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Abstract 

The stability of rock slopes in Mining and Civil Engineering structures is typically analysed using 

either a Factor of Safety or a Probability of Failure method. These methods represent different 

assessments of the same slope stability problem, and there is currently no reliable industry-accepted 

method to convert a Factor of Safety to a Probability of Failure, and vice-versa, for rock slopes. 

Relationships between these two design philosophies are numerous in the geotechnical literature; 

however, these relationships typically rely on restrictive assumptions or are only applicable to a single 

slope failure mode. The incorporation of scale effects when considering the relationship between 

Factor of Safety and Probability of Failure is typically absent or it is implicitly incorporated into an 

empirical strength relationship. The main focus of this Thesis is to explore the relationships between 

Factor of Safety, Probability of Failure and problem scale for rock slopes. 

After the completion of an initial literature review, it was apparent that there were several limitations 

in practical stability analysis, preventing the formulation of a Factor of Safety versus Probability of 

Failure relationship for rock slopes. Engineers are free to choose any defendable value for each 

relevant rock material parameter, which can create inconsistent Factors of Safety. Engineers are also 

free to choose how they wish to define the probabilistic behaviour of each relevant material parameter. 

These probabilistic descriptions are often poorly justified, rely on matching Probability Density 

Functions from the literature, or are based on simple assumptions such as a normal distribution. The 

choice of Probability Density Functions determines the calculated Probability of Failure and if 

incorrectly specified, unrealistic Probability of Failure can result. When scale considerations are 

included, the Factor of Safety versus Probability of Failure problem becomes even less well 

understood, with very few studies even considering the probabilistic behaviour of rock at scale, in 

any meaningful detail. 

With these identified inconsistencies in both deterministic and probabilistic rock material parameter 

selection, it is highly unlikely that a usable relationship between Factor of Safety and Probability of 

Failure can be obtained using current industry practices, let alone considering scale effects. In order 

to achieve a usable relationship between Factor of Safety and Probability of Failure, including scale 

effects, further research is required to explore deterministic material parameter selection criteria, 

probabilistic material parameter selection criteria, and an appreciation of probabilistic and 

deterministic descriptions of material parameters at increased scales. 
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In order to select meaningful and consistent inputs for both Factor of Safety and Probability of Failure 

analyses, a greater appreciation of the intrinsic variability of rock material parameters is required. 

The ideal solution is to have a set of equations that can adequately describe the Probability Density 

Function of any material parameter from a geotechnical database, which then provides guidance as 

to how to complete deterministic and probabilistic analyses, including scale. With consistent selection 

guidelines, it should be possible to produce a usable relationship between Factor of Safety and 

Probability of Failure considering scale.  

For this standardised approach to be possible, it is necessary to demonstrate that the distribution of 

rock material parameters can be universally approximated by specific Probability Density Function; 

that is, rock material parameters are described by Universal Distribution Functions. A similar 

requirement for scale effects is also required; that is, rock material parameters exhibiting a Universal 

Scale Function, which describes how deterministic and probabilistic parameters change as a function 

of problem scale. This scale consistency would then mean that a usable relationship between Factor 

of Safety and Probability of Failure can include consideration of any scale of interest. 

The starting point of this Thesis is to provide sufficient evidence that Universal Distribution Functions 

are a good approximation at the laboratory scale, and are suitably generalisable to any given rock 

problem. An assumption-free, non-parametric test methodology is developed in order to test for and 

estimate this hypothesised universal behaviour. The non-parametric analysis demonstrated that 

Universal Distribution Functions are an applicable probabilistic model for laboratory-scale rock 

material parameters and demonstrated that material parameters exhibit consistent and universal 

correlation coefficients. The number of test samples required to achieve a desired level of accuracy 

was then derived for all deterministic and probabilistic rock material parameters described by the 

Universal Distribution Functions. 

The implications of this universal probabilistic behaviour is then explored to provide supplementary 

evidence of their existence and to demonstrate their wider applications. The universal probabilistic 

behaviour was able to provide a statistical explanation as to why a linear relationship is obtained 

between any pair of Uniaxial Compressive Strength, Point Load Testing, and Uniaxial Tensile 

Strength measurements. While this explanation is able to show the existence of a linear relationship, 

the derivation does not produce an estimate for the magnitude of the linear relationship. A similar 

derivation is then used to demonstrate why a non-linear relationship is applicable for Uniaxial 

Compressive Strength and Young’s Modulus values. This statistical description also validates two 

commonly used deterministic ‘downgrading’ methods for Uniaxial Compressive Strength, being the 
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use of the 35th percentile value and 80% of the mean value. The statistical theory also produces a 

new equation relating sonic velocity measurements to the Uniaxial Compressive Strength of rock. 

The applicability of this new Sonic Velocity model is compared to site data and showed to have a 

sufficient goodness of fit. 

Due to a lack of available data for rock material parameters at increased scales, the strictly empirically 

based statistical analysis used to estimate laboratory-scale Universal Distribution Functions was not 

possible for increased scales. In order to estimate the expected Universal Scale Functions and relevant 

Universal Distribution Functions at increased scales, PLACEBO (Probabilistic Lagrangian Analysis 

of Continua with Empirical Bootstrapped Outputs) is purpose developed for this Thesis using Itasca’s 

FLAC3D. PLACEBO is a general purpose numerical homogenisation tool able to probabilistically 

quantify material parameters of intact rock at arbitrarily large scales, including material nonlinearities 

and material parameter correlations. 

It was demonstrated using PLACEBO that non-zero asymptotic rock material scale behaviours 

consistent with literature scaling laws are producible from heterogeneous scale analysis. It is noted 

that the scale response for each material parameter is dependent on input parameters and suggests 

that scaling laws are not universal, but must be evaluated on a case-by-case basis. The practical 

implications of this scale-based analysis is applied to the ‘minimum shear strength’ approach and is 

able to provide justifiably higher minimum shear strength parameters for rock by considering scale, 

homogenisation and correlation. Additionally, the heterogeneity of seemingly unrelated rock material 

parameters is observed to have considerable influence on material parameters at increased scales, and 

therefore the heterogeneity of all material parameters needs to be included when considering scale-

dependant responses. 

The probabilistic behaviour of rock material parameters at any scale show consistent and predictable 

changes, despite having different asymptotic-scale behaviours. Equations for the general distribution, 

at arbitrary volumes, for dry density and elastic Young’s Modulus are also derived based on the 

findings of this analysis. The variability associated with the peak friction angle, peak cohesion, 

Uniaxial Compressive Strength and Uniaxial Tensile Strength is remarkably consistent and generally 

retained their associated Probability Density Functions. However, no generalised scale-dependant 

description is determined. This scale-invariant probabilistic behaviour meant that generalising the 

Factor of Safety versus Probability of Failure relationship to consider scale could produce a self-

consistent relationship over changing scales of interest. 
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The uniaxial compressive failure process is observed to transition from strictly brittle failure at small-

scale, to a dilatational, friction-hardening, cohesion-softening response at large-scale. A non-linear 

failure envelope with increasing triaxial stresses is produced from simple linear Mohr Coulomb 

assumptions, providing further evidence that the failure process of rock at practical scales is not fully 

represented by simple linear failure criteria. These findings demonstrate that numerical heterogeneous 

analysis is a powerful and cost-effective alternative to physical testing and is able to quantify 

emergent failure complexities and material parameter scaling laws governed by material 

heterogeneity. 

Non-parametric statistical analysis is also completed on numerically simulated Fractional Brownian 

Motion paths to establish a theoretical universal probabilistic model for discontinuity roughness. This 

probabilistic model is then used to derive the expected scaling laws associated with discontinuity 

roughness, as well as simple estimates of a discontinuities fractal characteristic using Barton’s length 

amplitude measurements. The theoretical scale behaviour is then compared and contrasted against 

two different natural discontinuities with measurement scales ranging from 0.05m to 7.5m. The field 

measurements of discontinuity roughness demonstrated the non-fractal nature of discontinuities over 

most measured scales, and the inability of the fractal model to produce the observed negative scaling 

law and associated homogenisation at increasing scales. These findings suggest that a purely fractal 

self-affine description of discontinuity roughness is not applicable at practical scales. 

A new relationship is then derived relating fractal characteristics and Joint Roughness Coefficients. 

This new relationship was compared against Barton’s standard profiles and Bandis’ Scaling Law 

using the available field measurements of roughness, and showed consistency in estimates of the scale 

dependant Joint Roughness Coefficient up to discontinuity lengths of 7.5m. This comparison with the 

well tested Bandis Scaling Law demonstrates the applicability and accuracy of this new roughness 

index, even at very large scales. These findings suggest that even though discontinuities are not 

completely described by a fractal self-affine model, estimates of the Hurst Exponent are still useful 

characteristic values for describing roughness at increased scales. 

Numerical simulation methods are then implemented using pre-existing mathematical theory in order 

to derive estimates of cross-joint spacing in bedded rock. The simulated indicated that the distribution 

of cross-joint spacing at low stress levels should follow an exponential distribution, with a more 

general model of cross-joint spacing being the gamma distribution. 
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With a greater appreciation to how rock material parameters change as a function of scale, the issue 

of the relationship between Factor of Safety and Probability of Failure is revisited. By decomposing 

each failure mechanism Factor of Safety equation into its individual material parameter components, 

it is possible to define in closed-form upper and lower bounds for any Factor of Safety versus 

Probability of Failure relationship for a number of simple to completely generalised problems. It is 

demonstrated that when considering the particular relationship containing multiple Factor of Safety 

components, the probability convolutions are not able to be calculated without the use of numerical 

methods and did not produce a one to one relationship between Factor of Safety and Probability of 

Failure. This result means that there is no simple relationship that can be proposed to relate a particular 

Factor of Safety to a Probability of Failure for structured rock at any scale of interest. 

The main problematic feature of considering Factor of Safety and Probability of Failure at increased 

scale is the selection of an appropriate scale of interest, which is currently poorly defined. By 

changing the scale of interest or how heterogeneity is interpreted, a substantially different Factor of 

Safety Probability of Safety relationship is obtained for a single problem. This scale of interest 

problem will need to be studied in detail to determine which Factor of Safety versus Probability of 

Failure relationship is appropriate to practical designs. 
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Thesis Overview 

This section gives an overview of the individual Chapters and their contained knowledge. This Thesis 

has four key research focuses (Chapter Two through to Chapter Five) with each Chapter addressing 

an industry limitation identified during the initial literature review. A breakdown of each Chapter and 

the information contained is shown below. 

Chapter One 

Chapter One provides a general overview to the original aims of this Thesis, as well as the relevant 

literature review. The main literature topics covered in this Chapter include: 

• how Factor of Safety is defined and calculated; 

• how Probability of Failure is defined and calculated; 

• how rock material parameters are treated as random variables in literature; and 

• how rock and rock discontinuities change as a function of scale 

Chapter One concludes with several examples highlighting the current industry limitations identified 

during the literature review. Chapter One also presents in detail the research methodology used for 

each proceeding Chapter. 

Chapter Two 

Chapter Two is the first of the key research Chapters. This Chapter covers the non-parametric 

statistical analysis providing sufficient evidence for the existence of Universal Distribution Functions. 

The Chapter then continues onto exploring the implications and predictions that can be made using 

these Universal Distribution Functions. These predictions are then compared to published findings, 

or are compared to laboratory data. This additional analysis is included in this Chapter to provide 

supplementary evidence that Universal Distribution Functions are valuable constructions with a wide 

range of applications. An example of how to use Universal Distribution Functions is also included in 

this Chapter. 
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Chapter Three 

Chapter Three is the second key research Chapter and builds on the previous Chapter. The main focus 

is to extend the theory presented in Chapter two to larger problem scales. The Chapter initially 

describes the functionality, assumptions and measurement routines for The Probabilistic Lagrangian 

Analysis of Continua with Empirical Bootstrapped Outputs (PLACEBO). PLACEBO is the 

numerical homogenisation tool used to measure material parameters at increased scales. 

The Chapter then presents the output for a number of synthetic rock types generated and measured 

using PLACEBO. Non-parametric statistics are used to understand the changes to material parameter 

variability at different scales. Comparisons to previous literature findings are also presented where 

possible. The Chapter concludes with a practical example for how PLACEBO can aid in selecting 

conservative shear strength parameters that are much stronger than typical conservative selection 

methods. 

Chapter Four 

Chapter Four is the third key research Chapter and relates to the analysis for rock discontinuities. 

There are three sub-focuses in this Chapter: 

• deriving the probabilistic model and scaling laws for rough discontinuities using a fractal model; 

• comparing the fractal model to field measurements for validation; and 

• using numerical methods to estimate the probabilistic behaviour of cross joints in bedded rock. 

This Chapter uses non-parametric statistics as the main tool for assessment. Where possible, 

comparisons are made to other results and relationships from literature. 

Chapter Five 

Chapter Five builds on the main findings from Chapter two, three and four and revisits the relationship 

between Factor of Safety and Probability of Failure. This Chapter presents the mathematical 

derivation and numerical validation of the closed form relationships between Factor of Safety and 

Probability of Failure at any scale for rock slopes. Special cases that can be derived in closed form 

are also presented and numerically validated. 
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Chapter Six 

Chapter Six presents a summary of the main conclusions for each Chapter in this Thesis. This Chapter 

also presents the significant contributions made in the field of Rock Mechanics. Possible future 

research topics are also included in this Chapter based on the findings of this Thesis. No new 

information is presented in this Chapter. 
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1 Factor of Safety and Probability of Failure 

The appropriate design of rock slopes in Mining and Civil Engineering structures is of major 

importance for the safety of people and equipment, as well as the general project risk. Rock slopes 

are typically designed using either a Factor of Safety or Probability of Failure method. These methods 

represent different assessments of the same stability problem, yet there is currently no reliable 

industry wide method to convert a Factor of Safety to a Probability of Failure and for rock slopes. 

Relationships between these two design philosophies are numerous in the geotechnical literature; 

however, these relationships typically rely on restrictive assumptions or are only applicable to a single 

failure mode. The incorporation of scale effects when considering the relationship between Factor of 

Safety and Probability of Failure is typically absent, or it is implicitly incorporated into an empirical 

strength relationship. 

The main focus of this Thesis is to explore the relationships between Factor of Safety, Probability of 

Failure and problem scale for rock slopes. The findings of this more generalised relationship between 

Factor of Safety and Probability of Failure will be highly beneficial for open pit geomechanics, as it 

allows for: 

• more accurate analysis of large scale failure mechanisms; 

• complete transparency for the conversion between any Factor of Safety and Probability of Failure; 

• provide consistency for future mining operations and rock mechanics problems; 

• risk analysis relating to Factor of Safety values; 

• removal of overly conservative design practices and  

• reduces analysis time, as the Probability of Failure does not require direct calculation. 

Prior to delving too far into this Thesis, it is important to understand what exactly these two design 

principals are and how they are currently applied to practical applications. From this initial literature 

review, a research direction and overall methodology can be determined based on current industry 

limitations. 
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1.1 Defining Factor of Safety 

The concept of using a Factor of Safety (FOS) is one of the simplest design methods taught to 

engineering students during their first years of study. The actual wording of the FOS definition does 

vary between sources, but it is typically defined as a ratio involving strength and stress, or forces. 

Whitman (1984) defines FOS as the ratio of the allowable Capacity 𝐶 to the calculated demand 𝐷 

i.e.: 

 𝐹𝑂𝑆 =
𝐶

𝐷 
 Equation 1 

Equation 1 is the preferred FOS formulation when dealing with simple hand calculations. Some 

numerical approaches find Equation 1 difficult to implement so a Strength Reduction Factor (SRF) 

formulation may often be used as a substitute (Sharma & Pande 1988). The SRF is defined as the 

value that the shear strength parameters along a specified slip surface must be reduced to bring the 

rock mass to a state of limiting equilibrium. For a linear Mohr Coulomb criterion, this is given by: 

 𝜏 =
𝑐′

𝑆𝑅𝐹
+ 𝜎𝑛

tan𝜙′

𝑆𝑅𝐹
 Equation 2 

Where 𝜏 is the acting shear stress (Pa), 𝑐′ is the effective cohesive stress (Pa), 𝜎𝑛 is the acting normal 

stress (Pa) and 𝜙′ is the effective friction angle. It is accepted that a FOS or SRF less than one 

describes an unstable or failed system, a FOS or SRF greater than one described a stable system and 

a FOS or SRF equal to one describes a system in static equilibrium.  

As the calculation of FOS or SRF is deterministic in nature, representative strength parameters need 

to be initially selected. For example, to use Equation 2, an initial value for 𝑐′ and 𝜙′ need to be chosen, 

and hence some defensible selection must be made. Hoek and Bray (1981) recommend using a 

conservative estimate for each Strength parameter, however they do not provide explicit guidelines 

on what constitutes a conservative choice. 
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Deterministic estimates need to be representative of the design material with minimal excessive 

economic implications or over conservatism. It has been noted in literature that an overly conservative 

System Strength parameter selection can have a considerable economic impact on a project with no 

overall benefit (Terbrugge, Wesseloo, Venter & Steffens 2006) and therefore should be carefully 

selected to produce a reasonable estimate of the system stability with minimum excessive economic 

implications. The implications of having multiple selection criteria for deterministic analysis are 

further elaborated on in Section 1.6.1. 

The System Stress components in Equation 1 are calculated on a case by case basis, and relate to the 

loading configuration associated with a design’s geometry and boundary conditions (Sharma & Pande 

1988). These System Stress relationships and overall FOS equations for various rock slope failure 

mechanisms are presented in the following section. 

1.2 Factor of Safety Equations for Structured Rock 

Rock slopes in practice are seldom comprised of intact rock. Rock often contains fractures, joints, 

discontinuities, faults or shears which can influence the strength and mechanical parameters of the 

rock mass. These features, which can collectively be defined as structures, will typically govern the 

overall rock slope stability. The FOS equations for rock slopes are based on simple kinematics 

involving these structures and are typically expressed in closed form for each possible failure 

mechanism. 

There are three main failure mechanisms governing rock slope stability; namely, Planar Failure, 

Toppling Failure and Intact or Circular Failure. Each failure mechanism has a number of particular 

Failure Cases, which include terms for particular System Strength components. This section presents 

and elaborates on the closed form or analytical solution for the FOS of each failure mechanism and 

their main associated Failure Cases. 

Practical applications will typically simplify each failure mechanisms and Failure Cases to a two 

dimensional problem, or a representative one meter section in the third direction (in or out of the 

bench). The influence of end conditions in the third direction is assumed negligible in these simplified 

analyses. Most FOS equations require that a failure criterion be assumed in order to calculate the 

overall System Strength contributions. Although the assumed failure criterion may be arbitrarily 

chosen, the Mohr Coulomb failure criterion is commonly used as a simple general analysis criterion. 

The FOS equations in this Section are typically formulated in terms of the Mohr Coulomb failure 

criterion, but can be easily modified to accommodate any failure criterion of interest. 
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1.2.1 Planar Failure mechanisms 

Planar Failure is characterised by rock mass movement occurring along a pre-existing discontinuity 

such as a joint, a fault or some planar zone of weakness. An example Planar Failure is shown in Figure 

1. 

 

Figure 1 Example of Case 1 Planar Failure 

Planar Failure additionally assumes that the rock mass is rigid and unable to deform, the forces 

applied to the rock mass act through the centroid and the contact area and forces remain constant. 

Depending on local geological conditions, planar failure can be separated into four unique cases. 

Case 1 Planar Failure is defined as sliding failure occurring along a single continuous day lighting 

discontinuity with no intact failure occurring. If the influence of the discontinuity cohesion can be 

ignored, the FOS for Case 1 Planar Failure can be calculated using Equation 3: 

 𝐹𝑂𝑆 =  
tan𝜙

tan 𝜃
 Equation 3 

where 𝜃 is the apparent dip of the failure surface (˚) and 𝜙 is the friction angle of the discontinuity 

(˚). When considering a discontinuity with both cohesion and frictional components, the FOS 

equation for Case 1 Planar Failure is given by (Wyllie & Mah 2004): 
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 𝐹𝑂𝑆 =  
𝑐𝐴 +𝑊 cos 𝜃 tan𝜙

𝑊 sin 𝜃
 Equation 4 

where 𝑐 is the discontinuity cohesion (Pa), 𝐴 is the area of the cohesive surface (m²) and 𝑊 is the 

weight of the mobile rock mass (N). 

One complication that arises when trying to implement Equation 4 is in the physical interpretation 

and quantification of discontinuity cohesion. An alternate approach of evaluating Case 1 Planar 

Failure is to use the shear strength criterion presented by Barton and Choubey (1977), which was later 

extended to consider scale effects (Bandis, Lumsden & Barton 1981). 

The Barton Bandis shear strength criterion is an empirically derived non-linear shear strength 

envelope that includes considerations for discontinuity roughness, infill, rock strength and 

discontinuity scale. The most recent version of the Barton Bandis shear strength criterion is given by 

Equation 5 (Bandis, Lumsden & Barton 1981): 

 𝜏 = 𝜎′𝑛 tan (𝜙𝑟 + 𝐽𝑅𝐶𝑛 log10 (
𝐽𝐶𝑆𝑛
𝜎′𝑛

)) Equation 5 

where 𝜏 is the shear strength (Pa), 𝜎′𝑛 is the effective normal stress acting on the discontinuity (Pa), 

𝜙𝑟 is the residual friction angle of the discontinuity after a significant amount of shearing, 𝐽𝑅𝐶𝑛 is 

the scale dependant Joint Roughness Coefficient (0 to 20) and 𝐽𝐶𝑆𝑛 is the scale dependant Joint Wall 

Compressive Strength (Pa). All parameters in Equation 5 can be estimated through various practical 

methods, with a summary presented in Table 1. 
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Table 1 Barton Bandis shear strength parameter estimation guidelines 

Model 

parameter 
Calculation method 

Scale 

correction 
Scale correction equation 

𝜎′𝑛 
Calculated from problem geometry and 

pore water pressure 
N/A - 

𝐽𝑅𝐶0 

Tilt tests to measure the tilt angle 𝛼; 

The amplitude-length method; 

Visual estimates from profile charts. 

𝐽𝑅𝐶𝑛 𝐽𝑅𝐶𝑛 = 𝐽𝑅𝐶0 (
𝐿𝑛
𝐿0
)
−0.02𝐽𝑅𝐶0

 

𝐽𝐶𝑆0 

Field or laboratory measurements using 

a Schmidt hammer; 

𝐽𝐶𝑆0 is equal to the Unconfined 

Compressive Strength if the joint is 

unweathered; 

𝐽𝐶𝑆0 is reduced for weathered joints. It 

may reduce to 1/4 the Unconfined 

Compressive Strength. 

𝐽𝐶𝑆𝑛 𝐽𝐶𝑆𝑛 = 𝐽𝐶𝑆0 (
𝐿𝑛
𝐿0
)
−0.03𝐽𝑅𝐶0

 

𝜙𝑟 

Direct shear tests results; 

Estimated using basic friction angle 

and Schmidt hammer measurements. 

N/A - 

 

In Table 1, the subscript 0 denotes the reference scale of each field measurement, 𝑛 refers to the scale 

of interest and 𝐿 is the discontinuity length. More detail surrounding how each Barton Bandis 

parameter is calculated, as well as a detailed description of their conception can be found in a number 

of references, with a recent summation presented in Barton (2013). The FOS equation for Case 1 

Planar Failure, using the Barton Bandis shear criterion is given by: 

 
𝐹𝑂𝑆 =  

𝜎′𝑛 tan (𝜙𝑟 + 𝐽𝑅𝐶𝑛 log10 (
𝐽𝐶𝑆𝑛
𝜎′𝑛

))

𝜏𝑎𝑐𝑡𝑖𝑣𝑒
 

Equation 6 
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where 𝜏𝑎𝑐𝑡𝑖𝑣𝑒 is the shear stress acting on the plane of failure (Pa). 𝜏𝑎𝑐𝑡𝑖𝑣𝑒 can be estimated using 

Equation 7: 

 𝜏𝑎𝑐𝑡𝑖𝑣𝑒 = 
𝑊 sin 𝜃

𝐴
 Equation 7 

When applying the scale corrections shown in Table 1, it is recommended that 𝐿𝑛 be chosen equal to 

the in-situ block size to account for the increased shear strength associated with the rotational and 

interlocking potential of closely jointed rock (Bandis, Lumsden & Barton 1981). 

Case 2 Planar Failure is defined as failure that occurs as a combination of planar sliding and mode II 

fracture parallel to the direction of shear. An example of Case 2 Planar Failure is shown in Figure 2 

 

Figure 2 Example of Case 2 Planar Failure 

When discontinuous joints are present within a rock mass, the variable 𝑘 can be used to quantify the 

joint persistence (Einstein et al 1983): 

 𝑘 =  
∑ 𝐽𝑜𝑖𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ

∑ 𝐽𝑜𝑖𝑛𝑡 𝐿𝑒𝑛𝑔𝑡ℎ + ∑𝐵𝑟𝑖𝑑𝑔𝑒 𝐿𝑒𝑛𝑔𝑡ℎ
 Equation 8 
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By consideration of Equation 8, 𝑘 must be greater than zero and less than or equal to one. The FOS 

equation for Case 2 Planar Failure is obtained by modifying Equation 4 to produce Equation 9 

(Einstein et al 1983): 

 𝐹𝑂𝑆 =  
[(1 − 𝑘)𝑐𝑖 + 𝑘𝑐𝑗]𝐴 + (𝑊 cos 𝜃)[(1 − 𝑘) tan𝜙𝑖 + 𝑘 tan𝜙𝑗]

𝑊 sin 𝜃
 Equation 9 

With the subscript 𝑗 referring to the joint parameters and 𝑖 referring to the intact or bridge parameters. 

In practice the value of 𝑘 is difficult to accurately measure so some common practical approaches are 

to assume joints are infinitely continuous, or have some very conservative value such as 𝑘 = 0.95. 

Case 3 Planar Failure is defined as failure that occurs as a combination of shearing and mode I fracture 

between adjacent discontinuous joints. The direction of tensile fracturing in Case 3 Planar Failure 

needs to be assumed, with two reasonable assumptions being perpendicular to the major induced 

stress (perpendicular to the slope wall) or vertical. Figure 3 shows an example of Case 3 Planar failure 

with vertical tensile fracturing. 

 

Figure 3 Example Case 3 Planar Failure. Vertical Tensile fractures Shown 
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When the direction of tensile failure is assumed perpendicular to the major induced stress, the FOS 

equation for Case 3 Planar Failure is given as (Einstein et al 1983): 

 𝐹𝑂𝑆 =  
𝑐𝑗𝐴

′ cos(𝛽 − 𝜃) + 𝜎𝑡𝐴
′ sin(𝛽 − 𝜃) +𝑊 cos 𝛽 tan𝜙𝑗

𝑊 sin 𝛽
 Equation 10 

where 𝛽 is the apparent angle of sliding of the failed block (˚), 𝜎𝑡 is the tensile strength of the intact 

rock (Pa) and 𝐴′ is the equivalent failure length (m). When the direction of tensile failure is assumed 

vertical, the FOS equation for Case 3 Planar Failure is given as: 

 𝐹𝑂𝑆 =
𝑐𝑗𝐴 cos𝛽 + 𝜎𝑡𝐴 sin(𝛽 − 𝜃) +𝑊 cos 𝜃 cos 𝛽 tan𝜙𝑗

𝑊 sin𝛽 cos 𝜃
 Equation 11 

A visual comparison of the two Case 3 Planar Failure geometries is supplied in Figure 4. 

 

Figure 4 Geometric components for Case 3 Planar Failure 

By considering Figure 4, if the failure surface start and ends are known, and a tensile failure direction 

is assumed, the joint spacing and persistence considerations are implicitly accounted for 

geometrically and therefore do not need to be considered in Equation 10 and Equation 11. 
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Case 4 Planar Failure defines failure that occurs when two or more discontinuities intersect, forming 

one or more blocks (or wedges) that are free to move. An example of Case 4 Planar Failure is shown 

in Figure 5. 

 

Figure 5 Example Case 4 Planar Failure 

Case 4 Planar Failure differs from the other Planar Failures as sliding can occur along several surfaces 

or along the line of intersection of two or more discontinuities (Goodman & Shi 1985). Case 4 Planar 

Failure is best viewed as the three dimensional, or generalised Planar Failure where any number of 

the previous Failure Cases can be considered with sufficient use of vector calculus. The general FOS 

equation for Case 4 Planar Failure is given as: 

 𝐹𝑂𝑆 =  
∑ 𝑭𝑷𝒊
𝑛
𝑖=1

∑ 𝑭𝑨𝒊
𝑛
𝑖=1 ∙ �̂�

 Equation 12 
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where 𝑭𝑷𝒊 is the 𝑖𝑡ℎ passive force vector (N) acting on the failure mass, 𝑭𝑨𝒊 is the 𝑖𝑡ℎ active force 

vector (N) acting on the failure mass and �̂� is the unit vector in the direction of sliding. Calculating 

the required force vectors is tedious to do by hand so Engineers will typically use commercial 

software to aid in the calculation of Equation 12. 

1.2.2 Toppling Failure mechanisms 

Toppling Failure describes the forward rotation of a rock mass out of a slope about a point or axis 

below the centre of the displaced mass. Toppling Failure requires that there exists at least two 

discontinuity sets that are approximately perpendicular to each other, with the correct Aspect Ratio 

and orientation to generate unbalanced moments. An example of the required joint and slope 

geometry to cause toppling is shown in Figure 6. 

 

Figure 6 Example Toppling Failure 

Wyllie and Mah (2004) define the Aspect Ratio of a rock block such that: 

 𝐴𝑠𝑝𝑒𝑐𝑡 𝑅𝑎𝑡𝑖𝑜 =
𝑡

ℎ
 Equation 13 

where 𝑡 is the bed thickness (m) and ℎ is the cross joint spacing (m). To determine if a rock mass will 

topple, the Aspect Ratio is assessed in conjunction with the apparent cross joint dip 𝜃 and the cross 

joint friction angle 𝜙 to determine the toppling Failure Case. There are four possible Failure Cases 

for Toppling Failure (Wyllie & Mah 2004): 
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Case 1 Toppling Failure describes a system such that: 

 𝜃 < 𝜙 𝑎𝑛𝑑
𝑡

ℎ
> tan𝜃 Equation 14 

Case 1 Toppling Failure defines a stable geometry with no sliding or toppling expected to occur. 

Sections of rock that fall into this region are stable. They are not prone either sliding or toppling. 

Case 2 Toppling Failure describes a system such that: 

 𝜃 > 𝜙 𝑎𝑛𝑑
𝑡

ℎ
> tan𝜃 Equation 15 

Sections of rock that fall into this region have an Aspect Ratio such that moments are balanced but 

are able to slide. The FOS equations for Case 2 Toppling Failure are equivalent to those for Planar 

Failure and were presented in the Section 1.2.1. 

Case 3 Toppling Failure describes a problem such that: 

 𝜃 < 𝜙 𝑎𝑛𝑑
𝑡

ℎ
< tan𝜃 Equation 16 

Case 3 Toppling Failure defines a problem where only toppling is expected to occur with no sliding. 

The FOS of Case 3 Toppling Failure can be determined by calculating the moments acting on a block 

of rock with the FOS equation given as: 

 𝐹𝑂𝑆 =  
𝑡/ℎ

tan 𝜃
=

𝑡

ℎ tan 𝜃
 Equation 17 

A different FOS formulation of Case 3 Toppling Failure is also found within literature (Wyllie & 

Mah 2004). This formulation assumes that the direction of the induced major principal stress is 

parallel to the slope surface and causes shear stresses and slip on the steep dipping joint set. The FOS 

equation for this interpretation is given as: 
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 𝐹𝑂𝑆 =  
tan𝜙

tan(𝜔 + 𝜃 − 90)
 Equation 18 

where 𝜔 is slope dip (˚). Equation 18 only gives the FOS of bedding planes slipping against one 

another and does not necessarily indicate full rotational failure of the rock mass from a slope. 

Equation 18 also assumes that the cohesion of the cross joints are negligible. By consideration of 

Equation 3 and the assumptions used to produce Equation 18 it can be seen that Equation 18 is an 

identical formulation to Equation 3 with a rotated coordinate system. 

Case 4 Toppling Failure describes a problem such that: 

 𝜃 > 𝜙 𝑎𝑛𝑑
𝑡

ℎ
< tan𝜃 Equation 19 

Case 4 Toppling Failure describes a multi-modal failure being a combination of both sliding and 

toppling. Case 4 Toppling Failure is difficult to compute by hand and must be solved on an iterative 

basis (Goodman & Bray 1976). Because of the tedious iterative calculations, Case 4 Toppling Failure 

is most commonly evaluated using a discrete element approach such as Itasca’s UDEC (Itasca 

Consulting Group Inc. 2014) or using toppling specific software such as Rocscience’s RocTopple. 

Discrete Element Methods is a broad numerical method that explicitly models the motion of discrete 

rigid, or semi rigid blocks to assess an overall system response with respect to a time variable. 

Discrete Element Methods are able to model the full motion of discontinuous rock slopes and can be 

constructed to allow intact rock to fracture. Depending on the block dimensions and problem size 

simulated, the computational requirements for Discrete Element Methods can be moderate to 

unreasonably high for practical applications. Simplified less densely discretised models are often used 

to understand the likely failure mechanisms and overall system response at the loss of some numerical 

accuracy. Discrete Element Methods are advantageous due to their ability to analyse any and all viable 

kinematic failures, assess key block or passive-active style failures, assess both small and large strain, 

and rotational problems, incorporate the influences of field stresses, external loads and material 

deformability and model some degree of intact failure of rock, alongside the overall kinematic 

response. This increased model complexity, as previously mentioned is typically associated with long 

simulation runtimes. 
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Numerical approaches to calculate the FOS of Case 4 Toppling Failure will typically be computed 

using Equation 2 (the SRF formulation). A note of interest is that because Case 4 Toppling Failure is 

solved iteratively, the relationship between the initial problem geometry and the calculated FOS will 

behave chaotically depending on how the geometry is defined or generated. What this means that is 

very small changes in problem geometry may have considerable influences on the calculated FOS 

and often require numerous simulations in order to determine the likely FOS associated with a single 

problem geometry. A more in depth elaboration of this chaotic influence when considering iterative 

solutions is presented in the 3DEC user’s manual (Itasca Consulting Group Inc. 2014). This chaotic 

nature makes it difficult to generally quantify Case 4 Toppling Failure even for well-defined problem 

geometries. 

1.2.3 Method of Slices 

When analysis is concerned with large scale multi bench failures or weak rock, the mechanism driving 

failure are typically not as clearly defined as the Failure Cases previously presented. These types of 

problems will typically have numerous failure modes and some degree of intact rock failure, forming 

a circular or nonplanar failure path. Typically, the analysis of these multimodal failures requires some 

form of numerical approximation to solve for the complex failure paths expected behaviours 

experienced. 

 

Figure 7 Example Circular Failure 
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Method of Slices is a very common, typically two dimensional method of determining the overall 

stability of a rock or soil slope (Fellenius 1936). This approach subdivides the given slope geometry 

into a series of slices and calculates the acting forces on each linear slice section to determine the 

FOS of the overall failure surface. A simple slicing method FOS equation is given by Fellenius (1936) 

is: 

 𝐹𝑂𝑆 =
∑ 𝑐∆𝐿𝑛 +𝑊𝑛 cos 𝛼𝑛 tan𝜙
𝑝
𝑛=1

∑ 𝑊𝑛 sin 𝛼𝑛
𝑝
𝑛=1

 Equation 20 

where 𝑝 is the number of slices, 𝑐 is cohesion (Pa), ∆𝐿𝑛 is the failure length of slice 𝑛 (m), 𝑊𝑛 is the 

weight of slice 𝑛 (N), 𝛼𝑛 is the dip of slice 𝑛 (˚) and 𝜙 is the friction angle (˚). Various authors have 

suggested modifications to Equation 20 to include additional terms for moments and slice-slice 

interactions, with a large list of methods of slicing modifications presented by Fredlund (1984). 

Software implementations of slicing methods will typically utilise many different failure surfaces and 

slicing methods to determine the combination associated with the lowest overall slope FOS. Failure 

surfaces may also be determined using a path search algorithm to determine the weakest a non-

circular failure path. Path search methods can consider local stresses, anisotropic strength and locally 

varying material parameters. Method of slicing are an advantageous method as they are able to include 

spatially different material parameters to reflect the actual rock mass conditions and local geological 

variations. 

1.2.4 Equivalent Continuum Methods 

Engineers may prefer to model the overall rock mass response instead of explicitly modelling the 

existing structures, in an effort to reduce the required computational time. This is achieved by 

modifying some combination of the laboratory scale material parameters or compatibility equations 

to simulate an equivalent continuous material that behaves identically to a rock mass (Sharma & 

Pande 1988). Equivalent continuum approaches are not limited to a single numerical method and can 

be implemented into various numerical methods such as Finite Element, Finite Difference or 

Boundary Element approaches. The main benefit of dealing with an equivalent continuum methods 

compared to Discrete Element Methods is that the computational effort and model discretisation are 

typically much less for continuum approaches and material non-linearity can be incorporated. 
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The FOS for equivalent continuum approaches is calculated utilising the SRF formulation given by 

Equation 2. Recent parametric studies by Lobbestael, Athanasopoulos-Zekkos and Colley (2013) 

have suggested that when numerical methods include progressive failure (i.e., strain softening) there 

is a potential reduction in the overall slope FOS up to 15% compared to their limit equilibum 

simulations. It was also noted in this study that the magnitude of the FOS reduction was more heavily 

influenced by the location of locally weak materials and problem geometry rather than the explicit 

incorporation of yielding elements. 

The main limitation when dealing with equivalent continuum approaches is how to determine the 

combination of material parameters or modified compatibility equations that reflect the overall rock 

mass response. One of the most commonly used empirical method for equivalent continuum 

parameter selection was first proposed by Hoek and Brown (1980) and has been able to estimate the 

equivalent strength and stiffness of an isotropic continuum by considering both laboratory and field 

measurements. This method (known as the Hoek-Brown failure criterion) has been reviewed and 

updated over its use with a summary of the advancements available in the publication by Hoek and 

Marinos (2007). More recently studies (Vakili, Albrecht & Sandy 2014) (Saroglou & Tsiambaos 

2007) (Dehkordi 2008) have considered how to extend the equivalent continuum approach to deal 

with known material anisotropy. When anisotropy is accounted for, equivalent continuum methods 

are more capable at approximating the material behaviour and can more clearly identify the likely 

failure mechanisms compared to a simpler isotropic model. 
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1.2.5 Factor of Safety equations for structured rock - summary 

The failure mechanisms associated with rock slopes are well understood and can be grouped into 

three main failure mechanisms, and then further divided into several Failure Cases. The FOS for most 

Failure Cases are expressed in closed form, or uses a numerical approach to calculate the FOS via the 

SRF approach. In relation to this Thesis’ aim, Table 2 presents the preferred method of calculating 

the FOS for each identified failure mechanism and individual Failure Cases: 

Table 2 Preferred calculation method for the Factor of Safety of various failure mechanisms 

Failure mechanism Failure Case Preferred calculation method 

Sliding Failure 

Case 1 - Frictional Sliding Equation 3 

Case 1 - Frictional Cohesional Sliding Equation 4 

Case 1 - Barton Bandis shear criterion Equation 6 

Case 2 - Non persistent sliding Equation 9 

Case 3 - Sliding and tensile failure 
Equation 10 

Equation 11 

Case 4 - Generalised sliding Equation 12 

Toppling Failure 

Case 1 - Stable - 

Case 2 - Sliding Only See Sliding Failure 

Case 3 - Toppling Only Equation 17 

Case 4 - Sliding and Toppling See below 

Complex Circular and intact Equation 20* 

*In relation to quantifying the FOS of circular and intact failure, equivalent continuum methods are 

best suited to dealing with this failure mechanism. When contrasting the accuracy of equivalent 

continuum approaches compared to simpler slicing methods, the results of Lobbestael, 

Athanasopoulos-Zekkos and Colley (2013) suggest that the incorporation of progressive failure 

should be considered, however the overall impact of incorporating progressive yielding is case 

specific. From a general analysis of FOS for rock slopes, their incorporation of progressive yielding 

is far too case specific to be considered for a general assessment. Slicing methods for quantifying 

intact failure will offer a computationally simpler and general evaluation approach for rock slope 

stability. 
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The most problematic Failure Case was identified as Case 4 Toppling, which needs to be solved using 

a strictly numerical approach. Mentioned previously in Section 1.2.2 the iterative solution needed for 

the FOS calculation can produce a chaotic response that can be very sensitive to the problem 

geometry. As the behaviour of Case 4 Toppling is expected to be very unpredictable and 

computationally expensive to calculate, even for well-defined geological problems, the notion that a 

rock slope’s FOS for Case 4 Toppling when dealt with in a general context has any relevant meaning 

is very small. For this reason, Case 4 Toppling Failure will not be considered further due to expected 

complications with the chaotic nature and excessively long simulation times. The findings of this 

Thesis can form the basis of a more in-depth assessment to considering Case 4 Toppling in isolation. 

1.3 Defining Probability of Failure 

When System Strength parameters and System Stresses are known and allowed to vary, Equation 1 

can be defined in terms of Probability Density Functions (PDFs) such that: 

 𝐹𝑂𝑆 = 𝑍(𝑋1, 𝑌1, … , 𝑋𝑛, 𝑌𝑘) =  
𝐹(𝑋1, 𝑋2, … , 𝑋𝑛)

𝐺(𝑌1, 𝑌2, … , 𝑌𝑘)
 Equation 21 

where 𝑋𝑛 are the PDFs associated with System Strength parameter 𝑛, 𝑌𝑘 are the PDFs associated with 

System Stress component 𝑘, 𝐹 is the function that describes the System Strength, 𝐺 is the function 

that describes the System Stress and 𝑍 is an equivalent function that describes the FOS. The 

Probability of Failure (POF) is then defined as the probability of obtaining a FOS value less than or 

equal to unity in Equation 21: 

 𝑃𝑂𝐹 = Pr(𝑍 ≤ 1) =  ∫ 𝑍(𝑋1, 𝑌1, … , 𝑋𝑛, 𝑌𝑘) 𝑑(𝑋1, 𝑌1, … , 𝑋𝑛, 𝑌𝑘)
1

0

 Equation 22 

Note that the lower integral limit is set to zero in Equation 22 as a FOS by definition cannot be 

negative. The proper integral notation should have the lower limit set to −∞.  

In relation to POF, it is accepted that the POF tends to 100% as the FOS tends to zero and POF tends 

to 0% as the FOS tends to infinity. Some Engineers quite strongly assert the belief that by 

consideration of these two previous statements the POF must be equal to 50% for a FOS equal to one. 

This feature is true in some specific cases but is not a general property of the relationship between 

FOS and POF. This feature is demonstrated further in Section 1.6.1 and is present in the FOS POF 
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relationships presented by Javankhoshdel and Bathurst (2014). Equation 22 is seldom defined in 

closed form so numerical methods are used to obtain an approximate solution. The three most 

commonly used numerical methods, their strengths and limitations are discussed in the following 

sections. 

1.3.1 Monte Carlo and Latin Hypercube Sampling 

Monte Carlo and Latin Hypercube Sampling methods, are simple algorithms that can be used to 

numerically integrate an 𝑛-dimensional problem (Brooks 1998). Monte Carlo and Latin Hypercube 

Sampling have every similar numerical procedures, with a general Monte Carlo procedure given by 

(Metropolis & Ulam 1949): 

1. Define a closed-form solution or numerical approximation to a problem to be solved. 

2. Define the PDF for each input variable. 

3. Randomly select a value for each input variable based on their assigned PDFs. 

4. Compute the value of the equation defined in Step 1 using the inputs from Step 3. Store the result. 

5. Repeat Steps 3 and 4 until the required number of calculations are complete, or some convergence 

criteria is met. 

The Latin Hypercube Sampling methodology implements a similar numerical procedure with only 

step 3 differing. Instead of randomly selecting each input variable, they are selected at using an evenly 

spaced 𝑛-dimensional grid through the input probability hypercube. This creates a finite number of 

non-random evaluation points: 

 (∏(𝑀 − 𝑛)

𝑀−1

𝑛=0

)

𝑁−1

= (𝑀!)𝑁−1 Equation 23 

where 𝑀 is the number of division in the PDF and 𝑁 is the number of input variables. Typically, 

Latin Hypercube Sampling requires a fraction of the number of realisations as Monte Carlo Sampling 

(Cheng & Druzdzel 2000) to achieve the same relative error. A visual example comparing Monte 

Carlo and Latin Hypercube sampling is shown in Figure 8. 
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Figure 8 Comparison of integration methods for a quarter circle. Left Monte Carlo Sampling, right 

Latin Hypercube Sampling. 

Monte Carlo Sampling and Latin Hypercube Sampling have a number of strengths and weaknesses. 

Monte Carlo Sampling is beneficial for the following reasons: 

• Monte Carlo Sampling is very simple to implement. Depending on the specific application, it may 

only require one loop to implement the Monte Carlo Sampling routine. Multi-variable problems 

can be easily assessed using spreadsheet programs with minimal effort. 

• Compatible over an 𝑛-dimensional problem (Brooks 1998). There are no limitations associated 

with the problem dimensionality. 

• No restrictions relating to applications or functions. Any numerical procedure can be modified to 

incorporate Monte Carlo Sampling. 

• Input PDFs can be continuous, discrete or arbitrarily defined. 

Monte Carlo Sampling does have the following limitations: 

• The use of Monte Carlo Sampling is restricted by the practicality of determining results for 

hundreds to tens of thousands of realisations. Depending on the application, it may be unfeasible 

to implement Monte Carlo Sampling. 
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• The accuracy is dependent on the law of large numbers. There is no guarantee that results from a 

Monte Carlo Simulation will be accurate at any number of resolutions. More calculations will 

result in a smaller associated error, which is at the cost of increased computational requirements. 

The Latin Hypercube Sampling method has several advantages over the Monte Carlo Sampling, 

which include: 

• Each specified realisation is only ever calculated once. This reduces the number of total 

calculations compared to Monte Carlo Sampling (Helton & Davis 2002) and removed redundant 

realisations. 

• There is explicit attention to low probability events. The inputs for the Latin Hypercube are evenly 

sampled, results for low probability outcomes are reflected well (Iman & Conover 1980). This 

approach ensures that low probability events are correctly accounted for in the final output 

distribution. 

• Fewer calculations results in faster overall computation (Cheng & Druzdzel 2000). 

Some limitations that have been identified with the Latin Hypercube Sampling method include: 

• The implementation of Latin Hypercube requires that the inputs are selected on an evenly spaced 

probability grid. Systematically selecting each evaluation point is not as simple to implement as 

randomly selecting values from the specified distribution. 

• When a problem has more than two dimensions or is considerably nonlinear, the efficiency gained 

by using Latin Hypercube becomes negligible in comparison to Monte Carlo Sampling 

(Manteufel 2000). 

Some recently published analyses using Monte Carlo Sampling include: 

Pavement Performance using rock materials (Kalita & Rajbongshi 2014), Bearing Capacity of 

cohesionless soils (Pula & Zaskorski 2014), Probabilistic slope stability (Zhang, Zhao & Li 2010), 

Investigating heterogeneous slopes with cross-correlated shear strength (Minh & Le 2014), Limit 

state analysis of gravity dams (Carvajal, Peyras & Bacconnet 2011), Wedge stability for slopes 

(Vatanpour, Ghafoori & Talouki 2014), Determining critical slip surfaces in earth slopes (Metya & 

Bhattacharya 2014), Stability of highly weathered rock slopes utilising spatial variability (Srivastava 

2012), Designing slope stability charts (Javankhoshdel & Bathurst 2014), Pillar stability for 
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underground mining (Guarascio & Oreste 2012) and Estimating block sizes for rock with non-

persistent joints (Kim, Cai, Kaiser & Yang 2007). 

Some recently published analysis using Latin Hypercube Sampling includes: 

Study the behaviour of soils exposed to dynamic loads (Petrik, Hrubesova & Mohyla 2014) and 

Probabilistic damage around underground excavations (Fattahi, Shojaee, Farsangi & Mansouri 2013). 

Industry applications of Monte Carlo Sampling are considerably more abundant than Latin 

Hypercube Sampling, implying some industry preference. This preference however is likely a result 

of built in support in commonly used software packages rather than a reflection of the method 

accuracy or industry standards. For typical rock slope applications (mainly limit equilibrium), there 

is no reason to suggest the exclusive use of Latin Hypercube Sampling over Monte Carlo Sampling. 

If computationally heavy analysis, for example large numerical models requires probabilistic 

assessment, a preference would exist to use Latin Hypercube Sampling over Monte Carlo Sampling. 

In these computationally heavy circumstances, Rosenblueth’s Point Estimate Method may offer an 

even more efficient method for probabilistic assessment. 

1.3.2 Rosenblueth Point Estimate Method 

The Rosenblueth Point Estimate Method is a different probabilistic approach in which the input PDFs 

are replaced in favour of point estimates at key locations (Rosenblueth 1975). The Point Estimate 

Method may appear overly simple, however for many applications the results obtained are exact 

(Rosenblueth 1981). The Point Estimate Method procedure is given as (Griffiths, Fenton & Tveten 

2002): 

1. Define an output function or performance function 𝑍. This is the function of interest and is 

dependent on one or more random variables 𝑋1, 𝑋2, … , 𝑋𝑛. 

2. Determine the location of evaluation points 𝜉𝑋𝑛+ and 𝜉𝑋𝑛− and weights 𝑃𝑋𝑛+ and 𝑃𝑋𝑛− for each 𝑋𝑛 

creating a list 𝑖 of 2𝑛 evaluation points for 𝑛 inputs. The evaluation points and weights are 

calculated by considering the first three statistical moments of each 𝑋𝑛. For uncorrelated 𝑋 the 

evaluation points and weights are given by: 

 𝜉𝑋𝑛+ = 𝜇𝑋𝑛 + 𝐶𝑋𝑛+𝜎𝑋𝑛  Equation 24 
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 𝜉𝑋𝑛− = 𝜇𝑋𝑛 − 𝐶𝑋𝑛−𝜎𝑋𝑛  Equation 25 

 𝑃𝑋𝑛+ =
𝐶𝑋𝑛−

𝐶𝑋𝑛+ + 𝐶𝑋𝑛−
 Equation 26 

 𝑃𝑋𝑛− = 1 − 𝑃𝑋𝑛+  Equation 27 

 𝐶𝑋𝑛+ =
𝛾𝑋𝑛
2
+ √1 + (

𝛾𝑋𝑛
2
)
2

 Equation 28 

 𝐶𝑋𝑛− = 𝐶𝑋𝑛+ − 𝛾𝑋𝑛  Equation 29 

where 𝜇𝑋𝑛 is the mean, 𝜎𝑋𝑛 is the standard deviation and 𝛾𝑋𝑛 is the skewness of 𝑋𝑛. Correlated input 

variables can also be considered, with the correlated weighting equations found in references such as 

Christian and Baecher (1999). 

