses of zeta potential were conducted to verify the presence of hetero-

aggregation between the pyritic minerals and muscovite and the results of the zeta 

potential measurements of the mixture under the same flotation conditions as the 

centre point of the CCRD did not indicate the presence of hetero-aggregation at pH 4. 

The CCRD analysis of the flotation results showed that the flotation rate increases with 

the decrease of muscovite particle size, which suggested that the flotation rate of 

arsenopyrite and pyrite is not likely to be affected by hetero-aggregation, as this is an 

effect caused by fine particles.  

The surface analyses from ToF-SIMS and XPS suggested that the increase in particle 

size of muscovite is related to an increase of the levels of K and Al on the surface of 

pyrite and a decrease of the level of Cu and collector. This suggests that an increase 

in the levels of K and Al on the surface leads to lower adsorption of activator and 

collector with a subsequent decrease of particle hydrophobicity of pyritic minerals.  

The origin of Al and K ions in the pulp is the muscovite leaching, which is size-

dependent, as there is evidence that muscovite at P80 150 µm releases more K and Al 

ions to a solution than muscovite at P80 50 µm.  

This suggests that an underlying reason for the deleterious effect of the interaction 

term %solids x muscovite P80 could be the increase in K and Al ions on the pyritic 

minerals surfaces. As the percentage of solids increases, more muscovite is available 

for leaching in the pulp and less solution is available to dilute those ions; therefore, the 

concentration of K and Al ions increases significantly, leading to adsorption on the 

sulfide surfaces and a decrease of flotation kinetics. It can be speculated that this 
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effect is more significant than the effect of the increase in the proportion of muscovite 

alone. 

Therefore, the hypothesis that the detrimental effect of muscovite in the flotation rate 

of arsenopyrite and pyrite is due to surface modification of pyrite and arsenopyrite 

mineral is supported.  

8.1.4 Conclusions of the Effect of Frother Dosage and pH  

The regression analysis of the flotation rate showed that the most significant factor of 

the increase of the flotation rate of arsenopyrite and pyrite is the term 

frother dosage x pH.  

The ToF-SIMS analysis showed that at pH 4, pyrite has the highest collector coverage, 

compared to pH 10 and therefore is likely to be in its most hydrophobic condition. This 

seems to be contradicted by the flotation rates, which were the lowest observed in the 

experimental program. The zeta potential analyses indicated that the lowest rates 

observed were not due to the formation of slime coating on the surfaces of the sulfide 

minerals studied. 

The lowest froth height in the experimental program was observed at pH 4, and it is 

possible that the high hydrophobicity of the pyrite and arsenopyrite at this pH may be 

destabilizing the froth. However, because froth height measurements with silica only 

indicated an increase of the froth height with the pH, it can be speculated that the 

decrease of the surface tension of the air-liquid interface is likely to be a significant 

mechanism.  

The literature suggests that froth stability increases with the pH are linked to the high 

surface activity of polyglycol frothers. It appears that surface tension decreases with 

the increase of frother dosage when a polyglycol frother is used, which is related to an 

increase of maximum froth height. Therefore, it suggests the more stable bubbles are 

formed.  
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It can be speculated that the positive effect of the interaction term pH x frother dosage 

on the flotation rates of arsenopyrite and pyrite is due to the combined effect of the 

frother and pH on the decrease of the surface tension of the liquid interface that 

produces stable bubbles, reducing the probability of particle drainage and perhaps 

detachment.  

8.2 Contributions to Knowledge 

The literature suggested that that clay and micas affected the flotation performance by 

increasing pulp viscosity and hetero-aggregation, which represents physical 

mechanisms. The studies found in the literature were performed on copper minerals, 

including chalcopyrite and chalcocite. No studies were found in the literature about the 

effect of muscovite on pyrite and arsenopyrite flotation performance and kinetics.  

This research presents as a contribution to knowledge the investigation of viscosity 

and hetero-aggregation effect of muscovite on arsenopyrite and pyrite. It indicated that 

those physical effects are not significant to the flotation kinetics of arsenopyrite and 

pyrite, contrary to research published in the literature for copper minerals.  

