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Abstract

This thesis investigates the applicability and beneficiality of isogeometric analysis

to the incremental sheet forming simulations. Incremental sheet forming (ISF) is a

manufacturing process for sheet metals where the final shape is obtained incrementally

using a blunt moving tool. ISF is a relatively slow process but does not need precise

and expensive dies (which require a long lead time) in contrast to many other sheet

forming processes. This makes it ideal for rapid prototyping, customized parts, and

small-batch production.

However, the time-consuming nature of an incremental process in combination with

strongly nonlinear material behavior makes obtaining accurate simulation results

very challenging. The existing simulation technology is often slow or not sufficiently

robust for complex ISF simulations. Therefore, isogeometric analysis is investigated

in order to improve the performance of the simulations.

Isogeometric analysis (IGA) is a relatively new simulation method which uses

spline-based interpolation in contrast to Lagrange polynomials often employed by

conventional finite elements. This work discusses many important fundamental

concepts related to IGA, namely, spline interpolation, Galerkin method, numerical

interpolation, shell element formulations, and contact.

The most important contributions to the field are the introduction of multiple new

isogeometric shell element formulations, demonstration of benefits of unclamped

knot vectors, and evaluation of some recently proposed quadrature rules using a

complex real-world application. However, these findings are not limited to sheet

forming simulations but are beneficial for a vast variety of applications ranging from

modeling of bioprosthetic heart valves to automobile crash simulations. Furthermore,

some application-specific aspects for ISF simulations are discussed such as contact

algorithms.

The implementation takes advantage of general-purpose computing on graphics

processing units (GPGPU), which is found to be a very cost-efficient way to speed

up the simulations. The simulations are observed to run significantly faster on a

modern desktop PC in comparison to conventional CPU-based implementations.

Finally, IGA is found to be an outstanding alternative for ISF simulations.
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José Torero for his contributions to my Ph.D. milestones.

My sincere thanks also go to the chair of the review panel, Dr. William Daniel, and

the panel members Dr. Joe Gattas and Dr. Vinh Dao, for their insightful comments

and encouragement, but also for the challenging questions which incented me to

deepen my research from various perspectives.

Furthermore, I am grateful to many others involved in my research one way or

another—I have had very interesting and motivating discussions with many other

researchers during my candidature. Special thanks go to Dr. Yunpeng Zhang who

implemented certain advanced material models and contributed to the isogeometric

simulation code.

Finally, I would like to thank my family and friends for supporting me throughout

my Ph.D. project.



Financial support

1. UQ International Scholarship (UQI)

2. Boeing Research & Technology – Australia Top-Up Scholarship
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Chapter 1

Introduction

1.1 Incremental sheet forming (ISF)

Incremental sheet forming (ISF) is a manufacturing process in which a blunt moving

tool is used to deform a sheet into the desired shape. The tool tip creates a local

plastic deformation while moving throughout the predefined tool path. The final

form of the sheet is obtained by a series of small incremental deformations entirely

from the original sheet thickness. The concept of ISF can be tracked to the patents

filed by Roux (1960) and Leszak (1967).

Many widely adopted and cost effective sheet forming processes used for mass

production (e.g., deep drawing) require a die. Nevertheless, manufacturing precise

dies is usually costly and requires a long lead time (Altan and Tekkaya, 2012). This is

not economical for rapid prototyping, small-batch production, or highly customized

parts. Although ISF is a relatively slow process, it requires either no die or often only

an inexpensive simple die, which makes it ideal for small-batch production (Jeswiet

et al., 2005; Bambach, 2008). ISF can be divided in different variants depending on

the type of the process.

Single point incremental forming (SPIF) is considered dieless method as it uses no

die on the other side of the sheet (see Figure 1.1). However, often a simple backplate

is utilized to prevent widely spread deformations at the flange area. The edges

of the blank are clamped to a specific blank holder which remains at a constant

height during the process. Even though using a backplate does not result in a single

point contact, the acronym “SPIF” is well-established and shall be employed in this
1
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context (Bambach, 2008).

Figure 1.1: Single point incremental forming (SPIF). Only the forming tool contacts the
sheet.

Two-point incremental forming (TPIF) uses a die to improve the accuracy of the

process (Altan and Tekkaya, 2012). The die is placed on the opposite side of the blank

compared to the tool (see Figure 1.2). Depending on the geometry requirements,

a full or partial die can be used. The edges of the blank are still clamped, but the

blank holder moves gradually to the direction of the die to allow proper shaping of

the workpiece.

v v
Rigid die

Figure 1.2: Two-point incremental forming (TPIF). In addition to the forming tool, a
moving frame and a die are employed.

Double-sided incremental forming (DSIF) is a newer method first described in the

Japanese patent filed by Shima et al. (1997). This approach relies on two forming

tools—each at opposite sides of the blank (Altan and Tekkaya, 2012). The tools are

driven synchronously such that the slave tool provides support to the master tool
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Figure 1.3: Double-sided incremental forming (DSIF). Two synchronously driven tools are
used to form the final shape.

throughout the forming process (see Figure 1.3). The method is truly dieless and

should result in better accuracy compared to SPIF.

Other ISF variants promising good accuracy such as methods based on a dynamic

die (Franzen et al., 2008) or multiple parallel tools (Wang and Peng, 2015) can be

found from the literature as well.

1.2 Mechanics of ISF

ISF requires a computer-controlled machine which is able to move the tool along

the predefined path. Computer numerically controlled (CNC) milling machines and

industrial robots are typical examples of utilized machines (Altan and Tekkaya,

2012). In general, the stiffness of the device should be high enough to prevent the

tool deviating from the trajectory.

The typical forming tool has a hemispherical head with a diameter between 6 mm

and 50 mm. The tool may or may not rotate during the ISF process. The plastic

deformation area is limited to the contact zone of the tool and the blank, which

makes the process’ mechanics relatively complex (Altan and Tekkaya, 2012).

One of the most important limiting factors in ISF is the sheet thinning during the

process. The sheet thinning can be approximated by the cosine of the wall angle,

which assumes a projective behavior of the surface. Under this assumption, the
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actual sheet thickness h is given by (Young and Jeswiet, 2004)

h = h0 cos(ψ) (1.1)

where h0 is the initial thickness, and ψ is the wall angle. This approximation is

limited for single-pass processes only, as multi-pass forming strategies can better

control the thinning regions and even produce a wall angle of 90◦ (Hirt et al., 2004;

Altan and Tekkaya, 2012). However, according to the experiments conducted by

Young and Jeswiet (2004), the thickness resulting from the single-pass ISF varies

significantly even for a constant angled wall profile indicating poor accuracy of (1.1).

According to Jeswiet et al. (2005), the maximum achievable draw angle using a

single-pass forming strategy for typical applications is between 60◦ and 70◦.

Another challenge in ISF is a springback effect caused by elastic strains. During

the forming process, local and global springback effects can be recognized. Local

springback occurs as the zone in contact with the tool moves along the path. At

the same time, the part is always slightly inclined towards the position of the tool,

which causes a global orbiting springback effect. Other springback effects may occur

when the forming tool is removed, or the part is unclamped or trimmed (Altan and

Tekkaya, 2012).

1.3 Modeling of ISF

As the industry has recognized the potential of ISF manufacturing process, there

has also emerged a great interest for fast simulations—even for real-time analysis.

The finite element method, or FEM, is a widely adopted modeling approach among

the engineering industry. It has been successfully used to model metal forming

problems including ISF. However, applying FEM to ISF is computationally costly as

one simulation may easily take days depending on the required accuracy and the

size of the problem (Elford et al., 2013).