3. Evaluate 𝑍(𝑖) at all 2𝑛 point estimates. 

4. Calculate the desired output characteristics by considering the moments of the output function 𝑍. 

The first three moments are given by: 

 𝜇𝑍 =∑𝑃𝑖𝑍𝑖

2𝑛

𝑖=1

 Equation 30 

 𝜎𝑍
2 = ∑𝑃𝑖(𝑍𝑖 − 𝜇𝑍)

2

2𝑛

𝑖=1

 Equation 31 

 𝛾𝑍 = 
1

𝜎𝑍
3  ∑𝑃𝑖(𝑍𝑖 − 𝜇𝑍)

3

2𝑛

𝑖=1

 Equation 32 
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Engineers may ignore the Point Estimate Method due to its apparent mathematical complexity, 

however the method is simple enough to be calculated by hand using a calculator. The advantages of 

using the Point Estimate Method over Monte Carlo or Latin Hypercube sampling include: 

• For typical applications only 2𝑛 calculations are required (Rosenblueth 1981). This makes 

computations by hand possible. 

• The output characteristics calculated are typically exact (Zhao & Ono 2000). Errors become more 

apparent when the output function is non-monotonic (i.e., higher than order 3). 

• Input PDFs do not need to be definable only their key characteristics need to be quantifiable 

(Russelli 2008). By only defining the key characteristics, the Point Estimate Method is highly 

suited to real world applications that use laboratory or site data. Justification of a suitable PDF 

for each input variable is not required with only the mean, standard deviation and skewness of the 

data being needed. 

The limitations associated with the Point Estimate Method include: 

• The Method can be interpreted as overly approximate (Christian & Bacher 1999). This perception 

has influenced industry acceptance of Point Estimate Method. This is not technically a 

disadvantage, but it greatly limits the number of method users. 

• Two point estimates are not always sufficient in evaluating functions (Rosenblueth 1981). It is 

not always apparent when the problem domain must be separated. This may result in inaccuracies 

in the results. 

• In order to fully appreciate the output PDF, additional methods for example Mote Carlo Sampling 

are required. This makes the Point Estimate Method results redundant as the output must be 

calculated using a different method. 

• Point Estimate Method is suited only to low variance problems. What constitutes a low variance 

problem is not well defined even by the method creator (Rosenblueth 1981). With ambiguity 

relating to the method appropriateness one may prefer not use this method. 

Some examples of recent industry examples that have utilised the Point Estimate Method include: 

Modelling uncertainty in underground excavations (Valley, Kaiser & Duff 2010), Assessing the 

bearing capacity of soils (Griffiths, Fenton & Tveten 2002 and Russelli 2008), Stability of spoil slopes 

in abandoned mines (Ruofen & Guangli 2013), General applications to underground drive and 
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development intersections risk analysis (Abdellah, Mitri, Thibodeau & Moreau-Verlaan 2014) and 

Rocscience SRF analysis for Phase2 v8.0 (Rocscience, 2011). 

The application of the SRF in Rocscience’s finite element package Phase2 for probabilistic analysis 

requires a major assumption. All input and output PDFs are assumed to follow a normal distribution 

(Rocscience, 2011). The Point Estimate Method implemented into Phase2 is also limited when the 

output function shape changes severely. When the output function is significantly different from the 

input distribution or the assumed output function, results are highly inaccurate. This is best 

demonstrated by the work of Valley and Duff (2011). 

To address a major limitation of the Point Estimate Method in relation to the FOS POF problem, 

consider the following example. An Engineer wants to determine the POF using the Point Estimate 

Method for some function 𝑍, which describes a rock slope’s FOS. 𝑍 was determined by Point 

Estimate Method to have the following characteristics: 

 𝜇𝑍 = 1.5 Equation 33 

 𝜎𝑍
2 = 0.7071 Equation 34 

 𝛾𝑍 = 0 Equation 35 

The question is, how can these statistical characteristics be used to calculate the POF? In order to 

evaluate the POF (Equation 22), the PDF of 𝑍 must be known. For the above example, a uniform, 

Laplace, triangular and normal distribution are all plausible PDFs based on the Point Estimate Method 

characteristics. If the output PDF of 𝑍 is poorly defined or not assumed, then the Point Estimate 

Method cannot meaningfully evaluate the POF. 
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1.3.3 Summary and method applicability to Factor of Safety problems 

This section has presented three of the most common methods of calculating a POF in geotechnical 

applications including some of their strengths and weaknesses. When applying these numerical 

methods to calculating a POF it would be preferable to use the Point Estimate Method over both 

Monte Carlo and Latin Hypercube Sampling due to the very efficient solution procedure. However, 

in order to use the Point Estimate Method the output PDF must be known, which must first be 

determined using either Monte Carlo or Latin Hypercube Sampling. The Monte Carlo Sampling 

method was chosen as the numerical method to evaluate Equation 22 for each FOS equation in Table 

2. This selection was justified due to its simpler numerical implementation and ease in assessing 

problems with more than two variables. 

1.4 Relationships Between Factor of Safety and Probability of Failure in Literature 

This section presents various industry examples of the relationship between FOS and POF for rock 

slope designs. The objective of this section is to understand if there are any pre-existing 

methodologies in the relationship between FOS and POF for rock slope designs. In practice, rock 

slopes are required to meet some minimum accepted level of risk that is a function of a company’s 

risk appetite or governing regulatory requirements. Depending on these standards, designs 

requirements may relate to either a FOS or a POF and can vary depending on the expected stand up 

time or economic implications of failure. Examples of general recommendations for design criteria 

for open pit slope design are shown in Table 3. 

Table 3 Acceptance criteria for open pit mining applications (Read & Stacey 2009) 

Slope scale 
Consequence of 

failure 

Acceptance criteria 

FOS (Minimum) 

static case 

FOS (Minimum) 

dynamic case 
POF (maximum) 

Bench Low to high 1.10 N/A 25% - 50% 

Inter-ramp 

Low 1.15 – 1.20 1.00 25% 

Medium 1.20 1.00 20% 

High 1.20 – 1.30 1.10 10% 

Overall 

Low 1.20 – 1.30 1.00 15% - 20% 

Medium 1.30 1.05 5% - 10% 

High 1.30 – 1.50 1.10 ≤ 5% 
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Other examples of open pit design guidelines can be found in other publications such as Sullivan, 

Duran and Eggers (1992), and From the Department of Minerals and Energy (1999). Although the 

design guidelines in Table 3 specify both a FOS and POF for each configuration, these guidelines do 

not imply any direct relationship between FOS and POF. 

1.4.1 Literature relationships between Factor of Safety and Probability of Failure 

Publications considering design FOS and POF for rock slopes do not typically focus on producing a 

general relationship between FOS and POF. A recent study looking into such a FOS POF 

relationships that does have parallels to rock slope designs is that by Javankhoshdel and Bathurst 

(2014) where a series of design charts relating circular failure FOS and POF for a range of soil types 

including purely cohesive, cohesive frictional and correlated cohesive frictional are presented. 

Although these relationships are for soils, the analogue to cohesive frictional materials (a common 

model for rock) means that they do produce some insight into a similar FOS POF relationship for 

rock. A collection of FOS POF relationships obtained through communications with Geotechnical 

practitioners and various literature sources relating to rock slope stability is presented in Figure 9. 

 

Figure 9 Documented Factor of Safety Probability of Failure relationships 

The data points shown in Figure 9 relate to numerical predictions of the FOS and POF associated 

with various numerical analyses. From the FOS POF pairs shown in Figure 9 it appears that there is 

some consistent underlying relationship between FOS and POF based on multiple author’s analysis. 

When applying the FOS POF equations given by Javankhoshdel and Bathurst (2014) to produce the 

relationship with the best fit Figure 10 is produced: 
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Figure 10 Documented Factor of Safety Probability of Failure relationships with fitted equation 

Based on Figure 10 the available FOS POF pairs and the FOS POF Equation by Javankhoshdel and 

Bathurst (2014) appear reasonably consistent. The FOS POF relationship shown in Figure 10 is 

calculated by using the following equation: 

 𝑃𝑂𝐹 = Pr(𝐹𝑂𝑆 < 1) =  𝛷

(

 
 
 
 ln(√

1 + 𝐶𝑂𝑉𝑠𝑢2

1 + 𝐶𝑂𝑉𝛾
2 /𝐹𝑂𝑆̅̅ ̅̅ ̅̅  )

√ln ((1 + 𝐶𝑂𝑉𝑠𝑢2 )(1 + 𝐶𝑂𝑉𝛾2))

)

 
 
 
 

 Equation 36 

where 𝐶𝑂𝑉𝑠𝑢 is the Coefficient of Variation associated with the shear strength and 𝐶𝑂𝑉𝛾 is the 

Coefficient of Variation associated with the unit weight. The relationship shown in Figure 10 is equal 

to a 𝐶𝑂𝑉𝐹𝑂𝑆 given by: 

 𝐶𝑂𝑉𝐹𝑂𝑆 = √𝐶𝑂𝑉𝑠𝑢2 + 𝐶𝑂𝑉𝛾2 = 11.18% Equation 37 

This ‘one fit all’ relationship does appear promising, however there are several aspects and 

assumptions that need further consideration: 
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The FOS POF Relationship given by Equation 36 assumes that the shear strength, unit weight and 

FOS are all described by log-normal distributions (Javankhoshdel & Bathurst 2014). This assumption 

may be appropriate for soils, but may not be appropriate for rock material parameters. Further review 

is required in order to identify if this material parameter assumption is consistent and representative 

for rock parameters. 

The FOS POF Relationship is presented for circular failure. It is suspected that each FOS equation 

presented in Table 2 will produce a different FOS POF relationship due to the formulation of the 

Failure Mechanism that has been previously identified are significantly different. More insight is 

required to determine if the relationship shown in Figure 10 is Failure Mechanism specific or a truly 

global FOS POF relationship. 

The incorporation of scale effects are not apparent in the equation or design charts given by 

Javankhoshdel and Bathurst (2014). Although some appreciation can be considered, a more 

transparent appreciation of scale effects when considering FOS and POF for rock is ideal. 

1.4.2 Rock material parameter variability in literature 

In order to determine if the assumptions used by Javankhoshdel and Bathurst (2014) are appropriate 

for rock, an extensive literature review was completed in order to identify any trends or consistencies 

within rock material parameter PDF descriptions. Table 4 through Table 7 summarise the elastic, 

mechanical, geological and rock mass PDF used in literature respectfully. 

Table 4 Elastic parameters Probability Density Functions from literature 

Parameter PDF used References 

Dry density 

Normal 
(Carvajal, Peyras & Bacconnet 2011); (Metya & Bhattacharya 

2014); (Zhang, Zhao & Li 2010) 

Log-normal (Javankhoshdel & Bathurst 2014) 

Uniform (Saliba, Saliba, Panitz, Figueiredo & Duarte 2014) 

Young’s 

Modulus 

Normal 
(Kim & Mission 2011); (Abdellah, Mitri, Thibodeau & Moreau-

Verlaan 2014) 

Normal 

(Truncated at 0) 
(Idris, Saiang & Nordlund 2012) 
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Log-normal (Bauer & Pauła 2000) 

Gamma (Canbulat 2010) 

Poisson’s 

Ratio 
Log-normal (Canbulat 2010) 

 

Table 5 Mechanical parameters Probability Density Functions from literature 

Parameter PDF used References 

Uniaxial 

Compressive 

Strength 

Normal 
(Guarascio & Oreste 2012); (Jefferies, Lorig & Alvares 

2008); (Wiles 2006); (York, Canbulat & Jack 2000) 

Normal 

(Truncated at 0) 

(Carvajal, Peyras & Bacconnet 2011); (Idris, Saiang & 

Nordlund 2012) 

Weibull 

(Maheshwari, Valadkar & Venkatesham 2009); (Lu & Xie 

1995); (Krumbholz, Hieronymus, Burchardt, Troll, Tanner & 

Friese 2014) 

Log-normal (Canbulat 2010) 

Point Load 

Index 
None found 

Normal, normal (Truncated at 0), Weibull and log-normal Can 

all be inferred from the relationship between Point Load Index 

and Uniaxial Compressive Strength (Franklin et al 1985) 

Uniaxial 

Tensile 

Strength 

Normal (Perras & Diederichs 2014) 

Normal 

(Truncated at 0) 

(Carvajal, Peyras & Bacconnet 2011); (Idris, Saiang & 

Nordlund 2012) 

Weibull 
(Amaral, Cruz Fernandes & Guerra Rossa 2008); (Lobo-

Guerrero & Vallejo 2006) 

Peak friction Normal 

(Baecher & Christian 2003); (Zhang, Zhao & Li 2010); 

(Abdellah, Mitri, Thibodeau & Moreau-Verlaan 2014); (Wiles 

2006) 



Page | 31  

Normal 

(Truncated at 0) 

(Metya & Bhattacharya 2014); (Idris, Saiang & Nordlund 

2012) 

Log-normal 
(Minh & Le 2014); (Javankhoshdel & Bathurst 2014); 

(Baecher & Christian 2003) 

Residual 

friction 
None found N/A 

Cohesion 

Normal 

(Zhang, Zhao & Li 2010); (Abdellah, Mitri, Thibodeau & 

Moreau-Verlaan 2014); (Metya & Bhattacharya 2014); 

(Baecher & Christian 2003) 

Normal 

(Truncated at 0) 
(Idris, Saiang & Nordlund 2012) 

Log-normal 
(Javankhoshdel & Bathurst 2014); (Baecher & Christian 

2003) 

Dilation None Found N/A 

 

Table 6 Geological parameters Probability Density Functions from literature 

Parameter PDF used References 

Joint dip and 

dip direction 

Normal 

(Young 1987); (Kulatilake 1986); (Vantanpour, Ghafoori & 

Talouki 2014); (Robertson 1977); (Barton 1976); (Baecher, 

Lanney & Einstein 1977); (Kulatilake, Chen, Teng, Pan & 

Shufang 1995); (Sjoberg 1996) 

Fisher (Sjoberg 1996) 

Joint spacing 

/ frequency 

Normal (Hammah & Yacoub 2009) 

Exponential (Baecher 1983); (Gumede & Stacey 2007) 

Weibull 
(Rabinovitch, Bahat & Greenber 2012); (Tang, Liang, Zhang, 

Chang, Tao, Wang, Zhang, Liu, Zhu & Elsworth 2008) 

Log-normal (Canbulat 2010); (Gumede & Stacey 2007) 
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Joint 

persistence 

/ trace* 

Normal (Hammah & Yacoub 2009) 

Log-normal 
(Baecher 1983); (Villaescusa & Brown 1992); (Zadhesh, 

Jalali & Ramezanzadeh 2014) 

Exponential (Zadhesh, Jalali & Ramezanzadeh 2014) 

Gamma (Zadhesh, Jalali & Ramezanzadeh 2014) 

Joint 

roughness 

Log-normal (Morelli 2014) 

Uniform (Saliba, Saliba, Panitz, Figueiredo & Duarte 2014) 

Gamma (Kveldsvik, Nilsen, Einstein & Nadim 2008) 

Joint stiffness None Found N/A 

Joint 

Compressive 

Strength 

Uniform (Saliba, Saliba, Panitz, Figueiredo & Duarte 2014) 

Joint friction 

Normal 

(Irigaray, El Hamdouni, Jiménez-Perálvarez, Fernández & 

Chacón 2012); (Park, Um, Woo & Kim 2012); (Vantanpour, 

Ghafoori & Talouki 2014); 

Uniform (Saliba, Saliba, Panitz, Figueiredo & Duarte 2014) 

Residual 

joint friction 
None found N/A 

Joint 

cohesion 

Normal 
(Vantanpour, Ghafoori & Talouki 2014); (Park, Um, Woo & 

Kim 2012); 

Normal 

(Truncated at 0) 

(Irigaray, El Hamdouni, Jiménez-Perálvarez, Fernández & 

Chacón 2012) 

Joint dilation None found N/A 

Far field 

stresses 
None found N/A 

*Zadhesh, Jalali and Ramezanzadeh (2014) has an abundance of trace length references. Typically, 

authors have suggested that joint traces are either log-normal or exponentially distributed. 
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Table 7 Rock mass parameter Probability Density Functions from literature 

Parameter PDF used References 

Rock Quality 

Designation 
None found N/A 

Rock Mass Rating Weibull (Nejati, Ghazvinian, Moosavi & Sarfarazi 2014) 

Rock Tunnelling 

Quality Index 
None found N/A 

Mathew’s stability 

number 
None found N/A 

Hoek-Brown 

criterion 

Normal 

GSI - (Guarascio & Oreste 2012); (Jefferies, Lorig & 

Alvares 2008) 

Mi - (Guarascio & Oreste 2012) 

Normal 

(Truncated at 0) 

GSI - (Idris, Saiang & Nordlund 2012) 

Mi - (Idris, Saiang & Nordlund 2012) 

Block size / 

volume 
Log-normal (Kim, Cai, Kaiser & Yang 2007) 

Shear Strength 

models 

Log-normal 
(Griffiths & Fenton 2003); (Javankhoshdel & Bathurst 

2014) 

Normal (Wiles 2006) 

Factor of Safety 

Normal (Sjoberg 1996) 

Log-normal 
(Srivastava 2012), (Javankhoshdel & Bathurst 2014), 

(Hammah & Yacoub 2009) 

Upon consideration of a vast literature search, the following conclusions can be made: 

• Geomechanics parameters appear to vary considerably between studies and therefore there is 

currently no consistent PDF for each material parameter. 

• There is limited statistical understanding of input variability, with the ‘natural assumption’ of a 

normal distribution being common practice. Some authors enforce the condition of non-zero 

values by using a log-normal distribution or a truncated normal distribution. 
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• Studies that are more recent have begun to acknowledge that Geomechanics parameters can be 

described by less traditional PDF families such as the gamma or Weibull distribution. The 

adoption of these functions implies that statistical rigour for Geomechanics applications is 

becoming increasingly popular. 

Based on the review of material parameter PDF assumptions in literature, it is apparent that there are 

no consistent PDF or consistent assumption for rock material parameters across multiple authors. 

This uncertainty in PDF descriptions and its implications to the FOS POF relationship is further 

discussed in Section 1.6.2. This review has also demonstrated that the assumptions used to produce 

the relationship shown in Figure 10 is sufficiently doubted, and warrant further research into 

quantifying material parameter variability in terms of representative PDFs for rock material 

parameters. 

1.5 Rock, Rock Material Parameters and Discontinuities at Scale 

Scaling laws in geotechnical engineering are used to describe how the measurable response of rock 

changes when the volume or characteristic dimension being assessed is varied. Scaling laws within 

brittle and quasi-brittle material literature consistently identify decreasing strengths (Bažant 1999) at 

increasing scales. This decrease in strength is also referred to as a negative scaling law. The most 

common empirical scaling law for laboratory  to describe rock strength is in the form (Hoek & Brown 

1980): 

 
𝑥𝑉𝑛
𝑥𝑉0

= (
𝑉𝑛
𝑉0
)
𝐶

 Equation 38 

where 𝑉0 is the characteristic dimension or Representative Volume Element (RVE), 𝑉𝑛 is the scale of 

interest, 𝑥𝑉0 is the strength component at the associated subscript scale and 𝐶 is a constant. The size 

of the characteristic dimension or RVE is defined as the smallest indivisible volume with measurable 

behaviour (Le & Bažant 2011). For intact rock, this is often taken as the test diameter or volume of 

an NQ sized laboratory sample. The constant 𝐶 in Equation 38 is determined experimentally (Hoek 

& Brown 1980) with the most publicised value for brittle compressive failures in hard rock having 𝐶 

equal to -0.18 for a 𝑉0 of 50mm. It does need to be noted that Hoek and Brown’s database did not 

contain samples that were larger than 200mm in diameter, or smaller than 0.8 times the typical 

laboratory sizes. They also did not suggest that Equation 38 could be extrapolated beyond their data. 
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Using Equation 38 as a generalised scaling law for strength does have some problems. As 𝑉𝑛 tends to 

infinity, the strength also tends to zero. Although it can be argued that the convergence of Equation 

38 to zero is sufficiently slow, such that it can provides accurate estimates for ‘in-situ block strength’, 

some authors (Goldstein et al 1966) (Zengchao, Yangsheng & Dong 2009) (Zhang, Zhu, Zhang & 

Ding 2011) have added an asymptote to Equation 38 to produce: 

 
𝑥𝑉𝑛
𝑥𝑉0

= (
𝑉𝑛
𝑉0
)
𝐶

+ 𝑥∞ Equation 39 

where 𝑥∞ is the asymptotic strength at an infinite scale. The asymptote in Equation 39 is calculated 

on a case by case basis from some regression model, with no real physical basis or representation to 

its selection. This asymptotic approach implies limitations of the typical scaling law to describe all 

conceivable problems. Scaling laws in brittle materials are often described using the statistical theory 

arguably first proposed by Weibull (1951) and was the basis of his ‘statistical distribution function 

of wide applicability’ to describe heterogeneous systems that are said to fail if one component within 

a larger system fails. This failure model is often referred to as the weakest link model. In practice this 

weakest link failure is not observed in either laboratory or field responses of rock. Laboratory scale 

samples at low confining stresses produce detectable acoustic emissions starting at 40% to 60% of 

the peak compressive strength (Hoek & Martin 2014) (Cho, Martin, Sego & Christiansson 2004) 

while in-situ seismic responses are detectable during the loading process and prior to failure. These 

observations suggest that independent of scale, rock failure is a gradual process and is not fully 

represented by a weakest link model. 

More complex failure models do exist to describe failure of multiple RVEs. These models include 

Daniel’s Fibre Bundle Mode (Daniels 1945) and Series-Parallel Coupling Models (Pang, Bažant & 

Le 2008). Unlike the Weibull model, load shedding capabilities are captured in these models and 

progressive failure can occur prior to reaching a peak strength. The increased model complexity 

means that analytical solutions are seldom possible, with numerical methods being used to determine 

an equivalent response. For stress related problems in rock, stochastic finite element (Liu 2004) 

(Wong, Wong, Chau & Tang 2006) (Zhu 2008), finite difference (Sainsbury, Pierce & Mas Ivars 

2008) and DEM (Mas Ivars et al 2011) (Poulsen, Adhikary, Elmouttie & Wilkins 2015) (Zhang, Stead 

& Elmo 2015) have been successfully used to model progressive failure in heterogeneous models to 

obtain scale dependant responses. These approaches are analogues to a complex failure model like 

those mentioned previously, with the load shedding rules explicitly defined by the compatibility 
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equations. Literature studies considering heterogeneity and scale in rock can be broadly grouped into 

two categories; mesoscopic modelling and synthetic rock mass modelling. 

1.5.1 Numerical scale analysis 

Mesoscopic modelling refers to simulations that consider the behaviour of ‘intermediate’ volumes of 

intact rock. Within these mesoscopic simulations, material parameters are randomly distributed 

throughout the model to reflect microscopic strength variability. Failure in mesoscopic modelling 

typically initiates at some localised zone of weakness, which then propagates to cause complete 

failure. Examples of mesoscopic modelling studies include the work by Liu (2004), Wong et al (2006) 

and Zhu (2008). Within these studies, each strength parameter was assumed to follow a Weibull 

distribution, and the mechanical parameters were deterministic. Zhu (2008) did extend their analysis 

to consider heterogeneity associated with Young’s Modulus, however a sensitivity of the influences 

of including this heterogeneity for Young’s Modulus was not considered within the study.  

Macroscopic heterogeneity or synthetic rock mass modelling refers to modelling methodologies that 

consider the influences and failure of both intact rock and structure within a rock mass. The typical 

synthetic rock mass approach involves simulating the behaviour of a large volume of rock containing 

a randomly generated fracture network. The fracture network is generated from a statistical 

description of joint set orientation, spacing and persistence that is generated on a case by case basis. 

These synthetic rock masses are then evaluated to obtain an equivalent continuum response of the 

rock mass assuming some failure model. Approaches using synthetic rock masses are primarily done 

using Discrete Element Methods (Mas Ivars et al 2011) (Poulsen, Adhikary, Elmouttie & Wilkins 

2015) (Zhang, Stead & Elmo 2014), however continuum based approaches (Sainsbury, Pierce & Mas 

Ivars 2008) are possible. 

Failure in synthetic rock masses is primarily related to the presence of comparatively weaker joints 

and partially contributed by failure of the stronger intact rock bridges. The applications of 

heterogeneity in synthetic rock mass models are noted to differ across studies. For example, the 

approaches used by Sainsbury et al (2008), Mas Ivars et al (2011) and Poulsen et al (2015) utilise 

calibrated deterministic intact rock and joint parameters, with the heterogeneity arising from the 

fracture network. Different approaches by Zhang and Zhao (2016) or Zhang et al (2014) extend their 

analysis to also consider heterogeneity associated with intact rock strength but utilise deterministic 

joint parameters. Within all of the mentioned synthetic rock mass modelling studies, no 

considerations were given to the influences of mechanical parameter heterogeneity that is, the 

influences of locally varying Young’s Modulus and Poisson’s Ratio. 
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Numerical scale analysis is typically done considering an ultimate deterministic output. This is done, 

as the result is to obtain equivalent material parameter to be used in continuum modelling for general 

design applications. The considerations of probabilistic scale effects are not dealt with in any of the 

previously mentioned studies, with the probabilistic behaviour at scale being implied from Author’s 

presented summary statistics. Stochastic numerical methods are general enough to produce a 

probabilistic description of scale behaviours if sufficiently modelled and interpreted.  

1.5.2 Experimental scaling laws 

Experimental studies considering scale effects of rock tend to focus primary on the overall intact 

strength (e.g., compression or tension) with limited considerations to the constitutive material 

parameters (e.g., friction, cohesion, Young’s Modulus etc.). Some notable studies considering scale 

and material parameters include those by Masoumi (2013), Simon and Deng (2009) Wong, Wong, 

Chau and Tang (2006), Zhu (2008). Another common feature of scale studies is that as sample sizes 

increase, the number of test samples relating to increased scales typically reduces (Masoumi 2013). 

This reduction in tested samples is likely a function of the practicality of sourcing samples, the 

specialty equipment required or the cost of materials and testing. 

A similar style of review to material parameter assumptions in Section 1.4.2 was completed to identify 

if there are any major studies or consistent probabilistic and deterministic trends for rock material 

parameters at various scales. After completing this review, it was found that there are very few studies 

relating to material parameter variability and scale with only two notable references. Weiss, Girard 

and Amitrano (2013) mentions that rock under uniaxial compression at any scale follows a normal 

distribution. Weiss’ result was obtained by modelling the behaviour of numerically simulated 

materials at various sizes. Another study by Arioglu (1999) suggested the following equation to 

explain the variability or rock at increased scales: 

 𝑉𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
𝑆2

𝑛𝑉
 Equation 40 

where 𝑆2 is the variance, 𝑛 is the number of samples and 𝑉 is the sample volume. Equation 40 was 

only stated and has very little confidence due to no new information or experimental data being 

provided. The author also uses the term variability as a more general term with no indication as to 

which statistical parameter it relates. 
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As previously mentioned, publications considering rock generally at scale do have some rather 

consistent trends for rocks over various scales. A summary of these phenomenon are listed in Table 

8. 

Table 8 Literature conclusions about rock at different scales 

Finding of study References 

As a sample’s size increases, 

its strength increases 

(Hawkins 1998); Many listed in (Masoumi 2013) 

Note that this influence is only noted for samples smaller than 

50mm diameter 

As a sample’s size increases, 

its strength decreases 

(Marcel & Vliet 2000); (Thuro & Plinninger 2001); (Hoek & 

Brown 1980); (Sainsbury, Pierce & Mas Ivars; 2008), (Bažant 

2008); (Weiss, Girard & Amitrano 2013); (Pratt et al 1972); 

(Bieniaswski 1968); (Hustrulid 1976); (Pierce, Gadia & 

DeGagne 2009); (Sahawne 2013); (Borr-Brunetto, Carpinteri & 

Chiaia 1999); (Bieniawski & Van Heerden 1975); (Marsland 

1971) 

As a sample’s size increases, 

its strength remains constant 
(Kuehn et al 1992); (Van Mier 1986); (Mogi 1962) 

As a sample’s size increases, 

the standard deviation for 

strength decreases 

(Marcel & Vliet 2000); (Sainsbury, Pierce & Mas Ivars 2008); 

(Bažant 2008); (Weiss, Girard & Amitrano 2013); (Kuehn et al 

1992); (Pierce, Gadia & DeGagne 2009); (Molenda et al 2013) 

As a sample’s size increases, 

the standard deviation for 

strength remains constant 

(Thuro et al 2001) 

Based on the literature search shown in Table 8 the most consistent behaviour is that rocks (strength) 

at scale exhibits the well documented negative scaling law and an associated homogenisation, or 

reduction in variance. A visual example of this idealised behaviour at scale is shown in Figure 11. 
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Figure 11 Idealised scale response - underlying scaling law and associated homogenisation 

By considering this documented phenomenon shown in Figure 11, and the FOS POF charts presented 

by Javankhoshdel and Bathurst (2014) some appreciation can be included for scale by selecting the 

relationship line that describes the scale of interest’s Coefficient of Variation. For this approach to be 

practical, the assumption that the shear strength at any scale is described by a log-normal distribution 

needs to be validated, and the Coefficient of Variation for a particular scale of interest needs to be 

routinely quantifiable. When considering the initial PDF assumptions for rock presented in Table 4 

through Table 7, it is doubtful this relationship is currently present for rock parameters and warrants 

further research into quantifying how problem scale effects the associated material parameter PDF. 

1.5.3 Rock discontinuities and scale 

The behaviour of rock discontinuities at scale is fundamentally a complex problem to evaluate. 

Reasons for this include the highly variable nature of quantitative discontinuity features, and the 

accompanying complex failure processes. A non-exhaustive list of quantitative discontinuity features, 

which have been demonstrated to influence a discontinuities’ shear strength, include the surface 

roughness (Barton & Choubey 1977) including anisotropy (Belem, Homand-Etienne & Souley 2000), 

the degree of surface interlocking (Johansson 2016), the orientation of the discontinuity with respect 

to loading (Bahaaddini 2014), discontinuity persistence (Bahaaddini 2014), spacing (Bahaaddini 

2014), intact rock and infill strength (Barton & Choubey 1977) and infill thickness (Karakus, Liu, 

Zhang & Tang 2016). 
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The failure process during shear is of equal complexity with some factors influencing the process 

including the applied normal stress (Goodman, Taylor & Brekke 1968), the rate of applied loading 

(Meemum 2014), intact failure verse dilatational failure (Goodman, Taylor & Brekke 1968), surface 

degradation while shearing (Lee, Park, Cho & You 2001), residual shear strength parameters (Barton 

1982) and interactions between nearby discontinuities (Bahaaddini 2014).  

The shear strength of any discontinuity may exhibit scale dependant behaviour and is often described 

by a negative scaling law. The notion of scaling laws for discontinuity shear strength remains 

somewhat contested in rock mechanics literature with summations of various scale studies presented 

by authors such as Johansson (2016), Bahaaddini (2014) and Li, Oh, Mitra and Canbulat (2017) 

implying that there is no consistently identifiable scaling law for discontinuity shear strength in rock 

mechanics literature. Research focusing on the nature of discontinuities and scale may proceed by 

using numerical or fractal methods. 

Numerical methods can be used simulate the expected behaviour of discontinuities. The main aim of 

numerical methods is to produce a deterministic equivalent continuum material for applications in 

larger numerical models, or parameter estimates for empirical criterion at some desired orientation or 

scale. Most numerical approaches considering discontinuity shear strength utilise Discrete Element 

Methods (Itasca Consulting Group 2014) or particle element (Itasca Consulting Group 2014) 

approach such that the entire shear failure process can be quantified. Numerical methods are able to 

assess any problem scale or complexity as long as a representative discontinuity geometry is 

available. Numerical applications will typically deal with this geometry requirement in one of three 

approaches: 

• Idealised profiles (Giacomini, Buzzi & Krabbenhoft 2008) (Shrivastava, Rao & Rathod 2012) - 

Simple repeating geometry such as a saw tooth or stepped triangular profiles are used as simple 

approximations. 

• Digitising the standard roughness profiles (Karami & Stead 2008) (Park & Song 2009) - Barton’s 

standard profiles are digitised and used as representative geometry. This approach limits the 

analysis to a two dimensional case and 10 representative geometries. 

• Surface scanning or tomography representation (Bahaaddini 2014), (Karakus, Liu, Zhang & Tang 

2016), (Lambert & Coll 2009), (Lazzari 2013) - two or three dimensional surface scans are 

obtained and used as representative geometry. This approach would constitute the current best 

practice as site based conditions are directly quantified and any measurable scale can be 
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considered. Advances in scanning technology are making this method more practically 

applicable. In order to use surface scanning techniques at large scales, a sufficiently large 

daylighting section of a discontinuity must be available to measure. This requirement does limit 

which discontinuities can be assessed in a practical setting. 

A recent study by Tatone and Grasselli (2013) has brought to light some issues associated with the 

accuracy surface scanning methods, in particular resolution and noise. Their findings suggest that the 

measurement resolutions had a more significant influence on the measurable discontinuity roughness 

than the sampling window did, meaning scanning techniques at very large scales may have 

undesirable accuracy and misrepresent roughness. This means that a mutual limiting factor when 

considering scale and discontinuities is the inability to accurately quantify large scale discontinuity 

features, in particular discontinuity roughness. 

Another approach that is common in rock mechanics literature is fractal descriptions of 

discontinuities. Fractal approaches are typically more mathematically complex than empirical or 

numerical methods and revolve around the notion that rock exhibit self-similar geometric properties 

(Mandelbrot 1982). The geometric complexity, scalability and self-similarity of an object is 

quantified by either its fractal dimension 𝐷 or Hurst exponent 𝐻. The two fractal parameters are 

related to one another such that: 

 𝐻 = 2 − 𝐷 Equation 41 

The term fractal is a broad definition, which covers two classifications of self-similarity; namely, 

fractal self-similar describing geometry that isotopically scales (Mandelbrot 1982), and fractal self-

affine describing geometry that scales anisotropically (Mandelbrot 1982). Fractal analysis 

considering rock discontinuities (Li, Oh, Mitra & Canbulat 2017), (Malinvero 1990),( Kwašniewski 

& Wang 1993), (Seidel & Haberfield 1995), (Belem, Homand-Etienne & Souley 1997), (Um 1997), 

(Fardin 2003), (Lanaro 2001), (Pearce 2001), (Jiang, Li & Wang 2013), (Wei, Liu, Li & Wang 2013) 

have shown that fractal self-affine is a more appropriate description of discontinuities than fractal 

self-similar. 

The fractal characteristics 𝐷 and 𝐻 can be estimated for a discontinuity using various techniques, 

with an extensive list of fractal measurement methods presented by Annadhason (2012). Methods 

used in rock mechanics literature include the roughness-length methods (Malinvero 1990), variogram 

methods (Belem, Homand-Etienne & Souley 1997), compass walking methods (Lee, Carr, Barr & 
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Hass 1990), divider or modified divider methods (Brown 1987) and spectral methods (Guohua 1994). 

The main premise of fractal approaches is to relate 𝐻 or 𝐷 to some discontinuity roughness feature, 

with a prominent general relationship being: 

 𝑅 = 𝑎 × 𝐿𝐻 Equation 42 

where 𝑅 is some analogue to roughness such as the asperity height (Johansson 2016) or the standard 

deviation of the asperity height (Li, Oh, Mitra & Canbulat 2017) (Tatone & Grasselli 2013), 𝑎 is a 

proportionality constant and 𝐿 is the discontinuity length (m). Equation 42 or similar is then used 

estimate 𝐽𝑅𝐶 from these fractal characteristics, with a large summary of equations relating 𝐽𝑅𝐶 and 

𝐷 being found in Li and Huang (2015). Although from an academic perspective the relationship 

between fractal characteristics and 𝐽𝑅𝐶 is an interesting property, A practitioner may prefer to use 

direct measurements of 𝐽𝑅𝐶 using the methods recommended by Barton (2013) (i.e. Table 1) as they 

are direct and practically applicable measurements of roughness. The main benefit of fractal methods 

is that they are mathematical models, which describe natural phenomenon. This mathematical basis 

means that fractal models have predictable and well-defined characteristics, which may prove useful 

when considering discontinuity roughness at unmeasurable scales, including probabilistic influences. 

1.5.4 Rock at scale - summary 

In summary when considering probabilistic descriptions of rock material parameters at scale, there is 

very limited information in relation to the variable behaviour of rock mechanics parameters at 

different scales. Any study that did look at these influences typically related to scaling the Uniaxial 

Compressive Strength or the shear strength of surfaces rather than the fundamental parameters. In 

general, studies considering scale effects contain the following three limitations: 

• Very small sample sizes. Typically less than 10 with samples reducing in number for larger sizes. 

• The strength is explained through Weibull statistics or some power law; that is, they predict zero 

strength at infinite scales or some arbitrarily chosen asymptotic value. 

• Material constants and curve fitting parameters are used to fit data. These constants have no 

physical meaning other than increasing the relationship fit and vary greatly between rock types. 

With an inability to directly measure these constants, it makes it difficult to routinely calculate 

them without site specific testing. 
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Heterogeneous stochastic modelling was presented as a cost effective alternative to physical testing 

in order to approximate scaling laws for rock. The limiting feature of forward prediction by numerical 

modelling is that the output is a direct result of the assumed inputs. For heterogeneous stochastic 

modelling, the problem requires not only the selection of an appropriate constitutive model, but also 

valid approximations for the PDF of each relevant material parameter. Without a sufficient 

understanding of the PDF of all key material parameters, there can be limited confidence in 

numerically obtained scaling laws. 

When considering scale effects for discontinuities, it is evident that a common limiting factor of 

understanding the shear strength of discontinuities at scale is the inability to accurately quantify large 

scale discontinuity features, in particular discontinuity roughness. Fractal methods are a mathematical 

description of discontinuity roughness meaning that their behaviour is well defined mathematically 

at any conceivable scale and parameter combination. Fractal methods may provide practical solutions 

to quantifying the nature of discontinuity roughness at scales, which are unpractical or costly to 

measure. Fractal methods can also be numerically generated in both two and three dimensions to 

arbitrary precision and may remove the issues associated with surface scanning methods for 

numerical analysis. This mathematical approach also lends itself to exploring probabilistic 

descriptions of discontinuity roughness, which can aid in scale-dependant, risk based designs. 

In relation to this Thesis, heterogeneous stochastic modelling offers a reasonably cheap method of 

estimating general probabilistic scaling laws for rock parameters, but first requires the determination 

of representative PDFs for all input material parameters associated with one RVE. Fractal methods 

also offer a sound method of quantifying probabilistic scaling laws for rock discontinuities in terms 

of practical measurements, which can be compared to experimental evidence to justify their 

applicability. If these fractal methods are applicable, they can be used in conjunction with 

heterogeneous stochastic methods to quantify all shear strength parameters of the Barton Bandis 

criterion for application in scale dependant POF analysis. 
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1.6 Research Direction Based on Literature 

In order to summarise and demonstrate the main identified industry limitations from the completed 

literature review, consider the following FOS POF example problems each highlighting a particular 

limitation. 

1.6.1 Industry limitation example one 

A mine wants to construct a simple bench that contains a single cohesionless daylighting joint. The 

joint has a constant dip of 27° and is subparallel to the slope. It is known from field testing that the 

average joint friction angle is 30°, the minimum joint measurement is 20°, the most commonly 

recorded joint friction angle is 25° and a back analysis from a similar failure at the operation estimates 

the joint set friction angle to be 27.5°. The design FOS and POF are obtained by using Equation 3 

and Equation 22 respectfully. Four different site Engineers are asked to calculate the FOS and POF 

for the slope design and provide a defendable justification for their deterministic design choices. The 

calculated FOS, POF and justification of each engineer is shown in Table 9. Note that the POF is 

calculated using a triangular distribution for the joint friction, easily constructible and justifiable from 

the problem description. 

Table 9 Example one - calculations and Engineer justifications of Factor of Safety 

 
Friction 

angle used 
Justification 

Calculated 

FOS 

Closed 

form POF 

Engineer 

1 
30° 

Using the mean friction angle is commonly 

used in literature to describe joint friction 

when considering FOS. 

1.13 

35.20% 

Engineer 

2 
20° 

A conservative choice to account for the 

most adverse conditions. 
0.71 

Engineer 

3 
25° 

This friction angle is the most commonly 

measured value and is therefore the best 

estimate 

0.92 

Engineer 

4 
27.5° 

The back analysis failure is representative 

of in-situ conditions and is therefore the 

best estimate 

1.02 
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Each Engineer’s result in Table 9 relates to the exact same stability problem, yet all Engineers have 

calculated a different FOS and the same POF. The deterministic value selection criteria used by each 

Engineer is reasonable and therefore one may ask, which of the four FOS values is most representative 

or most intuitive for the design’s stability? Based on current industry practices, each FOS POF 

evaluation in Table 9 produces four equally valid yet drastically different FOS POF relationships. If 

each Engineer extended their analysis to consider a larger range of joint orientations, the FOS POF 

relationship each engineer would produce is shown in Figure 12. 

 

Figure 12 Example one - Factor of Safety Probability of Failure relationship for each Engineer 

The results shown in Table 9 and Figure 12 demonstrate that without consistent deterministic 

selection criteria for material parameters, it is impossible to produce a consistent relationship between 

FOS and POF as each selection criterion alters the relationship between FOS and POF. Also of 

interest is that no Engineer has produced a POF equal to 50% for a FOS equal to one from their 

analysis, refuting the claim that this feature must be true in all FOS POF relationships. 
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1.6.2 Industry limitation example two 

Consider a different mining scenario where three Engineers agree on what deterministic FOS to use 

but have conflicting views on how to describe probabilistically, each material parameter. Each 

Engineer assesses the same bench using Rocscience’s Slide and calculates the FOS and POF for a 

proposed slope design, but choose to describe all material parameters using different PDF 

assumptions: 

• Engineer one - uniform distributions for each material parameter; 

• Engineer two - normal distributions for each material parameter; and 

• Engineer three - triangular distributions for each material parameter. 

Also of note is that the PDFs chosen by each Engineer have identical minimums, maximums, means, 

modes and median values. The model parameter inputs are shown in Table 10 with the analysis results 

being shown in Table 11. Note that the standard deviations for the normal distribution assumptions 

are chosen such that the minimum and maximum values align with the third standard deviation. 

Table 10 Example two - input Probability Density Function summary 

 Minimum value Mean value Maximum value 

Slope angle (˚) - 60 - 

Slope height (m) - 52 - 

Unit weight (kN/m³) 25.0 27.5 30.0 

Cohesion (kPa) 0.0 2.5 5.0 

Friction (˚) 30 35 40 
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Table 11 Example two - slide simulation Probability of Failure summary. 5000 realisations used in each simulation 

 Engineer one - uniform distributions Engineer two - normal distributions Engineer three - triangular distributions 

Minimum 

slip circle 

   

Deterministic 

FOS 
0.87 0.87 0.87 

Mean FOS 1.39 0.88 1.00 

POF 46.52% 98.96% 62.78% 

Note that in Table 11 FS(deterministic) is the FOS obtained using mean value inputs, FS(mean) is the average FOS obtained from the probabilistic 

simulation, PF is the POF and is defined in the usual manner and RI is the Reliability Index calculated by assuming either a normal or log-normal FOS 

distribution. 
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By consideration of Table 11, it can be seen that each Engineer produces the same deterministic FOS, 

but produce drastically different values for the POF. By considering how the POF is calculated, it is 

unsurprising that all three produce different values of the POF. By considering Equation 22 for each 

Engineer’s assumptions, 𝐹(∙), 𝐺(∙) and 𝑍(∙) have changed. The integral may still have the same 

bounds but a different function is being integrated and therefore there is no reason why the integral 

should produce an identical value. A further implication of this is that unless the function 𝑍(∙) varies 

in a systematic and predictable way across all rock slope designs, it is again impossible to determine 

a general relationship between FOS and POF. Worded differently, without a consistent PDF 

assumption or sufficiently strict guidelines to what PDFs are representative for each material 

parameter, no relationship between FOS and POF can be obtained. 

1.6.3 Industry limitation example three 

A third limitation associated with current practises deals with a fundamental uncertainty in data 

collection. Rock can have essentially an unlimited combination of relevant mechanical or strength 

related material parameters that can vary considerably even between identical lithologies or even over 

a local distance. The only method of quantifying local conditions is to complete a range of laboratory 

tests, which form an estimate of the true in-situ conditions. This approach will always incur some 

degree of error between measured values and the true value, with this error systematically decreasing 

with increasing numbers of measurements. For a practical application of a FOS or POF, a design must 

meet some acceptance criteria, for example a FOS greater than 1.5 or a POF less than 1% and there 

is little or no considerations given to sampling error influences. When this is worded as a question, 

does a FOS or POF calculated using 5 field measurements have the same meaning or significance as 

a FOS or POF calculated using 500 measurements? 

To explore this influence, consider a flat underground mineral deposit that is mined by four 

independent companies using an identical room and pillar mining method. All companies use and 

simple pillar stability equation defined in terms of the mean pillar strength �̅� (Pa) and the equivalent 

pillar stress 𝜎𝑧𝑧 (Pa) such that: 

 𝐹𝑂𝑆 =  
�̅�

𝜎𝑧𝑧
 Equation 43 

For this example, each mine is designing a pillar where the equivalent pillar stress 𝜎𝑧𝑧 is 30 MPa. 

Each company has completed a different number of laboratory Uniaxial Compressive Strength (UCS) 
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tests, which range from 20 tests through to 1000 tests and do not share their laboratory measurements 

with other companies. Unknown to all companies the true UCS distribution is described by a log-

normal distribution with a log-location of 3.912 and a log-scale of 0.5. For clarification, this example 

differs from the example two in Section 1.6.2 as all companies are using identical deterministic 

estimates and in theory, the same (unknown) PDF with different levels of understanding based on 

sampling errors. 

Each company uses their own strength database to calculate the FOS and POF of the example pillar. 

Their estimates of FOS and POF as well as the true values are presented in Table 12. Note that the 

POF is calculated from the Empirical Distribution Function derived from each company’s database 

and does not assume any particular PDF. 

Table 12 Example three - Factor of Safety and Probability of Failure as a function of measurement 

sizes 

 
Number of 

laboratory samples 
Mean UCS Calculated FOS Calculated POF 

Company one 20 54.00 MPa 1.80 30.00% 

Company two 50 61.20 MPa 2.04 10.00% 

Company three 250 55.80 MPa 1.86 14.80% 

Company four 1000 56.40 MPa 1.88 14.60% 

True State - 56.66 MPa 1.89 15.35% 

By review of Table 12, it is apparent that all companies produce reasonably consistent FOS values, 

but do produce a larger range of POF values. The results in Table 12 are visually compared to the 

true underlying relationship in Figure 13. 
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Figure 13 Example three - comparisons of calculated Factor of Safety and Probability of Failure for 

different sample sizes 

It can be seen in Figure 13 that the higher the number of samples, the closer the FOS and POF tend 

to the true value. The results presented in Table 12 are single evaluations of a much larger range of 

possible results obtained for a given number of measurements. If each operation repeated their testing 

campaign 350 times each, Figure 14 shows the spread of possible FOS POF relationships that could 

have been presented in Table 12. 
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Figure 14 Example spread of possible Factor of Safety and Probability of Failure evaluations based 

on random sampling 

The findings shown in Figure 14 highlight an overlooked issue when dealing with FOS and POF 

relationships. Based on current practices, each estimate shown in Figure 14 are equally valid estimates 

of the FOS POF relationship. This sampling error will also influence which PDF appears reasonable 

when considering statistical fitting techniques. A summary of the possible ranges that could have 

been obtained are suppled in Table 13. 

Table 13 Possible Factor of Safety and Probability of Failure ranges based on sample size 

 
Number of laboratory 

samples 
FOS Range POF Range 

Company one 20 1.28 - 2.71 0.00% - 40.00% 

Company two 50 1.55 - 2.34 4.00% - 32.00% 

Company three 250 1.71 - 2.07 8.40% - 21.60% 

Company four 1000 1.80 - 1.98 11.90% - 19.20% 

True State - 1.89 15.35% 
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Based on current industry approaches, this fundamental uncertainty is not really dealt with in any 

robust manner. Two typical approach would be to complete a sensitivity analysis to calculate the 

stability over some finite range of material parameter inputs, or use a very conservative value such as 

the lowest observed strength. These minimum strength approaches do have practical implications as 

Engineers are ‘incentivised’ to test fewer and fewer samples. This is because the more laboratory 

samples that are measured, it is more likely that a very low value will be obtained. Insight into the 

fundamental sampling error and its implications to practical designs is an important feature that needs 

to be considered not only for design stability but also for personnel safety and project economics. 

1.6.4 Requirement for Universal Distribution Functions and proof of concept 

In attempting to find a representative relationship between FOS and POF, a review of literature and 

several examples have demonstrated that current industry knowledge is insufficient to produce a 

meaningful relationship between FOS and POF for rock slopes. Engineers are currently free to choose 

any defendable value for each relevant material parameter, which can create inconsistent FOS relating 

to a POF (presented in Section 1.6.1). Engineers are also free to choose how they wish to define the 

PDF of each relevant material parameter with their selection ultimately changing the POF. This PDF 

selection is often poorly justified and relies on matching PDF assumptions from literature or simple 

assumptions like a normal distribution. When the same problem is analysed using different PDF 

assumptions, significant changes in the calculated POF are observed (presented in Section 1.6.2). 