Another contribution to the knowledge of this research is the demonstration of the 

effect of the size distribution of muscovite in the flotation rate of arsenopyrite and pyrite 

due to a surface chemistry effect, specifically the release into the solution of Al and K 

ions that affect the hydrophobicity of the pyritic minerals. The observed increase of the 

flotation kinetics with the decrease of muscovite size distribution appears to be 

counter-intuitive because the decrease of particle size is expected to mean more 

liberation of Al and K, contrary to the observation of the leaching tests.  

No other study has been reported to investigate the effect of muscovite on the flotation 

rate of pyrite and arsenopyrite using a CCRD design. The investigation of the factors 

presented in the regression analyses is novel to the literature.  
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8.3 Suggestions for Future work 

The regression analysis presented in this work showed that the most significant terms 

for the kinetics of arsenopyrite and pyrite are pH x frother dosage and 

%solids x muscovite P80. According to the conclusions presented in the previous 

section, it appears that the deleterious effect of the term %solids x muscovite is due 

to the modification of the surface chemistry of the pyritic minerals, and the positive 

effect of the term pH x frother dosage appears to be an effect of froth stability.  

The surface analysis presented in Chapter 7 indicated that underlying mechanism of 

the contribution of the muscovite size distribution presented a suggestion for the 

mechanism by which the %solids of the pulp is playing a role on the chemical 

mechanism of the effect of muscovite. However, no supporting evidence was available 

to support the hypothesis of the effect of %solids of the pulp in the surface chemistry 

of arsenopyrite and pyrite. Further work is required to clarify the role of the %solids of 

the pulp.  

The results presented by this research using a synthetic ore with muscovite as the 

problematic gangue (given the inert behaviour of silica) indicated that the deleterious 

effect of the gangue is by chemical modification of pyrite surface by metal ions, Al and 

K, originating from the muscovite. Considering that gangue minerals can affect the 

surface chemistry of pyritic minerals leading to poor flotation kinetics, more work is 

required to understand the behaviour of other gangue minerals from Barrick’s 

problematic ore, such as calcite and feldspars that could also be modifying the surface 

chemistry of the pyritic minerals through F, Ca, Mg, Na, Cl and carbonates ions.  

The selected froth height tests performed suggested that the increase in pH leads to 

an increase in froth stability. The increase in frother is known to increase froth stability 

by reducing surface tension. An investigation of surface tension was not conducted as 

part of this research. Therefore, further studies are required to understand the effect 

of the hydrophobicity of the pyritic minerals and the increase of pH and frother dosage 

on the surface tension of the interfaces.  
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Froth transport and viscosity were not included as part of the experimental program 

as it was outside the original scope of work. Those factors could potentially be related 

to flotation performance and should be investigated as future work.  

The effect of the presence of muscovite on froth stability was not studied due to the 

limited availability of samples. Further work is required to understand the effect of 

muscovite on froth stability.  
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Appendix Table 1 - – Preliminary CCRD Test Program 

RunOrder Blocks pH PAX dosage 

1 2 7.00 165.00 

2 2 7.00 30.00 

3 2 4.00 165.00 

4 2 7.00 165.00 

5 2 7.00 300.00 

6 2 10.00 165.00 

7 2 7.00 165.00 

8 1 4.88 260.46 

9 1 7.00 165.00 

10 1 9.12 260.46 

11 1 7.00 165.00 

12 1 4.88 69.54 

13 1 9.12 69.54 

14 1 7.00 165.00 

Appendix Table 2 - Full CCRD Test Program 

RunOrder Blocks pH %Solids 

Muscovite 

proportion 

in % 

Frother 

Dosage 

(ppm) 

P80 
Muscovite 

mass (g) 

Silica 

mass (g) 