In ISF, the final shape is achieved by a series of small local incremental deformations.

As this very local deformation zone is a key element of the whole process, a fine

space discretization is required in order to obtain accurate simulation results. On

the other hand, the time-consuming nature of an incremental process also results in

anticipation of a very large number of time steps, which is, indeed, often the case.

Combining the demanding space and time discretization requirements with strongly

nonlinear behavior results in an enormous computational cost.
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If the simulation uses an explicit time integration method, the maximum time

increment is limited by the Courant-Friedrichs-Lewy (CFL) stability condition

(Courant et al., 1928). For the industry standard, four-noded, bilinear shell element,

the CFL condition is proportional to the smallest element dimension and inversely

proportional to the speed of sound of the material. On the other hand, the time

increment size in implicit time integration methods is not necessarily penalized by

the CFL condition. Although this would permit a use of larger time increments,

convergence problems are often encountered due to the strong nonlinearities, i.e.,

contact, geometric changes, and material response.

1.4 Isogeometric analysis (IGA)

Isogeometric analysis (IGA) is a relatively new computational method first introduced

by Hughes et al. (2005) that uses the exact geometry representation as a basis for

analysis. The first motivation for the development of IGA was to eliminate the gap

between computer aided design (CAD) and computer aided engineering (CAE) and

avoid the often time-consuming step of mesh construction. In IGA, the interpolation

functions are typically not tied to a single element-like entity as is the case in the

context of standard FEM. Instead, the interpolation functions have support over

multiple element-like entities that allows higher continuity. The increased smoothness

have turned out to provide superior accuracy and robustness on a per-degree-of-

freedom basis in comparison to conventional Lagrange finite elements (Cottrell et al.,

2006, 2007; Evans et al., 2009; Großmann et al., 2012).

Improved accuracy implies that the number of degrees of freedom could be reduced,

i.e., a coarser mesh could be employed to achieve the same level of accuracy com-

parable to FEM. As the maximum stable time increment size for explicit time

integration methods is tied to the minimum element-like dimension, the applicable

time increment size is simultaneously increased. However, according to Adam et al.

(2015b) the maximum stable time step size could be increased even further due to

the higher continuity. This could mean a significant reduction in computational

time of explicit analysis. Furthermore, the increased smoothness could also improve

the convergence of implicit methods, as the nonphysical jumps in contact forces are

eliminated.

The higher continuity is also beneficial for the Galerkin method as the numerical

integration need not be performed at most one element at a time (Hughes et al.,
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2010; Schillinger et al., 2014; Adam et al., 2015b). Moreover, the smoothness of the

interpolation functions makes collocation methods potentially a good alternative for

solving the underlying partial differential equations. Collocation approach is based

on the discretization of the strong form of equations and has recently been under

intense research in the context of IGA (Auricchio et al., 2010, 2012a; Schillinger

et al., 2013; De Lorenzis et al., 2015; Kiendl et al., 2015a; Kruse et al., 2015).

1.5 Research questions

The main emphasis of this research project is to investigate the applicability of IGA

to ISF simulations and to determine if the simulations benefit from using isogeometric

shell technology. The most desirable attributes of an isogeometric shell formulation

are robustness and high computational efficiency. The following questions are studied

among others:

• What type of shell formulation is ideal?

• What kind of quadrature rule to use?

• What is the maximum stable time step size?

• How are loads and boundary conditions treated?

• What are the requirements for the contact algorithm?

1.6 Thesis outline

The thesis is structured as follows. Chapter 2 reviews typical geometry representa-

tions used with IGA including a thorough description of Bézier curves, b-splines,

NURBS, and t-splines. Chapter 3 introduces the Galerkin method and the numerical

integration, which serve as the foundations for the analysis. Furthermore, several shell

formulations based on Kirchhoff-Love and Reissner-Mindlin theories are presented,

and stress integration, loads and boundary conditions, as well as contact modeling are

discussed. Chapter 4 presents numerical results using several benchmark problems

which range from simple static linear elastic examples to complex ISF simulations.

Finally, conclusions are given in Chapter 5.

Three papers written during the research project are given as appendices: Isogeomet-

ric thickness stretchable shell: efficient formulation for nonlinear dynamic problems
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(Appendix A), Quadrature rules for isogeometric shell formulations: study using a

real-world application about metal forming (Appendix B), and Efficient isogeometric

shell element with through-thickness stretch: application to incremental sheet forming

(Appendix C).

1.7 Notational remarks

The following notation is used throughout the text. The order of a tensor variable is

indicated by the number of dots added under the corresponding symbol. For instance,

.a and ..a are different tensors of first and second orders, respectively. However, the

underdots are omitted whenever the matrix notation is employed. A similar dot on

top of a variable indicates a material time derivative. Inner products are expressed

with operator dots such as in a = .a · .a and b = ..a : ..a. A tensor product is expressed

as ..a = .a⊗ .a. The symbol (⊗) is also used when denoting a multi-dimensional tensor

product space in terms of one-dimensional spaces. Furthermore, a partial derivative

is denoted by a comma in the subscript. Lastly, although the concept of Bézier

extraction is not employed, the subdomains bounded by the knots are still referred

to as Bézier elements, similarly to the works of Schillinger et al. (2014), Adam et al.

(2015c), and Hiemstra et al. (2017).





Chapter 2

Geometry representation

In the modern CAD technology, geometry is mostly represented by nonuniform

rational b-splines, known as NURBS (Piegl and Tiller, 1996). However, a single

NURBS patch is not capable of representing an arbitrary shape often required by

an engineering design. This problem is solved by trimming and connecting multiple

NURBS patches together. However, the resulting representation is not generally

suitable as a basis for analysis (Scott et al., 2012). T-splines introduced by Sederberg

et al. (2003) are a potentially superior alternative to NURBS geometry representation.

T-splines can be combined with subdivision schemes such as Catmull-Clark (1978)

surfaces, and, as a result, a geometry of any complexity can be represented as a

single analysis suitable watertight patch.

In the CAE technology, the classical finite elements use Lagrange polynomials to

approximate the exact CAD geometry. These polynomials are often of first or second

order, and the same polynomials are typically also used to interpolate displacements.

This approximated geometry requires an often computationally costly step of mesh

generation and results in loss of precision even before the analysis has started. To

overcome these drawbacks, the concept of isogeometric analysis proposed by Hughes

et al. (2005) aims to use the exact CAD geometry as a basis for analysis. In order to

improve the accuracy of the analysis, further refinement of the CAD representation

is still possible without changing the initial CAD geometry.

To fully understand the concept of IGA, a thorough understanding of spline technology

is crucial. Starting with Bézier curves (Section 2.1) seems reasonable as it is a simple

special case, i.e., a subset, of b-splines (Section 2.2), NURBS (Section 2.3), and

9
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t-splines (Section 2.4). Lastly, some geometric algorithms are given in Section 2.5.

2.1 Bézier curves

A Bézier curve is a parametric polynomial curve which is a function of one parameter.