With these current inconsistencies for both deterministic and probabilistic material parameter 

selection, it is highly unlikely that a usable relationship between FOS and POF can be obtained from 

current industry practices. When the scale considerations are included, the FOS POF problem 

becomes even less understood, with very few studies even considering the probabilistic behaviour of 

rock at scale, in any meaningful detail. In order to achieve a usable relationship between FOS and 

POF considering scale, further research is required in the following four areas: 

• deterministic selection criteria; 

• probabilistic selection criteria; 

• influences of sampling errors on deterministic and probabilistic estimates; and 

• probabilistic descriptions of material parameters at scale. 
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In order to select meaningful and consistent inputs for both FOS and POF analysis, a greater 

appreciation of the intrinsic variability of material parameters is required. The ideal solution would 

be to have a set of equations that can adequately describe the variability of any material parameter 

from a geotechnical database, which provide appropriate guidance to perform the desired 

deterministic or probabilistic analysis. For this to be possible, it needs to be demonstrated that the 

variability of material parameters of rocks can be universally approximated by some specific PDF 

family; that is; each material parameter can be described by a Universal Distribution Function 

(UDF). If this is not possible then a routine can be developed in order to approximate appropriate 

parameter inputs on a case by case basis. From these UDF descriptions, it should be possible to define 

intuitive and consistent guidelines for calculating either a FOS or POF and hence compute a usable 

FOS POF relationship. This Thesis will therefore focus primarily on the approximation, and 

quantification of these hypothesised UDFs, and how they are influenced by changing problem scales. 

The qualitative governing hypothesis relating to material parameter variability to be explored in this 

Thesis is given as: 

Irrespective of lithology or formation, there are statistically justified, universally definable 

Probability Density Functions that sufficiently describe the in-situ variability of mechanical and 

geological parameters for rock. 

This hypothesis can be written as an equivalent mathematical proposition: 

There are some constants 𝑠1, 𝑠2, … , 𝑠𝑛 such that 𝐹(𝑥𝑠1) = 𝐹(𝑥𝑠2) = ⋯ = 𝐹(𝑥𝑠𝑛) where 𝐹 is the 

distribution of the unscaled measurement for variable i. 

The intent of the above hypotheses is not to suggest that all rocks have identical PDFs for their 

material parameters, but rather they have a specific PDF family associated with each parameter. The 

constants 𝑠𝑖 in the above proposition are such that the material specific PDF is produced for each 

unique rock type. Practically, the intent is to answer the following (example) question: Can the basic 

friction angle of rock always be approximated by a normal distribution? If not, how can the case 

specific PDF for the basic friction angle be routinely estimated for engineering purposes? 

In order to demonstrate how this concept of UDFs in conjunction with a standardised deterministic 

selection criteria resolves some current industry limitations, reconsider the underground pillar 

example from Section 1.6.3. Now suppose much more is known about material parameter variability. 

It has been shown that the UDF that describes rock’s UCS is known, and is described by a log-normal 
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distribution, whose log-scale is always 0.5. It has also been decided that all deterministic FOS 

calculations must to be calculated using the average UCS.  

Under these restrictions, the FOS equation is fixed and given by Equation 43, the deterministic inputs 

are consistent and the PDF (i.e., the UDF) is also consistent. With all these known properties, it is 

then possible to calculate the closed form relationship between FOS and POF using Equation 43 and 

Equation 22: 

 𝑃𝑂𝐹 =
1

2
+
1

2
erf (

1 − 8 ln 𝐹𝑂𝑆

4√2
) Equation 44 

where erf is the Gauss Error Function. By consideration of Equation 44, the POF is only dependant 

on the specified FOS and will always return the exact POF. This means that the only sampling error 

in the calculation comes from the uncertainty associated with the average UCS measurement. This is 

visually shown by updating Figure 14 to produce Figure 15 using Equation 44. 

 

Figure 15 Example spread of possible Factor of Safety and Probability of Failure evaluations based 

on Universal Distribution Functions 
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For clarification, this approach only has an uncertainty in the value of FOS, verse the original case 

when there was an uncertainty associated with both the FOS and the POF calculation. As the UDF is 

known and the deterministic FOS is calculated using the average UCS, the sampling error associated 

with the calculated FOS is also known and can be calculated using Equation 46: 

 𝜎�̅� =
𝑆

√𝑛
 Equation 45 

 �̅� = �̂� ± 𝑍𝛼𝜎�̅� Equation 46 

where 𝜎�̅� is the mean standard error, 𝑆 is the UDF standard deviation, 𝑛 is the number of samples, �̂� 

is the mean value estimate and 𝑍𝛼 is the standard normal distribution. For a 95% confidence interval: 

 �̅� = �̂� ± 1.96𝜎�̅� Equation 47 

From this known relationship, each company can calculate their unique FOS as well as an 

appreciation for what the true POF is, given their understanding of the rock’s UCS. Table 14 presents 

an updated version of Table 12 with the known and quantifiable uncertainty. 

Table 14 Factor of Safety Probability of Failure bounds using Universal Distribution Functions 

 
Mean UCS with 95% 

confidence interval 
Calculated FOS Calculated POF 

Company one 54.00 ± 13.23 MPa 1.80 ± 0.44 8.63% - 35.82% 

Company two 61.20 ± 8.37 MPa 2.04 ± 0.28 7.60% - 18.89% 

Company three 55.80 ± 3.74 MPa 1.86 ± 0.12 13.11% - 19.70% 

Company four 56.40 ± 1.87 MPa 1.88 ± 0.06 14.06% - 17.23% 

True state 56.66 MPa 1.89 15.35% 

To demonstrate the implications of this quantifiable sampling error, say for this example the 

acceptable pillar POF is 20%. Using this criteria and the information presented in Table 14, Company 

one has enough insight and doubt about the particular pillar meeting the desired criteria and may 

choose to further quantify the rock’s UCS or modify their pillar design to meet the required POF. 
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Companies two, three and four are confident their design meets this requirement and may go for 

slightly more risky pillar designs to achieve a POF equal to 20%. 

This UDF approach can also be generalised to consider scale effects. Suppose that similarly to the 

UDF of laboratory scale UCS, the scale dependant UDF is also known. There is also known to exist 

a Universal Scale Function (USF), which describes how the deterministic input (i.e., the average 

UCS) changes as a function of scale. For this example, the scale dependant UDF is a log-normal 

distribution with the log-scale given by: 

 𝑆𝑉𝑛 = 
𝑆𝑉0

√𝑉𝑛
 Equation 48 

where 𝑆𝑉𝑛 is the log-scale (Pa) associated with a pillar volume 𝑉𝑛 (m³) and 𝑆𝑉0 is the log-scale (Pa) 

associated with laboratory scale measurements. The accompanying USF is given by: 

 �̅�𝑉𝑛 =
�̅�𝑉0 − �̅�𝑉∞

√𝑉𝑛
3

+ �̅�𝑉∞ Equation 49 

where �̅�𝑉𝑛 is the mean strength (Pa) associated with a pillar volume 𝑉𝑛 (m³), �̅�𝑉0 is the mean strength 

(Pa) associated with laboratory scale measurements and �̅�𝑉∞ is the asymptotic UCS (Pa). For this 

example the value of �̅�𝑉∞ is given as 35% of the mean UCS and 𝑉0 is equal to 1 m³. The USF and 

UDF are then presented in terms of the scale dependant FOS, 𝐹𝑂𝑆𝑉𝑛: 

 𝐹𝑂𝑆𝑉𝑛 = 
�̅�𝑉𝑛
𝜎𝑧𝑧

 Equation 50 

Note: 𝜎𝑧𝑧 is always calculated from the problem geometry and is always correct for the scale of 

interest. If Equation 44 is updated to consider 𝐹𝑂𝑆𝑉𝑛 then the scale dependant POF is described by: 

 𝑃𝑂𝐹 =
1

2
+
1

2
erf (

1 − 8𝑉𝑛 ln 𝐹𝑂𝑆𝑉𝑛

4√2𝑉𝑛
) Equation 51 
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Equation 51 then expresses how to account for all literature documented scale phenomena and still 

produces a closed form equation relating the FOS and POF for any desired problem scale. Some scale 

dependent FOS POF relationships using Equation 50 and Equation 51 are shown in Figure 16. 

 

Figure 16 Example scale dependant Factor of Safety Probability of Failure relationship - scale 

dependant Factor of Safety 

Depending on which measure of FOS (laboratory scale or scale dependant) is used, two different 

scale dependant relationships between FOS and POF relationships are produced. The scale dependant 

FOS POF relationships using the laboratory scale FOS are shown in and Figure 17. 

 

Figure 17 Example scale dependant Factor of Safety Probability of Failure Relationship - laboratory 

scale Factor of Safety 
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The scale dependant UDF USF formulation can also utilise the known measurement error and 

propagate this to consider the uncertainty in the POF at arbitrary sizes. An example of the FOS and 

POF uncertainty at a pillar volume of 25m³ is shown in Table 15. 

Table 15 Example of scale dependant Factor of Safety and Probability of Failure error propagation 

 
Mean UCS with 95% 

confidence interval 

Calculated FOS 

at 25m³ 

Deterministic 

POF 

Calculated POF 

range 

Company 

one 
31.63 ± 4.52 MPa 1.05 ± 0.15 31.62% 3.47% - 85.67% 

Company 

two 
34.09 ± 2.86 MPa 1.14 ± 0.10 10.97% 2.10% - 36.28% 

Company 

three 
32.24 ± 1.28 MPa 1.07 ± 0.04 25.11% 14.45% - 39.50% 

Company 

four 
32.45 ± 0.64 MPa 1.08 ± 0.02 23.13% 17.62% - 29.61% 

True state 32.54 MPa 1.09 22.30% 22.30% 

Based on this proof of concept it is apparent that an approach considering UDFs is able to overcome 

many of the currently experienced industry limitations and produce meaningful and consistent scale 

dependant FOS POF relationships. Currently these UDFs and USFs are hypothesised to exist and 

needs to be either mathematically derived or experimentally validated. 

1.7 Research Methodologies and Key Research Focuses 

In order to achieve the aims and address the limitations presented, this Thesis has been separated into 

four key research focuses, each addressing a major limitation associated with current industry 

practices. A common underlying theme for all key focuses is the notion that rock exhibits an 

approximate universal probabilistic behaviour. Although this is most heavily assessed in Chapter 

Two, this assessment methodology is a common feature of all Chapters. The following sections 

outline the aim and test methodology for each proceeding Chapter in this Thesis. 
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1.7.1 Research focus one - testing for Universal Distribution Functions 

The initial starting point of this Thesis is to provide sufficient evidence that UDFs are a sufficient 

approximation and are suitably generalisable as to apply to any given rock problem at the laboratory 

scale. To date, no such large scale variability analysis has been completed on rock material 

parameters. The methodology of assessment must be robust enough to identify these hypothesised 

UDFs as well as make as few initial assumptions as possible. To test for UDFs, the governing 

hypotheses presented previously in Section 1.6.4. To test whether a UDF exists for rock material 

parameters at the laboratory scale, the following methodology was used to build a sufficiently strong 

argument to accept or reject their existence: 

Step 0 - Selection of an appropriate test type and level of significance 

Statistical testing methods can be broadly categorised as either parametric or non-parametric. 

Although there is no set definition of what constitutes a parametric or non-parametric test (Walsh 

1962), non-parametric tests make fewer model assumptions compared to their parametric 

counterparts. Generally, non-parametric tests have broader applications at the expense of statistical 

power for the same sample size (Mumby 2002). A comparison of the typical assumptions associated 

with each testing method is shown in Table 16. 

Table 16 Comparison between parametric and non-parametric test assumptions 

Statistical test type Parametric testing Non-parametric testing 

Probability Density Function 

assumption (Glass, Peckham & 

Sanders 1972) 

Samples assumed to 

follow a normal 

distribution 

No assumption about sample 

Probability Density Function 

Variance assumption (Glass, 

Peckham & Sanders 1972) 

Assumed equal variance 

across all groups 

No assumption of equal 

variances 

Measure of central tendency 

(Mehotcheva 2008) 
Mean Median 

Statistical power (Walsh 1962) Generally higher power Generally lower power 

Data type (Walsh 1962) Quantitative only Qualitative and quantitative 

Number of samples (Hoskin 2009) Typically >30 Small sample sizes allowed 
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The significance level of a test, 𝛼 is a measure of how statistically different a test result must be in 

order to reject the associated test hypothesis (Motulsky 2007). Typically 𝛼 is set to 0.05 (5%) for 

most engineering and scientific applications and means that for a given test there is a 5% (or 1 in 20) 

chance of obtaining a false positive (Motulsky 2007). To align with common engineering and 

scientific applications, all statistical tests were conducted at a 5% statistical significance. Where 

applicable, binomial confidence intervals are also used to verify if the overall acceptance or rejection 

of the test hypothesis was consistent with the expected Type I errors. This additional step is 

synonymous with repetition testing to ensure that consistent results are being obtained across many 

statistical realisations. 

Step 1 - Amass a large geological database covering numerous lithologies and spatial locations 

The laboratory scale geological database was been amassed from 25 different data sources, of which 

most were the geotechnical database of operating mines in Australia. Each source typically contained 

between one and ten individual lithological units. The following rock parameters and associated data 

ranges are stored in the database: 

Table 17 Intact rock material parameter database summary 

Intact rock material parameter Number of data sets Range of mean values 

Uniaxial Compressive Strength 41 4.065 MPa – 240.500 MPa 

Point Load Test Index 34 0.17 MPa – 7.52 MPa 

Uniaxial Tensile Strength 20 1.167 MPa – 23.454 MPa 

Peak friction 17* 21.54° – 43.03° 

Residual friction 10* 23.95° – 38.29° 

Dry density 35 1.27 g/cm3 – 3.32 g/cm3 

Young’s Modulus 27 1.52 GPa – 75.50 GPa 

Poisson’s Ratio 27 0.035 – 0.310 

*Many friction data sets were sourced from two PhD theses completed by Coulson (1970) and Tse 

(1979). This covered a wide range of prepared direct shear tests and lithology types in each study. 

More detail for each data set is presented in the Appendix. 
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Step 2 - Transformations to obtain the unscaled measure for each data set 

In order to directly compare very different data sets, a descaling process needed to be completed to 

obtain the unscaled measure of each material parameter. All data was transformed by dividing each 

data point by the sample’s median value. The median value was chosen over the mean value as it is 

far less susceptible to outlying values and is the typical measure of central tendency associated with 

non-parametric testing. 

Step 3 - Test for the existence of a UDF by using non-parametric bootstrapping techniques 

Two tests for the appropriateness of a UDF were used for this Thesis, the Kruskal Wallis Analysis of 

Variance (KW ANOVA) and non-parametric bootstrapping. The KW ANOVA is a comparative rank 

based method similar to the parametric Analysis of Variance (Van Hecke 2012). The KW ANOVA 

is used to test whether different samples are drawn from the same underlying PDF (Kruskal & Wallis 

1952). The test hypothesis for the KW ANOVA is stated as: 

𝑘 Independent random samples have the same distribution function, 𝐹1(∙) = ⋯ = 𝐹𝑘(∙) = 𝐹; 

The Kruskal-Wallis test statistic 𝐻, is calculated using Equation 52: 

 𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑖
2

𝑛𝑖
− 3(𝑁 + 1)

𝑘

𝑖=1

 Equation 52 

where, 𝑁 is the total number of observations over all samples, 𝑅𝑖 is the sum of the ranks in the 𝑖th 

sample group, 𝑛𝑖 is the number of observations in the 𝑖th sample and 𝑘 is the number of sample 

groups. For sample groups containing more than five observations (Moore & McCabe 2006), 𝐻 

follows approximately a Chi-Squared distribution, 𝒳𝑘−1,𝛼
2 . These critical Chi-Squared distribution 

values are widely available in look-up tables, statistical software or common spreadsheet applications. 

If the test hypothesis is rejected, it is possible to determine whether the data completely, partially, or 

totally does not support the hypothesis (Acar & Sun 2013). This is done by performing pair-wise 

comparisons using KW ANOVA. 
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When datasets were transformed about the median value, comparisons using the KW ANOVA would 

generally accept the test hypothesis. To compensate for this influence, non-parametric bootstrapping 

was used to test for a common underlying PDF for descaled data. Bootstrapping is a statistical 

resampling method first introduced by Efron (1979) and is a simple method for estimating sample 

characteristics based on randomly resampling with replacement, an available dataset. Bootstrapping 

techniques were used to check to some significance level that Independent Identically Distributed 

samples are drawn from the same underlying PDF. The test hypothesis for the non-parametric 

bootstrapping is identical to the test hypothesis for the KW ANOVA. The bootstrapping test logic 

and methodology is detailed below: 

Suppose that 𝑛 descaled samples follow some UDF (i.e., the test hypothesis is true). If additional 

descaled samples are obtained and tested it stands that these samples should also follow the same 

UDF under the assumption the test hypothesis is true. It is possible to compute the (𝑛
2
) pairs of 

observable statistical differences between each pair combination and determine the largest difference 

associated with the (𝑛
2
) descaled pairs. 

If the 𝑛 descaled samples are pooled together, it stands that there should be no discernible method of 

determining the origin of any single sample. If the pooled data are sufficiently large and resampled 

(bootstrapped) using the 𝑛 sample sizes, the resamples will approximate the underlying PDF. By 

computing the largest statistical difference between each (𝑛
2
) bootstrapped pair, a single 

approximation of the maximum statistical difference between any random samples that may occur by 

chance alone can be obtained. This may be repeated 𝑘 times to gain a distribution of the largest 

statistical difference. 

The largest statistical difference associated with the 𝑛 descaled samples can be compared with the 

range of bootstrapped statistical differences to see how consistent the assumption of a UDF is. If the 

statistical significance 𝛼 percent of the bootstrapped largest statistical difference is larger than the 

largest statistical difference from the 𝑛 descaled samples, then it can be concluded that the data are 

consistent with the test hypothesis (i.e., there exists some UDF). If the associated percentage of the 

largest statistical difference is smaller than statistical significance 𝛼 then the test hypothesis must be 

rejected. 
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Step 4 - Estimate the characteristics of plausible distributions using Maximum Likelihood 

Estimation techniques and mathematical properties associated with each characteristic 

distribution 

With evidence for some underlying UDF, the next step is to estimate what this distribution may be. 

Maximum Likelihood Estimates (2009) were calculated for each chosen PDF family to estimate the 

most likely nature of the underlying UDF for each material parameter. Maximum Likelihood 

Estimates are a statistical technique aimed at estimating the PDF parameter values 𝜃1, 𝜃2, … , 𝜃𝑛 of an 

assumed underlying statistical distribution that is most likely to produce the observed data 

(Ramachandran & Tsokos 2009).  

The seven PDF types primarily used are the normal, log-normal, gamma, Weibull, Rayleigh and 

Laplace distributions. These distributions were chosen as they cover a wide range of general 

distribution shapes as well as being relatively well known distribution types. It must be noted that 

although the Maximum Likelihood Estimates do provide the most likely combination of PDF 

parameter values that would produce the observed data assuming a specified underlying distribution, 

it does not guarantee a statistically acceptable fit. Maximum Likelihood Estimates need to be verified 

for their applicability through a goodness of fit test to ensure they are sufficiently accurate. 

Step 5 - Test for the goodness of fit of plausible UDFs using the Kolmogorov Smirnov goodness 

of fit test 

The next step is to verify the goodness of fit of the Maximum Likelihood Estimates, to determine the 

leading approximation for the underlying UDF of each material parameter. As the PDF for each 

material parameter is expected to be continuous, the Kolmogorov Smirnov goodness of fit (KS) 

(Chakravarti et al 1967) is favoured over the Chi-squared goodness of fit test (Fisher 1922) as it is a 

more applicable test for continuous distributions. The KS tests if a continuous PDF is sufficient at 

explaining the observed distribution of Independent Identically Distributed samples. The test 

hypothesis for the KS test is given as (Chakravarti et al 1967): 

The Empirical Distribution Function follows the specified continuous Cumulative Distribution 

Function. 

In order to compute the required test statistic, the expected Cumulative Distribution Function (CDF) 

is compared to the data’s Empirical Distribution Function (EDF). EDFs are step functions that 

describe the CDF of the individual observations, with the equation given as (DuFour et al 1998): 
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 𝐹�̂�(𝑥) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑥

𝑛
=  
1

𝑛
∑1{𝑥𝑖 ≤ 𝑥}

𝑛

𝑖=1

 Equation 53 

where 𝐹�̂�(𝑥) is the EDF for 𝑥, and 𝑛 is the number of individual samples. The KS test statistic  𝐷𝑛, is 

calculated using Equation 54 (Chakravarti et al 1967): 

 𝐷𝑛 =
𝑠𝑢𝑝
𝑥
|𝐹�̂�(𝑥) − 𝐹(𝑥)| Equation 54 

Equation 54 is the correct expression for the maximum absolute vertical distance between the EDF 

and the assumed CDF. The Critical Statistic for KS can be found in various lookup tables such as 

Miller (1956). 

For each PDF family assessed, initial inputs were based on the Maximum Likelihood Estimates and 

then varied to obtain the statistically significant range of PDF parameters, which are consistent with 

the underlying UDF approximation and Type I error. In conjunction to using KS, data was 

additionally assessed using the Shaprio Wilk (1965) test. This test is a supplementary test to accept 

or refute the UDF approximation of an underlying normal distribution. The Shapiro Wilk test is 

chosen for its high statistical power when testing for normality compared to other commonly 

implemented statistical tests (Razali & Wah 2011). The test hypothesis is given as: 

The data follows a normal distribution with unspecified mean and standard deviation. 

This additional test was used to help accept or rule out a normal distribution when multiple UDFs 

were applicable. 

Step 6 - Test for possible model simplifications and variable substitutions 

As mentioned in Step 3, the data are subjected to a descaling process to allow comparative analysis. 

A statistical side effect of this process is that the UDF’s input parameters are then defined in terms of 

the scaling variable (i.e., the median value). For completeness, the goodness of fit needs to be 

replicated for all raw data, as well as assessed for any simplified models or viable variable 

substitutions. In order to check for these simplifications and substitutions, the leading UDF 

approximation for each distribution was then subjected to additional KS tests to assess the statistical 

fit of using the mean value as a substitute for the median value, using a constant scale value instead 
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of one defined in terms of the median value and all permutations. This reanalysis ensures that all 

possible UDF formulations are checked and verified for their applicability to real world problems. 

Step 7 – Test for multivariate correlations using Pearson’s product moment correlation 

coefficient test 

For any pair of measurable material parameters, it is possible that some degree of correlation exists 

between them. These correlations are important when assessing any problem requiring two or more 

material parameters to be defined (e.g., strength and elastic parameters). In these scenarios, the 

conditional distributions need to be correctly generated to ensure the overall probabilistic behaviours 

are correct. The Pearson’s Product Moment Correlation Coefficient Test (Fisher 2016) is used in 

conjunction with bootstrapping techniques to both test and estimate the correlation coefficients 

associated with each pair of concurrently measured rock parameters. 

Pearson’s Product Moment correlation coefficient 𝜌 is a measure of the tendency for two random 

variables to follow some underlying collinearity. The value of 𝜌 can vary between -1 and 1, with 

these extremes corresponding to a perfectly negative linear and perfectly positive linear relationship 

respectfully between observations. The statistical test associated with this variable is the Pearson’s 

product moment correlation test, which tests to some statistical significance if a pair of concurrent 

observations are correlated or not. The test hypothesis is given as: 

The correlation coefficient 𝜌 between the two variables is equal to 0. 

Correlation coefficients were initially tested for using Matlab to determine if a general correlation 

exists within raw samples between different rock parameters, with additional bootstrapping 

techniques used to estimate a range of plausible 𝜌. The test logic for estimating rock parameter 

correlation coefficients is detailed below: 

It is unknown if there exists correlation coefficients for any pair rock parameters, but from the 

geological database (i.e., the untransformed data) it is possible to calculate the correlation coefficient 

𝜌 and the associated statistical significance for each combination of concurrently measured 

parameters for each sample and accept or reject the test hypothesis. From this information, the 

binomial confidence interval can be used to verify if there is or is not evidence for some general 

statistically significant correlation between each pair of parameters. This initial test cannot determine 

what the correlation coefficient is, only if it exists or not. 
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A similar non-parametric bootstrapping routine used in Step 3 can then be used to estimate the 

underlying correlation coefficient for each pair of rock parameters. In this test, random pools of 

sample pairs were generated, with each estimate of 𝜌 being stored. This was repeated 10000 times 

for each pair of rock parameters. From the bootstrapped 𝜌 values, it is possible to calculate the central 

region containing 95% of all observed values of 𝜌 across all resamples. This range can be used as a 

confidence interval containing the value of 𝜌 with 95% confidence. The non-parametric bootstrapping 

method of estimating 𝜌 was preferred as it makes no assumptions about the distribution of 𝜌 between 

each pair of rock parameters and is therefore non-parametric. 

1.7.2 Research focus two - Universal Distribution Functions at different scales 

Due to a lack of available data for rock parameters at increased scales, the strictly empirically based 

statistical analysis used in research focus one was not applicable. Numerical methods offer a cost 

effective alternative to physical testing but require a well-defined understanding of all constitutive 

components and material parameter variability. Although mesoscopic heterogeneous analysis is not 

new method in geotechnical research, no single study has considered the influences of varying all 

constitutive model parameters and their associated correlations when modelling scale effects and 

heterogeneity. 

From the findings of research focus one, it stands to reason that if UDFs are modelled to create a large 

heterogeneous volume of intact rock, when simulated the output should produce reasonable 

approximations of the true scaling laws for intact material parameters. This process can then be 

repeated many times to gain an appreciation of the PDF associated with material parameters for any 

given volume. These results can then be used to estimate the scale dependant UDF relationships and 

the associated USFs for each material parameter. In order to estimate these scale dependencies the 

following methodology was used: 

1. Generate a three dimensional numerical model that approximates some multiple of one RVE. For 

example, a numerical sample 5 times larger than a single RVE would be comprised of 125 RVEs 

arranged in a 5 by 5 by five array. 

2. Randomly seed each RVE as per the appropriate UDF and associated correlation coefficients from 

research focus one. 

3. Apply external loads and numerically measure various peak and residual material parameters 

associated with each sample. 
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4. Repeat steps 2 and 3 until a sufficient number of numerical measurements are obtained for a given 

size. 

5. Repeat step 1 through 4 for different sample sizes, input values and material responses to look for 

consistent behaviours with increasing scales using the methodology from research focus one. 

In order to achieve this research focus, the purpose built program The Probabilistic Lagrangian 

Analysis of Continua with Empirical Bootstrapped Outputs (PLACEBO) was written which currently 

operates using Itasca’s FLAC3D, and is partially implemented for applications using Itasca’s PFC2D, 

PFC3D and 3DEC. Detail, validation of, and fundamental assumptions for PLACEBO are 

documented and presented in Chapter Three. 

1.7.3 Research focus three - Universal Distribution Functions for rock discontinuities 

As the overall aim of this Thesis is to evaluate the FOS POF relationship for structured rock, an 

appreciation for the probabilistic behaviour of discontinuities at scale is required. The aim of research 

focus three is to explore the applicability of using fractal methods to derive the UDF and USF for 

discontinuity roughness at arbitrary scales. The governing hypothesis for this research focus is given 

as: 

Given some roughness measurement �̂�0 associated with length 𝐿0, estimate �̂� such that the behaviour 

of �̂�𝑛 is known for any 𝐿𝑛.  

A particular emphasis of this research focus was to keep field measurements and mathematical 

concepts to a minimum such that the methods presented are applicable practical problems. In order 

to achieve this aim, the following methodology was used: 

Step 1 - Selection of a representative roughness measurements and a reasonable fractal 

simulation method. 

Multiple quantitative measures of discontinuity roughness are common in rock mechanics literature. 

A simple representative roughness measurement needs to be selected to form the basis for the 

analysis. Numerous methods of simulating fractal geometry are also available, which vary in terms 

of accuracy, numerical complexity and problem dimensionality. With many simulation methods 

available, a choice of a representative fractal simulation method applicable to rock engineering 

problems was selected. 
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Step 2 - Quantify the expected behaviour of discontinuity roughness measurements as a 

function of model parameters. 

Fractals can be numerically generated for any conceivable combination of input parameters. By 

simulating and measuring the roughness of numerical discontinuities with multiple input 

combinations, one can gain an appreciation as to how each parameter influences the measured output 

and its associated distribution. These simulations can then be used to build a probabilistic description 

of discontinuity roughness as a function of each parameter. The quantification of roughness was 

assessed using the general non-parametric framework described in research focus one. 

Step 3 - Develop a method of estimating fractal parameters from physical measurements.  

Each fractal parameter needs to be estimated from simple field measurement such that all values can 

be estimated. Equations relating to the mean, mode, median, variance and measurement scale were 

derived using statistical regression techniques. The fractal parameter estimates associated with 

Barton’s standard profiles where then compared to estimates from other authors. 

Step 4 - Compare the expected behaviour of discontinuity roughness to real world 

measurements. 

Any mathematical model needs to be validated with physical measurements to demonstrate the 

method’s applicability. Roughness measurements associated with two different discontinuities over 

varying scales were assessed to determine the applicability of a fractal based model at practical scales. 

Additionally, toppling FOS equations require a probabilistic description of cross joint spacing in order 

to calculate the associated POF. Theory presented by Hobbs (1967) was used to derive a probabilistic 

scale dependant model for cross joint spacing in bedded material. 
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1.7.4 Research focus four - revisiting Factor of Safety and Probability of Failure 

The final research focus of this Thesis is to take the findings and revisit the relationships between 

FOS and POF. The governing hypothesis for this research focus is given as: 

If a geological system is sufficiently definable in terms of both variability and mechanical behaviour, 

a one to one relationship between Factor of Safety and Probability of Failure can be routinely 

calculated. 

The following methodology was used for this research focus: 

Step 1 Construct Monte Carlo simulations for each relevant Failure Mechanism. In order to 

evaluate all identified failure mechanisms for a general slope, commercial software is far too time 

consuming to consider a wide range of slope geometries and input combinations. In order to evaluate 

numerous geometries, input combinations and failure mechanisms Monte Carlo simulators were 

purpose built to randomly generate a mine scale pit slope and material parameter inputs to evaluate 

the FOS and POF over general conditions for each failure case. The Monte Carlo simulators 

constructed relate to each FOS equation shown in Table 2. 

Step 2 Derive the closed-form approximations for the relationship between Factor of Safety and 

Probability of Failure. By using various statistical techniques, the relationship between FOS and 

POF can be explored. Various particular, special and generalised cases for each FOS relationship in 

Table 2 were assessed to mathematically derive the expected FOS POF relationships for each FOS 

equation in Table 2. 

Step 3 Compare and contrast the closed form relationships to Monte Carlo Sampling. By using 

the Monte Carlo simulation engines from Step 2, each failure mechanism FOS POF relationship from 

Step 3 can be compared to Monte Carlo simulations to verify their applicability over a number of 

input scales, problem geometry and material parameter combinations. 
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1.7.5 Knowledge gaps addressed 

This section gives a brief summary of the key knowledge gaps this Thesis aims to address. 

1. Do UDFs exist? Current industry knowledge suggests that there is no consistent probabilistic 

model for rock parameters. UDFs are required to resolve some of the issues associated with 

calculating a relationship between FOS and POF. 

2. If UDFs exist, do they support previous published finding or provide new insights and 

relationships for rock parameters? 

3. How do all rock material parameters change as a function of scale? Previous numerical analysis 

only focus on strength parameters and neglect elastic parameters. Is there more to be gained from 

numerical scale analysis? Rock parameters at scale are treated deterministically, what is the 

probabilistic behaviour of rock parameters at larger than laboratory scales? 

4. If rock discontinuities are fractal, what is the expected probabilistic behaviour? What scaling laws 

are expected using a fractal model? Is the fractal model supported by field measurements? 

5. Can a generalised model for cross joint spacing be calculated from first principals?  

6. Do the new findings in this Thesis help address the industry problems for FOS and POF and scale? 
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2 Universal Distribution Functions at the Laboratory Scale 

2.1 Testing for Universal Distribution Functions 

2.1.1 Initial friction analysis 

Prior to completing the main statistical analysis, some terminology needs to be defined. This section 

deals with peak and residual friction. As stated in Krahn and Morgenstern (1979) the use of the term 

residual strength, particularly for rock can be misleading and the value is dependent on many factors 

such as the original joint profile or surface roughness. In this Thesis, when the term residual friction 

and or cohesion is used, this is in referring to the equivalent strength parameter values for which 

deformation can continue with no further change in resistance (Krahn & Morgenstern 1979). As 

mentioned in Coulson (1970) the residual strength conditions in their database were typically obtained 

after one to two inches of shear had occurred for the 6 inch samples. As noted in Section 1.6.4 this 

analysis is concerned with understanding what PDF family and can accommodate for differences in 

how parameters are defined.  

The friction data found in Coulson (1970) was initially subjected to a series of KW ANOVA tests. 

This initial analysis was completed to determine if surface preparation methods used in Coulson 

(1970), had any influence on the distribution associated with measured friction angles. The friction 

data in Coulson (1970) contained both peak and residual friction angles from direct shear tests for a 

number of lithologies in both wet and dry surface conditions as well as including a number of different 

surface preparation methods. A summary of the statistical analysis comparing the distribution of 

friction angles over surface preparation methods is shown in Table 18. 
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Table 18 Kruskal Wallis Analysis of Variance test decision summary - the distribution of friction vs 

sample preparation methods 

Lithology 
Peak friction  

Residual 

friction 
Peak friction  

Residual 

friction 

Dry samples Wet samples 

Granite Basalt ✘ ✔ ✘ ✔ 

Dolomite ✘ ✘ ✘ ✘ 

Bedford Limestone ✘ ✔ ✔ ✘ 

Solenhofen Limestone ✔ ✔ ✔ ✘ 

Fine Coulee Granite ✘ ✔ ✘ ✘ 

Coarse Coulee Granite ✔ ✔ ✔ ✔ 

Berea Sandstone ✘ ✘ ✘ ✔ 

Schistose Gneiss ✘ ✔ ✘ ✘ 

Hackensack Siltstone ✘ ✔ ✔ ✔ 

Overall Conclusion ✘ ✔ ✘ ✘ 

For clarification, cells in Table 18 containing a tick (✔) have accepted the test hypothesis (i.e., the 

PDF of each grouping shows no difference across preparation methods) at a 5% significance, and 

cells containing a cross (✘) reject this test hypothesis at the same significance. From Table 18, it can 

be concluded from the sample of data at a 5% significance that surface preparation techniques have 

a significant impact of the distribution of peak friction in dry conditions, the peak friction in wet 

conditions and the residual friction in wet conditions. There is insufficient evidence to suggest that 

the residual friction in dry conditions is effected by surface preparation techniques. 

The results in Table 18 are not surprising, as it would be suspected that by smoothing down a shear 

surface, potential interlocking asperities or fragments would be removed. Once failure had occurred, 

some degree of material breakup would be expected to have occurred, which would be independent 

of surface preparation. It is interesting to note that this influence is not apparent in wet surfaces, which 

would not have been expected. Based on the results of the KW ANOVA, the residual dry friction 
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samples per lithology were grouped prior to obtaining their unscaled measures used in the following 

sections. 

2.1.2 Non-parametric bootstrapping  

After descaling all available data, each material parameter was analysed using non-parametric 

bootstrapping. Each resampling process was repeated 10,000 times for each material parameter to 

obtain an accurate estimate of the distribution of statistical differences. Additionally, for parameters 

that may have larger underlying similarities (e.g., all strength components and all frictional 

components) additional resampled pools were tested spanning all relevant material parameters. The 

non-parametric bootstrapping test decision summary is shown in Table 19. 

Table 19 Non-parametric bootstrapping test decision summary 

Sample description Decision 

Uniaxial Compressive Strength ✔ 

Point Load Index ✘ 

Uniaxial Tensile Strength ✔ 

All intact strength parameters 

(all direct strength tests combined) 
✘ 

Peak dry friction ✔ 

Peak wet friction ✔ 

Residual dry friction ✔ 

Residual wet friction ✔ 

All material friction 

(all friction values combined) 
✔ 

Dry density ✔ 

Young’s Modulus ✘ 

Poisson’s Ratio ✘ 
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The results in Table 19 containing a tick (✔) have accepted the test hypothesis (i.e., the unscaled 

measure shows no difference across a particular material parameter) at a 5% significance, and cells 

containing a cross (✘) reject this test hypothesis at the same significance. 

From Table 19, it can be concluded at a 5% significance that UCS is consistent with some UDF, Point 

Load Indices (PLT) are not consistent with a single UDF, Uniaxial Tensile Strength (UTS) is 

consistent with some UDF, intact strength parameters (combining UCS, PLT and UTS) are not 

consistent with a single UDF, all frictional parameters are consistent with some UDF, dry density is 

consistent with some UDF, Young’s Modulus is not consistent with a single UDF, and Poisson’s 

Ratio is not consistent with a single UDF. 

Although some rock parameters do not appear to follow a universal family of distributions, it may 

still be possible to find accurate approximations that are a practically useful for each variable. To put 

this into perspective, with a big enough sample size, any statistical procedure will discriminate 

between very similar PDFs and hence conclude they are significantly different. For example given 

sufficiently large data sets, two normal distributions with mean values equal to 0.95 and 1.05 with 

the same standard deviation can be discriminated. For practical purposes, these two datasets may very 

well be approximated by a normal distribution with mean value 1.00 and a common standard 

deviation. This feature may still hold true for the rock parameters that reject the test hypothesis during 

the non-parametric bootstrapping and hence were included in all further analysis. 

2.1.3 Verifying the goodness of fit 

In order to accept any viable UDF approximation identified by the KS test, for each material 

parameter, the following criteria must also be met: 

• The proportion of samples accepting the test hypothesis for each test type must be such that the 

binomial confidence interval of results is consistent with a 5% Type I error. 

• For a single UDF to be accepted to describe numerous test types, the proportion of samples 

accepting the test hypothesis for each test type and all the samples together must be such that the 

binomial confidence interval is consistent with a 5% Type I error. 

• The UDF must produce logical results (e.g., non negative values, obey physical upper limits, etc.). 

A summary of the KS test decisions for each viable UDF family for unscaled measures is shown in 

Table 20. 
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Table 20 Kolmogorov Smirnov goodness of fit test decision summary 

Parameter 
Probability Density Function family 

Normal Log-normal Gamma Weibull Rayleigh Laplace 

Point Load Index ✘ ✘ ✘ ✔ ✔ ✘ 

Indirect Tensile Strength ✔ ✔ ✔ ✔ ✔ ✘ 

Uniaxial Compressive Strength ✔ ✔ ✔ ✔ ✔ ✘ 

Intact strength parameters 

(UCS, UTS and PLT) 
✘ ✘ ✘ ✔ ✔ ✘ 

Material friction peak dry ✔ ✔ ✔ ✔ ✔ ✔ 

Material friction residual dry ✔ ✔ ✔ ✔ ✘ ✔ 

Material friction peak wet ✔ ✔ ✔ ✔ ✔ ✔ 

Material friction residual wet ✔ ✔ ✔ ✔ ✘ ✔ 

Material friction 

(all friction values combined) 
✔ ✔ ✔ ✔ ✘ ✔ 

Dry density ✘ ✘ ✘ ✔ ✘ ✔ 

Young’s Modulus ✘ ✔ ✔ ✔ ✘ ✘ 

Poisson’s Ratio ✘ ✔ ✔ ✔ ✔ ✘ 

For clarification, Table 20 shows which UDF families are applicable, a tick (✔) for viable UDF 

families and a cross (✘) for insufficient fits to unscaled measures based on the KS test. The decision 

to accept viable UDFs in Table 20 included the three criteria as previously mentioned. 

From Table 20, it can be concluded at a 5% significance that the intact strength components (UCS, 

PLT and UTS) of rock are consistent with a Rayleigh or Weibull distribution, material friction 

components (peak and residual in wet and dry conditions) are consistent with many PDF families, 

dry density is consistent with a Weibull or Laplace distribution, Young’s Modulus is consistent with 

a log-normal, gamma or Weibull distribution and Poisson’s Ratio is consistent with by many PDF 

families. 
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The intact strength (UCS, PLT and UTS) UDF estimates (i.e. Rayleigh and Weibull) are identical as 

a Rayleigh distribution is equivalent to a Weibull distribution with shape parameter equal to 2, so 

there is in essence only one UDF that covers all tested intact strength parameters. Due to the large 

number of acceptable UDF types for material friction, friction data was subjected to a series of 

Shapiro Wilk tests to refute or accept a normal distribution approximation. The summary of the 

Shapiro Wilk test decisions for friction parameters are shown in Table 21. 

Table 21 Shaprio Wilk test decision summary - material friction 

Friction type Decision 

Peak dry friction ✔ 

Peak wet friction ✔ 

Residual dry friction ✘ 

Residual wet friction ✘ 

Material friction 

(all friction parameters) 
✘ 

Cell in Table 21 containing a tick (✔) have accepted the test hypothesis (i.e., a normal distribution is 

appropriate) at a 5% significance, and cells containing a cross (✘) reject this test hypothesis at the 

same significance. Table 21 concludes that instantaneous friction values are sufficiently described by 

a normal distribution for both wet and dry cases, while residual friction values are some other 

distribution that is quite similar to but is not a normal distribution. With the available data and 

statistical results, a normal distribution is a reasonable approximation for all frictional components. 

2.1.4 Verifying Universal Distribution Functions on raw data 

Once approximations of viable UDFs have been obtained for the unscaled measure of each parameter, 

their applicability to the raw data was assessed. A summary of the applicability of UDFs on raw data 

and variable substitution is shown in Table 22. The notation used in Table 22 is consistent with 

statistical notation. ‘Hatted’ values (e.g., �̂�) denote parameter estimates while ‘barred’ values �̅� and 

�̅� indicate the random sample’s median and mean values respectfully. This notation is used as these 

values are not the ‘true’ value of the overall population, but estimates based on samples. 
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Table 22 Universal Distribution Function simplification and variable substitution analysis summary 

 UDF family Median value with variable scale Median value with constant scale Mean value with variable scale Mean value with constant scale 

Intact strength grouping 

(UCS, PLT and UTS) 

Weibull 

�̂� = 2.00 

�̂� =
�̅�

(ln(2))
1

�̂�

 
✘ ✘ ✘ 

Rayleigh �̂� =
�̅�

√2 ln 2
 N/A ✘ N/A 

Material friction Normal �̂� = 2.07% − 12.57% 𝑜𝑓 �̅� �̂� = 0.77 − 4.42 �̂� = 3.14%− 14.48% 𝑜𝑓 �̅� �̂� = 1.04 − 5.44 

Dry 

density 

Weibull 

�̂� = 24.44 − 27.14 

�̂� =
�̅�

(ln(2))
1

�̂�

 
✘ ✘ ✘ 

Laplace �̂� = 2.62%− 5.54% 𝑜𝑓 �̅� �̂� = 0.08 − 0.13 �̂� = 4.00%− 6.26% 𝑜𝑓 �̅� �̂� = 0.08 − 0.15 

Young’s Modulus 

Log-normal ✘ �̂� = 1.82 – 2.09 ✘ ✘ 

Gamma 

�̂� = 1.88 −  3.63 

�̂�  ≈
3�̂� + 0.2

3�̂� − 0.8
 
�̅�

�̂�
 

✘ 

�̂� = 1.52 – 2.60 

�̂�  ≈  
�̅�

�̂�
 

✘ 

Weibull 

�̂� = 1.43 − 1.93 

�̂� =
�̅�

(ln(2))
1

�̂�

 
✘ ✘ ✘ 

Poisson’s Ratio 

Log-normal ✘ ✘ ✘ ✘ 

Gamma ✘ ✘ ✘ ✘ 

Weibull ✘ ✘ ✘ ✘ 

Rayleigh ✘ N/A ✘ N/A 
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For clarification, cells in Table 22 containing a cross (✘) indicates an insufficient goodness of fit. 

Cells containing N/A are not possible to calculate. Table 22 additionally shows which UDF estimates 

are applicable when converted back to their raw form. This table presents the substitutions that must 

be tested and are mentioned in Step 6 of the test methodology in Section 1.7.1. The equations shown 

in Table 22 are obtained from known relationships between PDFs and their statistical parameters and 

are used to convert the problem to a practical form, where there is one universal constant and one 

measurable value (the median or mean value). Although Table 23 in the following Section only 

presents one main UDF for each material parameter, all UDFs presented in Table 22 are statistically 

acceptable and meet the required definition of a UDF. The specific UDFs in Table 23 were selected 

based on their implications to further analysis. 

All attempts to analyse Poisson’s ratio from the raw data provided no viable UDF estimate. In general, 

no statistically significant UDF estimate adhered to the physical upper limit that is associated with 

Poisson’s ratio and hence no viable UDF was obtained. By consideration of both the lower and upper 

limit associated with Poisson’s ratio, it would be suspected that the skewness of the associated PDF 

would change as the median or mean value approaches either 0 or 0.5, for this reason it is difficult to 

generalise the PDF associated with Poisson’s ratio. A triangular distribution was trialled for its 

effectiveness but also failed to produce consistently significant results among all samples therefore 

fails to meet the definition of a UDF. The triangular distribution is however a very simple ‘temporary 

general approximation’, which can deal with both the physical upper and lower limits and changing 

skewness. The triangular distribution approximation for Poisson’s Ratio needs to be manually 

constructed on a case by case basis. 

2.1.5 The Universal Distribution Functions for rock parameters at the laboratory scale 

The aim of this analysis was to determine whether or not there exists consistent underlying 

distributions associated with various parameters of rocks. After the completion of a series of non-

parametric statistical tests on an extensive materials database, it can be shown that such UDFs do 

exist for a number of parameters and hence an acceptance of the overarching hypothesis (i.e., proof 

that UDFs exist). Table 23 presents the leading approximations for both deterministic and 

probabilistic estimates of many key rock parameters. 
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Table 23 Universal Distribution Function approximation for intact rock material parameters at the laboratory scale 

 

Intact strength 

(UCS, PLT and 

UTS) 

Material friction 

(peak and residual) 
Dry density Young’s Modulus Poisson’s Ratio 

UDF family Rayleigh Normal Laplace Weibull 
No true UDF 

Reasonable approximation is a triangular distribution 

PDF 𝑓(𝑥) =  
𝑥

𝜆2
𝑒
−
𝑥2

2𝜆2 𝑓(𝑥) =  
1

𝜎√2𝜋
𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2

 𝑓(𝑥) =  
1

2𝜎
𝑒− 

|𝑥−𝜇|
𝜎  𝑓(𝑥) =  {

𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−
(
𝑥
𝜆
)
𝑘
  𝑥 ≥ 0

0                              𝑥 < 0

 𝑓(𝑥) =  

{
 
 
 

 
 
 

0 𝑓𝑜𝑟 𝑥 < 𝑎

2(𝑥 − 𝑎)
(𝑏 − 𝑎)(𝑐 − 𝑎)

 𝑓𝑜𝑟 𝑎 ≤ 𝑥 < 𝑐

2
𝑏 − 𝑎

 𝑓𝑜𝑟 𝑥 = 𝑐

2(𝑏 − 𝑥)
(𝑏 − 𝑎)(𝑏 − 𝑐)

 𝑓𝑜𝑟 𝑐 < 𝑥 ≤ 𝑏

0 𝑓𝑜𝑟 𝑏 < 𝑥

 

Parameter estimates using the 

mean 

N/A 

�̂� =  �̅� 

�̂� = 3.14%− 14.48% 𝑜𝑓 �̅� 

Or 

�̂� = 1.04 − 5.44 

�̂� =  �̅� 

�̂� = 4.00%− 6.26% 𝑜𝑓 �̅� 

Or 

�̂� = 0.08 − 0.15 
N/A 

�̂� = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 0 

�̂� = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑜𝑟 0.5 

�̂� = 3�̅� − (�̂� + �̂�) 

Deterministic estimate using 

the mean 
𝑀�̂� =  �̅� 𝑀�̂� =  �̅� 𝑀�̂� =  �̂� 

Parameter estimates using the 

median 
�̂� =

�̅�

√2 ln 2
 

�̂� = �̅� 

�̂� = 2.07%− 12.57% 𝑜𝑓 �̅� 

Or 

𝜎 = 0.77 − 4.42 

�̂� = �̅� 

�̂� = 2.62%− 5.54% 𝑜𝑓 �̅� 

Or 

�̂� = 0.08 − 0.13 

�̂� = 1.43 − 1.93 

�̂� =
�̅�

(ln(2))
1

�̂�

 

�̂� =  �̂� −
2(�̂�+�̅�)

2

(�̂�−�̂�)
 for positively skewed data 

Or 

�̂� = �̂� +
2(�̂�−�̅�)2

(�̂�−�̂�)
 for negatively skewed data 

Deterministic estimate using 

the median 
𝑀�̂� =

�̅�

√2 ln 2
 𝑀�̂� = �̅� 𝑀�̂� = �̅� 𝑀�̂� = �̂� (

�̂� − 1

�̂�
)

1

�̂�

 𝑀�̂� =  �̂� 
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In Table 23, the deterministic estimate is specified by the UDF’s mode value 𝑀�̂�. The mode value 

was chosen as the representative deterministic value, as it defines the rock parameter value that is 

most likely to occur within the specified UDF. The mode value is considerably more intuitive when 

describing random variables, compared to other possible methods such as the mean or median value 

and was therefore chosen. It is noted that the deterministic material parameter estimates in Table 23 

should be used cautiously when dealing with some empirical design methods. These empirical 

methods (a particular emphasis for those empirical methods which require specification of a 

representative UCS) were potentially developed using other statistical measures (e.g., using the mean 

UCS), which may produce poor comparisons when using the mode value. This potential issue when 

long standing empirical design methods should be verified for their effectiveness in further studies. 

It is also recommended based on the results summarised in Table 23 that the median value formulation 

with the variable scale parameter be used over the mean value. The reasoning for this is that the 

associated UDF parameter ranges have the smallest associated error based on the analysis and the 

variable scale parameter generally adheres to logical values. 

The following figures show a comparison between each UDF approximation with the associated 

database EDFs shown in blue. The data presented relate to the highest sample count data sets and are 

used to demonstrate just how effective each UDF equation is at describing each material parameter. 

The solid black line is the CDF associated with the underlying UDF. These images plot the unscaled 

measure to better reflect the distribution across all encountered conditions in a single figure. The UDF 

approximation for all intact strength components (UCS, PLT and UTS) is shown in Figure 18. 