1 2 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

2 2 10.00 27.50 22.50 20.00 100.00 375.7 1235.7 

3 2 7.00 27.50 45.00 20.00 100.00 754.1 863.0 

4 2 7.00 27.50 0.00 20.00 100.00 0.0 1605.7 

5 2 7.00 27.50 22.50 30.00 100.00 375.7 1235.7 

6 2 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

7 2 7.00 27.50 22.50 20.00 50.00 375.7 1235.7 

8 2 7.00 45.00 22.50 20.00 100.00 712.0 2341.5 

9 2 4.00 27.50 22.50 20.00 100.00 375.7 1235.7 

10 2 7.00 10.00 22.50 20.00 100.00 120.2 395.4 

11 2 7.00 27.50 22.50 10.00 100.00 375.7 1235.7 

12 2 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

13 2 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

14 2 7.00 27.50 22.50 20.00 150.00 375.7 1235.7 

15 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

16 1 5.73 34.90 12.99 15.77 78.87 291.5 1874.0 

17 1 5.73 20.10 32.01 15.77 78.87 369.8 745.1 

18 1 5.73 34.90 12.99 15.77 121.13 291.5 1874.0 
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RunOrder Blocks pH %Solids 

Muscovite 

proportion 

in % 

Frother 

Dosage 

(ppm) 

P80 
Muscovite 

mass (g) 

Silica 

mass (g) 

19 1 5.73 20.10 12.99 15.77 121.13 149.8 962.8 

20 1 8.27 34.90 12.99 24.23 78.87 291.5 1874.0 

21 1 5.73 34.90 32.01 24.23 121.13 721.2 1453.1 

22 1 8.27 20.10 32.01 15.77 78.87 369.8 745.1 

23 1 5.73 20.10 12.99 15.77 78.87 149.8 962.8 

24 1 5.73 20.10 12.99 24.23 78.87 149.8 962.8 

25 1 8.27 34.90 32.01 24.23 78.87 721.2 1453.1 

26 1 5.73 34.90 12.99 24.23 78.87 291.5 1874.0 

27 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

28 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

29 1 5.73 34.90 12.99 24.23 121.13 291.5 1874.0 

30 1 5.73 34.90 32.01 24.23 78.87 721.2 1453.1 

31 1 8.27 20.10 32.01 24.23 121.13 369.8 745.1 

32 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

33 1 8.27 34.90 12.99 15.77 121.13 291.5 1874.0 

34 1 8.27 20.10 12.99 15.77 121.13 149.8 962.8 

35 1 8.27 20.10 12.99 15.77 78.87 149.8 962.8 

36 1 5.73 20.10 32.01 24.23 121.13 369.8 745.1 

37 1 5.73 34.90 32.01 15.77 78.87 721.2 1453.1 

38 1 5.73 20.10 32.01 24.23 78.87 369.8 745.1 

39 1 8.27 34.90 32.01 15.77 78.87 721.2 1453.1 

40 1 5.73 20.10 32.01 15.77 121.13 369.8 745.1 

41 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

42 1 8.27 34.90 12.99 24.23 121.13 291.5 1874.0 

43 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

44 1 8.27 34.90 32.01 15.77 121.13 721.2 1453.1 

45 1 8.27 20.10 12.99 24.23 121.13 149.8 962.8 

46 1 5.73 20.10 12.99 24.23 121.13 149.8 962.8 

47 1 8.27 20.10 12.99 24.23 78.87 149.8 962.8 

48 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

49 1 7.00 27.50 22.50 20.00 100.00 375.7 1235.7 

50 1 8.27 34.90 12.99 15.77 78.87 291.5 1874.0 

51 1 8.27 20.10 32.01 15.77 121.13 369.8 745.1 

52 1 5.73 34.90 32.01 15.77 121.13 721.2 1453.1 

53 1 8.27 20.10 32.01 24.23 78.87 369.8 745.1 

54 1 8.27 34.90 32.01 24.23 121.13 721.2 1453.1 
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Appendix Table 3 - – Muscovite liberation of Reference ore at 2 minutes, P80 370 µm 

Size (µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+600 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 1.3 0.1 

-600+425 0.4 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.6 2.5 0.6 

-425+300 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.9 3.6 1.7 

-300+150 0.4 0.4 0.5 0.4 0.5 0.5 0.5 0.8 1.3 5.0 6.7 

-150+75 0.1 0.2 0.2 0.2 0.2 0.3 0.3 0.5 0.9 6.1 10.7 

-75+38 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.7 4.9 9.4 

-38 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.6 3.4 21.7 

Appendix Table 4 - Muscovite liberation of Reference ore at 10 minutes, P80 125 µm 

