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Abstract

Supercomputers are a powerful class of High Performance Computing (HPC) systems used for the

most challenging science problems, including drug discovery, earthquake prediction, and climate

change impacts. Scientific applications running on supercomputers use highly parallel constructs to

iteratively process enormous, multi-dimensional data sets, such as billions of base pairs in a genome

or grid units in the atmosphere. The largest HPC systems can consume as much electricity as a small

town, so rising power costs and constraints are driving a growing focus on energy efficiency. Tech-

niques that reduce energy consumption help to reduce constraints and costs on important research.

Scientists running applications on HPC systems encounter a number of barriers using existing energy

optimisation methods. Existing methods are typically aimed at parallel application developers and

HPC system administrators, rather than application users. Users often do not have the required level

of system administration and programming skills. Access to tuning parameter controls may require

system privileges that are not available to typical users. The tuning process is often complex and time

consuming, which can be a further deterrent when scientists naturally want to focus on their research.

The complexity of optimising energy efficiency is driven by a range of factors. Optimisation methods

must manage large search spaces covering the unique characteristics of a particular system and work-

load and their effect on performance and energy efficiency. Settings for optimum performance and

energy efficiency can diverge, so trade-off options need to be identified that guide a suitable balance

between energy use and performance. There is also inherent observational and prediction uncertainty

in optimisation processes that needs to be considered.

This thesis presents a number of significant advances in the field of energy efficiency optimisation of

parallel applications:

• The energy usage and performance impacts of bottlenecks in the system architecture and of

user controllable settings are analysed.

• Statistical and machine learning system models are developed that can be trained at low cost to

accurately predict trade-off options using parameters that users can control.

• A novel technique for assessing the impact of experimental error in Pareto-optimal trade-off

analysis is presented.

• The design and implementation of a new tool known as HPCProbe that prototypes the proposed

optimisation approach are described in detail.

• HPCProbe is used to provide a comprehensive experimental evaluation of the method for a

collection of parallel kernels and scientific applications.

These advances can allow HPC application users to make accurate performance and energy trade-off

decisions, at low cost, and without specialised programming or system operations skills.
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Chapter 1

Introduction

“System power is the primary constraint for the exascale system: simply scaling up from

today’s requirements for a petaFlop computer, the exaFlop computer in 2020 would re-

quire 200 MW, which is untenable. The target is 20-40 MW in 2020 for 1 exaFlop.”

— Office of Science, U.S. Department of Energy, The Challenges of Exascale

1.1 Exascale Computing

Supercomputers are powerful High Performance Computing (HPC) systems capable of running the

most demanding applications. HPC systems typically use highly parallel and interconnected hard-

ware and software to achieve this goal. They are commonly benchmarked on their floating-point

operations per second (Flops/s) performance. Exascale computers are the next generation of super-

computers capable of performing at least one exaFlops/s, or 1018 Flops/s. The TOP500 project [5]

ranks supercomputers internationally using the Linpack Benckmark [6] with performance reported in

64-bit floating-point operations per second.

Scientific researchers are a key user group for HPC systems. They use computational models and

simulations for physical systems that operate at all scales, from quantum to cosmological, cells to bio-

spheres, and storms to the global weather. Scientific applications are often performance constrained

because model accuracy, resolution, and speed to solution are largely limited by the available com-

putational power. This means, for example, that current global weather models are limited to around

10 km resolution [7]. Small features, such as storm cells, can be a significant source of error in these

models. Exascale computing enables the next generation of scientific models and simulations, with

accurate modelling of small scale features that provides qualitative improvements in computational

model fidelity.
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1.2 Computing Energy Efficiency

A key driver for improving the energy efficiency of computers has been to extend the time needed

between battery charges for our mobile devices. Technologies such as dynamic voltage and frequency

scaling (DVFS), concurrent computing, and heterogeneous architectures allow our latest laptop com-

puters and mobile devices to provide great performance all day long without recharging.

Devices can use DVFS to select lower power states when the processor is not being fully utilised.

Low power states allow the device to run longer without charging. Concurrent computing improves

processor efficiency by avoiding stalls when a resource is busy, as processing can continue on other

tasks instead of blocking until the resource is available. Heterogeneous architectures allow the CPU

to offload some processing to specialised accelerators that are optimised for very specific workloads

such as video or sound processing.

These technologies are also important for managing power costs in data centre operations. Data

centres in the U.S. consumed an estimated 70 billion kWh in 2014, or about 1.8% of total U.S.

electricity consumption [8]. The growth in data centre consumption levelled off at around 4% from

2010 to 2014, due in part to the adoption of improved energy efficiency practices in the data centre

industry. Further improvements in energy efficiency practices were expected to restrict growth to a

similar amount from 2014 to 2020 [8].

Performance and power usage improvements through chip design improvements that increase clock

frequencies and miniaturisation are reaching their limits as we approach the end of Moore’s law and

Dennard scaling [9]. Moore’s law predicted a doubling of chip transistor counts every two years,

while Dennard scaling predicted that increasing transistor density enabled faster clock speeds with

the same power consumption.

Performances gains in the current generation of supercomputers are typically achieved with architec-

tures that are:

• Massively parallel, allowing concurrent computing and data analysis at the largest scales.

• Heterogeneous, integrating flexible CPUs and specialised accelerators or coprocessors.

• Highly interconnected, using deep memory hierarchies and fast connections for data movement

within nodes and across the cluster.

The Summit supercomputer at Oak Ridge National Laboratory, U.S., is currently number one on

the TOP500 list [5]. It has around 200,000 CPU cores, 2.2 million accelerator cores, 2.8 petabyte
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memory, and a 250 gigabit/s interconnect network. Summit achieves 140 petaFlop/s performance

using 10 MW power, so its energy efficiency is around 14 gigaFlops/J [5].

Comparing this level of energy use with residential energy use helps provide some perspective. The

average monthly U.S. residential energy consumption in 2017 was 867 kWh [10], which is 1.2 kW

power on average
(
867 kWh/(30 days× 24 h/day)

)
. This means the 10 MW required by Summit

is enough to power a town of around 8,300 homes. The average U.S. residential price in 2017 was

about 13 cents per kWh [10], making the yearly power bill for 8,300 homes around US$11 million!

At these scales there are clearly significant opportunities for energy and cost savings if supercomputer

energy efficiency improvements can be made.

Power consumption metrics for HPC systems also do not include the power used by supporting in-

frastructure, such as UPS, power distribution, lighting, and air conditioning [11]. A study of 289

data centres reports a 2016 average power usage efficiency (PUE) of 1.64 [12], with computer room

air conditioning and other infrastructure using 64% of the IT load. A 10 kWh IT load will actually

require 16.4 kWh when supporting infrastructure is added. This means that a 1.0 kWh IT load saving

can provide a power saving of 1.64 kWh, or 164% of the IT load saving.

As well as the concern with energy efficiency within the HPC community, there is increasing public

concern about the carbon footprint of the IT industry, that is evident in news media coverage. Business

and economy section articles, such as “Iceland will soon use more energy mining bitcoins than pow-

ering its homes” [13] and “Data centre power use greater than Woolworths, Coles combined” [14],

highlight the growing energy consumption of data centres compared to other sectors of the economy.

In summary, there are a range of concerns driving the high level of research activity in HPC energy

efficiency. As we reach the limits of computer chip miniaturisation, innovative new techniques are

needed to continue increasing performance while meeting energy constraints. The large amount of

energy consumed by HPC systems and their supporting infrastructure, along with the increasing cost

of that energy, provide strong environmental and financial incentives. Society as a whole is also

showing increasing concern about how energy resources are allocated across the economy.

1.3 Challenges

HPC performance tuning is a mature field with well established practices for optimising the perfor-

mance of a parallel application on a particular system. Extending these practices to allow trade-offs

between performance and energy efficiency requires simultaneous optimisation of objective functions

for performance and energy. The objective functions also have a range of input parameters that have

divergent affects on performance and energy efficiency. This results in a multi-objective optimisation

problem where there is often not a single solution that optimises both objectives. Instead, optimal
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solutions exist along a Pareto frontier that establishes the trade-off ranges for each objective.

While there is a high level of research activity in HPC energy efficiency, as discussed in Chapter 2,

the effectiveness of current optimisation methods is generally constrained by a combination of the

following challenges:

1. Only a subset of the parameters that affect performance and energy efficiency may actually be

controllable.

Many input parameters affect the trade-off between performance and energy efficiency. These

parameters include application characteristics, like computational intensity, and memory and

communication access patterns, and system factors, like cache design, and memory and net-

work bandwidth.

The parameters that different HPC stakeholder groups can control will vary. For example, sys-

tem developers have more control over parameters like cache and memory capacity, but less

control of application characteristics. Application developers have more control over appli-

cation characteristics and less control of system characteristics. Application users will have

even more limited control. These users typically have the most control over job submission

parameters, and limited control elsewhere.

This means that application users are often excluded because an optimisation method uses

parameters that they cannot access. Even if parameters are accessible, the process of acquiring

some measurements can increase the difficulty of automating the optimisation method as a

practical tool.

2. The cost of searching for trade-off options must be offset by the achieved benefits.

As stated in item 1, there are many input parameters that affect performance and energy effi-

ciency. This means optimisation tools must search a large and complicated parameter space.

A large parameter space can generate a full factorial design with many hundreds of thousands

of combinations. It will typically not be feasible to conduct an exhaustive search for all Pareto

efficient solutions, because the energy used in very large search runs can never be amortised

over the energy saved in real world runs.

3. Reducing the search cost has an impact on the accuracy of trade-off predictions.

Search optimisation methods or objective function models are used to reduce the search cost by

decreasing the amount of search space that needs to be covered. Each approach has limitations

that need to be carefully considered to achieve trade-off options that are within the required

error margins. For example, search optimisation results may be impacted by local minima or

maxima due to measurement noise, and model results may be impacted by simplifications and

approximations used in the model.
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In both cases, a mechanism is required to indicate when the accuracy of the results is impacted

by such limitations.

4. Valid trade-off options are excluded when measurement and prediction error is not considered.

Instrumentation measurement error and/or model prediction error mean that trade-off options

occur near the Pareto frontier, within error limits, not just directly on the frontier. When error

limits are not considered, the solution set is incomplete as only solutions that lie directly on the

Pareto frontier are provided.

Performance and energy efficiency response curves also typically have regions that plateau or

level off, which can result in large gaps in the trade-off solution set when error limits are not

considered. Methods that do not consider error limits in the optimisation process are not able to

provide the complete set of the Pareto efficient objective function solutions, or trade-off options.

This thesis presents research that addresses each of these challenges.

1.4 Contributions

This work provides a framework for accurately predicting, at low cost, the Pareto optimal perfor-

mance and energy efficient configurations for parallel programs. Specifically, this thesis presents the

following contributions:

1. An analysis of how changes in energy usage patterns arise from hardware and software inter-

actions.

This work investigates how current HPC system architecture bottlenecks impact energy effi-

ciency and performance for representative memory bound scientific computing kernels. Power

and performance transitions are identified for each kernel, where tuning parameter sensitivity

varies across the transition. The analysis shows significant divergence between performance

and energy efficiency, confirming the requirement for a multi-objective optimisation strategy.

2. Energy and performance trade-offs using parameters that parallel application users can directly

control.

This work lets parallel application users select trade-off options by setting basic HPC job

scheduling parameters for running their application. Users achieve their required performance

and energy trade-off option by selecting from the predicted optimal node counts, core counts,

and CPU frequencies.

The proposed framework treats parameters that cannot be controlled as constraints, and opti-

mises within the constraints. For example, a job will have a memory footprint that will typically

depend on the problem size. The problem size is normally a constraint of the specific problem
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the user wishes to solve. Similarly, the memory architecture of the HPC system being used

is a constraint on the job memory footprint. Application users also need to operate within

constraints imposed by facility managers and power suppliers, such as available processor and

power controls.

This work shows that significant tuning opportunities can be accurately predicted within these

constraints, for a broad set of kernel and application case studies.

3. A practical method to predict energy efficiency and performance trade-off options from few

input measurements.

The proposed prediction method uses three strategies to minimise the amount of model training

data required. First, sensible defaults are defined where practical, for parameters such as thread

and process placement. Next, parameters that cannot be accessed or are difficult to control

are accepted as constraints, such as problem size or memory hierarchy. Finally, the presented

modelling techniques only require a small number of training samples to accurately predict

trade-off options within the defined parameter defaults and constraints.

These strategies provide four orders of magnitude reduction in the parameter search space,

allowing an accurate model to be constructed from as few as 12 measurements. To be practical,

an energy tuning method must minimise the required training measurements so the energy used

for training can be quickly recovered by the energy saved in live runs.

4. Multi-objective energy efficiency and performance models that accurately predict parallel ap-

plication responses.

This work presents two independent modelling techniques that are capable of accurately pre-

dicting energy and performance objective functions for parallel applications. The first technique

uses a B-spline piecewise polynomial model and ordinary least squares regression. The sec-

ond technique uses a machine learning model implemented with a feed-forward artificial neural

network. The results show that either modelling technique can be used to make accurate pre-

dictions from the selected input parameters. Further, building the models only needs a small

set of sample measurements, which minimises the effort and resources required for training.

An important benefit of the modelling techniques demonstrated is model fit against training

data can be quantified. Irregular objective function responses that exceed the resolution of the

model will impact the statistical significance of the results. The case studies all show model

results within the expected limits. For questionable results where this is not the case, users can

be alerted that further analysis is needed.

5. A trade-off zone approach that improves Pareto optimisation, given measurement and/or mod-

elling error.

This work introduces the novel concept of a trade-off zone for Pareto analysis of noisy data

sets. This innovation ensures that the complete set of energy and performance trade-off options
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are available to users. All solutions within error limits of the Pareto frontier are available, not

just solutions directly on the front.

The proposed trade-off zone approach is generalisable as it is beneficial in any Pareto analysis

scenario where the data set is noisy.

6. The development of a prototype implementation of the proposed energy tuning framework,

HPCProbe.

HPCProbe is the first practical prototype of a tool allowing scientists to tune the energy use

and performance of their parallel applications using accessible tuning parameters. HPCProbe

is available in The University of Queensland’s institutional repository, UQ eSpace, as described

in Appendix C.

1.5 Thesis Structure

This thesis details the key contributions of the author. It sets the research context within the related

work, and presents the novel features of the proposed energy tuning framework, along with the im-

plementation and evaluation of a working prototype. A brief overview and reading guide for the rest

of this document follows:

Chapter 2 introduces historical and state of the art energy efficiency tuning techniques, and shows

where this research fits in the prior work. This review identifies important research gaps in the prior

work and highlights contribution opportunities for this study.

Chapter 3 reviews computer energy efficiency controls, highlighting their benefits and limitations for

use in a tuning framework. This analysis guides key design decisions for the solution framework

presented in Chapter 4.

Chapter 4 highlights architectural features of an energy tuning framework and describes an innova-

tive design for realising the key components. It investigates components for energy efficiency data

instrumentation and measurement, predictive modelling, measurement and prediction error analysis,

and results analysis and reporting. Orchestration requirements and data modelling considerations are

also presented.

Chapter 5 provides details of the novel techniques used to implement a prototype demonstrating

the architectural and design features of the proposed energy tuning framework. It also discusses

challenges that were encountered in the implementation process.

Chapter 6 presents an evaluation the proposed energy tuning framework using case studies that in-

crease in complexity. The case studies start with parallel software kernels commonly used within
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scientific applications. More complex mini-applications used for system benchmarking are consid-

ered next. The final case study uses a full-scale weather modelling application.

Chapter 7 concludes this study with a summary of the research outcomes. It also considers future

directions for the energy tuning framework and for research into supercomputer energy efficiency.
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Chapter 2

Literature Survey

A wide-range of prior work [3] explores energy-efficient computing. This chapter introduces tools

and state-of-the-art techniques for improving the energy efficiency of HPC systems. The aim is to set

the context for this work within existing methods.

The chapter starts with an overview of multi-objective optimisation. Techniques using Pareto optimi-

sation for analysing performance and energy usage trade-offs are reviewed. Approaches that combine

energy and performance into a single objective are also considered.

Methods for determining optimal configurations for performance and energy usage are then surveyed

in three groupings: Imbalance detection or slack recovery methods that use lower power states during

times of processor underutilisation to save power with minimal performance impact; Auto-tuning

methods that automatically search large configuration spaces for the optimal power and performance

settings; Model-based methods that use analytic models to predict optimal settings using a range of

input parameters.

Techniques for measuring system power usage are reviewed next, including on-board sensors, dis-

crete/external power meters, and model-based approaches.

The chapter concludes with a summary of the literature review and a discussion of the identified

research opportunities.

2.1 Multi-Objective Optimisation

Finding the right balance between performance and energy usage for parallel applications is a bi-

objective optimization problem that does not have a single solution. The solution is a set of Pareto

points defining available trade-off options [15, 16].
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One part of a Pareto optimal solution cannot be improved without making another part worse. Geo-

metric examples can be used to show how this works [17]. In Figure 2.1, the area of circles A and

B need to be maximised while remaining within the triangle, and without overlapping each other.

Figure 2.1 (c) is not Pareto optimal because the area of one circle can be increased without reduc-

ing the area of the other. Lack of Pareto optimality is an alert that a better solution may have been

missed [17].

(a) (b) (c)

A B
A

B
A

B

Figure 2.1: Pareto Optimality – (a, b) Pareto Optimal and (c) Not Pareto Optimal

Michanan et al. [18] study power and performance trade-offs for embedded system cache configura-

tion parameters. Pareto solutions are categorised into power, balanced, and performance optimised

clusters. Figure 2.2 shows a data set plotted by the energy efficiency and performance of each point.

Both objectives need to be maximised so Pareto solutions (circled) occur along a front at the top-right

of the data set. A optimisation policy favouring performance would use points in the performance

optimised cluster. Balanced applies when performance and energy efficiency are equally important.

Power applies when maximising energy efficiency is more important.
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Figure 2.2: Clusters for Typical Power-performance Trade-Offs

Mezmaz et al. [16] use a hybrid genetic algorithm to identify trade-off options for completion time

and energy consumption for parallel applications running on heterogeneous cloud computing infras-

tructure. Tuning controls include application task placement on cloud instances and processor DVS

settings. A 47% energy saving is reported for a Fast Fourier Transformation task graph. Future work

aims to reduce solving costs associated with the evaluation framework.
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Bailey et al. [19] use a linear programming formulation to find Pareto-efficient solutions for selecting

the CPU frequency and number of cores for each of the nodes executing an application. The proposed

approach aims to provide theoretical bounds for evaluating systems rather than runtime optimisation.

Power-constrained performance improvements of over 40% are reported.

Peachey et al. [20] present a cosine seeking complex algorithm for Pareto optimisation of two ob-

jectives. Search-based optimisation techniques can be efficient, but may have difficulty locating a

globally optimal Pareto set for complicated search spaces. Noise on the objective function, such as

measurement error, can result in a locally rather than globally optimal solution.

Sen and Wood [21] propose CPU speed governors for energy optimal computing that seek to constrain

system operations to the Pareto frontier. Three new governors aim to maximise energy efficiency,

maximise performance for a set power limit, and maximise power saved for a set performance level.

Care is also needed to ensure that Pareto analysis does not exclude meaningful trade-off options. This

can occur when there are suboptimal points very close to the Pareto front [18] or measurement error

is a factor [22].

Michanan et al. [18] use multiple iterations of Pareto analysis to bring in excluded solutions near

the front. Figure 2.3 shows four iterations where Pareto points are removed from the data set and a

another Pareto analysis iteration is performed. This approach is affected by the distribution of data

points near the front, so there is a risk that more distant points than intended are included.
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Figure 2.3: Pareto Front Iterations

Balaprakash et al. [22] use a relaxed Pareto front where measurement error margins of each objective

are added to the Pareto points. Points that are within measurement error limits of Pareto points are

added to the front. This approach is also affected by the distribution of points near the front. Figure 2.4

shows that points within limits of the frontier line can be still be excluded, in this case, along the front

and to its upper left and lower right.

11



20 40 60 80 100 120
MFlops/J

0.2

0.4

0.6

0.8

1.0

1.2

M
Fl

op
s/

s

×106

Relaxed

Figure 2.4: Relaxed Pareto Front

Multi-objective optimisation can be avoided if the objectives can be combined as a single objective.

EDP (energy delay product – E×D) and ED2P (energy delay squared product – E×D2) are widely

used [23, 24, 25, 26, 27, 28], with ED2P placing more importance on performance than EDP. Multiple

objectives can also be combined into a single result as a weighted sum [29, 30]. Relative superior-

ity [31] is another option. These approaches all provide a single solution that can be weighted to

favour performance over energy use or vice versa. A combined objective solution will lie somewhere

along the Pareto front if it is Pareto optimal.

2.2 Imbalance Detection Methods

Imbalance detection methods aim to lower energy consumption with minimal impact on perfor-

mance [32, 33, 34, 35]. Typically, these methods identify the opportunity of load imbalance and

processor underutilisation at runtime to lower power consumption without significantly hurting per-

formance. Often, profiling or tracing identifies finer regions with different degrees of idleness in a

parallel program. According to each region’s pattern, such as phases with memory stalls and intensive

computation, some techniques use Dynamic Voltage and Frequency Scaling (DVFS) to optimise CPU

frequency in each phase.

Freeh and Lowenthal [32] show that changing CPU frequency during MPI program execution can

achieve energy savings without unduly increasing execution time. CPU frequency settings provide

g energy-performance points called gears. The program is divided into n phases using profiling, as

figure 2.5 shows, and a gear is prescribed for each phase. Phase boundaries occur at abrupt changes

in memory pressure measured in operations per miss. A heuristic is used to find the best gear for each

phase across the n×g search space. Program updates are needed to add sampling code for application

profiling and gear changes at identified phase boundaries.

A similar approach has been applied to MPI processes distributed across multiple nodes [25]. A
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Figure 2.5: Operations per Miss Trace

benefit approaching 13% less energy used is reported for unbalanced workloads without modifying

the application. Less benefit is achieved for load balanced applications where an optimum CPU

frequency applies uniformly across the cluster.

Rountree et al. [35] are able to profile applications without programmer involvement using a custom

MPI Profiling Interface (PMPI) library. The custom library intercepts selected MPI calls to build

up a task graph for an application. The application is executed at each available CPU frequency

to determine the execution time of each task at each frequency. A linear programming solver is

then used to generate a task schedule that optimises energy savings while meeting an allowed time

delay. Analysis costs are not considered. The focus is on providing optimal energy savings targets

for evaluating lower-cost heuristic algorithms, or comparing supercomputer designs with and without

DVS for example.

The Adagio system [36] is able to identify blocking MPI tasks at runtime. CPU frequency is lowered

to fit the critical path using metrics from previous iterations of the task. This approach works best

for task with repeating temporal patterns, and multi-core processors that can scale core frequencies

independently.

Imbalance regions also occur during network communication between processes running on the HPC

cluster. A number of techniques detect periods of MPI communications and tune the CPU frequency

to reduce the energy used with minimal impact on performance [37, 26, 38]. This approach works

well for non-iterative applications, since there is no assumption of predictable execution patterns for

tasks within the application.

Other techniques use Dynamic Concurrency Throttling (DCT) to adjust the number of active cores to

reduce the power wasted by core contention. Curtis-Maury et al. [24] profile OpenMP applications

using hardware event counters to predict instructions per cycle (IPC) when the number of processors
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and threads per processor are varied. The model requires a set of performance metrics captured in two

observations of each parallel region of the application, including the IPCs achieved. Linear regression

is also used to fit coefficients to a system-specific transfer function. The dynamically throttled results

compare favourably with the best static processor and thread count configurations. This indicates

that strategies tuning a fixed concurrency setting for the whole application run can provide similar

benefits.

Load imbalance techniques can avoid the complexities of multi-objective optimisation by maintaining

performance for the critical path of execution, while identifying activities off the critical path that can

use lower performing low power states without affecting overall performance.

2.3 Auto-Tuning Methods

Auto-tuning tools are used to automatically optimise objectives such as power and performance,

typically by searching large configuration spaces for the right input parameter settings. The state-of-

the-art auto-tuning tools apply various search algorithms, such as machine learning algorithms and

heuristic algorithms, to prune search spaces that consist of environment settings, compiler flags, code

transforms, and application-specific parameters. Efficient search algorithms help to minimise the cost

of tuning by constraining search effort to practical levels. Techniques can be exclusively off-line or

online, or a combination of both. Online tuning occurs while the application runs, while off-line

methods take place prior to live runs.

Ansel et al. [39] introduce the OpenTuner application tuning framework for Python programmers.

OpenTuner provides a standard set of search techniques that can be extended with user-defined,

domain-specific search techniques and combined into search ensembles. Search ensembles aim to

minimise the search convergence time needed to locate optimal configurations. Results reported for

stencil auto-tuning show optimal performance is reach after covering less than 2% of the full search

space.

Li and Martinez [40] present heuristics for online tuning of the processor count and DVFS setting of

a parallel application running on a multi-core processor. A combined binary search and hill-climbing

optimisation is used in the processor count dimension. Measuring execution time and instructions

per cycle at the highest DVFS setting then allows a target chip-wide DVFS setting to be computed.

Simulation results show optimum power savings for a 16×16 search space can be achieved in 4×3

iterations. The authors envision an implementation involving new hardware micro-controllers and

OpenMP extensions.

Gschwandtner et al. [15] use the Insieme optimising compiler to analyse time, energy and resource

usage trade-offs for parallel applications. A Pareto set of the best configurations is derived and used
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to compile multi-versioned code that can be dynamically selected at runtime. The Insieme differential

evolution search is reported to use 5-12% of the evaluations needed for brute-force searches. A close

correlation between time and energy is observed when resource usage is low.

Miceli et al. [41] describe tuning plug-ins available in the AutoTune Periscope Tuning Framework,

including an energy tuning plug-in. MPI and OpenMP programs are instrumented and statically

analysed in a pre-processing stage. The energy plug-in uses RAPL counters to monitor runtime

power usage. A ternary search is used to reduce the search effort for the 8×3 frequency by governor

search space. Energy saving achievements are not reported.

Rahman et al. [30] use the POET code transformation engine to investigate performance and energy

tuning of computationally intensive kernels. Compiler optimisations such as loop parallelisation,

blocking, and unrolling are evaluated. A model for estimating power usage from machine-specific and

runtime counter statistics is also assessed. A power consumption reduction of 20-30% with minimal

performance degradation is reported when the allocated tuning priorities are 30% to performance and

70% to power.

Sarood et al. [42] present PARM resource manager for optimising resource allocation within a power

budget. RAPL is used to dynamically tune the power draw of allocated nodes. The Charm++ runtime

enables the number of allocated nodes to dynamically shrink or expand. Regression analysis of

application specific profiles is used to model power usage. The reported job throughput improvements

are largely achieved by reducing the delay between job arrival and start, as a result of dynamic power

capping to enable over-provisioning of node allocations.

Sourouri et al. [27] present a method of fine-grained auto-tuning of OpenMP threads, and core and un-

core CPU frequency. C++ preprocessor directives are added to the application code to enable energy

monitoring and dynamic DVFS tuning using an exhaustive search. The approach is evaluated using

a seismic wave simulator. The reported results show energy savings of up to 20% for a performance

loss of 3.5% at most. The assessment shows static tuning consumes under 2% more energy than the

proposed dynamic approach, given the overheads of changing the DVFS setting dynamically.

Tiwari et al. [28] analyse the interaction between energy consumption and compile optimisations

using the Active Harmony auto-tuner and CHiLL code generation framework. The tuning parame-

ters used are CPU frequency and code-transformations, such as tiling and loop unrolling factors, for

computation intensive kernels. Energy savings of 5% for a performance loss of 3.9% are reported.

Abramson et al. [43] use the Nimrod toolkit for parametric studies. Nimrod is an alternative with

more generalised capabilities such as search optimisation and resource management for distributed

systems. A plain text schedule file specifies how to evaluate the objective function and the optimisa-

tion methods to use. It has a relatively wide user base with a range of scientific uses, such as molecular
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modelling [44], functional MRI analysis [45], and computational fluid dynamics [46].

In summary, auto-tuners can provide significant tuning benefits at low cost when optimising perfor-

mance and energy usage for parallel applications. These tools are aimed at application developers and

HPC system administrators, rather than application users. Tools using single objective approaches are

ideal when fixed optimisation priorities apply, but tools providing full visibility of the available trade-

off ranges are more flexible. None of the reviewed tools have built-in mechanisms for including valid

trade-off options excluded by very small margins within experimental error or noise.

2.4 Model Based Methods

Model-based methods aim to predict system responses, such as power use or performance, from a

set of input parameters. Most power models extend existing performance models, such as Amdahl’s

Law, the roofline model, iso-efficiency, or the execution-cache-memory model. These models are

usually deterministic or functional models because they predict an exact outcome, such as power =

voltage× current.

Stochastic or probabilistic models that predict a probable outcome with an associated error term are

also used when dealing with partial or noisy data sets. These models are expressed in the form

y = f (x)+ ε with the error term, ε .

2.4.1 Deterministic Models

Woo and Lee [47] extend Amdahl’s Law for multi-core, energy efficient computing. Amdahl’s Law

is used to calculate theoretical performance of a program that has sequential and parallel regions

when using multiple processors. Performance per watt is then derived using processor idle power and

power use per core in sequential and parallel regions. The technique provides theoretical limits aimed

at processor designers rather than application users.

Cho and Melhem [23] extend Amdahl’s Law further to model DVFS and processors that can be

independently turned off. The model is used to predict frequencies for serial and parallel regions in

an application to minimise energy or EDP. The approach provides additional processor design insights

on parallelisation, performance and energy use trade-offs with variable speed processors.

Choi et al. [48] extend the roofline performance model to include energy limitations on performance.

The roofline performance model sets two platform-specific ceilings based on peak processing perfor-

mance and memory bandwidth. The roofline model of energy uses the same operations/unit storage

workload characterisation metric, but it extends platform-specific computation and I/O time costs with

energy costs. The approach aims to help algorithm designers and performance turners understand the

relationships between, and bounds on, performance and energy use.
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Ofenbeck et al. [49] analyse roofline plots with measured data for common numerical functions.

Figure 2.6 shows an application with a set configuration (App 1) has a specific operational intensity

and performance resulting in a point in the plot. Another application and configuration (App 2)

appears at another point. Both points are below the roofline since it sets upper bounds on peak

performance.
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Figure 2.6: Roofline Plot – In-Memory/In-Cache and Scalar/Vector FMA

Roofline parameters can have multiple values depending on the application and platform. For ex-

ample, the measured computational intensity varies depending on how operations and unit storage

are defined. The computational intensity of a single-precision Flop will be double that of a double-

precision Flop if unit storage is in bytes. Figure 2.6 shows using scalar (SISD) or vector (SIMD)

operations will have a similar effect. The computational intensity of applications working in system

cache or memory will also vary.

The value of the roofline approach is in the insight provided to algorithm coders on performance and

energy bounds, rather than predicting system responses for complex applications.

Hofmann and Fey [50] use the execution-cache-memory (ECM) performance model and system tun-

ing to minimise parallel application energy to solution. ECM is used to guide vector and streaming

(SIMD), and cache blocking performance optimisations for a single-core. Power draw per core is then

tuned using CPU frequency and Cluster on Die (CoD) settings. Last, the number of cores is tuned

to avoid memory saturation. The method is applied to a 2D Jacobi solver on recent Intel processors.