The parameter represents a straight line segment in the parametric space, which, if

mapped into the three-dimensional Euclidean space is given as follows:

c(ξ) =


x(ξ)

y(ξ)

z(ξ)

 (2.1)

The parametric space is often normalized such that 0 ≤ ξ ≤ 1. A Bézier curve is

defined as (Piegl and Tiller, 1996)

.c(ξ) =

p∑
i=0

Np
i (ξ) .xi (2.2)

where Np
i (ξ) are the Bernstein (1912) polynomials of degree p given by

Np
i (ξ) =

p!

i!(p− i)!
ξi(1− ξ)p−i (2.3)

and .xi are called control points. Bernstein polynomials Np
i (ξ) are nonnegative over

the entire domain,

Np
i (ξ) ≥ 0, ∀ξ (2.4)

and they satisfy the partition of unity condition, i.e., (Piegl and Tiller, 1996)

p∑
i=0

Np
i (ξ) = 1, ∀ξ (2.5)

The derivatives of a Bézier curve are obtained by (Piegl and Tiller, 1996; Farouki,

2012)

.c(ξ),ξ =

p∑
i=0

Np
i (ξ),ξ .xi

=

p∑
i=0

p
(
Np−1
i−1 (ξ)−Np−1

i (ξ)
)

.xi

= p

p−1∑
i=0

Np−1
i (ξ)( .xi+1 − .xi)

(2.6)

where

Np−1
−1 (ξ) ≡ Np−1

p (ξ) ≡ 0 (2.7)
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2.2 B-spline curves

Bézier curves consist of only one polynomial or rational segment. This means that

in order to accurately represent a complex shape or to satisfy a large number of

constraints, high degree polynomials are required. However, curves of high degree are

inefficient to process and numerically unstable (Piegl and Tiller, 1996). Therefore,

b-splines have been introduced to overcome these drawbacks.

B-spline, also known as basis spline, is a piecewise polynomial or piecewise rational

type of curve. B-spline curve of degree p is given by

.c(ξ) =
n∑
i=1

Np
i (ξ) .xi (2.8)

where Np
i (ξ) are pth degree b-spline basis functions and .xi are n control points. A

b-spline curve comprised of seven control points is shown in Figure 2.1.

Figure 2.1: A b-spline curve comprised of seven control points. The dashed lines connecting
the control points represent the control grid.

2.2.1 Knot vector

The breakpoints, i.e., the knots, between the curve segments are defined by a

nondecreasing set of coordinates called a knot vector:

Ξ = {ξ1, ξ2 . . . , ξnΞ
}, ξi ∈ R (2.9)

Knot vectors can be split into groups of clamped and unclamped, and further

categorized as uniform and nonuniform. A clamped knot vector requires its first

and last knot values to be repeated p+ 1 times. This causes the curve to coincide

with its first and last control points. The number of knots for a knot vector can be

determined from the relation

nΞ = n+ p+ 1 (2.10)
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where p is the degree of the polynomial and n is the number of control points

used to construct the b-spline curve (Piegl and Tiller, 1996; Cottrell et al., 2009).

Furthermore, a clamped knot vector of the form

Ξ = {ξ1, . . . , ξ1︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξp+2︸ ︷︷ ︸
p+1

} (2.11)

produces a b-spline curve equal to a pth degree Bézier curve (Piegl and Tiller, 1996).

Therefore b-spline curves are a generalization of Bézier curves.

If the knot spacing is constant within the parametric space, the knot vector is referred

to as uniform, and otherwise nonuniform. However, a clamped knot vector may still

be considered uniform although its first and last knots have a multiplicity of p+ 1

(Piegl and Tiller, 1996). Examples of knot vectors of quadratic b-splines are given

below:

Ξcu = {0, 0, 0, 1, 2, 3, 4, 4, 4} (clamped, uniform)

Ξcn = {−3,−3,−3,−2, 6, 6, 9, 9, 9} (clamped, nonuniform)

Ξuu = {−2,−1, 0, 1, 2, 3, 4, 5, 6} (unclamped, uniform)

Ξun = {−5,−4, 0, 1, 1, 2, 5, 7, 9} (unclamped, nonuniform)

(2.12)

A b-spline curve is defined Ck continuous at a knot ξi if the derivatives up to the

kth derivative of the adjacent curve segments are equal at the joint, i.e.,

lim
ξ→ξ−i

.c(ξ),ξj = .c(ξ),ξj = lim
ξ→ξ+

i

.c(ξ),ξj , ∀{j ∈ Z | 0 ≤ j ≤ k} (2.13)

However, the continuity can be directly determined by

Cp−mi (2.14)

where p is the degree of the polynomial and mi is the multiplicity of the corresponding

knot. A knot at ξi satisfying the equation

ξi+mi−1 − ξi = 0 (2.15)

has a multiplicity of at least mi which means that the knots {ξi, . . . , ξi+mi−1} are

located at the same point in the parametric space.

2.2.2 Basis functions

After the knot vectors are defined, the b-spline basis functions can be calculated.

B-splines were first introduced by defining the basis functions by divided differences of
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truncated power functions (Schoenberg, 1946; Curry and Schoenberg, 1947). Later,

Cox (1972) and de Boor (1972, 1978) introduced a recurrence formula that has

become widely adopted. Furthermore, a method based on blossoming principle was

proposed by Ramshaw (1987). The second one is known as Cox-de Boor recursion

formula (Cottrell et al., 2009) and defines b-spline basis functions Np
i of degree p by

N0
i (ξ) =

1 if ξi ≤ ξ ≤ ξi+1

0 otherwise

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ), ∀{p ∈ Z | p > 0}

(2.16)

where 0
0
≡ 0 by convention. Similarly to Bernstein polynomials, b-spline basis

functions Np
i (ξ) are nonnegative over the entire domain,

Np
i (ξ) ≥ 0, ∀ξ (2.17)

and the basis satisfies the partition of unity condition, i.e., (Cottrell et al., 2009)

n∑
i=1

Np
i (ξ) = 1, ∀ξ (2.18)

Furthermore, the support of a basis function is always p+ 1 knot spans, which results

in the continuity property given by (2.14) (Cottrell et al., 2009).

2.2.3 Derivatives of basis functions

The first derivative of a basis function can be calculated by (Piegl and Tiller, 1996;

Cottrell et al., 2009)

Np
i (ξ),ξ =

p

ξi+p − ξi
Np−1
i (ξ)− p

ξi+p+1 − ξi+1

Np−1
i+1 (ξ) (2.19)

which can be generalized for kth order derivatives as follows:

Np
i (ξ),ξk =

p

ξi+p − ξi
Np−1
i (ξ),ξk−1 − p

ξi+p+1 − ξi+1

Np−1
i+1 (ξ),ξk−1 (2.20)

2.3 Nonuniform rational b-splines (NURBS)

However, not all shapes can be represented by polynomials. Representation of conic

shapes, such as circles or ellipses requires rational functions. Therefore, NURBS

have been introduced to support such shapes. A rational function is defined as a
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ratio of two polynomials. A rational b-spline curve of degree p is defined by (Piegl

and Tiller, 1996)

.c(ξ) =

∑n
i=1N

p
i (ξ)wi .xi∑n

j=1N
p
j (ξ)wj

=
n∑
i=1

Rp
i (ξ) .xi (2.21)

where Rp
i (ξ) are the rational basis functions given by

Rp
i (ξ) =

Np
i (ξ)wi∑n

j=1N
p
j (ξ)wj

(2.22)

and wi are scalar weights for n control points .xi. This rational curve in Rd can be

efficiently represented as a polynomial curve in Rd+1 using a projective transformation

(Piegl and Tiller, 1996; Cottrell et al., 2009). A nonrational projective b-spline curve

in R4 is given as

.c
w(ξ) =

n∑
i=1

Np
i (ξ) .x

w
i (2.23)

where the projective control points are

xwi =


wixi

wiyi

wizi

wi

 (2.24)

Applying the projective transformation is equivalent to dividing the projective control

points by the corresponding weights (Piegl and Tiller, 1996; Cottrell et al., 2009).