 

Figure 18 Empirical Distribution Function for intact strength with the Rayleigh distribution UDF 
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The distribution shown in Figure 18 has the scale parameter σ̂ selected such that the median value is 

one (i.e., the unscaled measure). For unscaled samples the value of σ̂ is selected based on the 

recommendations shown in Table 23. An interesting feature of Figure 18 can be observed by 

comparing the three lowest EDFs. This highly peculiar deviation from the expected CDF is due to 

dissimilar materials being logged as a single geological unit. This feature is suspected to be the 

leading cause of the rejection of the test hypothesis when completing the non-parametric 

bootstrapping in Table 19. To demonstrate that this was the case, two artificial UCS samples with 

median values 50 MPa and 150 MPa were generated and assessed as if they were a single unit. The 

resultant EDF and corresponding CDF according to UDF theory is shown in Figure 19. 

 

Figure 19 Artificial data simulating excessive deviation from the expected Cumulative Distribution 

Function in Uniaxial Compressive strength data 

It is obvious from Figure 19 that the observed deviation apparent in Figure 18 has been accurately 

reproduced using the presented UDF theory. The more dissimilar the median values are, the more 

pronounced the deviation from the assumed CDF becomes. Fortunately, this deviation can be 

advantageous when constructing geotechnical domains. If a database containing UCS, UTS or PLT 

data shows significant deviation like that in Figure 19, then there is implicit evidence that two or more 

distinctively different materials have been grouped together in the same classification. The process 

for separating out this data may be straight forward if there are notable lithological differences (e.g., 

weathering, mineralisation, veining etc.) or spatial separations, however it can become increasingly 

difficult to implement when these features are not readily apparent difference, such as in weak and 

strong interbedded sedimentary layers.  
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The UDF for material friction is shown in Figure 20. 

 

Figure 20 Empirical Distribution Functions for material friction with normal distribution UDF. �̂� = 

0.085 

Note that the UDF shown in Figure 20 is in not more accurate than any of the statistically viable 

values for �̂�. This single estimate is only used to illustrate the nature of the underlying UDF. It is 

noted that all values shown in Table 23 are viable parameter estimates. The UDF for dry density is 

shown in Figure 21. 

 

Figure 21 Empirical Distribution Functions for dry density with Laplace distribution UDF 

�̂�=0.0408 
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Note that the UDF shown in Figure 21 is in not more accurate than any of the statistically viable 

values for �̂�. This single estimate is only used to illustrate the nature of the underlying UDF. The 

UDF for Young’s Modulus is shown in Figure 22. 

 

Figure 22 Empirical Distribution Functions for Young's Modulus with Weibull distribution UDF �̂�= 

1.68 

Note that the UDF shown in Figure 22 is in not more accurate than any of the statistically viable 

values for �̂�. This single estimate is only used to illustrate the nature of the underlying UDF. The 

EDFs for Poission’s Ratio are shown in Figure 23 with a triangular distribution superimposed. 

 

Figure 23 Empirical Distribution Functions for Poisson's Ratio. A triangular distribution is shown 
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Figure 23 does appear to show some underlying trend in most EDFs, however the trialled distribution 

fails to meet the upper physical limit of Poisson’s Ratio and hence fails to meet the definition of a 

UDF (see Section 2.1.3). The triangular distribution estimate shown in Figure 23 is only plotted to 

show its effectiveness at approximating the distribution of Poisson’s Ratio and its applicability as a 

‘temporary approximation’. 

2.1.6 Universal material correlations 

To assess if there is some general underlying correlation 𝜌, Pearson’s product moment correlation 

coefficient test was completed to identify if parameter correlations exist and if so, what the likely 

values are. The summary of the initial correlation coefficient analysis is shown in Table 24. 

Table 24 Product moment correlation coefficient test decision summary 

Material parameter pairs Decision 

Dry density vs Uniaxial Compressive Strength 𝝆 ≠ 𝟎 

Dry density vs Young’s Modulus 𝝆 ≠ 𝟎 

Dry density vs Poisson’s Ratio 𝜌 = 0 

Uniaxial Compressive Strength vs Young’s Modulus 𝝆 ≠ 𝟎 

Uniaxial Compressive Strength vs Poisson’s Ratio 𝜌 = 0 

Young’s Modulus vs Poisson’s Ratio 𝝆 ≠ 𝟎 

From Table 24, it can be concluded at a 5% significance that correlation coefficient between dry 

density and UCS, dry density and Young’s Modulus, UCS and Young’s Modulus, and Young’s 

Modulus and Poisson’s Ratio are consistent with some non-zero correlation coefficient. The analysis 

also showed that calculated correlation coefficient between dry density and Poisson’s Ratio, and 

Young’s Modulus and Poisson’s Ratio are consistent with no true correlation. 

The non-parametric bootstrapping routine was then completed to determine the 95% confidence 

interval for 𝜌. Each resample process was repeated 10000 times for each pair of material parameters 

to obtain an appropriately large spread of correlation coefficients. The non-parametric bootstrapping 

results for correlation coefficients is shown in Table 25. 
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Table 25 Correlation coefficients for rock parameters 

Correlated pairs 95% confidence interval containing 𝜌 

Dry density vs Uniaxial Compressive Strength +0.3050 ≤ 𝜌 ≤ +0.4982 

Dry density vs Young’s Modulus +0.2489 ≤ 𝜌 ≤ +0.4302 

Dry density vs Poisson’s Ratio 𝜌 = 0.0 

Uniaxial Compressive Strength vs Young’s Modulus +0.5281 ≤ 𝜌 ≤ +0.8481 

Uniaxial Compressive Strength vs Poisson’s Ratio 𝜌 = 0.0 

Young’s Modulus vs Poisson’s Ratio -0.0966 ≤ 𝜌 ≤ -0.0224 

All other permutations Unknown* 

*No correlation coefficients can be calculated between material parameters not shown in Table 25. 

This is because these values (e.g., UCS and UTS) are obtained from destructive testing methods and 

hence no two measurements of these parameters can be obtained simultaneously. 

2.1.7 The implicit Universal Distribution Function for cohesion 

Unlike the other mentioned material parameters, cohesion cannot be directly measured in laboratory 

tests. Typically, cohesion is computed from direct shear tests, uniaxial compressive or triaxial tests 

by finding the linear regression intercept of the observed failure, in terms of acting normal and shear 

stresses. Being an indirectly measured material parameter it is difficult to obtain a single measurement 

of cohesion and hence an associated PDF. In relation to a Mohr Coulomb material, given a UCS and 

an appropriate friction angle, cohesion is calculated using Equation 55: 

 𝑐 =
𝑈𝐶𝑆(1 − sin𝜙)

2 cos𝜙
 Equation 55 

where 𝑐 is the material cohesion (Pa), 𝑈𝐶𝑆 is the Uniaxial Compressive Strength (Pa) and 𝜙 is the 

material friction (°). The mode (deterministic) estimate for cohesion can then be calculated using 

Equation 55 and the mode values for UCS and friction found in Table 23. The probabilistic UDF 

estimate for material cohesion becomes difficult to express in closed form, but can be defined 

implicitly and routinely generated: 
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1. Randomly generate a UCS value. 

2. Randomly generate a friction angle. 

3. Compute Equation 55 using the random estimates to obtain a random estimate for material 

cohesion. 

This calculation is only expressed in terms of the UCS, however the probabilistic behaviour can be 

extended to incorporate triaxial behaviours of a Mohr Coulomb material by considering that the 

behaviour is linearly dependant to the applied normal stress, which for all intents and purposes is 

some finite value (known or unknown). The shear strength at this normal stress can be 

probabilistically calculated as per the above routine to obtain the generalisation to triaxial stress states 

for any value of confinement. 

2.1.8 Additional parametric analysis - peak and residual friction 

As the UDF identified for friction is reasonably well approximated by a normal distribution with 

equal variance (i.e., the requirements for parametric testing), this allows parametric testing methods 

to be used to better understand the frictional data. To further quantify some issues associated with 

friction, a series of paired t-tests where completed to determine if there is a difference between the 

mean peak and residual friction angles for rock. The hypothesis for this test is given as: 

The mean difference (𝜙𝑝𝑒𝑎𝑘 −𝜙𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  ) is equal to zero. 

The results of these tests are summarised in Table 26. 

Table 26 T-test decision summary 

Surface preparation Dry samples Wet samples Dry and wet 

Sandblasted -1.365° to -0.0818° ND ND 

Smoothed with #80 silicon-

carbide grit paper 
ND +0.563° to +3.004° ND 

Smoothed with #600 silicon-

carbide grit paper 
-7.256° to -2.745° -6.993° to -0.592° -6.385° to -2.328° 

Surface preparation 

independent 
-2.931° to -0.505° ND -2.025° to -0.159° 
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For clarification, cell in Table 26 displaying ND have accepted the test hypothesis (i.e., no difference 

between peak and residual friction angles) at a 5% significance. All other cells have rejected the test 

hypothesis, and present the 95% confidence interval of the mean difference between peak and residual 

friction angles. 

The results shown in Table 26 present rather inconsistent behaviours across all test groupings. The 

results indicate at 5% significance that for sandblasted surfaces, the residual friction angle is higher 

than the peak friction angle for dry conditions and no significant difference in wet conditions. There 

was no significant difference when considering all sandblasted surfaces. Surfaces prepared with #80 

silicon-carbide grit paper indicate at 5% significance that the peak friction angle his higher than the 

residual friction angle in wet conditions and no significant difference in dry conditions. There was no 

significant differences when considering all surfaces prepared with #80 silicon-carbide grit paper. 

Surfaces prepared with #600 silicon-carbide grit paper showed consistently that the residual friction 

angle is higher than the peak friction angle at a 5% significance. When all surface preparations were 

grouped, the results indicate at 5% significance that the residual friction angle is higher in dry 

samples, there is no difference in friction angles for wet samples, and the residual friction angle is 

higher when combining both wet and dry samples. 

Based on the physical interpretation of these surface preparation methods, one would have suspected 

that there would be some consistent response (e.g., higher or lower residual friction angles) when 

considering surface preparation or the influences of water. The inconsistencies in which friction value 

is higher for sandblasted or #80 silicon-carbide grit paper in wet or dry conditions implies that there 

is likely no significant difference between the residual and peak friction angle. The #600 silicon-

carbide grit paper surfaces consistently identify a higher residual friction angle, which again is 

consistent with the previously presented interpretation that there likely is some true detectable 

difference. As a general conclusion, these results can be interpreted as there being no significant 

difference between peak and residual friction angles for relatively natural surfaces and that well 

prepared surfaces will typically have a higher residual friction angle compared to the peak friction 

angle. 
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2.2 Implications of Universal Distribution Functions 

This section focuses on providing additional evidence that the UDFs identified can be used to produce 

a variety of results, which are consistent with literature findings over a wider range of applications. 

The consistency of these new results with documented phenomenon provides additional support to 

the validity of UDFs as well as demonstrates the broad range of applications that they can offer. 

2.2.1 Deterministic and probabilistic applications 

With the discovery of UDFs, the issues associated with inconsistent FOS and POF selection criteria 

that were demonstrated in Section 1.6.1 and Section 1.6.2 using laboratory scale parameters have now 

been addressed. To demonstrate how to apply the notion of UDFs and more generally Table 23, a 

fictitious laboratory database with 10 samples for each material parameters was randomly generated 

from their respective UDF. These raw data are supplied in Table 27. 

Table 27 Example laboratory data used to demonstrate Universal Distribution Functions 

Sample 

number 

UCS 

(MPa) 

UTS 

(MPa) 

Friction 

(°) 

Density 

(t/m3) 

Young’s Modulus 

(GPa) 

Poisson’s 

Ratio 

1 55.65 5.06 21.07 2.52 49.66 0.087 

2 70.94 4.98 30.51 2.39 31.31 0.021 

3 38.98 5.68 24.86 2.77 33.99 0.036 

4 61.06 5.15 24.92 2.34 37.11 0.094 

5 12.38 2.10 22.08 2.36 17.34 0.077 

6 9.35 1.39 26.22 2.46 9.38 0.171 

7 41.31 4.65 23.04 2.52 42.98 0.139 

8 16.68 1.88 34.06 2.43 14.22 0.162 

9 34.53 1.26 21.79 2.72 15.51 0.102 

10 24.37 4.18 28.42 2.60 19.54 0.122 

Calculated 

median 
36.76 4.42 24.89 2.49 25.43 0.10 

Calculated 

mean 
36.53 3.63 25.70 2.51 27.10 0.10 
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Also provided in Table 27 are the mean and median values of each material parameter, which are 

required for calculations. The recommended deterministic value is the mode value for each material 

parameter. The mode value as previously mentioned, relates to the most likely, or highest probability 

value from the specified distribution. When calculating the FOS of a slope the mode value is 

recommended to be used due to the intuitiveness to slope stability. 

For a deterministic analysis, the only required value is the mode value. From Table 23 it can be seen 

that the mode value of dry density and material friction is equal to the median value. The mode value 

of the UCS and UTS are calculated using the given equations. Using the mode values of friction and 

UCS, the mode value of cohesion for a Mohr Coulomb material can be calculated using Equation 55. 

Poisson’s Ratio utilises the mean value to calculate mode value. The mean value is used in this 

instance, as the formulation of the mode value in terms of the mean value is simpler than using of the 

median value. The minimum and maximum values of Poisson’s Ratio are also required to compute 

the mode value of Poisson’s Ratio, which are obtained from reviewing the data in Table 27. The 

calculation for the mode value of Young’s Modulus is not as straight forward as other deterministic 

estimates as it requires the selection of an appropriate value of the UDF shape parameter 𝑘. How this 

is achieved is discussed along with the probabilistic parameter estimates. 

Probabilistic analysis or when the POF is being assessed, requires the PDF of all relevant material 

parameters to be specified. As the UDF family (e.g., normal, Weibull etc.) for each material parameter 

is fixed, no PDF selections techniques need to be considered. Most UDFs have two statistical 

parameters, which are calculated from the available data to correct the shape, scale and location of 

each PDF to site specific conditions. Probabilistic parameters in Table 23 are presented either as 

either a fixed range or as a function of the median or mean value. 

Although all values within a specified parameter ranges in Table 23 are statistically viable 

approximations, the chosen value must still be a reasonable reflection of the available data. In the 

absence of many individual measurements or a more in depth statistical assessment, it is 

recommended that the highest variance UDF be chosen from the statistically applicable range for 

each material parameter. The practitioner should always check for compatibility of parameter 

estimates by ensuring that the data makes logical sense. For example, the mode value of Poisson’s 

Ratio must be larger than the minimum value and all material parameters values must be non-

negative. If a more rigorous approach is desired, values can be easily calculated using the associated 

Maximum Likelihood Estimate applicable to each UDF. The Maximum Likelihood Estimate for the 

UDF parameters are shown in Table 28. 
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Table 28 Maximum Likelihood Estimation for example Universal Distribution Function parameters 

Material parameter Maximum Likelihood Estimate equations Parameter estimate 

Friction 

(Montgomery & 

Runger 2014) 

�̂� =  √
1

𝑛
∑(𝑥𝑖 − �̂�)2
𝑛

𝑖=1

 
�̂� = 4.20 

or 16.88% of �̅� 

Density 

(Norton 1984) 
�̂� =  

∑ |𝑥𝑖 − �̅�|
𝑛
𝑖=1

𝑛
 

�̂� = 0.115 

or 4.62% of �̅� 

Young’s Modulus 

(Cohen 1965) 

Solve simultaneously: 

�̂� =
∑ 𝑥𝑖

�̂�𝑛
𝑖=1

𝑛
 

∑ 𝑥𝑖
�̂� ln 𝑥𝑖

𝑛
𝑖=1

∑ 𝑥𝑖
�̂�𝑛

𝑖=1

−
1

�̂�
−
1

𝑛
∑ln 𝑥𝑖

𝑛

𝑖=1

= 0 

�̂� = 30.75 

�̂� = 2.26 

As expected, the parameter estimates in Table 28 typically fall within the specified statistically 

significant ranges given in Table 23. The value of �̂� associated with Young’s Modulus Maximum 

Likelihood Estimate is noted to fall outside the specified range, which contains 95% of the calculated 

values of �̂�. The Weibull distribution Maximum Likelihood Estimate in Table 28 is difficult to solve 

without the aid of statistical software, so practitioners may prefer to use a graphical methods such as 

using the KS test. The KS test for the example Young’s Modulus data is shown in Figure 24. 

 

Figure 24 Graphical parameter estimation by Kolmogorov Smirnov goodness of fit 
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The Weibull distribution shown in Figure 24 is characterized by �̂� = 31.87 and �̂� = 1.62 with 

associated KS test statistic 𝐷𝑛 = 0.1364. Note that the parameter estimates obtained by graphical and 

Maximum Likelihood Estimates are both equally applicable based on the available data. For this 

example, the graphical estimate was used as the value of �̂� falls within the specified shape range in 

Table 23.  

An advantage of a graphical approach compared to the use of an equation is that it allows for a visual 

assessment of the goodness of fit, which is often overlooked when dealing with strictly mathematical 

descriptions of variability. With a calculated value of �̂� for Young’s Modulus the mode value can 

then be calculated using the equations presented in Table 23. When all values are computed using the 

data supplied in Table 27 and Table 28, Table 29 is produced to summarise the deterministic (FOS) 

and probabilistic (POF) material parameter estimates using UDFs. 

Table 29 Example Universal Distribution Function calculations verse true values 

Value UCS (MPa) 
UTS 

(MPa) 

Cohesion 

(MPa) 
Friction (°) 

Density 

(t/m³) 

Young’s Modulus 

(GPa) 

Poisson’s 

Ratio 

Parameter estimates 

PDF 

Distribution 
Rayleigh Rayleigh  Normal Laplace Weibull Triangular 

Parameter 

one 
�̂� = 31.22 �̂� = 3.75 Implicit �̂� = 24.89 �̂� = 2.49 �̂� = 31.87 �̂� = 0.021 

Parameter 

two 
N/A N/A Implicit �̂� = 4.20 �̂� = 0.115 �̂� = 1.62 �̂� = 0.171 

Parameter 

three 
N/A N/A N/A N/A N/A N/A �̂� = 0.108 

Mode value 

(FOS input) 
31.22 3.75 9.97 24.89 2.49 17.68 0.108 

True values 

Parameter 

one 
𝜆 = 30.66 𝜆 = 3.42 Implicit 𝜇 = 26.10 𝜇 = 2.51 𝜆 = 25.01 𝑎 = 0.013 

Parameter 

two 
None None Implicit 𝜎 = 3.22 𝜎 = 0.13 𝑘 = 1.86 𝑏 = 0.303 

Parameter 

three 
None None None None None None 𝑐 = 0.045 

Mode value 30.66 3.42 9.56 26.10 2.51 16.48 0.045 
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Table 30 Example Universal Distribution Function percentage errors 

Value 
UCS 

(MPa) 

US 

(MPa) 

Cohesion 

(MPa) 

Friction 

(°) 

Density 

(t/m³) 

Young’s 

Modulus 

(GPa) 

Poisson’s 

Ratio 

Parameter 

one 
+1.83% +9.65% N/A -4.64% -0.80% +27.43% +61.54% 

Parameter 

two 
N/A N/A N/A +30.43% -11.54% -12.90% -43.56% 

Parameter 

three 
N/A N/A N/A N/A N/A N/A +140.00% 

Mode 

value 
+1.83% +9.65% +4.29% -4.64% -0.80% +7.27% +140.00% 

For clarification, using the information provided in Table 29, the row labelled ‘mode value should be 

used to calculate the FOS. If the information in Table 29 was to be used to calculate the POF, the 

PDF distribution family shown and the corresponding parameters should be used as the input.  

Also supplied is Table 30, which presents the percentage errors associated with each parameter 

estimate and the true value used to generate the sample data. Some parameter estimates can be seen 

to have a considerable sampling error associated with their estimates, particularly the UDF 

parameters. This sampling error in practical settings is unknown, but can be estimated from statistical 

analysis. Quantification of sampling errors for each material parameter is detailed in the following 

section. 
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2.2.2 Sampling errors 

Deterministic and probabilistic selection will always produce some error between the estimates and 

the true value, an associated sampling error. The sampling error cannot be directly measured, but can 

be shown to reduce with an increasing number of samples (Gill, Corthésy & Leite 2005). Varying 

guidelines (Bieniawski 1979) (Ruffolo & Shakoor 2009) are available, which specify the minimum 

number of laboratory tests required for various rock material parameters. These guidelines relate to 

estimates of the mean material parameter value with no recommendations to aid in the number of 

samples required for probabilistic parameter accuracy. As the PDF family for each UDF is fixed, it 

is possible to calculate the number of samples required to obtain a desired accuracy for both 

deterministic and probabilistic parameters for different rock material parameters. 

In order to estimate the sampling errors associated with the median value and probabilistic parameters 

for each material parameter, the largest scale parameter UDF estimate for each material parameter 

was used to generate random laboratory sample pools with varying sample numbers. Each sample 

pool then had the median value and the associated Maximum Likelihood Estimate for each PDF 

parameter calculated and then the associated percentage error for each random sample pool was 

calculated. This process was then repeated 1000 times for six different inputs and sample pools with 

the number of samples ranging from 2 to 2000. 

For clarification, the ‘largest scale parameter’ refers to selecting UDF parameters, which produce the 

highest associated variance. For example, the scale parameter associated with the highest variance 

for friction is given by 12.57% of the median value and Young’s Modulus is given by a shape 

parameter of 1.43. Justification of selecting the largest scale parameter was to provide an upper limit 

to sample size requirements and to account for the most variable statistically acceptable UDF model. 

From the resulting distribution of sampling errors, the central 95th percentile was used to estimate the 

required sample numbers to meet a specified sampling error for each parameter. The sample number 

estimates for each parameter based on UDFs are shown in Table 31. 
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Table 31 Sample size estimates for specified accuracies using the median value 

Material 

parameter 
Value 

±50% of 

true value 

±25% of 

true value 

±15% of 

true value 

±10% of 

true value 

±5% of true 

value 

UCS 

Median 9 33 90 203 809 PLT 

UTS 

Friction 

Median 1 2 4 9 36 

Scale 

parameter 
6 24 72 172 763 

Density 

Median 1 1 2 3 8 

Scale 

parameter 
15 59 163 367 1465 

Young’s 

Modulus 

Median 18 67 178 387 1454 

Shape 

parameter 
25 73 164 310 925 

Poisson’s 

Ratio 
Behaviour poorly understood. No estimate possible 

Note that for UCS, PLT and UTS only one sample number is specified. This is because the 

probabilistic parameter is only dependant on the median value. Estimates for the number of samples 

to achieve some specified percentage error cannot be calculated for Poisson’s Ratio, as there is 

currently no associated UDF for Poisson’s Ratio. 

Table 31 may appear to suggest that you must have the number of samples specified in order to 

achieve the desired level of accuracy. However, reviewing the percentage errors in Table 30, most 

deterministic estimates fall within ±10% of their true value while probabilistic parameters are 

typically within ±30%. The results presented in Table 31 imply an error of up to ±50% for the number 

of available samples. These estimates are the number of samples needed to be ‘almost surely’ within 

the required accuracy level. It is possible to obtain very accurate estimates with fewer samples but 

these results are not guaranteed and their true accuracy cannot be verified. 
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It is interesting to note how greatly different the sample size estimates for intact strength are compared 

to recent published estimates of the requirements for UCS tests by Ruffolo and Shakoor (2009) shown 

in Table 32. These estimates are also based on a central 95th percentile confidence interval, and use 

a similar estimation technique. 

Table 32 Estimates for the sample numbers of Uniaxial Compressive Strength by Ruffolo and 

Shakoor (2009) 

Accuracy range Within ±5% Within ±10% Within ±15% 
Within 

±20% 

Within 

±25% 

Bera Sandstone 6 4 3 3 3 

Indiana 

Limestone 
25 9 5 4 4 

Marble 29 9 6 5 4 

Milbank Granite 42 13 7 5 5 

Wissahickon 

Schist 
n/a 25 13 9 7 

One possible explanation for the difference is that the sample size estimates presented in Table 31 are 

for the median value while the ranges shown in Table 32 are for the mean value. The rate of 

convergence of the sample mean and sample median to the true mean and true median are different. 

The rate of convergence and the associated sampling error for the mean and median values can be 

compared by considering the associated mean and median confidence intervals in terms of the 

associated standard errors (Harding, Tremblay & Cousineau 2014): 
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 𝑀𝑒𝑎𝑛 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  �̅� ± 𝑍𝑛,𝛼 (
�̂�

√𝑛
) Equation 56 

 𝑀𝑒𝑑𝑖𝑎𝑛 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  �̅� ± 𝑍𝑛,𝛼 (1.253
�̂�

√𝑛
) Equation 57 

where 𝑍𝑛,𝛼 is the standard normal distribution, 𝑛 is the number of samples, �̅� is the calculated mean, 

�̅� is the calculated median and �̂� is the calculated standard deviation. Even when correcting for the 

convergence of the median value by multiplying the estimates of Ruffolo and Shakoor by 1.25, the 

discrepancies are still noticeable. The second and more likely reason for these differences is due to 

the low measured standard deviation for each lithology in Ruffolo and Shakoor’s database compared 

to those measured for the initial UDF study database. A comparison of this data to the values used to 

derive the intact strength (i.e., PLT, UCS and UTS data) UDF is shown in Figure 25. 

 

Figure 25 Scatter plot of mean strength vs standard deviation for intact rock strength measurements 

The scatter plot shown in Figure 25 shows that most of the rock types that were used as part of Ruffolo 

and Shakoor’s work show considerable deviation from the general data trend and the idealised perfect 

relationship given by UDFs. For comparison, additionally sourced UCS data (blue dots) not used 

during the initial UDF analysis follow the same general trend predicted by the UDF. As the standard 

deviations calculated by Ruffolo and Shakoor are lower than those predicted by UDFs the rate of 
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convergence to the mean value, and in term, the associated percentage error for a given number of 

samples will be lower than those calculated using UDFs. The low calculated standard deviations from 

Ruffolo and Shakoor may be due to sampling errors for the standard deviation or some influence that 

is currently unaccounted for when applying UDFs. 

By consideration of the mean and median standard errors (Equation 56 and Equation 57), the mean 

value, in theory should produce a ‘more accurate’ measure of the data as the mean standard error is 

smaller than the median standard error for some number of samples; that is, it is more likely to be 

closer to the true value. In order to compare the applicability of the mean value over the median value, 

the percentage errors at various sample sizes and confidence intervals for UCS were constructed using 

the above mentioned method. These results are shown in Table 33. 

Table 33 Percentage error confidence intervals for Uniaxial Compressive Strength using the mean 

and median value 

Samples 

25% confidence 

interval 

50% confidence 

interval 

68% confidence 

interval 

95% confidence 

interval 

Median 

value 

Mean 

value 

Median 

value 

Mean 

value 

Median 

value 

Mean 

value 

Median 

value 

Mean 

value 

5 ± 10.00% ± 9.50% ± 20.50% ± 20.00% ± 30.50% ± 29.50% ± 60.00% ± 58.00% 

10 ± 7.00% ± 6.50% ± 14.50% ± 14.50% ± 21.50% ± 21.00% ± 42.00% ± 41.50% 

20 ± 5.00% ± 4.50% ± 10.50% ± 10.00% ± 15.50% ± 15.00% ± 30.50% ± 30.00% 

30 ± 4.00% ± 4.00% ± 8.50% ± 8.50% ± 12.50% ± 12.50% ± 25.00% ± 24.50% 

40 ± 3.50% ± 3.50% ± 7.50% ± 7.50% ± 11.00% ± 11.00% ± 22.00% ± 21.50% 

50 ± 3.00% ± 3.00% ± 7.00% ± 7.00% ± 10.00% ± 10.00% ± 19.50% ± 19.50% 

100 ± 2.50% ± 2.50% ± 5.00% ± 5.00% ± 7.00% ± 7.50% ± 13.50% ± 14.00% 

200 ± 1.50% ± 2.00% ± 3.50% ± 4.00% ± 5.00% ± 5.50% ± 10.00% ± 10.50% 

Table 33 shows that although the convergence rates for the mean and median values are different, the 

percentage errors at various confidence intervals and sample sizes are very similar and show no real 

differences in sampling errors. The median value was still chosen as the representative value to 

describe each UDFs as it produces a better statistical estimator of the entire PDF for real world 

samples. For this reason, the median value remains the recommended estimator of a sample pool. 
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For any individual problem, if a sufficiently rigorous statistical analysis provides justification that the 

mean value provides a better estimate site conditions than the median value, there is no reason not to 

use it. If the mean value is used over the median value, the UDF parameter relationships must be 

formulated in terms of the mean value to ensure that the correct PDF is used. Equivalent relationships 

between UDF parameters and the mean value are simple to derive using the associated underlying 

PDF. 

2.2.3 Linear and non-linear relationships between rock parameters 

Having single approximations for the PDF of various rock parameters and evidence that they are 

correlated can help estimate underlying linear and nonlinear relationships between them. If two 

variables are positively correlated, it is possible to use a perfectly correlated relationship (𝜌 = +1) to 

compute the underlying linear or nonlinear relationship between these variables. Linear relationships 

between PLT, UCS, UTS and Young’s Modulus are commonly reported in rock mechanics literature 

(Nazir, Momeni, Armaghani & Amin 2013) (Rusnak & Mark 2000) (Kumar, Asce, Bhargava, 

Choudhury & Asce 2017). To demonstrate that these relationships are predicted by UDFs, the UDF 

associated with all intact strength components (i.e., PLT, UCS and UTS) must first be transformed 

from a Rayleigh distribution to a Weibull distribution. A Rayleigh distribution is a special case of a 

Weibull distribution where the Weibull distribution shape parameter 𝑘 is equal to 2 and the scale 

parameter 𝜆, equal to √2 times the Rayleigh scale parameter. This PDF transformation simplifies the 

derivation and allows for considerations of Young’s Modulus, which is described by a Weibull 

distribution. The CDF for a generic Weibull distribution is given by: 

 𝐹𝑋(𝑥) = 1 − 𝑒
− (

𝑥
𝜆
)
𝑘

 Equation 58 

Equating the CDFs of any two perfectly correlated Weibull distributions with parameters of each 

distribution denoted by subscripts 1 and 2, the following expression is obtained: 

 𝑥2 = 𝜆2 (
𝑥1
𝜆1
)

𝑘1
𝑘2

 Equation 59 

This is the general equation for the relationship between two perfectly correlated Weibull 

distributions. For the UDF approximations for PLT, UCS and UTS, the value of 𝑘 equal to 2, with 𝜆 

being related to the median value 𝑀. By substituting the value of 𝑘1 = 𝑘2 = 2 into Equation 59: 
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𝑥2
𝑥1
=
𝜆2
𝜆1
= 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 Equation 60 

Equation 60, suggests that if any two correlated Weibull distributions have identical shape 

parameters, then there is an underlying linear relationship with gradient equal to the ratio of the 

median values or scale parameters. From the available UDFs, this implies that any pair of PLT, UCS 

or UTS are correlated, then the underlying relationship between them must be linear. These linear 

relationships are known to exist and are often the focus of published studies (Nazir, Momeni, 

Armaghani & Amin 2013) (Rusnak & Mark 2000). This replication of this known linear relationship 

by use of UDFs provides evidence that the UDFs associated with PLT, UCS and UTS are correct for 

each of these material parameters. 

Although a linear relationship can be shown to exist, there is no available information about what the 

gradient of this relationship is or what the ‘conversion factor’ from one material parameter to the 

other is. Published conversion factors between UCS and PLT listed by Rusnak and Mark (2000) show 

variations in conversion factors between rock types, which is also supported by their own findings. 

Equation 59 can be used to describe the relationship between two Weibull distributions, which have 

different shape parameters. This equation can be used to describe the underlying relationships 

between Young’s Modulus and any of the PLT, UCS or UTS material parameters. When the shape 

parameters are not equal, a nonlinear underlying relationship is produced, with a greater difference 

in shape parameters producing a more pronounced nonlinear response. Examples of this underlying 

nonlinear relationship between UCS and Young’s Modulus in both synthetic and real data are shown 

in Figure 26. 
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Figure 26 Scatter plot showing the curvature between the relationship of Uniaxial Compressive 

Strength and Young's Modulus 

Depending on how different the associated shape parameters are, the nonlinear response may be 

subtle and can produce reasonably high 𝑅2 values when using linear regression to estimate the 

relationship. For the simulated example data (red dots) shown in Figure 26, an 𝑅2 of 0.61 is obtained 

for a linear model with zero intercept. The goodness of fit obtained by fitting a linear model to this 

subtle nonlinear relationship may also explain why linear relationships are commonly quoted in 

literature (Kumar, Asce, Bhargava, Choudhury & Asce 2017). The nonlinearity is more pronounced 

in the real data set (blue dots) in Figure 26. 

2.2.4 Relationships between Uniaxial Compressive Strength and sonic velocity 

Equation 59 can also be used to help formulate much more complex relationships. It is possible to 

derive a new relationship between the sonic velocity through rock and the associated UCS. The most 

common models used to describe this relationship between these two parameters is to fit an 

exponential model in the form (Butel, Hossack & Kizil 2014): 

 𝑈𝐶𝑆 ≈ 𝐴𝑒𝐵𝑐𝑝  Equation 61 

where 𝐴 and 𝐵 are site specific constants calculated from the regression model and 𝑐𝑝 is the velocity 

of a pressure wave (m/s). Note that some authors express this relationship not in terms of velocity but 
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in terms of the time interval between sending and receiving the sonic pulse, a similar exponential 

model is also used in these instances. Alternative empirical relationships are also common with many 

examples listed by Chang et al (2006), which consider other parameters including porosity These 

alternative empirical relationships still rely on site specific constants obtained from regression 

analysis to describe the data. By using UDFs, an alternative description of the relationship between 

sonic velocity and UCS can be derived in terms of measurable quantities and does not require the 

calculation of site specific constants. From fundamentals, the speed of pressure waves through any 

solid material is given by (Rienstra & Hirschberg 2009): 

 𝑐𝑝 = √
𝐸(1 − 𝜈)

𝜌(1 + 𝜈)(1 − 2𝜈)
 Equation 62 

where 𝑐𝑝 is the speed of a pressure wave (m/s), 𝐸 is Young’s Modulus (Pa), 𝜈 is Poisson’s Ratio and 

𝜌 is density (kg/m3). Since a relationship for Young’s Modulus in terms of UCS can be expressed by 

Equation 59, this can be substituted into Equation 62 and rearranged to obtain: 

 𝑈𝐶𝑆 = 𝑀𝑈𝐶𝑆√(
𝑐𝑝2𝜌(1 + 𝜈)(1 − 2𝜈)

𝑀𝐸(1 − 𝜈)
)

𝑘𝐸

 Equation 63 

Where 𝑀𝐸 is the median Young’s Modulus (Pa), 𝑀𝑈𝐶𝑆 is the median UCS (Pa) and 𝑘𝐸 is the Weibull 

distribution shape parameter for Young’s Modulus. This solution can also be verified in terms of 

units, a feature that cannot be done in Equation 61. Similar to pressure waves, the relationship 

between shear wave velocity and UCS can be derived. Consider the equation for the speed of a shear 

wave (Rienstra & Hirschberg 2009):  

 𝑐 𝑠 = √
𝐺

𝜌
 Equation 64 

where 𝑐𝑠 is the shear wave velocity (m/s) and 𝐺 is the shear modulus (Pa). An identical derivation 

used to obtain Equation 63 can be used to obtain the following relationship between UCS and shear 

velocities: 
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 𝑈𝐶𝑆 =  𝑀𝑈𝐶𝑆√(
2𝑐𝑠

2 𝜌(1 + 𝜈)

𝑀𝐸
)

𝑘𝐸

 Equation 65 

This relationship is beneficial, as it does not require curve fitting parameters as all variables are 

quantifiable from laboratory or field tests. The values of 𝜌 and 𝜈 that should be used when using 

Equation 65 are mode values for density and Poisson’s Ratio. How to calculate the mode values based 

on their associated UDFs have previously been presented in Table 23. 

To check the applicability of this new model, the joint distribution of sonic velocity and UCS values 

in real samples was compared to the joint distribution randomly generated by using UDFs by means 

of the two-dimensional Kolmogorov Smirnov goodness of fit test (Friedman 2004). The real data and 

simulated data based on UDF theory are shown in Figure 27. Additionally the exponential relationship 

like Equation 61 was included to compare this new model to currently industry methods.  

 

Figure 27 Sonic velocity vs Uniaxial Compressive Strength for real and simulated data sets 

Note that the data shown in Figure 27 related to laboratory sonic and compressive measurements for 

an ironstone from Australia. The data shown formed part of the UDF material database. Visual 

comparisons between the underlying relationship (Equation 63) and the typical exponential 

relationship show notable discrepancies near the central portion of the data (15 MPa verse 25 MPa 

UCS at 3000 m/s) and much larger discrepancies at high sonic velocities (past 4000 m/s). Statistically, 

the distribution of synthetic samples compared to the actual data distribution suggested that there was 
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no statistically significant difference at a 5% significance between the distribution of real data and 

synthetic data, with a calculated KS test statistic equal to 0.3209 and a P-value of 0.1833. From first 

impressions, Equation 63 appears promising in predicting the relationship between sonic velocity and 

UCS as the behaviour is based on physical measurements rather than site specific constants. This 

relationship should be compared to more site data in order to determine its effectiveness compared to 

the typical exponential model over a wide range of geological conditions. 

2.2.5 A statistical justification for the 35th percentile and 80% Uniaxial Compressive Strength 

for rock blocks 

Geotechnical practitioners often use the ‘35th percentile’ rule of thumb, or some downgrading factor 

(e.g., 80% of the mean UCS (Laubscher & Jakubec 2001)) when selecting representative UCS for 

analysis of rock. This use of percentiles is most evident in the work by Lacey (2015) with this study 

focused on determining ‘characteristic’ strength estimates to be used in civil designs involving rock. 

Based on Lacey’s findings the following percentiles of an assumed normal distribution were 

recommended to be used as ‘characteristic’ strengths for rock: 

Table 34 Percentile estimates of characteristic strengths (After Lacey 2015) 

Test type Percentile range* 

Point Load Index 25th to 45th percentile. Average of 35th 

Uniaxial Compressive Strength 20th - 30th percentile 

*the ranges are produced from statistical analysis over different lithologies and encompass 95% of 

all evaluations. 

Through the use of UDFs, these percentile recommendations can be shown to be approximately equal 

the mode value of their underlying UDF, the deterministic value recommended in Table 23. The 

mathematic derivation is shown below. Note this example uses the UCS but an identical derivation 

can be done for PLT and also UTS as the UDF that describes all of these material parameters is the 

same Rayleigh distribution: 

The UCS UDF has been shown to be consistent with a Rayleigh distribution. For any sufficiently 

large random sample drawn from a Rayleigh distribution, the sample variance, 𝑉𝑎𝑟(𝑋) and mean 

value 𝜇𝑅 will approach: 
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 𝑉𝑎𝑟(𝑋) =  
4 − 𝜋

2
 𝜆𝑅
2  Equation 66 

 𝜇𝑅 = 𝜆𝑅√
𝜋

2
 Equation 67 

where 𝜆𝑅 is both the Rayleigh distribution’s scale parameter and mode value 𝑀𝑜𝑅. By rearranging 

Equation 67 and solving for 𝜆𝑅, it can be shown to be approximately equal to 80% of the mean value 

(79.79% of the mean) and confirms the estimate of using 80% of the mean UCS for the intact rock 

strength (Laubscher & Jakubec 2001). Percentiles are calculated as the value that corresponds to a 

particular cumulative percent of an assumed PDF. As the underlying distribution is assumed by Lacey 

(2015) to be normal with associated mean 𝜇𝑁 and standard deviation 𝜎𝑁. If the standard deviation of 

any sufficiently large random sample drawn from a Rayleigh distribution were calculated, the 

standard deviation 𝑆𝑡𝑑(𝑋) would approach: 

 𝑆𝑡𝑑(𝑋) = 𝜎𝑁  = √
4 − 𝜋

2
𝜆𝑅 Equation 68 

It is of interest to evaluate the percentile of a normal distribution at the value of 𝑀𝑜𝑅. The equation 

for evaluating this percentile is given by calculating the CDF of a normal distribution at 𝑀𝑜𝑅. This is 

calculated as: 

 𝐶𝐷𝐹(𝑀𝑜𝑅) =
1

2
[ 1 + erf (

𝑀𝑜𝑅 − 𝜇𝑁

𝜎𝑁√2
)] Equation 69 

Where erf is the Gauss Error Function. Substituting Equation 66 and Equation 67 into Equation 69 

yields: 

 𝐶𝐷𝐹(𝑀𝑜𝑅) =
1

2

[
 
 
 

 1 + erf

(

 
𝜆𝑅 − 𝜆𝑅√

𝜋
2

√4 − 𝜋
2 𝜆𝑅√2)

 

]
 
 
 

 Equation 70 
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With some algebraic simplification, Equation 70 becomes: 

 𝐶𝐷𝐹(𝑀𝑜𝑅) =
1

2
[ 1 + erf(−0.2734)] Equation 71 

As erf value is undefined in close-form, the numerical approximation is used to compute Equation 

71: 

 𝐶𝐷𝐹(𝑀𝑜𝑅) = 0.3497 𝑜𝑟 ~ 35𝑡ℎ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 Equation 72 

This mathematical approach using UDFs matches the estimates for PLT proposed by Lacey and is 

close to the estimate for UCS. The reason for the discrepancy between the mathematical percentile 

estimate for UCS and estimates derived by Lacey is most likely due sampling errors associated with 

the UCS test database. PLT numbers in Lacey’s study were orders of magnitude greater than UCS 

test numbers, which may explain why the mean percentile for PLT matches the theoretical value. An 

identical percentile ‘characteristic’ strength for both PLT and UCS makes sense considering the 

known and mathematically derived linear relationship between these two variables. This 35th 

percentile selection method by consideration of an identical derivation using the UTS shows that this 

value is also the suggested deterministic value. 

The derivation presented provides a ‘statistical explanation’ as to why in situ rock appears to be 

weaker than laboratory tests. One thing to be weary of with these ‘downgraded’ values is that they 

relate only to the intact strength (UCS and UTS) and not the entire rock mass. A secondary strength 

reduction due to the presence of joints is also expected, and must still be estimated by using common 

empirical methods for example Hoek et al (2002). Another influence that is not fully captured by this 

approach is scale dependant strength. Although part of this scale effect can be described by this 

statistical influence, strength in brittle materials (Bažant 1999), and rock (Sing 1981) at increased 

scales produce strengths that are much lower than a purely statistical influence, suggesting some true 

‘non-statistical’ scale response. An analysis of scale effects and the applicability of UDFs is assessed 

in the Chapter Three. 
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3 Extending Universal Distribution Functions to Consider Scaling 

Laws 

As mentioned in Chapter One, the a-typical nature of non-standard laboratory testing practices means 

there are limited data that can be used to meaningfully assess probabilistic scale effects in rock 

material parameters. In lieu of this, heterogeneous modelling techniques were used to estimate the 

associated probabilistic scaling laws associated with material parameters. This Chapter outlines a 

general overview, fundamental assumptions, limitations, and calculation routines of the numerical 

program purpose built to quantify probabilistic scale effects for rock. This program was given the 

title The Probabilistic Lagrangian Analysis of Continua with Empirical Bootstrapped Outputs 

(PLACEBO), which currently operates using Itasca’s FLAC3D. 

3.1 PLACEBO Functionality Overview 

PLACEBO is a general purpose numerical homogenisation tool used to quantify the probabilistic 

material parameters of intact rock at arbitrarily large scales. PLACEBO achieves this by constructing 

large heterogeneous laboratory samples using the known UDFs associated with mesoscopic scale 

zones. These large heterogeneous samples are then simulated using various laboratory test 

configurations to estimate the material parameters at the specified macroscopic scale, including 

material nonlinearities and material parameter correlations. The mesoscopic scale is used to describe 

the input scale over microscopic, as the scale in which the known probabilistic behaviour is quantified 

is larger than the grain size problems (i.e., explicitly able to include fracture mechanics and crack 

growth) but smaller than a typical assumed continuum scales. 

The outputs produced by PLACEBO are emergent behaviours or bootstrapped, as the complex 

behaviours are not explicitly accounted for as model inputs and emerge as a result of simple justifiable 

assumptions. PLACEBO operates similarly to Itasca’s PFC3D in terms of failure initiation and may 

occur randomly throughout the sample at any point due to local ‘weaknesses’ or ‘defects’. The key 

difference between these two approaches (PLACEBO and PFC3D) is that PLACEBO uses a strain 

softening continuums instead of ridged spheres, particles or clumps. PLACEBO is advantageous over 

PFC3D in some notable ways: 

  



Page | 107  

It is simpler to incorporate real world measurements - PLACEBO operates on measurable 

laboratory scale values of which are used to simulate larger volumes. Depending on which contact 

model is used, PFC3D required inputs specified in terms of force and elastic components in terms of 

stiffness, which are not as easily measured or replicated without extensive numerical calibration. It is 

also difficult to calibrate a PFC3D model that can replicate all laboratory scale material parameters 

simultaneously (e.g., tensile strength, compressive strength, Poisson’s Ratio and Young’s Modulus). 

The PFC3D manual does make note that laboratory samples testing in this numerical environment 

are good at replicating UCS strengths or UTS strengths but not both simultaneously. Because 

PLACEBO uses laboratory parameters as the fundamental model inputs, each zone will always 

produce a valid combination of all material parameters. 

Material parameter inputs are well defined probabilistically - From the initial UDF work 

completed in Chapter 2, most key inputs are definable probabilistically and universally. There is no 

need to trial various material parameter PDFs as they are well defined at the discretised scale. 

Material correlation is accounted for - PLACEBO correctly applies all conditional probabilities to 

all relevant material parameters to ensure correct material parameter relationships are accounted for 

during each simulation. Shear strength parameters are often modelled with implicit negative 

correlation coefficients (Zengchao, Yangsheng & Dong 2009) (Zhang, Zhu, Zhang & Ding 2011) to 

better reflect measurable correlations in shear strength parameters. In these studies, only the frictional 

and cohesion components are modelled as correlated random variables with all other material 

parameters remaining uncorrelated. As many other material parameters in Chapter Two were shown 

to be correlated, all of these correlated influences are required for accurate heterogeneous analysis. 

The importance of including correlation coefficient is discussed later in this Chapter. 

Model discretisation is orders of magnitude greater than PFC3D - Although it can be argued that 

PFC3D doesn’t restrict the size of individual particles, PFC3D typically models small scale problems 

(i.e., grain-sized problems), which are heavily limited by runtimes. PLACEBO operates using 

mesoscopic zones, which means modelling practical problem sizes is more computationally efficient. 

Material parameter non-linearity is explicitly accounted for at the discretisation scale- Although 

some degree of explicit progressive failure can be incorporated into PFC3D using the flat joint contact 

model, this progressive failure and associated non-linearity is typically an emergent property in 

PFC3D analysis. PLACEBO does model this emergent non-linearity but can also utilise an initially 

implemented nonlinearity for tensile, cohesive, frictional and dilatational influences. 
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3.1.1 PLACEBO limitations 

Although care was taken to most accurately represent reality, there are a number of known limitations 

with the current implementation of PLACEBO. The following detail the known limitations associated 

with the use of PLACEBO. Justifications for these known assumptions and limitations are detailed 

below: 

RVEs are rectangular and not cylindrical. One RVE is based on a NQ uniaxial UCS sample, which 

are cylindrical in shape. To implement a routine tessellating approximation, square rectangular prism 

zones are used. 

Uniaxial Tensile Strength is associated with one RVE – UTS for intact rock are typically inferred 

from Brazilian Tensile Strength tests (ISRM 1978). The sample geometry, although similar to a UCS 

tests in terms of characteristic dimension (the sample diameter), it is noticeably different in term of 

volume. The assumption that one RVE is associated with both the UTS and UCS was made as partial 

discretization of material parameters was not possible to implement without violating the associated 

correlations. 

Micro mechanics are ignored in favour for a continuum – The intergranular fracture process 

observed in practice and analysis using software such as PFC3D is acknowledged to occur. These 

processes were considered too small and poorly quantifiable to be directly considered in PLACEBO. 

A statistically equivalent continuum based on the measurable statistical behaviours of material at one 

RVE was used as a well-defined substitution. This means that features smaller than one RVE were 

deemed too small to influence the overall behaviour and cannot be measured. A comparison of failure 

observed across different testing methods is shown in Figure 28. 

 

Figure 28 Failure observed in real test samples, PFC3D and PLACEBO 
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Fracture mechanics interactions are accounted for but are limited – It is known that stress 

concentrations about crack tips play an important role in tensile failure propagation in brittle materials 

(Griffith 1921). The stress concentrations may be underestimated numerically, as the model 

discretization used will result in blunt numerical cracks after yielding. To explore the influence of 

blunt cracks two aspects were checked: 

• If FLAC3D strain softening tensile failure honour stress fields about cracks (Mode I). 

• If blunt cracks (limited by PLACEBO discretisation) honour stress fields sufficiently for proper 

fracture mechanic responses (Mode I). 

To test for the failure mode response, the tensile stresses (i.e., Mode I Fracture) about three different 

numerical cracks in a semi-infinite (open vertically with finite bounds laterally) were considered. 

This crack configuration does not have an analytical solution for stress intensities so the stress field 

about a two dimensional plane-strain line crack was considered as the replication standard. Numerical 

models were constructed in FLAC3D using an open (i.e., zones are set as Null) and strain softened 

crack (all other zones less the crack are elastic). Zone volumes were 1𝑐𝑚3 with the numerical sample 

being 1m wide in both the 𝑥 and 𝑦 directions. A uniaxial tensile stress of 5 MPa was then applied to 

the open end. The stress fields for various zone types are shown in Figure 29. 

 

Figure 29 Comparisons of stresses about a crack tip using various numerical methods 
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It can be seen in Figure 29 that field stresses about open or strain-softened cracks in FLAC3D are 

sufficiently accurate to say that the stress field response can accommodate a fracture mechanics 

response. To test the influence of a blunt crack, a single zone was modelled and compared to the two 

dimensional line crack. The fields about these crack geometries are shown in Figure 30. 

 

Figure 30 Comparisons of stresses about two dimensional line and a two dimensional ‘blunt’ crack 

By considering Figure 30 it can be seen that the blunt cracks are poor at replicating the expected stress 

field. While the implemented procedure in PLACEBO does allow cracks to form and coalesce, there 

is some doubt concerning the accuracy with respect to a completely realistic fracture propagation 

response near a crack tip. These results indicate that PLACEBO will almost surely over-estimate the 

UTS of any sample due to lower than expected stress intensities at the crack tip surface. This problem 

could be reconciled in the future in three ways: 

• By using smaller zones - Zone sizes are set based on the leading understanding of material 

variability at a given scale and cannot change in volume without considerable doubts concerning 

model accuracy. The tensile stress partial discretisation (mentioned previously) may alleviate 

some of the errors associated with this issue, but as previously mentioned is very difficult to 

correctly implement. 