CPU socket-level energy consumption reductions of over 2× are reported.

Song et al. [51] apply the concept of iso-efficiency in a model that predicts application energy con-

sumption as parameters such as concurrency and clock frequency change. Platform-specific model

inputs include computational speed and throughput. Application-specific inputs include the level of

parallelism, and average time and energy costs of computations and I/O. The reported model predic-

17



tion error for system energy use is within 5% on average. Platform-specific parameters are determined

automatically, but some application parameters require expert observation and investigation.

Ramapantulu et al. [52] use a measurement-driven analytical model to obtain optimal configurations

for energy and time trade-offs on heterogeneous clusters. Workload-specific measurements including

the number of instructions, and work and stall cycles are obtained by micro-benchmarking each op-

eration within a parallel application. Platform-specific measurements include CPU idle power, active

power across cores and frequencies, and stalls power; memory idle and active power, and I/O power.

The model is evaluated on a homogeneous AMD cluster and a heterogeneous AMD/ARM cluster.

The energy reduction reported when changing from the homogeneous to heterogeneous cluster is up

to 58% while maintaining the same completion time. The stated model prediction error is less than

15%.

Mitra et al. [53] present a model for exploring energy-optimal work partitioning for an application

running on heterogeneous systems. CPU and GPU inputs for the model include active and idle power,

computational rates, and work assignment split. Application inputs include total computational cost

and time to solution. Evaluation reports using SGEMM and DGEMM show performance and energy

trade-offs exist when partitioning work between CPU and GPU that are consistent with the model.

Varghese et al. [54] extend prior work [53] to understand energy use under CPU frequency and core

scaling. The relationship between power and frequency is established by curve fitting measured data.

This data includes platform-specific power and performance metrics for CPU-bound and memory-

bound benchmarks while varying core count and CPU frequency. The eventual aim is to model a

general workload using application-specific instruction mix data and the platform-specific benchmark

data. The incremental model development approach used is clearly required to manage the level of

complexity needed to create better, more generalisable deterministic models.

2.4.2 Statistical Models

Barnes et al. [55] use multivariate regression to predict performance at large processor scales from

training data for smaller processor counts. Three polynomial models are formulated with input pa-

rameters that include computation and communication metrics collected using PMPI profiling and

extrapolated to larger configurations, application input variables, and processor count. Prediction er-

rors of between 6.7% and 17.3% are reported from an evaluation of seven applications using between

16 and 64 training runs. The best predictions are generally provided by the model with the lowest

RMS error across the input data.

Lee et al. [56] construct piecewise polynomial and artificial neural network models for predicting

application performance. The application parameter spaces used are very large. Training data for

the presented evaluation consists of 600 samples selected using a combination of regional, uniform
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and random sampling approaches. Prediction errors ranging 2.2% to 10.5% are reported for two

applications on three HPC platforms. Assessment of error sensitivity to sample size indicates that a

priori selection of optimal sample size remains a challenge.

Lively et al. [57] use linear regression to predict performance and power use for hybrid MPI/OpenMP

applications. Model training requires five data points for each application consisting of 40 PAPI coun-

ters captured in three single-node and two two-node runs. A principal component analysis method

is used to select counter events with the strongest correlation to the application response. Training

data counter rates are extrapolated to larger configurations using curve fitting. The models can then

be used to predict time and power from a subset of counter events on a larger configuration. The re-

ported model accuracy for four programs running on up to 16 MPI processes with 8 OpenMP threads

per process is 97%. CPU frequency tuning was not assessed.

Johnston et al. [58] construct a random forest regression model using 37 OpenCL kernels with four

problem sizes running on 15 different GPU/accelerator platforms. Model training data for each ker-

nel on each platform is collected using a workload characterisation tool. The source code for each

kernel is instrumented by a developer to enable profiling. A simulated-annealing algorithm is used to

detect a model configuration providing an approximate global minimum prediction error across the

configuration space. An unseen kernel is instrumented then profiled to capture platform-independent

characteristics. The reported average prediction error is 1.2% for the execution time of an unseen

kernel over the range of platforms.

2.5 Power Measurement Tools

HPC energy efficiency researchers use a variety of measurement tools for power and energy usage

evaluations. Ideally, the system provides inbuilt sensors that can be used. Alternatives include power

meters that connect to AC mains sockets used by the system, or hook-on to individual components

of a system, such as CPU sockets or memory modules. External power meters are generally not

practical for large scale systems. Model-based approaches that estimate power consumption using

performance metrics are also used.

IBM Blue Gene systems [59] and Cray XC systems [60] are examples that provide various on-board

sensors for measuring temperature, voltage and current. Performance monitoring tools access sensor

counter data to derive power and energy metrics.

Examples of meters commonly used by researchers for monitoring mains socket power include the

WattsUp Pro [22, 61, 34, 30, 21, 28] and Yokogawa WT210 [33, 52]. The WattsUp Pro and Yoko-

gawa WT210 have been discontinued, but precision ammeters, such as the µCurrent Gold [53], and

precision multi-meters [32, 35] are also used. These meters typically need to be paired with a data ac-
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quisition device to capture measurements at the required sample rate. AC power measurement sample

rates are often low as DC power supplies act as filters between mains and components. Mains power

meters are a great way to capture total system power usage, but will generally not be suitable when

high temporal resolution is required.

PowerInsight [62] and PowerMon [63] are both hook-on power meters. For example, PowerMon

can be used for component-level CPU and DRAM power measurements [22, 48]. While generally

very accurate with high sample rates, hook-on meters can be invasive. Harnesses with Hall effect or

resistive sensors typically need to be connected in series with the power connection of components to

be metered. DRAM metering may require a DIMM riser with sensor resistor.

The Running Average Power Level (RAPL) [64] interface available on current Intel processors uses an

on-board energy model to estimate power use. Estimated CPU package and DRAM power measure-

ments can be accessed using model specific registers (MSR) [19, 50, 42, 38]. Researchers including

Desrochers et al. [61] report that RAPL DRAM estimates generally match within 20% of measured

values.

2.6 Summary and Research Opportunities

This survey confirms that there is a considerable amount of active research occurring in the field of

parallel computing energy efficiency. The research shows that there are a range of techniques that

provide significant opportunities for improving energy efficiency. It is also apparent that there are a

number of promising areas for further research.

Some authors make important observations on system architecture bottlenecks that impact perfor-

mance and energy energy efficiency. For example, tuning the active core count in multi-core proces-

sors to match memory bandwidth [50], or reducing frequency when CPU stalls are high [32]. Further

investigation of these bottlenecks and the associated changes in tuning sensitivity would help position

and support a proposed research direction.

Auto-tuning tools successfully manage very large configuration parameter spaces using powerful

search optimisation techniques. These tools are generally aimed at application developers with in-

depth knowledge of the application coding and build cycle. Improving the accessibility of the opti-

misation techniques used would open up auto-tuning capabilities for a wider group of users.

Deterministic models are widely used to model various aspects of HPC systems. Simple models

generally provide the best insights, but that simplicity limits the scope and accuracy that can be

achieved. These models provide intuitive explanations of system response limits as theoretical bounds

for application tuning, but accurately predicting responses for a specific application and platform can
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be more challenging.

HPC platforms running scientific applications are complex systems that are difficult to model using

a deterministic approach. System responses can be impacted by low-level factors in unpredictable

ways [18]. CPU pipeline performance and power use depend on factors such as instruction type,

available execution units, and branch prediction and instruction reordering optimisations. Memory

access models need to model deep memory hierarchies, including multiple cache levels and non-

uniform memory access with different capacity, bandwidth, latency and power requirements at each

level. Similar hierarchies occur in interconnects with bandwidth, latency and power usage varying

for core, socket, node, rack, and cabinet connectivity.

Application parameters then interact with platform parameters to further increase system complexity.

Application instruction, memory, and network usage patterns vary, along with work mappings to

processing units. Code and compiler optimisations also change performance and power responses.

As a result, deterministic models depend on white-box application analysis that can be difficult to

automate [55] and exclude HPC user groups that are not compiler and code profiling experts.

System complexity can be managed by reducing the scope of a model. It may be possible to reduce

scope by focusing on application classes that have similar platform interaction patterns. For example,

the vast majority of scientific applications are iterative with relatively stable processing patterns [25].

Load balanced workloads generally require a uniform frequency-voltage setting for the run and across

processing units [25], rather than fine-tuning through the run. Dynamic Concurrency Throttling as

a program executes can achieve similar results to static manual tuning [24], indicating that tuning

for a fixed concurrency configuration for the full run cycle can be as effective as dynamic, phase-

based approaches. Such application and architecture knowledge can potentially be applied to improve

problem tractability.

Statistical regression and machine learning models have been successfully used to avoid some of the

issues associated with white-box analysis [55, 56, 57, 58]. The models use a wide range of input

parameters, or predictors, from application configuration parameters, parallelisation, CPU frequency,

to profiling or CPU counter data. Models that use measured predictors, such as profiling or counter

data, require strategies for determining the measured input when predicting the response for unseen

data. Measured inputs can be practical if their values can be extrapolated for unseen data [55, 57],

however models-within-models may suffer from compounding prediction error. New statistical mod-

els that treat the system as a black-box have the potential to make accurate performance and energy

trade-off predictions using accessible predictors, and minimising training costs.

Pareto analysis provides a set of performance and energy usage trade-off options. Pareto analysis

may still exclude valid trade-off options that are off the Pareto front but virtually indistinguishable

from points on the front [22, 18]. These points are equivalent as far as performance or energy use
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are concerned. Other policy guidance and inputs are needed, such as conservative versus aggressive

resource allocation policy.

Experimental error analysis can identify statistically equivalent points and provide a more complete

set of trade-off options. Experimental error has a number of other impacts on Pareto analysis. Search

optimisation methods may terminate at local optima induced by noise or error and provide locally op-

timal rather than globally optimal solutions. Evaluation of Pareto front prediction methods can also

be impacted by experimental error. Relatively small differences in response values can significantly

impact the distribution of Pareto points across the search space. New methods that consider mea-

surement and prediction error are needed to fully evaluate the accuracy of predicted trade-off options

against measured data.

There are a number of strategies for minimising the cost of an optimisation process. The search

space dimensions and resolution can be reduced to the minimums that provide an optimal solution

in the required scenarios. Analytical models that predict responses across the search space can avoid

the cost of capturing measurement data for the full search space. Low cost sampling techniques

allow accurate predictions from a small amount of measured data. Sampling scope can potentially

be reduced by focusing prediction accuracy where required, close to the Pareto frontier for example.

Avoiding requirements for expert direction, or extra hardware or software tools, can also reduce cost.

Methods that are easy to automate provide further opportunity for reducing effort and improving

usability.

In summary, a number of research opportunities have been identified. Further analysis of tuning

controls and response sensitivities will validate that easy-to-access controls can provide significant

trade-off opportunities. New statistical models that allow a black-box view of the application and

platform have the potential to achieve accurate trade-off opportunities at low cost. New error anal-

ysis methods will provide a more complete set of trade-off options, and better evaluation of actual

versus predicted trade-off options. New policies need to be developed to guide users in their trade-off

decisions.
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Chapter 3

Energy Tuning Controls

This chapter examines definitions, architectural features, and tuning parameters that are important for

understanding and controlling the performance and energy efficiency of parallel applications. The

aim is to investigate if:

• There are HPC job submission parameters accessible to application end-users that can be used

to tune performance and energy efficiency.

• The tuning parameters identified can significantly improve performance and energy efficiency,

providing a benefit that exceeds measurement error limits.

• The tuning search space size can be managed to practical levels by reducing search ranges

of parameters to the most influential values, requiring an exhaustive search of less that 1,000

measurements.

• Maximum energy efficiency and performance diverge, requiring use of a multi-objective opti-

misation strategy rather than a simple race to halt strategy.

As well as providing an initial feasibility assessment of the proposed approach, the findings of this

chapter inform the selection of modelling techniques, such as deterministic or probabilistic methods,

model input parameters or predictors, and sampling strategies.

3.1 Definitions

This section provides the formal definitions of electrical energy, electrical power, and HPC energy

efficiency and performance.
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3.1.1 Electrical Power and Energy

Power is the amount of energy E transferred per unit of time t, measured in joule per second, or watt.

Electrical energy is the electric charge Q in coulomb passing through an electric potential V in volt.

Electric current I is electric charge per unit time. Ohm’s law equates current I to electric potential V

divided by load R. Equations 3.1 and 3.2 follow from these definitions.

P = E/t

=V ·Q/t

=V · I
=V 2/R (watt)

(3.1)

E = P · t (joule) (3.2)

3.1.2 Energy Efficiency and Performance

HPC energy efficiency eη is assessed using operations executed per unit of electrical energy used, as

shown in equation 3.3.

eη = operations/E (ops/joule) (3.3)

Energy efficiency units for typical HPC operations include Flops/J (Flops processed per joule used),

Bytes/J (bytes transferred per joule), or Updates/J (updates made per joule). Using equation 3.2, this

can be equivalently expressed as operations per second per watt (for example, Flops/s/W, which is

performance achieved per watt used).

HPC performance pµ is assessed using operations executed per second, as shown in equation 3.4.

pµ = operations/t (ops/second) (3.4)

Performance units for typical HPC operations include Flops/s, Bytes/s, or Updates/s.

Flops/s and Flops/s/W (or Flops/J) are in wide use, including in the international supercomputer

rankings published by the TOP500 project [5].
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3.2 HPC Architectural Considerations

Flynn’s taxonomy [65] classifies parallel computing architectures by the concurrency in instruction

and data stream processing. This results in the following four categories of concurrent processing:

• SISD (single instruction stream–single data stream) processing is conventional single-core pro-

cessing, including pipelined and superscalar processors.

• SIMD (single instruction stream–multiple data stream) processing includes array and vector

processors.

• MISD (multiple instruction stream–single data stream) processing is the least common. It is

typically only used for fault critical systems where processors operate on the same data stream

and must agree on the result (for example, space flight control systems).

• MIMD (multiple instruction stream–multiple data stream) processing includes multi-core and

multi-threaded processors, and HPC clusters.

The specification of the Cray XC series system used for the evaluations conducted during this research

project is listed in Table 6.1. Flynn’s SISD, SIMD and MIMD categories provide a useful structure for

analysing concurrent processing capabilities of the system and potential tuning controls for optimising

performance and energy efficiency.

3.2.1 SISD

SISD designs can provide instruction level parallelism using pipelined and superscalar processing.

Our laboratory system uses Intel Broadwell CPUs. Figure 3.1 shows the pipeline topology of each

core in a Broadwell processor. Each stage of the pipeline can operate in parallel. This means each

core can process multiple instructions in parallel, each at a different pipeline stage.

The Broadwell CPU also supports superscalar processing where multiple instructions are retired in

one clock cycle. The execution engine of each core has multiple execution units that operate in

parallel, allowing processing of up to eight instructions per cycle.

When the pipeline runs out of instructions that are ready to process the CPU will stall. Pipeline

bottlenecks can cause CPU stalls when the:

• Re Order Buffer is full of instructions that are not ready to be retired,

• Reservation Station has no entries that are ready to execute, or
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Figure 3.1: CPU Pipeline Topology

• Store Buffer overflows due to backlogs accessing memory

CPU stalls reduce both performance and energy efficiency because the program requires more time

and therefore energy to execute. Tuning a program for CPU core parameters (such as instruction

selection, loop/branching, and memory optimisation) is typically a program design or compile time

challenge, and not controllable by parallel program users.

However, users can change the CPU frequency used to run a program using job submission parame-

ters. The CPU frequency can be lowered when stalls dominate. Tuning can reduce the inefficiency of

a high clock speed when the CPU is stalling, while having minimal impact on performance.

3.2.2 SIMD

Intel Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) provide instruc-

tion level data parallelism capabilities at the CPU core level. AVX2 includes fused multiply-add

(FMA) operations. Each FMA operand consists of eight single precision or four double precision

floating point numbers. The dual 256-bit FMA execution units (EU0 and EU1 in Figure 3.1) enable

the Broadwell theoretical peak performance of 16 double-precision Flops/cycle/core
(
(1 multiply+

1 add)×4 double-precision floating point values×2 units
)
.

Enabling SSE or AVX instructions can significantly reduce the number of CPU cycles required to

complete some operations, which in turn provides large gains in performance and energy efficiency.

Once again, this is a program design or compile time activity, not typically controllable by end users.
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3.2.3 MIMD

The MIMD model uses multiple processing elements that have access to a shared or distributed pro-

gram and data memory. Processing elements can be cores in a multi-core CPU, CPU sockets in a

multi-CPU node, or compute nodes in a multi-node HPC cluster.

Figure 3.2 shows how cores and LLC in the Broadwell CPU microarchitecture are grouped in two

equal-sized clusters on a pair of interconnect rings [66]. This configuration is know as Cluster on Die

(CoD). QPI (QuickPath Interconnect) queues connect the cluster rings. Each cluster has a memory

controller, but QPI links (used to connect CPU sockets) and PCIe links (used to connect peripherals

such as GPUs) are only available on the first cluster. Each core has 2.5 MB LLC that can be accessed

by all cores, providing the total LLC size of 55 MB.

Broadwell cores also support thread level parallelism (two threads per core) using Hyper-Threading

Technology (HTT), a simultaneous multi-threading (SMT) technique. SMT maintains processor state

for each thread, but threads share processor functional units. The aim is to increase instruction level

parallelism by using functional units left idle by a single thread.

Shared resources, such as LLC and memory controllers, can become bottlenecks that limit core and

thread scalability. Performance and energy efficiency are impacted as contention for shared resources

increases. Tuning the number of active cores and their placement across sockets in a node can reduce

this contention. Application users can specify core counts and placement per node when submitting

a job with the system resource manager.

The interconnect links provide bidirectional bandwidth of 38.4 GB/s, but latency can vary signifi-

cantly depending on how a connection traverses hierarchical memory and interconnect structures.

Hofmann et al. [67] measured access latencies of all memory hierarchy levels for a range of Intel

server processors. For Broadwell processors they report L1 access latency of 4 clock cycles, L2

latency of 12 cycles, LLC latency of up to 47 cycles, and DRAM latency of up to 280 cycles. Cross-

ring/CoD access through the ring interconnect queues adds six cycles. The latency is around 360

cycles if DRAM from another CPU socket (or remote NUMA domain) is used.

CPU and DRAM consume most of the power (around 95%) used by each node in an HPC cluster.

Intel specifies a CPU thermal design power rating of 145 W for our Broadwell CPU. Desrochers et al.

[61] measured the power consumption of a 16 GB DDR4-2133 DIMM for a number of benchmarks

running on a 16 core Hawell CPU. Their measured values for sleep and OpenMP stream benchmarks

were 0.5 W and 5 W respectively. Our laboratory system has eight 16 GB DDR4-2400 DIMMs per

node, so we can expect DRAM power consumption of over 40 W per node for memory intensive

workloads.

29



DRAM ControllerDRAM Controller DRAM ControllerDRAM Controller

QPIQPI PCI-EPCI-E

Core
0

L1 L2 LLC

Core
1

L1 L2 LLC

Core
2

L1 L2 LLC

Core
3

L1 L2 LLC

Core
4

L1 L2 LLC

Core
5

L1 L2 LLC

Core
11

L1 L2 LLC

Core
12

L1 L2 LLC

Core
13

L1 L2 LLC

Core
14

L1 L2 LLC

Core
15

L1 L2 LLC

Core
16

L1 L2 LLC

LLC L2 L1
Core
10

LLC L2 L1
Core

9

LLC L2 L1
Core

8

LLC L2 L1
Core

7

LLC L2 L1
Core

6

LLC L2 L1
Core
21

LLC L2 L1
Core
20

LLC L2 L1
Core
19

LLC L2 L1
Core
18

LLC L2 L1
Core
17

Queue
Queue

Queue
Queue

DDR 0 DDR 1 DDR 2 DDR 3

TBDCPU 1 TBDGPU

Figure 3.2: CPU Topology

Operating systems and applications that maximise the use of memory in the local NUMA domain

are able to reduce the latency penalty, which improves performance and energy efficiency. Figure 3.3

shows NUMA domain information for a single compute node reported by the Linux operating system

using the lstopo command. We can see that CoD mode is disabled in node BIOS settings as the

operating system reports only one NUMA domain per socket.

System administrators and application designers control NUMA memory allocation using operating

system policy controls. Despite policy controls that preference local memory allocation, imbalance

may cause allocations to migrate away from the local node. On Linux systems, administrators and

NUMA-optimised codes can manage this situation using page migration functions provided in the

numactl package.

Figure 3.3 also shows operating system visibility of Hyper-Threads, with two Hyper-Threads per core

detected. The Hyper-Thread ids detected for NUMA Node 0 are 0-21 and 44-65. Hyper-Thread ids

for NUMA Node 1 are 22-43 and 66-87 (not shown). HPC resource management systems allow users

to specify the number of Hyper-Threads per core that a job should use.

Figure 3.4 shows the cluster interconnect hierarchy for the laboratory environment. The Cray XC
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series architecture has two processor sockets per compute node and four compute nodes per blade.

Compute nodes on a blade communicate using the blade interconnect unit. The interconnect unit also

provides communications between blades over a three level interconnect network:

• Rank 1 fully connects 16 blades in a chassis using a backplane.

• Rank 2 connects six chassis backplanes in a cabinet group, over 2 or 4 hops.

• Rank 3 fully connects cabinet groups using optical cables.

HPC application users may not be aware of the cluster interconnect topology, but system adminis-

trators will typically configure the system resource manager with interconnect topology information.

The scheduling system can use this information to favour node placements within a chassis or cabinet

group. This approach reduces the likelihood that jobs submitted by different users will compete for

chassis or cabinet group interconnect bandwidth.

Application users can control the number of nodes allocated to a job, the number and placement of

cores on each node, and the number of threads per shared memory process running on a node. Users

are in a position to submit a job with optimised settings for these parameters that minimise resource

contention at the cluster, node, socket, and core level.
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3.2.4 DVFS

In addition to the concurrency controls considered, DVFS has been widely used in parallel computing

to lower energy consumption with minimal performance degradation [3].

For microprocessors that use complementary metal oxide semiconductor (CMOS) circuits, like our

Broadwell CPUs, energy consumption is proportional to the clock cycle time and the square of the

operating voltage [68]. This relationship can be stated as shown in equation 3.5, which derives from

equations 3.1 and 3.2.

E ∝ V 2 · t (3.5)

However, voltage and frequency controls cannot be used independently as the settling time for a

CMOS gate varies with its operating voltage. The longer settling time means the clock frequency

must be decreased as voltage decreases. Since energy use per cycle reduces quadratically for a linear

reduction in performance, an overall saving in energy use can be achieved [69].

On Linux systems, users can use the cpupower utility to control CPU frequency. HPC resource

managements tools may also provide controls as job submission parameters. For example, the Cray

Application Level Placement Scheduler (ALPS) aprun command provides the --p-state argument

for setting a CPU frequency cap, or power state, across all cores allocated for the program run.
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Broadwell processors dynamically control the DFVS setting of each core, using the CPU frequency

setting as an upper limit. The frequency of each core is automatically lowered for lighter workloads,

and as required to meet power and thermal constraints. Processor and operating system controls mean

the user CPU frequency selection is a cap rather than a fixed setting.

The Linux kernel CPUFreq subsystem uses the intel_pstate driver for frequency scaling on Intel

systems. The sysfs virtual file system provides access to driver settings and status information, such

as actual core frequency over a sample interval. Actual core frequency may also be calculated using

the IA32_APERF and IA32_MPERF Intel model specific registers [64].

3.3 Tuning Parameters Analysis

Our architecture analysis in the previous section identified candidate parameters for optimising energy

efficiency and performance of parallel applications running on HPC systems. This section examines

the effectiveness of the following user-accessible tuning parameters:

• Thread placement and count

• CPU frequency

• Problem size

• Node counts

This analysis has several goals. First, to show that tuning a parameter provides significant perfor-

mance and/or energy efficiency benefits. Second, to identify suboptimal parameter settings or setting

ranges that can be excluded to reduce the tuning search space. Lastly, to confirm use cases where

performance and energy efficiency diverge, indicating that a multi-objective optimisation strategy is

required, rather than a simple race to halt strategy.

3.3.1 Experiments Setup

All experiments run on a Cray XC system equipped as Table 6.1 shows. Each run uses a single,

exclusively allocated 44-core node. Energy and power consumption for the entire node are monitored

with Cray power management counters (pm_counters). Intel RAPL counters are used to monitor CPU

package and DRAM power and energy. CrayPAT derived and PAPI counter data is used for CPU stall,

cache, and memory metrics. Performance and energy counter events are collected in separate runs

to avoid counter multiplexing, which reduces application perturbation and improves measurement

accuracy.

The Parallel Research Kernels (PRK) [70] listed in Table 3.1 provide configurable OpenMP work-

loads for this evaluation on memory-bound application workloads. Kernel iterations are set to ensure

run time is at least 10 times the measurement sample rate. Each kernel uses double precision floating
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point values. The 95% confidence interval for the mean of five measurement samples is 4.5% or less

for the presented experiments, calculated using the t-distribution as described in section 4.2.2.

Table 3.1: Kernels Summary

Name Description Configuration Size Limits
(Cache / Mem)

Stencil Explicit stencil operation on a 2D
square discretisation grid

Stencil radius: 2,
Iterations: Cache 10k / Mem 50

2.6k / 89k

Sparse Canonically indexed, sparse-matrix
by dense-vector product

Difference stencil radius: 2,
Iterations: 1k

0.8k / 28k

Transpose Dense matrix transposition
(C = AT )

Blocking/tiling: disabled,
Iterations: 20k

2.6k / 89k

The size limits listed in table 3.1 are calculated as follows. The memory limit depends on the available

physical memory, or resource manager settings. The stencil code uses malloc to allocate memory

for two double-precision floating point matrices. The maximum matrix order for this kernel can be

calculated using equation 3.6.

Matrix order =

√
sockets/node×memory capacity/socket

2 matrices×bytes/DP float
(3.6)

The laboratory HPC system has two CPU sockets per node, RAM capacity of 64 GB per socket, and

requires eight bytes per double-precision floating point, so equation 3.6 limits the in-memory matrix

order to 89,400. The L3 cache capacity of our system is 55 MB per socket, so the in-cache limit is

2,600.

3.3.2 Thread Scaling

HPC resource management tools such as the Portable Batch System (PBS) allow users to allocate

the required nodes, sockets, cores, and threads to a job. Jobs can also be allocated the required MPI

processes per node and OpenMP threads per process. The MPI runtime uses a distributed memory

model where each MPI rank, or parallel process running on a node, has private memory and com-

municates with other processes in the cluster using a messaging interface. OpenMP programs use a

shared memory model where parallel threads running within a process communicate using variables

in shared memory.

Thread placement or affinity policy controls the assignment of processes and threads to sockets and

cores within a node. Compact allocates all cores in one socket before moving to another, while scatter

utilises all sockets uniformly.

Figures 3.5 and 3.6 show the effect of compact and scatter affinity at problem sizes of 500, 10k

and 70k, with one OpenMP thread per CPU core. At small problem sizes the performance and
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energy efficiency responses are similar, with compact experiencing a minor decline at 24 threads.

The compact decline becomes significantly more pronounced as the problem size increases.

Small problem sizes operating within cache exhibit compute intensive behaviour where scaling im-

proves as threads are added. As the problem size increases, there is a transition to memory-bound

processing. Compact performance and energy efficiency start to decline at around 12 threads due to

memory access contention as more cores are used in the first socket. When cores are added in the

second socket, both responses begin improving again at the 24 thread point. The scatter policy clearly

provides improved scaling with 24 threads across two sockets. The MFlops/s rate is almost double

that of the rate with 12 threads in one socket.
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Figure 3.5: Stencil Thread Scaling – Compact Thread Placement (a) Performance and (b) Energy
Efficiency

For matrix order of 70k, figure 3.6 shows that maximum performance of 50 GFlops/s and maximum

energy efficiency of 220 MFlops/J both occur at 20 threads. These values drop to 38 GFlops/s and

130 MFlops/J at 44 threads, so thread count tuning provides a 24% performance improvement and

40% energy efficiency improvement compared to simply maximising threads.

Figures 3.5 and 3.6 also show divergence between thread counts for maximum performance and

maximum energy efficiency, which confirms a multi-objective optimisation strategy is required. For

example, Figure 3.6 shows performance peaking at around 40 threads for matrix order of 10k, but

energy efficiency peaks at around 28 threads.

Figure 3.7 shows compact affinity with HTT enabled. This time we set one OpenMP thread per

Hyper-Thread with two Hyper-Threads per core. The responses show that 12 Hyper-Threads in a

socket can saturate memory bandwidth as we observed for 12 cores. Hyper-Threading performance

is generally below that achieved without Hyper-Threading, in all but the most compute-intensive

cases. Even in these cases the benefit and measurement errors are similar magnitudes. For problem
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Figure 3.6: Stencil Thread Scaling – Scatter Thread Placement (a) Performance and (b) Energy Effi-
ciency

size of 500 at 12 threads and 24 Hyper-Threads performance is 35.5 GFlops/s vs 37.1 GFlops/s, or

1.5% improvement, but the measurement confidence interval is also around ±1.5%.
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Figure 3.7: Stencil Hyper-Thread Scaling – Compact Thread Placement (a) Performance and (b)
Energy Efficiency

Figure 3.8 shows scatter affinity with threads distributed in four even groups across the two CPU

rings per socket (CoD), and two sockets per node. The results are identical to the Figure 3.6 results.

With CoD disabled in the node BIOS, LLC and memory controllers are shared across the rings, so

placement on rings within a CPU has no discernible impact on the responses.

3.3.3 CPU Frequency Scaling

Users can use frequency scaling to set a CPU frequency cap (or upper limit) for a job run, as discussed

in section 3.2.4. Figure 3.9 shows two stencil runs using CPU frequency caps of 1.4 and 2.0 GHz, 12

OpenMP threads across 6 cores in each socket (12 cores in total), and matrix order of 40k.
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Figure 3.8: Stencil Thread Scaling – Ring Thread Placement (a) Performance and (b) Energy Effi-
ciency
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Figure 3.9: Stencil Per Core Current Scaling Frequency – Matrix Order 40k, 12 Threads, 1.4 and 2.0
GHz Cap

Stencil iterations proceed from 0 to 100 along the x-axis, with the current/actual frequency of each

core/OpenMP thread plotted against the y-axis. The current CPU scaling frequencies for allocated

cores on the compute node are read once every two stencil iterations from Linux CPUFreq subsystem

sysfs files:

/sys/devices/system/cpu/cpu<0-n>/cpufreq/scaling_cur_freq

Table 3.2 shows the RAPL power capping controls for laboratory compute nodes. Short-term and

long-term averaging window constraints are shown for both CPU sockets. The given power limits

apply for the specified time windows. The DRAM long-term averaging window constraint is disabled.

RAPL controls are accessed using files in the following sysfs folder:

/sys/class/powercap/intel-rapl
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RAPL controls may also be accessed using Intel model specific registers [64]:

• MSR_PKG_POWER_LIMIT

• MSR_DRAM_POWER_LIMIT

Table 3.2: RAPL Power Capping Controls

Domain Enabled Constraint Max Power Power Limit Time Window

Package-0 True Short-term 290W 174W 7.8ms
True Long-term 145W 145W 1.0s

DRAM-0 False Long-term - - -
Package-1 True Short-term 290W 174W 7.8ms

True Long-term 145W 145W 1.0s
DRAM-1 False Long-term - - -

Imperfect load balance across threads has the potential to impact the accuracy of a simplified model

using a static thread count as a predictor. In a similar way, hidden complexity in DVFS control

systems may impact the effectiveness of CPU frequency cap as a model predictor.