Equation (2.23) of a polynomial b-spline curve in R4 can be written as
xw(ξ)

yw(ξ)

zw(ξ)

W (ξ)

 =
n∑
i=1

Np
i (ξ)wi


xi

yi

zi

1

 (2.25)

where

W (ξ) =
n∑
i=1

Np
i (ξ)wi (2.26)

The projective transformation R4 → R3 is obtained by mapping .c
w(ξ) onto a

hyperplane W (ξ) = 1:
xw(ξ)

yw(ξ)

zw(ξ)

W (ξ)

→ 1

W (ξ)


xw(ξ)

yw(ξ)

zw(ξ)

W (ξ)

 =


x(ξ)

y(ξ)

z(ξ)

1

 (2.27)
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The geometry can now be represented in R3. Using index notation, one obtains

ck(ξ) =
cwk (ξ)

W (ξ)
=

∑n
i=1N

p
i (ξ)xwki∑n

j=1N
p
j (ξ)wj

=

∑n
i=1N

p
i (ξ)wixki∑n

j=1N
p
j (ξ)wj

, ∀{k ∈ Z | 1 ≤ k ≤ 3}

(2.28)

which is equivalent to (2.21).

2.3.1 NURBS surface

A NURBS surface can be constructed from two parameters that represent a plane in

the parametric space. Mapping into the three-dimensional Euclidean space results

in

s(ξ, η) =


x(ξ, η)

y(ξ, η)

z(ξ, η)

 (2.29)

where the parametric space is often normalized such that 0 ≤ ξ, η ≤ 1. A rational

b-spline surface defined by the tensor product method is given by (Piegl and Tiller,

1996)

.s(ξ, η) =

∑n
i=1

∑m
j=1 N

p
i (ξ)N q

j (η)wij .xij∑n
k=1

∑m
l=1 N

p
k (ξ)N q

l (η)wkl
=

n∑
i=1

m∑
j=1

Rpq
ij (ξ, η) .xij (2.30)

where n and m denote the number of control points in the parametric directions

ξ and η, respectively. Moreover, p and q are the degrees of the univariate basis

functions Np
i (ξ) and N q

j (η). The bivariate rational basis functions Rpq
ij are given as

follows:

Rpq
ij (ξ, η) =

Np
i (ξ)N q

j (η)wij∑n
k=1

∑m
l=1N

p
k (ξ)N q

l (η)wkl
(2.31)

2.3.2 NURBS solid

A solid, which is a function of three parameters, is derived similarly. Mapping into

the three-dimensional Euclidean space results in

v(ξ, η, ζ) =


x(ξ, η, ζ)

y(ξ, η, ζ)

z(ξ, η, ζ)

 (2.32)
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where the parametric space is often normalized such that 0 ≤ ξ, η, ζ ≤ 1. A rational

NURBS solid is defined analogously to the NURBS surface using the tensor product

method by

.v(ξ, η, ζ) =

∑n
i=1

∑m
j=1

∑l
k=1N

p
i (ξ)N q

j (η)N r
k (ζ)wijk .xijk∑n

f=1

∑m
g=1

∑l
h=1 N

p
f (ξ)N q

g (η)N r
h(ζ)wfgh

=
n∑
i=1

m∑
j=1

l∑
k=1

Rpqr
ijk (ξ, η, ζ) .xijk

(2.33)

where n, m and l denote the number of control points in the parametric directions ξ,

η and ζ, respectively. Similarly to the NURBS surface, p, q and r are the degrees of

the univariate basis functions Np
i (ξ), N q

j (η) and N r
k (ζ). The trivariate rational basis

functions Rpqr
ijk for NURBS solid are given below:

Rpqr
ijk (ξ, η, ζ) =

Np
i (ξ)N q

j (η)N r
k (ζ)wijk∑n

f=1

∑m
g=1

∑l
h=1N

p
f (ξ)N q

g (η)N r
h(ζ)wfgh

(2.34)

2.4 T-splines

T-splines are a generalization of b-splines and NURBS first proposed by Sederberg

et al. (2003) for bicubic surfaces and later generalized to three dimensions and

arbitrary degree by Bazilevs et al. (2010). T-splines support T-junctions such that a

line of control points in the parametric space is allowed to terminate in the middle of

the patch. Therefore, t-splines do not preserve the tensor product nature of b-splines.

T-splines rely on locally defined knot vectors. As the support of a b-spline basis

function Np
i (ξ) is always contained within [ξi, ξi+p+1], it suffices to determine a local

knot vector consisting of p+ 2 knots (see Figure 2.2). This local knot vector can now

be used by the Cox-de Boor recursion formula (2.16) to calculate the corresponding

basis function without altering the geometry in any way. As a result, locally defined

knot vectors permit an addition of a single control point into the patch in contrast

to a line of control points associated with a global knot vector.

Bazilevs et al. (2010) define t-splines in an index space, where the spacing between

the knots is equal regardless of their actual spacing, and the knot lines are labeled

with their index value. For a b-spline surface, the index space is a uniform grid of

squares, whereas, for a t-spline surface, it consists of rectangles but not necessarily

squares. The edges of the rectangles represent a knot location. Bazilevs et al. (2010)

introduced an anchor .s associated with each control point. The anchor is used for
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Figure 2.2: The index space for a biquadratic b-spline surface. The local knot vectors
associated with the corresponding control point are denoted by the blue lines. The yellow
shaded area represents the support of the basis function.

defining local knot vectors to be able to calculate the basis functions, or blending

functions, as referred by Bazilevs et al. (2010) in the context of t-splines. For even

degrees, the anchors are placed in the center of each rectangle. The local horizontally

oriented knot vector Ξa is defined by shooting a ray left and right from the anchor,

and choosing the first p/2 + 1 knots encountered separately from the both directions.

The vertical knot vector Ha is derived analogously.

Following the aforementioned procedure for the anchor .sa shown in Figure 2.3, the

local knot vectors Ξa and Ha associated with the anchor are given for quadratic

t-splines as

Ξa = {ξ3, ξ4, ξ6, ξ7}

Ha = {η2, η3, η4, η7}
(2.35)

For odd degrees, the anchors are placed at each vertex and (p + 1)/2 knots are

collected from each direction in addition to the knot coincident with the anchor. The

local knot vectors associated with the anchor .sb are given for cubic t-splines by (see

Figure 2.3)

Ξb = {ξ1, ξ2, ξ3, ξ4, ξ6}

Hb = {η2, η3, η4, η5, η6}
(2.36)

Associating the control point .xA and its weight wA with each anchor location .sA,

the multivariate rational t-spline basis functions for an arbitrary number (d) of
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Figure 2.3: The index space for biquadratic (left-hand side) and bicubic (right-hand side)
t-spline surfaces. The local knot vectors associated with the anchors sa and sb are denoted
by the blue lines. The yellow shaded area represents the support of the basis function.

parametric dimensions are defined by (Bazilevs et al., 2010)

RA(.ξ) =
wA
∏d

l=1N
l
A(ξl)∑nT

B=1wB
∏d

l=1N
l
B(ξl)

(2.37)

where N l
A(ξl) is the univariate basis function of degree plA constructed from a knot

vector of length plA + 2. It is associated with the anchor .sA and the parametric

dimension l. Furthermore, nT is the total number of control points and .ξ is a vector

representing all parametric dimensions. Finally, the t-spline in the physical space is

given by

.t(.ξ) =

nT∑
A=1

RA(ξ) .xA (2.38)

Unfortunately, Buffa et al. (2010) showed that not all t-spline basis functions are

guaranteed to be linearly independent. Although this is not necessary for the most

CAD applications, it is essential for analysis (Li et al., 2012). Therefore, Li et al.