• By changing zone aspect ratios - The aspect ratio for each zone is that of a single UCS sample 

and is done in case some geometric influence is present. This initial zone aspect ratio influence is 

demonstrated later in this Chapter. 

• Checking for any tensile failure and assuming instantaneous crack propagation - This approach 

may fix the issues with zone sizes/ aspect ratios, but may also under estimate the true UTS. This 

is because any crack that forms, the stress intensity factor may not exceed the Mode I fracture 
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toughness and hence will not fail instantaneously. The best approximation for UTS estimation 

would be obtained using fracture mechanic specific software (Nakamura, Gu, Tajima & Hazama 

2015) to estimate scale dependent tensile failure. The issue is then that fracture toughness needs 

to be defined probabilistically, which is seldom studied for rock engineering problems. A pinching 

method would give upper and lower bounds, but this also does not give much guidance for 

practical problem inputs. 

Material is linear over varying confinement. The UDF analysis from Chapter Two presented a 

probabilistic model for a Mohr Coulomb criterion over varying confinement. Although this is a 

reasonable assumption for geotechnical problems, studies (Hoek & Brown 1980) have shown that 

materials do exhibit nonlinear strengths over varying confinements. The reason for using the Mohr 

Coulomb criterion is that the UDF behaviours for nonlinear relationships like the Hoek Brown 

criterion (Hoek & Brown 1980) are currently undefined in terms of UDFs. PLACEBO is general 

enough that any conceivable failure criterion can be implemented once a probabilistic description is 

available.  

Only intact responses are considered - UDFs are currently only applicable at describing intact rock 

behaviour and currently are not applicable at describing rock structure. Due to this limited 

information, only intact behaviours can be assessed using PLACEBO currently. 

3.1.2 PLACEBO assumptions 

As mentioned in Chapter Two, many material parameters are currently unquantified using UDFs. In 

their absence, the following behaviours were assumed due to a current incomplete probabilistic 

understanding:  

Tensile Strength correlation coefficients are similar to compressive strength correlation 

coefficients. Destructive tests are used to quantify intact strength (UTS and UCS), meaning 

correlation coefficients cannot be measured for destructive test pairs. This assumption is reasonable 

and produces higher UTS for RVEs of higher UCS. This assumption also aligns with the published 

findings of Nazir, Momeni, Armaghani and Amin (2013) and others (See Nazir et al 2013). 

Each RVE has identical peak and residual friction angles and no softening. From Chapter Two 

it was shown that there is generally no statistical difference between the mean peak and mean residual 

friction angles for rock. The assumption of unchanging friction is reasonable based on these previous 

findings and does not require a softening or hardening friction response to be specified at one RVE. 
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Cohesion softens to some specified percentage of peak zone cohesion. As the UDF of cohesion is 

implicitly defined, residual values of cohesion should also follow the same UDF. A perfectly 

correlated ratio reduction was used to apply similar implicit distribution for residual cohesion. This 

means that each RVE retains some percentage of its peak cohesion after some specified plastic shear 

strain. The cohesion softening table was assumed linear to some specified plastic shear strain, with a 

zone dependant softening rate based on each zone’s peak cohesion. This implementation produces a 

similar implicit distribution for the rate of softening (i.e., the distribution of the cohesion softening 

table) as that of cohesion. The critical shear strain is set at a default 0.000001 to simulate brittle 

failure. This softening response can be arbitrarily specified as required. 

Tensile strength soften to zero. This is a typical brittle material assumption and is stated for 

completeness. The critical tensile strain is set at a default 0.000001 to simulate instantaneous crack 

propagation within a single zone. This softening response can be arbitrarily specified as required. 

Dilation per zone Deterministic. This assumption was made due limited information for rock 

dilation. This value can be arbitrarily set as required. 

End plate influences are implicitly incorporated. The influences of loading plattens is frequently 

assessed as a sensitivity in numerical modelling (Liu 2004) (Sainsbury, Pierce & Mas Ivars 2008). 

End plate influences were implicitly defined in the UCS seed in this analysis to limit the number of 

definable unknowns. This means that a single RVE model always produces statistically 

indistinguishable results from real world tests that is, it correctly accounts for unknown end effects at 

laboratory scales without explicitly defining the influence. It is possible that this method results in 

end effects being present in each RVE, which may distort results to some unknown level. It is a 

considerably difficult task to quantify real world end effects and then separate them from intrinsic 

material parameters based on current understandings. 
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3.1.3 PLACEBO measurement routines 

In order to measure all material parameters for each sample, a wide range of numerical laboratory are 

conducted on each numerical sample: 

Density 

Density is measured after each sample is randomly generated. The density of an 𝑛 RVE sample is 

calculated using: 

 𝜌𝑛 = 
1

𝑛 𝑉0
∑𝜌𝑖𝑉0

𝑛

𝑖=1

 Equation 73 

where 𝜌𝑛 is the material density (kg/m³) of 𝑛 RVEs, 𝑉0 is the volume of the RVE (m³). 

Elastic parameters 

Strain measurements are required when considering elastic and plastic responses of each sample. For 

each sample, two distinctively different elastic measurements are measured: 

• the elastic components obtained from elastic simulations; and 

• the equivalent elastic components (named the secant values) obtained from plastic analysis. The 

secant measurement is the value of Young’s Modulus and Poisson’s Ratio at the point of sample 

failure. 

The reason for including both measurements is that models larger than 1 RVE begin to yield before 

the peak strength is attained, which influences the equivalent elastic response (i.e., the scale effect on 

elastic parameters). In order to measure the elastic components, the average face displacements and 

strains in the 𝑥, 𝑦 and 𝑧 directions are used. This averaging is used to align with how elastic 

components (mainly the vertical direction) are calculated for laboratory samples. From Elasticity 

theory. The stain-stress relationship is governed by: 

 𝜖 =
𝜎

𝐸
 Equation 74 
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where 𝜎 is the acting stress (Pa), 𝐸 is Young’s Modulus (Pa) and 𝜖 is the strain in the direction of 

loading. For each simulation in PLACEBO, 𝜖 is measured using the standard definition of strain: 

 𝜖 =  
∆𝐿

𝐿
 Equation 75 

where 𝐿 is the initial side length (m); and ∆𝐿 is the change in side length when exposed to some stress 

(m). The average displacement 𝛿 (m) of each surface on the sample is calculated by using: 

 𝛿𝑡𝑜𝑝 = 
1

𝑛
∑𝛿𝑖

𝑛

𝑖=1

 Equation 76 

where 𝑛 is the number of grid points on the measured face. ∆𝐿 in Equation 75 is then calculated by: 

 ∆𝐿 = 𝛿𝑡𝑜𝑝 − 𝛿𝑏𝑜𝑡𝑡𝑜𝑚 Equation 77 

The Young’s modulus is only calculated for the Z direction. Poisson’s Ratio is calculated using the 

standard definition: 

 𝑣 =  −
𝜖𝑥
𝜖𝑧
= −

𝜖𝑦

𝜖𝑧
 Equation 78 

where 𝑣 is Poisson’s Ratio and 𝜖𝑖 is the strain in the direction 𝑖. As the sample is three dimensional 

(and by chance partially anisotropic) both 𝑥 and 𝑦 values of Poisson’s Ratio are measured along with 

the average of both measurements. 

Stresses 

One routine is used to tack both the peak and residual strength for each test the stress is calculated 

by: 

 𝜎 =
∑ 𝐹𝑖
𝑛
𝑖=1

𝐴𝑟𝑒𝑎
 Equation 79 
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where 𝜎 is the active stress (Pa) and 𝐹𝑖 is the force acting on grid point 𝑖 (N). The force is calculated 

from the unbalanced force on one of the loading platters and divided by the sample area. Tensile 

stresses and compressive stresses are tracked in ‘real time’ for the entire duration of each test. The 

maximum value of stress observed through the entire test is deemed the peak strength for each sample. 

The residual compressive strength is taken as the value of the tracked stress at some point far past the 

peak strength is achieved. This is manually set as a function of the test volume to minimise how long 

the numerical routine takes to run for a given sample size. Typically 250,000 to 300,000 model cycles 

past the peak stress measurement was chosen as the residual strength. 

Strength parameters 

In terms of numerical modelling strength parameters, the peak or residual compressive or triaxial 

strengths are not definable model inputs. These measured strengths need to be converted to material 

parameters. UCS in a Mohr Coulomb model is defined using a value of cohesion 𝑐 and a friction 

angle 𝜙. The value for 𝑐 in terms of the UCS and friction is previously presented in Equation 55. 

From the FLAC3D manual, the Mohr Coulomb equation for shear failure 𝑓𝑠 implemented is given 

by: 

 𝑓𝑠 = 𝜎1 − 𝜎3 (
1 + sin𝜙

1 − sin𝜙
) + 2𝑐√

1 + sin𝜙

1 − sin𝜙
 Equation 80 

where 𝜎1 is the Major stress (Pa) and 𝜎3 is the Minor stress (Pa) (for triaxial cases this is the confining 

stress). Failure is assumed to occur when 𝑓𝑠 >0 with the limit state given when 𝑓𝑠 = 0. Using this 

limit state for two different triaxial stress states, 𝜙 can be calculated using: 

 𝜙 =  sin−1 (
𝜎11 − 𝜎12 − 𝜎31 + 𝜎32
𝜎31 − 𝜎32 + 𝜎11 − 𝜎12

) Equation 81 

When the value for 𝜙 (°)is determined, Equation 55 can then be evaluated to determine the value of 

cohesion. This process is applicable for both the peak and residual as previously mentioned. In an 

ideal world, the perfect Mohr Coulomb criterion is quantifiable using only two measurements to 

calculate both friction and cohesion from a single simulation. From initial testing, it was determined 

that due to small incurrences of numerical rounding errors, a pair of triaxial measurements produces 
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slightly different values for friction and cohesion for an idealised model. To compensate for this four 

strength tests (one uniaxial and three triaxial) are simulated for each sample, with a line of best fit 

being used to generate the variable inputs for Equation 81. The confining stresses for each numerical 

sample are calculated as a function of the material inputs, and correspond to 5%, 10% and 15% of the 

median UCS. The linear regression model implemented is given in the form: 

 𝜎1̂ = �̂�𝜎3 + 𝜎0̂ Equation 82 

where �̂� = (
1+sin𝜙

1−sin𝜙
) and �̂�0 = 2𝑐√

1+sin𝜙

1−sin𝜙
 . The linear regression equations are given as: 

 �̂� =  
(∑𝜎1)(∑𝜎3

2) − (∑𝜎3)(∑𝜎3𝜎1)

𝑛(∑𝜎32) − (∑𝜎3)2
 Equation 83 

 𝜎0̂ =
𝑛(∑𝜎3𝜎1) − (∑𝜎3)(∑𝜎1)

𝑛(∑𝜎32) − (∑𝜎3)2
 Equation 84 

where 𝜎1 is the peak or residual strength (Pa) and 𝜎3 is the applied confining stress (Pa). To validate 

the accuracy of this approach numerous combinations of hardening and softening models were 

simulated to determine the accuracy of the above calculation routines. Table 35 shows the accuracy 

validation of this regression technique to quantify various combinations of input and residual friction 

values for validation of the above equations. 

Table 35 Mohr Coulomb calculation accuracy check 

Input values PLACEBO output 

Peak 

values 

Residual 

values 

Peak 

friction 

Peak 

cohesion 

Residual 

friction 

Residual 

cohesion 

35° 

4 MPa 

35° 

0.00 MPa 

34.98  

(0.06%) 

4.02 

(0.50%) 

35.02 

(0.07%) 

0.00 

(0.00%)* 

20° 

2 MPa 

20° 

0.00 MPa 

20.11 

(0.55%) 

2.01 

(0.50%) 

20.12 

(0.58%) 

0.00 

(0.00%)* 

40° 30° 39.97 6.00 30.00 1.00 
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6 MPa 1.00 MPa (0.08%) (0.00%) (0.00%) (0.00%) 

25° 

9 MPa 

35° 

2.50 MPa 

25.03 

(0.12%) 

9.00 

(0.00%) 

35.01 

(0.02%) 

2.50 

(0.00%) 

45° 

5 MPa 

10° 

5.00 MPa 

44.88 

(0.27%) 

5.03 

(0.60%) 

10.00 

(0.02%) 

5.00 

(0.00%) 

45° 

5 MPa 

45° 

5.00 MPa 

45.01 

(0.02%) 

5.02 

(0.40%) 

45.00 

(0.00%) 

5.00 

(0.00%) 

*these residual values, despite being zero are perfectly replicated within PLACEBO. Ideally, these 

should have an undefined accuracy but it can be taken that the error is zero in these cases. The 

numerical accuracy for calculating both peak and residual under strain softening / hardening and 

perfectly plastic are correctly accounted for and replicated with typically less than 0.5% error in 

accuracy. 

As previously mentioned, PLACEBO operates using a strain softening/hardening Mohr Coulomb 

model with non-associated shear and associated tension flow rules. In order to quantify the softening 

response, the plastic components of strain need to be quantified. Using the standard definitions, the 

total stain 𝜖𝑇𝑜𝑡𝑎𝑙 can be decomposed into the elastic 𝜖𝐸𝑙𝑎𝑠𝑡𝑖𝑐, and plastic 𝜖𝑃𝑙𝑎𝑠𝑡𝑖𝑐 components: 

 𝜖𝑇𝑜𝑡𝑎𝑙 = 𝜖𝐸𝑙𝑎𝑠𝑡𝑖𝑐 + 𝜖𝑃𝑙𝑎𝑠𝑡𝑖𝑐 Equation 85 

The value of 𝜖𝑇𝑜𝑡𝑎𝑙  is the only quantity that can be directly measured for large heterogeneous 

samples. This becomes problematic as the problem cannot be broken down into the key components 

as for any multiple zone model as the equivalent elastic components are unknown. The solution to 

this is that each sample is simulated twice, once to calculate 𝜖𝐸𝑙𝑎𝑠𝑡𝑖𝑐 at failure, then a second 

simulation to track the plastic components by: 

 𝜖𝐹𝑎𝑖𝑙𝑢𝑟𝑒
𝑇𝑜𝑡𝑎𝑙 − 𝜖𝐹𝑎𝑖𝑙𝑢𝑟𝑒

𝐸𝑙𝑎𝑠𝑡𝑖𝑐  = 𝜖𝑃𝑙𝑎𝑠𝑡𝑖𝑐 Equation 86 

Tensile plastic strain according to the FLAC3D manual implements the following associated plastic 

flow rule: 
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 ∆𝜖3
𝑃𝑡 = 

𝜎3
𝐼 − 𝜎𝑡

𝐾 +
4
3𝐺

 Equation 87 

 ∆𝜖3
𝑃𝑡 = 

(1 − 2𝑣)(1 + 𝑣)(𝜎3
𝐼 − 𝜎𝑡)

𝐸(1 − 𝑣)
=  
(𝜎3

𝐼 − 𝜎𝑡)

𝑀
 Equation 88 

where 𝜎3
𝐼 is the new trial stress at the next time step (Pa), 𝜎𝑡 is the peak tensile stress (Pa) and 𝑀 is 

the P-wave modulus (Pa). From Equation 88 it can be seen that when a trial tensile stress is applied, 

the difference between the stress and the peak is calculated as a linear strain and added to the plastic 

strain increment. This is an identical formulation to calculating the plastic component in isolated 

tension. By considering that the plastic flow rule for tension is associative, this would have been 

expected. 

In order to validate the measurement routine accuracy for Equation 88, a single zoned UTS test was 

modelled with various tensile softening tables assigned to compare the numerical accuracy of the 

plastic strain routine. The results of these simulations are shown in Table 36. 

Table 36 Errors in plastic measurements - tensile strain 

Assigned critical softening PLACEBO measurement Error (%) 

5.0 × 10−2 5.0 × 10−2 0.00% 

1.0 × 10−2 9.9 × 10−3 1.00% 

1.0 × 10−3 8.4 × 10−4 16.00% 

1.0 × 10−4 2.6 × 10−6 97.40% 

1.0 × 10−5 1.0 × 10−6 90.00% 

1.0 × 10−6 3.7 × 10−6 270.00% 

From Table 36 it can be seen that for large values of plastic strains there is minimal errors associated 

with the measurement routine. When the critical tensile strain becomes small, there are substantial 

errors. This unreasonably high error for the measured plastic tensile strain means that analysis cannot 

accurately estimate the equivalent plastic tensile strain. For this reason plastic tensile strain 

considerations as a function of scale cannot be considered in any meaningful detail currently. 
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Plastic shear strain utilises a non-associated flow rule, which means that the direction of plastic flow 

doesn’t have to be in the direction of applied loads (for example, in a compressive test, loads are 

applied vertically but the failure may have plastic strains in a direction that make some angle to the 

applied load). From the FLAC3D manual, the plastic shear strain increment used for softening 

responses is a measure of the second invariant of the plastic shear-strain increment tensor given as: 

 𝑘𝑠 =
1

√2
√(𝜖1

𝑝𝑠 − 𝜖𝑚
𝑝𝑠)

2
+ (𝜖𝑚

𝑝𝑠)
2
+ (𝜖3

𝑝𝑠 − 𝜖𝑚
𝑝𝑠)

2
 Equation 89 

where 𝜖1
𝑝𝑠

 is the major plastic shear strain component, 𝜖3
𝑝𝑠

 is the minor plastic shear strain component 

and 𝜖𝑚
𝑝𝑠

 is the volumetric plastic shear strain. 𝜖𝑚
𝑝𝑠

 is defined as: 

 𝜖𝑚
𝑝𝑠
=
1

3
(𝜖1

𝑝𝑠
+ 𝜖3

𝑝𝑠
) Equation 90 

This formulation is difficult to generalise with very little supporting documentation to how it is 

executed. The Von Mises criterion offers a more applicable definition, with the plastic shear strain 

component given by: 

 𝑘𝑠 ≈
√2

3
√(𝜖𝑥𝑥

𝑝 − 𝜖𝑦𝑦
𝑝 )

2
+ (𝜖𝑦𝑦

𝑝 − 𝜖𝑧𝑧
𝑝 )

2
+ (𝜖𝑧𝑧

𝑝 − 𝜖𝑥𝑥
𝑝 )

2
 Equation 91 

where 𝜖∙
𝑝is the plastic strain component associated with the global coordinate directions. The 

numerical implementation of Equation 91 was checked for its numerical accuracy, with the results 

shown in Table 37. 
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Table 37 Errors in plastic measurements - shear strain 

Assigned critical softening PLACEBO measurement Error (%) 

5.0 × 10−2 4.9 × 10−2 2% 

1.0 × 10−2 9.6 × 10−3 4% 

1.0 × 10−3 1.3 × 10−3 30% 

1.0 × 10−4 4.8 × 10−4 380% 

1.0 × 10−5 7.6 × 10−4 7500% 

1.0 × 10−6 5.4 × 10−4 53900% 

From Table 37 is can be seen that for large values of critical plastic strains (e.g., 5%) there are 

acceptable errors associated with the measurement routine. When the strain becomes small, there are 

substantial errors. Due to these errors, it is currently unfeasible to use PLACEBO to quantify shear 

strain responses. It is suspected that the main reason for this inaccuracy of both the plastic tensile and 

shear measurement routines are rounding errors incurred from successive calculations. As the strain 

values in question are very small, they are easily influenced by rounding errors. Better measurement 

techniques are required to bypass this issue in future iterations of PLACEBO. 

Dilation is calculated using plastic strain components. The most usable definition utilises the 

equations presented in the Odometer test within the FLAC3D manual. From Equation (1.103) in the 

manual, the plastic strains are related to dilation such that (Note: rearranged such that loading is 

aligned with the Z axis): 

 𝜖𝑥𝑥
𝑝 = −𝜔𝑁𝜓 Equation 92 

 𝜖𝑦𝑦
𝑝 = −𝜔𝑁𝜓 Equation 93 

 𝜖𝑧𝑧
𝑝 = −2𝜔 Equation 94 

Note that 𝜔 is a function that relates to the material’s stiffness and strength. From simple rearranging 

of Equation 94 and substituting into Equation 92: 
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2𝜖𝑥𝑥

𝑝

𝜖𝑧𝑧
𝑝 = 𝑁𝜓 Equation 95 

From the FLAC3D manual, the dilation function is given as: 

 𝑁𝜓 = 
1 + sin(𝜓)

1 − sin (𝜓)
 Equation 96 

Using this substituting Equation 96 into Equation 95 and solving for 𝜓: 

 𝜓 = sin−1 (
2𝜖𝑥𝑥

𝑝 − 𝜖𝑧𝑧
𝑝

𝜖𝑧𝑧
𝑝 + 2𝜖𝑥𝑥

𝑝 ) Equation 97 

The numerical accuracy of Equation 97 was checked against single zoned models with an initially 

seeded known value for dilation and a randomly seeded value of Poisson’s ratio and Young’s 

Modulus to ensure the plastic measurements were correctly measured. The results of the dilation 

routine are shown in Table 38. 

Table 38 Error in dilation angle measurements 

Assigned dilation angle PLACEBO measurement Error (%) 

50° 50.67° 1.34% 

40° 41.32° 3.30% 

30° 32.46° 8.20% 

20° 21.08° 5.40% 

10° 9.25° 7.50% 

0° 0.78° N/A 

Even though PLACEBO was unable to replicate the plastic strain rates, it was reasonable at estimating 

and measuring sample dilation using Equation 97, as the measured value was typically within one 

degree of the actual dilation. When considering larger samples, the measurement routine for dilation 

in PLACEBO did occasionally produce negative dilation angles, which had questionable physical 
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representations. These negative values raised enough doubt that dilation was not sufficiently 

measured within PLACEBO simulations. For this reason, dilation was not included in further 

analysis.  

3.1.4 PLACEBO extension - path dependant Probability of Failure 

As the heart of PLACEBO is essentially a sophisticated random number generator, it does have 

applications to more general problems. PLACEBO can be used to numerically evaluate the POF 

integral on a zone by zone basis for any problem geometry. While FLAC3D has been previously used 

for POF analysis considering heterogeneity, the POF integral in these applications is calculated 

outside of FLAC3D using the output of the FOS solver (Shen 2012) or using an assumed POF model 

(Chiwaye 2010). This direct implementation within FLAC3D gives the ability to consider the POF 

for all possible progressive failures, includes considerations for material parameter heterogeneity. 

The application of this POF calculation can be done using the following loop: 

• Define a model geometry and material parameter inputs. 

• Simulate model for some number of steps. 

• Search for ‘failure’ based on some criteria; for example, plastic strain, displacement, etc. 

• Reseed model and simulate. 

• Calculate the POF for each zone based on the outputs of all simulations. 

An example model computed with this zone dependent POF approach is shown in Figure 31. 

 

Figure 31 Example path dependent Probability of Failure considering heterogeneity 
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In the example shown in Figure 31 the POF for the lower bench is roughly 35%, while the POF for 

both benches is 15%. In terms of practical applications of this POF approach, there are currently some 

limitations: 

Mesh dependencies need to be considered - The material behaviour is tied to a specific zone 

volume, which need to be corrected in terms of both scaling laws and variability based on the 

generated problem mesh. While this influence is ignored in Figure 31, it needs to be included to 

produce realistic failure probabilities and paths. Using a uniformly zoned model does eliminate this 

mesh dependency, but based on the current volume in which UDFs are quantified would result in 

models with unreasonably long simulation times, even for single bench models. It is noted that 

including this mesh dependency is trivial in PLACEBO. 

Simulation times are unreasonably long - As a rough estimate, a mine scale numerical model may 

take 6 hours or more to simulate the excavation of several pit cutbacks. In order to calculate the POF, 

the problem would need to be simulated 500 - 1000 times to gain an appreciable probabilistic 

response. This would produce a run time of several months, which would not be a practical numerical 

assessment tool. For practical applications, this limits the complexity of problems that can be solved 

currently. 

3.2 Numerical analysis at scale using PLACEBO 

In order to test for and approximate general material parameter scale behaviours, representative 

material characteristics over a wide range of conditions and inputs were considered. Five separate 

synthetic ‘lithologies’ were generated to simulate a wide range of commonly encountered geological 

conditions, with each lithology being loosely based on actual test results from Chapter Two. 

Statistical parameters for each synthetic lithology were randomly selected from the statistical viable 

range in Table 23 in order to better reflect all viable probabilistic conditions. The median value 𝑀 

and associated probabilistic parameters, for each synthetic lithology is shown in Table 39. 
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Table 39 Synthetic lithology peak and elastic material parameter inputs 

Lithology UTS (MPa) UCS (MPa) Poisson’s Ratio Young’s Modulus (GPa) Friction (°) 
Sample height to 

width ratio 

Dry density 

(t/m3) 

UDF Rayleigh Rayleigh Triangular Weibull Normal Constant Laplace 

Lithology one 

(L1) 
𝑀 = 2.010 𝑀 = 13.500 

𝑎 = 0.018 

𝑏 = 0.066 

𝑐 = 0.022 

𝑀 = 11.700 

𝑘 =1.437 

𝑀 = 39.000 

𝜎 = 4.538 
2.63 

𝑀 = 2.370 

𝜎 = 0.050 

Lithology two 

(L2) 
𝑀 = 2.850 𝑀 = 36.100 

𝑎 = 0.013 

𝑏 = 0.303 

𝑐 = 0.045 

𝑀 = 20.530 

𝑘 =1.856 

𝑀 = 26.100 

𝜎 = 3.217 
2.52 

𝑀 = 2.510 

𝜎 = 0.053 

Lithology three 

(L3) 
𝑀 = 8.500 𝑀 = 95.900 

𝑎 = 0.200 

𝑏 = 0.335 

𝑐 = 0.279 

𝑀 = 68.150 

𝑘 =1.480 

𝑀 = 36.000 

𝜎 = 1.263 
2.84 

𝑀 = 2.670 

𝜎 = 0.026 

Lithology four 

(L4) 
𝑀 = 12.300 𝑀 = 116.300 

𝑎 = 0.180 

𝑏 = 0.350 

𝑐 = 0.279 

𝑀 = 66.800 

𝑘 =1.605 

𝑀 = 37.000 

𝜎 = 1.844 
2.57 

𝑀 = 2.750 

𝜎 = 0.052 

Lithology five 

(L5) 
𝑀 = 14.400 𝑀 = 149.000 

𝑎 = 0.189 

𝑏 = 0.363 

𝑐 = 0.238 

𝑀 = 87.450 

𝑘 =1.921 

𝑀 = 32.00 

𝜎 = 1.788 
2.71 

𝑀 = 2.830 

𝜎 = 0.042 
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Note that in Table 39, UCS is not a material parameter. This value is provided as it is used in 

conjunction with the friction angle to implicitly calculate the UDF for cohesion. Correlation 

coefficients were also required for each variable pair to correctly account for conditional material 

parameter probabilities. The correlation coefficient matrix for each synthetic lithology is shown 

below. 

    𝑅(𝑥) =

[
 
 
 
 
 
 
 
𝑟𝜌
2 𝑟𝜌,𝜎𝑡 𝑟𝜌,𝜎𝑐 𝑟𝜌,𝐸 𝑟𝜌,𝑣 𝑟𝜌,𝜙

𝑟𝜌,𝜎𝑡 𝑟𝜎𝑡
2 𝑟𝜎𝑡,𝜎𝑐 𝑟𝜎𝑡,𝐸 𝑟𝜎𝑡,𝑣 𝑟𝜎𝑡,𝜙

𝑟𝜌,𝜎𝑐 𝑟𝜎𝑡,𝜎𝑐 𝑟𝜎𝑐
2 𝑟𝜎𝑐,𝐸 𝑟𝜎𝑐,𝑣 𝑟𝜎𝑐,𝜙

𝑟𝜌,𝐸 𝑟𝜎𝑡,𝐸 𝑟𝜎𝑐,𝐸 𝑟𝐸
2 𝑟𝐸,𝑣 𝑟𝐸,𝜙

𝑟𝜌,𝑣 𝑟𝜎𝑡,𝑣 𝑟𝜎𝑐,𝑣 𝑟𝐸,𝑣 𝑟𝑣
2 𝑟𝑣,𝜙

𝑟𝜌,𝜙 𝑟𝜎𝑡,𝜙 𝑟𝜎𝑐,𝜙 𝑟𝐸,𝜙 𝑟𝑣,𝜙 𝑟𝜙
2
]
 
 
 
 
 
 
 

 Equation 98 

 𝑅(𝐿1) =

[
 
 
 
 
 
1.000 0.498 0.429 0.341 0.000 0.000
0.498 1.000 0.516 0.650 0.000 0.000
0.429 0.516 1.000 0.649 0.000 0.000
0.341 0.650 0.649 1.000 −0.028 0.000
0.000 0.000 0.000 −0.028 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000]

 
 
 
 
 

 Equation 99 

 𝑅(𝐿2) =

[
 
 
 
 
 
1.000 0.463 0.387 0.462 0.000 0.000
0.463 1.000 0.523 0.840 0.000 0.000
0.387 0.523 1.000 0.621 0.000 0.000
0.462 0.840 0.621 1.000 −0.077 0.000
0.000 0.000 0.000 −0.077 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000]

 
 
 
 
 

 Equation 100 

 𝑅(𝐿3) =

[
 
 
 
 
 
1.000 0.433 0.467 0.361 0.000 0.000
0.433 1.000 0.725 0.718 0.000 0.000
0.467 0.725 1.000 0.734 0.000 0.000
0.361 0.718 0.734 1.000 −0.042 0.000
0.000 0.000 0.000 −0.042 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000]

 
 
 
 
 

 Equation 101 

 𝑅(𝐿4) =

[
 
 
 
 
 
1.000 0.407 0.432 0.424 0.000 0.000
0.407 1.000 0.615 0.573 0.000 0.000
0.432 0.615 1.000 0.673 0.000 0.000
0.424 0.573 0.673 1.000 −0.026 0.000
0.000 0.000 0.000 −0.026 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000]

 
 
 
 
 

 Equation 102 
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 𝑅(𝐿5) =

[
 
 
 
 
 
1.000 0.503 0.433 0.325 0.000 0.000
0.503 1.000 0.680 0.595 0.000 0.000
0.433 0.680 1.000 0.662 0.000 0.000
0.325 0.595 0.662 1.000 −0.052 0.000
0.000 0.000 0.000 −0.052 1.000 0.000
0.000 0.000 0.000 0.000 0.000 1.000]

 
 
 
 
 

 Equation 103 

Based on these inputs and the testing methodology presented in Chapter One, the following results 

were obtained. For consistency and to allow for comparative analysis over multiple lithologies, results 

were typically expressed in terms of percentages of the median input value (the value of 𝑀 shown in 

Table 39). The presentation of scale sizes was chosen as multiples of one RVE to reduce the 

exaggeration of a volume based x-axis. These scale measurements are converted to a volume by 

multiplying the RVE volume by the third power of the sample size. 

3.2.1 Dry density at scale 

Dry density was not influenced by interacting complexities like other material parameters. A closed 

form approximation of the general behaviour of dry density at scale was derived algebraically. The 

density of an 𝑛 RVE sample volume is given by: 

 𝜌𝑛 = 
1

𝑛 𝑉0
∑𝜌𝑖𝑉0

𝑛

𝑖=1

= 𝜇𝜌0 Equation 104 

where 𝜌𝑛 is the material density of 𝑛 RVEs (kg/m³), 𝑉0 is the volume of the RVE (m³) and 𝜇𝜌0 is the 

mean density of the RVE (kg/m³). As the dry density UDF has an unchanging mean value, the scale 

parameter 𝜎∙ will vary with the sample volume in accordance with the central limit theorem. The scale 

parameter as a function of the number or RVEs is then calculated by: 

 𝜎𝑛 = 
𝜎0

√𝑛
 Equation 105 

where 𝜎0 is a value between 2.62% and 5.54% of the median RVE density (t/m3). Converting 

Equation 105 to a function of the overall volume 𝑉 produces Equation 106: 
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 𝜎𝑉 = 
 𝜎0

√𝑉
√𝑉0 Equation 106 

When the upper and lower bounds given in Table 23 are included: 

 
0.0262 𝜇𝜌0√𝑉0

√𝑉
≲ 𝜎𝑉 ≲ 

0.0554 𝜇𝜌0√𝑉0

√𝑉
 Equation 107 

The arbitrary scale UDF for dry density 𝜌𝑉, in t/m3 is then given as: 

 𝑓(𝜌𝑉  | 𝑉, 𝜇𝜌0 , 𝜎0) ≈  
1

2𝜎𝑉
𝑒
− 
|𝜌𝑉−𝜇𝜌0|

𝜎𝑉  Equation 108 

Equation 108 is expected to be accurate for volumes greater than one RVE, but decrease significantly 

in accuracy for volumes that approach the material’s grain size. It is expected that the PDF near this 

volume will transition to a multi modal distribution, reflecting the mineral composition and density 

distributions rather than the rock. 

3.2.2 Deterministic strength at scale 

The change in the measured median UTS for each sample size and lithology are shown in Figure 32. 

 

Figure 32 Influences of scale on the median tensile strength of each synthetic lithology 
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The measured UTS can be seen to follow the ‘typical’ strength reduction found in literature, but 

appears to have a well-defined asymptotic strength beyond 5 times one RVE. There was also notable 

differences in the asymptotic strengths associated with each lithology, with asymptotes ranging 

between 50% and 40% of the median laboratory scale value. Mentioned previously, the UTS was 

expected to be significantly higher than what would be observed in real world direct tensile tests. The 

accumulated plastic tensile strains at failure within these numerical samples produced ‘non rock like’ 

tensile failure, with fracture patterns similar to tensile failure in high fracture toughness materials like 

steel or tungsten. Examples of these tensile failure patterns produced as part of this study are shown 

in Figure 33. 

 

Figure 33 Plastic tensile strain at peak tension 

In Figure 33, any zone that is not dark blue indicates tensile failure with a pattern analogous to 

fractures. The multiple parallel tensile ‘cracks’ were observed to form prior to peak stress. Isolated 

zones were also observed to fail in tension, forming ‘pits’ and not propagating. These fracture patterns 

imply a slow and stable fracture process unlike the instantaneous fracture propagation seen in rock or 

other brittle materials. Based on these findings, the median UTS strength at increased scales shown 

in Figure 32 provide an upper limit to the median UTS of intact rock as this is the highest achievable 

UTS with non-instantaneous fracture propagation. 

The change in the measured median UCS obtained by the simulations follow a similar trend to those 

observed from the tensile tests. The median UCS at various scales shown in Figure 34. 
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Figure 34 Influences of scale on the median Uniaxial Compressive Strength of each synthetic 

lithology 

Notable differences between the results shown in Figure 32 and Figure 34 are that the asymptotic 

range and magnitudes are less than the tensile strength range, with asymptotes ranging between 30% 

and 35%. The typical mode of failure for these numerical compressive samples were axial splitting, 

but shear style failures were occasionally observed. Comparing the observed scale response to 

published data showed a closer agreement with the scale behaviour of cubes of coal, summarised by 

Singh (1981) than for the ‘hard rock’ relationship calculated by Hoek (1980) (Equation 38). When 

the UCS was separated into friction and cohesion components of the Mohr Coulomb failure criterion, 

unexpected behaviours emerge. Consider Figure 35 showing the scale behaviour associated with the 

peak friction angle. 

 

Figure 35 Influence of scale on the median peak friction angle of each synthetic lithology 
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Figure 35 indicates a significantly lower median peak friction angle than the input value specified for 

one RVE. The peak friction angle appears to asymptote near 6 times one RVE, with asymptotes 

ranging from 90% to 77% of the specified median peak friction angle. The median residual friction 

angle at increased scale is shown in Figure 36. 

 

Figure 36 Influence of scale on the median residual friction angle of each synthetic lithology 

Figure 36 shows that the scale relationships for the median residual friction is very slight, if present 

at all. The median residual friction angle remained relatively consistent with the initial input value, 

but does appear to drop to a between 90% and 100% of the specified median value near 5 times one 

RVE. When comparing values of peak and residual friction it was evident that a distinct friction 

hardening response emerges, even at relatively small model sizes like 2 times one RVE. A friction 

hardening response is often used by numerical modellers (Barton, Pandey 2011) (Martin, 

Christiansson & Soderhall 2001) (Gao & Kang 2016), and has been shown to be representative of 

real world responses (Marton & Chandler 1994). The fact that this friction hardening response better 

reflects practical scale problems and was numerically reproduced without assumption suggests it is 

the correct response for rock at increased scales and can be attributed to material parameter 

heterogeneity. Another response observed in the friction tests that agrees with literature scale findings 

is that the residual friction component remained essentially unchanging with scale. Scale dependant 

shear strength model presented by Bandis, Lumsden and Barton (1981) for discontinuities suggest 

that the friction component is unaffected by scale. These findings also align with Antomon’s Second 

law of friction stating that friction is independent of area (Baumberger & Caroli 2006). 

The median peak and residual cohesion as a function of sample size are shown in Figure 37. 
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Figure 37 Influences of scale on the median peak and residual cohesion of each synthetic lithology 

The intact behaviour of the median peak cohesion was seen to follow the typical scale behaviour for 

rock. The asymptotes for cohesion are slightly higher than for the overall compressive strength, due 

to the measured reduction in peak friction shown previously in Figure 35. The emergence of a non 

zero residual cohesion term became increasingly prominent at large scales and appears to asymptote 

near 7 times one RVE. Residual cohesion values differed greatly between lithologies, with the median 

value being less than 10% of the peak cohesion for all lithologies. The validity of these results can be 

substantiated using the following arguments: 

As the value of cohesion was calculated using multiple triaxial tests results in combination with UCS 

test results, the residual cohesion component can be envisioned as an ‘apparent cohesion’ caused by 

shear stresses acting on the newly formed failure surface. This interpretation would have a roughness 

shear strength component acting with a frictional component, like in Barton’s Shear strength model 

(Bandis, Lumsden & Barton 1981) producing this ‘apparent cohesion’. If the numerical modelling 

methodology was able to account for a continually degrading shear surface, a cohesionless planar 

failure surface could be produced from continual loading. This limitation is a numerical side effect 

caused by a fixed model geometry and an inability to model progressive failure with an updating 

failure profile. This shear surface degradation from an initially rough surface to a more planar surface 

has been considered in other discrete element based analysis considering large shear displacements 

(Ge, Tang, Eldin, Wang, Wu & Xiong 2017). It was noted that some numerical modelling approaches 

do use a finite residual cohesion when selecting material parameters for practical scale problems 

(Itasca 2011). 
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The emergent residual cohesion at scale is probably valid for some highly confined or low shear 

displacement system like failure deep within rock. Close surface or high shear displacements would 

not be expected have this feature with comparable back analysis of physical phenomenon of such 

systems (Strouth & Eberhardt 2009) using this final cohesionless state. Based on the results, this 

emergent residual cohesion can be seen to be a feature of rock failure at scale with more research is 

required to identify if the residual cohesion obtained from this study is a realistic response for large 

shear displacement problems. 

3.2.3 Probabilistic strength behaviour at scale 

Along with the deterministic responses, probabilistic behaviours of material parameters at scale were 

also considered. An interesting feature of all the intact strength tests (UTS and UCS) was that they 

had remarkably consistent probabilistic responses although they differed in asymptotic values at 

increased scales. To demonstrate this result, it is convenient to talk about the UDF of both UTS and 

UCS (i.e., a Rayleigh distribution) in terms of Weibull distributions. A Rayleigh distribution as 

previously mentioned is a special case of a Weibull distribution where the Weibull distribution shape 

parameter 𝑘 is equal to 2 and the scale parameter 𝜆 equal to √2 times the Rayleigh scale parameter. 

This transformation allows for simpler representation of probabilistic scale effects. The variations in 

the Weibull shape parameters at scale appeared to be invariant of each lithology and scale asymptote. 

To illustrate this, Figure 38 shows the Maximum Likelihood Estimate for the Weibull shape 

parameter of each lithology and size for both UTS and UCS tests. 

 

Figure 38 Maximum Likelihood Estimates of the Weibull distribution shape parameter for Uniaxial 

Compressive Strength and Uniaxial Tensile Strength at various scales 
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By inspection of Figure 38, it the relationship between sample size and the Weibull shape parameter 

for intact measurements of UTS and UCS at scale is linear with the following general equation: 

 𝑘𝑉𝑛  ≈ 2 × 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒 Equation 109 

where 𝑘𝑉𝑛  is the Weibull shape parameter at the associated subscript volume. To test the 

appropriateness of Equation 109 as a viable model for estimating the Weibull shape parameter at a 

given scale, a series of statistical regressions were completed to compare Equation 109 to the 

observed Maximum Likelihood Estimate to determine the model’s applicability. Additionally, a 

series of KS tests were completed to verify if the UDF predicted by Equation 109 was sufficient at 

describing the simulated data at a given size. The KS test results are summarised in Table 40 and 

Table 41. The test hypothesis for this regression analysis is given as the gradient of the linear 

relationship is 2 with a zero intercept. A summary of the results and test decisions are shown in Table 

42. 

Table 40 Kolmogorov Smirnov goodness of fit test decision summary for Uniaxial Tensile Strength 

Scale L1 L2 L3 L4 L5 

1x RVE Model Input Model Input Model Input Model Input Model Input 

2x RVE ✔ ✔ ✔ ✔ ✔ 

3x RVE ✔ ✔ ✔ ✔ ✔ 

4x RVE ✔ ✔ ✔ ✔ ✔ 

5x RVE ✔ ✘ ✔ ✘ ✔ 

6x RVE ✘ ✔ ✘ ✘ ✔ 

7x RVE ✔ ✔ ✘ ✘ ✔ 

8x RVE ✔ ✔ ✘ - ✘ 

9x RVE - - - - ✔ 

Overall 

Conclusion 
✘ 
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Table 41 Kolmogorov Smirnov goodness of fit test decision summary for Uniaxial Compressive 

Strength 

Scale L1 L2 L3 L4 L5 

1x RVE Model Input Model Input Model Input Model Input Model Input 

2x RVE ✔ ✔ ✔ ✔ ✘ 

3x RVE ✔ ✔ ✔ ✘ ✔ 

4x RVE ✔ ✔ ✔ ✔ ✔ 

5x RVE ✔ ✔ ✔ ✔ ✔ 

6x RVE ✘ ✔ ✔ ✔ ✔ 

7x RVE ✔ ✔ ✘ ✘ ✘ 

8x RVE ✘ ✘ ✘ - ✘ 

9x RVE - - - - ✘ 

Overall 

Conclusion 
✘ 

Table 42 Weibull distribution shape parameter regression analysis summary 

Lithology 
Uniaxial Tensile Strength 

test decision 

Uniaxial Compressive Strength 

test decision 

L1 ✔ ✔ 

L2 ✘ ✔ 

L3 ✘ ✔ 

L4 ✔ ✔ 

L5 ✘ ✘ 

Overall conclusion ✘ ✘* 

Combined conclusions ✘ 
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*Although Equation 109 was acceptable in terms of the regression analysis for UCS, Equation 109 

produced an insufficient goodness of fit when tested using the KS test. Due to this result, Equation 

109 was ultimately rejected for its applicability to describe the observations.  

Based on the summary suppled in Table 42 it was concluded at a 5% significant that the estimated 

Weibull shape parameter of UTS and UCS as a function of scale is not consistent with Equation 109. 

No additional analysis was completed on determining a statistically significant relationship as 

numerous complex models may produce statistically significant model fits. Simple alternative models 

could include a nonzero intercept, a gradient not equal to two or some nonlinear relationship. In order 

to best estimate this probabilistic scale response, substantial physical testing would offer the most 

‘assumption free’ method of evaluation. Physical testing would focus mainly on the region between 

0 and 3 times one RVE as this is both a practical testing region and would be able to detect if an 

intercept exists as well as any distinctive nonlinear change in real world measurements. 

The probabilistic response for peak and residual friction were specified as normal distributions and 

have two associated parameters, the location (the mean or median value) and the scale (standard 

deviation) parameter. The location parameters for the peak and residual friction angles are equivalent 

to the median value and have previously been shown in Figure 35 and Figure 36. The Maximum 

Likelihood Estimates at various scales for the standard deviation of the peak friction angle is shown 

in Figure 39. 

 

Figure 39 Maximum Likelihood Estimates standard deviation as a function of scale for peak friction 

angle 
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The results shown in Figure 39 suggest that the standard deviation of the peak friction angle undergoes 

a drastic deviation from the initial input and then follows an unknown, input invariant relationship 

(i.e., the standard deviation at some scale is approximately constant). A likely explanation for these 

results is that some internal process or interaction is dictating the peak frictional response, with only 

a token contribution from the initial input value. To explore this notion further, a series of normality 

tests were completed to check if the distribution associated with the peak friction angle retains its 

specified normal distribution. This test was completed using the Shapiro Wilk test. The test 

hypothesis is given as the data follows a normal distribution with unspecified mean and standard 

deviation. The summary of these analysis are shown in Table 43. 

Table 43 Shaprio Wilk test decision summary for peak friction angles at various scales 

Scale L1 L2 L3 L4 L5 

1x RVE Model Input Model Input Model Input Model Input Model Input 

2x RVE ✔ ✘ ✘ ✔ ✘ 

3x RVE ✔ ✘ ✔ ✔ ✔ 

4x RVE ✔ ✔ ✘ ✘ ✘ 

5x RVE ✔ ✘ ✘ ✔ ✔ 

6x RVE ✔ ✔ ✔ ✔ ✔ 

7x RVE ✔ ✔ ✔ ✔ ✔ 

8x RVE ✔ ✘ ✔ - ✔ 

9x RVE - - - - ✔ 

Overall conclusion ✔ ✘ ✘ ✔ ✔ 

Combined 

conclusion 
✘ 

From Table 43, it was concluded at 5% significance that the distribution of peak friction angles at 

scale are not normally distributed. The fact that the results showed a statistically significant deviation 

from the assumed normal distribution adds evidence that some internal influence is controlling the 

response of the peak friction angle. As to what mechanism is behind these observations is difficult to 
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say. Physical testing completed on samples between one and three times one RVE would offer 

insights into if this invariant frictional behaviour is observed in practice and if not, provide a 

comparable baseline behaviour for future analysis. 

The Maximum Likelihood Estimates for the standard deviation for the residual friction angle is shown 

in Figure 40. 

 

Figure 40 Maximum Likelihood Estimates for the standard deviation as a function of scale for 

residual friction angle 

Figure 40 shows a considerably different response to the standard deviation of the residual friction 

angle compared to the peak friction angle. The change in standard deviation with respect to scale 

differs considerably between lithologies, with L1 and L4 showing a well defined reduction with scale, 

while L3 and L5 show no significant change in standard deviation. These findings show that the 

probabilistic behaviour of the residual friction angle must be evaluated on a case by case basis and 

does not appear to be as consistent as previously presented material parameters. Normality tests were 

also completed on the residual friction angle data to test for similar influences of scale on the 

associated distribution, with the summary of results presented in Table 44. The same statistical test, 

significance and hypothesis used for the peak friction angle was used. 
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Table 44 Shaprio Wilk test decision summary for residual friction angles at various scales 

Scale L1 L2 L3 L4 L5 

1x RVE Model Input Model Input Model Input Model Input Model Input 

2x RVE ✘ ✘ ✘ ✘ ✘ 

3x RVE ✘ ✘ ✘ ✘ ✔ 

4x RVE ✔ ✘ ✘ ✘ ✔ 

5x RVE ✘ ✘ ✘ ✘ ✘ 

6x RVE ✔ ✘ ✘ ✘ ✘ 

7x RVE ✔ ✘ ✔ ✔ ✘ 

8x RVE ✔ ✘ ✔ - ✔ 

9x RVE - - - - ✔ 

Overall conclusion ✘ ✘ ✘ ✘ ✘ 

Combined conclusion ✘ 

From the summary presented in Table 44, it was concluded at 5% significance that the distribution of 

residual friction angles at scale is not normally distributed. In order to understand this deviation more 

thoroughly physical testing offers the best method of assessment. 

While there was evidence to suggest a normal distribution is insufficient to describe the peak friction 

angle of rock, the normal distribution is still a very good approximation. Figure 41 shows the normal 

distribution approximation for a lithology and scale, which failed the Shapiro Wilks test. 
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Figure 41 Example normal distribution approximation for the peak friction angle of L3 5x RVE 

It is evident in Figure 41 that a reasonably accurate fit is obtained using a normal distribution 

approximation. Again further insight by physical testing will lead to a better understanding of the 

probabilistic nature of rock friction at increased scales. 

A probabilistic analysis of cohesion can only be partially considered. As the cohesion UDF is 

implicitly defined using the UCS and the peak friction angle, the exact PDF is undefined. The variance 

associated with the peak cohesion at scale does show a consistent behaviour with scale. The calculated 

variance for the peak cohesion as a function of scale is shown in Figure 42. Note that the 𝑦 axis is 

plotted using a Log10 scale. 

 

Figure 42 Variance for the peak cohesion as a function of scale 
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By considering Figure 42 it can be seen that the variance of peak cohesion decreases with increasing 

scale and the relationship is pronounced. A simple model that may be suitable at describing the 

measured variance is given by: 

 𝑉𝑎𝑟(𝐶𝑛)  ≈
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

√𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒
3

 Equation 110 

where 𝐶𝑛 is the peak cohesion at the associated subscript. To test Equation 110 as suitable model to 

describe the variance of peak cohesion as a function of sample size, a series of statistical regressions 

were completed to compare Equation 110 to the observed data. The test hypothesis is given as the 

exponent of the power regression is equal to the negative cube root of the sample size. A summary of 

these statistical tests are shown in Table 45. 

Table 45 Regression test decision summary for peak cohesion variance 

Lithology Test decision 

L1 ✔ 

L2 ✘ 

L3 ✘ 

L4 ✘ 

L5 ✔ 

Overall Conclusion ✘ 

Based on the results suppled in Table 45 it can be concluded at a 5% significant that the estimated 

variation in the variance of peak cohesion is not consistent with Equation 110. 
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The calculated variance associated with the residual cohesion at various scales is shown in Figure 43. 

 

Figure 43 Variance for the residual cohesion as a function of scale 

It can be seen in Figure 43 that the variance associated with residual cohesion increases, and peaks 

near 6 times one RVE, before decreasing. There is also a large spike at 2 times one RVE, which is 

likely attributed to the relatively small model sizes and the initial emergence of a residual cohesion 

value. As the residual cohesion is an emergent behaviour, limited conclusions can be drawn. An 

understanding as the behaviour and variability of residual cohesion at 2 to 4 times one RVE would 

offer an increased understanding and form comparative baseline for the variable and emergent nature 

of residual cohesion for rock. 