Size (µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+150 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.4 6.9 6.2 

-150+75 0.2 0.3 0.3 0.3 0.3 0.4 0.5 0.6 1.4 10.1 15.1 

-75+38 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.5 1.0 6.9 16.3 

-38+29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 

-29+14 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.4 1.3 10.5 

-14+11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 2.6 

-11 0.2 0.3 0.4 0.3 0.4 0.5 0.6 0.7 0.9 1.1 8.9 
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Appendix Table 5 - Muscovite liberation of Reference ore at 35 minutes, P80 50 µm 

Size 

(µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 1.2 10.2 9.5 

-75+38 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.7 2.0 12.4 21.2 

-38+29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 

-29+14 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 1.4 12.5 

-14+11 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.1 0.1 0.4 3.8 

-11 0.1 0.2 0.2 0.3 0.5 0.5 0.5 0.7 1.1 1.5 15.6 

 

Appendix Table 6 - Pyrite liberation of Reference ore at 2 minutes, P80 370 µm 

Size (µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+600 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 4.0 0.3 

-600+425 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 10.3 1.5 

-425+300 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.2 0.8 19.9 3.6 

-300+150 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.3 0.3 13.4 13.9 

-150+75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 3.0 11.5 

-75+38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 5.3 

-38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 9.0 

 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

267 

 

Appendix Table 7 - Pyrite liberation of Reference ore at 10 minutes, P80 125 µm 

Size 

(µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 2.6 

-150+75 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.3 9.3 35.0 

-75+38 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 2.5 23.1 

-38+29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 6.6 

-29+14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.8 

-14+11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5 

-11 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 6.9 

 

Appendix Table 8 - Pyrite liberation of Reference ore at 35 minutes, P80 50 µm 

Size 

(µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.5 

-75+38 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 4.6 31.8 

-38+29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 16.1 

-29+14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 19.6 

-14+11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 2.8 

-11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.2 18.9 
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Appendix Table 9 - Silica (quartz) liberation of Reference ore at 2 minutes, P80 370 µm 

Size 

(µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+600 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.9 0.9 

-600+425 0.1 0.2 0.1 0.2 0.3 0.3 0.3 0.5 0.7 3.5 3.8 

-425+300 0.1 0.2 0.2 0.3 0.2 0.3 0.3 0.8 1.2 5.6 8.9 

-300+150 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.7 1.4 7.2 18.9 

-150+75 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.7 3.5 12.7 

-75+38 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 1.3 7.0 

-38 0.0 0.0 0.1 0.0 0.1 0.1 0.1 0.1 0.2 0.9 10.2 

 

Appendix Table 10 - Silica (quartz) liberation of Reference ore at 10 minutes, P80 125 µm 

Size 

(µm) 

Liberation class 

0% < X < 

10%  

10% < X < 

20%  

20% < X < 

30%  

30% < X < 

40%  

40% < X < 

50%  

50% < X < 

60%  

60% < X < 

70%  

70% < X < 

80%  

80% < X < 

90%  

90% < X < 

100%  
100% 

+150 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 2.8 0.0 

-150+75 0.2 0.2 0.1 0.1 0.2 0.3 0.5 0.9 5.6 36.5 0.0 

-75+38 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.6 2.4 24.6 0.0 

-38+29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.3 0.0 

-29+14 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.3 11.6 0.0 

-14+11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.9 0.0 

-11 0.1 0.2 0.1 0.2 0.2 0.3 0.2 0.3 0.5 5.1 0.0 
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Appendix Table 11 - Silica (quartz) liberation of Reference ore at 35 minutes, P80 50 µm 
Size 

(µm) 

Liberation class 

0% < X < 

10% 

10% < X < 

20% 

20% < X < 

30% 

30% < X < 

40% 

40% < X < 

50% 

50% < X < 

60% 

60% < X < 

70% 

70% < X < 

80% 

80% < X < 

90% 

90% < X < 

100% 
100% 

+75 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 2.1 

-75+38 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.5 2.7 33.4 

-38+29 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 3.2 

-29+14 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.5 31.3 

-14+11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 5.1 

-11 0.1 0.2 0.2 0.2 0.2 0.3 0.4 0.5 0.7 0.8 15.6 
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Appendix 3 

 

 

 

Flotation Recovery Repeatability in the Full CCRD Program 
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Flotation Reproducibility in the Preliminary CCRD for Identifying the 

Appropriate Collector Dosage 

The flotation reproducibility in the preliminary 2-factor CCRD was assessed via 6 repeats of 

the centre point. The repeats were performed as part of the main body 2-factor CCRD in 

blocked order, which minimises the effect of length of experiments.  