(2012) introduced a concept of analysis suitable t-splines, which is a slightly restricted

subset of general t-splines. A local refinement algorithm for analysis suitable t-splines

was developed by Scott et al. (2012). Later, Wang et al. (2014) pointed out that

only t-splines consisting of repeated knots may be linearly dependent. Moreover,

weighted t-splines (Liu et al., 2015b) and truncated t-splines (Wei et al., 2016) have

been proposed to guarantee analysis suitability.
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T-splines, as well as b-splines, can be combined with subdivision schemes such as

Catmull-Clark surfaces (Catmull and Clark, 1978; Sederberg et al., 2003). This allows

even a b-spline surface to have vertices in the middle of a surface that have valence

other than four (Stam, 1998), where the term valence indicates the number of edges

that meet at the vertex. These vertices are called extraordinary points. Furthermore,

Stam (1998) showed that the surface and its derivatives can be efficiently evaluated

around extraordinary points using a set of specific eigenbasis functions. Riffnaller-

Schiefer et al. (2016) demonstrated isogeometric shell analysis using surfaces with

extraordinary points, whereas Liu et al. (2015a) and Wei et al. (2016) discussed

extraordinary points in the context of weighted and truncated t-splines, respectively.

2.5 Algorithms

2.5.1 Closest point projection onto a t-spline curve

A closest point projection onto a NURBS geometry can be calculated using Newton-

Raphson iterative method provided that the initial guess for the first iteration is

close enough (Piegl and Tiller, 1996). The same approach can be utilized for a

general t-spline geometry.

A closest point projection onto a curve satisfies the orthogonality condition .c(ξ),ξ ⊥
(.c(ξ)− .p) assuming that the point .p does not lie outside the end points of the curve.

Therefore, due to the orthogonality condition, the following equation must hold:

f(ξ) = .c(ξ),ξ · (.c(ξ)− .p) = 0 (2.39)

The Newton-Raphson method calculates the parametric coordinate for the next

iteration i+ 1 by

ξi+1 = ξi −
f(ξi)

f ′(ξi)
= ξi −

.c(ξi),ξ · (.c(ξi)− .p)

.c(ξi),ξξ · (.c(ξi)− .p) + ‖.c(ξi),ξ‖2
(2.40)

where the derivatives .c(ξi),ξ and .c(ξi),ξξ can be calculated following the procedure

discussed in Section 2.5.2.

2.5.2 Closest point projection onto a t-spline surface

A closest point projection onto a surface is computed analogously to Section 2.5.1

(Piegl and Tiller, 1996). Let .r be a vector between the point .p and a t-spline surface
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.s(ξ, η):

.r(ξ, η) = .s(ξ, η)− .p (2.41)

The orthogonality condition must be satisfied for the both local coordinates giving

κi =

[
.r(ξi, ηi) · .s(ξi, ηi),ξ

.r(ξi, ηi) · .s(ξi, ηi),η

]
(2.42)

for which the derivatives are given by

Ji =

[
‖.s,ξ‖2 + .r · .s,ξξ .s,ξ · .s,η + .r · .s,ξη

.s,η · .s,ξ + .r · .s,ηξ ‖.s,η‖2 + .r · .s,ηη

]
(2.43)

In (2.43), the dependencies of .r(ξi, ηi) and .s(ξi, ηi) are omitted for readability. The

change of the coordinates from one consecutive iteration to another is denoted by δi:

δi =

[
∆ξi

∆ηi

]
=

[
ξi+1 − ξi
ηi+1 − ηi

]
(2.44)

The problem forms a 2 × 2 system of linear equations of the form Jiδi = −κi.
However, the procedure requires the first and the second derivatives of the t-spline

surface to be calculated. As the control points are not functions of the parametric

coordinates, the first derivatives of a t-spline surface can be expressed in terms of

derivatives of the bivariate rational basis functions as

.s(ξ, η),ξ =

nT∑
A=1

RA(ξ, η),ξ .xA (2.45)

and

.s(ξ, η),η =

nT∑
A=1

RA(ξ, η),η .xA (2.46)

A bivariate rational basis function of a t-spline surface can be written as

RA(ξ, η) =
wAN

ξ
A(ξ)Nη

A(η)

W (ξ, η)
(2.47)

where the denominator of (2.37) is denoted by W (ξ, η). The ξ-derivative of a rational

basis function is derived by applying the quotient rule:

RA(ξ, η),ξ =
wAN

η
A(η)N ξ

A(ξ),ξ −RA(ξ, η)W (ξ, η),ξ
W (ξ, η)

(2.48)
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After applying the product and the quotient rule to the first derivative, the second

derivatives can be written as

RA(ξ, η),ξξ =
wAN

η
A(η)N ξ

A(ξ),ξξ −W (ξ, η),ξξRA(ξ, η)− 2W (ξ, η),ξRA(ξ, η),ξ
W (ξ, η)

(2.49)

and

RA(ξ, η),ξη =
wAN

ξ
A(ξ),ξN

η
A(η),η −W (ξ, η),ξηRA(ξ, η)

W (ξ, η)

− wAN
η
A(η)N ξ

A(ξ),ξW (ξ, η),η + wAN
ξ
A(ξ)Nη

A(η),ηW (ξ, η),ξ
W (ξ, η)2

+
2W (ξ, η),ξW (ξ, η),ηRA(ξ, η)

W (ξ, η)2

(2.50)

The derivatives RA(ξ, η),η, RA(ξ, η),ηη and RA(ξ, η),ηξ are derived similarly. However,

the cross partial derivative only needs to be calculated once since RA(ξ, η),ηξ =

RA(ξ, η),ξη.





Chapter 3

Analysis

This chapter presents the foundations for the analysis. In solid mechanics, balance

equations such as the conservation of mass, linear momentum, and energy are typically

used as a basis for the analysis. Section 3.1 demonstrates the Galerkin method, which

is often used for approximating the solution of the underlying balance equations.

Section 3.2 discusses numerical integration. Explicit and implicit approaches for

time integration are demonstrated by common time integration schemes, and the

importance of the quadrature rule in solving the domain and boundary integrals is

weighed.

Section 3.3 presents three closely related but different isogeometric shell elements—

two of which are shear deformable. The shell elements adopt certain fundamental

ideas from the fastest and most robust classical shell formulations, but pursue to solve

certain IGA-related complexities by applying the latest technological innovations.

The stress integration is discussed separately in Section 3.4.

Section 3.5 considers the application of loads and the enforcement of boundary

conditions at an arbitrary location within a patch. Finally, Section 3.6 discusses

contact treatment in the context of IGA and proposes some application-specific

techniques for contact modeling in ISF simulations.

3.1 Galerkin method

In this section, the balance equations for the conservation of linear momentum as

well as energy are used as the basis for a linear thermomechanical model. The strong
23
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form of the balance equations is converted into a weak form by introducing a test

function and integrating over the domain. In Bubnov-Galerkin method, the test

function and the primary variable are both approximated by the same interpolation

functions which often leads to symmetric matrices. Furthermore, the test function is

herein obtained as a variation of the primary variable.