The OpenMP threads transition point at 12 threads seen in Section 3.3.2 can now be used to identify

DVFS frequency cap tuning responses. Figure 3.10 shows that MFlops/s performance for grid size

of 70k using the compact thread placement policy flattens from around 1.8 GHz at 12 threads. At 16

threads this drops back to around 1.4 GHz which confirms there are DVFS tuning opportunities for

memory-bound workloads.

The 16 thread curves also show significant divergence between optimal performance and energy ef-

ficiency. Peak performance occurs at 2.1 GHz when energy efficiency is 126 GFlops/J, down 11%

from its peak of 142 GFlops/J. Peak energy efficiency occurs at 1.2 GHz for a 6% performance drop

from 24 to 22 GFlops/s, providing further confirmation that a multi-objective optimisation strategy is

required.

Fig 3.11 shows linear frequency scaling for the same thread ranges using the scatter thread placement

policy, indicating that this policy also benefits from frequency scaling. Linear scaling also shows

that underlying dynamic frequency variation below the set cap occurs without significant impact on

performance.

Figure 3.12 confirms that thread placement on rings also has no discernible impact on the CPU fre-

quency scaling responses.

3.3.4 Problem Size Scaling

Problem size is typically a constraint of the problem the user wishes to solve, so it is not evaluated

as a tuning parameter. Instead, problem size scaling experiments provide insight on how interactions
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Figure 3.10: Stencil Frequency Scaling – Compact Thread Placement (a) Performance and (b) Energy
Efficiency
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Figure 3.11: Stencil Frequency Scaling – Scatter Thread Placement (a) Performance and (b) Energy
Efficiency

between applications and the memory system affect performance and energy efficiency.

Problem size sweeps for each kernel at around 75% of the maximum thread and CPU frequency

cap settings, or 34 threads and 1.8 GHz, are used to evaluate scaling across the memory hierarchy.

Measurement temporal resolution limits the sweep range at the lower end, while memory size limits it

at the upper end. Figure 3.13 shows the Stencil kernel with numbered performance transitions points.

Stencil has transitions (1, 2) at matrix orders of around 5k and 30k in Figure 3.13 (a). Performance

exceeds 70 GFlops/s before the first transition but drops sharply as matrix order reaches a problem

size that exceeds LLC size. The processing rate remains approximately 55 GFlops/s until the second

transition at matrix order 30k. From this point, the performance curve declines steadily.
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Figure 3.12: Stencil Frequency Scaling – Ring Thread Placement (a) Performance and (b) Energy
Efficiency

Figure 3.13 (b) provides a breakdown of stall types for Stencil. The second transition at 30k may not

be predicted by model-based methods, such as the ECM or Roofline models, as there does not appear

to be a related memory system transition. It corresponds to an increase in CPU stall cycles. Re Order

Buffer (ROB) and Store Buffer (SB) stalls are both flat for Stencil, but Reservation Station (RS) stalls

are increasing as performance tapers off. The RS (filtered) curve applies a Savitzky–Golay smoothing

filter to address noise. RS stalls occur when entries are not available in the instruction pipeline.
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Figure 3.13: Stencil Problem Size Scaling – (a) Performance and Energy Efficiency, and (b) Stalls

RS stalls also dominate for Transpose (not shown), however, Figure 3.14 shows that SB stalls dom-

inate for Sparse. SB stalls occur when the CPU front-end allocates store buffers faster than the

execution engine commits data to cache or memory.

Figure 3.15 (a) and (b) provide a close-up view of the LLC saturation transition for Stencil. As the

processing rate drops, the combined effects of increasing LLC miss rate and power consumption
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Figure 3.14: Sparse Problem Size Scaling – (a) Performance and Energy Efficiency, and (b) Stalls

are observed. Figure 3.15 (a) shows that Stencil socket and DRAM power consumption increases

substantially from 60 W and 40 W to around 90 W each. The jump in socket and DRAM power

use combined with the drop in performance confirm that moving data across the memory hierarchy

consumes a significant energy efficiency penalty.

Sparse (not shown) has a similar pattern. However, Figure 3.16 shows that the ramp up to maximum

DRAM power occurs at lower problem sizes for transpose. Peak DRAM power coincides with LLC

miss rates above 20-40%.
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Figure 3.15: Stencil Cache Analysis – (a) DRAM Power, (b) DRAM Bandwidth, NUMA Local
Memory Access, and LLC Miss Rate

Figure 3.15 (b) shows percent DRAM bandwidth utilisation for Stencil ramping up towards the node

limit (76.8 GB/s× 2 CPUs), indicating that memory bandwidth becomes a constraint at this transition.

The NUMA local curve shows that CPU sockets are directing 100% of in-memory processing to their

local DRAM bank rather than the DRAM bank of the other CPU socket, so NUMA misses are not
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a significant factor. Sparse exhibits similar behaviour. However, NUMA misses are a factor for

Transpose, with NUMA memory access to the local socket levelling off at around 85%. Memory

bandwidth utilisation for Transpose is accordingly lower.
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Figure 3.16: Transpose Cache Analysis – (a) DRAM Power, (b) DRAM Bandwidth, NUMA Local
Memory Access, and LLC Miss Rate

Performance counters do not provide a direct measure of memory bandwidth. Equation 3.7 shows

the formula used to derive memory bandwidth utilisation in bytes per second, using event counters

for LLC local and remote misses, elapsed time, and cache line size of 64 bytes.

Bandwidth =

64× (OFFCORE_RESPONSE_0:L3_MISS_LOCAL
+OFFCORE_RESPONSE_0:L3_MISS_REMOTE)

time
(3.7)

The results show that problem scale impacts where a program operates in the memory hierarchy. This

in turn impacts the optimal settings for performance and energy efficiency tuning parameters, such

as CPU frequency and thread count. Metrics such as cache miss and stall rates, and local and remote

memory bandwidth can be used to identify where a code is operating in the memory hierarchy.

3.3.5 Node Scaling

The single node method described here can also be applied to multi-node systems. Multi-node results

show the in-cache performance and energy efficiency benefits seen for a single node scale as nodes are

added. Figure 3.17 (a) shows that super-linear scaling is achieved in some cases, such as performance

more than doubling with the jump from 32 to 64 nodes at matrix order 24k (1). Super-linear scaling

occurs because this problem size operates in LLC for 64 nodes but not for 32 nodes. Figure 3.17 (b)

shows in-cache energy efficiency benefits also extend to larger problem sizes as the number of nodes

increase.
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Figure 3.17: Stencil Node Scaling – (a) Performance and (b) Energy Efficiency

3.4 Conclusion

This chapter investigated performance and energy efficiency tuning parameters, and associated search

space dimensions, that are controllable by parallel application users. Figures 3.5 to 3.12 show that an

11 thread × 11 CPU frequency search space of 144 measurements provides acceptable resolution for

the single node performance and energy efficiency response curve plots.

The effect of OpenMP thread placement was evaluated for a range of test cases, including core level

HTT, and scatter versus compact at CoD level and CPU socket level. Socket level scatter placement

of one OpenMP thread per core is equivalent or superior to other thread placement test cases.

The lowest thread counts are also generally suboptimal for both performance and energy efficiency.

This indicates that there is an opportunity to reduce search space resolution at low thread counts. For

CPU frequency, performance and energy efficiency responses generally taper off at higher frequencies

indicating that higher search space sensitivity is needed at higher frequencies.

Experimental analysis shows that thread and CPU frequency scaling provide significant tuning oppor-

tunities, with improvements of 24% in performance and 40% in energy efficiency identified. Results

also show that a multi-objective optimisation strategy is required, where CPU frequency tuning to

achieve maximum performance can require an 11% trade-off in energy efficiency.

Problem size responses were analysed to assess scaling across the memory hierarchy. Metrics in-

cluding cache miss and stall rates, and NUMA local versus remote memory bandwidth, were used to

identify code operation within the memory hierarchy. While these metrics provide valuable insight,

they are system responses themselves, rather than predictors for system responses.

The memory footprint of a program will also typically depend on the parameters of the problem to be
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solved. Such parameters are not tunable, since changing these parameters changes the problem itself.
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Chapter 4

The Architecture of an Energy Tuning
Framework

HPC performance tuning is a mature field that is already supported by a number of sophisticated and

widely used tuning frameworks. An energy tuning framework that is controllable by application users

needs to extend a conventional performance tuning framework with components that enable users to:

• Instrument the program under evaluation.

• Measure the energy consumed by the running program.

• Predict performance and energy efficiency responses.

• Trade-off performance and energy efficiency using the predicted responses.

• Consider measurement and prediction error limits in trade-off options.

Figure 4.1 shows the component model for the proposed energy tuning framework, named HPCProbe.

This framework is designed to address the challenges identified in Chapter 1 by:

• Only using tuning parameters that parallel application users can control.

• Minimising the cost of finding optimal solutions by minimising the required input measure-

ments.

• Accurately predicting application performance and energy efficiency trade-off options.

• Considering measurement and modelling error to ensure valid trade-off options are not elimi-

nated.
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Figure 4.1: HPCProbe Component Model

In addition, HPCProbe uses a modular and extensible design with pluggable interfaces that support

portability across instrumentation, measurement and modelling frameworks. The proposed design

includes all components in an integrated package for trading off performance and energy in parallel

programs.

The rest of this chapter describes in detail how the design of each component addresses the identified

challenges.

4.1 Application Instrumentation

This component enables and reads the required counters for measuring performance and energy usage

at appropriate times in the application run cycle.

When evaluating overall application performance and energy efficiency, these counters only need to

be enabled at the start of each application run, and read when the run completes. If there is a risk

of counter overflow, with long runs for example, intermediate reads may be required to detect and

manage overflows.

The performance metric may simply be wall-clock time (or elapsed real time) for an application run.

It could also be a figure of merit reported by the application itself, such as operations per second.
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Where performance is a cumulative metric such as time in seconds, a cumulative energy metric such

as total energy in joules is used. Where performance is a rate metric such as operations per second,

the energy efficiency eη for an application run can be derived from performance pµ , wall time t, and

total energy ET , as equation 4.1 shows.

eη =
pµ · t
ET

(4.1)

Current tuning frameworks provide utilities for instrumenting programs using performance counters

on the system. Examples include commercial frameworks like Intel VTune Amplifier [71] and Cray-

PAT [60, 72], and open source frameworks such as Linux perf tools [73]. Programmers can also

manually instrument code using an API such as Performance Application Programming Interface

(PAPI) [74], or direct access to the hardware registers.

HPCProbe uses CrayPAT to instrument applications using PAPI preset, user defined, and native events

and hardware information.

4.2 Response Measurement

This component measures the system performance and power usage responses of the program under

evaluation. CPU hardware counters can be used to monitor a wide range of events, including cache

miss rates, stall cycles, and operations per second.

4.2.1 Power Measurement

Power consumption metrics are an essential input for an energy tuning framework. As discussed

in 2.5, a range of approaches are available, from mains socket and hook-on power meters, model-

based methods using processor counters, to motherboards and peripherals equipped with inbuilt sen-

sors. HPCProbe uses Cray power management counters (pm_counters) and Intel Running Average

Power Level (RAPL) counters to monitor energy and power consumption for all nodes.

Cray XC systems have node-level inbuilt sensors to measure temperature, current, and voltage. Cray

pm_counters provide real-time power and energy measurements, which are updated at a frequency of

10 Hz. CrayPAT is used to evaluate program behaviour. It instruments the program, collects the spec-

ified counters at runtime, and aggregates and reports the collected counters. Cray pm_counters can

also be read directly from the Linux sysfs folder, /sys/cray/pm_counters, as a program launches

and terminates.

The RAPL interface is used for component level measurements, including CPU and DRAM energy

use. CrayPAT is used to collect the required RAPL power counter data.
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4.2.2 Measurement Evaluation

In addition to capturing required performance and energy usage metrics, energy tuning frameworks

must also assess measurement confidence intervals. For example, measurement data may show per-

formance improvements of 5% are possible at 20% energy cost. If the measurement confidence

interval is ±10% it may be difficult to justify the high energy cost for a performance improvement

that is not statistically significant.

This section examines statistical methods for analysing the confidence level of performance and en-

ergy measurements. HPCProbe uses normal and t-distributions for confidence intervals analysis. Q-Q

(quantile-quantile) plots are used to visually compare the measured data distribution with the standard

normal distribution.

Normal Probability Distribution

Physical measurements that have a range of random factors influencing measurement errors are often

normally distributed. As such, computer performance measurements are also typically assumed to

be normally distributed when analysing confidence levels. Normality tests can be used to check this

assumption.

A confidence interval for the mean of a set of repeated measurement samples can be calculated using

the standard deviation and normal probability distribution table.

The confidence interval of n normally distributed samples with mean of x̄ and standard deviation of

σ is given by equation 4.2.

c = x̄± z∗ · σ√
n

(4.2)

The required z∗ for the confidence interval comes from the standard normal distribution table. For

example, equation 4.3 and Figure 4.3 show the 95% confidence interval for normally distributed data.

P(X < z∗) =
1+0.95

2
, when z∗ = 1.96 (4.3)

Student’s t-distribution

Computer performance analysts are usually restricted to a small number of measurements due to test

case complexity, and time and cost limitations.
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The Student’s t-distribution is used for small samples from normally distributed populations, and the

confidence interval for the sample mean is now given by equation 4.4.

c = x̄± t∗ · σ√
n

(4.4)

The required t∗ for the confidence interval now comes from the t-distribution table. In this case, equa-

tion 4.5 and Figure 4.2 show the 95% confidence interval for the t-distribution table at five samples

(four degrees of freedom).

P(X < t∗) =
1+0.95

2
, when t∗ = 2.78 (4.5)
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Figure 4.2: Probability Density Function

Figure 4.2 also shows that the t-distribution approaches the normal distribution as the sample size

increases. As such, the t-distribution is typically recommended for sample sizes under 30.

Performance analysts can use this approach to assess the statistical significance of performance im-

provement measurements [75].

Normality Test

The Q-Q plot can be used to visually compare a measured data distribution with the standard normal

distribution [76]. Figure 4.3 (a) shows 100 energy measurement samples from our stencil case study

plotted against the normal distribution line. The sample points show good alignment with the normal

line, indicating that the data set is normally distributed. The results were similar for our FLOPs per

second and wall clock time measurements.
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Figure 4.3 (b) shows the Probability Density Function plot for our sample energy data set, which

provides an alternative view of the sample distribution. The PDF plot overlays the data set histogram,

estimated data set distribution function, and standard normal distribution function.
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Figure 4.3: Sample population distribution

4.3 Response Prediction

The cost of tuning an application must be amortised over future runs of the application. To achieve

an effective return on tuning effort, energy tuning frameworks must minimise the cost of accurately

predicting optimal configurations. As stated at the start of this chapter, the aim for HPCProbe is to

predict performance and energy trade-off options with accuracy of ±10%, using 10% or less of the

input parameter search space.

Chapter 2 examines related work based on deterministic, or functional models such as the Roofline

or ECM models. This work evaluates stochastic, or statistical models that predict a probable outcome

with an associated error term ε as equation 4.6 shows.

y = f (x)+ ε (4.6)

Stochastic models can deal with data uncertainties and limitations arising from partial or noisy data

sets. When ε values are normally distributed around a mean of zero, statistical techniques can be used

to assess how accurately the model fits the data.

The class diagram for the HPCModel package of HPCProbe is shown in Figure 4.4. The package

includes three stochastic model types for evaluation, derived from the Model base class. The PolyReg

class implements a basic polynomial model using ordinary least squares regression. SplineReg im-

52



plements a B-spline (or basis spline) piecewise polynomial model also using ordinary least squares

regression. The DnnReg class implements a deep neural network regressor model.

HPCModel

Model

setTrainDf
setTestDf
getStats()
kFoldValidate()

PolyReg

fitModel()
predict()

SplineReg

setFormula()
addInteracts()
removeInteracts()
fitModel()
predict()

DnnReg

getInputFn()
fitModel()
predict()

Transform

fwd()
inv()
scale()
scaleInv()

ParetoFront

setFront()
get()
getLimits()
scaleAndTransform()
getPath()
getPathPts()

Figure 4.4: HPCModel Class Diagram

Each model type provides methods to fit the model to training data and to predict responses for unseen

input data. The Model base class provides methods to set training and test data, get model evaluation

statistics, and validate the fitted model.

The Transform class provides data transforms to mitigate normal distribution deviations and scaling

functions to improve model convergence. The ParetoFront class is part of the analysis component

described in section 4.4.

4.3.1 Model Predictors

Model input parameters, or predictors, are required that are user-controllable and can accurately

model system responses: energy efficiency and performance. Chapter 3 shows that a complex re-

lationship exists between system characteristics, workload features, concurrency, CPU frequency

scaling and the observed system response. The definitions in Table 4.1 are used to express these

relationships as shown in equations 4.7 and 4.8.

E(wn,sm) = Fe(ni,c j, fk) (4.7)

P(wn,sm) = Fp(ni,c j, fk) (4.8)
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Table 4.1: Parameters Used in the Models

Parameter Description

wn Workload or application
sm System or architecture
E(wn,sm),eη Energy efficiency of wn on sm

P(wn,sm), pµ Performance of wn on sm

ni Homogeneous nodes count of i
c j Cores or threads count of j
fk CPU frequency or DVFS setting of k
bs(x) Transform to generate B-spline bases for parameter x
Fe(ni,c j, fk) Energy efficiency function
Fp(ni,c j, fk) Performance function
eT Total energy (J) required to run workload
tT Total time (s) required to run workload

4.3.2 Sampling

Energy tuning frameworks that use predictive modelling must have efficient methods for selecting the

data samples required to train the model. Using more training samples can improve model accuracy,

but too many samples may make the training costs prohibitive.

The setTrainDf method of the Model class provides three sampling options for evaluation, each using

around 10% of the search space. Model training samples can be generated using uniform (or non-

random), random, and Latin hypercube sampling [77]. Figure 4.5 shows an 11 core count × 11

frequency search space with each method.
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Figure 4.5: Uniform, Random, and Latin Hypercube Sampling

Random sampling has 12 randomly selected samples making up 10% of the search space. Latin

hypercube sampling has a randomly selected sample from each row and column, resulting in 11

samples.

The trade-off problem between minimising sample size while maximising model accuracy can be

made more tractable with the use of application and architecture findings from Chapter 3. These

findings inform sample selection for uniform sampling.
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With uniform sampling, the threads dimension has higher resolution with samples at four thread

points versus three points in the frequency dimension. Suboptimal points at the lowest thread counts

are excluded. Frequency sample points provide higher resolution where needed at higher frequencies.

4.3.3 B-Spline Model Formulation

The initial formulation of the regression models is guided by responses of representative software

kernels to variations in node count, core count, and CPU frequency setting from section 3.3. The

models require polynomial terms to capture the observed curvilinear performance and energy effi-

ciency responses.

The inflexibility of polynomials [78] may result in undesirable oscillations in the predicted response

or an overall response shape that is dominated by a few samples. To minimise the impact of this

inflexibility, B-spline piecewise polynomials are used.

Spline functions fit a smooth curve along a series of points, or knots. The curve that joins each pair

of points, or spline, is constructed piece-wise from polynomial functions. A B-spline, or basis spline

function, improves the continuity at the knots, which may otherwise affect model continuity.

These models have several configuration options to tune their accuracy and efficiency. Increasing the

polynomial degree and degrees of freedom allows the spline to fit more complex curves. Interactions

between terms, linear and non-linear terms, transforms to reduce effects of data distribution skew, and

sampling method also need to be considered.

The level of variability that each predictor drives in the response can be observed and knowledge

of expected interactions between predictors can be used. For example, increasing core counts drive

resource contention that produces non-linear responses. Increasing CPU frequencies also typically

drive non-linear responses once core contention within the node starts to dominate. Such observations

lead to the following model settings and simplifications:

• B-spline degrees of freedom is three to balance underfit and overfit in the overall predicted

response;

• Node count, core count, and frequency are quadratic polynomial terms to balance underfit and

overfit of the spline segments between knots;

• Node and core count have an interaction term as the term coefficient is significant;

• Core count and frequency also have an interaction term with a significant coefficient;

• Frequency and node count have no interaction term as the coefficient is insignificant;
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• Natural logarithm transform of response to mitigate data skew.

Model settings are evaluated with an iterative approach that assesses the data distribution and corre-

lation, the model fit, and the coefficient magnitudes. The optimal polynomial term order and B-spline

degrees of freedom at the transition point between model underfit and overfit are also determined ex-

perimentally. For example, a near zero coefficient for the node count and frequency interaction term

confirms that it can be removed from the model with little impact.

The resulting statistical models for energy efficiency and performance of a parallel application that

runs on a homogeneous HPC cluster use equations 4.9 and 4.10.

loge(eη)∼ bs(ni)+bs(c j)+bs( fk)

+bs(ni) : bs(c j)+bs(c j) : bs( fk)
(4.9)

loge(pµ)∼ bs(ni)+bs(c j)+bs( fk)

+bs(ni) : bs(c j)+bs(c j) : bs( fk)
(4.10)

The loge transform applied to model responses mitigates normal distribution deviations.

These equations use Wilkinson notation [79], which is accepted by regression analysis tools, such as

MATLAB, and by R and Python. The operator ‘∼’ means is modeled by while ‘+’ adds a term to the

model, and ‘:’ includes interactions between terms.

In addition to energy efficiency and performance rates, the models can support cumulative responses

such as total energy and total time based on equations 4.11 and 4.12.

loge(eT )∼ bs(ni)+bs(c j)+bs( fk)

+bs(ni) : bs(c j)+bs(c j) : bs( fk)
(4.11)

loge(tT )∼ bs(ni)+bs(c j)+bs( fk)

+bs(ni) : bs(c j)+bs(c j) : bs( fk)
(4.12)

The natural exponential is applied to model predictions to reverse the loge transform.

Equation 4.13 shows the right-hand side expansion for equations 4.9 to 4.12. Each model has 28

predictor terms (1 intercept, 3 × 3 spline B-spline terms, 2 × 3 spline B-spline × 3 spline B-spline
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interaction term). Predictor and response training data is collected then ordinary least squares regres-

sion is used to determine the term coefficients, β0 to β27.

β0 +β1 ·bs1(ni)+β2 ·bs2(ni)+β3 ·bs3(ni)

+β4 ·bs1(c j)+β5 ·bs2(c j)+β6 ·bs3(c j)

+β7 ·bs1( fk)+β8 ·bs2( fk)+β9 ·bs3( fk)

+β10 ·bs1(ni) ·bs1(c j)+β11 ·bs2(ni) ·bs1(c j)

+β12 ·bs3(ni) ·bs1(c j)+β13 ·bs1(ni) ·bs2(c j)

+β14 ·bs2(ni) ·bs2(c j)+β15 ·bs3(ni) ·bs2(c j)

+β16 ·bs1(ni) ·bs3(c j)+β17 ·bs2(ni) ·bs3(c j)

+β18 ·bs3(ni) ·bs3(c j)

+β19 ·bs1(c j) ·bs1( fk)+β20 ·bs2(c j) ·bs1( fk)

+β21 ·bs3(c j) ·bs1( fk)+β22 ·bs1(c j) ·bs2( fk)

+β23 ·bs2(c j) ·bs2( fk)+β24 ·bs3(c j) ·bs2( fk)

+β25 ·bs1(c j) ·bs3( fk)+β26 ·bs2(c j) ·bs3( fk)

+β27 ·bs3(c j) ·bs3( fk)

(4.13)

4.3.4 Neural Network Model Formulation

Artificial Neural Networks are networks of simple processing units or neurons that generate predicted

responses for a set of input values or features. Figure 4.6 shows a feed-forward neural network with

three hidden layers. As with the regression models, the neural network inputs are node count, core

count, and CPU frequency setting. The input layer has a neuron to pass the value of each feature to

the hidden layers.
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y
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layer 1
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layer 2
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Input
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Output
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Figure 4.6: Deep Neural Network with Multiple Hidden Layers
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Figure 4.7 shows the basic structure of a hidden unit, which is a neuron in the hidden layer. The

output bh of hidden unit h is the weighted sum of inputs a1, . . . ,an, as equation 4.14 shows. Weights

on the hidden unit inputs wh,1, . . . ,wh,n determine the effect that each has on the hidden unit output.

n
∑

i=1
bh

a1
wh,1

a2
wh,2

an
wh,n

...

f

0

4

-4 0 4

Figure 4.7: Basic Structure of Hidden Unit h

bh = f
( n

∑
i=1

wh,i ·ai

)
(4.14)

The hidden unit activation function f implements the rectifier function f (x) = max(0,x) to model

observed behavior. Rectified linear units (ReLUs) outperform sigmoid or hyperbolic tangent func-

tions [80] and so are now widely used for deep learning. Deep learning architectures generally consist

of two or more hidden layers.

Network training uses back-propagation to tune the input weights to minimise output error. A loss

function at the output determines the error between network predictions and observed training sam-

ples. An optimiser function iteratively analyses the loss gradient to tune the weights of hidden units.

The output layer differs for classification and regression problems. Classifiers work with discrete or

categorical labels, and require an output unit for each label. Regressors work with continuous, real

numbers and use a single output unit that can generate a continuous response.

Several neural network configuration options can be used to tune the accuracy and efficiency of ma-

chine learning models. Increasing the number of hidden layers and the number of hidden units per

layer can allow the model to fit more complex functions. The models also need sufficient training

steps to converge on a fit of the required precision. However, too many steps may overfit the observed

data.

Input data scaling is typically required to avoid saturating the network. Scaling outputs can also

improve the learning rate and convergence. Scaling methods such as min-max normalisation and

standardisation are typically used. For standardisation scaling, the scaled feature x′ for feature mean
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x̄ and standard deviation σx is given by equation 4.15.

x′ =
(x− x̄)

σx
(4.15)

The following neural network configuration was experimentally determined to meet the requirements

for model fit and error limits:

• DNN regressor model to provide numerical performance and energy predictions;

• Three hidden layers of 10, 20, and 10 hidden units to provide fan-out between input and hidden

layers, and fan-in between hidden and output layers;

• 2,000 training steps to ensure model convergence without overfit;

• Natural logarithm transform of response to mitigate data skew;

• Standardisation scaling of response to aid learning rate and convergence;

• Standardisation scaling of features/predictors to avoid network saturation.

4.3.5 Model Evaluation

Correlation analysis, k-fold cross validation, and RMS error and R2 statistics are used to evaluate

the model. These quantities are derived from many measurement samples in order to provide a

statistically significant validation of model accuracy.

Spearman’s rank correlation coefficient, ρ , measures the correlation between predictors and responses.

Values near zero indicate weak correlation. This statistic is useful when validating predictor selection

hypotheses.

Values of the R2 statistic near 100% indicate a model fits training data well. With n observations of y

and model fitted values of f , R2 is calculated by dividing the residual sum of squares by the total sum

of squares, as equation 4.16 shows.

R2 = 1− ∑
n
i=1(yi− fi)

2

∑
n
i=1(yi− ȳ)2 (4.16)

RMS error, the standard deviation of the prediction error, measures how closely observed data fits

data forecasts that the model generates. RMS error values near zero indicate a close fit between
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model forecasts and observed data. RMSE is calculated by taking the square root of the mean of the

residual sum of squares, as equation 4.17 shows.

RMSE =

√
∑

n
i=1( fi− yi)2

n
(4.17)

The k-fold cross validation method partitions the data set into k equal-size subsets. k−1 subsets serve

as model training data and the remaining subset is the model test data. The process is repeated k times

to test model accuracy across the full data set.

The getStats method of the Model class provides access to a range of evaluation data for models,

including RMS error and R2 statistics. The kFoldValidate method uses 3-fold cross validation to

confirm that the model does not overfit a subset of the data.

4.4 Trade-Off Analysis

HPCProbe performs trade-off analysis by computing a trade-off zone for a set of performance and

energy efficiency observations (or predictions). Pareto optimisation is widely used to identify optimal

trade-off points between competing objectives. Figure 4.8 shows energy efficiency plotted on the x-

axis and performance plotted on the y-axis. Both responses need to be maximised, so Pareto-optimal

points lie on the top-right of the data set (circled). The line joining these points forms the Pareto front.

Points off the front are not Pareto-optimal as points on the front always provide an improvement in

one parameter with less impact on the other.
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Figure 4.8: Pareto Front – Performance and Energy Efficiency

HPCProbe provides the ParetoFront class in Figure 4.4 for identifying performance and energy ef-

ficiency trade-off points. The setFront method computes Pareto points in the given data set when a

ParetoFront instance is initialised. The identified points are accessible using the get method.
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As stated at the start of this chapter, an important design goal for this component is ensuring that valid

trade-off options are not incorrectly eliminated due to measurement or modelling error. Figure 4.8

shows performance points to the left of the Pareto front that may need to be included if within error

limits of the front, as may energy efficiency points below the front.

4.4.1 Pareto Front Evaluation

HPCProbe evaluates RMS error between predicted Pareto points and the observed values, but also

uses further, specific techniques to assess the accuracy of the predicted fronts. Pareto front accuracy

is assessed using the following metrics:

• Coincident point count, that is, the count of search space points that occur in both observed and

predicted fronts.

• Non-coincident observed front point count, grouped by distance to nearest neighbour on pre-

dicted front.

• Non-coincident predicted front point count, grouped by distance to nearest neighbour on ob-

served front.

• Predicted and observed minimums and maximums for each objective (energy efficiency or per-

formance).

• Predicted and observed trade-off ranges for each objective compared to their values when

threads and CPU frequency are at the maximum settings.

To normalise across dimensions, the distance to the nearest neighbour is measured as steps in the

search space. For example, the thread count dimension may have 11 increments from 4 to 44 in steps

of 4. The distance from 36 to 40 would be one search space step or 1/11 = 9%, and 36 to 44 would

be two search space steps or 2/11 = 18%.

Pareto front evaluation data is accessible using the getStats method of the Model class.

4.4.2 Measurement and Modelling Error

Response observations exhibit measurement error while model forecasts exhibit prediction error. As

such, the HPCProbe design must allow for both measurement and prediction errors when identifying

trade-off options between performance and energy efficiency. Valid trade-off options within error

limits lie in a zone close to the Pareto front, rather than only lying directly on it. This work introduces

the concept of a trade-off zone that includes all values near the Pareto front that are not statistically

distinguishable from those on the front.
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Figure 4.9 shows the steps to construct the trade-off zone:

1. Plot the data set against the trade-off parameters (energy efficiency and performance in our

case).

2. Plot the Pareto front along the Pareto-optimal points.

3. Extend the Pareto front outer limits horizontally and vertically to encompass all points that are

off the front but are within the error limits for the respective axes.

4. Scale and translate the Pareto front by the axes error limits to set the inner limits of the trade-off

zone.

5. Close the two curves, which creates a polygon that represents the trade-off zone.
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Figure 4.9: Pareto Trade-Off Zone Construction Steps

The trade-off zone polygon encloses the set of points that may be Pareto optimal when we compensate

for the error limits of each axis. These points provide the trade-off options for energy efficiency and

performance. Since measured and predicted error limits differ, the measured and predicted Pareto

fronts have distinct trade-off zones.