The objective of performing the repeats was to estimate the experimental error. The 

reproducibility of the flotation tests performed was evaluated as: 

 Cumulative mass recovery of solids and water. 

 Cumulative component recovery based on assays. 

 Flotation rate of arsenopyrite and pyrite. 

The flotation operation conditions in the repeat tests were 35 g of pyrite, 16 g of 

arsenopyrite, 1112 g of silica, 30 ppm of Dowfroth 250, 165 g/t of PAX, 20% w/w solids.  

Appendix Table 12 shows the average solids recovery, the confidence interval and the 

percentage of error (confidence interval) represented as the percentage of the average. 

Appendix Table 12 - Confidence interval at 95% level of confidence for solids cumulative mass 
recovery (%) 

Concentrate 

(min) 

Average Total % Recovery 

Solids 

95% Confidence Interval 

Solids % Recovery 

% of confidence interval 

compared to the average 

0.5 2.28 0.42 18.31 

1 4.14 0.43 10.27 

2 5.20 0.41 7.92 

6 6.94 0.45 6.46 

10 7.68 0.47 6.09 

As shown in Appendix Table 12, after 10 minutes of collection of concentrate, the error 

associated with the total mass recovered to the concentrate is 6%. Appendix Figure 1 shows 

the graphic representation of the confidence intervals. High and low confidence interval 

trends were selected for display of the error instead of error bars because, in batch flotation 

tests, error associated with each concentrate is different.  
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Appendix Figure 1 – Average cumulative solids recovery and the 95% confidence intervals 

Appendix Table 13 shows the c represented as the percentage of the average. After 10 

minutes of concentrate collection, the error associated with the total mass of water 

recovered to the concentrate is 9%.  

Appendix Table 13 - Confidence interval at 95% level of confidence for water cumulative mass 

recovery (%) 

Concentrate 

(min) 

Average Total Water % 

Recovery 

95% Confidence Interval 

Water % Recovery 

% of Confidence Interval 

compared to the average 

0.5 1.18 0.36 30.04 

1 2.73 0.48 17.56 

2 4.00 0.61 15.14 

6 9.69 1.00 10.29 

10 15.58 1.40 9.01 

Appendix Figure 2 shows the graphic representation of the confidence intervals.  
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Appendix Figure 2 - Confidence interval at 95% level of confidence for water cumulative mass 

recovery (%) 

Appendix Table 14 shows the average recovery for arsenopyrite, the confidence interval 

and the percentage of error (confidence interval) represented as the percentage of the 

average. The error values for recovery of arsenopyrite varied from 0.5 to 18%. The values 

are in the normal error range according to Sandoval-Zambrado and Montes-Atenas (2012).  

Appendix Table 14 - Confidence interval at 95% level of confidence for arsenopyrite cumulative % 
recovery 

Concentrate 

(min) 

Average Total % 

Recovery Arsenopyrite 

95% Confidence Interval 

Arsenopyrite % Recovery 

% of the variation of 

Confidence Interval 

compared to the average 

0.5 39.75 7.06 17.77 

1 67.36 5.48 8.14 

2 80.84 2.99 3.70 

6 96.70 0.40 0.41 

10 98.13 0.48 0.49 

Appendix Figure 3 shows the graphic representation of the confidence intervals. 
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Appendix Figure 3 - Confidence interval at 95% level of confidence for arsenopyrite cumulative % 

recovery 

Appendix Table 15 shows the average pyrite recovery, the confidence interval and the 

percentage of error (confidence interval) represented as the percentage of the average. The 

error values for recovery of pyrite varied from 0.3 to 20%.  