3.1.1 Conservation of linear momentum

The balance of linear momentum can be written as (Belytschko et al., 2013)

ρ
..
.u = div ..σ + .b (3.1)

where ρ is the material density,
..
.u is the acceleration, i.e., the second derivative of

the displacement .u with respect to time, and .b contains all body forces per unit

volume. In the context of linear thermoelasticity and isotropic media, the Cauchy

stress ..σ is given by

..σ = 2µ..ε+ λ
(

tr(..ε)− αθθ
)
..I (3.2)

where λ and µ are Lamé’s first and second parameters, the temperature change

θ = T − T0 is defined in terms of the current and the constant initial absolute

temperatures T and T0, respectively, αθ is the volumetric coefficient of thermal

expansion, and ..I is the identity tensor. The infinitesimal strain ..ε is a function of

displacement .u and is given by

..ε =
1

2

(
.u,.x + .u

T
,.x
)

(3.3)

where .x is the position vector.

The weak form can be obtained by introducing a variation δ .u known as a virtual

displacement, and integrating over the domain Ω. This is known as the principle of

virtual work. The weak form of (3.1) is given below:∫
Ω

δ .u · ρ..
.u dΩ−

∫
Ω

δ .u · div ..σ dΩ =

∫
Ω

δ .u · .b dΩ (3.4)

Considering the divergence theorem of Gauss, one may express the term consisting

of the divergence of the stress ..σ as∫
Ω

δ .u · div ..σ dΩ = −
∫

Ω

δ..ε : ..σ dΩ +

∫
Γ

δ .u · .t dΓ (3.5)
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where .u,.x is decomposed into its symmetric and skew-symmetric parts after which it

is noted that a double dot product between a skew-symmetric and symmetric tensor

is zero, i.e.,

δ .u,.x : ..σ =
1

2

(
δ .u,.x + δ .u

T
,.x
)

: ..σ +
1

2

(
δ .u,.x − δ .u

T
,.x
)

: ..σ︸ ︷︷ ︸
=0

= δ..ε : ..σ (3.6)

Furthermore, the last term of (3.5) represents a traction boundary condition along

the boundary Γ (Zienkiewicz et al., 2013). The traction .t is defined as

.t = .nΓ · ..σ (3.7)

where .nΓ is the unit normal vector of the boundary. The equation of the weak form

can now be written as∫
Ω

δ .u · ρ..
.u dΩ︸ ︷︷ ︸

Winer

+

∫
Ω

δ..ε : ..σ dΩ︸ ︷︷ ︸
Wint

=

∫
Ω

δ .u · .b dΩ +

∫
Γ

δ .u · .t dΓ︸ ︷︷ ︸
Wext

(3.8)

where the inertial, internal, and external virtual work contributions are denoted by

Winer, Wint, and Wext, respectively.

The space domain is discretized by approximating the displacements δ .u and .u by

the shape functions Nu
A and control point displacements δ .uA and .uA, i.e.,

δ .u ≈
∑
A

Nu
Aδ .uA, .u ≈

∑
A

Nu
A .uA (3.9)

The discretized weak form of the equation becomes∑
A

δ .uA ·
∫

Ω

∑
B ρN

u
AN

u
B

..
.uB dΩ︸ ︷︷ ︸

.f
u
inerA

+
∑
A

δ .uA ·
∫

Ω

Nu
A,.x

· ..σ dΩ︸ ︷︷ ︸
.f
u
intA−.f

θ
intA

=
∑
A

δ .uA ·
∫

Ω

Nu
A .b dΩ︸ ︷︷ ︸

.f
ub
extA

+
∑
A

δ .uA ·
∫

Γ

Nu
A.t dΓ︸ ︷︷ ︸

.f
ut
extA

(3.10)

where the control point virtual displacements δ .uA are separated such that the

integrals can now be perceived as control point forces. The second term of (3.10)

is decomposed into displacement and temperature change dependent terms. The

control point internal forces .f
u
intA and .f

θ
intA for an isotropic linear thermoelastic

material are now given by

.f
u
intA =

∫
Ω

Nu
A,.x

·
(
....C : ..ε

)
dΩ, .f

θ
intA =

∫
Ω

∑
B λαθN

θ
BθBN

u
A,.x

dΩ (3.11)
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where the temperature change θ is approximated by the shape functions N θ
A and

control point temperature changes θA as θ ≈
∑

AN
θ
AθA. The material tensor ....C as

well as the infinitesimal strain ..ε are given in the index notation by

....C := Cijkl = λδijδkl + µ(δikδjl + δilδjk) (3.12)

and

..ε := εij =
∑
B

1

2

(
NB,juiB +NB,iujB

)
(3.13)

respectively, where δij is the Kronecker delta function.

3.1.2 Conservation of energy

According to Belytschko et al. (2013), the energy balance equation for a thermome-

chanical process where the sources of energy consist of either mechanical work or

heat, is given by

pint = ..D : ..σ − div .w + r (3.14)

where pint is the internal power per unit volume, .w is the heat flow, r is the heat

production per unit volume, and ..D is the rate-of-deformation, or velocity strain,

given by

..D =
1

2

( .
.u,.x

+
.
.u
T
,.x
)

(3.15)

For a reversible process where the temperature change is small, Nicholson (2008) as

well as Hetnarski and Eslami (2009) end up with the energy balance equation of the

form

ρcp
.
θ = −λαθT0 tr( ..D)− div .w + r (3.16)

where cp is the specific heat capacity and
.
θ is the first time derivative of the

temperature change θ = T − T0. If the response follows Fourier’s law, the heat flow

for an isotropic media can be written as

.w = −kθ θ,.x (3.17)

where kθ is the material conductivity coefficient. Equation (3.16) is a strong form

representation of the energy balance equation. The weak form can be obtained
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similarly to (3.4) by introducing a temperature variation δθ and integrating over the

domain. The weak form is given as follows:∫
Ω

δθρcp
.
θ dΩ = −

∫
Ω

δθλαθT0 tr( ..D) dΩ−
∫

Ω

δθ div .w dΩ +

∫
Ω

δθr dΩ (3.18)

Considering the divergence theorem of Gauss similarly to (3.5), the term consisting

of divergence of the heat flow can be written as∫
Ω

δθ div .w dΩ = −
∫

Ω

δθ,.x · .w dΩ +

∫
Γ

δθ .nΓ · .w dΓ (3.19)

where the last term represents a heat flow boundary condition along the boundary

Γ. The heat flow boundary condition is often separated into a prescribed heat flow

w, convection, and radiation yielding (Lewis et al., 2004; Dhondt, 2004)∫
Γ

δθ .nΓ · .w dΓ =

∫
Γ

δθw dΓ−
∫

Γ

δθhθ(θ − θenv) dΓ︸ ︷︷ ︸
convection

−
∫

Γ

δθεθσθ
(
(θ + T0)4 − (θenv + T0)4

)
dΓ︸ ︷︷ ︸

radiation

(3.20)

where hθ is the convection heat transfer coefficient and θenv is the environmental

temperature change given by θenv = Tenv − T0 in which Tenv is the absolute envi-

ronmental temperature. Moreover, εθ and σθ in the radiation term are the surface

emissivity and the Stefan-Boltzmann constant, respectively. However, the radiation

boundary condition is quartic in θ causing a nonlinearity and is therefore not further

considered for the linear thermoelastic model.