The getPath method of the ParetoFront class provides access to the trade-off zone polygon. The

getPathPts method provides access to the list of Pareto optimal data points enclosed by the trade-off

zone.

The models only use measured data for the response variable, which provides two benefits. First,

model coefficients are not biased by random error in the response measurements [81]. Consequently,

the regression estimates tend to average training data values, plus or minus measurement error. Sec-

ond, models can predict for unseen predictor data, allowing large parameter spaces to be practically

explored with a small number of training measurements.
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In our laboratory environment, measurement error levels can be controlled to around 5% by ensuring

that overall execution time is large compared to program initialisation and shutdown time and to the

temporal resolution of system power counters. In less controlled environments with larger measure-

ment error, the size of the trade-off zone will increase as more data points fall within the error limits.

This effect occurs even if the full search space is measured. The estimated measurement error and

model error are used to assess the level of alignment or overlap between the observed and predicted

trade-off zones.

4.5 Results Reporting

HPCProbe provides the HPCPlot package for reporting and visualising optimisation results, as Fig-

ure 4.10 shows. The Plot class is the base class for generating 2D and 3D graphical representations of

the results. The Plot class has associated experiment details, including a list of experiment ResultSets.

Experiment ResultSet data is read, selected, and merged into a plot data set by the PlotDf class. Data

manipulation operations such as filtering, slicing, and vector arithmetic can then be used on plot data.

HPCPlot

2..*

Plot

plotFig()

LinePlot

plotPd()

SurfPlot

plotPd()

ParetoPlot

plotPd()

QQPlot

plotPd()

Axis Columns Kernels

Experiment

getYmls()

PlotDf

readYamls()

Figure 4.10: HPCPlot Class Diagram

Plots have two or more Axis instances, and reference Columns and Kernels meta data such as column

units and scale, and kernel or application specifics such columns for optimisation.

The LinePlot class provides 2D x/y-axis plots. The SurfPlot class adds a z-axis for 3D surface plots.

The ParetoPlot class provides visualisation of the trade-off zone plotted against energy efficiency and

performance data points.
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The Results Reporting component also accesses model and Pareto front evaluation metrics using the

getStats and kFoldValidate methods of the Model class.

4.6 Orchestration

HPCProbe orchestration components are shown in Figure 4.11. The Experiment class in the HPCProbe

sub-component provides methods for configuring and running energy tuning experiments, for reading

and parsing job results, and for statistical analysis of results.

HPCProbe

HPCProbeHPCProbe
Job OptimisationJob Optimisation

Platform Tuning FrameworkPlatform Tuning Framework

Platform Resource AllocationPlatform Resource Allocation

Experiment

config()
run()
getResults()
analyseResults()

ResultSet

Run

Instrument

Measure

Submit

Figure 4.11: HPCProbe Orchestration Components

HPCProbe can integrate with different platform tuning and resource allocation frameworks, which

improves cross-platform portability. HPCProbe can also integrate with job optimisation frameworks

such as Nimrod/O [29] for search heuristics, results caching, and resource allocation using Nim-

rod/G [82]. Nimrod/G supports a wide range of cluster, grid, and cloud platforms, including PBS,

Globus, Amazon EC2, and Microsoft Azure.

4.7 Data Model

Figure 4.12 provides an overview of key entity and relationship structures for HPCProbe. The Exper-

iment class defines parameter ranges for the energy tuning experiment. Each run of an experiment

generates a ResultSet. The ResultSet class uses the Parameters class to define the input parameters

for each program run within an experiment. Parameters include CPU frequency, thread count, node

count, and thread placement settings.
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Figure 4.12: HPCProbe Data Model

The system responses or objectives for each run are captured in one or more Objectives. Objectives

include measured values such as total time, total energy, and operations per second. Experiments

with repeated runs also capture statistics for each objective using the Stats class. Statistics captured

include sample means, median, standard deviation and t-distribution confidence interval.

The Kernels class specifies attributes of programs being tuned, such as columns to be optimised and

if optimisation requires minimum or maximum values. The Columns class specifies Parameter and

Objective attributes such as measurement units and scale.

Class, method, and attribute descriptions are available in Appendix B.

4.8 Architecture Summary

This chapter examined novel architectural features for a new tuning framework that enables parallel

application users to make performance and energy trade-off decisions. Key architectural innovations

that differentiate HPCProbe from traditional tuning frameworks include:

• Development of stochastic models that can make accurate predictions while tolerating small

and noisy training data sets;

• A scheme for generating predicted trade-off ranges that can be validated using statistical tech-

niques;

• A system for dealing with measurement and modelling error in multi-objective optimisation

analysis;

• A component-based architecture where components are substitutable to suit the application

tuning environment.
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Additionally, this chapter presented advanced elements of the HPCProbe energy tuning framework,

including its modular design and pluggable interfaces that can flexibly integrate with existing instru-

mentation and measurement tools. The outcome is an energy tuning architecture that delivers a new

and innovative solution for parallel application users.
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Chapter 5

Implementation Details

Chapter 4 presented the functional components and relationships that provide a logical design struc-

ture for HPCProbe. This chapter presents details for a HPCProbe prototype implementation that

realises the proposed components design.

HPCProbe includes features of traditional HPC performance tuning frameworks, such as application

instrumentation, response measurement, and results reporting. This chapter focuses on novel features

of these components, along with implementation details for components that provide new predic-

tive models and trade-off techniques for responses that are subject to error. Implementation of the

following functionality is considered in detail:

• Application instrumentation and response measurement using CrayPAT.

• Response prediction using Python B-spline and machine learning models.

• Algorithms for constructing the Pareto trade-off zone used in trade-off analysis.

• APIs for numerical and visual results reporting.

• Integrated orchestration using Nimrod/O, PBS, and CrayPAT.

This chapter is intended to provide a robust demonstration of how the research contributions of this

thesis may be implemented in a practical tool.

5.1 Deployment Model

The deployment model for the HPCProbe implementation is shown in Figure 5.1. The deployment

model places deployment artefacts on the HPCProbe user workstation and the HPC cluster login node.

The deployment artefacts implement functions assigned to components in Chapter 4. HPCProbe does
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not interact directly with the HPC cluster. This interaction is via the PBS resource management tools,

qsub and aprun.

The component numbers overlaying each artefact and the associated legend in Figure 5.1 provide

traceability between the design and implementation. This traceability provides a demonstration of

the implementation completeness.

WAN

≪artefact≫
bash

Workstation

≪artefact≫
ssh

≪artefact≫
scp

≪artefact≫
hpcplot.py

≪artefact≫
hpcmodel.py

≪artefact≫
bash

≪artefact≫
yaml file

≪artefact≫
hpcprobe.py

≪artefact≫
nimrodo

HPC Login Node

≪artefact≫
qsub

≪artefact≫
aprun

≪artefact≫
exp data

≪artefact≫
pat_report

≪artefact≫
init file

≪artefact≫
sched file

≪artefact≫
pbs script

≪artefact≫
pat_run

≪artefact≫
program

6

6

6

5

3,4

6

2

2,6

6

6

6 1

2

6

6

6

1,22

Components
1 App Instrumentation
2 Response Measurement
3 Response Prediction
4 Trade-Off Analysis
5 Results Reporting
6 Orchestration

Figure 5.1: HPCProbe Deployment Model

The following sections present key implementation features of the deployment artefacts that realise

each component.

5.1.1 Application Instrumentation

On the Cray Linux Environment (CLE) used for this work, the pat_build or pat_run utilities can

be used to instrument programs without the need to modify source code.

The pat_build utility requires that the original program be compiled and linked with the perftools-base

module loaded. A program written in C is instrumented as follows:

$ module load perftools-base

$ cc -o <program> <program>.c

$ pat_build -w <program>

The pat_build -w option enables a tracing experiment where code is instrumented synchronously

by inserting hooks within the program. CrayPAT also supports sampling experiments using ex-

68



ternal or asynchronous instrumentation. Tracing experiments work well when tuning overall pro-

gram performance and energy use, as in our case. The instrumented program is written to the file

<program>+pat.

The pat_run utility provides an alternative to pat_build with the advantage that it can be used

without recompiling. Program instrumentation and measurement can be invoked in one step when

the program is launched, as section 5.1.6 shows.

Instrumenting programs with pat_build generally provides greater data collection capability and

flexibility than using pat_run, but pat_run can provide the metrics required for performance and en-

ergy efficiency tuning without the need to recompile. Avoiding the need to compile programs simpli-

fies the tuning process for both the program user and the tuning orchestration framework. HPCProbe

works with both pat_build and pat_run.

5.1.2 Response Measurement

HPCProbe uses CrayPAT to access PAPI, RAPL and Cray PM counter data for an instrumented pro-

gram. The hpcprobe.py module captures experiment data reported by the program itself at runtime

and by the CrayPAT pat_report utility post program runtime for analysing experiment data written

by the program instrumentation to the <exp data> folder.

The Python regular expressions library is used in hpcprobe.py to parse performance data output

from the program and pat_report at the counter group and individual counter levels. This allows

individual counters to be uniquely identified across groups, so node level and thread level counters

can be distinguished for example.

The regular expression counter parser configuration is loaded from a YAML configuration file. New

counters or performance reporting tools can be integrated in the HPCProbe framework by updating

this configuration information.

The hpcprobe.py module writes the experiment ResultSet in YAML format to a summary file. The

ResultSet captures the experiment input parameters and the measured responses or objectives. The

hpcplot.py module reads the required YAML files into a Python pandas DataFrame for analysis,

prediction, and reporting.

5.1.3 Response Prediction

HPCProbe provides basic polynomial, B-spline, and deep learning predictive model implementations

that extend a common Model base class. The results in Sections 6.2, 6.3 and 6.5 demonstrate that a

small sample of measured data is sufficient to fit system- and workload-specific coefficients for the

B-spline and deep learning models.
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PolyReg Model

The PolyReg basic polynomial regression model is implemented using the Ordinary Least Squares

sklearn.linear_model.LinearRegression model provided in the Python scikit-learn library [83]. The

polynomial degree is a key configuration parameter for this model. Increasing the polynomial degree

allows the model to fit more complex responses. Using a polynomial degree of two will generate a

quadratic fit, and a degree of three will generate a cubic fit, and so on.

Figure 5.2 shows that selecting the optimum polynomial degree is a balance between underfitting

with lower order polynomials and overfitting with higher order polynomials.

4 12 20 28 36 44
Threads

100

120

140

160

180

200

M
Fl

op
s/

J

Degree 1 – Linear
Degree 3 – Good fit
Degree 9 – Overfit
Train

Figure 5.2: Model Fit by Polynomial Degree

The HPCModel package also provides a number of vectorised data transforms and scalers that can im-

prove model performance. The implementation provides common transforms for mitigating normal

data distribution deviations, including x′ = logex, log2x, log10x, ex, and
√

x . The implemented data

scalers include min-max normalisation, as equation 5.1 shows, and standardisation using the sample

mean x̄ and standard deviation σ , as equation 5.2 shows. Feature scaling is a common requirement in

machine learning algorithms.

The PolyReg model provides a baseline for demonstrating that more advanced modelling techniques

are required to meet our training and accuracy requirements.

x′ =
x− xmin

xmax− xmin
(5.1)

x′ =
x− x̄

σ
(5.2)
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SplineReg Model

The statsmodels.formula.api module in the Python StatsModels library [84] allows regression models

to be specified with plain-text Wilkinson notation [79] similar to the formula style used in the R

programming language. This notation simplifies the process of specifying model parameters such the

B-spline degrees of freedom and polynomial degree for each model term, and interactions between

terms. Model fit can be tuned using these parameters.

The HPCProbe implementation provides methods to auto generate formula, such as generating first

and higher order term interactions, removing interactions that are not significant, and setting lower and

upper bounds for terms. Basis spline terms are initialised with settings for the required polynomial

degree and spline degrees of freedom. For a cubic B-spline the degrees of freedom and number of

knots are equivalent.

The SplineReg B-spline model fits an Ordinary Least Squares model using the specified model for-

mula and training data. This model consistently outperform basic polynomial models in our experi-

ments.

DnnReg Model

Many toolkits and frameworks are available to implement deep learning models. HPCModel uses

Python scikit-learn [83] and TensorFlow [85]. TensorFlow classification and regression deep neural

networks are implemented using the DNNClassifer and DNNRegressor classes. Classifier networks

are used to predict classes, such as cat or dog image labelling by features of the image. Regressor

networks are used to predict continuous values, such as house price by locality features. Our require-

ment is to predict continuous performance and energy usage values by system and workload features,

so DnnReg uses the DNNRegressor class.

Parameters for instantiating a DNNRegressor set the topology of the neural network, including input

units for each feature, hidden layers, and hidden units per hidden layer. Sample input data (features

or predictors), output data (responses), and number of training steps (iterations for convergence) are

then used to train the DNNRegressor.

Training neural networks typically involves some randomisation, such as training weights or sample

ordering. This randomisation may result in prediction variations from one training run to the next.

To ensure consistent, repeatable results from run to run, a tf.estimator.RunConfig is initialised using

a constant random seed and assigned using the DNNRegressor config parameter.

Our model input and output parameters have very different scales and ranges, such as 109 Hz versus

101 threads or 106 MFlops/s versus 102 MFlops/J, so it is good practice to normalise data. Fig-

ure 5.3 shows model convergence for no scaling, min-max scaling, and standardisation scaling. It
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shows model convergence improves significantly with standardisation scaling, where model inputs

and outputs are scaled to have zero mean and unit variance.
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Figure 5.3: DNN Model Convergence by Data Scaling Method

5.1.4 Trade-Off Analysis

As introduced in Chapter 4, a key innovation of this work is the introduction of a trade-off zone

approach allowing for measurement and modelling error in the trade-off data. HPCProbe implements

the calculations to determine the trade-off zone as follows:

1. Calculate the Pareto-optimal points forming the Pareto front.

2. Extend the front horizontally and vertically to set outer error limits.

3. Scale and translate the Pareto front to set inner error limits.

4. Extend the front to include points bounded by the trade-off zone.

The ParetoFront class in the HPCModel component provides methods that implement the required

calculations.

Calculate Pareto Front

Exhaustive methods for identifying Pareto-optimal trade-off points are practical for HPCProbe be-

cause the search space size is limited [86] by minimising the number of tuning parameters and the

tuning resolution needed. Exhaustive methods also avoid the risk of missing valid points that is asso-

ciated with approximation methods.

The exhaustive method used in the setFront function starts with a multi-key sort by the data values

for trade-off, worst-to-best for performance then best-to-worst for energy. The first point in the sorted

data set is the best energy point, which becomes the first Pareto point. The algorithm then iterates
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Listing 5.1: Pareto Set DataFrame
ee a r fq tn pe nd

62 210.024999 3.237124 e+06 1900000 24 2 64
63 209.616948 3.284022 e+06 2000000 24 2 64
64 207.011428 3.309843 e+06 2100000 24 2 64
65 202.290166 3.314084 e+06 2200000 24 2 64

through the rest of the data set adding any points with equal or better performance compared with the

previously added Pareto point.

HPCProbe uses the DataFrame structure from the Python pandas library [87] for manipulating ex-

periment data. DataFrame indexing allows data sorting and slicing without loosing context, such as

the tuning parameter settings for each Pareto point. Listing 5.1 shows the DataFrame representation

of the stencil Pareto front seen in Figure 4.8. The data set index for each point is listed in the first

column. The ee and ar columns have the energy efficiency and performances responses for each

point. The fq, tn, pe, and nd columns are the frequency, thread count, process count, and node count

settings for each point.

Extend Pareto Front Horizontally and Vertically

HPCProbe then extends the horizontal and vertical limits of the Pareto front calculated by setFront

using the getLimits algorithm, which is shown in two parts in Algorithms 5.1 and 5.2. Algorithm 5.1

shows the required variable initialisations, depending on whether optimal responses are maximised or

minimised. For example, x and y need to be maximised if they are energy efficiency in MFlops/J and

performance in MFlops/s. The outer x_lim in this case is 1− the x error limit (line 5), so any points

with x values below the front that are within 95% of x-maximum are within error limits.

Algorithm 5.1 Get Pareto Front with Extended Limits – Part 1
1 function GETLIMITS

2 px_lim← (ptspptsn,2, ptspptsn,3) ▷ Get last/first front (x,y) points
3 py_lim← (ptsppts1,2, ptsppts1,3) ▷ as current end/start points
4 if max_x = true then ▷ Get x limit when x is being maximised/minimised
5 x_lim← 1−MAX(lims1)
6 else
7 x_lim← 1+MAX(lims1)
8 end if
9 if max_y = true then ▷ Get y limit when y is being maximised/minimised

10 y_lim← 1−MAX(lims2)
11 else
12 y_lim← 1+MAX(lims2)
13 end if
14 p f 1← null ▷ Index of new starting
15 p f 2← null ▷ and ending front points

Algorithm 5.2 shows that getFront then iterates through the data set searching for points within the
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calculated limits, x_lim and y_lim, that extend the front horizontally and vertically (lines 16 to 36).

For the MFlops/J and MFlops/s example, we want to extend the front vertically below x-maximum

to create a new y-minimum that allows for x values within 95% of x-maximum (line 20). The front

is extended horizontally to the left of y-maximum to create a new x-minimum in a similar manner

(line 29).

Algorithm 5.2 Get Pareto Front with Extended Limits – Part 2
16 for i← 1 to LEN(pts) do ▷ Find the index of points beyond either end of the front
17 (x,y)← (ptsi,2, ptsi,3) ▷ but still within limits
18 if max_x = true then
19 if x < px_lim1 and y > py_lim2× y_lim and (p f 1 = null or ptsp f 1,1 > x) then
20 p f 1← i ▷ Found x that is less than current ptsp f 1,1 and within y limit
21 end if
22 else
23 if x > px_lim1 and y < py_lim2× y_lim and (p f 1 = null or ptsp f 1,1 < x) then
24 p f 1← i ▷ Found x that is greater than current ptsp f 1,1 and within y limit
25 end if
26 end if
27 if max_y = true then
28 if x > px_lim1× x_lim and y < py_lim2 and (p f 2 = null or ptsp f 2,2 > x) then
29 p f 2← i ▷ Found y that is less than current ptsp f 2,2 and within x limit
30 end if
31 else
32 if x < px_lim1× x_lim and y > py_lim2 and (p f 2 = null or ptsp f 2,2 > x) then
33 p f 2← i ▷ Found y that is greater than current ptsp f 2,2 and within x limit
34 end if
35 end if
36 end for
37 for i← 1 to LEN(ppts_lim) do ▷ Convert list of point indices to list of points
38 f ront_limi← (ptsppts_limi,2, ptsppts_limi,3)
39 end for
40 if p f 1 ̸= null then ▷ Found new x ending point for front
41 f ront_lim← f ront_lim ∪ (ptsp f 1,2, px_lim2) ▷ so add it to end of front
42 end if ▷ using previous y value
43 if p f 2 ̸= null then ▷ Found new y starting point for front
44 f ront_lim← (py_lim1, ptsp f 2,3) ∪ f ront_lim ▷ so add it to start of front
45 end if ▷ using next x value
46 return f ront_lim
47 end function

A new list of Pareto points is initialised by copying the current list (lines 37 to 39). If a new vertical

limit was found a new point is prepended to the list using the y value of the new point and the x value

of the Pareto point that is currently first in the list (line 41). Similarly, if new horizontal limit was

found it is append to the list (line 44).

Listing 5.2 shows the stencil Pareto front DataFrame with added starting and ending points that extend

the front limits as plotted in Figure 4.9, step 3.

74



Listing 5.2: Extended Pareto Set DataFrame
ee a r fq tn pe nd

55 210.024999 2.696985 e+06 1200000 24 2 64
62 210.024999 3.237124 e+06 1900000 24 2 64
63 209.616948 3.284022 e+06 2000000 24 2 64
64 207.011428 3.309843 e+06 2100000 24 2 64
65 202.290166 3.314084 e+06 2200000 24 2 64
87 182.741915 3.314084 e+06 2200000 32 2 64

Scale and Transform Pareto Front

The scaleAndTransform method sets the Pareto front inner and outer limits as Algorithm 5.3 shows.

Method parameters include the required x and y offsets for the transformed front and the x and y

scaling factors needed to fit within the offsets. Setting the inner limit starts by scaling each Pareto

point by the required x_scale and y_scale (lines 3 and 5). For fronts that maximise both responses,

the inner limit is scaled down to fit between a point y_off below x-minimum of the front, and a point

x_off left of y-minimum.

Algorithm 5.3 Scale and Transform Front to Set Required Inner/Outer Limit
1 function SCALEANDTRANSFORM(x,y,x_scale,y_scale,x_o f f ,y_o f f , inner)
2 n← LEN(x)
3 for i← 1 to n do ▷ Scale front x,y values by required amounts
4 plimi← (x_scale× xi,y_scale× yi)
5 end for
6 if inner = true then ▷ Set indices needed to calculate front origin
7 a,b,c,d← 1,n,n,1
8 plim← REVERSE(plim) ▷ Reverse inner limit list to close polygon
9 else

10 a,b,c,d← n,n,1,1
11 end if
12 if max_x = true then ▷ Calculate x,y origin for required offset
13 x_origin← xa− plimb,1− x_o f f
14 else
15 x_origin← xc− plimd,1 + x_o f f
16 end if
17 if max_y = true then
18 y_origin← yc− plimd,2− y_o f f
19 else
20 y_origin← ya− plimb,2 + y_o f f
21 end if
22 for i← 1 to n do ▷ Transform front by required offset
23 plimi,1← plimi,1 + x_origin
24 plimi,2← plimi,2 + y_origin
25 end for
26 return plim
27 end function

When setting the inner limit, points in the scaled front are reversed to provide a simple, closed polygon
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that is not self-intersecting (line 8). Next, the required origin point for the scaled front is calculated.

When x is maximised, x_origin for the inner limit is the difference between the first and last x val-

ues of the unscaled and scaled fronts, less the required x_off (line 13). The algorithm finishes by

transforming the front by the required offset (lines 22 to 25).

Extend Pareto Front using the Trade-Off Zone

The HPCProbe getPath and getPathPts methods integrate the all the described trade-off analysis steps

to complete the implementation. The getPath method provides the list of polygon vertices that defines

the trade-off zone, as Algorithm 5.4 shows.

First, the getLimits method shown in Algorithm 5.1 and 5.2 is called to extend the front horizontally

and vertically (line 2). The required inner and outer scaling of x and y values that allows for the x

and y margins of error is calculated (lines 11 and 18) using the calculated ranges and offsets (lines 7

to 10). Next, the scaleAndTransform method shown in Algorithm 5.3 is called to set the Pareto front

outer limits (line 25) and inner limits (line 26). The getPath method returns a list of trade-off zone

vertices that is the union of the inner and outer points lists.

Algorithm 5.4 Get Vertices of Polygon/Path Enclosing All Pareto Points Within Limits
1 function GETPATH

2 (x,y)← (GETLIMITS)⊺ ▷ Transpose points within limits into x and y values
3 if x0 < xn then ▷ check points are in ascending x order
4 x← REVERSE(x)
5 y← REVERSE(y)
6 end if
7 rng_p f x← MAX(x)−MIN(x) ▷ Calculate x and y ranges
8 rng_p f y← MAX(y)−MIN(y)
9 x_o f f _in,x_o f f _out← lims1,1×MAX(x), lims1,2×MAX(x) ▷ and inner and outer offsets

10 y_o f f _in,y_o f f _out← lims2,1×MAX(y), lims2,2×MAX(y) ▷ from front
11 if rng_p f x > 0 then ▷ Calculate scaling for inner and outer fronts
12 x_scale_in← 1− x_o f f _in/rng_p f x
13 x_scale_out← 1+ x_o f f _out/rng_p f x
14 else ▷ No x scaling if rng_p f x is zero
15 x_scale_in← 1
16 x_scale_out← 1
17 end if
18 if rng_p f y > 0 then
19 y_scale_in← 1− y_o f f _in/rng_p f y
20 y_scale_out← 1+ y_o f f _out/rng_p f y
21 else ▷ No y scaling if rng_p f y is zero
22 y_scale_in← 1
23 y_scale_out← 1
24 end if
25 plim_out← SCALEANDTRANSFORM(x,y,x_scale_out,y_scale_out, plim_out, f alse)
26 plim_in← SCALEANDTRANSFORM(x,y,x_scale_in,y_scale_in, plim_in, true)
27 return plim_out ∪ plim_in
28 end function
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Listing 5.3: Trade-Off Zone Pareto Set DataFrame
ee a r fq tn pe nd

48 200.287563 2.781450 e+06 1600000 20 2 64
49 202.701038 2.867379 e+06 1700000 20 2 64
50 204.961197 2.948861 e+06 1800000 20 2 64
51 207.062290 3.025374 e+06 1900000 20 2 64
52 207.807341 3.087693 e+06 2000000 20 2 64
53 206.000412 3.126039 e+06 2100000 20 2 64
54 201.707767 3.139495 e+06 2200000 20 2 64
56 202.623305 2.788294 e+06 1300000 24 2 64
57 204.287983 2.875768 e+06 1400000 24 2 64
58 205.784968 2.958860 e+06 1500000 24 2 64
59 207.110386 3.037038 e+06 1600000 24 2 64
60 208.260791 3.109792 e+06 1700000 24 2 64
61 209.233177 3.176638 e+06 1800000 24 2 64
62 210.024999 3.237124 e+06 1900000 24 2 64
63 209.616948 3.284022 e+06 2000000 24 2 64
64 207.011428 3.309843 e+06 2100000 24 2 64
65 202.290166 3.314084 e+06 2200000 24 2 64
66 203.294764 2.837753 e+06 1200000 28 2 64
67 203.718035 2.914736 e+06 1300000 28 2 64
68 203.966412 2.986643 e+06 1400000 28 2 64
69 204.039257 3.053001 e+06 1500000 28 2 64
70 203.936380 3.113366 e+06 1600000 28 2 64
71 203.658047 3.167327 e+06 1700000 28 2 64
72 203.204976 3.214512 e+06 1800000 28 2 64
73 202.578336 3.254595 e+06 1900000 28 2 64
74 201.067652 3.283264 e+06 2000000 28 2 64
75 197.991527 3.296168 e+06 2100000 28 2 64
76 193.422145 3.293120 e+06 2200000 28 2 64
77 201.437336 2.903674 e+06 1200000 32 2 64
78 200.642754 2.966066 e+06 1300000 32 2 64
79 199.683442 3.022587 e+06 1400000 32 2 64
82 195.843044 3.153284 e+06 1700000 32 2 64
83 194.252660 3.182887 e+06 1800000 32 2 64
84 192.513354 3.205121 e+06 1900000 32 2 64
85 190.204815 3.218855 e+06 2000000 32 2 64
86 186.930691 3.223006 e+06 2100000 32 2 64
87 182.741915 3.217534 e+06 2200000 32 2 64

The getPathPts method (not shown) uses the trade-off zone vertices returned by getPath to construct a

Polygon object using the Python shapely.geometry.polygon library [88]. The Pareto front is updated

to include all points that intersect with the trade-off zone Polygon object.

Listing 5.3 shows the stencil Pareto front DataFrame with the addition of all points that intersect the

trade-off zone as plotted in Figure 4.9, step 5. These points are statistically equivalent to points that

lie directly on the Pareto front when error limits of the trade-off data are considered.
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5.1.5 Results Reporting

The HPCPlot module provides Python APIs for generating analysis metrics and plots using HPCProbe

experiment data, the HPCModel module, and the Python matplotlib library [89]. Experimental ob-

servation data is loaded from YAML files generated by the HPCProbe module. Model predictions

are generating using the HPCModel module. Observed and predicted data sets are manipulated using

pandas DataFrames.

The YAML experiment data files required for analysis can be specified as a list of YAML file names

and loaded into a Plot DataFrame as follows.

>>> import hpcplot as hplt

>>> ymls = [’stencil-f-e-h-64-4.yml’]

>>> pd = hplt.PlotDf(ymls, basePredictors=True)

YAML files for separate energy and performance runs are combined as a list of a list of file names.

Model predictions can be generated using the HPCModel module. Training and test data selection

dictionaries need to be assigned first. Training data selection is set for uniform sampling as Figure 4.5

shows. Test data selection is set for predictions across the full thread and frequency range at 64 nodes:

>>> import numpy as np

>>> import hpcmodel as hmdl

>>> train = {’custom’: {

... ’nd’: [64] * 12,

... ’tn’: [8, 20, 32, 44] * 3,

... ’fq’: np.repeat([1200000, 1900000, 2200000], 4)}

... }

>>> test = {

... ’nd’: [64],

... ’tn’: range(4, 45, 4),

... ’fq’: range(1200000, 2200001, 100000)

... }

The list of response selection and definition dictionaries is assigned next:

>>> responses = [
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... {’col’: ’ee’, ’type’: ’Energy’, ’unit’: ’MFlops/J’,

... ’scale’: 1000000.0},

... {’col’: ’ar’, ’type’: ’Performance’, ’unit’: ’MFlops/s’,

... ’scale’: 1000000.0}

... ]

Assign the dictionary defining trade-off zone limits for each response and if it needs to be maximised

or minimised:

>>> lims = {

... ’ee’: {’obs’: [0.05, 0.0], ’for’: [0.05, 0.0], ’pareto_max’: True},

... ’ar’: {’obs’: [0.05, 0.0], ’for’: [0.05, 0.0], ’pareto_max’: True}

... }

Then generate a B-spline model prediction using default model settings as follows:

>>> rm = hmdl.SplineReg(pd.df, responses, pd.predictors,

... train=train, test=test, lims=lims)

Appendix A provides further examples of using the HPCPlot and HPCModel APIs. Appendix B

provides descriptions of plot and model initialisation parameters.

Results Visualisation

HPCProbe implements two and three dimensional plots for visualising trade-off results using the

Python matplotlib library. A basic 2D Pareto plot with trade-off zone can be generated for observed

energy efficiency versus performance as follows:

>>> hplt.ParetoPlot(pd.df, ’ee’, ’ar’, poly=True, lims=True).plot()

The Pareto plot with trade-off zone can be generated for the B-spline model predicted data as follows:

>>> hplt.ParetoPlot(rm.df_test, ’ee’, ’ar’, poly=True, lims=True).plot()
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Evaluation Metrics

The HPCProbe API populates model evaluation metrics in a Python dictionary. API users can use

this dictionary as the keyword arguments list for the Python format function to output the statistics of

interest in the format required. The following code snippet provides a simple example:

>>> stats = rm.getStats()

>>> print(stats)

{’r1Rsq’: 1.0, ’r1Rmse’: 4.3, ’nobs’: 12.0, ...}

>>> print(’R squared is {r1Rsq}, RMS Error is {r1Rmse}’.format(**stats))

R squared is 1.0, RMS Error is 4.3

Evaluation tables presented in Chapter 6 use this approach to generate the required tables in LATEX

format.

5.1.6 Orchestration

The Experiment class in the hpcprobe.py module orchestrates the following activities to automate

energy tuning experiments:

1. Job submission to the HPC cluster using PBS.

2. Search space iteration using Nimrod/O.

3. Job output data post processing using CrayPAT.

HPC users access the HPC system using an SSH (Secure Shell) client on their workstation to connect

to the HPC login node. The hpcprobe.py module is configured and launched on the login node.

The Experiment configuration options for hpcprobe.py are loaded from an initialisation file or us-

ing command line parameters. An interactive mode (non-batch) can be used for debugging the run

configuration.