3.2.4 Mechanical parameters at scale 

For each sample, two mechanical parameters were quantified, Young’s Modulus and Poisson’s Ratio. 

Each of these material parameters had two individual measurements, an elastic and a secant 

measurement were obtained to gain some appreciation for pre peak yielding. A visual representation 

of how the elastic and secant Young’s Modulus are determined in each model is shown in Figure 44.  
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Figure 44 Example representation of elastic and secant Young’s Modulus measurements 

The elastic Young’s Modulus represents the linear material response until internal elements begin to 

yield. For the example shown in Figure 44, this corresponds to the tangent of the cure below an axial 

stress at roughly 45% of the peak compressive strength. It is interesting to note that the onset of this 

yielding does align with the onset of acoustic emissions in laboratory testing (Hoek & Martin 2014). 

The variation in elastic and secant Young’s Modulus at various scales is shown in Figure 45. 

 

Figure 45 Influences of scale on the median elastic and secant Young's Modulus 
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From Figure 45, there is an increase in the median value of the elastic Young’s Modulus with 

increasing scale while there is a decrease in the median value of the secant Young’s Modulus. These 

results suggest that depending on which measurement of Young’s Modulus is used, either a positive 

and negative scaling law can be produced. The literature on the behaviour of Young’s Modulus at 

increased scale also shows conflicting findings, with Masoumi (2013) reporting a notable increase in 

mean elastic Young’s Modulus with increased scale while Simon and Deng (2009) reporting an 

arguably negligible change in mean elastic Young’s Modulus with scale. The findings of this study 

align with Masoumi’s findings and suggest some positive scaling law is associated with Elastic 

Young’s Modulus. The asymptotic value of both elastic and secant Young’s Modulus appears at 7 

times one RVE, with ranges of 104% to 110% of the median value for elastic and 92% to 101% of 

the median value for secant measurements. 

From a probabilistic perspective, the variation in the associated Weibull shape parameters for both 

elastic and secant Young’s Modulus at scale are remarkably consistent for each lithology. The 

Maximum Likelihood Estimates for the Weibull shape parameter of the elastic Young’s Modulus is 

shown in Figure 46 and the secant Young’s Modulus is shown in Figure 47. 

 

Figure 46 Maximum Likelihood Estimate of the elastic Young’s Modulus shape parameter at 

various scales 
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Figure 47 Maximum Likelihood Estimate of the secant Young’s Modulus shape parameter at 

various scales 

A simple model to explain the observed Weibull shape parameters as a function of sample size is 

given by: 

 𝑘𝑉𝑛 ≈ 𝑘𝑉0 × √𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒
3 = 𝑘𝑉0 × 𝑆𝑎𝑚𝑝𝑙𝑒 𝑆𝑖𝑧𝑒

1.5 Equation 111 

where 𝑘𝑉𝑛  is the Weibull shape parameter at the associated subscript. To test Equation 111 as a viable 

model to describe the Weibull shape parameter at scale, a series of statistical regressions were 

completed to compare Equation 111 to the observed data. Additionally, a series of KS tests were 

completed to verify if the UDF predicted by Equation 111 was sufficient at describing the simulated 

data at a given size The test hypothesises are given as the constant of the power regression is equal 

to the Weibull shape parameter at 1 RVE and the exponent of the power regression is equal to 1.5. A 

summary of these statistical test decisions for both elastic and secant Young’s Modulus are shown in 

Table 46, with associated KS test decisions shown in Table 47. 
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Table 46 Regression statistical analysis summary - Equation 111 

Lithology 

Elastic Young’s Modulus test 

decision 

Secant Young’s Modulus test 

decision 

Constant term Power term Constant term Power term 

L1 ✘ ✘ ✘ ✔ 

L2 ✔ ✔ ✘ ✔ 

L3 ✔ ✔ ✔ ✔ 

L4 ✔ ✔ ✘ ✘ 

L5 ✔ ✔ ✔ ✘ 

Overall 

conclusion 
✔ ✘ 

Table 47 Kolmogorov Smirnov test decision summary elastic Young’s Modulus 

Scale L1 L2 L3 L4 L5 

1x RVE Model Input Model Input Model Input Model Input Model Input 

2x RVE ✔ ✔ ✔ ✔ ✔ 

3x RVE ✔ ✔ ✔ ✘ ✔ 

4x RVE ✔ ✔ ✔ ✔ ✔ 

5x RVE ✔ ✔ ✔ ✔ ✘ 

6x RVE ✔ ✘ ✔ ✔ ✔ 

7x RVE ✘ ✔ ✘ ✔ ✔ 

8x RVE ✔ ✔ ✔ - ✔ 

9x RVE - - - - ✔ 

Overall 

Conclusion 
✔ 
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Based on the results suppled in Table 46 it can be concluded at a 5% significant that the estimated 

Weibull shape parameter of elastic Young’s Modulus as a function of scale is consistent with 

Equation 111 and that the estimated Weibull shape parameter of secant Young’s Modulus as a 

function of scale is not consistent with Equation 111. No additional analysis was completed on 

determining a statistically significant relationship for secant Young’s Modulus as numerous complex 

models may be statistically significant. Similarly to the conclusions of the statistical analysis of the 

scale response of UCS and UTS, physical testing would offer the most meaningful method of 

assessment. The same testing region of between 0 and 3 times one RVE is recommended for exploring 

this concept further. 

As Equation 111 is applicable at describing the observed Weibull shape parameter for the elastic 

Young’s Modulus, Equation 111 can be generalised and expressed in terms of volume to give: 

 𝑘𝑉𝑛  ≈
𝑘𝑉0

√𝑉0
× √𝑉𝑜𝑙𝑢𝑚𝑒 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × 𝑉𝑛

0.5 Equation 112 

The same statistical testing methodology was used to validate Equation 112 use at describing the 

observed Weibull shape parameter. A summary of the statistical analysis for Equation 112 is shown 

in Table 48. 

Table 48 Regression statistical analysis summary - elastic Young’s Modulus using actual volume 

Lithology Constant term Power term 

L1 ✔ ✘ 

L2 ✔ ✔ 

L3 ✔ ✔ 

L4 ✔ ✔ 

L5 ✔ ✔ 

Overall conclusion ✔ 
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Based on the results suppled in Table 48 it can be concluded at a 5% significant that the estimated 

Weibull shape parameter of elastic Young’s Modulus as a function of volume are consistent with 

Equation 112. The goodness of fit analysis by the KS test showed sufficient goodness of fit testing 

across all samples using Equation 112. Of note though is that in order to produce the Weibull scale 

parameter for each lithology and volume, the case specific median elastic Young’s Modulus had to 

be used. Based on these findings the associated Weibull scale parameter for elastic Young’s Modulus 

must be generated on a case by case basis and currently cannot be readily generalised. 

The median elastic Poisson’s Ratio as at various scales is shown in Figure 48. 

 

Figure 48 Influences of scale on the median elastic Poisson's Ratio 

From review of Figure 48, there does not appear to be a consistent behaviour for the Elastic Poisson’s 

Ratio for each lithology. By considering the input distributions, the asymptotic value for the elastic 

Poisson’s Ratio can be seen to converge to the average Poisson’s Ratio of one RVE. Convergence of 

Poisson’s Ratio to the mean value does align with common modelling selection justifications (Mas 

Ivars et al 2011) (Gao, Stead & Kang 2014). 

The median secant Poisson’s Ratio as a function of scale is plotted in Figure 49. 
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Figure 49 Influences of scale on the median secant Poisson's Ratio 

Note that the values plotted in Figure 49 are the raw median value. It was seen that the measurements 

of Poisson’s Ratio at the point of failure were far beyond the compatibility and physical upper limit 

for elastic materials (0 < 𝑣 < 0.5). A comparison of the elastic and secant Poisson’s Ratio suggests 

that at some point prior to peak stress, a considerable amount of plastic dilation occurs within the 

sample. The implications of these findings are elaborated below: 

From an equivalent continuum modelling approach for practical scales, these results suggest that 

assuming an equivalent linear response until failure does not account for all observed mechanical 

behaviours. In order to correctly model the equivalent dilatational response at the peak strength, the 

sample must yield at some point prior to the peak strength. This modelling response has been shown 

effective in practice by Hajiabdolmajid, Kaiser and Martin (2002) and was used to replicate in situ 

responses. The results of this study extend this idea and suggest the inclusion of some dilatational 

consideration at this point would be required to fit the observed mechanical response. How this pre 

peak yielding relates to all constitutive model parameters values is unknown at this time. The results 

obtained for the peak and residual behaviour can be interpreted as point evaluations along an extended 

failure response. A more in depth revaluation would be required to firstly identify the initial yield 

point, possibly done by checking for ‘significant’ deviations from the elastic response and quantifying 

all constitutive components at that point. A more complete understanding of Poisson’s Ratio should 

be quantified before completing such an analysis to limit possible errors with forward prediction 

associated with using incorrect PDFs. 
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A probabilistic description of Poisson’s Ratio was not included. As the distribution of Poisson’s Ratio 

must be defined on a case by case basis, no reasonable generalisation is possible currently. If a UDF 

can be found that describes Poisson’s Ratio, a greater appreciation to its generalised probabilistic 

behaviour may be possible. 

3.2.5 Numerical input sensitivity analysis 

A sensitivity analysis was completed to understand the influences that each model component has on 

the measurable response of all material parameters. To form a comparative baseline, the material 

parameter sensitivity was completed for lithology ‘L5’ at 6 times one RVE. This model size was 

chosen as most material parameters reach an asymptotic value at or near this size and are 

computationally efficient compared to larger model sizes. Each sensitivity was completed using 200 

random realisations to also consider changes the associated PDF. To test for differences associates 

with the distribution of each material parameter, the KW ANOVA was used. A summary of the 

statistical analysis and the change in the median material parameter for sensitivity is shown in Table 

49. 
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Table 49 Sensitivity statistical analysis summary 

Sensitivity Value Change 
UTS 

(MPa) 

UCS 

(MPa) 

Elastic 

Young’s 

Modulus 

(GPa) 

Secant 

Young’s 

Modulus 

(GPa) 

Elastic 

Poisson’s 

Ratio 

Secant 

Poisson’s 

Ratio 

Peak 

Friction 

(°) 

Peak 

cohesion 

(MPa) 

Residual 

friction (°) 

Residual 

cohesion 

(MPa) 

Elastic 

Young’s 

Modulus 

Equation 

112 

Base Line - 6.238 53.238 90.410 81.087 0.262 0.854 27.330 16.079 30.925 1.971 ✔ 

Reduced RVE 

H:W Ratio 

H:W = 2.5 

-7.75% H:W 
ND 

-1.203 

-2.26% 
ND ND ND ND ND 

-0.253 

-1.57% 

-0.896 

-2.90% 
ND ✔ 

Increased RVE 

H:W Ratio 

H:W = 3.0 

+10.70% 
ND 

+0.724 

+0.54% 
ND ND 

+0.01 

+0.43% 
ND ND 

+0.461 

+2.86% 

-0.608 

-1.97% 
ND ✔ 

Limited 

Correlations 

Only known 

correlations used 

-1.205 

-19.32% 

-2.624 

-4.93% 
ND ND ND ND 

+0.886 

+3.24% 

-0.969 

-6.03% 

-0.339 

-1.10% 
ND ✔ 

No Correlations 
All correlations 

equal 0 

-1.433 

-22.97% 

-14.145 

-26.57% 
ND 

-14.532 

-17.92% 
ND 

+0.511 

+59.84% 

+1.043 

+3.82% 

-4.456 

-27.71% 
ND 

+0.439 

+22.27% 
✔ 

Reduced sample 

H:W Ratio 
6x9x4 RVEs 

+0.198 

+3.17% 

+1.815 

+3.41% 

+0.868 

+0.96% 
ND 

+0.001 

+0.38% 
ND ND 

+0.740 

+4.60% 
ND 

-0.430 

-21.82% 
✔ 

Increased sample 

H:W Ratio 
6x4x9 RVEs 

-0.377 

-6.04% 

-3.501 

-6.58% 

-0.860 

-0.95% 
ND 

-0.001 

-0.38% 
ND ND 

-0.760 

-4.73% 
ND 

-0.229 

-11.62% 
✔ 

Equivalent Cube 

RVEs 
Cubic RVE. 

-0.977 

-15.66% 

-9.836 

-18.48% 

-3.260 

-3.61% 

-1.356 

-1.67% 

-0.006 

-2.29% 

-0.437 

-51.17% 

+0.398 

+1.46% 

-2.992 

-18.61% 

+1.778 

+5.75% 

-1.060 

-53.78% 
✔ 

Reduced UTS 
UTS = 10.0 MPa 

-30.56% 

-1.885 

-30.22% 

-1.913 

-3.59% 
ND ND ND 

+0.024 

+2.81% 

+0.391 

+1.43% 

-0.576 

-3.58% 

-1.526 

-4.93% 

+1.301 

+66.01% 
✔ 
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Increased UTS 
UTS = 20.0 MPa 

+38.89% 

+2.234 

+35.81% 
ND ND ND ND ND ND ND 

+0.889 

+2.87% 

-1.471 

-74.63% 
✔ 

Reduced UCS 
UCS = 100.0 MPa 

-32.89% 
ND 

-16.790 

-31.54% 
ND ND ND 

-0.210 

-24.59% 

-0.441 

-1.61% 

-4.886 

-30.39% 

+0.915 

+2.96% 

-1.733 

-87.92% 
✔ 

Increased UCS 
UCS = 200 MPa 

+34.23% 
ND 

+15.583 

+29.27% 
ND ND ND ND ND 

+4.668 

+29.03% 

-1.343 

-4.34% 

+2.448 

+124.20% 
✔ 

Reduced 

Young’s 

Modulus 

E = 75 GPa 

-14.24% 
ND ND 

-12.860 

-14.22% 

-11.676 

-14.40% 
ND ND ND ND 

-0.814 

-2.63% 

+0.232 

+11.77% 
✔ 

Increased 

Young’s 

Modulus 

E = 95 GPa 

+8.63% 
ND ND 

+7.963 

+8.81% 

+7.455 

+9.19% 

+0.001 

+0.38% 

-0.339 

-39.70% 
ND ND 

-0.879 

-2.84% 
ND ✔ 

Reduced 

Young’s 

Modulus Shape 

Parameter 

𝑘 = 1.43 

-25.56% 

-0.425 

-6.81% 

-4.389 

-8.24% 

+5.879 

+6.50% 

+3.269 

+4.03% 

-0.001 

-0.38% 

-0.276 

-32.32% 

-3.028 

-11.08% 

-0.385 

-2.39% 

-1.231 

-3.98% 

+0.642 

+32.57% 
✔ 

Increased 

Young’s 

Modulus Shape 

Parameter 

𝑘 = 1.93 

+0.47% 
ND ND ND ND ND ND ND ND 

-0.769 

-2.49% 
ND ✔ 

Reduced 

Poisson’s Ratio 

𝑎 = 0.1134 

𝑏 = 0.2178 

𝑐 = 0.1428 

-40.00% 

ND ND ND ND 
-0.106 

-40.46% 

-0.143 

-16.74% 
ND ND 

-0.815 

-2.64% 

+0.307 

+15.58% 
✔ 
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Increased 

Poisson’s Ratio 

𝑎 = 0.2646 

𝑏 = 0.4999 

𝑐 = 0.3332 

+40.00% 

ND 
-1.316 

-2.47% 
ND ND 

+0.108 

+41.22% 
ND 

-0.555 

-2.03% 
ND 

-0.629 

-2.03% 
ND ✔ 

Reduced Friction 
𝜙 = 25 

-21.88% 
ND 

+1.597 

+3.00% 
ND ND ND 

+0.141 

+16.51% 

-5.695 

-20.84% 

+2.577 

+16.03% 

-7.039 

-22.76% 

+0.853 

+43.28% 
✔ 

Increased 

Friction 

𝜙 = 40 

+25.00% 
ND 

-3.444 

-6.47% 
ND ND 

+0.001 

+0.38% 

-0.385 

-45.08% 

+6.424 

+23.51% 

-2.788 

-17.34% 

+8.164 

+26.40% 

-0.841 

-42.67% 
✔ 

Reduced Friction 

Standard 

Deviation 

𝜎 = 0.6624 

-62.95% 
ND ND ND ND ND ND ND ND 

-0.736 

-2.38% 

+0.280 

+14.21% 
✔ 

Increased 

Friction Standard 

Deviation 

𝜎 = 4.0224 

+124.97% 
ND ND ND ND ND ND ND ND 

-0.715 

-2.31% 
ND ✔ 

Initial RVE 

dilation 
5 degrees dilation ND 

-1.007 

-1.89% 
ND ND ND 

+0.270 

+31.62% 
ND ND 

-0.695 

-2.25% 

+0.407 

+20.65% 
✔ 

Initial residual 

cohesion 

15% residual 

cohesion 
ND 

+3.639 

+6.84% 
ND 

-1.919 

-2.37% 

0.001 

+0.38% 

-0.514 

-60.19% 

+0.653 

+2.39% 
ND ND 

+5.228 

+265.25% 
✔ 

Non 

instantaneous 

softening 

0 MPa cohesion at 

1% plastic shear 

strain 

ND 
+56.157 

+105.48% 
ND 

-13.422 

-16.55% 
ND 

-0.384 

-44.96% 

+6.676 

+24.43% 

+12.903 

+80.25% 

+4.025 

+13.02% 

-1.302 

-66.06% 
✔ 

Non 

instantaneous 

softening and 

residual cohesion 

15% residual 

cohesion at 1% 

plastic shear strain 

ND 
+58.031 

+1.09% 
ND 

-14.274 

-17.60% 
ND 

-0.371 

-43.44% 

+6.958 

+25.46% 

+13.302 

+82.73% 

+3.059 

+9.89% 

+3.891 

+197.41% 
✔ 
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Note in Table 49, ND signifies no difference. Cells containing values indicate a statistically 

significant difference at a 5% significance due to the sensitivity change. The values specified present 

the difference in median values and percentage differences. The results of the sensitivity analyses 

presented in Table 49 indicate that material parameters at scale are influenced by seemingly unrelated 

values. For example, changing the shape parameter associated with Young’s Modulus at one RVE 

has a significant influence on all measured material parameters. 

Probably the most significant behaviour to emerge during the sensitivity analysis is the impact of 

plastic components on sample behaviour. By comparing the failure envelopes for different softening 

responses, Figure 50 was produced. 

 

Figure 50 Triaxial stress at failure for varying softening responses. Linear line shown to better 

illustrate the nonlinearity 

Note that to produce Figure 50, one random realisation was used, with only the softening tables being 

varied (i.e. all simulations use the same random material parameters). From review of Figure 50, it 

can be seen that by defining a large residual cohesion component to each RVE, a small but noticeable 

increase in peak strength is obtained. By increasing the plastic strain at which the residual values are 

achieved drastically increases the measured strength, almost doubling the UCS and producing a UCS 

that closely matches Hoek’s Scaling Law (Hoek & Brown 1980) given by Equation 38. More 

importantly, a non-instantaneous drop in post peak strength parameters produces a distinctively non-

linear failure envelope with increasing confinement, a feature that has also been demonstrated 
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experimentally (Hoek & Brown 1988). The findings of the sensitivity suggest that the following 

model components have the biggest influences on the general behaviour of rock at scale: 

Selection of a non instantaneous cohesion softening - The softening cohesional response, which is 

rarely measured at one RVE, is arguably the most important parameter affecting material behaviour 

at larger scales. Without a proper description of strain softening response at one RVE, the analysis 

indicates that significantly lower strength estimates at scale are calculated. Inclusion of this non-

instantaneous softening also produces the confinement dependent strength response, which has been 

observed in practice. 

Inclusion of correlation coefficients - Correlation coefficients typically are known or can be 

reasonably inferred at one RVE. The inclusion of correlation coefficients was shown to change the 

simulated behaviour at scale by 30% for most material parameters. One current issue with selecting 

appropriate correlation coefficients is that many material parameters are obtained from destructive 

tests, which make it difficult to obtain accurate correlation coefficients between these material 

parameters. Given their impact on all material parameters, it is important to use measurable rather 

than speculative values for correlation coefficients when considering scale effects. Research 

considering how to quantify these correlation coefficients will lead to better forward estimation 

techniques and more reliable forward prediction methods. 

The shape parameter associated with Young’s Modulus - The correct selection and incorporation 

of variability of Young’s Modulus has been shown to influence all material parameters at increased 

scales. 

3.3 Implications of differing material parameters at increased scales 

A major implication of these scale behaviour can be applied to conservative design practices. A 

common practice conservative design approach is to use the lowest observed strength across the entire 

testing campaign. Similarly, other material parameters are also selected assuming worst case 

conditions for example, the highest material density and lowest possible shear strength parameters. 

These new conservative design approaches have the following implications: 

Implication 1: Engineers are ‘incentivised’ to test fewer and fewer samples. This is because lowest 

bound strength values are adopted, meaning the more samples tested, the more conservative the 

design parameters will be. Wording the above information into a statement: 

The better quantified a material’s shear strength is, the more conservative your design will be. 
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The above statement should alone be enough to bring into question the applicability of this highly 

conservative design philosophy, as it is self-contradictory. One would imagine the more understood 

the material is, the less conservative a design should be; however, the opposite is true. This gives 

Engineers an incentive to perform fewer laboratory measurements as lower strengths may make 

designs more problematic or uneconomic to implement. 

Implication 2: The lowest strength philosophy is unjustifiably conservative. Rock does not behave 

as a purely frictional material, which is often the very conservative assumption adopted. Slope 

designed using the lowest strength bound essentially means that the overall slope angle will tend to 

the material’s angle of repose. 

Implication 3: Scale effects are very well documented. Experimental evidence presented in Chapter 

One, and the results in the previous section of this Chapter have shown two pronounced scale effects, 

an underlying scale effect and an associated homogenisation. 

The extended implication of this Chapter’s findings is that as the simulated volume of interest 

increases, the minimum observed strength relative to some smaller volume will increase. Designs 

considering the minimum laboratory scale strength will always be lower than the minimum value at 

some practical scale, even when accounting for negative scaling laws. This point again highlights the 

absurdity of the minimum possible value as it neglects a large amount of documented responses. 

An alternative yet still conservative approach for strength selection is to consider the minimum shear 

strength at a practical volume as to account for both scale and homogenisation influences. While 

nonstandard laboratory testing is relatively uncommon, costly or impractical to implement, numerical 

heterogeneous analysis using PLACEBO does offer a cost effective alternative to estimate these scale 

effects. 

To demonstrate this, the simulation results of lithology ‘L5’ at 8 times one RVE was chosen at a 

conservative ‘practical volume’ (equivalent to 0.17m³) in which to define representative strength 

parameters compared to the typical laboratory scale (i.e., the inputs in Table 39). For both the 

laboratory and practical scale, the 0.01th percentile (i.e., the lowest 0.01%) was calculated from the 

resultant Maximum Likelihood Estimate to obtain minimum values of 𝜙 and 𝑐. This minimum value 

selection method ensures that the lowest possible value of 𝜙 and 𝑐 are chosen, and accounts for issues 

associated with possible testing database sizes. Comparisons of the resulting shear strength criteria 

using the laboratory mean value, laboratory minimum value, scale dependant mean value and scale 

dependant minimum value are shown in Figure 51. 
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Figure 51 Comparisons of shear strength criteria for laboratory and practical scales 

The material parameter values associated with each failure criterion shown in Figure 51 are 

summarised in Table 50. 

Table 50 Comparisons of various material parameters for different selection criteria 

Criterion Friction angle Cohesion 

Laboratory minimum value 22.12° 0.03 MPa 

Laboratory mean value 39.00° 3.43 MPa 

Scale minimum value 26.05° 0.59 MPa 

Scale mean value 30.10° 1.11 MPa 

The shear strength criterion shown in Figure 51 and Table 50 demonstrate that when considering 

scaling laws and material homogenisation, the scale dependant minimum criterion produced is still 

conservative, but is comparatively stronger strength estimates than the laboratory minimum criterion. 
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A further complexity that also can be considered is the influences of material parameter correlation. 

The minimum material parameter criterion presented in Table 50 were chosen such that the correlated 

influences of 𝜙 and 𝑐 are ignored. Laboratory testing considering 𝜙 and 𝑐 are negatively correlated 

that is, the lower the observed friction value is the higher the associated cohesion and vice versa. For 

the numerical simulation completed this negative correlation is apparent and calculated as -0.68. A 

comparison of the numerical results and various criteria from Table 50 are shown in Figure 52. 

 

Figure 52 Scatter plot showing numerical output and various selection criteria 

Note that in Figure 52 the mean laboratory material parameters are not shown to aid in the clarity of 

the Figure. It is evident in Figure 52 the laboratory and scale dependent minimum values are not 

representative of the correlated influences between 𝜙 and 𝑐. To account for these correlated 

influences, the correlated extreme values were calculated to produce two correlated minimum shear 

strength criteria. Comparisons of these correlated criterion and previously calculated criterion are 

shown in Figure 53. 
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Figure 53 Comparisons of various minimum shear strength criterions considering correlations 

Not shown in Figure 53 is that the minimum friction criterion crosses the overall minimum criterion 

at normal stresses equal to 32.30 MPa and all criteria are always higher than the laboratory minimum 

criterion. It is apparent in Figure 53 that which criterion produces the representative minimum shear 

stress depends on the acting normal stress. This stress dependant minimum value makes the problem 

of selecting a single representative strength envelope problematic. A simple solution to this stress 

dependency is to use a bi-linear shear strength criterion such that the stress dependency as well as 

stress path influences can be readily accounted for using a minimum strength approach. The bi-linear 

linear criterion appropriate for this material considering scale, heterogeneity and correlation is given 

in Table 51. 

Table 51 Bi-linear failure criterion for the correlated minimum shear strength at scale 

Normal stress Criterion friction Criterion cohesion Criterion used 

0.00 - 4.41 MPa 34.53° 0.51 MPa 
Correlated minimum 

cohesion 

>4.41 MPa 24.72° 1.51 MPa 
Correlated minimum 

friction 
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One issue with this bi-linear strength criterion is that it can be incompatible with commercial 

software. In software restricted applications it is suggested that the minimum criterion that is 

representative over the expected normal stress range be chosen, or a linear criterion of best fit be 

calculated from the piece-wise linear criterion using regression techniques. 

By considering scale effects in conjunction with the minimum strength approach, justifiably stronger 

parameters can be obtained. This new minimum approach is able to not only account for scaling laws 

and associated homogenisations but also considers shear strength material parameter correlations and 

normal stress dependencies in the final criterion. The minimum piece-wise approach derived produces 

the minimum possible shear strength over all normal stresses and is able to account for changing 

stress paths, while still remaining very conservative. While the demonstration of this new approach 

uses numerical methods to estimate the scale behaviour and homogenisation, the selection 

methodology is general enough to be applied to a-typical laboratory, or in situ testing results. 

  



Page | 160  

4 Universal Distribution Functions for Rock Discontinuities 

4.1 Discontinuity Roughness 

Mentioned in Chapter One, fractals can be classed as either fractal self-similar or fractal self-affine. 

With more evidence to suggest that rock discontinuities are fractal self-affine, a fractal self-affine 

simulation method was required. The simulation method chosen was Fractional Brownian Motion 

generated by the Circular Embedment method (Kroese & Botev 2014). This simulation method was 

chosen because of its ‘exact’ formulation (Dieker 2002) for a fractal self-affine process. The specified 

simulation resolution chosen was 214 points along each generated discontinuity. 

Fractional Brownian Motion 𝐵𝐻 = {𝐵𝐻(𝑡): 0 ≤ 𝑡 < ∞} with 0 < 𝐻 < 1 is defined as a stochastic 

fractal self-affine process with long range dependency. Fractional Brownian Motion is characterised 

by the following properties (Dieker 2002): 

𝐵𝐻(𝑡) has stationary increments, 𝐵𝐻(0) = 0, and 𝔼𝐵𝐻(𝑡) = 0 for 𝑡 ≥ 0, 𝔼𝐵𝐻
2(𝑡) = 𝑡2𝐻  for 𝑡 ≥ 0 

and 𝐵𝐻(𝑡) has a Gaussian distribution for 𝑡 > 0. These properties produce the following covariance 

function: 

 𝐶𝑜𝑣(𝑠, 𝑡) = 𝔼𝐵𝐻(𝑠)𝐵𝐻(𝑡) =
1

2
(|𝑡|2𝐻 + |𝑠|2𝐻 − |𝑡 − 𝑠|2𝐻) Equation 113 

for 0 < 𝑠 ≤ 𝑡. As Fractional Brownian Motion has long range dependency if 𝐻 <
1

2
 the increments 

are negatively correlated and if 𝐻 >
1

2
 the increments are positively correlated. 

4.1.1 Absolute roughness measurement selection routine 

As the goal of this Section is to produce practical methods to quantifying roughness, more elaborate 

roughness measurements such as the centre line average roughness (Tse & Cruden 1979), root mean 

square roughness (Myers 1962), roughness profile index (Maerz & Franklin 1990), the maximum 

inclination angle (Tatone & Grasselli 2010) and standard deviation of the chord length (Seidel & 

Haberfield 1995) where not used, as they are not as easy or as practical to measure as the typical 

length amplitude approach used by Barton (2013). The length amplitude measure of absolute 

roughness was used due to its simplicity and parallels to field measurements and its closer relationship 

to 𝐽𝑅𝐶. The equation used to calculate the absolute roughness in each numerical simulation is given 

by: 
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 𝑅𝑎𝑏𝑠 = 𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛 Equation 114 

where 𝑅𝑎𝑏𝑠 is the absolute roughness (m), 𝑅𝑚𝑎𝑥 is the maximum asperity height relative to some 

reference line (m) and 𝑅𝑚𝑖𝑛 is the minimum asperity height relative to some reference line (m). A 

visual representation of 𝑅𝑎𝑏𝑠 is shown in Figure 54. 

 

Figure 54 Visual representation of absolute roughness (𝑅𝑎𝑏𝑠) 

Fractional Brownian Motion as previously mentioned has long range dependence. This means that 

when the process is generated, it will have some associated correlation meaning that the generated 

length is longer than the specified simulation length. Before each roughness measurement can be 

recorded, each simulation needed to be re-orientated to reflect the required measurement length. Two 

re-orientation routines were initially proposed: 

Bridge Centre Line Measurement - The roughness measurements are obtained perpendicular to an 

upper reference line that touches the surface at two fixed points. This simulation is synonymous to 

placing a profile comb or straight edge along a length of a discontinuity. The measurement routine is 

given as: 
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1. Generate surface 𝐵𝐻(𝑙) with specified 𝐻 and 𝐿0 such that 𝑙 ≥ 𝐿0. 

2. Step through each 𝐵𝐻(𝑙) and calculate the linear distance from 𝐵𝐻(𝑙) to 𝐵𝐻(0). Find 𝐿∗ such that 

|𝐵𝐻(𝐿
∗)| = 𝐿0. 

3. Calculate the angle 𝜃 made between the origin and 𝐵𝐻(𝐿
∗). 

4. Apply a rotation of −𝜃 to 𝐵𝐻(𝑙). 

5. Calculate 𝑅𝑎𝑏𝑠. 

Linear Regression Rotation - The roughness measurements are obtained perpendicular to an 

average plane through the discontinuity. This simulation is synonymous with measuring roughness 

between two cross joints of known spacing. The measurement routine used is given as: 

1. Generate surface 𝐵𝐻(𝑙) with specified 𝐻 and 𝐿0 such that 𝑙 ≥ 𝐿0. 

2. Step through each 𝐵𝐻(𝑙) and calculate the linear distance from 𝐵𝐻(𝑙) to 𝐵𝐻(0). Find 𝐿∗ such that 

|𝐵𝐻(𝐿
∗)| = 𝐿0. 

3. Calculate the linear regression of 𝐵𝐻(𝑙). �̂�𝐻(𝑙) ≈ 𝛽0 + 𝛽1𝑙. 

4. Calculate the linear regression 𝑙-axis intercept 𝑙0. 

5. Apply the offset 𝐵𝐻(𝑙) = 𝐵𝐻(𝑙 − 𝑙0). 

6. Calculate the angle 𝜃 made between the origin and the linear regression gradient 𝛽1. 

7. Apply a rotation of −𝜃 to 𝐵𝐻(𝑙). 

8. Calculate 𝑅𝑎𝑏𝑠. 

A visual comparison of two discontinuity profiles generated by each re-orientation routine is shown 

in Figure 55. 
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Figure 55 Comparison of absolute roughnes measurement routines. Top 𝐻 = 0.995, bottom 𝐻 =

0.9995 

Depending on which re-orientation routine used, slightly different values of 𝑅𝑎𝑏𝑠 were obtained due 

to differences associated with the rotation angle. To contrast the differences between these re-

orientation routines and equivalent field measurements, four input combinations of 𝐻 and 𝐿 were 

simulated 500 times for each combination for comparison. The measurement routines were then 

contrasted by considering the mean roughness difference and comparing EDFs using the KS test. The 

summary of the statistical comparisons and test decisions are shown in Table 52. 
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Table 52 Summary of the analysis comparing absolute roughness measurement routines 

Discontinuity 

length 
Statistical value or test 

Hurst exponent 

0.995 

Hurst exponent 

0.9995 

1.0m 

Mean roughness (mm) 

Bridge rotation 
39.91 12.40 

Mean roughness (mm) 

Linear rotation 
40.34 12.47 

Mean difference confidence 

interval (mm) 
ND ND 

Kolmogorov Smirnov decision ND ND 

0.1m  

Mean roughness (mm) 

Bridge rotation 
3.82 1.22 

Mean roughness (mm) 

Linear rotation 
3.87 1.23 

Mean difference and Confidence 

Interval (mm) 

Detectable 

difference in means 

-0.0952 to -0.0078 

Detectable 

difference in means 

-0.02969 to -0.0023 

Kolmogorov Smirnov decision ND ND 

Note, when calculating the mean difference, the value presented in Table 52 is the bridge rotation 

measurement minus linear rotation. ND signifies no significant difference at a 5% significance. From 

the results shown in Table 52 is can be concluded at a 5% significance that the two re-orientation 

routines produce no significant differences in the overall distribution of measurements in each 

simulation, no statistically significant difference in mean values at 1.0m discontinuity length and a 

small but significant difference in mean roughness measurements at 0.1m. The difference in mean 

values for 0.1m lengths is less than a tenth of a millimetre with this discrepancy being acceptable for 

practical applications. The re-orientation routine selected was the bridge rotation routine due to its 

simpler computational requirements. 
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4.1.2 Testing for a Universal Distribution Function for discontinuity roughness measurements 

With a representative roughness measurement and simulation method chosen, the expected behaviour 

of each combination of 𝐻 and 𝐿 was then quantified and probabilistically assessed. From preliminary 

testing a realistic estimate of 𝐻 for rock discontinuities are values greater than 0.98 and less than 1.00. 

29 different values of 𝐻 were tested from within this range to cover very rough to almost planar 

discontinuities profiles. Values of 𝐿 were simulated at 30 different lengths ranging from 0.10m 

through to 100m. This measurement range was selected to quantify scales ranging from practical 

measurements through to mine scale features. Each combination of 𝐻 and 𝐿 had 2000 individual 

realisations resulting in 1.74 million simulations in total. The simulation data was then de-scaled and 

assessed using non-parametric bootstrapping to determine if a UDF describing absolute roughness 

exists. A summary of the test decisions obtained from non-parametric bootstrapping are shown in 

Table 53. 

Table 53 Non-parametric bootstrapping test decision summary - absolute roughness 

Samples grouped by discontinuity length Samples grouped by Hurst exponent 

Discontinuity length Decision Hurst exponent Decision 

0.10m ✔ 0.98000 ✔ 

0.20m ✔ 0.99000 ✔ 

0.30m ✔ 0.99100 ✔ 

0.40m ✔ 0.99200 ✔ 

0.50m ✔ 0.99300 ✔ 

1.00m ✔ 0.99400 ✔ 

1.50m ✔ 0.99500 ✔ 

2.00m ✔ 0.99600 ✔ 

2.50m ✔ 0.99700 ✔ 

3.00m ✔ 0.99800 ✔ 

3.50m ✔ 0.99900 ✔ 
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4.00m ✔ 0.99910 ✔ 

4.50m ✔ 0.99920 ✔ 

5.00m ✔ 0.99930 ✔ 

6.00m ✔ 0.99940 ✔ 

7.00m ✔ 0.99950 ✔ 

8.00m ✔ 0.99960 ✔ 

9.00m ✔ 0.99970 ✔ 

10.00m ✔ 0.99980 ✔ 

12.50m ✔ 0.99990 ✔ 

15.00m ✔ 0.99991 ✔ 

17.50m ✔ 0.99992 ✔ 

20.00m ✔ 0.99993 ✔ 

25.00m ✔ 0.99994 ✔ 

30.00m ✔ 0.99995 ✔ 

35.00m ✔ 0.99996 ✔ 

40.00m ✔ 0.99997 ✔ 

50.00m ✔ 0.99998 ✔ 

75.00m ✔ 0.99999 ✔ 

100.00m ✔   

It can be concluded at a 5% significance that the distribution of de-scaled absolute roughness 

measurements grouped by test length 𝐿 are consistent with some UDF and the distribution of de-

scaled absolute roughness measurements grouped by Hurst exponent 𝐻 are consistent with some 

UDF. These two conclusions imply that the de-scaled distribution of absolute roughness is 

independent of both 𝐻 and 𝐿, and that is there is a single UDF that describes the distribution of de-
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scaled absolute roughness measurements. With evidence that some UDF exists, a series of KS tests 

were then completed to test various PDF families for their goodness of fit. Parameter relationships to 

the median value were also used to reduce the number of independent variables in each goodness of 

fit test. The summary of the KS test decisions are presented in Table 54. 

Table 54 Kolmogorov Smirnov goodness of fit test decision summary - descaled data for absolute 

roughness 

Probability Density Function Family Decision 

Normal ✘ 

Log-normal ✘ 

Gamma ✘ 

Rayleigh ✘ 

Weibull ✔ 

Gumbel ✔ 

Fréchet ✘ 

Laplace ✘ 

Note that in Table 54, two additional PDF families have been included, the Gumbel and Fréchet 

distributions. These additional PDFs were included due to the general shape of the data’s EDFs. Based 

on the results in Table 54 it can be concluded at a 5% significance that the UDF of de-scaled absolute 

roughness measurements is consistent with a Weibull or Gumbel distribution. With evidence of the 

existence of a UDF for absolute roughness measurements, all possible model simplifications and the 

applicability of the UDF to describe raw data were completed using a series of KS tests. The summary 

of this statistical analysis is shown in Table 55. 
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Table 55 Universal Distribution Function variable substitution analysis summary - absolute 

roughness 

 

Median value 

with variable 

shape parameter 

Median value 

with constant 

shape parameter 

Mean value with 

variable shape 

parameter 

Mean value with 

constant shape 

parameter 

Weibull 

distribution 
✘ 

1.838 ≤ �̂� ≤ 1.914 

�̂� =
�̅�

(ln(2))
1

�̂�

 
✘ 

1.845 ≤ �̂� ≤ 1.914 

�̂� =
�̅�

𝛤 (1 +
1

�̂�
)
 

Gumbel 

distribution 

�̂� = �̅� + �̂� ln(ln 2) 

�̂� = 𝑐�̅� 

0.512 ≤ �̂� ≤ 0.518 

✘ 

�̂� = �̅� − 𝛾�̂� 

�̂� = 𝑐�̅� 

0.458 ≤ �̂� ≤ 0.466 

✘ 

Note that in Table 55 𝛾 is the Euler-Mascheroni constant, �̅� is the sample median and �̅� is the sample 

mean. Based on all statistical tests, it can be concluded that the distribution of absolute roughness can 

be described by one of two UDFs, with Table 56 summarising all key deterministic and probabilistic 

characteristics associated with these UDFs. 

Table 56 Universal Distribution Function summary - absolute roughness 

 Weibull distribution Gumbel distribution 

Probability Density Function 𝑓𝑋(𝑥) =  
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(
𝑥
𝜆
)
𝑘

 𝑓𝑋(𝑥) =
1

𝛽
𝑒
−(
𝑥−𝛼
𝛽

+𝑒
−(
𝑥−𝛼
𝛽

)
)

 

Parameter estimates using the mean 

1.845 ≤ �̂� ≤ 1.912, �̂� ≈
3𝜋

5
 

�̂� =
�̅�

𝛤 (1 +
1

�̂�
)
 

�̂� = �̅� − 𝛾�̂� 

�̂� = 𝑐�̅� 

0.458 ≤ �̂� ≤ 0.466 

Parameter estimates using the 

median 

1.838 ≤ �̂� ≤ 1.914, �̂� ≈
3𝜋

5
 

�̂� =
�̅�

(ln 2)
1

�̂�

 

�̂� = �̅� + �̂� ln(ln 2) 

�̂� = �̂��̅� 

0.512 ≤ �̂� ≤ 0.518 

Deterministic estimate 𝑀�̂� = �̂� (
�̂� − 1

�̂�
)

1

�̂�

 𝑀�̂� = �̂� 
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Note that in Table 56 𝛤 is the Gamma function. Although both UDFs (the Weibull and Gumbel 

distributions) and the associated parameter ranges shown in Table 56 are statistically acceptable and 

meet the required definition of a UDF, the Weibull distribution UDF with �̂� =
3𝜋

5
 was chosen as a 

single representative UDF. This single UDF estimate was chosen based on its simpler mathematical 

representation and the ease and accuracy associated with deriving the theoretical scale relationships 

in the following Sections. 

4.1.3 Development of theoretical scaling laws for fractal-self affine discontinuities 

In order to estimate relationships between characteristic measurements, Hurst exponent and scale, the 

raw data was evaluated with linear regression techniques to find a reasonably accurate equation 

relating field measurements of 𝑅𝑎𝑏𝑠 to 𝐻 and measurements at arbitrary scales. From a preliminary 

review, the simplest relationship is given by: 

 �̅� ≈
𝐿0
2
√1 − 𝐻 = 0.5 × 𝐿0(1 − 𝐻)

0.5 Equation 115 

The applicability of Equation 115 was compared to the available numerical output to test for its 

applicability. The test hypothesis is given as: 

The median value is equal to half the length multiplied by the square root of one minus the Hurst 

exponent. 

The statistical regression a constant of 0.4990, and associated power term confidence interval of 

0.4972 to 0.5001. Based on these findings it can be concluded that Equation 115 is sufficient at 

describing the relationship between the sample median, length and Hurst exponent. Rearranging 

Equation 115, the estimate of the Hurst exponent �̂� using the median value such that: 

 �̂�  ≈ 1 − (
2�̅�0

𝐿0
)

2

 Equation 116 

Equation 116 can then be used to derive a number of different estimates of �̂� using different statistical 

parameters such as the mean value, mode value or sample variance. Recall that for a Weibull 

distribution, the median value can be calculated using: 
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 𝑀 =  𝜆 (ln(2)
1
𝑘) Equation 117 

Taking the constant shape estimate for 𝑘 in Table 56: 

 𝑀 =  𝜆 (ln(2)
5
3𝜋) Equation 118 

By using the identities of the Weibull distribution, 𝜆 is related to other parameters such that: 

 𝜆 =
𝜇0

𝛤 (
3𝜋 + 5
3𝜋 )

 Equation 119 

 
𝜆 =

𝑀𝑜0

(
3𝜋 − 5
3𝜋 )

5
3𝜋

 
Equation 120 

 
𝜆 =

√

𝑉𝑎𝑟0

(𝛤 (
3𝜋 + 10
3𝜋 ) − (𝛤 (

3𝜋 + 5
3𝜋 ))

2

)

 
Equation 121 

Substituting Equation 119, Equation 120 and Equation 121 into Equation 116 yields three additional 

estimates for �̂�: 

 �̂�  ≈ 1 − (
2(ln(2)

5
3𝜋)

𝛤 (
3𝜋 + 5
3𝜋 )

)

2

(
�̅�0
𝐿0
)
2

≈ 1 − 3.44 (
�̅�0
𝐿0
)
2

 Equation 122 
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 �̂�  ≈ 1 −

(

 
 2(ln(2)

5
3𝜋)

(
3𝜋 − 5
3𝜋 )

5
3𝜋

)

 
 

2

(
𝑀𝑜̅̅ ̅̅ 0
𝐿0

)

2

≈ 1 − 6.05 (
𝑀𝑜̅̅ ̅̅ 0
𝐿0

)

2

 Equation 123 

 �̂�  ≈ 1 −

(

 
 

(2 (ln(2)
5
3𝜋))

2

𝛤 (
3𝜋 + 10
3𝜋 ) − (𝛤 (

3𝜋 + 5
3𝜋 ))

2

)

 
 𝑉𝑎𝑟̅̅ ̅̅

0̅

𝐿0
2 ≈ 1 − 11.32 (

𝑉𝑎𝑟̅̅ ̅̅
0̅

𝐿0
2 ) Equation 124 

It may be possible to simplify the constant terms in Equation 122 through Equation 124, however this 

is not necessary for practical applications. The distribution of measured percentage errors for each 

estimation equations are shown in Figure 56. Note that the mode value estimate is not included as 

this value is calculated using either the mean or median value. The errors associated with the mode 

value are identical to the selected generation variable. 

 

Figure 56 Cumulative Distribution Function for the percentage error for each estimation method 

It can be seen in Figure 56 that the typical percentage error for estimating 𝐻 by any method is very 

low, typically less than 0.05%. Equation 116, Equation 122 and Equation 124 are therefore valid 

approximations. The scale dependant relationships can also be calculated in a similar manner as the 
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estimation methods for �̂�. As the true value of 𝐻 is invariant of the measurement length and is an 

inherent parameter of each discontinuity, it can be used to relate different scales to one another such 

that: 

 1 − (
2𝑀𝑛

𝐿𝑛
)
2

≈ 𝐻 ≈ 1 − (
2𝑀0

𝐿0
)
2

 Equation 125 

When simplified, Equation 125 becomes: 

 𝑀𝑛 ≈ 𝑀0

𝐿𝑛
𝐿0

 Equation 126 

Equation 126 is the scale equation relating the median measurement at 𝐿0 to the median value at the 

desired 𝐿𝑛. It then follows that: 

 𝜆𝑛 ≈ 𝜆0
𝐿𝑛
𝐿0

 Equation 127 

 𝜇𝑛 ≈ 𝜇0
𝐿𝑛
𝐿0

 Equation 128 

 𝑀𝑜𝑛 ≈ 𝑀𝑜0
𝐿𝑛
𝐿0

 Equation 129 

 𝑉𝑎𝑟𝑛 ≈ 𝑉𝑎𝑟0 (
𝐿𝑛
𝐿0
)
2

 Equation 130 

Two other useful identities are the relationship between the UDF scale parameter 𝜆𝑛 and �̂� and the 

Coefficient of Variation 𝐶𝑂𝑉: 

 �̂�𝑛 =
𝐿𝑛√1 − �̂�

2(ln 2)
5
3𝜋

 Equation 131 
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𝐶𝑂𝑉 =

√𝜆2 (𝛤 (1 +
2
𝑘
) − (𝛤 (1 +

1
𝑘
) )

2

)

𝜆𝛤 (1 +
1
𝑘
)

≈ 55.14% 
Equation 132 

By consideration of Equation 132 the constant Coefficient of Variation implies there is no 

homogenisation associated with increasing scale for a purely fractal self-affine surface. 

4.1.4 Comparisons to Barton’s standard profiles and other studies 

Studies often digitise Barton’s standard roughness profiles and then estimate the associated fractal 

dimension or Hurst exponent to explore relationships between the two measurements. A similar 

comparison was completed using the theory presented in this Chapter to compare fractal 

characteristics of the standard profiles to those presented in other studies. The estimates of 𝐻 

presented in this Section are based on a probabilistic descriptions, digitising and measuring a single 

profile will not produce a valid estimate for 𝐻. In order to compare and contrast estimates of 𝐻 across 

multiple studies, the amplitude of asperities equal to the standard profiles (0.10m) were used in 

conjunction with Equation 116, Equation 122 and Equation 123 to estimate the value of 𝐻 required 

to produce a distribution of roughness such that the mean, median or mode value that corresponds to 

a particular 𝐽𝑅𝐶 at 0.10m. Numerical estimates of 𝐻 from various studies and this study are visually 

presented in Figure 57. Note that other studies estimating the fractal characteristics of the standard 

profiles using the fractal dimension have been converted to values of 𝐻 using Equation 41. 
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Figure 57 Graphical comparison of Joint Roughness Coefficient vs estimates of the Hurst exponent 

From review of Figure 57 it can be seen that the mode 𝐽𝑅𝐶 value estimate of 𝐻 matches closest to 

the fractal characteristics of Barton’s standard profiles, with the most comparable values from 

literature being those of Siedel and Haberfield (1995). It is unsurprising that the mode value 

corresponds closest to the standard profiles as these are deterministic or representative roughness 

profiles and would relate to the most likely roughness (i.e., the mode roughness value). The fact that 

the findings of this study do align with the results of others provides some evidence to the 

appropriateness of Equation 116, Equation 122, Equation 123 and Equation 124 to describe 

discontinuities at scales near 0.10m. 

In order to estimate the equation relating values of 𝐻, 𝐷 and 𝐽𝑅𝐶, the mode 𝐽𝑅𝐶 estimate was fitted 

to an appropriate non-linear model and evaluated using regression techniques. The results of the 

regression produced the following two following models relating 𝐽𝑅𝐶, the Hurst exponent 𝐻, and 

fractal dimension 𝐷: 

 𝐽𝑅𝐶 ≈ 162.64 × √1 − 𝐻 Equation 133 

 𝐽𝑅𝐶 ≈ 162.64 × √𝐷 − 1 Equation 134 

The regression 𝑟2 of this regression is 1.00. When comparing Equation 134 to the large list of 

relationship equations presented in Li and Huang (2015), the closest relationship previously reported 

in literature was that of Wakabayashi and Fukushige (1992) whose equation is given by: 

 𝐽𝑅𝐶 = 150.53 × √𝐷 − 1 Equation 135 

4.1.5 Comparisons to physical discontinuity measurements at various scales 

The Fractal approach appears promising at being able to describe discontinuity roughness at arbitrary 

scales. In order to accept this mathematical description, it must be shown to be representative of real 

world measurements over a number of scales. In order to compare the applicability of Equation 116, 

Equation 122, Equation 123 and Equation 124 and the more general fractal description of 

discontinuities, two different discontinuities over a wide range of scales were compared to the fractal 

model previously presented. The first data set contained field measurements of Barton’s length 
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amplitude approach associated with a natural Hawksbury sandstone joint with a 𝐽𝑅𝐶0 approximately 

equal to 10. The measurement routine and data manipulation used is as followed: 

1. 67 0.25m profile comb segments were taken and transferred to paper. Each segment was obtained 

in the same orientation to limit anisotropic influences. 