The temperature variation δθ and the temperature change θ are approximated by

the shape functions N θ
A to discretize the space domain similarly to (3.9):

δθ ≈
∑
A

N θ
AδθA, θ ≈

∑
A

N θ
AθA (3.21)

After substituting (3.20) into (3.19), and then (3.19) into (3.18), and neglecting the

nonlinear radiation contribution, the discretized weak form of the equation becomes

∑
A

δθA

∫
Ω

∑
B ρcpN

θ
AN

θ
B

.
θB dΩ︸ ︷︷ ︸

fθinerA

+
∑
A

δθA

∫
Ω

−N θ
A,.x

· .w dΩ︸ ︷︷ ︸
fθintA

+
∑
A

δθA

∫
Ω

λαθT0N
θ
A tr( ..D) dΩ︸ ︷︷ ︸

fuintA

=
∑
A

δθA

∫
Ω

N θ
Ar dΩ︸ ︷︷ ︸

fθrextA

+
∑
A

δθA

∫
Γ

N θ
Aw dΓ︸ ︷︷ ︸

fθwextA

−
∑
A

δθA

∫
Γ

∑
B N

θ
Ahθ(N

θ
BθB − θenv) dΓ︸ ︷︷ ︸

fθhextA
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(3.22)

where

.w =
∑
B

−kθN θ
B,.x
θB, tr( ..D) =

∑
B

NB,.x ·
.
.uB (3.23)

3.1.3 Linear thermoelastic coupling

The equations (3.10) and (3.22) form the following system of equations:∑
A

δ .uA ·
(∑

BM
u
AB

..
.uB︸ ︷︷ ︸

.f
u
inerA

+
∑

B ..K
u
AB · .uB︸ ︷︷ ︸

.f
u
intA

−
∑

B .Ω
u
ABθB︸ ︷︷ ︸

.f
θ
intA

)
=
∑
A

δ .uA · .f
u
extA

∑
A

δθA

(∑
BM

θ
AB

.
θB︸ ︷︷ ︸

fθinerA

+
∑

BK
θ
ABθB︸ ︷︷ ︸

fθhintA

+
∑

B .Ω
θ
AB · .

.uB︸ ︷︷ ︸
fuintA

)
=
∑
A

δθAf
θ
extA

(3.24)

The components of the mechanical part are given in the index form by

Mu
AB =

∫
Ω

ρNu
AN

u
B dΩ

Ku
ijAB =

∫
Ω

∑
k,l,h

1

2
Nu
A,kCiklh

(
δjlN

u
B,h + δjhN

u
B,l

)
dΩ

Ωu
iAB =

∫
Ω

λαθN
θ
BN

u
A,i dΩ

fuext iA =

∫
Ω

Nu
Abi dΩ +

∫
Γ

Nu
Ati dΓ

(3.25)

and the components of the thermal part are written similarly as

M θ
AB =

∫
Ω

ρcpN
θ
AN

θ
B dΩ

Kθ
AB =

∫
Ω

∑
i

kθN
θ
A,iN

θ
B,i dΩ +

∫
Γ

hθN
θ
AN

θ
B dΓ

Ωθ
iAB =

∫
Ω

λαθT0N
θ
AN

u
B,i dΩ

f θextA =

∫
Ω

N θ
Ar dΩ +

∫
Γ

N θ
Aw dΓ +

∫
Γ

hθN
θ
Aθenv dΓ

(3.26)

3.2 Numerical integration

This section discusses explicit and implicit numerical time integration schemes by

considering the linear thermomechanical coupling derived in Section 3.1. Furthermore,

evaluation of the domain and boundary integrals using a numerical quadrature is

considered.
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3.2.1 Explicit time integration

In the explicit time integration methods, the state of a system at a later time is

calculated considering only the state of the system at the current time. In the

thermomechanical coupling system (3.24), the first equation is a second-order partial

differential equation whereas the second equation is a first-order partial differential

equation. In the context of explicit time integration, these type of equations are

often solved using central and forward difference methods (Koric et al., 2009).

Furthermore, the mass matrices Mu
AB and M θ

AB are usually lumped, or diagonalized,

to make the cost associated with the matrix inversion insignificant. Typical simple

lumping techniques are row or column summing, but also other methods are used

(Wu and Gu, 2012). The physical implication of a lumped mass matrix is that all

the mass is located at the control points. This simplification affects the dynamic

response of the system to small extent, but due to massive computational savings

this procedure is widely adopted in the context of explicit methods.

The primary variables .uB and θB in the thermoelastic coupling are updated by first

arranging the unknown terms representing mechanical and thermal inertias to the

left-hand side, and all known terms to the right-hand side as follows:∑
B

Mu
AB

..
.uB = .f

u
extA − .f

u
intA + .f

θ
intA∑

B

M θ
AB

.
θB = f θextA − f θhintA − fuintA

(3.27)

Equation (3.27) is solved by finding the inverses of Mu
AB and M θ

AB; this is trivial if

these matrices are diagonal. Using the aforementioned central and forward differences,

one obtains the updated displacement and temperature change by

.

.u
t+ 1

2
B =

.

.u
t− 1

2
B + ∆tt

..
.u
t
B

.u
t+1
B = .u

t
B + ∆tt+

1
2

.

.u
t+ 1

2
B

θt+1
B = θtB + ∆tt+

1
2

.
θtB

(3.28)

where ∆t is the time increment, t and t+ 1 in the superscript denote the current and

the next time step, and t± 1
2

is used for the mid-point values. The central difference

time integration scheme is discussed in more detail in the context of shell elements

in Section 3.3.8.

Knowing .u
t+1
B and θt+1

B allows calculating the internal and external forces for the

corresponding time step, i.e., the right-hand side of (3.27), after which the acceleration
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and the rate of change of temperature can be solved again to start repeating the

procedure.

However, the time increment size for explicit time integration methods is limited

by the Courant-Friedrichs-Lewy (CFL) stability condition (Courant et al., 1928)

leading to very small time increments in most applications. The time increment size

for a purely mechanical response is related to the maximum natural frequency of the

system ω by

∆t <
2

ω
(3.29)

if the central difference time integration scheme is used. The time step requirements

for the thermal response are usually less restrictive, and, in most cases, permit many

orders of magnitude larger stable time steps.

It is further noted that the diagonalization of a mass matrix typically lowers the

maximum natural frequency of the system, and therefore, often slightly increases

the maximum stable time increment size (Adam et al., 2015b).

3.2.2 Implicit time integration

In contrast to explicit methods, implicit time integration methods update the state

of a system such that the unknown later state is taken into consideration when

forming the equilibrium equations. A common choice in the context of implicit time

integration schemes is Newmark’s (1959) method which approximates the differential

equations as follows:

.

.u
t+1 ≈ .

.u
t + (1− γ)

..
.u
t∆t+ γ

..
.u
t+1∆t

.u
t+1 ≈ .u

t +
.
.u
t∆t+ (

1

2
− β)

..
.u
t∆t2 + β

..
.u
t+1∆t2

(3.30)

The parameters β and γ determine the behavior of the method (de Borst et al.,

2012). Unconditional stability is achieved for linear systems if

2β ≥ γ ≥ 1

2
(3.31)

in which case the method remains stable for any time step size. The unknown

acceleration
..
.u
t+1 and velocity

.

.u
t+1 are functions of the unknown displacement .u

t+1,

as well as the known current acceleration
..
.u
t, velocity

.

.u
t, and displacement .u

t.

Rearranging (3.302), one obtains the acceleration
..
.u
t+1:

..
.u
t+1 =

1

β∆t2︸ ︷︷ ︸
¯̄β

.u
t+1− 1

β∆t2 .u
t − 1

β∆t
.
.u
t −
(

1

2β
− 1

)
..
.u
t︸ ︷︷ ︸

.ζ

(3.32)
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The velocity
.
.u
t+1 is obtained by inserting (3.32) into (3.301):

.