Job Submission

HPCProbe generates a PBS script to allocate the required HPC cluster resources and run the program

to be tuned. HPC resources include the required number of nodes, number of cores per node, and the

job maximum wall time. The job is submitted using the qsub command as follows:

$ qsub <pbs-script>
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Our Cray ALPS laboratory environment provides the aprun command to specify application re-

sources and placement, and launch a program on the HPC cluster. Application resources include the

number of nodes for the run, number of MPI processes or ranks per node, number of cores per rank,

core placement, number of the Hyper-Threads per core, and CPU frequency. Programs instrumented

using pat_build are launched using the aprun command as follows:

$ aprun <aprun-options> <program>+pat <prg-options>

As discussed in section 5.1.1, programs not instrumented with pat_build can use pat_run instru-

mentation. The pat_run command can be used with aprun as follows:

$ aprun <aprun-options> pat_run <program> <prg-options>

Applications and system tools also often read configuration information from environment variables.

For example, the HPCProbe env option is used to specify required CrayPAT performance counter

events using an environment variable.

When program execution completes, CrayPAT automatically collates experiment data from the across

the HPC cluster and writes the results to an experiment folder. A single instrumented run can generate

a large amount of experiment data (over 10MB per run) so a clustered file system should be selected

for the experiment folder using the HPCProbe outputFolder option. Using a login node local file

system can significantly extend the time required to collect results, and negatively impact login node

performance for other users.

Search Space Iteration

HPCProbe generates a Nimrod/O schedule file to specify the required parameter sweeps to complete

an experiment, the objective function evaluator to use, and the required optimisation method (or meth-

ods). Parameter sweeps include the range of CPU frequencies and OpenMP thread counts required

for the experiment, specified using the HPCProbe cpuFrequency and threadCount options. The ob-

jective function evaluator takes the input parameters, performs the required evaluation, then outputs

the objective. This implementation of HPCProbe uses the exhaustive search optimisation method, but

Nimrod/O incorporates a number of standard non-linear methods.

Nimrod/O searches are launched as follows:

$ nimrodo -f <schedule-file>
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Nimrod/O invokes the objective function evaluator to evaluate each of the required data points in

the search space. The Nimrod/O local dispatcher uses the aprun command to start the kernel or

application being evaluated with the required configuration. The HPCProbe expExec option is used

to specify the application start command. The objective result, the energy used for example, is written

to file when the job completes. Single objective optimisation methods can be used with multiple

objectives by combining results as a weighted sum.

Execution monitoring detects non-zero completion codes or invalid objective results, and aborts the

run. Results caching and concurrency controls are also available. HPCProbe restricts the concurrent

jobs to one to ensure nodes are exclusively allocated for each evaluation run.

Job Post-Processing

The HPCProbe postExec option is used to configure post-processing activities needed when submit-

ted job completes. The CrayPAT pat_report utility is used to query experiment data generated from

the program run as follows:

$ pat_report <pat-options> <exp-data>

The data aggregation capabilities of pat_report are an important aid in the processing of the ex-

periment data. For example, to sum PM_ENERGY:NODE counters across all processing elements (MPI

ranks) used for the program run, use the -s aggr_pe option as follows:

$ pat_report -s aggr_pe_PM_ENERGY:NODE=sum <exp-data>

Job post-processing also links experiment data folders to job submissions to provide a complete audit

trail for experiments.

Fault Tolerance

HPCProbe provides several features to improve the fault tolerance or resilience of tuning experiments.

The mean time between failures (MTBF) of a HPC system will increase as the number of nodes

increase, so techniques that avoid the need to rerun a job from the start when there is a failure can

minimise the resulting time and resource waste. Service levels provided by laboratory environments

may also be lower than production environments. A failure rate of one job in 1,000 means around

one in 10 experimental sweeps will benefit from fault tolerance.

Experiments can be configured with a retry count using the retries setting to reattempt an activity

when there is a failure. The experiment can continue if the activity is completed within the specified
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number of retries. If an experiment is aborted, due to a node failure for example, HPCProbe can

be configured to restart the experiment from the point of failure once the problem is resolved using

the continue option. HPCProbe can also be configured to rerun a job with updated post-processing

options using the reget option. This allows previously collected experiment data to be reused when

there was a problem with the post-processing results.

5.2 Implementation Summary

This chapter presented implementation details for the HPCProbe framework. Aspects of the imple-

mentation that enable the proposed approach to be comprehensively evaluated are a focus. These

aspects include highly configurable or tunable model implementations for system response predic-

tion, allowing the proposed model performance to be fully studied. Fault tolerance features of the

framework are another important aspect that improves the resource management efficiency of re-

source intensive tuning activities.

Implementation details are also presented for tuning innovations that are specific to HPCProbe. These

innovations include statistical and machine learning models that can be trained to predict the system

responses that are needed to identify energy efficiency and performance trade-off options. Another

key contribution is the algorithms that implement the proposed trade-off zone approach. These algo-

rithms allow HPCProbe to consider errors that are inherent in real-world multi-objective optimisation

scenarios.

The presented implementation provides a number of technological advances that aim to improve the

process of tuning parallel applications on HPC systems. It also aims to provide other performance

researchers and analysts with a framework for developing future tools and products that further benefit

HPC users.
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Chapter 6

Evaluation

This chapter presents an evaluation of the architecture proposed in Chapter 4 using a series of case

studies, including parallel software kernels used within scientific applications, mini-applications used

for system benchmarking, and a full-scale weather modelling application. The aim is to demonstrate:

• That the proposed models and sampling strategy can accurately predict Pareto optimal trade-off

options for energy use and performance.

• The predicted Pareto front provides significant trade-off ranges for energy use and performance,

providing trade-off ranges.

• That the proposed method is generalisable across a range of software kernels and scientific

applications.

6.1 Study Overview

This section provides a summary of the platform, parameters and phases of the experimental study.

Access and set up details for the study source code and data set archive are provided in Appendix C.

6.1.1 Platform

Experiments are conducted on a Cray XC system equipped as Table 6.1 shows. Runs use up to 86

exclusively allocated 44-core nodes, or 3,784 cores in total.

6.1.2 Study Parameters

Table 6.2 lists configuration parameters and associated ranges used in the study. These parameters

generate a full factorial design with 484 combinations.
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Table 6.1: System Specification

Component Specification

CPU model Intel Xeon CPU E5-2699 v4 (Broadwell)
CPU clock 2.2 GHz
Sockets (NUMA Nodes) 2 per compute node
Cores 22 per socket
Last Level Cache (LLC) 55 MB per socket
Main memory (DRAM) 64 GB per socket
Memory bandwidth 76.8 GB/s max

Table 6.2: Experimental Parameters

Parameter Configuration

Compute Nodes 20, 42, 64 and 86
MPI Ranks per Node 2
OpenMP Threads per Rank 2 to 22 incrementing by 2
OpenMP Threads per Core 1
CPU Frequency Cap 1.2 to 2.2 GHz incrementing by 0.1
Total CPU Cores 3,784

6.1.3 Experiments

Study experiments are conducted in two main phases:

1. Model design and evaluation using kernels.

2. Model evaluation using applications.

The kernels and applications use the hybrid MPI/OpenMP programming model. Experiments allo-

cate one MPI Rank per CPU socket and one OpenMP thread per CPU core. OpenMP threads are

distributed uniformly across the available sockets and nodes using the Scatter thread placement pol-

icy. For each experiment, the sample combinations are collected as Table 6.2 lists, for 3,267 total

tests for three kernels and four applications.

A simple Linear Regression model provides a naive baseline for assessing the performance of the

proposed Basis Spline and Neural Network models. The naive model uses polynomial degree of

three, random sampling (Figure 4.5), and no transform for data skew mitigation (section 4.3.3).

6.2 Kernels Study

This section demonstrates that the models can accurately predict Pareto-optimal energy and perfor-

mance trade-off options with low cost for several scientific kernels that focus on specific computa-

tional idioms. The Parallel Research Kernels (PRK) [70] provide a collection of programs that cover
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common patterns of communication, computation, and synchronisation encountered in parallel HPC

applications. The PRK come with performance metric reporting, which allows us to focus on power

consumption attributes to identify energy optimisation opportunities. Of the four available hybrid

MPI/OpenMP kernels in PRK, this evaluation focuses on the three kernels that are most memory-

bandwidth limited:

• Stencil: a kernel that performs a data-parallel stencil operation to a two-dimensional array.

• Transpose: a kernel that stresses communication and memory bandwidth.

• Nstream: an embarrassingly parallel kernel that computes memory bandwidth.

The Synch-p2p kernel is not evaluated as it performs a point-to-point synchronisation that is impacted

by communication latency [70].

6.2.1 Stencil Kernel

The model response terms for stencil are energy efficiency in MFlops/J and performance in MFlops/s.

The stencil radius is set to 2, grid size is 400k, and iterations are set to ensure that run time is at least

10 times the measurement sample rate.

The uniform, random, and Latin hypercube sampling methods from Section 4.3.2 are evaluated first

using RMS error and R2 statistics, as described in Section 4.3.5. Uniform sampling results in the best

fit with the fewest observations across the test cases. The method requires 12 samples or 10% of the

search space for model training (4 core count × 3 frequency samples). The core count and frequency

cap samples for uniform sampling are 8, 20, 32, and 44 cores, and 1.2, 1.9, and 2.2 GHz respectively.

The model is then evaluated at node counts of 20, 42, 64 and 86, for a data set size of 484 samples.

Figure 6.1 includes error bars for the 95% t-distribution confidence interval for the mean of five sam-

ples. The error margins of about 5% consist of both measurement error and variability between runs

caused by operating system jitter. A tool that uses the proposed models would calibrate measurement

confidence intervals for each response variable. This eliminates the need for sample repetitions for

each training sample to calculate their confidence intervals. The user would be alerted if the signifi-

cance of model results is not within set limits.

Figure 6.2 shows the observed and model predicted Pareto fronts for stencil on 64 nodes. Points

off the front are not Pareto optimal as points on the front always provide an improvement in one

parameter with less impact on the other.
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Figure 6.1: Stencil Measured Energy Efficiency

The interaction between thread count and frequency determines the shape of the Pareto front. Fig-

ure 6.2 shows that data points are grouped by thread count, and rotate as frequency varies. This

rotation defines the shape of the Pareto front, which sets the energy versus performance trade-off

ranges.

Table 6.3 shows the RMS Error between the observed and Basis Spline (BS) predicted values, the

observed and Neural Network (NN) predicted values, and the observed and naive Linear Regression

(LR) predicted values. The Total RMS Error between all 121 observed and predicted values is given

by TRMSE . The Pareto RMS Error between predicted Pareto points and observed values is given by

PRMSE .

The Pareto front section in Table 6.3 shows the error limit used to determine the measured and pre-

dicted Pareto front trade-off zones is 5.0%. It also shows measured and predicted Pareto point counts,

and Pareto points grouped by search step distance. Coincident Pareto points have distance 0, non-

coincident points within one search step (4 threads or 0.1 GHz) have distance 1, and so on. One

search step is 9% in both dimensions of the 11×11 search space.

Table 6.3 also shows Baseline performance and energy efficiency at maximum cores and threads, and

their minima and maxima along the Pareto front, Pmin and Pmax.

The modelling methods are highly accurate for the Pareto front (for the BS models, PRMSE is 2.2%

for energy and 2.3% for performance and, for the NN models, it is 3.5% for energy and 3.1% for

performance, and errors for the Pareto front are lower than overall error). Predicted and observed

Pareto point counts are similar (31 observed, 37 BS predicted, and 25 NN predicted), and all non-

conincident points are within one search step. Predicted and observed efficiency and performance

gains are also consistent. Thus, the models can accurately guide this trade-off.

The surfaces in Figure 6.3 and 6.4 represent observed and predicted energy efficiency and perfor-
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Figure 6.2: Stencil Pareto Front – Observed and Predicted

mance across the CPU frequency and thread count search space. Pareto points are plotted on these

surfaces to show their context in the search space. The Pareto RMS Error PRMSE provides a measure

of the error between the between predicted and observed values.

Figure 6.4 shows that performance increases and then levels off as frequency and core count increase.

The leveling-off marks the start of the trade-off zone, where energy efficiency starts to drop signif-

icantly, as Figure 6.3 shows, due to resource contention. Since energy efficiency and performance

89



Table 6.3: Stencil Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 4.3 2.2
NN 12 1.0 9.2 3.5
LR 12 0.984 7.0 8.4

Performance BS 12 1.0 4.2 2.3
NN 12 1.0 6.8 3.1
LR 12 0.991 5.5 7.4

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 31 31 0 0 0 0
BS forecast 5.0 37 31 6 0 0 0
NN forecast 5.0 25 22 3 0 0 0
LR forecast 5.0 26 17 8 1 0 0

Energy Baseline Pmin Pmax Range %

Observed 149M 183M 215M 22.9 to 44.7

Forecast BS 149M 183M 210M 22.9 to 41.3
(Flops/J) Error 0.0 0.0 -2.4 %

NN 149M 183M 215M 22.9 to 44.8
Error 0.0 0.0 0.0 %

LR 100M 194M 222M 93.8 to 121.3
Error -32.6 6.2 3.0 %

Performance Baseline Pmin Pmax Range %

Observed 2.83T 2.88T 3.35T 1.5 to 18.2

Forecast BS 2.83T 2.70T 3.31T -4.8 to 17.0
(Flops/s) Error 0.0 -6.2 -1.0 %

NN 2.83T 2.78T 3.34T -1.9 to 18.1
Error 0.0 -3.3 -0.1 %

LR 2.20T 3.09T 3.47T 40.6 to 57.8
Error -22.4 7.5 3.7 %

diverge, tuning can increase energy efficiency significantly over a strategy that only minimises run

time.

The smoothing effect of basis splines that is apparent in B-Spline predicted surfaces leads to a small

increase in the predicted over the observed Pareto point count. For the Neural Network models, some

slight of overfitting of the training data, as seen, for example, at lower thread counts, or in the 1.4 to

1.7 GHz range, produces a small decrease in the Pareto point count.

6.2.2 Transpose Kernel

The transpose model response terms are energy efficiency in MB/J and performance in MB/s. The

transpose matrix order is set to 200k, blocking/tiling is disabled, and iterations are set to ensure run

time is at least 10 times the measurement sample rate. Figure 6.5 shows the experimentally observed
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Figure 6.3: Stencil Energy Efficiency – Observed and Predicted

and model predicted Pareto fronts for 64 nodes.

Table 6.4 shows that the proposed methods are again highly accurate for the Pareto front (for the BS

models, PRMSE is 2.1% for energy and 1.4% for performance and, for the NN models, it is 3.0% for

energy and 2.1% for performance). The Pareto front section shows similar observed and predicted

Pareto point counts, with most of the non-conincident points within one search step of an overlapping
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Figure 6.4: Stencil Performance – Observed and Predicted

point. The observed and predicted energy efficiency gains are similar (around 40%). The gain requires

a trade-off in performance of 20%. The observed and predicted Pareto fronts agree that core and

frequency tuning can increase energy efficiency by up to 40% in exchange for up to 20% performance

loss.
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Figure 6.5: Transpose Pareto Front – Observed and Predicted

6.2.3 Nstream Kernel

As with transpose, the nstream model responses are efficiency in MB/J and performance in MB/s.

The nstream vector length is set to 40G. Figure 6.6 shows the experimentally observed and model

predicted Pareto fronts for 64 nodes.

Table 6.5 shows that, for the BS models, the Pareto front RMS Error PRMSE is 3.6% for energy and
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Table 6.4: Transpose Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 5.2 2.1
NN 12 1.0 8.1 3.0
LR 12 0.955 7.2 7.4

Performance BS 12 1.0 4.3 1.4
NN 12 1.0 7.4 2.1
LR 12 0.994 4.7 4.0

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 59 59 0 0 0 0
BS forecast 5.0 71 59 10 2 0 0
NN forecast 5.0 71 59 9 3 0 0
LR forecast 5.0 47 44 3 0 0 0

Energy Baseline Pmin Pmax Range %

Observed 22.9M 22.9M 32.6M 0.0 to 42.3

Forecast BS 22.9M 22.9M 31.9M 0.0 to 39.5
(B/J) Error 0.0 0.0 -1.9 %

NN 22.9M 22.9M 32.1M 0.0 to 40.5
Error 0.0 0.0 -1.3 %

LR 18.7M 24.1M 33.7M 28.6 to 80.1
Error -18.2 5.2 3.6 %

Performance Baseline Pmin Pmax Range %

Observed 340G 275G 340G -19.0 to 0.0

Forecast BS 340G 267G 340G -21.4 to 0.0
(B/s) Error 0.0 -2.9 0.0 %

NN 340G 266G 340G -21.7 to 0.0
Error 0.0 -3.3 0.0 %

LR 296G 285G 341G -3.7 to 15.1
Error -12.9 3.5 0.2 %

3.5% for performance and, for the NN models, it is 2.9% for energy and 3.5% for performance. The

Pareto Front section shows similar observed and predicted Pareto point counts, with the majority of

non-coincindent points within one search step. The observed and predicted energy efficiency gains are

again similar (around 40%). The performance impact is under 10%, which is close to measurement

error limits. The observed and model predicted Pareto fronts provide consistent views that core and

frequency tuning can increase energy efficiency up to 40% with little performance impact.

6.3 Applications Study

This section demonstrates that the models can accurately predict Pareto-optimal energy and perfor-

mance trade-off options with low cost for more complex workloads. This evaluation applies the

proposed energy modelling method to:
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Figure 6.6: Nstream Pareto Front – Observed and Predicted

• AMG: a parallel algebraic multi-grid solver for linear systems [90].

• LAMMPS: a classical molecular dynamics simulator [91].

• LULESH: a mini-application for hydrodynamics modelling [92].

• WRF: an application suite used for mesoscale numerical weather forecasting [93].
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Table 6.5: Nstream Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 8.2 3.6
NN 12 1.0 11.3 2.9
LR 12 0.967 11.4 7.8

Performance BS 12 1.0 7.3 3.5
NN 12 1.0 10.3 3.5
LR 12 0.982 9.2 6.8

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 87 74 11 2 0 0
BS forecast 5.0 75 74 1 0 0 0
NN forecast 5.0 54 53 1 0 0 0
LR forecast 5.0 42 42 0 0 0 0

Energy Baseline Pmin Pmax Range %

Observed 467M 467M 646M 0.0 to 38.2

Forecast BS 467M 467M 655M 0.0 to 40.0
(B/J) Error 0.0 0.0 1.4 %

NN 467M 467M 646M 0.0 to 38.2
Error 0.0 0.0 0.0 %

LR 361M 539M 660M 49.3 to 83.1
Error -22.8 15.2 2.3 %

Performance Baseline Pmin Pmax Range %

Observed 8.09T 7.39T 8.19T -8.7 to 1.2

Forecast BS 8.09T 7.84T 8.34T -3.1 to 3.1
(B/s) Error 0.0 6.2 1.9 %

NN 8.09T 7.71T 8.33T -4.7 to 2.9
Error 0.0 4.4 1.7 %

LR 6.66T 7.42T 8.88T 11.5 to 33.4
Error -17.7 0.5 8.5 %

6.3.1 AMG Application

AMG, which is well-known for its main memory bandwidth demands, contains microkernels that

resemble the PRK kernels studied in Section 6.2. AMG first performs compressed sparse row (CSR)

matrix vector multiplication. Optimising the coarsening process then includes matrix transpose. Fi-

nally, as the core of AMG, the algebraic multi-grid mesh relaxation process uses a 27-point stencil.

The AMG reported performance metric is Solve Figure of Merit (FOM) which is a measure of com-

putations per second. An Energy FOM can be derived using the Solve FOM, total time and total

energy, such that EFOM = FOM× time/energy. In contrast to the fixed problem sizes of the PRKs,

the AMG problem size scales as the processor topology scales (that is, weak scaling).

The node, MPI process, and OpenMP thread counts must fit within AMG processor topology restric-
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tions. Thus, 20, 40, 60, and 80 nodes retain the same rank and thread count settings used for the PRK.

The AMG problem size per processor is 256, which results in wall clock times of at least 30 seconds

for each measurement.

Single Node Count Predictions

Figure 6.7 shows the observed and predicted AMG Pareto fronts for 60 nodes. Table 6.6 shows that

the models perform similarly with AMG, as seen with the kernels in Section 6.2. For the BS models,

PRMSE is 3.2% for energy and 3.8% for performance and, for the NN models, it is 3.9% for energy

and 4.6% for performance. The observed and predicted energy efficiency improvements are similar

(around 45%) and incur about a 15% performance drop. The observed and model predicted Pareto

fronts provide consistent views that core and frequency tuning can reduce energy usage up to 45%

but at up to 15% performance loss.

Table 6.6: AMG Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 5.3 3.2
NN 12 1.0 9.3 3.9
LR 12 0.959 8.8 10.6

Performance BS 12 1.0 5.0 3.8
NN 12 1.0 8.8 4.6
LR 12 0.988 6.5 8.8

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 75 66 9 0 0 0
BS forecast 5.0 66 66 0 0 0 0
NN forecast 5.0 48 48 0 0 0 0
LR forecast 5.0 36 36 0 0 0 0

Energy Baseline Pmin Pmax Range %

Observed 3.40T 3.40T 4.89T 0.0 to 43.8

Forecast BS 3.40T 3.40T 4.92T 0.0 to 45.0
(EFOM) Error 0.0 0.0 0.8 %

NN 3.40T 3.40T 5.01T 0.0 to 47.5
Error 0.0 0.0 2.6 %

LR 2.45T 4.06T 4.92T 65.5 to 100.4
Error -27.8 19.5 0.7 %

Performance Baseline Pmin Pmax Range %

Observed 56.2P 47.6P 56.7P -15.3 to 0.9

Forecast BS 56.2P 49.4P 57.1P -12.2 to 1.6
(FOM) Error 0.0 3.7 0.7 %

NN 56.2P 47.4P 57.9P -15.6 to 3.0
Error 0.0 -0.4 2.1 %

LR 46.6P 48.2P 60.7P 3.5 to 30.2
Error -17.1 1.4 6.9 %
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Figure 6.7: AMG Pareto Front – Observed and Predicted

Multiple Node Count Predictions

The models can predict trade-off options for node counts for which we do not have training data.

Figure 6.8 shows the observed and predicted Pareto fronts for AMG for 48 nodes (thick outline), and

across 40, 48 and 60 nodes (thin outline).

The model training data now includes measurements across multiple node counts in the search space.
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Figure 6.8: AMG Pareto Front for 40, 48 and 60 Nodes – Observed and Predicted

The previous examples use 12 samples at the required node count. This case uses 12 samples at

20, 40, 60, and 80 nodes, or 48 samples in total. The extra samples significantly expand the search

space coverage of the model. Trade-off predictions at intervening node counts can now be made with

similar accuracy.

The runs take 12 hours and 54 minutes to collect the complete 484 AMG test samples, which cor-

responds to a mean time to collect each sample of 1 minute and 35 seconds. The time to collect 48
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training samples is 1 hour and 14 minutes, or 9.6% of the time to collect the full 484 samples. The

process can also be speeded up by collecting sample data in parallel. For example, our 86 node cluster

allows 20 and 40 node runs to be allocated in parallel.

Table 6.7 shows that, for the BS models, PRMSE is 1.4% for energy and 1.6% for performance model

and, for the NN models, it is 8.1% for energy and 9.0% for performance. The results show that tuning

can reduce energy usage up to 45% but at around 10% performance loss.

Table 6.7: AMG Results Summary for 48 Nodes

Model fit Num obs R2 TRMSE PRMSE

Energy BS 48 0.990 4.7 1.4
NN 48 1.0 10.5 8.1
LR 48 0.951 10.1 12.0

Performance BS 48 0.998 4.9 1.6
NN 48 1.0 9.5 9.0
LR 48 0.989 7.4 8.1

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 36 29 6 1 0 0
BS forecast 5.0 60 29 15 9 5 2
NN forecast 5.0 64 27 19 9 6 3
LR forecast 5.0 36 17 12 5 2 0

Energy Baseline Pmin Pmax Range %

Observed 3.30T 3.30T 4.99T 0.0 to 51.3

Forecast BS 3.31T 3.31T 4.85T 0.0 to 46.7
(EFOM) Error 0.3 0.3 -2.7 %

NN 3.30T 3.30T 5.01T 0.0 to 51.5
Error 0.2 0.2 0.4 %

LR 2.38T 4.05T 4.94T 70.3 to 107.7
Error -27.9 22.8 -1.0 %

Performance Baseline Pmin Pmax Range %

Observed 43.7P 39.5P 45.7P -9.6 to 4.5

Forecast BS 44.1P 39.0P 45.5P -11.4 to 3.2
(FOM) Error 0.7 -1.2 -0.4 %

NN 44.4P 41.1P 45.8P -7.3 to 3.1
Error 1.5 4.0 0.2 %

LR 35.2P 38.8P 47.7P 10.2 to 35.5
Error -19.5 -1.8 4.5 %

6.3.2 LAMMPS Application

We now study energy and performance trade-offs for LAMMPS (Large-scale Atomic/Molecular Mas-

sively Parallel Simulator), a full-scale scientific application. The LAMMPS model responses are

cumulative functions rather than rate functions as with the PRKs and AMG, so the B-spline model

equations 4.11 and 4.12 apply. LAMMPS solve time is measured in seconds as the performance met-
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ric, and total energy in joules is adopted as a cumulative metric for energy use. This study uses the

Lennard-Jones LAMMPS benchmark which simulates an atomic fluid with Lennard-Jones potential.

The problem size is 32,000,000 atoms run for 6,000 timesteps on 80 nodes. Figure 6.9 shows the

observed and predicted Pareto fronts, which appear at the lower left of the data set as the objective is

now to minimise solve time and energy use.
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Figure 6.9: LAMMPS Pareto Front – Observed and Predicted

Table 6.8 shows that the total RMS error of the predicted values TRMSE ranges from 14.2% to 28.4%.

Figure 6.9 shows that this error mostly occurs at low thread counts, far from the Pareto front. Table 6.8
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shows that the models remain highly accurate for the Pareto front, with PRMSE for the BS models of

2.1% for energy and 3.8% for performance model and for the NN models of 4.7% for energy and

4.3% for performance. The observed and predicted Pareto fronts show that core and frequency tuning

can increase energy efficiency up to 30% but at up to 30% performance loss.

Table 6.8: LAMMPS Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 14.2 2.1
NN 12 1.0 21.8 4.7
LR 12 0.975 20.0 27.7

Performance BS 12 1.0 15.7 3.8
NN 12 1.0 28.4 4.3
LR 12 0.986 28.4 49.7

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 27 23 4 0 0 0
BS forecast 5.0 23 23 0 0 0 0
NN forecast 5.0 33 26 4 3 0 0
LR forecast 5.0 6 4 2 0 0 0

Energy Baseline Pmin Pmax Range %

Observed 2.66M 2.66M 1.80M 0.0 to -32.4

Forecast BS 2.66M 2.66M 1.79M 0.0 to -32.7
(J) Error 0.0 0.0 -0.5 %

NN 2.66M 2.66M 1.76M 0.0 to -34.0
Error 0.0 0.0 -2.4 %

LR 3.49M 1.49M 1.39M -57.5 to -60.1
Error 31.3 -44.2 -22.5 %

Performance Baseline Pmin Pmax Range %

Observed 117 150 112 27.7 to -4.1

Forecast BS 117 144 112 22.7 to -4.1
(s) Error 0.0 -3.9 0.0 %

NN 117 155 112 31.8 to -4.1
Error 0.0 3.2 0.0 %

LR 250 77.8 61.0 -68.9 to -75.6
Error 113.2 -48.0 -45.7 %

6.3.3 LULESH Application

LULESH (Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics) solves the Sedov

blast wave problem, which models a shock front expanding in three dimensions from a point blast.

Similar to AMG, the LULESH reported performance metric is Solve FOM where FOM = elements×
iterations/time. An Energy FOM is again derived using total time and energy in joules, such that

EFOM = FOM× time/energy.

The LULESH code uses a three dimensional mesh partitioned into domains. The number of domains
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must be the cube of an integer, with one domain per MPI rank. The ranks used are 8, 27, 64, and

125 across 4, 14, 32, and 63 nodes respectively, with the same OpenMP thread count and frequency

sweep as used for the other test cases.

Figure 6.10 shows the Pareto fronts for 63 nodes, 125 domains with 313 elements per domain, or

3,723,875 total elements. As Table 6.9 shows, the models are highly accurate for the Pareto front,

with PRMSE of 2.8% for energy and 2.1% for performance for the BS models and 3.3% for energy and

4.1% for performance for the NN models.

Table 6.9: LULESH Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 4.7 2.8
NN 12 1.0 7.7 3.3
LR 12 0.987 5.0 4.7

Performance BS 12 1.0 3.6 2.1
NN 12 1.0 8.2 4.1
LR 12 0.999 2.3 3.5

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 25 21 3 1 0 0
BS forecast 5.0 23 21 2 0 0 0
NN forecast 5.0 32 24 5 2 1 0
LR forecast 5.0 20 18 2 0 0 0

Energy Baseline Pmin Pmax Range %

Observed 57.0M 57.0M 65.3M 0.0 to 14.6

Forecast BS 57.0M 57.0M 64.9M 0.0 to 13.8
(EFOM) Error 0.0 0.0 -0.6 %

NN 57.0M 57.0M 64.4M 0.0 to 12.8
Error 0.0 0.0 -1.5 %

LR 53.0M 53.0M 68.4M 0.0 to 29.1
Error -7.1 -7.1 4.6 %

Performance Baseline Pmin Pmax Range %

Observed 862G 587G 893G -31.9 to 3.7

Forecast BS 862G 598G 863G -30.6 to 0.1
(FOM) Error 0.0 1.9 -3.4 %

NN 862G 462G 862G -46.4 to 0.0
Error 0.0 -21.3 -3.5 %

LR 823G 603G 834G -26.7 to 1.2
Error -4.4 2.8 -6.7 %

6.3.4 WRF Application

The Weather Research and Forecasting (WRF) model is a mesoscale numerical weather prediction

system that is widely used for both operational forecasting and research. WRF supports parallelisation

using distributed memory, shared memory, or hybrid distributed/shared memory models.

103



20 30 40 50 60
EFOM

0.2

0.4

0.6

0.8

FO
M

×106 Observed

4

12

20

28

36

44

T
hr

ea
ds

20 30 40 50 60
EFOM

0.2

0.4

0.6

0.8

FO
M

×106 Predicted – B-Spline Model

4

12

20

28

36

44

T
hr

ea
ds

20 30 40 50 60
EFOM

0.2

0.4

0.6

0.8

FO
M

×106 Predicted – Neural Network Model

4

12

20

28

36

44
T

hr
ea

ds

Figure 6.10: LULESH Pareto Front – Observed and Predicted

With distributed/shared memory, the model domain decomposes into patches and tiles for hybrid MPI/

OpenMP processing. Patches are distributed to MPI tasks, and tiles within patches are distributed to

OpenMP threads. Marginal performance gains can be achieved by tuning patch and tile parameters

for the MPI task and OpenMP thread topology, typically using low thread counts (one to four threads).

Using one thread per MPI task defaults to one tile per patch which provides acceptable performance

with minimal run to run variability. Varying MPI ranks with a fixed thread count also provides a new

test case for the proposed BS and NN models, where thread count and MPI ranks per node are fully
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correlated. The earlier case studies hold MPI ranks per node constant.