2. The length amplitude measurement for each profiles was manually measured at incremental scales 

of 0.05m using a ruler and compass. Successive measurements at a given scale were completed 

such that no two segments overlapped. 

3. Larger scales (i.e., lengths exceeding 0.25m) were manually measured using a straight edge and 

ruler. Each scale utilised a specific length straight edge to remove issues associated with measuring 

smaller scales using a longer straight edge. The scales measured using a straight edge covered 

0.50m, 0.60m, 0.80m, 1.00m, 1.30m and 1.60m. 

4. Each profile comb profile was then scanned and then finely digitised to allow for detailed 

numerical resampling. The average number of digitised points per segment was 660. 

5. Each digitised segment was then randomly resampled to obtain many measurements over a 

continuum of scales. Each digitised surface was randomly resampled 1000 times using the bridge 

rotation method, duplicate and trivial (i.e., measurements between adjacent points) measurements 

were then removed. The resample lengths were then rounded to the nearest millimetre, leaving the 

absolute roughness as determined to aid in probabilistic evaluation. 

The second data set came from laser scans of a very rough natural joint section from an operating 

mine. The approximate 𝐽𝑅𝐶0 for this joint was close to 20. The measurement routine and data 

manipulation is as followed: 

1. The laser scans were broken down into 196 ‘scan lines’ of the same orientation, which ranged in 

length from 3m to 16m and were typically between 8m and 12m with a resolution of roughly 5cm. 

2. Each digitised segment was then randomly resampled to obtain many measurements over a 

continuum of scales. Each digitised surface was randomly resampled 500 times using the bridge 

rotation method, duplicate and trivial (i.e., measurements between adjacent points) measurements 

were then removed. The resample lengths were then rounded to the nearest centimetre, leaving the 

absolute roughness as determined to aid in probabilistic evaluation. 

The Equation 116, Equation 122, Equation 123 and Equation 124 predicting the relationships for the 

mean value, median value, mode value, variance, coefficient of variation and �̂� were then compared 



Page | 176  

to the observed measurements to determine their effectiveness. Visual comparisons between these 

measured statistical values and the predicted fractal model are shown in Figure 58 through Figure 73. 

Note that manual and resampled measurements associated with the Hawkesbury Sandstone joint have 

been shown on two different plots for clarity. 

 

Figure 58 Absolute roughness vs discontinuity length - Hawkesbury Sandstone mean values 

 

Figure 59 Absolute roughness vs discontinuity length - Hawkesbury Sandstone mean values manual 

measurements 
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Figure 60 Absolute roughness vs discontinuity length - Hawkesbury Sandstone median values 

 

 

Figure 61 Absolute roughness vs discontinuity length - Hawkesbury Sandstone median values 

manual measurements 
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Figure 62 Absolute roughness vs discontinuity length - Hawkesbury Sandstone mode values manual 

measurements 

 

 

Figure 63 Absolute roughness variance vs discontinuity length - Hawkesbury Sandstone 
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Figure 64 Absolute roughness variance vs discontinuity length - Hawkesbury Sandstone manual 

measurements 

 

 

Figure 65 Coefficient of Variation vs discontinuity length - Hawkesbury Sandstone 
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Figure 66 Coefficient of Variation vs discontinuity length - Hawkesbury Sandstone manual 

measurements 

 

 

Figure 67 Hurst exponent vs discontinuity length - Hawkesbury Sandstone 
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Figure 68 Hurst exponent vs discontinuity length - Hawkesbury Sandstone manual measurements 

 

 

Figure 69 Absolute roughness vs discontinuity length - laser scan mean values 
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Figure 70 Absolute roughness vs discontinuity length - laser scan median values 

 

 

Figure 71 Absolute roughness variance vs discontinuity length - laser scan 
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Figure 72 Coefficient of Variation vs discontinuity length - laser scan 

 

 

Figure 73 Hurst exponent vs discontinuity length - laser scan 

Based on the above figures it is evident that a purely fractal self-affine approach is not an appropriate 

model to describe discontinuity roughness. It is interesting to note that at relatively small scales the 

fractal behaviour matches the field measurements in all statistical aspects, for example near 0.10m 

for the sandstone joint and near 0.50m for the laser scanned joint. It was also observed that �̂� was 

scale dependant, with the mean and median estimates remaining consistent to one another, while the 



Page | 184  

variance estimate produces larger values for �̂�. One may try to conclude from these findings that an 

alternative description is that the fractal characteristics; that is, 𝐻 is scale dependant as noted by Turk, 

Greig, Dearman & Amin (1987). This purely fractal interpretation was also discredited due to the 

observed reduction in the Coefficient of Variation with increasing scale. By considering Equation 

132, even if the true value of 𝐻 does change as a function of scale, the coefficient of variation is 

predicted to remain constant under the assumption a fractal description is still applicable. The change 

associated with the Coefficient of Variation suggests that as discontinuities increase in length there 

is some associated homogenisation that is; the PDF associated with 𝑅𝑎𝑏𝑠 is also scale dependant. 

4.1.6 Relationships to 𝑱𝑹𝑪𝒏 

Although a purely fractal description is not a viable model for discontinuity roughness, the roughness 

measurements from this approach do match remarkably well with Bandis’ Scaling Law. This 

consistency is obtained by converting the scale dependant values of �̂� to values of 𝐽𝑅𝐶 using Equation 

133. Comparisons between the scale dependant 𝐽𝑅𝐶 and Bandis’ Scaling Law (from Table 1) are 

shown in Figure 74 through Figure 76. 

 

Figure 74 Joint Roughness Coefficient vs discontinuity length - Hawkesbury Sandstone 𝐽𝑅𝐶0 =

8.9, 𝐿0 = 0.10m 
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Figure 75 Joint Roughness Coefficient vs discontinuity length - Hawkesbury Sandstone manual 

measurements only 𝐽𝑅𝐶0 = 8.9, 𝐿0 = 0.10m 

 

Figure 76 Joint Roughness Coefficient vs discontinuity length - laser scan 𝐽𝑅𝐶0 = 20.0, 𝐿0 =

0.75m 

Note that in Figure 76 𝐿0 was chosen such that it corresponds to a JRC0 = 20.0. Note that Equation 

133 and Bandis’ scale equation produces values of 𝐽𝑅𝐶 in excess of 20. By consideration of Figure 

74 through Figure 76 it is apparent that by using Equation 116 or Equation 122 in conjunction with 

Equation 133 it is possible to closely replicate Bandis’ Scaling Law. These findings suggest that even 
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though discontinuities are not completely described by a fractal model, scale dependant estimates of 

𝐻 using the methods derived in this Section are both useful and accurate in describing roughness 

characteristics at increased scales. 

4.2 Cross Joint Spacing 

So far in this Thesis, the main body of work has dealt with intact rock behaviour, while toppling 

failure is ultimately controlled by structure. In order to understand the POF associated with toppling, 

there needs to be some appreciation for the PDF associated with cross joint spacing. Recall that the 

FOS equation for Case 3 Toppling is given by: 

 𝐹𝑂𝑆 =  
𝑡/ℎ

tan 𝜃
=  

𝑡

ℎ tan 𝜃
 Equation 136 

where 𝑡 is the bed thickness (m), ℎ is the cross joint spacing (m) and 𝜃 is the bedding dip (˚). Two 

different approaches can be used to estimate a plausible UDF for joint spacing: 

Physical measurements - While this method would be the most ‘pure’ estimation technique to derive 

a PDF or UDF for joint spacing estimation there are some restrictions. Firstly, the joint spacing data 

that was available during the duration of this Thesis was not in a usable form, as it did not consider 

joint spacing as a function of bed thickness. Secondly, the evolution of jointing is a complex 

phenomenon and is not an intrinsic ‘material parameter’. As joints are formed as a result of many 

interacting and compounding factors, statistical analysis considering physical measurements will 

likely require ‘site specific constants’ to produce consistent fits across multiple lithology sources. 

While these constants are not an issue for a typical practical application, they are problematic when 

attempting to describe a general stability problem considering cross joint spacing. For example, a 

likely site specific constant would arise from some interaction between the acting field stress and rock 

tensile or compressive strength. While this contribution would be measureable (as in it appears as a 

constant), the physical meaning of this constant is lost in the analysis. 

Mathematical Modelling - This approach attempts to derive a plausible PDF or UDF for joint 

spacing, based on some mathematical model that describes the joint formation process. This approach 

does lend itself to rigorous analysis, as any model component can be arbitrarily specified and varied. 

Site specific constants are not apparent as their relationships to measurable components is always 

considered. The limitation of mathematical modelling is that only the physical processes described 
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by the model can be considered, and the results must be validated against physical measurements to 

confirm their accuracy. 

The methodology used in this section to estimate the UDF of joint spacing was chosen as a 

mathematical model, building on the theory presented by Hobbs (1967), considering how stresses are 

generated about a single fracture or joint within a given bed of rock (in two dimensions assuming a 

1m slice). Hobbs’ theory is presented in the following section: 

4.2.1 Hobb’s theory for cross joint generation 

Given a bed of thickness 𝑑 (m), with associated bed Young’s Modulus 𝐸𝐵 (Pa) and a globally applied 

strain of 휀, the tensile load 𝑃 (N) a distance 𝑥 perpendicular to a vertical fracture is given by: 

 𝑃(𝑥) = 𝐸𝐵 ∙ 𝑑 ∙ 휀(1 + 𝐴 sinh(𝐶𝑥) − 𝐵 cosh(𝐶𝑥)) Equation 137 

where 𝐴, 𝐵 and 𝐶 are constants. When the boundary conditions 𝑃(0) = 0 and lim
𝑥→∞

𝑃(𝑥) → 𝐸 ∙ 𝑑 ∙ 휀 

are applied along with the assumption of zero slip occurs on adjacent bed contacts: 

 𝑃(𝑥) = 𝐸𝐵 ∙ 𝑑 ∙ 휀 (1 + sinh(
2𝑥

𝑑
√
𝐺𝑁
𝐸𝐵
)− cosh(

2𝑥

𝑑
√
𝐺𝑁
𝐸𝐵
)) Equation 138 

where 𝐺𝑁 is the neighbouring bed’s Shear Modulus (Pa). If a secondary fracture exists a distance of 

𝑙 from the original fracture, the boundary conditions 𝑃(0) = 0 and 𝑃(𝑙) = 0 can be applied to 

Equation 137 with the same assumption of zero slip on bed contacts to produce the following 

relationship: 

 𝑃(𝑥) = 𝐸𝐵 ∙ 𝑑 ∙ 휀

(

  
 
1 −

cosh(
2
𝑑
√
𝐺𝑁
𝐸𝐵
(
𝑙
2
− 𝑥))

cosh (
𝑙
𝑑
√
𝐺𝑁
𝐸𝐵
)

)

  
 

 Equation 139 

When Equation 138 and Equation 139 are converted to stresses by dividing by the cross sectional 

area (𝑑) and using the following relationship: 
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 𝜎 = 𝐸 ∙ 휀 Equation 140 

 𝜎(𝑥) = 𝜎0 (1 + sinh(
2𝑥

𝑑
√
𝐺𝑁
𝐸𝐵
)− cosh(

2𝑥

𝑑
√
𝐺𝑁
𝐸𝐵
)) Equation 141 

 𝜎(𝑥) = 𝜎0

(

  
 
1 −

cosh(
2
𝑑
√
𝐺𝑁
𝐸𝐵
(
𝑙
2 − 𝑥)

)

cosh (
𝑙
𝑑
√
𝐺𝑁
𝐸𝐵
)

)

  
 

 Equation 142 

where 𝜎0 is the equivalently acting far field tensile stress (Pa). Another simplification that can be 

made is to consider that adjacent beds are composed of similar rock, for example, a sandstone bed 

sandwiched between two similar sandstone beds. If this simplification is applied, the following 

relationships are produced: 

 𝜎(𝑥) = 𝜎0 (1 + sinh (
2𝑥

𝑑√2(1 + 𝑣)
) − cosh (

2𝑥

𝑑√2(1 + 𝑣)
)) Equation 143 

 𝜎(𝑥) = 𝜎0

(

 
 
 
 

1 −

cosh(
2

𝑑√2(1 + 𝑣)
(
𝑙
2 − 𝑥)

)

cosh (
𝑙

𝑑√2(1 + 𝑣)
)

)

 
 
 
 

 Equation 144 

Equation 141 and Equation 142 produce two competing stress fields, which will dictate the growth 

of cross jointing occurs in a single bed. To elaborate, consider an initially intact and unbounded 1m 

section (in the third direction) of a bedded material with thickness 𝑑. Some constant external tensile 

stress 𝜎0 is applied due to some combination of tectonic stresses, gravitational loading or external 

loads. At some location, a primary fracture would form as a result of the local stresses exceeding the 

local tensile strength. This primary fracture is then defined with a local coordinate system such that 

it is located at 𝑥 = 0. Concurrent to the formation of the primary fracture, a second fracture may also 
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form. The location of this fracture is then defined relative to the primary fracture and is a distance 𝑙 

away. Additional fractures may then form from two different processes: 

Fracture Saturation - The tensile stresses between two adjacent joints (Equation 142) are sufficient 

to exceed local tensile strength and a new joint forms. This process then continues recursively until 

the joints reach a saturated state where no new joints are able to form; and 

Fracture Interspersion - The tensile stresses in a region not bound by two joints exceeds the local 

tensile strength (Equation 141) and a new joint forms. The region between these two joints then begins 

the Fracture Saturation process. This process continues recursively until a geological boundary or no 

locally weak zones are encountered. 

In order to estimate where cross joints will form in a given bed, it is possible to relate the stress field 

equations to the material’s UTS to determine where a fracture will form as a function of the distance 

from an initially formed fracture. Using the hyperbolic trigonometric identities, Equation 141 can be 

expressed in terms of exponentials to produce: 

 𝜎(𝑥) = 𝜎0 (1 − 𝑒
−
𝑥
𝛿) Equation 145 

where: 

 𝛿 =
𝑑

2
√
𝐸

𝐺
 Equation 146 

For similarly bedded materials, 𝐺 can be related to the Young’s Modulus 𝐸 and Poisson’s Ratio 𝑣 

such that: 

 𝐺 =
𝐸

2(1 + 𝑣)
 Equation 147 

This gives the following relationship for the local tensile stress as a function of 𝑥: 
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 𝜎(𝑥) = 𝜎0 (1 − 𝑒
−

2𝑥

𝑑√2(1+𝑣)) Equation 148 

a new fracture will form when the local stresses exceed the material’s tensile strength 𝜎𝑡. Solving for 

𝑥: 

 𝑥 =
−𝑑√2(1 + 𝑣)

2
ln (1 −

𝜎𝑡
𝜎0
) Equation 149 

Equation 149 produces a deterministic fracture spacing estimate for a homogenous material, given 

some combination of applied stresses and material parameters. Of interest is that Equation 149 

produces undefined fracture spacing over the region 𝜎𝑡 ≥ 𝜎0 with the deterministic joint spacing 

tending to infinity as 𝜎0 approaches 𝜎𝑡. This infinite and undefined joint spacing does become 

mathematically problematic when considering 𝜎𝑡 as a random variable. To demonstrate this, consider 

the CDF associated with joint spacing for a problem described by 𝜎0 = 5 𝑀𝑃𝑎, �̅�𝜎𝑡 = 5 𝑀𝑃𝑎 with 

the UTS being described by a Rayleigh Distribution, 𝑑 = 2.5𝑚 and 𝑣 = 0.3. The calculated CDF for 

both UTS and cross joint spacing is summarised in Table 57. 

Table 57 Equivalent Cumulative Distribution Function for cross joint spacing 

Percentile Tensile Strength Associated Cross Joint Spacing 

10% 1.83 MPa 0.91 m 

20% 2.67 MPa 1.52 m 

30% 3.37 MPa 2.23 m 

40% 4.03 MPa 3.27 m 

50% 4.70 MPa 5.59 m 

54% 4.99 MPa 12.53 m 

54% 5.00 MPa Undefined 

75% 6.64 MPa Undefined 

95% 9.77 MPa Undefined 

100% 19.14 MPa Undefined 
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Using Table 57, the interpretation is that 46% percent of all cross joints will be separated by an infinite 

distance, which is not physically possible. One may then try and conclude that the CDF and EDF 

should be calculated up until the point where 𝜎0 = 𝜎𝑡 to produce a viable range, however this becomes 

severely limited when 𝜎0 is a ‘realistic’ value (e.g., less than 1 MPa). 

4.2.2 Simulating cross joint generation processes 

In order to estimate the cross joint spacing that has a more pronounced upper bound, material 

heterogeneity can be used to circumvent the issue of an undefined upper bound. By simulating a rock 

bed with a randomly distributed strength profile, at some point along the bed, the local UTS will be 

exceeded by chance at some location, resulting in a finite upper bound. A second benefit of this 

heterogeneous approach is that only Fracture Interspersion process using a bed with an initial 

randomly distributed tensile strength needs to be considered. The justification of this is elaborated 

below: 

Start by randomly generating a bed of rock containing a heterogeneous distribution of UTS, in 

accordance to the UDF of tensile strength. The heterogeneity is discretised based on the scale that 

UTS is quantified (0.054m). Assume a primary crack exists at 𝑥 = 0. Calculate the stress field as a 

function of distance, 𝜎(𝑥). Determine the first instance (i.e., checking from 𝑥 = 0 in the positive 

direction) where the local tensile strength is first exceeded. Form a crack at this new location. This 

process is shown in Figure 77. 

 

Figure 77 Initial crack formation location. Blue line represents local tensile strength 

The local tensile stresses are then updated based on this new fracture. Equation 142 is used to describe 

the tensile stresses between the origin and the first crack and Equation 141 is then used to calculate 
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the stress field beyond the newly formed fracture. Note that the stress field between the origin and 

first fracture is always less than or equal to the original stress field. By consideration of this fact and 

how fracture location was checked, no new fractures are able to form between adjacent fractures, as 

the updated stress field (i.e., changing from using Equation 141 to Equation 142) will never exceed 

the initially higher stress and tensile strength at any point. The next fracture location is then 

determined. This process is shown in Figure 78. 

 

Figure 78 Stress field after the first crack forms. Blue line shows local tensile strength 

This is then repeated from the new crack many times. This process is shown in Figure 79. 

 

Figure 79 Updated stress field after additional cracks form. Blue line shows local tensile strength 

The methodology presented ensures that the saturated fracture spacing is always achieved under the 

assumption that 𝜎0 is constant. 
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In order to help evaluate a general probabilistic model for joint spacing, a wide range of input 

combinations were assessed. The model inputs tested cover all combinations of: 

• median UTS ranging from 2.5 MPa to 15.0 MPa (6 values); 

• far field tensile stresses ranging from 1.0 MPa to 20 MPa (6 values); 

• Poisson’s Ratio ranging from 0.05 to 0.4 (5 values); and 

• bed thicknesses ranging from 0.054m to 5.0m (8 values). 

Each input combination (1440 total cases) were assessed to obtain an output of 2500 joint spacing 

measurements. To aid in producing a more continuous range of fracture spacing, while the tensile 

strength has a discrete distribution, the induced tensile stresses are evaluated ‘continuously’. This 

continuous evaluation is done at 1mm increments along the length. 

Limitations and Assumptions 

Several assumptions have been made for the final analysis and also the methodology does pose some 

limitations: 

Not all possible mechanisms for joint formation are assessed - The method and theory presented 

is as previously mentioned based on the mathematical derivation given by Hobbs, and relies on 

fractures being formed due to external tensile stresses. Other mechanisms such as fractures being 

formed due to shearing are not considered. Fractures that form parallel to some uniaxial compressive 

stress 𝜎𝐶 , are considered. In these instances, the far field tensile stress can be generated from Hooke’s 

law to give: 

 𝜎0 ≈ −𝑣𝜎𝐶  Equation 150 

Heterogeneity is one dimensional - The material parameter heterogeneity is modelled using a one 

dimensional variation. A more realistic approach would be to discretise the entire bed into a 0.054m 

x 0.054m x 1.0m random grid, which would then allow for another dimension of heterogeneity to be 

considered. If this were to be included, one would expect that the joint spacing might be smaller than 

the one dimensional simulation, as fractures may initiate at more than one location at some distance 

from an initially formed fracture. The problem with using this approach is that Hobb’s theory only 

gives a one dimensional equation in terms of forces, which are convertible to an equivalent stress 
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acting over 𝑑. In order to evaluate the heterogeneity over the bed thickness, the tensile stress at each 

point within the bed would need to be quantified. 

Only tensile strength is treated as a random variable - While it is possible to simulate all model 

components as random variables, only the UTS is treated as a random variable. This simplified 

approach was done to minimise the numerical simulation time and to produce a first pass estimate 

that can be compared to field measurements. Treating other variables as random (in particular 𝐺𝑁) 

can also bring into question the assumption of zero slip on contacts being true for all simulations. 

 

Figure 80 Example simulation of non-uniform stress field and mean stress field 

4.2.3 Cross joint spacing results 

Upon completing the simulation campaign, it was noted that there were considerable issues associated 

with the approach used. As a general conclusion, either simulations results were limited by stress 

field evolutions, discretisation resolution, or they produced reasonable results. Examples of these 

three types of simulation results are shown in Figure 81 through Figure 83. 
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Figure 81 Example of simulation results limited by discretisation resolution 

 

Figure 82 Example of simulation results limited by stress resolution 
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Figure 83 Example of good simulation results 

While the actual simulated distributions do have the aforementioned limitations, there are some 

general insights that can be presented. The largest influences on the simulated cross joint spacing 

were associated with the bed thickness and the ratio of the applied tensile stress to the UTS. 

Comparisons showing the mean cross joint spacing and the associated variance as a function of these 

two inputs are shown in Figure 84 and Figure 85. 
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Figure 84 Mean cross joint spacing vs field stress ratio 

 

Figure 85 Cross joint spacing variance vs field stress ratio 
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By review of Figure 84 and Figure 85, it is apparent that: 

• As the field stress ratio increases, the mean spacing decreases. 

• As the field stress ratio increases the associated variance decreases. 

• Thicker beds are associated with higher mean spacing and higher variances. 

• Poisson’s Ratio has a very small influence. 

For clarification, the Poisson’s ratio influence is noted to be small as that for each combination of bed 

thickness, UTS and applied tensile stress, all simulated Poisson’s ratio values overlap or differ by a 

considerably small margin. Another feature that is apparent within the simulation results is the 

distribution of cross joint spacing at very low stress field ratios. In this region, Hobb’s theory suggests 

an undefined cross joint spacing while the simulations produce a finite and exponential like 

distribution. An example of an exponential like simulation at low stress ratios is shown in Figure 86. 

 

Figure 86 Example of Exponential fit 

This exponential like distribution was not apparent at higher stress field ratios. This PDF behaviour 

does offer some deeper insights into a potential UDF for cross joint spacing. An appropriate PDF 

family to describe cross joint spacing needs to be able to produce exponential like and non-

exponential like distributions. Two well-known PDF families, which have this behaviour are the 

Weibull and Gamma distributions. An example of the comparisons of a Gamma and Weibull 

distribution to simulated cross joint spacing data is shown in Figure 87. 
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Figure 87 Example Gamma and Weibull Distribution fits 

From completing KS testing using the associated Maximum Likelihood Estimates of each simulation, 

the Gamma distribution showed the best overall goodness of fit with 208 of the 1440 simulations 

being sufficiently described. The Weibull distribution showed less goodness of fit with 140 

simulations being accepted. This low acceptance rate is attributed to the previously mentioned 

resolution limitations. The findings of this analysis indicate that the most appropriate PDF associated 

with cross joint spacing is a Gamma distribution. 

While the results of this section were not ideal, they do offer some testable inferences. Firstly, for 

geological settings, which have experienced low stresses, the distribution associated with cross joint 

spacing should be well approximated by an exponential like gamma distribution, with a smaller 

average spacing being associated with thinner beds. As the applied stresses increase, the cross joint 

spacing should decrease and the spacing should tend to a more uniform spaced due to the reduction 

in associated variance. This close and uniform fracture spacing at high stresses is observed in practice, 

particularly evident in core disking (Lim & Martin, 2010). It is suspected that the relationship between 

spacing and stress in core disking is governed by the same general relationship between the acting 

field stress and UTS. Future research utilising physical joint spacing measurements will be able to 

shed more light into the formation and general applicability of a gamma distribution to describe the 

distribution of cross jointing. 
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5 Revisiting Factor of Safety and Probability of Failure 

The contributions and new results presented in Chapter Two, Three and Four the relationship between 

FOS, POF and scale can be revisited. Recall the governing hypothesis from Chapter One: 

If a geological system is sufficiently definable in terms of both variability and mechanical behaviour, 

a one to one relationship between Factor of Safety and Probability of Failure can be routinely 

calculated. 

In terms of this governing hypothesis, the main findings in this Thesis has demonstrated that rock 

material parameter variability over scales would constitute ‘sufficiently definable’. 

Chapter 2 demonstrated that UDFs are a good approximation at the laboratory scale, and are suitably 

generalisable to any given rock problem. This result means that the input selections for each material 

parameter is consistent across different rock types and results in consistent equations. 

Chapter 3 demonstrated is that at increased scales, the behaviour of material parameters varies 

systematically as a function of increasing scale. While the behaviours may be case specific, the 

variation is systematic and the underlying PDF family remains consistent. 

Chapter 4 demonstrated that the most appropriate PDF associated with cross joint spacing is a Gamma 

distribution. The consistency of PDF, like with the main findings of Chapter 2 means consistent across 

different rock types and results in consistent equations. 

Based on the previous findings in this Thesis, there are some shortcoming which do need to be 

highlighted: 

UDF scale parameters typically have a viable range. While the distribution family for each UDF 

is universal, the scale parameters are often expressed in terms of some percentage range of the mean 

or median value. This initialised uncertainty means that a single relationship is unlikely to be 

determined due to these initial variations. 

USFs and Homogenisation are case specific. The findings in Chapter Three demonstrate that the 

USF and rates of homogenisation differ between simulated samples at scale. This makes it likely 

impossible to solve for the relationship between FOS POF as a function of only laboratory scale 

material parameters, and the desired scale of interest. The UDF family remains relatively consistent 

over scales, meaning a routine calculation method can still be considered. 
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Problem geometry is completely deterministic. This is the most problematic component of 

calculating a relationship between FOS and POF. Variations between design and actual problem 

geometry is generally inevitable in mining and can vary considerably. While the geometry used is 

typically case specific, it is also therefore calculated on a case by case basis. 

Geological features are deterministic. Major geological features (e.g., a discrete structure) need to 

be treated deterministically for a given problem. If the location of major structures or failure surfaces 

were allowed to vary, it would make it difficult to determine an appropriate POF as the FOS itself 

can vary for a particular problem configuration. These deterministic geological features include the 

angle of failure, discontinuity persistence and failure plane location. 

Density can be treated as essentially deterministic. The general scale dependant behaviour of dry 

density was determined in closed form and is given by Equation 107 and Equation 108, the variance 

associated with density is very small, especially when considering larger scales. While the inclusion 

of a variable material density is simple to implement in Monte Carlo simulations, including this 

consideration in mathematical derivations is not possible without the use of numerical methods. 

While these limitations will likely prohibit the formulation of a general one to one relationship 

considering FOS and scale, some further insights are still possible. The following sections derive and 

numerically validate the possible closed form relationships between FOS POF considering scale 

based on the main findings of this Thesis. 

5.1 Factor of Safety Decomposition 

One beneficial feature of the FOS equations summarised in Table 2 is the fact that each FOS 

calculation relationship can be decomposed into the individual FOS contributions of each relevant 

material parameter. This decomposing is given as: 

 𝐹𝑂𝑆 = 𝐹𝑂𝑆𝑋1 + 𝐹𝑂𝑆𝑋2 +⋯+ 𝐹𝑂𝑆𝑋𝑛  Equation 151 

where each 𝐹𝑂𝑆𝑋𝑛 is the univariate FOS contribution associated with material parameter 𝑋𝑛. The 

number of FOS terms depends on the particular problem’s complexity; for example, the number of 

unique lithologies, the modelled failure mode and the problem’s heterogeneity interpretation. Despite 

having numerous FOS equations summarised in Table 2, the decomposed FOS contributions for 

friction, cohesion and tension are identical in each equation and are shown below: 
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 𝐹𝑂𝑆𝜙 =
𝑊 cos 𝜃 tan𝜙

𝑊 sin 𝜃
=  
tan𝜙

tan𝜃
 Equation 152 

 𝐹𝑂𝑆𝑐 =
𝑐𝐴

𝑊 sin 𝜃
 Equation 153 

 𝐹𝑂𝑆𝜎𝑡 = 
𝑡𝐴′ sin(𝛼 − 𝛽)

𝑊 sin 𝛼
 Equation 154 

 𝐹𝑂𝑆𝜎𝑡 =
𝑡𝐴 sin(𝛼 − 𝛽)

𝑊 sin𝛼 cos 𝛽
 Equation 155 

 𝐹𝑂𝑆𝑖 = 
𝑭𝑷𝒊

∑ 𝑭𝑨𝒊
𝑛
𝑖=1 ∙ �̂�

 Equation 156 

Note that 𝐹𝑂𝑆𝑐 (Equation 153) and 𝐹𝑂𝑆𝜙(Equation 152) are appropriate for non-persistent cases but 

require the correction in terms of 𝑘 to be applied. Two different Equations for 𝐹𝑂𝑆𝜎𝑡 are presented 

as the value is interpretation specific. Equation 156 is a general expression for all other 

decompositions expressed in terms of vectors. The Barton Bandis criterion (Equation 6) cannot be 

decomposed into its FOS components. As each FOS component is a univariate equation, the 

calculation of the POF for each component is straightforward. These are derived in the following 

sections. 

A note of clarification. The above concept of decomposing the FOS into the individual components 

does not change the definition, or the calculated FOS. This approach is simply a mathematical 

construction that allows for the calculation of the POF integral to be manageable. This approach in 

essence is separating the FOS into the linear combinations associated with each univariate 

relationship. The FOS calculated as a single value and as a decomposed value will always return an 

identical FOS for a given problem. 
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5.2 Factor of Safety Probability of Failure Relationships for Frictional Components 

Based on the analysis presented in Chapter Two and Three, Table 58 summarises the expected 

behaviour of friction over scale: 

Table 58 Summary of the behaviour of friction at scale 

 Peak friction Residual friction 

Laboratory UDF Laboratory scale UDF of friction is described by a normal distribution 

USF 

Negative and material specific. 

Stabilises quickly to 77% to 90% of 

Laboratory scale 

Negative or non-existent. Stabilises 

quickly to 90% to 100% of 

Laboratory scale 

Scale dependent 

UDF 
Normal distribution is a very good approximation at increased scales 

Homogenisation 
Pronounced homogenisation at 

increased scales 

Material specific. Either no 

homogenisation or some degree of 

homogenisation 

The behaviour of friction over scale, while not well defined behaved is at least consistent. For 

example, given some type of rock and a scale of interest, the friction angle can be measured from 

physical testing, or estimated from heterogeneous numerical methods. The measurement at this scale 

(assuming larger than laboratory) will typically have a lower median value, a smaller standard 

deviation and will be reasonably well approximated by a normal distribution. These observations will 

produce some combination of 𝜇𝜙 and 𝜎𝜙 that is applicable for the scale of interest. While this is not 

ideal, it still does make it possible to calculate a usable general relationship, if the 𝑃𝑂𝐹𝜙 is calculated 

in terms of the case specific values of 𝜇𝜙 and 𝜎𝜙 and some scale 𝑉𝑛; that is: 

 𝑃𝑂𝐹𝜙 = 𝑃 (𝐹𝑂𝑆𝜙 ≤ 1|𝜇𝜙𝑉𝑛 , 𝜎𝜙𝑉𝑛) Equation 157 

The issue with directly calculating 𝑃𝑂𝐹𝜙 is that the PDF of 𝜙 is fed through the Tangent function 

(tan(∙)), which will change the output distribution nonlinearly. To demonstrate this, the CDF of four 

different normal distributions (𝜇𝜙=15°, 30°, 45° and 60°) with standard deviation of 1 were 

transformed using tan(∙). The location adjusted output PDFs are shown in Figure 88. 
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Figure 88 Cumulative Distribution Function of normalised friction coefficients 

It is quite evident that the CDFs in Figure 88 are dependent on 𝜇𝜙. In order to calculate Equation 157, 

the PDF associated with tan𝜙 needs to be known. A very accurate approximation of the distribution 

of tan𝜙 is given by: 

 𝑋𝑡𝑎𝑛(𝜙) ≈ 𝒩(tan(𝜇𝜙) , 𝜎𝜙
2 sec4(𝜇𝜙)) Equation 158 

With the associated standard deviation given as: 

 𝜎tan(𝜙) ≈ 𝜎𝜙 sec
2(𝜇𝜙) Equation 159 

This approximation is derived using the delta method, where: 

 
𝑉𝑎𝑟(𝑓(𝑋)) ≈ (𝑓′(𝐸(𝑋)))

2

𝑉𝑎𝑟(𝑋) 
Equation 160 

The accuracy of Equation 158 was compared to Monte Carlo simulations (25,000 realisations per 

simulations) for various combinations of 𝜇𝜙 and 𝜎𝜙. Values selected for 𝜇𝜙 ranged from 1° to 64° 

and for each simulation and 𝜎𝜙 was selected as 12.57% of 𝜇𝜙. The selection of 𝜎𝜙 was chosen to 

align with the most varied distribution of 𝜙 possible based on the information presented in Table 58. 

Two comparative measurements were used to compare Equation 158 and the numerical simulations: 
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• mean value and standard deviation; and 

• median value, and the standard deviation calculated using the Median Absolute Deviation 

(MAD). 

MAD is a robust measurement for data variability. As this value is calculated using the median value, 

it is not as influenced by outliers and skewed data. MAD is defined as (Hampel 1974): 

 𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑋𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)| Equation 161 

The standard deviation can be estimated using MAD (Rousseeuwm & Croux 1993): 

 �̂� = 𝑘 ×𝑀𝐴𝐷 Equation 162 

where 𝑘 is a constant. For normal distributions 𝑘 is given by: 

 𝑘 =
1

𝛷−1(3/4)
≈ 1.4826 Equation 163 

The MAD was used in this instance to provide a more robust measure considering the output 

distribution is expected to be highly skewed. Comparisons between the percentage difference between 

Monte Carlo simulations and Equation 158 for the location parameter and standard deviation are 

shown in Figure 89 and Figure 90 respectfully. 
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Figure 89 Percentage difference in Monte Carlo simulations and approximated location parameter 

 

Figure 90 Percentage difference in Monte Carlo simulations and approximated standard deviation 

Note the mean percentage difference for the mean value in Figure 89 continues to increase and reaches 

a maximum of 17.24%. The standard deviation percentage difference in Figure 90 continues to 

increase and reaches a maximum of 697.74%. From review of Figure 89 and Figure 90 the difference 

between simulated outputs and Equation 158 are very small. As expected, the highly skewed nature 

of tan(∙) is evident in the mean and standard deviation values, while more or less not apparent in 

measurements using MAD. Based on the simulation results, the delta method approximation given 
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by Equation 158 is sufficiently accurate to be used. Using Equation 152, 𝐹𝑂𝑆𝜙 ≤ 1 when tan𝜙 ≤

 tan 𝜃. 𝑃𝑂𝐹𝜙 is then given by: 

𝑃𝑂𝐹𝜙 = ∫
𝑒
−
(𝑥−tan(𝜇𝜙))

2

2𝜎𝜙
2 sec4(𝜇𝜙)

√2𝜋𝜎𝜙2 sec4(𝜇𝜙)

 𝑑𝑥
tan𝜃

−∞

=
1

2
(1 + erf (

tan(𝜃) − tan(𝜇𝜙)

√2𝜎𝜙 sec2(𝜇𝜙)
)) Equation 164 

Use the substitution that: 

 tan 𝜃 =  
tan𝜙

𝐹𝑂𝑆𝜙
 Equation 165 

The final POF relationship obtained is: 

 𝑃𝑂𝐹𝜙 =
1

2
[1 + erf (

sin(𝜇𝜙) cos(𝜇𝜙) (1 − 𝐹𝑂𝑆𝜙)

√2𝜎𝜙𝐹𝑂𝑆𝜙
)] Equation 166 

Equation 166 is the general solution for the POF for any single frictional component. Note that 

Equation 166 could be expressed in terms of the mean, median or mode FOS because these are all 

equivalent deterministic estimates. Equation 166 is also applicable to any scale of interest, as long as 

the mean and standard deviation of the scale of interest is known. An interesting feature of Equation 

166 is that while the inputs are approximately normally distributed and have zero skew, the 

relationship between FOS and POF is subtly positively skewed. This is demonstrated in Figure 91 

where a particular FOS POF relationship is shown, along with the symmetric normal approximation 

of best fit. 
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Figure 91 Demonstration of the Factor of Safety Probability of Failure relationship skewness, 𝜇𝜙 =

60°, 𝜎𝜙 = 7.542° 

Note the ‘unrealistic’ mean friction value used in Figure 91 is to exaggerate the skewness for clarity. 

As a final check for the accuracy of Equation 166, 1000 evaluations of FOS POF estimates calculated 

using Monte Carlo Sampling, with each simulation having 100,000 realisations to compare the 

accuracy of Equation 166. The CDF of the simulated difference is shown in Figure 92. 

 

Figure 92 Difference in probability output - friction 

It is apparent from Figure 92 that the Monte Carlo estimates for the POF typically match the value 

produced using Equation 166 and in extreme cases, overestimates the simulation POF by at most 

2.5%. It was also seen that these largest differences were generally associated with Monte Carlo 
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simulations that had large values of both 𝜇𝜙 and 𝜎𝜙. Based on the simulation results, Equation 166 is 

sufficiently accurate at describing 𝑃𝑂𝐹𝜙. It also needs to be noted that some of the error shown in 

Figure 92 is due to the random nature of the Monte Carlo Sampling. 

5.2.1 Special case for generalised frictional components 

While Equation 166 is appropriate at describing the relationship between 𝑃𝑂𝐹𝜙 and 𝐹𝑂𝑆𝜙 for a single 

component, the generalised equation for 𝐹𝑂𝑆𝜙 is given as: 

 𝐹𝑂𝑆𝜙 =
∑ 𝑊𝑖 cos 𝜃𝑖 tan𝜙𝑖
𝑛
𝑖=1

∑ 𝑊𝑖 sin 𝜃𝑖
𝑛
𝑖=1

 Equation 167 

Which describes the total frictional FOS contributions of an arbitrary path through an arbitrary 

number of unique materials. While the completely generalised expression is dealt with in the 

following section, the second special case is Equation 168, which describes an arbitrary failure path 

through a single material: 

 𝐹𝑂𝑆𝜙 =
tan𝜙∑ 𝑊𝑖 cos 𝜃𝑖

𝑛
𝑖=1

∑ 𝑊𝑖 sin 𝜃𝑖
𝑛
𝑖=1

 Equation 168 

From Equation 168 it is straightforward to show that 𝐹𝑂𝑆𝜙 ≤ 1 when: 

 tan𝜙 ≤
∑ 𝑊𝑖 sin 𝜃𝑖
𝑛
𝑖=1

∑ 𝑊𝑖 cos 𝜃𝑖
𝑛
𝑖=1

 Equation 169 

Using a similar form of Equation 164 and the substitution: 

 
∑ 𝑊𝑖 sin 𝜃𝑖
𝑛
𝑖=1

∑ 𝑊𝑖 cos 𝜃𝑖
𝑛
𝑖=1

=
tan𝜙

𝐹𝑂𝑆𝜙
 Equation 170 

An identical derivation follows resulting in the same result as Equation 166. What this means in 

practice is that for a homogenous material, the relationship between 𝐹𝑂𝑆𝜙 and 𝑃𝑂𝐹𝜙 is not influenced 

by the complexity of the failure path. While a complex failure may have a different value of 𝐹𝑂𝑆𝜙, 

the value of 𝑃𝑂𝐹𝜙 can always be identically calculated. 
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5.2.2 Generalised friction case 

The complete generalised frictional case is more cumbersome to calculate but it can be done. 

Expanding Equation 167: 

𝐹𝑂𝑆𝜙 =
𝑊1 cos 𝜃1 tan 𝜙1

𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛
+⋯+

𝑊𝑛 cos 𝜃𝑛 tan𝜙𝑛
𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛

= 𝐹𝑂𝑆𝜙1 +⋯+ 𝐹𝑂𝑆𝜙𝑛  Equation 171 

Recall that the distribution associated with each tan(𝜙𝑛) is approximately normally distributed. 

Using this fact, Equation 171 can be converted to an equivalent normal distribution using linear 

combinations of the PDF of each; that is: 

∑
𝑊𝑛 cos 𝜃𝑛

𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛
𝑋𝑖

𝑛

𝑖=1

~𝒩(∑
𝑊𝑛 cos 𝜃𝑛

𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛
𝜇𝑖

𝑛

𝑖=1

,∑(
𝑊𝑛 cos 𝜃𝑛

𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛
𝜎𝑖)

2𝑛

𝑖=1

) 
Equation 

172 

where each 𝜎𝑖 is given by: 

 𝜎𝑖 ≈ 𝜎𝜙𝑖 sec
2(𝜇𝜙𝑖) Equation 173 

For clarity, Equation 172 then gives us the PDF associated with 𝐹𝑂𝑆𝜙. Calculating the 𝑃𝑂𝐹𝜙 yields 

the completely generalised relationship: 

𝑃𝑂𝐹𝜙 = ∫
1

√2𝜋∑ (
𝑊𝑛 cos 𝜃𝑛

𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛
𝜎𝑖)

2
𝑛
𝑖=1

𝑒

−
(𝑥−∑

𝑊𝑛 cos 𝜃𝑛
𝑊1 sin𝜃1+⋯+𝑊𝑛 sin𝜃𝑛

𝜇𝑖
𝑛
𝑖=1 )

2

2∑ (
𝑊𝑛 cos 𝜃𝑛

𝑊1 sin𝜃1+⋯+𝑊𝑛 sin𝜃𝑛
𝜎𝑖)

2
𝑛
𝑖=1  𝑑𝐹𝑂𝑆𝜙

1

−∞

 Equation 174 

𝑃𝑂𝐹𝜙 = 𝑃(𝐹𝑂𝑆𝜙 ≤ 1) =
1

2

(

 
 
 

1+ erf

(

 
 
 1 − 𝐹𝑂𝑆𝜙

√2∑ (
𝑊𝑛 cos 𝜃𝑛

𝑊1 sin𝜃1 +⋯+𝑊𝑛 sin 𝜃𝑛
𝜎𝑖)

2
𝑛
𝑖=1

)

 
 
 

)

 
 
 

 Equation 175 

The accuracy of Equation 175 was numerically verified utilising 2000 Monte Carlo evaluations, each 

with 50,000 realisations. The CDF of the simulation differences is shown in Figure 93. 
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Figure 93 Difference in probability output - generalised friction 

By review of Figure 93 it is apparent that the accuracy of Equation 175 is sufficiently accurate for 

applications. 

5.3 Probability of Failure for Tensile Components 

The relationship between 𝑃𝑂𝐹𝜎𝑡  and 𝐹𝑂𝑆𝜎𝑡 is relatively straightforward. While the derivation 

presented is focused on tensile failure in open pit stability, the derivation is identical for all single 

component FOS equations involve a Weibull distribution, for example underground pillars acting 

under uniaxial compression. A summary of the expected behaviour for UTS and UCS is summarised 

in Table 59. 

Table 59 Summary of the behaviour of tensile and compressive strength at scale 

 UTS UCS 

Laboratory UDF Laboratory scale UDF is described by a Rayleigh distribution 

USF 

Negative. Stabilises to 

40% to 50% of 

Laboratory scale 

Negative. Stabilises to 30% to 35% of Laboratory 

scale for purely brittle materials. Higher value (up 

to 80%) for quasi-brittle materials 

Scale dependent 

UDF 
Weibull distribution 

Homogenisation Pronounced homogenisation at increased scales. 



Page | 212  

To provide a single deviation for the relationship between 𝑃𝑂𝐹𝜎𝑡 and 𝐹𝑂𝑆𝜎𝑡, the non-tensile terms in 

Equation 154 and Equation 155 are treated as some constant 𝐷; that is,  𝐷 =
𝑊sin𝛼

𝐴′ sin(𝛼−𝛽)
  in Equation 

154 and 𝐷 =
𝑊sin𝛼 cos𝛽

𝐴′ sin(𝛼−𝛽)
 in Equation 155. With this simplification it follows that 𝑃𝑂𝐹𝜎𝑡    is given by: 

 𝑃𝑂𝐹𝜎𝑡 = ∫
𝑘𝜎𝑡
𝜆𝜎𝑡

(
𝜎𝑡
𝜆𝜎𝑡
)

𝑘𝜎𝑡−1

𝑒
−(

𝜎𝑡
𝜆𝜎𝑡

)

𝑘𝜎𝑡

𝑑𝜎𝑡

𝐷

−∞

= 1 − 𝑒
−(

𝐷
𝜆𝜎𝑡

)

𝑘𝜎𝑡

 Equation 176 

where 𝜆𝜎𝑡 is the Scale Parameter and 𝑘𝜎𝑡  is the Shape Parameter. To relate Equation 176 to a 

calculated value of 𝐹𝑂𝑆𝜎𝑡, we take advantage of the fact that 𝜆𝜎𝑡 can be related to specific 

characteristic values of 𝜎𝑡. These characteristic values then produce three different relationships, 

depending on which 𝐹𝑂𝑆𝜎𝑡 value is used. For a Weibull distribution recall that the scale parameter is 

described by the following relationships: 

 
𝜆𝜎𝑡 =

𝜇𝜎𝑡

𝛤 (1 +
1
𝑘𝜎𝑡
)

 
Equation 177 

 𝜆𝜎𝑡 =
𝑀𝜎𝑡

(ln 2)
1
𝑘𝜎𝑡   

 Equation 178 

 
𝜆𝜎𝑡 =

𝑀𝑜𝜎𝑡

(
𝑘𝜎𝑡 − 1
𝑘𝜎𝑡

)

1
𝑘𝜎𝑡

 
Equation 179 

where 𝜇𝜎𝑡 is the mean UTS, 𝑀𝜎𝑡  is the median UTS and 𝑀𝑜𝜎𝑡 is the mode UTS. Using these identities 

and the substitution that: 

 𝐷 =  
𝜎𝑡

𝐹𝑂𝑆𝜎𝑡
 Equation 180 

The final three relationships for 𝐹𝑂𝑆𝜎𝑡 and 𝑃𝑂𝐹𝜎𝑡  are obtained: 
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𝑃𝑂𝐹𝜎𝑡 = 𝑃(𝐹𝑂𝑆𝜎𝑡 ≤ 1|𝑘𝜎𝑡 , 𝜆𝜎𝑡) = 1 − 𝑒

−

(

 
 
𝛤(1+

1
𝑘𝜎𝑡

)

𝐹𝑂𝑆𝜇𝜎𝑡

)

 
 

𝑘𝜎𝑡

 

Equation 181 

 

𝑃𝑂𝐹𝜎𝑡 = 𝑃(𝐹𝑂𝑆𝜎𝑡 ≤ 1|𝑘𝜎𝑡 , 𝜆𝜎𝑡) = 1 − 𝑒

−(
(ln2)

1
𝑘𝜎𝑡

𝐹𝑂𝑆𝑀𝜎𝑡
)

𝑘𝜎𝑡

 

Equation 182 

 
𝑃𝑂𝐹𝜎𝑡 = 𝑃(𝐹𝑂𝑆𝜎𝑡 ≤ 1|𝑘𝜎𝑡 , 𝜆𝜎𝑡) = 1 − 𝑒

−
𝑘𝜎𝑡−1

𝑘𝜎𝑡 𝐹𝑂𝑆𝑀𝑜𝜎𝑡

𝑘𝜎𝑡

 
Equation 183 

It needs to be noted that while the above derivation produces three different relationships between 

𝑃𝑂𝐹𝜎𝑡 and 𝐹𝑂𝑆𝜎𝑡, the calculated POF is identical across all equations given some initial Weibull 

distribution. As previously mentioned in Chapter Two, the mode value is recommended as the 

deterministic value due to its intuitiveness to the problem interpretation and coincidentally produces 

the simplest 𝑃𝑂𝐹𝜎𝑡  and 𝐹𝑂𝑆𝜎𝑡 relationship. To validate Equation 181, Equation 182 and Equation 

183, 1000 random 𝑃𝑂𝐹𝜎𝑡 and 𝐹𝑂𝑆𝜎𝑡 simulations were completed, each with 100,000 realisations to 

compare and contrast the estimates. The CDF of the simulated difference is shown in Figure 94. 

 

Figure 94 Difference in probability output - tension 
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The results shown in Figure 94 demonstrate the accuracy of Equation 181, Equation 182 and Equation 

183 with an error typically at most of ±0.30%. These differences are believed to be completely due 

to the numerical accuracy of the Monte Carlo Sampling. 