Appendix Table 15 - Confidence interval at 95% level of confidence for pyrite cumulative % recovery 

Concentrate 

(min) 

Average Total % 

Recovery Pyrite 

95% Confidence Interval 

Pyrite % Recovery 

% of Variation of Confidence 

Interval Compared to the 

Average 

0.5 38.82 7.79 20.07 

1 67.84 5.09 7.50 

2 82.55 2.99 3.63 

6 98.19 0.86 0.88 

10 99.46 0.30 0.30 

Appendix Figure 4 shows the graphic representation of the confidence intervals.  
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Appendix Figure 4 - Confidence interval at 95% level of confidence for pyrite cumulative % recovery 

Appendix Table 16 shows the average arsenopyrite and pyrite flotation rate, the confidence 

interval and the percentage of error (confidence interval) represented as the percentage of 

the average.  

Appendix Table 16 - Confidence interval at 95% level of confidence for arsenopyrite and pyrite 
flotation rate 

Component Average ki 
95% Confidence 

Interval 

% of the variation of confidence interval 

compared to the average 

Arsenopyrite 0.97 0.14 14 

Pyrite 0.98 0.13 13 

According to Appendix Table 16, the average flotation rates and confidence intervals of 

arsenopyrite and pyrite were similar.  

Flotation Reproducibility in the CCRD  

The flotation reproducibility in the full CCRD design was assessed via 10 repeats of the 

centre point. The repeats were performed as part of the main body of the full CCRD design 

in blocked order, which minimises the effect of length of experiments. Due to operational 

problems during the tests, one of the 10 tests was rejected. The objective of the repeats was 

to estimate the experimental error. The flotation operation conditions in the repeat tests were 

35 g of pyrite, 16 g of arsenopyrite, 20 ppm of Dowfroth 250, 300 g/t of PAX, 27.5% w /w 

solids. The repeatability of the test was evaluated in 3 stages: cumulative mass recovery of 

solids and water, cumulative component recovery based on assays and grade recovery.  
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Appendix Table 17 - Confidence Interval at 95% level of confidence for Solids Cumulative Mass 

Recovery (%) 

Concentrate 

(min) 

Average Total 

Recovery Solids 

95% Confidence Interval Solids 

Recovery 

% of Confidence Interval 

compared to the average 

0.5 2.58 0.07 2.87 

1 4.14 0.14 3.49 

2 5.33 0.22 4.03 

6 7.34 0.22 3.05 

10 8.39 0.27 3.25 

Appendix Table 17 shows the average solids recovery, the confidence interval and the 

relative error (confidence interval represented as the percentage of the average). After 10 

minutes of collection of concentrate, the error associated with the total mass recovered to 

the concentrate is 3.25%. Appendix Figure 5 shows the graphic representation of the 

confidence intervals. The confidence interval trends were selected for displaying the error 

instead of error bars because, in batch flotation tests, the error associated to each timed 

concentrate is different.  

 
Appendix Figure 5 - Confidence Internal at 95% solids for the solids recovery 

Appendix Table 18 shows the average solids recovery, the confidence interval and the 

percentage of error (confidence interval) represented as the percentage of the average. 

After 10 minutes of concentrate collection, the error associated with the total mass of water 

recovered to the concentrate is 6%. Appendix Figure 6 shows the graphic representation of 

the confidence intervals.  
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Appendix Table 18 - Confidence Interval at 95% level of confidence for Water Cumulative Mass 

Recovery (%) 

Concentrate 

(min) 

Average Total Water 

Recovery (%) 

95% Confidence Interval Water 

Recovery (%) 

% of Confidence Interval 

compared to the average 

0.5 2.47 0.20 7.92 

1 5.60 0.37 6.68 

2 10.31 0.71 6.93 

6 24.52 1.36 5.54 

10 34.13 2.01 5.88 

 

 
Appendix Figure 6 - Confidence Interval at 95% level of confidence for Water Cumulative Mass 

Recovery (%) 

The error values for recovery of arsenopyrite varied from 0.5 to 18% as showed in Appendix 

Table 19. Their values are in the normal error range according to Sandoval-Zambrado and 