The WRF Preprocessing System (WPS) utilities, ungrib.exe, geogrid.exe, and metgrid.exe, run

once on a single HPC node to unpack model parameters, prepare the model domain, and interpolate

meteorological data to model grid.

The WRF programs, real.exe and wrf.exe run on the full HPC cluster. Model initial and bound-

ary conditions are set once using real.exe. Training and test data for the energy efficiency and

performance models are captured over multiple runs of wrf.exe which performs the weather model

simulation using the prepared inputs.

Figure 6.11 shows a 12 hour total precipitation forecast generated with WRF for Hurricane Katrina

in the Gulf of Mexico on 28 August 2005. The domain grid size is 3,500 km × 2,500 km with grid

resolution of 5 km× 5 km. The simulation duration is 12 hours with time step resolution of 9 seconds.

The observed model execution times for wrf.exe using this configuration on 64 nodes range between

11 and 60 minutes.

Figure 6.11: WRF Total Precipitation

Figure 6.12 shows the Pareto fronts for 64 nodes, with 2 to 22 OpenMP threads per node (2 to 22

MPI ranks per node with 1 OpenMP thread per rank). The WRF performance and energy efficiency

metrics for optimisation are model timesteps per second and timesteps per joule.

Table 6.10 shows that the total RMS error of the predicted values TRMSE ranges from 3.1% to 6.9%.

For the BS models, PRMSE is 3.2% for energy and 1.5% for performance and, for the NN models, it is

105



2 3 4 5 6 7
Timesteps/J ×10−4

2

4

6

8

Ti
m

es
te

ps
/s

Observed

2

6

10

14

18

22

T
hr

ea
ds

2 3 4 5 6 7
Timesteps/J ×10−4

2

4

6

8

Ti
m

es
te

ps
/s

Predicted – B-Spline Model

2

6

10

14

18

22

T
hr

ea
ds

2 3 4 5 6 7
Timesteps/J ×10−4

2

4

6

8

Ti
m

es
te

ps
/s

Predicted – Neural Network Model

2

6

10

14

18

22
T

hr
ea

ds

Figure 6.12: WRF Pareto Front – Observed and Predicted

5.4% for energy and 1.2% for performance. The observed and predicted Pareto fronts show that core

and frequency tuning can increase energy efficiency more than 20% but at around 30% performance

loss.
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Table 6.10: WRF Results Summary

Model fit Num obs R2 TRMSE PRMSE

Energy BS 12 1.0 4.2 3.2
NN 12 1.0 6.9 5.4
LR 12 0.964 6.0 6.5

Performance BS 12 1.0 3.1 1.5
NN 12 1.0 6.5 1.2
LR 12 0.995 3.2 3.0

Pareto front Limit Points Dist: 0 1 2 3 4

Observed 5.0 22 20 2 0 0 0
BS forecast 5.0 26 20 6 0 0 0
NN forecast 5.0 42 21 9 5 5 2
LR forecast 5.0 22 17 4 1 0 0

Energy Baseline Pmin Pmax Range %

Observed 545µ 545µ 674µ 0.0 to 23.7

Forecast BS 545µ 545µ 662µ 0.0 to 21.5
(Timesteps/J) Error 0.0 0.0 -1.8 %

NN 545µ 545µ 654µ 0.0 to 20.1
Error 0.0 0.0 -2.9 %

LR 496µ 496µ 698µ 0.0 to 40.7
Error -9.0 -9.0 3.5 %

Performance Baseline Pmin Pmax Range %

Observed 7.38 5.51 7.38 -25.3 to 0.0

Forecast BS 7.38 5.26 7.38 -28.7 to 0.0
(Timesteps/s) Error 0.0 -4.5 0.0 %

NN 7.37 4.78 7.37 -35.1 to 0.0
Error -0.1 -13.2 -0.1 %

LR 6.85 5.67 7.06 -17.1 to 3.2
Error -7.3 2.9 -4.3 %

6.4 Study Observations

The results show that the models perform well for the studied kernels and applications, and signifi-

cantly outperform the naive model. Table 6.11 and 6.12 summarise key metrics across the eight test

cases (three PRKs, single-node AMG, multi-node AMG, LAMMPS, LULESH, and WRF).

Table 6.11 shows that the mean Pareto RMS Error, PRMSE , for energy across the test cases 2.6% for

the Basis Spline models and 4.3% for the Neural Network models. Both results are superior to the

naive Linear Regression model, which has mean Pareto RMS Error of 10.6%.

The mean Total RMS Error, TRMSE , is around 6.4% for the Basis Spline models, and significantly

higher for the Neural Network models at 10.6%. The mean RMS Errors for performance are similar.

With our small training data set the Neural Network forecasts tend to overfit the observed data, closely
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Table 6.11: Models RMSE Comparison – 8 Test Cases

Model Metric Mean

Energy B-Spline TRMSE 6.36
PRMSE 2.57

Neural Network TRMSE 10.59
PRMSE 4.32

Linear Reg TRMSE 9.43
PRMSE 10.64

Performance B-Spline TRMSE 6.01
PRMSE 2.51

Neural Network TRMSE 10.75
PRMSE 4.00

Linear Reg TRMSE 8.40
PRMSE 11.42

Table 6.12: Models Pareto Points Comparison – 8 Test Cases

Model Mean points For by distance
Obs For 0 1 2 3 4

B-Spline 45.2 47.6 40.4 5.0 1.4 0.6 0.2
Neural Net 45.2 46.1 35.0 6.2 2.8 1.5 0.6
Linear Reg 45.2 29.4 24.4 3.9 0.9 0.2 0.0

fitting observed values that are near the training data, but the error increases for values further away.

The observed time to solution is significantly longer for the Neural Network models. Although this

model is less efficient, its iterative, automated approach requires less intuition and domain knowledge

than the Basis Spline models. Domain knowledge and intuition are concerns at model construction

time, so runtime users of the models are not impacted.

As Table 6.12 shows, the mean number of observed Pareto points in the trade-off zone is 45.2 points.

The Basis Spline models forecast a mean of 47.6 points, roughly two more than the observed points.

The Neural Network models forecast a mean of 46.1 points, 0.9 more than the observed points. So,

the models exhibit 2-5% error in the prediction of the number of Pareto points. The naive Linear

Regression model forecast of 29.4 points exhibits 34% error.

For the Basis Spline models, on average (40.4+5.0)/47.6 = 95% of predicted Pareto points are co-

incident or within one search step of the observed points. For the Neural Network models, this metric

is slightly lower at (35.0+ 6.2)/46.1 = 89%. The percentage is similar for the Linear Regression

model at (24.4+ 3.9)/29.4 = 96%, but negated by the 34% error in the predicted number of Pareto

points.

Differences between test cases, such as strong versus weak scaling, rate versus cumulative perfor-

mance and energy use metrics, and fixed versus correlated MPI ranks, further validate the generality

of the method. However, several new challenges arise when complex workloads are modelled. Com-
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plex applications typically require many system resources, so the cost to obtain training samples must

be amortised over many real application runs. The required amortisation period is minimised by lim-

iting training data to a small fraction of the search space, but the approach is only useful if those costs

result in overall benefits. In practice, production applications are run many times with the same data

dimensions and can accrue benefits that offset training costs. A weather model such as WRF that runs

daily is a good example.

Complex interactions between applications and systems may lead to irregular energy or performance

response curves, particularly if application data/processing dimensions align poorly with the system

topology. Irregular response curves impact the statistical significance of the regression results, so

users can be alerted that further analysis is needed when the results are not within desired limits.

6.5 3-Fold Cross Validation

Cross validation shows that the Basis Spline and Neural Network models do not overfit a subset of the

data. Model performance for smaller training data sets is important in this case so three folds are used.

This provides a reasonable balance between training data set size (67%) and data set partitions (three).

With 3-fold cross validation, the data set is randomly partitioned into three equal sized subsets. Two

are used as training data with model predictions tested against the remaining subset. The process

repeats three times to test model accuracy across the full data set.

Table 6.13 shows cross validation results for the energy efficiency models. The data set for WRF has

121 samples, so the three folds consist of two folds with 40 samples and one with 41 samples. The

data sets for the other test cases have 484 samples using two folds with 161 samples and one with

162 samples. Table 6.13 includes the percentage of predicted values from each fold that are below

20%, 10% and 5% and the RMS Error for the fold. The relatively even RMS Error results across the

folds demonstrates that the energy efficiency models do not overfit any subset of the data. Table 6.14

shows cross validation results for the performance models using the same data sets. The consistent

RMS Error results across the folds show that the performance models also do not overfit any subset

of the data.

The training data is 67% of the full data set for each cross validation fold, compared to the 10%

used to predict Pareto fronts. The NN models benefit significantly from the increased training data,

achieving mean Total RMS Error of around 3% across the study cases, compared to around 5% for

the BS models. This result provides further support for the observation that the NN models exhibit a

level of overfitting with small training data sets. Practical models must consider the balance between

training data requirements and accuracy. Adding training data may improve accuracy, but the higher

training costs must be recoverable from benefits achieved in live runs of the application.
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Table 6.13: 3-Fold Cross Validation Summary – Energy Efficiency Models

Kernel Fold B-Spline Neural Network
20% 10% 5% RMSE % 20% 10% 5% RMSE %

Stencil 1 100.0 99.4 85.2 3.6 100.0 100.0 96.3 2.4
2 100.0 100.0 91.9 4.1 100.0 100.0 99.4 2.0
3 100.0 96.3 85.1 3.4 100.0 98.8 96.3 2.3

Transpose 1 100.0 93.8 81.5 4.5 100.0 100.0 98.1 1.9
2 100.0 97.5 87.6 4.5 100.0 100.0 99.4 1.9
3 99.4 94.4 80.7 4.7 100.0 98.8 96.9 1.8

Nstream 1 100.0 92.0 67.3 5.9 100.0 100.0 100.0 1.3
2 100.0 96.9 80.7 6.8 100.0 100.0 100.0 1.4
3 98.1 87.6 72.7 6.1 100.0 98.8 97.5 1.5

AMG 1 100.0 95.1 82.7 3.5 100.0 100.0 92.6 2.1
2 100.0 98.1 93.2 4.0 100.0 97.5 93.2 2.7
3 100.0 96.9 91.3 3.6 100.0 98.1 95.7 2.6

LAMMPS 1 100.0 87.7 75.3 7.7 100.0 88.9 77.2 7.3
2 100.0 87.6 68.9 8.4 100.0 95.0 80.7 7.5
3 100.0 96.3 85.7 10.3 100.0 96.9 83.9 9.3

LULESH 1 100.0 94.4 79.0 4.3 100.0 100.0 94.4 2.3
2 100.0 99.4 84.5 4.3 100.0 100.0 97.5 1.7
3 99.4 91.9 80.1 4.0 100.0 96.3 94.4 2.1

WRF 1 100.0 97.6 75.6 4.6 100.0 100.0 95.1 1.8
2 97.5 95.0 87.5 4.7 100.0 97.5 90.0 2.5
3 100.0 100.0 95.0 3.1 100.0 100.0 100.0 1.9

Mean RMSE % 5.06 2.88

6.6 Conclusion

This evaluation shows that the proposed method can accurately predict optimal performance and en-

ergy efficiency settings for parallel kernels and for more complex application workloads. The statis-

tical and machine learning model results show that both approaches provide good overall fit between

predicted and measured values. The models can accurately identify trade-offs between performance

and energy. The approach requires measurement samples for a small fraction of the search space, that

can be run in parallel when sufficient resources are available.
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Table 6.14: 3-Fold Cross Validation Summary – Performance Models

Kernel Fold B-Spline Neural Network
20% 10% 5% RMSE % 20% 10% 5% RMSE %

Stencil 1 100.0 93.2 80.2 4.2 100.0 100.0 93.2 2.6
2 100.0 96.9 83.9 5.4 100.0 100.0 98.8 2.5
3 99.4 91.3 80.7 4.1 99.4 95.7 91.9 3.3

Transpose 1 100.0 96.9 89.5 3.9 100.0 100.0 98.1 2.8
2 100.0 98.1 87.6 4.1 100.0 100.0 98.1 2.1
3 99.4 92.5 82.0 4.1 100.0 99.4 93.2 2.1

Nstream 1 100.0 90.1 66.0 5.7 100.0 100.0 96.3 1.9
2 100.0 95.7 76.4 7.5 100.0 100.0 100.0 1.7
3 97.5 86.3 69.6 6.1 100.0 99.4 96.3 1.8

AMG 1 100.0 96.3 78.4 3.2 100.0 98.1 91.4 2.5
2 100.0 98.1 89.4 4.3 100.0 97.5 92.5 2.5
3 100.0 96.9 87.0 3.4 100.0 97.5 95.7 2.6

LAMMPS 1 100.0 85.2 76.5 8.6 100.0 95.1 87.7 6.0
2 100.0 85.1 72.7 8.6 100.0 94.4 83.9 7.1
3 100.0 96.9 82.6 9.4 100.0 98.1 93.8 5.6

LULESH 1 100.0 94.4 77.8 4.1 100.0 94.4 81.5 3.8
2 100.0 100.0 85.7 4.4 100.0 95.0 83.9 5.0
3 99.4 92.5 78.9 3.4 99.4 88.2 77.6 3.3

WRF 1 100.0 100.0 90.2 2.6 100.0 100.0 97.6 1.7
2 100.0 95.0 85.0 3.6 100.0 95.0 95.0 1.5
3 100.0 100.0 100.0 1.6 100.0 100.0 100.0 1.3

Mean RMSE % 4.87 3.03
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Chapter 7

Conclusion and Future Directions

This chapter concludes the dissertation with a summary of the work undertaken and key contributions.

HPC platforms and applications form a highly complex system that can behave in unexpected ways.

At the start of this work, new stochastic models and trade-off analysis techniques appeared to be a

promising research direction. However, achieving significant advances over existing techniques was

not certain. The presented achievements are the result of a considerable research effort.

The last part of the chapter proposes a number of potential directions for future research in HPC

energy efficiency optimisation, based on experience gained in the course of this work.

7.1 Thesis Summary

Chapter 1 introduces key challenges associated with performance and energy efficiency tuning. Opti-

misation techniques need to deal with extensive configuration spaces, due to the large number of plat-

form and application specific parameters that influence performance and energy efficiency. Existing

tools can also exclude key HPC user groups, such as scientific application users. Tuning costs must

be minimised to allow a reasonable payback period on tuning effort, while maintaining an acceptable

level of accuracy. It is also important to avoid excluding trade-off options that may be relevant to

users.

A number of potential research directions for addressing these challenges are evident from the Chap-

ter 2 literature survey. Development of new system models can be informed by further analysis of

tuning control accessibility and the level of control provided. Complexities associated with white-box

modelling techniques may be avoided if stochastic models can be developed to predict trade-off op-

tions at low cost. Improved trade-off analysis techniques for managing measurement and modelling

error could provide a more complete set of trade-off options and enable better evaluation of observed

and predicted results.
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The tuning controls investigation presented in Chapter 3 establishes key parameter and search space

constraints for scoping model designs. Parameter resolution and sensitivity findings guide model

predictor selection and sampling strategies. The results provide convincing evidence that there are

genuine trade-off opportunities available, subject to new modelling techniques that can predict trade-

off options.

A new and innovative energy tuning architecture that extends traditional performance tuning infras-

tructure is proposed in Chapter 4. Key new features of the architecture include: stochastic models that

tolerate small and noisy training data; a statistical validation scheme for trade-off range predictions;

and an error management technique for multi-objective optimisation analysis. The modular design

and pluggable interfaces allow integration with existing instrumentation, measurement, and profiling

tools.

The HPCProbe framework provides a prototype implementation of the proposed architecture, as

Chapter 5 describes. A key focus of HPCProbe is enabling a comprehensive study of the new models

and error management techniques when applied in real-world multi-objective optimisation scenarios.

HPCProbe implements configurable B-spline and machine learning models, along with algorithms for

analysing trade-off options using the proposed trade-off zone technique as an extension of traditional

Pareto analysis.

Chapter 6 presents a comprehensive evaluation of the new models and analysis techniques using

HPCProbe. Model performance is evaluated using a range of metrics across three parallel kernels

and four applications running at scale on a homogeneous HPC cluster. Table 6.11 shows the models

achieve an average RMS error of less than 5% for predicted Pareto points for both energy and per-

formance. Model training is attained using sample measurements from a small fraction of the search

space.

The proposed models are capable of accurately reproducing the actual relationships between energy

and performance based on the collected training samples. Appropriate sampling captures the unique

features of each platform and application combination. This is the intuition of the work.

7.2 Key Contributions

This thesis provides a framework for accurately and efficiently predicting performance and energy

usage trade-off options for scientific applications. Specifically, this work presents the following con-

tributions:

1. An analysis of the energy usage and performance responses of a representative set of kernels,

that arise from interactions between software and hardware. Response transitions and associ-
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ated tuning sensitivity changes are identified for each kernel.

2. Energy and performance trade-off option selection using basic HPC job scheduling parameters.

To use the desired trade-off option, parallel application users select the predicted optimal job

scheduling parameters. Other parameters that cannot be controlled by the user are treated as

constraints. Significant tuning opportunities are demonstrable within these constraints.

3. A practical method for predicting Pareto efficient trade-off options from few input measure-

ments. Prediction methods must minimise the required optimisation effort so its cost can be

recovered quickly by the effort saved in more efficient live runs.

4. Multi-objective models that accurately predict the energy efficiency and performance responses

of parallel applications. B-spline piecewise polynomial and deep neural network machine learn-

ing models are presented that provide accurate trade-off predictions using a small set of training

measurements.

5. A trade-off zone approach that improves Pareto optimisation in the presence of measurement

and/or modelling error. This innovation ensures users are presented with a complete set of

trade-off options that includes other points that are statistically equivalent to points on the Pareto

front. The approach is generalisable to all Pareto analysis of noisy data sets.

6. HPCProbe, a prototype implementation of the proposed energy tuning framework. This frame-

work implements the described advances using a modular and extensible design. HPCProbe is

available to interested researchers, as described in Appendix C.

7.3 Future Research Directions

This section highlights future potential research directions within the HPC energy efficiency optimi-

sation domain.

7.3.1 Iterative Application Training

The evaluation activities reported in Chapter 6 use the same job configuration for training and test

runs. There were indications, however, that iterative or time-stepped applications can be accurately

trained with reduced iteration counts.

Researching the practicality of further reducing training costs by reducing application iteration/time-

step configurations has the potential to provide significant new reductions in model training costs.

If the model for an application requiring 10,000 time-steps for live runs could be trained in 1,000

time-steps, the training effort may be reduced by a factor of 10.
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7.3.2 Heterogeneous Systems

Heterogeneous or hybrid HPC architectures use multi-core CPUs in combination with accelerators,

such as GPUs, FPGAs, or Intel Phi coprocessors. Highly parallel GPUs are typically equipped with

thousands of specialised cores. GPUs can offer significant improvements in energy efficiency over

multi-core CPUs [3]. The November 2018 TOP500 list [5] shows the importance of these systems,

with approaching 30%, or 138 of the 500 supercomputers on the list using hybrid CPU/GPU or CPU/

coprocessor architectures.

Although HPCProbe is able to capture GPU performance and energy use metrics as described in

Appendix A, further work is required to identify and implement model extensions to enable response

predictions for hybrid systems. GPU parallelisation and processor frequency controls are expected to

be important, as is workload partitioning between CPU and GPU cores.

7.3.3 Search Optimisation

Energy efficiency and performance measurements often plateau when resource saturation occurs.

Measurements errors can in turn overshadow the small gradient changes in plateau regions, such

that the whole region must be considered statistically indistinguishable. For example, noise induced

gradient changes may cause a gradient descent/ascent algorithm to terminate at local minima/maxima

before reaching the global minima/maxima.

The trade-off zone method presented in this thesis is applied to measured and model generated data

so that each data point is evaluated against all the statistically equivalent trade-off values.

Tools using search optimisation techniques, such as Nimrod/O [29], may also benefit from the trade-

off zone approach. Extending the search goal to include all points within error limits will help avoid

local optima and improve the completeness of trade-off data sets generated by tools using search

optimisation.

7.3.4 Policy Development

New tuning policies are needed to guide users in the selection of the most appropriate trade-off option.

Table 6.12 shows the Pareto optimal trade-off points constitute over one third of the search space on

average for the case studies presented in this work.

Figure 2.2 places trade-off points along the Pareto front in power, balanced, and performance opti-

mised clusters [18]. This approach guides users in selecting trade-off points that favour energy effi-

ciency or performance, or make both equally important. After selecting a suitable cluster, there can

be more options again to choose from within the cluster. These points may be essentially equivalent

in performance and energy usage terms, so other forms of guidance are needed.
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Resource usage is also used to guide trade-off decisions [15], providing further input for policy devel-

opment. For example, thrifty, greedy, and balanced resource allocation polices may aim to minimise,

maximise, or balance resource usage, such as core, socket, and node allocations. This policy devel-

opment effectively extends the optimisation problem from bi-objective to three or more objectives.

The additional objectives add new trade-off metrics that help to distinguish points that are difficult to

separate on performance or energy use alone.

7.3.5 Uncertainties Propagation

The system responses evaluated for tuning may be functions of other measured inputs, as equation 7.1

shows for energy efficiency in Flops/J.

energy efficiency =
Flops/s× time

energy
(7.1)

Confidence intervals for each measured input can be derived using the t-distribution, as described

in section 4.2.2. The confidence interval for the function needs to be derived by combining the

confidence intervals for each measured input.

Although not widely used in computer performance analysis, uncertainties propagation techniques

allow limits information from each input to be combined to derive limits for the function. Like

most related work that considers error limits, this work assumes uniform percentage limits across re-

sponses, based on the available measured data. This provides sufficient accuracy for the case studies,

but there appears to be an opportunity to improve the robustness of performance studies in general by

adopting uncertainties propagation techniques.
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Appendix A

HPCProbe User Manual

The HPCProbe framework is comprised of the HPCProbe, HPCModel, and HPCPlot modules. User

documentation for each module is provided here.

A.1 HPCProbe Module

This section provides user documentation for the HPCProbe module. If the HPCProbe packages are

installed, HPCProbe command line arguments help can also be viewed using:

$ python hpcprobe.py --help

API documentation is available in section B.1.

A.1.1 Command Line Options

The following options are only available as hpcprobe.py command line parameters.

-h, --help

Show the help message and exit.

-i <init file>

Read experiment configuration settings from the specified initialisation file and start the exper-

iment.

Example: python hpcprobe.py -i \

$HOME/work/exp.stencil-f-e-h-20-4/stencil.ini

129



-j <job id>

Suffix for the experiment results file name, results/job-<job id>. The results for each

measurement run are stored here.

A.1.2 Initialisation File Options

The following options can be set in the initialisation file or as command line parameters.

expName = <exp name>

Set the name for the experiment.

Example: expName = exp.stencil-f-e-h-20-4

Command line: -n <exp name>

expExec = <executeable>

Set the experiment executable file and required command line options. The threadCount,

cpuFrequency, and execParam experiment parameters are substituted for $th, $fq, and $p

occurrences in this setting. Environment variables are expanded, unless prefixed with \$.

Example: expExec = $HOME/work/bin/stencil_mpi_omp+pat \$OMP_NUM_THREADS 5 $p

Command line: -x <executeable>

workFolder = <work folder>

Set the working folder for the experiment executable. Use this option if the executable expects

to find required supporting files in its working directory.

Example: workFolder = $HOME/work/WRF/test/em_real

Command line: --wf <work folder>

outputFolder = <output folder>

Set the output folder for experiment. An experiment results folder with the name specified in

expName is created in the outputFolder.

Example: outputFolder = $HOME/work

Command line: -o <output folder>

threadCount = <thread count>|<start,end,step>

Set the total thread count to use across all nodes. Use a single count for non-batch mode
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experiments, or a start count, end count, and step size for batch experiments.

Example: threadCount = 80,880,80 (for 4 to 44, step 4, threads across 20 nodes)

Command line: -t <thread count>|<start,end,step>

cpuFrequency = <cpu frequency>|<start,end,step>

Set the CPU frequency cap to use in kHz. Use a single frequency for non-batch mode experi-

ments, or a start frequency, end frequency, and step size for batch experiments.

Example: cpuFrequency = 1200000,2200000,100000 (for 1.2 GHz to 2.2 GHz, step 100

MHz)

Command line: -f <cpu frequency>|<start,end,step>

execParam = <exec param>|<start,end,step>

Set a variable parameter for the experiment executable. Use a single value for non-batch mode

experiments, or a start value, end value, and step value for batch experiments.

Example: execParam = 200000,200000,200000 (for 200,000 fixed across runs in batch

mode)

Command line: -p <exec param>|<start,end,step>

walltime = <walltime>

Set the target wall time for the job. Use the PBS default if omitted.

Example: walltime = 08:00:00 (8 hours)

Command line: -w <walltime>

account = <account>

Set the target account string for the job. If provided, a #PBS -A <account> statement is added

to the PBS job.

Command line: -a <account>

queue = <queue>

Set the target queue for the job. Let PBS select the queue if omitted.

Command line: -q <queue>

env = <n1=v1,n2=v2,..,nn=vn>

Set environment variables required for the job.
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Example: env = PAT_RT_PERFCTR=\

"PM_ENERGY:NODE,PM_POWER:NODE,UNITS:POWER,UNITS:ENERGY" (to select CrayPAT per-

formance counters)

Command line: -e <n1=v1,n2=v2,..,nn=vn>

-m <cmd1,cmd2,..,cmdn>

List of subcommands for managing module files. Each subcommand is run using module <cmd>.

Example: modules = load perftools (runs module load perftools)

Command line: modules = <cmd1,cmd2,..,cmdn>

repeatCount = <repeat count>

Set a repeat count for each run so statistical data can be generated. The statistics include

arithmetic mean, geometric mean, harmonic mean, maximum, median, minimum, standard

deviation, t confidence interval, and variance. Only odd repeat counts are permitted to ensure

the median value corresponds to an actual sample.

Example: repeatCount = 5

Command line: -r <repeat count>

nodes = <node count>

Set the target node count for the experiment.

Example: nodes = 20

Command line: --nodes <node count>

ppn = <processors per node>

Set the target processors per node for the experiment. This is equivalent to the total number of

cores across all CPU sockets for a node.

Example: ppn = 44

Command line: --ppn <processors per node>

limits = <resource limits>

Set resource limits for the job. If provided, a #PBS -l <resource limits> statement is

added to the PBS job.

Command line: -l <resource limits>

cpuBinding = <processing elements to cores binding>
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Set target processing elements to cores binding. If provided, add to the Cray ALPS aprun

command line parameters. See the --cc <...> argument in the aprun man page.

Command line: --cpu-binding <processing elements to cores binding>

totalPEs = <total processing elements>

Set target total processing elements (MPI ranks), to override the default setting of nodePEs ×
minimum node count.

Command line: --total-pes <total processing elements>

nodePEs = <processing elements per node>

Set target processing elements (MPI ranks) per node.

Example: nodePEs = 2

Command line: --node-pes <processing elements per node>

peThreads = <threads per processing element>

Set target OpenMP threads per processing element (MPI rank), to override the default setting

calculated from ppn and nodePEs.

Command line: --pe-threads <threads per processing element>

nodeSockets = <cpu sockets per node>

Set the target CPU sockets per node.

Default: 2

Command line: --node-sockets <cpu sockets per node>

socketRings = <core rings per cpu socket>

Set target core rings per CPU socket, for Intel Cluster-on-Die experiments.

Default: 2

Command line: --socket-rings <core rings per cpu socket>

batch = True|False

Enable batch mode using Nimrod/O to automate the experiment through the provided threadCount,

cpuFrequency, and execParam parameter ranges.

Command line: --batch (disabled if omitted)
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batchContinue = True|False

Continue with an incomplete batch mode run. Searches through a partial YAML summary file

to locate the last result, then continues the experiment from that point. Attempts to continue a

run that exited before completion.

Command line: -c (disabled if omitted)

omp = True|False

If enabled, set the OpenMP OMP_NUM_THREADS environment variable to the thread count per

MPI rank, calculated using the total thread and rank counts.

Command line: --omp (disabled if omitted)

base2 = True|False

Set thread count to base 2 exponent × ppn. Allows exponential node count steps such as 1, 2,

4, 8, 16, 32, 64, etc.

Command line: --base2 (disabled if omitted)

reget = True|False

Re-get results collected in a prior run. Attempts to re-analyse results collected in a previous

run. Use when debugging results parser changes. Node allocation settings are also overridden

to use one node only.

Command line: --reget (disabled if omitted)

retries = <count>

Retries count if execExec or postExec fail. Try to continue the experiment when intermittent

failures occur.

Default: 0

Command line: --retries <count>

threadPlacement = C|S|R

Compact/Scatter/Ring thread placement. Compact allocates all cores in one socket before mov-

ing to another, while scatter utilises all sockets uniformly. Ring allocates all CPU core rings

uniformly.

Default: S

Command line: --tp c|s|r
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nodePlacement = C|S

Compact/Scatter node placement. Compact allocates all cores in one node before moving to

another, while scatter utilises all nodes uniformly.

Default: S

Command line: --np c|s

postExec = <executeable>

Post experiment executable file. Performs post processing of the experiment data generated by

the executable run.

Example: postExec = mv "%(dataPath)s" "%(jobResults)s"; \

pat_report "%(jobResults)s" (move the experiment data to the results folder and run

pat_report)

Command line: --post-exec <executeable>

accWaitLi = <acc wait line num>

Include performance counter group data reported for the GPU/accelerator synchronisation wait

at the given source code line number in the executable.

Example: accWaitLi = 273 (to parse counters reported under group

USER / main.ACC_SYNC_WAIT@li.273)

Command line: --acc-wait <acc wait line num>

accCopyLi = <acc copy line num>

Include performance counter group data reported for the GPU/accelerator copy at the given

source code line number in the executable.

Example: accCopyLi = 273 (to parse counters reported under group

USER / main.ACC_COPY@li.273)

Command line: --acc-copy <acc copy line num>

execLoopLi = <loop line num>

Include performance counter group data reported for the loop at the given source code line

number in the executable.

Example: execLoopLi = 273 (to parse counters reported under group

USER / main.LOOP@li.273)

Command line: --loop <loop line num>
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execRegion = <region num>

Include performance counter group data reported for the region at the given source code line

number in the executable. Regions are defined within the experiment executable using CrayPAT

API calls:

PAT_region_begin(<region num>, <region label>)

PAT_region_end(<region num>)

Example: execRegion = 2 (to parse counters reported under group

USER / #2.<...>)

Command line: --region <region num>

runtime = <runtime>

Override the detected runtime. The LOADEDMODULES environment variable is used to detect

cray_mpi, open_mpi, or intel_mpi runtimes, for selecting runtime specific job submission

parameters.

Command line: --runtime <runtime>

A.1.3 Counter Regular Expressions File

The HPCProbe counter data parser is configurable using the counter regular expressions YAML file.

This file must be in the same folder as hpcprobe.py with the file name hpcprobe.yml. The top-level

YAML file entries are for parsing output from running expExec (run) and postExec (post). The

group 1-n second-level entries represent sections in the output text to be parsed. The YAML file

outline is:

run:

<group 1>:

groups: [{ name: ..., regex ... }, ...]

counters: [{ name: ..., regex ... }, ...]

post:

<group 2>:

groups: [...]

counters: [...]