5.3.1 Special case one for generalised tensile components 

A similar special case for generalised tension can be considered. For a problem where the failure 

surface or stress state is complex and there is only one lithology. 𝐹𝑂𝑆𝜎𝑡 in general is calculated by: 

 𝐹𝑂𝑆𝜎𝑡 = 
∑ 𝜎𝑡𝑖𝐴𝑖

′ sin(𝛼𝑖 − 𝛽𝑖)
𝑛
𝑖=1

∑ 𝑊𝑖 sin 𝛼𝑖
𝑛
𝑖=1

 Equation 184 

Which describes the tensile FOS contribution of an arbitrary path through an arbitrary number of 

materials. The second special case is Equation 185, where there is only one tensile component is: 

 𝐹𝑂𝑆𝜎𝑡 = 
𝜎𝑡 ∑ 𝐴𝑖

′ sin(𝛼𝑖 − 𝛽𝑖)
𝑛
𝑖=1

∑ 𝑊𝑖 sin 𝛼𝑖
𝑛
𝑖=1

 Equation 185 

From Equation 185 it is straightforward to show that 𝐹𝑂𝑆𝜎𝑡 ≤ 1 when: 

 𝜎𝑡 ≤
∑ 𝑊𝑖 sin 𝛼𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
′ sin(𝛼𝑖 − 𝛽𝑖)

𝑛
𝑖=1

 Equation 186 

In addition, using the substitution: 

 
𝜎𝑡

𝐹𝑂𝑆𝜎𝑡
= 

∑ 𝑊𝑖 sin 𝛼𝑖
𝑛
𝑖=1

∑ 𝐴𝑖
′ sin(𝛼𝑖 − 𝛽𝑖)

𝑛
𝑖=1

 Equation 187 

To arrive at the same three relationships as previously presented. Again this special case demonstrates 

that the complexity of the failure path does not change the relationship between 𝑃𝑂𝐹𝜎𝑡 and 𝐹𝑂𝑆𝜎𝑡. 



Page | 215  

5.3.2 Special case two for generalised tensile components 

The calculation of the complete generalised tensile case is significantly more cumbersome than the 

completely generalised frictional case. Firstly, consider an arbitrary failure surface through a 

heterogeneous material: 

 𝐹𝑂𝑆𝜎𝑡 = 
∑ 𝜎𝑡𝑖𝐴𝑖

′ sin(𝛼𝑖 − 𝛽𝑖)
𝑛
𝑖=1

∑ 𝑊𝑖 sin 𝛼𝑖
𝑛
𝑖=1

 Equation 188 

Note that a similar formulation of Equation 188 can be derived using Equation 155 with an almost 

identical derivation as the one shown below. The completely generalised POF expression for 

Equation 188 would be one where the PDF for each 𝜎𝑡𝑖 is arbitrarily specified. The slightly simpler 

special case is where each 𝜎𝑡𝑖 is an Independent Identically Distributed random variable. This simple 

generalised case would be equivalent to an arbitrary failure path through a homogenous material, 

where each section of the failure path is treated and evaluated independently, or if failure occurs 

through various beds of the same lithology. In order to calculate the closed form POF using this 

second special case, it would need to be possible to compute the n-fold convolution of the associated 

Weibull distribution. While the n-fold convolution is not analytically possible, work by Johnson 

(1960) demonstrated a very close approximation of the convolution could be obtained by using an 

appropriate Erlang distribution. The CDF of the sum of 𝐿 Independent Identically Distributed Weibull 

random variables 𝑥𝑖 can be approximated by: 

 𝐹𝛴𝑥(𝛴𝑥) ≈ 1 − 𝑒
(−𝑢)∑

𝑢𝑖

𝑖!

𝐿−1

𝑖=0

 Equation 189 

With: 

 𝑢 = (
𝛤 (𝐿 +

1
𝑘
)

𝐿! 𝛤 (1 +
1
𝑘
)

𝛴𝑥

𝜆
)

𝑘

 Equation 190 
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where 𝜆 and 𝑘 are the scale and shape parameters of the input Weibull distribution respectfully. 

Equation 190 can be simplified by taking advantage of the Weibull distribution characteristics to 

produce: 

 𝑢 = (
𝛤 (𝐿 +

1
𝑘
)

𝐿!

𝛴𝑥

𝜇𝑥
)

𝑘

 Equation 191 

where 𝜇𝑥 is the mean value associated with the input Weibull distribution. Now consider Equation 

188, the calculated 𝐹𝑂𝑆𝜎𝑡 is in terms of some deterministic estimate of the distribution associated 

with each 𝐿, while the approximation in Equation 189 is in terms of the sum of each individual 

components. To calculate the 𝑃𝑂𝐹𝜎𝑡  in terms of the original calculated 𝐹𝑂𝑆𝜎𝑡, the appropriate value 

for 𝛴𝑥 needs to be determined. Using Equation 185, the value of 𝛴𝑥 for which 𝐹𝑂𝑆𝜎𝑡 is less than or 

equal to one is given by: 

 𝛴𝑥 = 𝐿𝜎𝑡 ≤
𝐿∑ 𝑊𝑖 sin 𝛼𝑖

𝑛
𝑖=1

∑ 𝐴𝑖
′ sin(𝛼𝑖 − 𝛽𝑖)

𝑛
𝑖=1

 Equation 192 

Substituting Equation 192 into Equation 191: 

 𝑢 = (
𝛤 (𝐿 +

1
𝑘
)

𝐿!

𝐿 ∑ 𝑊𝑖 sin 𝛼𝑖
𝑛
𝑖=1

𝜇𝑥 ∑ 𝐴𝑖
′ sin(𝛼𝑖 − 𝛽𝑖)

𝑛
𝑖=1

)

𝑘

 Equation 193 

Substituting Equation 185 into Equation 193: 

 𝑢 = (
𝛤 (𝐿 +

1
𝑘
)

𝐿!

𝐿

𝐹𝑂𝑆𝜇𝜎𝑡
)

𝑘

 Equation 194 

Which produces the final FOS POF approximation: 
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 𝑃𝑂𝐹𝜎𝑡 = 1 − 𝑒
−(

𝛤(𝐿+
1
𝑘
)

(𝐿−1)!𝐹𝑂𝑆𝜇𝜎𝑡
)

𝑘

∑
1

𝐿!
((

𝛤 (𝐿 +
1
𝑘
)

(𝐿 − 1)! 𝐹𝑂𝑆𝜇𝜎𝑡
)

𝑘

)

𝐿
𝐿−1

𝑖=0

 Equation 195 

A slightly modified version of Equation 195 is also proposed: 

 
𝑃𝑂𝐹𝜎𝑡 = 1 − 𝑒

−

(

 
 

𝛤(𝐿+
√2
𝑘
)

(𝐿−1)!𝐹𝑂𝑆𝜇𝜎𝑡

)

 
 

𝑘

√2

∑
1

𝐿!

(

 
 
 

(

 
 

𝛤 (𝐿 +
√2
𝑘
)

(𝐿 − 1)! 𝐹𝑂𝑆𝜇𝜎𝑡

)

 
 

𝑘

√2

)

 
 
 

𝐿

𝐿−1

𝑖=0

 
Equation 196 

In order to verify the accuracy of Equation 195 and Equation 196, 1000 individual FOS POF 

simulations were completed each with 5000 realisations per simulation. Comparisons between the 

predicted POF and Monte Carlo simulation for each of the two proposed approximations is shown in 

Figure 95. 

 

Figure 95 Comparisons of the Erlang and modified Erlang approximations to Monte Carlo 

Sampling 
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From review of Figure 95 it is apparent that the simulated POF using Equation 195 is considerably 

inaccurate, particularly in the ‘practical’ design regions (POF < 20%). The modified Erlang 

approximation using Equation 196 is substantially more accurate and is sufficient to use when 

computing this second special case. Note that the modified Erlang approximation was derived by 

incrementally adjusting Equation 190 to obtain a better estimate of the entire n-fold convolution 

distribution. There is no readily apparent mathematical basis as to why this modification produces 

better results. 

5.3.3 Generalised tension case 

The completely generalised tensile case has no analytical solution or approximation. The only 

currently viable method of computing the POF associated with this case is using numerical methods. 

5.4 Probability of Failure for Cohesive Components 

Based on the analysis presented in Chapter Two and Three, Table 60 summarises the expected 

behaviour of cohesion over scale: 

Table 60 Summary of the behaviour of cohesion at scale 

 Peak cohesion Residual cohesion 

Laboratory UDF Implicitly defined PDF 0 

USF 

Negative and material specific. 

Stabilises to 32% to 40% of laboratory 

scale 

Emergent positive or non-existent. 

Stabilises to 0% t0 10% of 

laboratory peak cohesion. 

Scale dependent 

UDF 
Implicitly defined PDF 

Homogenisation 

Pronounced homogenisation at 

increased scales. Scale dependent 

variance is likely described by some 

inconsistent negative power law 

No general behaviour. Simulations 

produce a transition period of 

increased variance due to the 

emergence of residual cohesion. 

The problematic aspect of considering the scale dependant FOS POF relationships for cohesion is 

that the PDF describing it is implicitly defined. While it can be shown that cohesion can be very well 

approximated by a Weibull distribution, there is currently no reasonably accurate method of 

calculating the PDF of cohesion using only the known behaviour associated with the distribution of 
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UCS and 𝜙. The fact that on a case by case basis, cohesion can be approximated by a Weibull 

distribution means that the univariate POF relationship relating to cohesion are is identical to those 

previously presented in Section 5.3. 

5.5 Probability of Failure for Toppling 

Based on the analysis presented in Chapter Four, the expected behaviour for cross joint spacing is not 

as definitive as the other parameters. The presented analysis did indicate that a representative PDF 

family to describe cross joint spacing is a gamma distribution. The FOS equation for Case 3 toppling 

is given by: 

 𝐹𝑂𝑆 =  
𝑡/ℎ

tan 𝜃
=  

𝑡

ℎ tan 𝜃
 Equation 197 

where 𝑡 is the bed thickness (m), ℎ is the cross joint spacing (m) and 𝜃 is the bedding dip (˚). The 

value of ℎ where the FOS is less than one is given by: 

 
𝑡

tan 𝜃
≤ ℎ  Equation 198 

That is, the FOS is less than one when ℎ is greater than some specific value. In order to provide a 

simpler integral, complement rule is instead used: 

 𝑃(𝑋) = 1 − 𝑃(𝑋′)  Equation 199 

The POF is then given by: 

𝑃(𝐹𝑂𝑆 ≤ 1) = 1 − ∫
1

𝛤(𝑘)
ℎ𝑘−1𝑒−

𝑥
𝜗 𝑑ℎ

𝑡
tan𝜃

−∞

= 1 −
1

𝛤(𝑘)
𝛾 (𝑘,

𝑡

tan 𝜃 𝜗
) Equation 200 

where 𝑘 is the gamma distribution shape parameter, 𝜗 is the gamma distribution scale parameter and 

𝛾 is the lower incomplete gamma function. Using Equation 200, two different FOS POF relationships 

can be determined using the mean and mode cross joint spacing using the following characteristic 

relationships: 
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 ℎ𝜇 = 𝑘𝜗 Equation 201 

 ℎ𝑀𝑜 = (𝑘 − 1)𝜗 Equation 202 

where ℎ𝜇 and ℎ𝑀𝑜 are the mean and mode cross joint spacing respectfully. Note that the median value 

is not presented, as there is no closed form relationship for the median value of a gamma distribution. 

Using the relationships in Equation 201, Equation 202 and Equation 197, the following POF 

relationships are obtained for Case 3 toppling: 

 𝑃𝑂𝐹 = 1 −
1

𝛤(𝑘)
𝛾(𝑘, 𝑘𝐹𝑂𝑆𝜇) Equation 203 

 𝑃𝑂𝐹 = 1 −
1

𝛤(𝑘)
𝛾(𝑘, (𝑘 − 1)𝐹𝑂𝑆𝑀𝑜) Equation 204 

To validate Equation 203 and Equation 204, 1000 random 𝑃𝑂𝐹 and 𝐹𝑂𝑆 simulations were completed, 

each with 100,000 realisations to compare and contrast the estimates. The CDF of the simulated 

difference is shown in Figure 96. 

 

Figure 96 Difference in probability outputs - toppling 
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The results shown in Figure 96 demonstrate the accuracy of Equation 203 and Equation 204 with an 

error typically at most of ±0.40%. These differences are believed to be completely due to the 

numerical accuracy of the Monte Carlo Sampling. 

An alternative toppling FOS relationship (Equation 18) was presented in Chapter One. The POF FOS 

relationships for this toppling formulation are equivalent to the previously presented frictional 

relationships, as they are identical formulations with a rotated coordinate system. 

5.6 Factor of Safety Probability of Failure Bounds 

Using the univariate relationships presented in this Chapter, it is possible to define for multi 

component problems, an upper and lower bound to the underlying FOS POF equation. The upper and 

lower bounds relating FOS and POF can be constructed by considering that for a particular design, 

the POF can never exceed the highest POF for a single component, and can never be lower than the 

lowest POF component. Using the laboratory scale UDFs, the upper and lower FOS POF bounds for 

failure through a Mohr Coulomb material is presented in Figure 97. 

 

Figure 97 Factor of Safety Probability of Failure bounds using laboratory scale material parameters 

By comparing the data shown in Figure 97 to the theoretical upper and lower FOS POF bounds, it 

can be seen that the FOS POF pairs typically plot within the specified region, or follow closely the 

frictional relationship. The interpretation of this is that the FOS POF relationships shown in Figure 

97 and Figure 9 would have been derived using laboratory scale variability and would have primarily 

used normal like distributions to define each material parameter. 
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While the FOS POF bounds presented in Figure 97 are an interesting feature, the region they span for 

a given FOS is far too large to provide any practical guidance to the problem’s POF. In order to 

produce the problem specific POF FOS relationship, the conditional probabilities associated with 

each univariate relationship need to be considered. In order to calculate the case specific relationship, 

consider the simplest two variate FOS equation: 

 𝐹𝑂𝑆 =  
𝑐𝐴 +𝑊 cos 𝜃 tan𝜙

𝑊 sin 𝜃
 Equation 205 

where 𝐴, 𝑊 and 𝜃 are constants, 𝑐 is a Weibull distribution and 𝜙 is a normal distribution. 𝑐 and 𝜙 

are treated as uncorrelated for simplicity. Equation 205 can be decomposed into the values of 𝐹𝑂𝑆 

related to each random variable as was done previously. The particular area of interest is the 

probability where: 

 𝐹𝑂𝑆𝜙 + 𝐹𝑂𝑆𝑐 = 𝐹𝑂𝑆 ≤ 1 Equation 206 

The region where 𝐹𝑂𝑆 ≤ 1 in terms of 𝜙 and 𝑐 is given by: 

 tan𝜙

tan 𝜃
≤ 1 −

𝑐𝐴

𝑊 sin 𝜃
 

Equation 207 

 
tan𝜙 ≤ tan𝜃 (1 −

𝑐𝐴

𝑊 sin 𝜃
) = tan𝜃 (1 − 𝐹𝑂𝑆𝑐) 

Equation 208 

As presented previously, it is known that the distribution associated with tan𝜙 is given by: 

 𝑋𝑡𝑎𝑛(𝜙) ≈ 𝒩(tan(𝜇𝜙) , 𝜎𝜙
2 sec4(𝜇𝜙)) Equation 209 

So then, the probability tan𝜙 falls in this region is given by: 

𝑃(tan𝜙 ≤ tan𝜃 (1 − 𝐹𝑂𝑆𝑐)) =  ∫
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2 𝑑𝑥
tan𝜃(1−𝐹𝑂𝑆𝑐)

−∞

 Equation 210 
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𝑃(tan𝜙 ≤ tan𝜃 (1 − 𝐹𝑂𝑆𝑐)) =
1

2
(1 + erf (

(tan 𝜃 (1 − 𝐹𝑂𝑆𝑐)) − tan(𝜇𝜙)

√2𝜎𝜙 sec2(𝜇𝜙)
)) Equation 211 

Using the substitution that 𝑡𝑎𝑛 𝜃 =
tan𝜇𝜙

𝐹𝑂𝑆𝜙
: 

𝑃(𝐹𝑂𝑆𝜙 ≤ 1 − 𝐹𝑂𝑆𝑐) = 𝑃(tan𝜙 ≤ tan 𝜃 (1 − 𝐹𝑂𝑆𝑐))

=
1

2
(1 + erf (

sin 𝜇𝜙 cos 𝜇𝜙 (1 − 𝐹𝑂𝑆𝑐 − 𝐹𝑂𝑆𝜙)

√2𝜎𝜙𝐹𝑂𝑆𝜙
)) 

Equation 212 

The corresponding Weibull distribution in terms of 𝐹𝑂𝑆𝑐: 

 𝑓(𝐹𝑂𝑆𝑐) =
𝑘

𝜆𝐹𝑂𝑆𝑐
(
𝐹𝑂𝑆𝑐
𝜆𝐹𝑂𝑆𝑐

)

𝑘−1

𝑒
−(

𝐹𝑂𝑆𝑐
𝜆𝐹𝑂𝑆𝑐

)
𝑘

 Equation 213 

Note that in the above equation, 𝜆𝐹𝑂𝑆𝑐 is given by: 

 𝜆𝐹𝑂𝑆𝑐 =
𝜆𝑐𝐴

𝑊 sin 𝜃
 Equation 214 

Using the law of total probability, the probability that 𝐹𝑂𝑆𝜙 + 𝐹𝑂𝑆𝑐 ≤ 1 can be written as: 

𝑃(𝐹𝑂𝑆𝜙 + 𝐹𝑂𝑆𝑐 ≤ 1) = ∫
1

2
(1 + erf (

sin 𝜇𝜙 cos 𝜇𝜙 (1 − 𝐹𝑂𝑆𝑐 − 𝐹𝑂𝑆𝜙)

√2𝜎𝜙𝐹𝑂𝑆𝜙
))

𝑘

𝜆𝐹𝑂𝑆𝑐
(
𝐹𝑂𝑆𝑐
𝜆𝐹𝑂𝑆𝑐

)

𝑘−1

𝑒
−(

𝐹𝑂𝑆𝑐
𝜆𝐹𝑂𝑆𝑐

)
𝑘

𝑑(𝐹𝑂𝑆𝑐)
1

0

 Equation 215 

Which cannot be computed without numerical means. While this approach can be extended 

indefinitely and include correlations, it becomes increasingly difficult to both formulate and compute 

the required POF integral. For a practical application, it is far simpler to compute the actual POF 

using Monte Carlo Sampling. The implication of this formulation is that based on the understanding 

of rock material parameters developed in this Thesis, there is no one to one relationship between FOS 

and POF for structured rock. While in theory, it is possible to routinely calculate this particular 

relationship, from a problem solving perspective it is far simpler to complete the Monte Carlo 

Sampling to obtain the case specific value of the POF. 
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5.7 The Scale of Interest Conundrum 

The astute reader may have noted potential complications and inconsistencies in the final 

relationships between FOS and POF for a given design. These inconsistencies arrive from how an 

Engineer chooses to consider material parameter heterogeneity and scale in their analysis. To 

demonstrate this consider the following example: 

A 50m high slope with a batter angle of 65° needs to be designed in a cohesionless material. The 

company requires that the slope’s POF be at most 5%. A relevant failure surface was loosely 

approximated as a bilinear failure surface for the analysis. From site based testing the following 

relevant material parameter were obtained: 

• the mean friction angle 𝜇𝜙 is equal to 38°; 

• the standard deviation associated with the friction angle is 2.66°; and 

• the median material density is 2700 kg/m³. 

The approximated failure surface and problem geometry is shown in Figure 98. 

 

Figure 98 Example problem geometry 
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Using Equation 167, the slope’s FOS is calculated as:  

𝐹𝑂𝑆 =  
1040.91 × 9.81 × 2700 × tan(38°) × cos(30°) +  262.22 × 9.81 × 2700 × tan(38°) × cos(50°)

1040.91 × 9.81 × 2700 × sin(30°) + 262.22 × 9.81 × 2700 × sin(50°)
 Equation 216 

                                   𝐹𝑂𝑆 = 1.16 Equation 217 

Using Equation 166, the POF then is given as: 

 𝑃𝑂𝐹 =
1

2
[1 + erf (

sin(38°) cos(38°) (1 − 1.16)

√2 × 2.66° × 1.16
)] = 7.47% Equation 218 

which does not meet the design requirement of a maximum POF of 5%. For the above POF 

calculation, we have treated both linear segments as having the same random friction behaviour. An 

alternate interpretation that could be used is to treat each linear segment as having its own associated 

friction angle, which may be sufficient to keep the overall slope stable. To calculate the POF using 

this interpretation, first, we calculate the standard deviations 𝜎1 and 𝜎2 for surfaces 1 and 2 using 

Equation 173. The equivalent standard deviation of the linear combination is then calculated using 

Equation 172: 

 𝜎1 = 𝜎2 = 2.66° × sec
2(38°) = 0.0748 Equation 219 

∑(
𝑊𝑛 cos𝜃𝑛

𝑊1 sin 𝜃1 +⋯+𝑊𝑛 sin𝜃𝑛
𝜎𝑖)

22

𝑖=1

= (
1040.91 × 9.81 × 2700 × cos(30°)

1040.91 × 9.81 × 2700 × sin(30°) + 262.22 × 9.81 × 2700 × sin(50°)
× 0.0748)

2

+ (
262.22 × 9.81 × 2700 × cos(50°)

1040.91 × 9.81 × 2700 × sin(30°) + 262.22 × 9.81 × 2700 × sin(50°)
× 0.0748)

2

= 0.009044 

Equation 220 

This then gives the following POF using Equation 175: 

 𝑃𝑂𝐹 =
1

2
(1 + erf (

1 − 1.16

√2 × 0.009044
)) = 4.62% Equation 221 
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Which does meet the desired POF. This raises some rather serious dilemmas as to which way should 

be used to truthfully calculate the slope’s POF. If the stope was further subdivided, an even lower 

POF would be obtained, which would eventually reaches the limit distribution where POF = 100% 

for FOS less than 1, and 0% for any FOS greater than 1. What this means, is that if some input 

combination and problem geometry has a FOS greater than one, any POF can be obtained if the 

correct heterogeneity or scale interpretation is applied. A visual comparison between the resultant 

FOS POF relationships as a function of problem interpretation is shown in Figure 99. 

 

Figure 99 Factor of Safety Probability of Failure as a function of failure subdivisions 

In order to meaningfully include scale effects and in turn calculate the POF, it needs to be known 

which material scale and heterogeneity interpretation is appropriate to use for a given problem. The 

issue with an ‘open’ problem such as slope stability analysis is that the critical volume or scale of 

interest is not well defined unlike a ‘closed’ problem such as an underground rock pillar where the 

volume of interest is the pillar volume. It is also expected that the appropriate scale of interest is both 

failure mode and failure surface dependent. For example, a piping failure in a tailings dam would 

require a much smaller volume of material to fail prior to total slope failure, compared to say sliding 

along a non-persistent joint set where a large portion of the discontinuous sections must shear before 

total failure occurs. The most intuitive measure of the scale of interest would relate to the critical 

volume or length of a failure surface that needs to fail before the overall slope to fail. This creates the 

issue that the particular failure surface and failure initiation point must be known prior to calculating 

the POF. The concept of a ‘scale of interest’ will need to be further researched due to the considerably 

large implications to probabilistic based slope designs.  
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6 Thesis Conclusions and Further Research Avenues 

The aim of this Thesis was to explore the general relationship between Factor of Safety, Probability 

of Failure and problem scale. While the conclusions demonstrated that there is no general relationship 

between these factors, many significant contributions to the field of rock mechanics were made along 

the way. This Chapter outlines the major contributions and significant findings of this Thesis, as well 

as potential future research topics. 

6.1 Significant Contributions and Main Findings 

This Section summarises the significant contributions and the main findings associated with this 

Thesis. These findings have been grouped into each key Chapter. 

6.1.1 Significant findings of Chapter Two 

The initial starting point of this Thesis was to explore the notion that rock material parameters exhibit 

consistent universal behaviours. This Chapter focused primarily on demonstrating that Universal 

Distribution Functions exist and are suitably generalisable as to apply to any given rock problem at 

the laboratory scale. To date, no such large scale variability analysis has been completed on rock 

material parameters. The following main conclusions were presented: 

Development of a general purpose non-parametric test methodology for quantifying Universal 

Distribution Functions. This non-parametric methodology presented allows for general 

quantification, comparison and manipulation of random data. While the application of this testing 

methodology within this Thesis focused on quantifying intact rock material parameters, this 

methodology can be used to generally compare and contrast non-parametric data.  

Determined the existence of Universal Distribution Functions for laboratory scale material 

parameters and universal correlation coefficients. Universal Distribution Functions were shown 

to be an appropriate probabilistic model for laboratory scale material parameters. Universal 

correlation coefficients were also demonstrated to exist between many common laboratory material 

parameters. These universal probabilistic descriptions allow for consistent insights into the behaviour 

of rock at laboratory scales, as well as describe many documented phenomena. 
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Calculated the sampling error associated with each known Universal Distribution Function as 

a function of number. The number of test samples required to achieve a desired level of accuracy 

was derived for all deterministic and probabilistic material parameter components described by 

Universal Distribution Functions. These estimates can be used to ensure geotechnical data meets or 

exceeds the required level of accuracy. 

Statistical proof as to why Uniaxial Compressive Strength, Point Load Test and Uniaxial 

Tensile Strength are linearly related. The universal probabilistic behaviour was able to provide a 

statistical explanation as to why a linear relationship is obtained between any pair of Uniaxial 

Compressive Strength, Point Load Testing and Uniaxial Tensile Strength measurements. While this 

derivation was able to show the existence of a linear relationship, it was unable to quantify the 

magnitude of the relationship. 

Statistical proof as to why a curved relationship is apparent for Uniaxial Compressive Strength 

and Young’s Modulus. A similar derivation used to demonstrate the linearity between intact strength 

measurements was able to demonstrate the nonlinear relationship between Uniaxial Compressive 

Strength and Young’s Modulus. This relationship is typically assumed linear, as the curvature can be 

subtle. 

New equation for the relationship between sonic velocity and Uniaxial Compressive Strength. 

Using Universal Distribution Functions and fundamental physics, a new equation relating sonic 

velocity measurements to the Uniaxial Compressive Strength of rock was presented. The applicability 

of this new Sonic Velocity model was compared to laboratory sonic velocity measurements and was 

able to replicate the laboratory data. This new relationship uses only measurable inputs and does not 

use empirical relationships. 

Statistical evidence of downgrading strength parameters. Two commonly used deterministic 

‘downgrading’ methods for Uniaxial Compressive Strength were replicated through statistical 

analysis. This statistical interpretation gives a mathematical justification for these otherwise empirical 

downgrading values. 
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6.1.2 Significant findings of Chapter Three 

Chapter Three build on from the findings of Chapter Two and explores the possibility of extending 

Universal Distribution Functions to consider non-standard scales. This was achieved using stochastic 

heterogeneous numerical modelling. The following key findings were presented: 

Development of PLACEBO. PLACEBO is a general purpose numerical homogenisation tool able 

to probabilistically quantify material parameter of intact rock at arbitrarily large scales, including 

material nonlinearities and material parameter correlations. This approach includes many 

complexities previously not implemented into stochastic numerical analysis. It was also demonstrated 

that PLACEBO could be used to calculate path dependant probabilities of failure for a single design. 

Derived the closed form Universal Distribution Function for material density. The general 

probabilistic behaviour of dry density at arbitrarily large scales was mathematically derived as a 

function of volume. This probabilistic model is expected to be accurate for volumes greater than the 

laboratory scale, but decrease significantly in accuracy for volumes that approach the material’s grain 

size. 

Material parameter heterogeneity is the leading contributor of scale effects in rock. Localised 

zones of weakness within a larger volume dominate the failure process. It was numerically 

demonstrated that in order to obtain numerical results consistent with literature heterogeneous 

numerical models require the inclusion of stochastic effects for each relevant material parameter, 

selection of an appropriate constitutive model, and the inclusion of correlation coefficients between 

each material parameter. The inclusion of correlation coefficients was shown to be arguably the most 

important consideration when completing this style of numerical modelling. The inclusion of 

correlation coefficients was shown to change the simulated behaviour at scale by 30% for most 

material parameters. The inclusion of n-variate correlation coefficients has not been previously 

implemented in heterogeneous numerical modelling for rock. 

Typical scaling laws from literature are reproducible numerically using PLACEBO - The 

scaling laws associated with Uniaxial Tensile Strength, Uniaxial Compressive Strength and elastic 

Young’s Modulus were able to be reproduced numerically using PLACEBO. A negative scaling law 

was observed for Uniaxial Tensile Strength and Uniaxial Compressive Strength while a positive 

scaling law was observed for elastic Young’s Modulus. 
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Probabilistic behaviour is reasonably consistent over increased scales. From a probabilistic 

perspective, the variability of material parameter at any scale was remarkably consistent, but 

sufficiently different to prevent a simple generalisation. The associated shape parameter for the elastic 

Young’s Modulus for an arbitrary volume was developed, however the associated scale parameter 

must be specified on a case by case basis. These consistent probabilistic behaviours do hint that scale 

dependant generalisations for many material parameters may be possible, however physical testing 

results are required to better quantify the underlying relationship. The probabilistic behaviour 

associated with peak and residual friction angles produced statistically significant deviations from the 

initial input behaviours, in particular the probabilistic behaviour for the peak friction angle appears 

to be invariant of the initial input selection. The behaviour of residual friction angles also differ from 

their initial inputs but vary considerably on a case by case basis. 

Intact failure at scale requires a complex failure model. From brittle failure of a Mohr Coulomb 

material, material behaviour at scale can be shown to exhibit complex failure. Among all simulated 

material types, failure at increased scales was shown to require the following complexities; a 

significant amount of plastic dilation must occur before the peak strength is reached, a friction 

hardening response between the peak and residual strengths, a cohesion softening response between 

the peak and residual strengths, and a nonlinear failure envelope when failure is not instantaneous. 

The fact that these complex failure models are used to simulate practical scale problems and were 

numerically reproduced without assumption suggests that they are the most appropriate failure 

response for rock at practical scales. 

Stronger Estimates of Minimum Strength Approaches were demonstrated - Lowest bound 

approaches are often used in practical settings and are unjustifiably conservative. These conservative 

design philosophies neglect documented behaviours, in particular correlation and scale effects. By 

considering scale effects computed by PLACEBO in conjunction with the minimum shear strength 

approach, justifiably stronger shear strength parameters were obtained for practical designs. This new 

minimum approach is able to not only account for scaling laws and associated homogenisations but 

also considers material parameter correlations and stress dependencies in the final criterion. The 

minimum piece-wise approach derived produces the minimum possible shear strength over all 

possible stress paths experienced and is considerably stronger than previous lowest bound methods. 
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6.1.3 Significant findings of Chapter Four 

Chapter Four explored the applicability of using fractal methods to derive the Universal Distribution 

Function and Universal Scale Functions for discontinuity roughness at arbitrary scales. This Chapter 

also looked at the potential of using existing mathematical theory in conjunction with heterogeneous 

modelling to derive a Universal Distribution Function associated with cross joint spacing in a bedded 

material. The following main conclusions were presented: 

A theoretical model for the behaviour of discontinuities at arbitrary scales was presented. From 

an initial assumption that rocks exhibit fractal self-affine properties, a theoretical model was derived 

from using numerical simulations of Fractional Brownian Motion and non-parametric statistical 

techniques. This theoretical model predicted no apparent scaling law associated with discontinuity 

roughness, no homogenisation associated with increasing scale and a Weibull or Gumbel like 

Probability Density Function over all scales. 

A new method of measuring discontinuity fractal characteristics was presented. A common 

research practice involves measuring discontinuity fractal characteristics by using complicated 

method routines. A simple method of estimating both the Hurst exponent and fractal dimension were 

presented using only Barton’s length amplitude measurements. This new method was validated by 

estimating the Hurst exponent associated with Barton’s standard roughness profiles and comparing 

them to fractal characteristics estimated by multiple authors. This new approach is capable of 

estimating a single fractal characteristic and accounts for differences between multiple measurements 

of a single discontinuity. 

Evidence of the non-fractal nature of discontinuities at scale was presented. The theoretical scale 

behaviour was compared and contrasted against two different discontinuities with measurements 

scales ranging from 0.05m to 7.5m. The field measurements of discontinuity roughness demonstrated 

the non-fractal nature of discontinuities over most measured scales and the inability of the fractal 

model to produce the observed negative scaling law and associated homogenisation at increasing 

scales. These findings suggest that a purely fractal description of discontinuity roughness is not 

applicable at practical scales. 
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New relationships between fractal characteristics and Joint Roughness Coefficients were 

derived. A new relationship was derived relating fractal characteristics and Joint Roughness 

Coefficients. This new relationship was compared against Bandis’ Scaling Law using the available 

field measurements of roughness and showed consistency in estimates of the scale dependant Joint 

Roughness Coefficient up to discontinuity lengths of 7.5m. This comparison with the well tested 

Bandis Scaling Law demonstrates the applicability and correctness of this new calculation method 

even at very large scales. 

Cross joint spacing is expected to follow a gamma distribution. The simulation method used for 

cross joint spacing relied on the theory presented by Hobbs and simple heterogeneous simulations. 

The resulting output was able to provide a non-infinite fracture spacing at low stresses and suggested 

that the appropriate Probability Density Function family for cross joint spacing is a gamma 

distribution. 

6.1.4 Significant findings of Chapter Five 

Chapter five revisited the relationship between Factor of Safety and Probability of Failure using the 

findings in the previous three Chapters. The following key findings were presented: 

Factor of Safety equations can be decomposed into individual contributions. It was demonstrated 

that most Factor of Safety equations could be decomposed into univariate contributions associated 

with each material parameter. This decomposition allows for the calculation of many closed form 

relationships between Factor of Safety and Probability of Failure. It was noted that the Barton Bandis 

shear strength criterion has no appropriate decomposition. 

The completely generalised frictional Factor of Safety Probability of Failure relationship was 

derived. The relationship between Factor of Safety and Probability of Failure for an arbitrary 

frictional material and scale was derived for a number of cases. Relationships were presented for the 

typical case, a special case of an arbitrary failure bath through a homogenous material and the 

completely generalised case of an arbitrary path through an arbitrary number of materials. The 

resulting Factor of Safety Probability of Failure relationship was shown to be subtly positively 

skewed, a feature that is often not included in published relationships. 
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Several cases for tensile and cohesive Factor of Safety Probability of Failure relationships were 

derived. The relationship between Factor of Safety and Probability of Failure for tensile and cohesive 

components were derived for a number of cases. Relationships were presented for the typical case, a 

special case of an arbitrary failure bath through a homogenous material and a second special case of 

an arbitrary failure through a number of homogenous materials. The modified Erlang approximation 

used to derive the second special case was shown to be significantly more accurate compared to the 

currently implemented approximations. It was noted that the completely generalised relationship for 

tensile and cohesive components could not be computed without the use of numerical methods. 

The completely generalised Factor of Safety Probability of Failure relationship was derived for 

Toppling. Two generalised relationships between Factor of Safety and Probability of Failure were 

presented for toppling failure. These relationships were based on a gamma distribution associated 

with cross joint spacing. 

The relationship between Factor of Safety and Probability of Failure is not one to one. While 

the univariate relationships between Factor of Safety and Probability of Failure can be shown to be 

exact, when considering multiple contribution relationships the relationship is not one to one. The 

univariate Factor of Safety Probability of Failure relationships do form upper and lower bounds, 

which give an indication to the likely value. In order to calculate the case specific relationship, 

numerical methods are required. From a practical perspective, it is simpler to compute the case 

specific Factor of Safety and Probability of Failure using Monte Carlo Sampling.  

The inclusion of scale effects bring into question the appropriate method of calculating the 

Probability of Failure. It was demonstrated that by changing the scale of interest or heterogeneity 

interpretation for a particular design, any desirable Probability of Failure could be calculated. The 

ability to justifiably change the calculated Probability of Failure raises some serious dilemmas as to 

how Probability of Failure should be meaningfully calculated for a given design. 

6.2 Further Research Avenues 

As this Thesis primarily dealt with the new concept of Universal Distribution Functions, there are an 

abundance of possible research topics that branch from the main findings. This section outlines 

possible future research topics associated with each key focus, as well as possible methods of 

assessment for each. 
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6.2.1 Further research avenues from Chapter Two 

Incorporation of additional data to accept or refute the notion of Universal Distribution 

Functions. Although Universal Distribution Functions were shown to be statistically applicable 

based on the available testing database, their general applicability needs to be constantly validated. 

Incorporation of more geological data can be used to verify the general applicability of Universal 

Distribution Functions. 

A better model for Poisson’s Ratio, cohesion and residual friction. From the tested material 

parameters, the least understanding was associated with the aforementioned characteristics. Although 

reasonable approximations were presented, there is ample room to improve these approximations. 

Assessment of additional rock parameters in terms of Universal Distribution Functions. There 

exist many more quantifiable rock parameters than what was explored in this Thesis. These additional 

rock parameters can easily be analysed using the non-parametric methodology presented in this 

Thesis to determine if there are viable Universal Distribution Functions approximations for other rock 

parameters. 

An in depth study into the behaviour of material parameters over varying confinements. The 

probabilistic behaviour for a Mohr Coulomb material at varying confinements has only been 

postulated and needs physical validation for its appropriateness. The quantification of rock strength 

over varying confinement should also consider the Hoek Brown criterion as well in order to better 

understand the probabilistic behaviour of a generalised nonlinear criterion over varying confinements. 

This study should also look into how other material parameters, for example Young’s Modulus or 

Poisson’s Ratio, change as a function of varying confinement. 

The implications of new material parameter estimates and their applications to empirical 

methods. Long standing empirical design methods (e.g., Rock Mass Rating, Q System and Mathew’s 

Stability Method), which may have been initially calibrated with different deterministic estimates 

than the Mode value. The effectiveness of these new deterministic estimates and their applicability to 

these long standing empirical methods needs to be checked to ensure they provide consistent and safe 

design practices. 
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Is the ratio of Compressive Strength, Tensile Strength and Point Load Testing universal? What 

is the mechanism that controls this ratio? While it was possible to demonstrate that a linear 

relationship exists between the aforementioned material characteristics, the magnitude of this ratio is 

not specified. While guidelines do give estimates of this ratio, the question remains if the multiple 

estimates are a function of sampling error, or some inherent difference between rock types. This ratio 

could be assessed using the non-parametric statistical framework presented in this Thesis to more 

objectively validate its value. If the ratio between these parameters does fundamentally differ between 

lithologies, the extension would be to determine what mechanism or inherent property controls this 

ratio. 

Comparisons between the presented sonic velocity relationship and more empirical evidence. 

Only a single database was evaluated using the new sonic velocity relationship presented in this 

Thesis. The comparison of this new relationship between sonic velocity and Uniaxial Compressive 

Strength to more data is required to test its general applicability. 

6.2.2 Further research avenues from Chapter Three 

Validation of the generalised dry density Universal Distribution Function. The appropriateness 

and accuracy of the generalised dry density Universal Distribution Function could not be verified 

during this Thesis. Validation of this probabilistic model is required. 

Better measurement routines for plastic strain components for heterogeneous materials. More 

accurate plastic strain measurement routines are required for heterogeneous numerical modelling. 

Once developed, heterogeneous modelling methods such as PLACEBO could then be used to 

estimate the probabilistic strain dependencies as a function of scale. 

Probabilistic quantification of material softening components. The assumed behaviour of 

probabilistic strain softening responses used while reasonable, are assumptions. Physical 

quantification of the probabilistic nature of material softening behaviours will lead to more accurate 

numerical predictions. 

A better method of estimating Uniaxial Tensile Strength. The simulated uniaxial tensile strength 

is expected to be an overestimate of the actual tensile strength at scale. Development of new methods 

of estimating Uniaxial Tensile Strength will lead to more accurate numerical predictions. 
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Physical quantification of probabilistic material parameters at larger scales. The probabilistic 

behaviours at increased scales presented are based on numerical estimates. Probabilistically 

quantifying the material parameter behaviour over a large number of a-typical scales can be used to 

compare and contrast numerically predicted scale behaviours. 

Quantification or estimation of material parameters at sub laboratory scales - PLACEBO 

operates at mesoscopic scales to bootstrap out the expected behaviour at macroscopic scales. While 

the inputs for this mesoscopic (laboratory) scale are well approximated, it stands to reason if 

microscopic material characteristics are modelled in PLACEBO, it should be able to numerically 

replicate the laboratory scale behaviour. Quantification and simulation of sub laboratory scales can 

be used to validate the initial Universal Distribution Function approximations, as well as provide a 

means to simulate rock from an even smaller initial starting scale. 

Deriving a method of estimating the Universal Scale Function for a given material. From the 

completed analysis, it was apparent that no easily definable Universal Scale Function exists for rock 

parameters. In depth research into quantifying this underlying behaviour will aid in forward 

prediction and model synthesis of multi volume zone models. 

6.2.3 Further research avenues from Chapter Four 

A generalised probabilistic model for discontinuity roughness. The approach used in this Thesis 

was to derive the expected behaviour assuming a purely fractal-self affine model. It was demonstrated 

that this model is insufficient at describing discontinuities over a number of scales. Collecting 

physical discontinuity roughness measurements from a number of different discontinuities and scales 

can form an empirical database that can be assessed. It is suspected there is some underlying 

consistent behaviour that should be able to be determined form a sufficiently large database using the 

non-parametric framework presented in this Thesis. An empirically based description of discontinuity 

roughness at scale will allow for the development of mathematical or numerical methods that can 

truthfully describe discontinuities. 

A method of simulating such discontinuity profiles. The discontinuity simulation methods used in 

this Thesis while very good, were insufficient at meaningly simulating large scale discontinuities. 

Once a better understanding of the expected behaviour of discontinuity roughness at scales is 

available, efforts can be made to numerically generate these surfaces. A method of routinely 

simulating large two or three dimensional discontinuity surfaces will be paramount for future 

geotechnical research. 
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An empirically based universal model for cross joint spacing. The approach used to quantify cross 

joint spacing in a bedded material proved problematic. An empirically based approach will be able to 

give further insights into the applicability of a gamma distribution to describe cross joint spacing. As 

mentioned in Chapter Four, this empirical approach does have some fundamental limitations, 

however it will be able to give some insight into important characteristics such as which Probability 

Density Function family is appropriate and general relationships between bed thickness and spacing 

characteristics. 

6.2.4 Further research avenues from Chapter Five 

Derivation of Factor of Safety Probability of Failure relationships for a wider range of failure 

mechanisms. The failure mechanisms explored in this Thesis do cover a wide range of cases, 

however this is not an exhaustive list. The incorporation of additional failure mechanisms, the 

incorporation of other attributes (e.g., pore water pressure) or support elements will lead to a wider 

range of applicable equations.  

Defining the scale of interest. The scale of interest is an important concept when meaningfully 

calculating a slope’s Probability of Failure. The issue with an ‘open’ problem such as slope stability 

analysis is that the critical volume or scale of interest is not well defined. It is expected that the 

appropriate scale of interest is both failure mode and failure surface dependent. For example, a piping 

failure in a tailings dam would require a much smaller volume of material to yield prior to total slope 

failure compared to say intact rock failure. An increased understanding of what an appropriate scale 

of interest is for slope designs is required in order to meaningfully quantify the Probability of Failure. 

What are the influences of spatial correlations and variability? Rock material parameters, for 

example Uniaxial Compressive Strength often increase as a function of the depth below the surface. 

Does the inclusion of spatial correlations significantly change the Factor of Safety or Probability of 

Failure of a slope? Will the Probability of Failure for a failure surface change if the location of all 

weaker material parameters zones are known in advance? An increased understanding of the effects 

of spatial variability and correlations may aid in calculating more representative Factor of Safety and 

reduce over conservatism in slope design. 
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Appendix - Rock Testing Database Summary 

Uniaxial Compressive Strength database summary 

Main Rock Type Sample Count Average UCS 

Sedimentary 158 41.31 

Sedimentary 155 38.76 

Sedimentary 88 24.71 

Sedimentary 84 10.15 

Sedimentary 74 27.37 

Sedimentary 39 24.39 

Sedimentary 34 156.26 

Sedimentary 30 9.87 

Sedimentary 27 23.47 

Sedimentary 23 25.89 

Sedimentary 22 29.03 

Sedimentary 19 4.22 

Sedimentary 17 164.55 
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Sedimentary 15 4.07 

Sedimentary 15 17.06 

Sedimentary 14 79.07 

Sedimentary 13 14.73 

Sedimentary 12 14.37 

Sedimentary 11 24.27 

Sedimentary 11 18.48 

Sedimentary 10 135.10 

Sedimentary 8 14.92 

Sedimentary 8 74.23 

Sedimentary 7 13.90 

Sedimentary 5 65.26 

Sedimentary 5 170.40 

Sedimentary 5 184.64 

Igneous 73 120.22 



Page | 261  

igneous 62 105.00 

Igneous 23 110.27 

Igneous 12 94.58 

Igneous 10 113.25 

Igneous 10 131.12 

Metamorphic 24 182.35 

Metamorphic 13 150.46 

Metamorphic 8 195.00 

Metamorphic 8 194.00 

Metamorphic 8 191.33 

Metamorphic 8 146.25 

Metamorphic 7 165.86 

Metamorphic 7 240.50 

 

 

 



Page | 262  

Point Load Database Summary 

Main Rock Type Sample Number Average Point Load Index 

Sedimentary 157 0.50 

Sedimentary 100 2.59 

Sedimentary 26 1.23 

Sedimentary 22 2.20 

Sedimentary 13 5.19 

Sedimentary 12 1.45 

Sedimentary 9 0.79 

Igneous 464 0.99 

Igneous 279 1.20 

Igneous 228 6.51 

Igneous 206 0.46 

Igneous 191 3.65 

Igneous 139 0.61 
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Igneous 118 2.70 

Igneous 109 4.01 

Igneous 100 2.53 

Igneous 83 5.85 

Igneous 43 5.49 

Igneous 35 4.03 

Igneous 34 1.23 

Metamorphic 152 4.73 

Metamorphic 33 2.30 

Metamorphic 26 3.60 

Metamorphic 14 3.38 

Metamorphic 11 7.52 

Metamorphic 10 2.74 

Metamorphic 8 4.76 

Only Logging code known 21 0.58 
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Only Logging code known 14 7.34 

Only Logging code known 11 0.44 

Only Logging code known 6 1.07 

Only Logging code known 4 2.11 

Only Logging code known 4 3.22 

Only Logging code known 4 0.17 

 

 

  



Page | 265  

Tensile Strength database summary 

Main Rock Type Sample Number Average Tensile Strength 

Sedimentary 24 2.60 

Sedimentary 16 5.92 

Sedimentary 10 16.46 

Sedimentary 11 11.36 

Sedimentary 9 2.84 

Sedimentary 9 1.66 

Sedimentary 7 2.35 

Sedimentary 7 10.71 

Sedimentary 6 8.66 

Sedimentary 5 1.17 

Sedimentary 5 13.40 

Igneous 42 12.65 

Igneous 13 11.37 
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Igneous 8 8.04 

Igneous 5 12.58 

Igneous 5 23.45 

Igneous 5 11.89 

Metamorphic 12 15.28 

Metamorphic 8 9.96 

Metamorphic 8 16.30 
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Dry density database summary 

Main Rock Type Sample Number Average Density 

Sedimentary 158 2.43 

Sedimentary 88 2.42 

Sedimentary 84 2.32 

Sedimentary 53 2.11 

Sedimentary 44 2.03 

Sedimentary 39 2.41 

Sedimentary 34 2.57 

Sedimentary 31 2.87 

Sedimentary 27 2.30 

Sedimentary 24 2.17 

Sedimentary 19 1.27 

Sedimentary 18 1.68 

Sedimentary 15 2.22 



Page | 268  

Sedimentary 14 2.37 

Sedimentary 13 2.28 

Sedimentary 13 2.80 

Sedimentary 13 2.68 

Sedimentary 12 2.55 

Sedimentary 10 2.55 

Sedimentary 10 2.73 

Sedimentary 8 2.16 

Sedimentary 8 2.75 

Sedimentary 8 2.60 

Sedimentary 6 2.63 

Sedimentary 6 2.49 

Igneous 84 2.75 

igneous 46 2.59 

Igneous 23 2.67 
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Igneous 15 2.81 

Igneous 10 2.77 

igneous 7 1.85 

Metamorphic 12 2.63 

Metamorphic 8 2.73 

Metamorphic 5 3.32 

Metamorphic 5 2.78 
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Elastic parameter database summary 

Main Rock Type Sample Count 
Average Young’s 

modulus 

Average Poisson’s 

Ratio 

Sedimentary 158 15.03 0.11 

Sedimentary 155 11.65 0.27 

Sedimentary 88 7.14 0.17 

Sedimentary 84 5.16 0.10 

Sedimentary 74 7.75 0.27 

Sedimentary 39 7.63 0.16 

Sedimentary 27 5.71 0.11 

Sedimentary 23 26.54 0.10 

Sedimentary 22 6.84 0.28 

Sedimentary 19 1.52 0.05 

Sedimentary 15 2.17 0.10 

Sedimentary 13 2.98 0.13 

Sedimentary 11 24.82 0.08 
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Sedimentary 11 5.73 0.30 

Sedimentary 8 3.00 0.14 

Sedimentary 7 12.30 0.04 

Sedimentary 7 70.70 0.08 

Sedimentary 5 46.78 0.07 

Igneous 62 37.06 0.14 

Igneous 43 67.80 0.31 

Igneous 12 57.32 0.13 

Igneous 12 66.85 0.18 

Igneous 10 62.47 0.17 

Igneous 8 71.71 0.14 

Metamorphic 8 58.61 0.27 

Metamorphic 5 72.38 0.29 

Metamorphic 5 75.50 0.29 
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Friction database summary 

Main Rock 

Type 
Sample Numbers 

Average 

Peak friction 

Average 

Residual 

friction 

Sedimentary 76 31.26 - 

Sedimentary 27 21.54 - 

Sedimentary 6 31.30 - 

Sedimentary 5 27.40 - 

Sedimentary 8 samples, for 6 different preparations 29.03 - 36.52 33.51 - 38.01 

Sedimentary 7 samples, for 6 different preparations 26.95 - 34.77 23.95 - 35.52 

Sedimentary 6 samples, for 6 different preparations 33.89 - 36.90 34.47 - 38.29 

Sedimentary 7 or 9 samples, for 6 different preparations 22.91 - 35.30 29.48 - 33.38 

Sedimentary 7 and 8 29.69 - 31.21 30.93 - 31.35 

Sedimentary 7 samples, for 6 different preparations 28.43 - 31.97 29.59 - 32.69 

Sedimentary 
4 samples for 3 different preparations and 2 

loading styles 
33.50 - 43.00 - 

Igneous 13 22.35 - 
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Igneous 
4 samples for 3 different preparations and 2 

loading styles 
30.50 - 38.06 - 

Igneous 7 samples, for 6 different preparations 24.39 - 32.38 31.00 - 35.92 

Igneous 7 samples, for 4 different preparations 30.18 - 32.22 31.36 - 34.87 

Igneous 7 samples, for 6 different preparations 28.45 - 34.83 35.57 - 37.44 

Metamorphic 7 samples, for 6 different preparations 22.97 - 29.54 24.96 - 33.70 

 