Montes-Atenas (2012). Appendix Figure 7 shows the graphic representation of the 

confidence intervals.  
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Appendix Table 19 - Confidence Interval at 95% level of confidence for Arsenopyrite Cumulative % 

Recovery 

Concentrate (min) 
Average Total Recovery 

Arsenopyrite 

95% Confidence 

Interval Arsenopyrite 

Recovery 

% of the variation of 

Confidence Interval 

compared to the average 

0.5 55.55 1.32 2.37 

1 81.01 1.15 1.42 

2 92.39 0.61 0.66 

6 97.44 0.27 0.28 

10 98.15 0.25 0.26 

Flotation Rate Constant (k) 1.67 0.06 3.51 

 

 
Appendix Figure 7 - Confidence Interval at 95% level of confidence for Arsenopyrite Cumulative % 

Recovery 

The error values for recovery of pyrite varied from 0.3 to 20%, as per Appendix Table 20. 

Appendix Figure 8 shows the graphic representation of the confidence intervals.  
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Appendix Table 20 - Confidence Interval at 95% level of confidence for Pyrite Cumulative % Recovery 

Concentrate (min) 
Average Total 

Recovery Pyrite 

95% Confidence 

Interval Pyrite Recovery 

% of the variation of 

Confidence Interval compared 

to the average 

0.5 59.16 2.85 4.82 

1 84.66 1.16 1.37 

2 94.87 0.46 0.48 

6 98.46 0.16 0.16 

10 98.89 0.16 0.16 

Flotation Rate Constant (k) 1.83 0.09 4.88 

 
Appendix Figure 8 - Confidence Interval at 95% level of confidence for Pyrite Cumulative % Recovery 

In addition to the recovery repeatability, the repeatability of the concentrate grade was 

calculated. There was no reference in the literature for concentrate grade repeatability. 

According to Savassi (1998), the normal error associated with assays is 5%. Appendix 

Table 21 and Appendix Figure 9 show the confidence interval at 95% level of confidence for 

the arsenopyrite and pyrite cumulative grade in the concentrate. Appendix Table 22 and 

Appendix Figure 10 show the graphic representation of the confidence interval at 95% level 

of confidence for the arsenopyrite and pyrite cumulative grade in the concentrate. 
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Appendix Table 21 - Confidence Interval at 95% level of confidence for Arsenopyrite Cumulative 

Grade in the Concentrate 

Concentrate 

(min) 

Average Grade 

Arsenopyrite 

95% Confidence Interval 

Arsenopyrite Grade 

% of the variation of Confidence 

Interval compared to the average 

(relative) 

0.5 22.61 0.43 1.90 

1 20.72 0.65 3.12 

2 18.39 0.64 3.46 

6 14.02 0.38 2.73 

10 12.38 0.36 2.90 

The repeatability of the grade of arsenopyrite after 10 minutes is 7%, which is higher than 

the range indicated by Savassi (1998). It means that the predictions of recovery and grade 

of arsenopyrite by the regression model are not very accurate.  

 
Appendix Figure 9 - Confidence Interval at 95% level of confidence for Arsenopyrite Cumulative 

Grade in the Concentrate 

The repeatability of the grade of pyrite after 10 minutes is 5.6%, which is approximately the 

same as rage as indicated by Savassi (1998).  
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Appendix Table 22 - Confidence Interval at 95% level of confidence for Pyrite Cumulative Grade in the 

Concentrate 

Concentrate 

(min) 
Average Pyrite Grade 

95% Confidence 

Interval Pyrite Grade 

% of the variation of 

Confidence Interval 

compared to the average 

0.5 56.78 1.32 2.32 

1 49.53 1.64 3.32 

2 43.14 1.58 3.66 

6 32.47 1.02 3.14 

10 28.61 0.98 3.42 

 

 
Appendix Figure 10 - Confidence Interval at 95% level of confidence for Pyrite Cumulative Grade in 

the Concentrate 
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Appendix 4 

 

 

 

Rheograms  

 



Influence of Muscovite Content on the Flotation of Pyrite and Arsenopyrite | Erica Avelar | Erica Avelar 

 

283 

 

CCRD Flotation Feed Rheograms 
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