<group n>:

groups: [...]

counters: [...]

The groups entries define the list of regular expressions for extracting required subsections from a
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Listing A.1: Sample HPCProbe Initialisation File
# MPI+OPENMP stencil execution on 2D grid
[Experiment]
batch = True
cpuFrequency = 1200000,2200000,100000
env = PAT_RT_PERFCTR="PM_ENERGY:NODE,PM_POWER:NODE,UNITS:POWER,UNITS:ENERGY"
execParam = 200000,200000,200000
expExec = $HOME/work/bin/stencil_mpi_omp+pat \$OMP_NUM_THREADS 5 $p
expName = exp.stencil-f-e-h-20-4
modules = load perftools
nodePEs = 2
nodePlacement = S
nodes = 20
omp = True
outputFolder = $HOME/work
postExec = mv "%(dataPath)s" "%(jobResults)s"; pat_report "%(jobResults)s"
ppn = 44
retries = 2
threadCount = 80,880,80
threadPlacement = S

section of text.

• The optional param key allows use of an input parameter in the group regular expression, for

example execLoopLi.

The counters entries define the list of regular expressions for extracting the required counters from

groups. The list of counter names is populated using the match groups defined in the counter regular

expression.

• The optional findall key gets all matches in the text section.

• The optional hide key excludes a counter from the results summary file.

A.1.4 Sample Initialisation File

Listing A.1 shows a sample initialisation file for HPCProbe. An initialisation file consists of an

Experiment section followed by configuration key/value pairs. This sample combines a number of

the example settings from section A.1.2 to specify an experiment using the stencil kernel on 20 nodes.

The experiment can be started as section A.1.1 describes.

A.1.5 Experiment Results Summary File

The results summary for an experiment is written to the summary.yml file located in the experiment

folder, <outputFolder>/<expName>. For the sample in Listing A.1, the summary file location is:
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$HOME/work/exp.stencil-f-e-h-20-4/summary.yml

The summary file contains a list of results for each measurement run in the experiment in YAML

format. The results for each run have keys for parameters, objectives, and (if repeatCount is

greater than 1) stats, as follows:

- objectives: {...}

parameters: {...}

stats: {...}

- objectives: {...}

parameters: {...}

stats: {...}

- ...

The parameters field uses key/value pairs to define the experiment configuration for a measurement

run. The objectives field captures metrics from the run as key/value pairs. The stats field includes

generated statistical data for each objective. The initialisation and results summary files provide a

record of completed experiments.

A.2 HPCModel Module

This section provides user documentation for the HPCModel module. API documentation is available

in section B.2.

The BS and NN forecasts and trade-off analysis for the Chapter 6 evaluation are generated using the

HPCModel module. The HPCModel calls for stencil kernel predictions and trade-off analysis are

described, as used in 6.2.1.

A.2.1 B-Spline Regression Model

Start by importing the required libraries.

>>> import json

>>> import numpy as np

>>> import shapely.geometry

>>> import hpcplot as hplt

>>> import hpcmodel as hmdl

138



Load the required YAML files into a pandas DataFrame. The kernel id is needed for indexing Kernel

definitions. It can be found in the DataFrame ’kl’ column.

>>> ymls = [’stencil-f-e-h-64-4.yml’]

>>> pd = hplt.PlotDf(ymls, basePredictors=True)

>>> knl = hplt.Kernels.idsByNum[pd.df[’kl’].unique()[0]]

Set up train and test data selectors. The train data selector will use samples at thread counts of 8,

12, 32, and 44, at frequency caps of 1.2, 1.9, and 2.2 GHz. The test data selector will generate a

1×11×11 product of the given node, thread, and frequency ranges for testing the model.

>>> train = {’custom’: {

... ’nd’: [64] * 12,

... ’tn’: [8, 20, 32, 44] * 3,

... ’fq’: list(np.repeat([1200000, 1900000, 2200000], 4))}

... }

>>> test = {

... ’nd’: [64],

... ’tn’: range(4, 45, 4),

... ’fq’: range(1200000, 2200001, 100000)

... }

Use the Kernel definitions to set up required meta data for each response. The responses list in-

cludes the response column id, type (Energy/Performance), units, and scale (106 for MFlops/s for

example). The lims dictionary specifies observed and predicted error limits for each response, and if

the response needs to be maximised or minimised.

>>> resps = hplt.Kernels.tradeoffs[knl]

>>> responses = [

... { ’col’:resp,

... ’type’:hplt.Columns.respType[resp],

... ’unit’:hplt.Kernels.getUnits(knl, resp),

... ’scale’:hplt.Columns.scale[resp]

... } for resp in resps

... ]

>>> lims = {

... resp:dict(
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... list(hplt.Kernels.lims[knl][resp].items()) +

... list({’pareto_max’:hplt.Columns.paretoMax[resp]}.items())

... ) for resp in resps

... }

Create the BS model and generate response predictions for the test data. The options used add the log

transform, disable scaling of predictors and responses, include second-order model term interactions,

set three degrees of freedom and polynomial degree of two, and remove the interaction term between

frequency and node count.

>>> rmBS = hmdl.SplineReg(pd.df, responses, pd.predictors,

... train=train, test=test, transform=’log’, scalePredictors=False,

... scaleResponses=False, scaleFirst=False, order=2, dfree=3, degree=2,

... rmterms=[’^bs[(]fq[^)]*[)]:bs[(]nd[^)]*[)]$’], lims=lims

... )

Removal of the interaction term can be seen by inspecting rmBS.interacts. The fourth term in the

following list matches a regular expression passed using the rmterms argument so it will be removed.

>>> print(rmBS.interacts)

[

’bs(fq,df=3,degree=2)’,

’bs(nd,df=3,degree=2)’,

’bs(tn,df=3,degree=2)’,

’bs(fq,df=3,degree=2):bs(nd,df=3,degree=2)’,

’bs(fq,df=3,degree=2):bs(tn,df=3,degree=2)’,

’bs(nd,df=3,degree=2):bs(tn,df=3,degree=2)’

]

The df_test DataFrame includes test data with observed and model predicted data for the responses.

>>> print(rmBS.df_test[[’nd’, ’tn’, ’fq’, ’ee_obs’, ’ee’, ’ar_obs’, ’ar’]])

nd tn fq ee_obs ee ar_obs ar

0 64 4 1200000 74.700296 89.438958 5.659213e+05 7.534808e+05

1 64 4 1300000 78.038206 92.522248 6.071655e+05 8.064514e+05

.. .. .. ... ... ... ... ...
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119 64 44 2100000 151.949680 150.983203 2.831927e+06 2.818231e+06

120 64 44 2200000 148.647866 148.647866 2.832907e+06 2.832907e+06

[121 rows x 7 columns]

A.2.2 Neural Network Model

The NN model uses the same set up process as the BS model. Once the BS model has run, the NN

model can run using the same inputs.

Create the NN model and generate response predictions for the test data. The options used add the

log transform, enable scaling of predictors and responses after the transform, disable the scikit-learn

scaler and min-max scaling, set three hidden layers with 10, 20, and 10 hidden units, and 2,000

training steps.

>>> rmNN = hmdl.DnnReg(pd.df, responses, pd.predictors,

... train=train, test=test, transform=’log’, scalePredictors=True,

... scaleResponses=True, scaleFirst=False, scaleSklearn=False,

... scaleMinMax=False, h_units=[10, 20, 10], steps=2000, lims=lims

... )

The df_test DataFrame contains test data with observed and model predicted data for the responses.

>>> print(rmNN.df_test[[’nd’, ’tn’, ’fq’, ’ee_obs’, ’ee’, ’ar_obs’, ’ar’]])

nd tn fq ee_obs ee ar_obs ar

0 64 4 1200000 74.700296 110.565677 5.659213e+05 1.047328e+06

1 64 4 1300000 78.038206 112.865555 6.071655e+05 1.068696e+06

.. .. .. ... ... ... ... ...

119 64 44 2100000 151.949680 151.280692 2.831927e+06 2.828063e+06

120 64 44 2200000 148.647866 148.647861 2.832907e+06 2.832910e+06

[121 rows x 7 columns]

A.2.3 Pareto Trade-Off Analysis

Pareto trade-off analysis results and model statistics can be accessed using the BS and NN getStats()

method. Use json.dumps to pretty print the statistics dictionary. Use the required key to access a

specific statistic, such as r1PfRmse and r2PfRmse for the Pareto front RMS error for each response.

141



>>> statsBS = rmBS.getStats()

>>> print(json.dumps(statsBS, indent=2, sort_keys=True))

{

"nobs": 12.0,

"pfForErr": 5,

"pfForOl": 57.40794587557292,

...

}

>>> print(statsBS[’r1PfRmse’])

2.156893824238247

>>> print(statsBS[’r2PfRmse’])

2.3333525720331236

The getStats() method also populates a paretoFronts dictionary with observed and forecast Pareto

data. The pf key provides a DataFrame with points lying along the extended Pareto front. The

pts key accesses a DataFrame with points lying within the trade-off zone. The poly key provides

a polygon object defining the trade-off zone boundaries. Baseline, Pmin, and Pmax values are also

provided for each response (<r1> and <r2>), as the Chapter 6 results summary tables show, such as

Table 6.3.

>>> print(rmBS.paretoFronts)

{

’obs’: {

’pf’: <DataFrame object>,

’pts’: <DataFrame object>,

’poly’: <Polygon object>,

<r1>: {

’base’: <float>,

’min’: <float>,

’max’: <float>

},

<r2>: {

’base’: <float>,

’min’: <float>,

’max’: <float>

}

},

’for’: {

...
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}

}

Alternatively, the ParetoFront class can be used to perform Pareto trade-off analysis directly. This

example uses the observed PlotDf DataFrame pd.df, kernel id knl, responses list, and lims dic-

tionary from section A.2.1.

Set up trade-off column ids, column ids for search space coordinates of Pareto points, their maximums

(the Baseline value coordinates), and if trade-off columns need to be maximised or minimised, and

the trade-off data set with the required pd.df columns.

>>> x_col, y_col = lims.keys()

>>> xc_col = ’fq’

>>> yc_col = ’tn’

>>> pe_col = ’pe’

>>> nd_col = ’nd’

>>> xc_max = max(pd.df[xc_col])

>>> yc_max = max(pd.df[yc_col])

>>> pe_max = max(pd.df[pe_col])

>>> nd_max = max(pd.df[nd_col])

>>> pf_max = (lims[x_col][’pareto_max’], lims[y_col][’pareto_max’])

>>> pf_df = pd.df[[x_col, y_col, xc_col, yc_col, pe_col, nd_col]]

The first two columns in pf_df contain the data points for trade-off analysis. The remaining columns

provide the search space context for each point.

Initialise ParetoFront with the trade-off data set, maximise/minimise status, include the trade-off zone

polygon calculation, and the error limits for each trade-off column.

>>> paretoFront = hmdl.ParetoFront(

... pf_df, pmax=pf_max, poly=True,

... lims=[lims[x_col][’obs’], lims[y_col][’obs’]]

... )

Calculate the extended Pareto front points, the trade-off zone points, and the trade-off zone polygon.

>>> pf = paretoFront.get()
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>>> pts = paretoFront.getPathPts()

>>> polySeq = paretoFront.getPath().vertices

>>> poly = shapely.geometry.polygon.Polygon(polySeq[0:-1])

The Baseline value for the first trade-off response occurs at the maximum search space coordinates,

such as maximum CPU frequency and thread count. Replace x_col with y_col for the second

response.

>>> base = pf_df.loc[

... (pf_df[xc_col] == xc_max) &

... (pf_df[yc_col] == yc_max) &

... (pf_df[pe_col] == pe_max) &

... (pf_df[nd_col] == nd_max), x_col

... ]

>>> r1Base = base.iloc[0]

>>> print(r1Base)

148.6478662167381

Calculate Pmin and Pmax values for the first trade-off response. Substitute x_col with y_col for the

second response.

>>> if lims[x_col][’pareto_max’]:

... r1Min = min(pf[x_col])

... r1Max = max(pf[x_col])

... else:

... r1Min = max(pf[x_col])

... r1Max = min(pf[x_col])

...

>>> print(r1Min)

182.74191461270135

>>> print(r1Max)

215.11328301839225

The Baseline, Pmin, and Pmax align with the observed values shown in Table 6.3. The BS and NN

analysis can be performed by replacing pd.df with the model predicted data, rmBS.df_test or

rmNN.df_test.
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A.3 HPCPlot Module

This section provides user documentation for the HPCPlot module. API documentation is available

in section B.3.

A.3.1 Pareto Plots

Figure 6.2 is generated using the ParetoPlot class. The Observed plot uses the observed data loaded

into pd.df in section A.2.1. The ’ee’ and ’ar’ DataFrame column ids are plotted against the x-axis

and y-axis. The remaining options set x-axis and y-axis limits or plot ranges, the ’tn’ column id

groups data point colours by thread count, a colour bar is added to indicate thread counts by colour,

the trade-off zone polygon is plotted, and error limits are applied to the Pareto analysis.

>>> pp = hplt.ParetoPlot(pd.df, ’ee’, ’ar’,

... x_lim=[50, 225], y_lim=[5e5, 35e5], s_id=’tn’,

... colorbar=True, poly=True, lims=True

... )

>>> pp.plot()

The Predicted – B-Spline Model plot uses the same ParetoPlot initialisation parameters, except pd.df

is replaced by the BS model predicted data, rmBS.df_test.

Similarly, the Predicted – Neural Network Model plot uses the NN model predicted data, rmNN.df_test,

instead of pd.df.

A.3.2 Surface Plots

Figure 6.3 and Figure 6.4 are generated using the SurfPlot class. As with Pareto plots, the Observed

plot uses pd.df, the Predicted – B-Spline Model plot uses rmBS.df_test, and the Predicted – Neural

Network Model plot uses rmNN.df_test. The ’gh’, ’tn’, and ’ee’ DataFrame columns are plotted

against the x-axis, y-axis, and z-axis. The remaining options set z-axis limits, the column and values

for legend groups, the plot rotation elevation and azimuth, and the plot title.

>>> sp = hplt.SurfPlot(pd.df, ’gh’, ’tn’, ’ee’,

... z_lim=[50, 250], z2_id=’nd’, z2_vals=[64],

... z3_id=None, rotate=[40, 10], title=’Observed’)

>>> sp.plot()
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The performance surface plots use the same approach, except the column id for the z-axis changes

from ’ee’ to ’ar’.
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Appendix B

HPCProbe API

The HPCProbe API documentation is provided in this section. If the HPCProbe packages are in-

stalled, this documentation can also be viewed using the Python pydoc utility, as follows:

$ pydoc [hpcprobe|hpcmodel|hpcplot]

B.1 HPCProbe Module

This section provides API documentation for the HPCProbe module. User documentation is available

in section A.1.

B.1.1 Name

hpcprobe - Automates HPC performance analysis experiments using PBS, Nimrod/O and Cray-

PAT.

B.1.2 Description

The hpcprobe module captures experiment data reported by the program itself at runtime, and

by the configured post-processing utility for analysing experiment data written by the program

instrumentation at program runtime completion. The regular expressions library is used to parse

performance data output from the program and post-processing utility. The regular expression

counter parser configuration is loaded from a YAML configuration file. The experiment Re-

sultSet is written to file in YAML format.
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B.1.3 Classes

builtins.object

Experiment

ResultSet

class Experiment(builtins.object)

Configure and run energy tuning experiments, read and parse job results, and perform

statistical analysis of the results.

Specifications for parsing command line and/or configuration file parameters for the ex-

periment are defined in paramSpec:

name : parameter name

arg : command line argument, or if omitted the parameter is only available in the

configuration file

metavar : command line argument name for help

help : command line argument brief description for help

type : parameter type (eg.’int’,’float’,’boolean’,None is string)

opts : list of parameter options:

noInit : parameter is not in configuration file

path : expand OS environment variables in parameter value

upper : convert parameter value to upper case

setattr : set Experiment attribute to parameter value

Methods defined here:

__init__(self)

Initialise experiment to the default settings.

analyseResults(self, resultsList)

Do statistical analysis of the results when there is more than one sample.

config(self, initFile=None)

Configure the experiment using the counter regex file, command line arguments

and/or optional initialisation file. The counter regex file has the same name and loca-

tion as the Python module, but with the ’yml’ file extension, eg. hpcprobe.yml.

getResults(self)

Get experiment results by parsing data reported by the program at runtime and by the

configured post-processing utility after program runtime.
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run(self)

Run the configured experiment.

Data and other attributes defined here:

coreRounding = 1

execRounding = 1

expLogDefault = ’exp.log’

expLogFormat = ’%(levelname)s:%(funcName)s:%(message)s’

freqRounding = 100000

jobLogFormat = ’%(message)s’

jobLogName = ’job’

logLevel = 20

nimrodoExhShd = ’parameter th integer range from {0} to {1}
step ...m\...

nimrodoPathDefault = ’$HOME/local/bin’

nimrodoResults = ’final’

paramSpec = [{’arg’: ’n’, ’help’: ’experiment name’,
’metavar’: ’<exp ...

parser = None

pbsJob = ’#!/bin/bash\n\n#PBS -V\n#PBS -N {0}\n
# #PBS -d {1}\n#...i\ne...

pbsJobOmp = ’export OMP_NUM_THREADS={0}\n
echo OMP_NUM_THREADS=$OMP_NUM...

percentLimitDefault = 0.2

walltimePbsDefault = ’08:00:00’

class ResultSet(builtins.object)

Captures input parameters and output objectives for each experiment run.

Methods defined here:

__init__(self, regexList, inData=None)

Intialise the ResultSet including regex configuration for parsing counter data, and

logger configuration. The inData argument provides the list of experiment parame-

ters.

__str__(self)

Provides a YAML string representation of results.

append(self, regexList, inLog)

Public accessor to parse counter data in the given log file and append it to the results.
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B.1.4 Functions

checkPythonVer()

Check the minimum required Python version is in use. Print help on setting up current

version in user home directory if not.

float_representer(dumper, data)

Custom float representer to use 5 decimal point floats and NaN in generated YAML files.

The data parameter contains the float being represented.

B.1.5 Data

__contact__ = ’mark.endrei@uq.edu.au’

__copyright__ = ’Copyright 2019, The University of Queensland’

B.1.6 File

./lib/python3.6/site-packages/hpcprobe.py

B.2 HPCModel Module

This section provides API documentation for the HPCModel module. User documentation is available

in section A.2.

B.2.1 Name

hpcmodel - Models for predicting HPC system performance and energy responses.

B.2.2 Description

The hpcmodel module provides basic polynomial, B-spline, and deep learning predictive model

implementations that extend a common Model base class. It also provides a number of vec-

torised data transforms and scalers that can improve model performance. Transforms for mit-

igating normal data distribution deviations include log, exponential and root transforms. Data

scalers for improving machine learning convergence include min-max normalisation and stan-

dardisation.
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B.2.3 Classes

builtins.object

Model

DnnReg

PolyReg

SplineReg

ParetoFront

SiPfx

Transform

class DnnReg(Model)

Deep neural network regressor model implemented using scikit-learn and TensorFlow.

Regressor networks allow prediction of continuous values, like performance or energy

usage, so DnnReg uses the DNNRegressor class. The model is initialised using a constant

random seed to ensure consistent, repeatable results from run to run. Scalers are provided

to improve model convergence when inputs and outputs that have different scales and

ranges.

Method resolution order:

DnnReg

Model

builtins.object

Methods defined here:

__init__(self, df, responses, predictors, train=None,
test=None, transform=None, scalePredictors=None,
scaleResponses=None, scaleSklearn=None,
scaleMinMax=None, scaleFirst=None, scaleLims=None,
lims=None, h_units=None, steps=None, saveSteps=
None)

Initialise the model parameters, including:

h_units : list defining the number of hidden units per network layer

steps : number of training steps

saveSteps : changes the step count for model convergence logging

See the Model class for other parameter descriptions.

fitModel(self, response)
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Fit the neural network model to the training data for the given response.

getInputFn(self, df, response, num_epochs=None, shuffle=
False)

Provide the model with the required feature names and values (predictors or input

parameters) and the label name and values (response or output parameter).

getTrainingLosses(self, weight=0.6)

Get training loss data for plotting the model convergence curve (loss versus training

steps). Weight is used for smoothing the curve.

predict(self, response)

Predict the given system response for the test data using the trained neural network

model.

smooth(self, vals, weight=0.6)

Filter data using exponential smoothing with the provided weight (or smoothing fac-

tor), where 0.0 is no smoothing and 1.0 is maximum smoothing.

Data and other attributes defined here:

h_units = [10, 20, 10]

steps = 2000

Methods inherited from Model:

checkAllPredictors(), getDfColRange(), getDfFiltered(), getDfLhs(), getDfSelect(),

getErrorQt(), getInterpRmsError(), getPcErr(), getPcRng(), getRmsError(), getRsq(),

getStats(), getUnitStepPts(), kFoldValidate(), lhsRemap(), setParetoFronts(), setRe-

sponses(), setStats(), setTestDf(), setTrainingDf()

Data and other attributes inherited from Model:

custom, lhs, obs, uniform

class Model(builtins.object)

Base class for HPC models.

Methods defined here:

__init__(self, df, responses, predictors, train=None,
test=None, transform=None, scalePredictors=None,
scaleResponses=None, scaleSklearn=None,
scaleMinMax=None, scaleFirst=None, scaleLims=None,
lims=None)

Initialise the model parameters, including:

df : DataFrame containing full data set
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predictors : df column ids for model predictors or inputs

responses : df column ids for model responses or outputs

train : selector for training data subset from df

test : selector for test data subset from df

lims : error limits for predictors, defined in hpcplot.Kernels

transform, scaler configuration : see hpcmodel.Transform

checkAllPredictors(self, predictors)

Check the given predictors are all in the known list of predictors.

getDfColRange(self, df, col)

Get value range information for the given DataFrame column, including min, max,

step, and length.

getDfFiltered(self, df, filters)

Filter the DataFrame rows using the provided dictionary, eg to select matching values

from ’nd’, ’tn’, ’fq’ columns use:

{’nd’:[64],’tn’:[8,20,32,44],’fq’:[12e5,17e5,22e5]}

getDfLhs(self, selects)

Select training data using Latin Hypercube Sampling.

getDfSelect(self, selects)

Select training and test data from the DataFrame data set using the Cartesian product

of the given column values.

getErrorQt(self, a_list, b_list)

Calculate the counts of coincident points in the a and b lists, and the points within 1,

2, 3, and 4 units of measure.

getInterpRmsError(self, forecast, obs, axis=0, resps=None, num=50)

Interpolate the forecast and observed data to the same line space and the calculate

RMS error between the two.

getPcErr(self, v1, v2, rnd=1)

Get the percentage error between v1 and v2, rounded to the given number of decimal

places.

getPcRng(self, vbase, vmin, vmax)

Get the percentage range between a baseline value and the given minimum and max-

imum values.

getRmsError(self, forecast, obs)
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Calculate the RMS error between a set of points with the same intervals. Return

RMS value of the forecast data, RMS error between the forecast and observed data,

and RMS error as a percentage of the forecast RMS.

getRsq(self, y, y_pred)

Calculate the R-squared statistic by dividing the residual sum of squares by the total

sum of squares.

getStats(self)

Get statistics formatted for model results summary reporting.

getUnitStepPts(self, pts)

Scale points to have a unit step between unique values, eg. so 4 to 44 step 4 threads

becomes 0 to 10 step 1.

kFoldValidate(self, response, k=3)

Perform k-fold validation of model for the required number of folds, k, and predicted

response using the full dataset.

lhsRemap(self, x_lhs, x_min, x_max, x_step)

Remap Latin Hypercube Sampling output values ranging from 0.0 to 1.0 to actual

values using the given min, max, and step.

setParetoFronts(self)

Set observed and forecast Pareto front points for the data set that are within error

limits.

setResponses(self, responses)

Set the primary and secondary/trade-off responses to be modelled. The responses

argument is a list of dictionaries with the following keys:

col : column id

type : ’Energy’ or ’Performance’ response

unit : column units

scale : multiplier for units

The type, unit. and scale keys are defined in hpcplot.Columns.

setStats(self)

Set up the model statistics dictionary with the following structure:

’resp’: {

<col_id_1>: {

’nobs’: ., ’rsq’: ., ’rms’: ., ’rmse’: ., ’rmsepc’: .,

’pf’: {’rms’: ., ’rmsepc’: ., ’rmse’: .},

’for’: {’base’: ., ’min’: ., ’max’: .},
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’obs’: {.}},

<col_id_2>: {.}},

’pf’: {

’obs’: {’lim’: ., ’pf’: <df>, ’pts’: ., ’qt’: [.],

’xylen’: [.], ’overlap’: .},

’for’: {.}}

Each response has a ’resp’ column id key with statistics including:

nobs : number of observations

rsq : R-squared statistic

rms, rmse, rmsepc : response RMS value, RMS Error and percentage RMS

error between observed and forecast values

pf : Pareto points statistics for response (within trade-off zone)

rms, rmse, rmsepc : response RMS value, RMS Error and percentage RMS

error between observed and forecast values on the front

Statistic for the observed and forecast Pareto fronts include:

lim : percentage error limit

pf : DataFrame with Pareto points in the search space context (frontier only)

pts : trade-off zone points count

qt : point counts grouped by search step distance, first count is for coincident

points, second count is for points one search step apart, and so on

xylen : search space dimensions, eg. frequency x threads x ranks x nodes

overlap : percentage overlap of trade-off polygon area with observed/forecast

polygon

setTestDf(self, test)

Set up a DataFrame with the required predictor/input parameters for testing the model,

eg.

{’nd’:[64],’tn’:range(4,45,4),’fq’:range(1200000,2200001,100000)}

setTrainingDf(self, train)

Set up a DataFrame with the required predictors and responses for training the model,

eg. for uniform sampling:

{’uniform’:{’nd’:[64],’tn’:range(8,45,12),’fq’:[1200000,1900000,2200000]}}

or for Latin Hypercube Sampling:

{’lhs’:{’nd’:[64],’tn’:None,’fq’:None}}

Data and other attributes defined here:

custom = ’custom’

lhs = ’lhs’
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obs = ’_obs’

uniform = ’uniform’

class ParetoFront(builtins.object)

Calculate the Pareto front with error limits.

Methods defined here:

__init__(self, pts, pmax=None, lims=None, poly=True)

Initialise the Pareto front configuration parameters, including the x and y trade-off

data columns, and if the columns need to be minimised or maximised.

get(self, lims=True)

Get the Pareto optimal points with/without error limits.

getLimits(self)

Extend the Pareto front outer limits horizontally and vertically to encompass all points

that are off the front but within the error limits for the respective axes.

getPath(self)

Create a path/polygon object from vertices and codes to define the trade-off zone.

getPathPts(self)

Get the points enclosed by the trade-off zone path/polygon object.

getPoly(self)

Get a polygon enclosing the Pareto points within the given error limits of the front.

scaleAndTransform(self, x, y, x_scale, y_scale, x_off, y_off,
inner=True)

Scale and transform the front by required scale and offset to define a trade-off zone

that factors in error limits, rather than a simple frontier that does not.

setFront(self, poly)

Get the Pareto optimal points, maintaining the search space x and y coordinates if

provided (eg. threads and frequency).

class PolyReg(Model)

Basic polynomial model using ordinary least squares regression. Increasing the polyno-

mial degree parameter allows the model to fit more complex responses, while increasing

the risk of overfitting the data.

Method resolution order:
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PolyReg

Model

builtins.object

Methods defined here:

__init__(self, df, responses, predictors, train=None,
test=None, transform=None, scalePredictors=None,
scaleResponses=None, scaleSklearn=None,
scaleMinMax=None, scaleFirst=None, scaleLims=None,
lims=None, degree=None)

Initialise the model parameters, including the polynomial degree. See the Model class

for other parameter descriptions.

fitModel(self, response)

Fit the basic polynomial model to the training data for the given response.

predict(self, response)

Predict the given system response for the test data using the trained polynomial

model.

Data and other attributes defined here:

degree = 3

Methods inherited from Model:

checkAllPredictors(), getDfColRange(), getDfFiltered(), getDfLhs(), getDfSelect(),

getErrorQt(), getInterpRmsError(), getPcErr(), getPcRng(), getRmsError(), getRsq(),

getStats(), getUnitStepPts(), kFoldValidate(), lhsRemap(), setParetoFronts(), setRe-

sponses(), setStats(), setTestDf(), setTrainingDf()

Data and other attributes inherited from Model:

custom, lhs, obs, uniform

class SiPfx(builtins.object)

Add an SI unit prefix and scale the number and significant figures to match the units.

Static methods defined here:

add(num)

Add an SI unit prefix and scale the number to match.

class SplineReg(Model)
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B-spline piecewise polynomial model that fits an ordinary least squares model using the

specified model formula and training data. The model formula uses plain-text Wilkinson

notation. Methods are provided for manipulating formula terms and interactions between

terms.

Method resolution order:

SplineReg

Model

builtins.object

Methods defined here:

__init__(self, df, responses, predictors, train=None,
test=None, transform=None, scalePredictors=None,
scaleResponses=None, scaleSklearn=None,
scaleMinMax=None, scaleFirst=None, scaleLims=None,
lims=None, order=None, dfree=None, degree=None,
linterms=None, excterms=None, rmterms=None)

Initialise the model parameters, including:

order : interaction terms order, eg. 2 includes second order interactions

dfree : piecewise spline degrees of freedom

degree : polynomial degree, eg. 3 is cubic polynomial

linterms : any terms that should be linear rather than B-spline terms

excterms : any terms that should be excluded

rmterms : any terms that should be removed, eg. a specific interaction term

See the Model class for other parameter descriptions.

addInteracts(self, df=None, rnd=False)

Add first, second, or third order interaction terms to the list of interactions. Option-

ally set term limits (which set model bounds) to the given data ranges from df, with

rounding down/up.

calculateVif(self, X, thresh=100)

Remove predictors that have a variance inflation factor above the given threshold.

fitModel(self, response)

Fit the B-spline model to the training data for the given response.

getInteract(self, terms)

Combine the given terms into an interaction term containing linear and B-spline

terms.

predict(self, response)

Predict the given system response for the test data using the trained B-spline model.
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removeInteracts(self)

Remove any interaction terms that match regular expressions in the removeTerms list.

setFormula(self, response)

Add the required response term to the left hand side to complete the model formula.

setFormulaRhs(self, all_interacts=False)

Initialise the right hand side of the formula for the B-spline model. Adds the required

terms to the plain-text formula using the given model initialisation.

Data and other attributes defined here:

bsDegFree = 8

bsDegree = 3

excterms = []

intOrder = 1

linterms = []

rmterms = []

Methods inherited from Model:

checkAllPredictors(), getDfColRange(), getDfFiltered(), getDfLhs(), getDfSelect(),

getErrorQt(), getInterpRmsError(), getPcErr(), getPcRng(), getRmsError(), getRsq(),

getStats(), getUnitStepPts(), kFoldValidate(), lhsRemap(), setParetoFronts(), setRe-

sponses(), setStats(), setTestDf(), setTrainingDf()

Data and other attributes inherited from Model:

custom, lhs, obs, uniform

class Transform(builtins.object)

Transforms for improving data distribution alignment with normal distribution, including

the reverse or inverse transform. Also includes scalers for improving machine learning

convergence.

Methods defined here:

__init__(self, transform, predictors=None, responses=None,
scalePredictors=None, scaleResponses=None,
scaleSklearn=None, scaleMinMax=None, scaleFirst=
None, scaleLims=None)

Initialise the transform parameters, setting the transform and/or scaler to use, and

DataFrame predictor and response columns to be transformed.

transform : ’log’, ’log2’, ’log10’, ’exp’, ’bxcx’ (Box-Cox), or ’sqrt’.
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predictors, responses : list of predictor, response column ids to be transformed

or scaled (Default: None)

scalePredictors, scaleResponses : Scale predictors, responses (Default: True)

scaleSklearn : Apply scikit-learn min-max scaler if True, bespoke if False (De-

fault: True)

scaleMinMax : Apply min-max scaler if True, standard scaler if False (Default:

True)

scaleFirst : Apply scaler before applying transform if True, the reverse if False

(Default: True)

scaleLims : Tuple (nobs, min, max, std) to apply a percentage to min, max,

standard deviation values if the sample count is less than nobs – to improve scaler

performance for small sample sizes (Default: (20, 0.5, 1.05, 0.5))

__str__(self)

Convert the transform to a string for use in the plain-text B-Spline model formula.

boxcox_fwd(self, x)

Box-Cox transform. Not used as a bug in scipy makes results unreliable.

fwd(self, df)

Perform the forward transform.

getAdjMinMax(self, rng, std=False)

Adjust the sample minimum and maximum to better match the scaling ranges of the

test data.

inv(self, df)

Perform the reverse/inverse transform operation to undo the transform on the model

outputs.

scale(self, df, func)

Scale the required DataFrame columns using the selected scaler function.

scaleInv(self, resp, func)

Perform the reverse/inverse scaler operation to undo the scaling of the model outputs.

setScaleParams(self, df)

Set the scaler parameters using the adjusted sample minimum and maximum.

Data and other attributes defined here:

scaleFirst = True

scaleLims = (20, 0.5, 1.05, 0.5)

scaleMinMax = True
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scalePredictors = True

scaleResponses = True

scaleSklearn = True

B.2.4 Data

__contact__ = ’mark.endrei@uq.edu.au’

__copyright__ = ’Copyright 2019, The University of Queensland’

formatter = <logging.Formatter object>

handler = <StreamHandler <stderr> (NOTSET)>

level = 40

logger = <Logger hpcmodel (ERROR)>

B.2.5 File

./lib/python3.6/site-packages/hpcmodel.py

B.3 HPCPlot Module

This section provides API documentation for the HPCPlot module. User documentation is available

in section A.3.

B.3.1 Name

hpcplot - Wrapper classes for plotting experiment data collected with the hpcprobe module.

B.3.2 Description

The hpcplot module is used for reporting and visualising optimisation results with matplotlib.

The Plot class is the base class for generating 2D and 3D graphical representations of the results.

The Plot class has associated experiment details, including a list of experiment ResultSets.

Experiment ResultSet data is read, selected, and merged into a plot DataFrame by the PlotDf

class. Data manipulation operations such as filtering, slicing, and vector arithmetic can then be

used on plot data.
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B.3.3 Classes

builtins.object

Axis

Columns

Experiment

Kernels

Plot

ClusterPlot

HistogramPlot

LinePlot

ParetoPlot

QQPlot

SpearRhoPlot

SurfPlot

PlotDf

class Axis(builtins.object)

Plot axis definitions, with one instance needed for each axis, eg. one for the x-axis and

one for the y-axis for a line plot.

Methods defined here:

__init__(self, col=None, vals=[[]], lim=None)

Initialise the axis parameters, including:

col : column id containing plot data for the axis (Default: None)

vals : list of value lists, one for each line/curve to plot (Default: [[]])

lim : tuple specifying axis minimum and maximum limits (min, max) (Default:

None)

__str__(self)

Return str(self).

getCols(self)

Get axis column as list of column names.

setTickLim(self)

Fit ticks and limits to the axis data values.
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class ClusterPlot(Plot)

Plot hierarchical clustering dendrograms.

Method resolution order:

ClusterPlot

Plot

builtins.object

Methods defined here:

__init__(self, ymls, response=None, title=None, show=True,
eps_name=None)

Initialise the plot parameters, including:

response : column id for the response to be plotted

Other parameters can be set directly using the following attributes:

rho_method : see pandas.DataFrame.corr() (Default: ’spearman’)

rho2 : use rho squared rather than rho if True (Default: True)

dist_method : see scipy.cluster.hierarchy.linkage() (Default: ’complete’)

See the Plot class for other parameter descriptions.

plotPd(self)

Called by the Plot class to plot the dendrogram.

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault

class Columns(builtins.object)

Static column definitions for plot data, including:

id : short name

name : full YAML field name

label : axis label for column

unit : column units

scale : multiplier for units, eg. MFlops multiplier is 1e6

pred : column is a predictor variable for regression modelling

base : used to filter base predictors required as model inputs versus all predictors
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resp : column is a response variable for regression modelling

type : ’Energy’ or ’Performance’ response

pareto_max : optimise for minimum values if False

The following attributes/helpers are available (using list comprehension):

names : dictionary mapping id to name

labels : dictionary mapping id to axis label

units : dictionary mapping id to units

respType : dictionary mapping id to response type

paretoMax : dictionary mapping id to pareto_max

idsByName : dictionary mapping name to id

labelsByName : dictionary mapping name to label

responses : list of all responses

predictorsBase : list of all base predictors

predictors : list of all predictors

nameList : list of all column names

scale : dictionary mapping id to scale

Static methods defined here:

getStatsName(col_id, stat)

Get the column name for statistics data in YAML file for the given column id and

statistic name.

updateColumnKey(col_id, key, val)

Find the column definition for the given column id and update given key with given

value.

Data and other attributes defined here:

defs = [{’id’: ’ar’, ’label’: ’Perf’, ’name’:
’objectives.appRate’, ’r...

idsByName = {’derived.energyEfficiency’: ’ee’,
’derived.fomPerJ’: ’fe’...

labels = {’ar’: ’Perf’, ’cc’: ’Comp intensity’, ’cr’:
’Comp intensity’...

labelsByName = {’derived.energyEfficiency’: ’EE’,
’derived.fomPerJ’: ’...

nameList = [’objectives.appRate’,
’objectives.totalCompIntensCyc’, ’ob...

names = {’ar’: ’objectives.appRate’, ’cc’:
’objectives.totalCompIntens...
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paretoMax = {’ar’: True, ’cc’: True, ’cr’: True, ’de’:
True, ’dp’: Tru...

predictors = [’ep’, ’kl’, ’l3’, ’nl’, ’nr’, ’rs’, ’sb’,
’sc’, ’rb’, ’t...

predictorsBase = [’fq’, ’nd’, ’tn’]

respType = {’ar’: ’Performance’, ’cc’: None, ’cr’: None,
’de’: None, ’...

responses = [’ar’, ’ee’, ’fe’, ’fs’, ’st’, ’td’, ’te’,
’tj’, ’ts’, ’tt...

scale = {’ar’: 1000000.0, ’cc’: 1.0, ’cr’: 1.0, ’de’:
1.0, ’dp’: 1.0, ...

statsPrefix = ’stats’

units = {’ar’: ’MFlops/s’, ’cc’: ’Ops/cyc’, ’cr’:
’Ops/ref’, ’de’: ’J’...

class Experiment(builtins.object)

Integration for YAML experiment results files written by the hpcprobe module.

Provided attributes include:

res/repName : regular expression string/pattern for experiment name/s in YAML

file/s

res/repIter : regular expression for kernel iteration parameter

res/repYml : regular expression for experiment YAML file name/s

knlsMap : maps experiment kernel name to a kernel enumeration column

rangeMap : maps experiment l/h to lo True/False column

Static methods defined here:

getYmls(knls, ids=[4], lo=False, hi=False, energy=False,
perf=False)

Get a list of matching YAML file names for the experiment from the current directory.

YAML file names need to use the following format:

<kernel name>-f-<e|p>-<l|h>-<node count>-<id>.yml

The required YAML files are selected using the available method arguments:

knls : list of kernel ids

energy : ’e’ or energy usage results

performance : ’p’ or performance results

lo : ’l’ or low range results

hi : ’h’ or high range results
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ids : list of YAML ids

Data and other attributes defined here:

knlsMap = {’kl’: {’amg’: 5, ’dgemm’: 4, ’hacc’: 7,
’lammps’: 6, ’lules...

rangeMap = {’lo’: {’h’: False, ’l’: True}}

repIter = re.compile(’^.* [$]OMP_NUM_THREADS
(?P<it>[0-9]+)\\b.*$’)

repName = re.compile(’^exp.(?P<kl>sparse|stencil|
transpose...ulesh|wrf...

repYml = re.compile(’^(?P<kl>[^-]*)-f-(?P<cr>[ep])-
(?P<lo>[lh])-(?P<nd...

resIter = r’^.* [$]OMP_NUM_THREADS (?P<it>[0-9]+)\b.*$’

resName = ’^exp.(?P<kl>sparse|stencil|transpose|nstream|
dge...|lulesh|...

resYml = ’^(?P<kl>[^-]*)-f-(?P<cr>[ep])-(?P<lo>[lh])-
(?P<nd>[0-9]{2})-...

class HistogramPlot(Plot)

Plot population distribution histograms.

Provided attributes include:

linestyles : default list of line styles

markers : default list of line markers

x_lim : default x-axis limits in standard deviations

Method resolution order:

HistogramPlot

Plot

builtins.object

Methods defined here:

__init__(self, ymls, response, xform=None, bins=None,
title=None, show=True, eps_name=None)

Initialise the plot parameters, including:

response : response column id for plot

xform : Model.Transform to apply to response (Default: None)

bins : numpy.histogram bins (Default: None – uses numpy default of 10 bins)

See the Plot class for other parameter descriptions.
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plotPd(self)

Called by the Plot class to plot the histogram.

Data and other attributes defined here:

linestyles = [’-’, ’:’]

markers = [’ ’, ’ ’]

x_lim = [-3.3, 3.3]

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault

class Kernels(builtins.object)

Static properties for test software or kernels, including:

id : short name

name : full name

tradeoff : trade-off column ids for this kernel, eg. performance tradeoff with energy

limits : data error limits for each of the kernel trade-off columns

<col_id_1> :

obs : observation/measurement limits

for : model forecast/prediction limits

<col_id_2> : ...

unit : kernel specific units that override column units

scale : kernel specific axis plot scales for columns

The following attributes/helpers are available (using list comprehension):

knlList : list of all kernels

nameList : list of all kernel names

names : dictionary mapping id to name

tradeoffs : dictionary mapping id to tradeoff

lims : dictionary mapping id to limits

labels : dictionary mapping id to labels

units : dictionary mapping id to units

nums : dictionary mapping id to an enumeration id
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scale : dictionary mapping id to scale

numsByName : dictionary mapping name to an enumeration id

idsByNum : dictionary mapping enumeration id to name

Static methods defined here:

getLabel(knl_id)

Get the kernel label using kernel definitions, if not found use the kernel name.

getLims(knl_id, col_ids, obs=True)

Get the kernel observed/forecast limits for the given column id.

getUnits(knl_id, col_id)

Get the kernel units using the kernel definitions, if not found use the column defini-

tions.

Data and other attributes defined here:

defs = [{’id’: ’sp’, ’limits’: {’ar’: {’for’: [0.05,
0.0], ’obs’: [0.0...

idsByNum = {0: ’sp’, 1: ’st’, 2: ’tr’, 3: ’ns’, 4: ’dg’,
5: ’am’, 6: ’...

knlList = [’sp’, ’st’, ’tr’, ’ns’, ’dg’, ’am’, ’lm’,
’ha’, ’lu’, ’wr’]

labels = {’am’: ’AMG’, ’dg’: ’DGEMM’, ’ha’: ’HACC’,
’lm’: ’LAMMPS’, ’l...

lims = {’am’: {’fe’: {’for’: [0.05, 0.0], ’obs’:
[0.05, 0.0]}, ’fs’: {...

nameList = [’sparse’, ’stencil’, ’transpose’, ’nstream’,
’dgemm’, ’amg...

names = {’am’: ’amg’, ’dg’: ’dgemm’, ’ha’: ’hacc’,
’lm’: ’lammps’, ’lu...

nums = {’am’: 5, ’dg’: 4, ’ha’: 7, ’lm’: 6, ’lu’: 8,
’ns’: 3, ’sp’: 0,...

numsByName = {’amg’: 5, ’dgemm’: 4, ’hacc’: 7, ’lammps’: 6,
’lulesh’: ...

scale = {’am’: {}, ’dg’: {}, ’ha’: {’te’: ’log’, ’tt’:
’log’}, ’lm’: {...

timesteps = {’am’: None, ’dg’: None, ’ha’: None, ’lm’:
None, ’lu’: Non...

tradeoffs = {’am’: (’fe’, ’fs’), ’dg’: (’ee’, ’ar’), ’ha’:
(’te’, ’tt’...

units = {’am’: {’ep’: ’nz’}, ’dg’: {}, ’ha’: {’ep’:
’Runs’}, ’lm’: {’e...
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class LinePlot(Plot)

Plot line data.

Provided attributes include:

markerList : default list of line markers

Method resolution order:

LinePlot

Plot

builtins.object

Methods defined here:

__init__(self, ymls, x_id, y_id, y2_id=None, z_ids=None,
y_err=False, z_vals=None, s_id=None, legend=False,
colorbar=False, title=None, show=True, eps_name=
None)

Initialise the plot parameters, including:

x_id, y_id : column ids for x-axis and y-axis data

y2_id : column id for twin y-axis data (Default: None)

z_ids : column id for legend groups (Default: None)

y_err : enable error bars when data includes confidence intervals (Default: False)

z_vals : column values for legend groups (Default: None)

s_id : column id for marker color groups (Default: None)

See the Plot class for other parameter descriptions.

plotPd(self)

Called by the Plot class to plot the lines.

Data and other attributes defined here:

markerList = [’x’, ’o’, ’+’, ’s’]

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault

class ParetoPlot(Plot)

Plot Pareto fronts.
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Provided attributes include:

ptsLinestyle : line style for data set points (Default: ’ ’)

ptsMarker : line markers for data set points (Default: ’.’)

ptsSize : line markers size for data set points (Default: None)

ptsFcolor : line markers face color for data set points (Default: None)

frtLinestyle : line style for Pareto front (Default: ’-’)

frtMarker : line markers for Pareto front (Default: ’o’)

frtSize : line markers size for Pareto front (Default: 12)

frtFcolor : line markers face color for Pareto front (Default: ’none’)

demoLineColors : line colors for trade-off zone demonstration plot

Method resolution order:

ParetoPlot

Plot

builtins.object

Methods defined here:

__init__(self, ymls, x_id, y_id, x_lim=None, y_lim=None,
z_id=None, z_vals=None, s_id=None, poly=False,
lims=False, obs=True, demo=False, clusters=None,
relax=False, iterate=False, colorbar=False,
legend=False, title=None, show=True, eps_name=
None)

Initialise the plot parameters, including:

x_id, y_id : column ids for x-axis and y-axis data

x_lim, y_lim : x-axis and y-axis limits (Default: None)

z_id : column id for legend groups (Default: None)

z_vals : column values for legend groups (Default: None)

s_id : column id for marker color groups (Default: None)

poly : plot trade-off zone polygon (Default: False)

lims : apply error limits to Pareto analysis (Default: False)

obs : use observed or forecast error limits (Default: True is observed)

demo : color trade-off zone construction steps (Default: False)

clusters : add Pareto point cluster labels (Default: None)

<label_1>: [<start Pareto point>, <end Pareto point>] <label_n2>: [<start

Pareto point>, <end Pareto point>]

relax : plot error limits boxes around Pareto points (Default: False)

iterate : extend Pareto set by repeating analysis with Pareto points excluded

(Default: False)
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See the Plot class for other parameter descriptions.

plotPd(self)

Called by the Plot class to plot the Pareto front.

Data and other attributes defined here:

demoLineColors = [’b’, ’r’]

frtFcolor = ’none’

frtLinestyle = ’-’

frtMarker = ’o’

frtSize = 12

ptsFcolor = None

ptsLinestyle = ’ ’

ptsMarker = ’.’

ptsSize = None

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault

class Plot(builtins.object)

Base class for plotting DataFrame data using matplotlib. By default, plots use the ’gnu-

plot’ colormap and are saved in PDF format.

Methods defined here:

__init__(self, df_ymls, x_lim=None, y_lim=None, legend=
False, colorbar=False, title=None, surf=False,
wire=False, show=True, eps_name=None)

Initialise the plot parameters, including:

df_ymls : DataFrame or list of YAML files containing plot data

x_lim : x-axis limits (Default: None)

y_lim : y-axis limits (Default: None)

legend : add legend to plot if True (Default: False)

colorbar : add a color bar to the plot if True (Default: False)

title : plot title (Default: None)
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surf : 3d surface plot (Default: False)

wire : 3d wire plot (Default: False)

show : display plot on screen (Default: True)

eps_name : save plot if file name is not None (Default: None)

cfgFig(self)

Configure the plot legend, colorbar, axes scale, limits, ticks, tick labels, axis labels,

twin axis, z-axis if for a 3d plot, etc.

getLabels(self)

Get text labels for the plot using label items from the z-axis data.

getListVal(self, vals)

Get a value for a list that is expected to be all the same value. If list values are not all

the same return "??"

getYmls(self)

Get the list of YAML file dependencies for the plot.

label3dPt(self, x, y, z, z_lim, l, z_id=None)

Label a point on a 3d plot, including its coordinates.

x, y, z : coordinates of point

z_lim : vertical limit for label anchor

l : label text

z_id : id of z column used to add SI prefix to label

plot(self)

Use the plotPd method from the child class to plot data.

plotFig(self, part=False)

Plot the figure

part : do not show or save the figure, overriding the current save and show

settings. This is used when the plot will be further manipulated after calling this

method.

resetLineColors(self, axis=None)

Reset the line color cycle to the default setting

setCbarTicks(self, ticks, labels)

Set the colorbar ticks and labels

setLineColors(self, axis=None, clen=None)

Set the line color cycle using the plot colormap setting.

setLinestyles(self, linestyles)
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Initialise the cycle object for line styles.

setMarkerfacecolors(self, markerfacecolors)

Initialise the cycle object for line marker face colors

setMarkers(self, markers, marker=None, idx=-1)

Initialise the cycle object for line markers.

setMarkersizes(self, markersizes)

Initialise the cycle object for line marker sizes.

setTickFormatter(self, ax_plt, ax_lims, ax_cfg)

The axis tick formatter needs to be reset if setting a log scale.

ax_plt : matplotlib axis to be set

ax_lims : axis limits

ax_cfg : axis definition

toTex(self, txt)

Convert text for LATEX compatibility if usetex setting is active in matplotlibrc file.

Data and other attributes defined here:

cmapDefault = ’gnuplot’

epsExt = ’.pdf’

lineColorLenDefault = 10

class PlotDf(builtins.object)

Allows hpcprobe experiment results to be read, selected, and merged into a DataFrame

for plotting. Data manipulation operations such as filtering, slicing, and vector arithmetic

can then be used on plot data.

Provided attributes include:

userTimeThreshold : alert if user time is less than this percentage of total time, as

the results may be affected by high job initialisation or clean-up times

knls : list of kernels found in the data

predictors : list of predictors found in the data

responses : list of responses found in the data

Methods defined here:

__call__(self)

PlotDf() returns the DataFrame.

__init__(self, df_ymls, basePredictors=False)

173



Load the plot DataFrame. The df_ymls argument can be a list of YAML file/s to load

data from, or a DataFrame to use. The basePredictors argument should be True if plot

data is being used with hpcmodels

checkUserTime(self, tt_col=None, tt=None, pc=None)

Check the minimum user time is over the given percent threshold of the total time as

the accuracy of the energy efficiency calculation is impacted if user time is not close

to the total time.

getColsBy(self, cols, by_col)

Get column data grouped by values in another column.

getProdDf(self, cols)

Generate plot DataFrame containing the required combinations of columns and val-

ues eg. cols = {’nd’:[20],’tn’:range(4,45,4),’gh’:numpy.arange(1.2,2.2,.1)}

getReshapedCol(self, col)

Reshape a (1 x n) list into a (m x len/m) list where m is repeat length of the column

values.

getReshapedCols(self, cols)

Reshape multiple (1 x n) lists into (m x len/m) lists, grouped horizontally.

getYmls(self)

Get the list of YAML files used to load the DataFrame.

readYaml(self)

Load the DataFrame using data read from the configured list of YAML files. YAML

files in a simple list [yml1,yml2,.] are appended to the DataFrame. Otherwise, pairs

of YAML files [[yml1,yml2],[yml3,yml4],.] are merged and appended. This enables

energy and performance data merging of energy and performance data that was col-

lected in separate runs.

setDerivedCols(self)

Set/add columns derived from other columns, such as energy efficiency. Also rename

all columns in column definitions using their short name.

setFilterCol(self, col, col_filt, label=None)

Add a DataFrame column with the name given by col_filt that applies a Savitzky-

Golay smoothing filter to address noise in the col column.

setPredictors(self, base)

Set the predictors attribute using the given base argument to select base only or all

predictors.

setYErr(self, col, stat, err_id)
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Set yerr1 and yerr2 columns in required format for errorbar plot.

Data and other attributes defined here:

userTimeThreshold = 0.95

class QQPlot(Plot)

Plot quantile-quantile plots for comparing probability distributions.

Provided attributes include:

linestyles : default list of line styles

markers : default list of line markers

x_lim : default x-axis limits in standard deviations

Method resolution order:

QQPlot

Plot

builtins.object

Methods defined here:

__init__(self, ymls, response, xform=None, title=None,
show=True, eps_name=None)

Initialise the plot parameters, including:

response : response column id for plot

xform : Model.Transform to apply to response (Default: None)

See the Plot class for other parameter descriptions.

plotPd(self)

Called by the Plot class to plot the Q-Q plot.

Data and other attributes defined here:

linestyles = [’ ’, ’-’, ’:’]

markers = [’x’, ’ ’, ’ ’]

x_lim = [-3.3, 3.3]

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault
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class SpearRhoPlot(Plot)

Plot the Spearman’s rho association between predictors and the selected response.

Method resolution order:

SpearRhoPlot

Plot

builtins.object

Methods defined here:

__init__(self, ymls, response, sort=False, rho2=False,
title=None, show=True, eps_name=None)

Initialise the plot parameters, including:

response : column id for the response to be plotted

sort : sort the responses by rho values if True (Default: False)

rho2 : use rho squared rather than rho if True (Default: False)

See the Plot class for other parameter descriptions.

plotPd(self)

Called by the Plot class to plot the Spearman’s rho associations.

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault

class SurfPlot(Plot)

Plot three dimensional surface data. This class can be used to show Pareto points in

context of search space dimensions selected for the x-axis and y-axis.

Provided attributes include:

pLinestyle : default line style pMarker : default line markers

Method resolution order:

SurfPlot

Plot

builtins.object

Methods defined here:
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__init__(self, ymls, x_id, y_id, z_id, z_lim=None, z2_id=
None, z2_vals=None, z3_id=None, pareto=True, poly=
True, lims=True, obs=True, legend=False, title=
None, rotate=None, show=True, eps_name=None)

Initialise the plot parameters, including:

x_id, y_id, z_id : column ids for x, y and z axis data

z_lim : z-axis limits (Default: None)

z2_id : column id for legend groups (Default: None)

z2_vals : column values for legend groups (Default: None)

z3_id : trade-off column id (Default: None)

pareto : plot Pareto points for z_id versus z3_id on the surface (Default: True)

poly : plot trade-off zone polygon points (Default: True)

lims : apply error limits to Pareto analysis (Default: True)

obs : use observed or forecast error limits (Default: True is observed)

rotate : rotate plot using given (elev,azim) tuple (Default: None)

See the Plot class for other parameter descriptions.

plotPd(self)

Called by the Plot class to plot the surface.

Data and other attributes defined here:

pLinestyle = ’ ’

pMarker = ’.’

Methods inherited from Plot:

cfgFig(), getLabels(), getListVal(), getYmls(), label3dPt(), plot(), plotFig(), reset-

LineColors(), setCbarTicks(), setLineColors(), setLinestyles(), setMarkerfacecol-

ors(), setMarkers(), setMarkersizes(), setTickFormatter(), toTex()

Data and other attributes inherited from Plot:

cmapDefault, epsExt, lineColorLenDefault

B.3.4 Functions

run()

HPCPlot API usage demonstration.

B.3.5 Data

__contact__ = ’mark.endrei@uq.edu.au’
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__copyright__ = ’Copyright 2019, The University of Queensland’

logger = <Logger hpcplot (WARNING)>

B.3.6 File

./lib/python3.6/site-packages/hpcplot.py
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Appendix C

Artefacts Archive

This appendix provides instructions for setting up the required tools, launching experiments, and

analysing the results, as presented in this thesis.

C.1 Description

Instructions on how to obtain the artefacts archive and the associated hardware and software depen-

dencies are provided in this section.

C.1.1 How Software can be Obtained

The source code and data set archive is available in The University of Queensland’s institutional

repository, UQ eSpace, using doi.org/10.14264/uql.2019.697. To request access, send an email to

data@library.uq.edu.au. Select the Artefacts_archive ZIP file.

C.1.2 Hardware Dependencies

The software has been tested on Intel Haswell and Broadwell servers running CrayPE version 2.5.

C.1.3 Software Dependencies

Build instructions and dependencies are provided in the artefacts archive README.md for each program

under the following folders:

• tools/nimrodo

• tools/hpcprobe

Third party source code is available as follows:
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• Parallel Research Kernels version 2.17 commit d52f82f – github.com/ParRes/Kernels

• Algebraic multi-grid benchmark version 1.2 commit 09fe8a7 – github.com/LLNL/AMG

• LAMMPS version 14 May 2016 – lammps.sandia.gov

• LULESH version 2.0 commit b56882b – github.com/LLNL/LULESH

• WRF version 4.0.1 commit f729619 – github.com/wrf-model/WRF

– WPS version 4.0.1 commit 398505c – github.com/wrf-model/WPS

C.1.4 Archive Contents

Figure C.1 shows the structure of the artefacts archive with a brief description of the contents of each

folder.

Folder Description

exp Experiment artefacts

evaluation Chapter 6 evaluation artefacts

config Experiment initialisation files

results Experiment results summary files

tools Tools artefacts

amg AMG build information

hpcprobe HPCProbe source code

lulesh LULESH build information

nimrodo Nimrod/O source code

prk Parallel Research Kernels patches

wrf WRF build information

Figure C.1: Archive Contents

C.1.5 Datasets

All experiment initialisation files and YAML results summary files are available in the data set archive

under the exp/evaluation folder. File names include the kernel name and node count. All model

responses and data plots are generated from these data sets. HPC node counts for the full data set

include:

• 20, 42, 64, and 86 for Stencil;

• 20, 42, 64, and 86 for Transpose;

• 20, 42, 64, and 86 for Nstream;

• 20, 40, 48, 60, and 80 for AMG;

• 20, 40, 60, and 80 for LAMMPS;
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• 4, 14, 32, and 63 for LULESH; and

• 64 for WRF.

C.2 Installation

To build and install the required tools and test codes:

1. Extract the artefacts archive ZIP file

2. Build Nimrod/O as per README.md instructions from the data set

3. Build HPCProbe tools as per README.md instructions from the data set

4. Clone the PRK ParRes/Kernels GitHub repository

• Check tools/prk/README.md for instructions

5. Build the required kernels, MPI/OpenMP stencil, transpose, and nstream

• Edit Kernels/common/make.defs to suit your environment. For CrayPE, set

– MPICC=cc

– CC=cc

– DEFAULT_OPT_FLAGS:=-hpic -dynamic

• Make the required kernels, for example

– cd Kernels/MPIOPENMP/Stencil

– make stencil

• Instrument the kernels with CrayPAT, for example

– pat_build -w stencil

The job post processing command option mentioned in section A.1.2 can be used to collect

power measurements using another mechanism

6. Clone the LLNL/AMG GitHub repository

7. Build AMG

• Edit Makefile.include to suit, in our case

– CC = cc

– INCLUDE_CFLAGS = -O2 -DTIMER_USE_MPI -DHYPRE_USING_OPENMP \
-h omp -DHYPRE_HOPSCOTCH -DHYPRE_USING_PERSISTENT_COMM \
-DHYPRE_BIGINT -hpic -dynamic

– INCLUDE_LFLAGS = -lm -h omp
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• Make and instrument AMG

– make

– pat_build -w test/amg

8. Download LAMMPS

9. Build LAMMPS

• Edit MAKE/Makefile.mpi to suit

• Make and instrument LAMMPS

– make -j8 mpi

– pat_build -w lmp_mpi

10. Clone the LLNL/LULESH GitHub repository

11. Build LULESH

• Edit Makefile to suit, in our case

– MPICXX = CC -static -homp -DUSE_MPI=1

– CXXFLAGS = -O2 -hipa4

– LDFLAGS = -O2 -hipa4

– Comment out MPI_INC and MPI_LIB

• Make and instrument LULESH

– module load fftw

– make

– pat_build -w lulesh2.0

12. Clone the wrf-model/WRF GitHub repository

• Check tools/wrf/README.md for instructions

13. Build WRF

• ./configure

– Compiler choice: 51. (dm+sm) INTEL (ftn/icc): Cray XC

dm+sm is distributed and shared memory, or MPI/OpenMP

– Nesting option: 1 basic

• Make WRF

– make

14. Clone the wrf-model/WPS GitHub repository

• Check tools/wrf/README.md for instructions

182



15. Build WPS

• ./configure

– Compiler choice: 40. Cray XC, Intel (dmpar_NO_GRIB2)

• Make WPS

– make

C.3 Experiment Workflow

The following steps are used to run experiments and analyse the results:

1. Create the experiment initialisation file. The initialisation files for the Chapter 6 experiments

are available in the artefacts archive under the exp/evaluation/config folder.

2. Launch the experiment using the following command:

hpcprobe.py -i <init file>

3. Analyse the experiment results using the Python API provided by the HPCModel and HPCPlot

modules.

Analysis data and plots are generated from the summary.yml files output from hpcprobe.py. Sec-

tion A.2 and section A.3 provide examples showing how the plots and results summary data in this

thesis are generated using the HPCModel and HPCPlot modules.

C.4 Evaluation and Expected Result

Chapter 6 describes the model evaluation process in detail.

There are several log files to monitor that an experiment is progressing as expected:

1. log/exp.log for overall experiment logs

2. log/job.out for Nimrod/O logs

3. log/qsub.out for PBS logs

4. log/job-<id>.out for each measurement run log

The scripts used for generating the experimental and model data log to standard output. The logging

level can be set via the command line with the --info or --debug arguments.
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C.5 Experiment Customisation

Customisation options for the HPCProbe tools include:

• Measurement data parsing using regular expressions defined in the hpcplot.yml file. See

section A.1.3.

• Experiment configuration using initialisation files. Configurable options include PBS job sub-

mission details, software module requirements, job post processing command details, and re-

peat count for measurement confidence intervals. See section A.1.2.

• Results analysis using Python scripts with the HPCModel and HPCPlot modules. The HPC-

Model module implements the proposed models. Plots can be generated from experiment

summary.yml files using the HPCPlot module. See section A.2 and section A.3.

For further details, please refer to the user documentation in Appendix A and API documentation in

Appendix B.
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