.u
t+1 =

γ

β∆t︸︷︷︸
β̄

.u
t+1− γ

β∆t .u
t −
(
γ

β
− 1

)
.
.u
t −
(
γ

2β
− 1

)
..
.u
t∆t︸ ︷︷ ︸

.χ

(3.33)

Denoting the terms known at the current time by .ζ and .χ, one may express the

linear thermomechanical coupling system (3.24) in the following form:

.r
u
A =

∑
BM

u
AB( ¯̄β .uB + .ζ

u
B) +

∑
B ..K

u
AB · .uB −

∑
B .Ω

u
ABθB − .f

u
extA = 0

rθA =
∑

BM
θ
AB(β̄θB + χθB) +

∑
BK

θ
ABθB +

∑
B .Ω

θ
AB · (β̄ .uB + .χ

u
B)− f θextA = 0

(3.34)

This system of equations is often solved by the iterative Newton-Raphson method

which requires finding all partial derivatives of the force residuals .r
u
A and rθA with

respect to the primary variables .uB and θB. For the linear thermoelastic coupling

these derivatives are constant and simply given in the index notation by

ruiA,ujB = ¯̄βMu
AB +Ku

ijAB

ruiA,θB = −Ωu
iAB

rθA,uiB = β̄Ωθ
iAB

rθA,θB = β̄M θ
AB +Kθ

AB

(3.35)

Therefore, only one iteration is required for the underlying system of linear equations.

However, the Newton-Raphson method is still applicable even if nonlinearities need

be considered, which is usually the case with large displacements or temperature

changes, advanced material models, and certain types of boundary conditions such

as contact or radiation.

3.2.3 Domain and boundary integrals

The definite domain and boundary integrals in the problem formulation arising from

the Galerkin method are solved numerically by calculating the integrand value at

the specific locations called integration points. The placement and quantity of these

points are crucial in determining the accuracy of the solution. The integration points

are specified by the quadrature rule which therefore defines the resulting integration

point scheme for the corresponding domain. For the Lagrange finite elements, Gauss-

Legendre quadrature rules are often used to determine the integration points. A

one-dimensional Gauss-Legendre quadrature with N integration points provides
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(a) Four-point Gauss-Legendre
quadrature.

(b) Four-point Gauss-Lobatto quadra-
ture.

Figure 3.1: Two-dimensional Gauss-Legendre and Gauss-Lobatto quadratures.

the exact solution for polynomials up to the degree 2N − 1. A two-dimensional

Gauss-Legendre quadrature with 2 points per parametric direction is shown in Figure

3.1a.

In the context of solid mechanics, if Lagrange elements are used, the definite integrals

need be numerically evaluated for each element separately as the integrand function is

discontinuous across the elements. Therefore, the quadratures of adjacent Lagrange

elements are always independent of each other. On the other hand, in isogeometric

analysis, the integrand function may be continuous throughout the whole patch. A

patch consists of a number of Bézier elements which are determined by the knot

locations defined in the parametric space. Furthermore, the definite integrals typically

need not be evaluated separately for each Bézier element and one integration point

may contribute to multiple elements.

A good example to demonstrate the advantages originating from a continuous

integrand function is the Gauss-Lobatto quadrature shown in Figure 3.1b. For

Lagrange finite elements, this rule requires nine integration point evaluations per

element as the points located at the edges must be evaluated separately for each

adjacent element. However, in IGA, the value calculated at the edge can often be

shared between the neighboring elements in which case the number of integration

point evaluations approaches only four for a large mesh.

Quadratures are often categorized into full and reduced integration rules depending

on their accuracy. Full integration refers to exact integration in the case of a
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polynomial integrand function (most quadratures are not able to exactly integrate

rational functions). In the context of Lagrange elements, the integrand is typically

polynomial if the transformation from the parametric domain to the physical domain

is affine.

In IGA, the basis functions may be rational instead of polynomial. However, a

quadrature resulting in an approximate integration of the corresponding rational

function is still considered a full integration rule, provided that it exactly integrates

the corresponding polynomial numerator of the respective rational function. This

interpretation rests on the fact that the denominator of a rational spline basis

function changes slowly compared to the numerator (Hughes et al., 2010).

If the quadrature does not result in full integration, it is referred to as a reduced

integration rule. In the context of explicit analyses, the main advantage of reduced

integration is the reduced computational cost. Another advantage is avoiding

locking problems often encountered with full integration (Belytschko et al., 2013).

However, reduced integration often leads to appearance of spurious modes (also

called hourglassing).

A third term—selective integration—also often comes up. It refers to a procedure

where the calculation is split, and two distinct quadrature rules are used. In the

context of solid mechanics, selective integration typically implies that the stress

associated with the Lamé’s first parameter is evaluated using a reduced quadrature

whereas the stress associated with Lamé’s second parameter remains fully integrated

(Adam et al., 2015c). The motivation to use selective integration is to alleviate

numerical locking without introducing spurious modes.

The main interest in terms of computational efficiency in ISF simulations is the

calculation of the stiffness integral derived in Section 3.1. If the solution space of a

one-dimensional polynomial shape function of degree p and regularity q is denoted

by Spq , the target space of the stiffness integral in two parametric dimensions is

S2p
q−1 ⊗ S

2p
q−1. Therefore, the target space requirements for the commonly employed

biquadratic and bicubic splines are S4
0 ⊗ S4

0 and S6
1 ⊗ S6

1 , respectively. In 2010,

Hughes et al. initiated a study on optimal quadrature rules for isogeometric analysis

and proposed a global algorithm to solve for the minimum number of integration

points to exactly integrate any target space. However, the algorithm is costly for

large meshes and convergence for the nonlinear problem is not guaranteed. Later,

improved techniques have been suggested by many authors including Auricchio et al.
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(2012b), Adam et al. (2015c), Ait-Haddou et al. (2015), Barto and Calo (2016),

Barto et al. (2017), Johannessen (2017), and Hiemstra et al. (2017).

However, full integration is somewhat costly and often leads to strong numerical

locking. Therefore, reduced quadratures have been proposed by several authors

(Schillinger et al., 2014; Adam et al., 2015c; Hiemstra et al., 2017). A common

practice is to determine the optimal quadrature for an approximation space that

differs from the corresponding target space, and use that quadrature as a reduced

integration rule for the actual target space. Adam et al. (2015c) suggested using

the optimal quadratures for S2
0 ⊗ S2

0 and S3
1 ⊗ S3

1 spaces for biquadratic and bicubic

splines, respectively, whereas Hiemstra et al. (2017) instead suggested the optimal

quadratures for S3
0 ⊗ S3

0 and S5
1 ⊗ S5

1 spaces for the same spline interpolations.

A comprehensive overview of several quadrature rules proposed for isogeometric

analysis in the literature was conducted by Hokkanen and Pedroso (2019b), who

used an advanced ISF simulation as a benchmark problem (see Appendix B).

3.3 Isogeometric shell technology

As the main emphasis of this study is on the computational efficiency and robustness,

a natural starting point for the shell formulation is the current state of fast explicit

solver codes. According to Hallquist (2006) and Belytschko et al. (2013), one

of the most efficient and robust explicit shell formulation is the widely adopted

Belytschko-Tsay (Belytschko et al., 1984) element based on the Reissner-Mindlin

theory. The main weakness of this element is its inability to correctly model twist, i.e.,

warped element configuration. Belytschko-Wong-Chiang (BWC) element (Belytschko

et al., 1992) corrects this flaw but slightly increases the computational cost. These

four-noded elements use bilinear interpolation functions and reduced integration.

Hourglassing problem resulting from reduced integration is cured by introducing an

artificial stiffness for each zero energy mode.

Concepts such as using the principle of virtual power instead of the principle of virtual

work, evaluating calculations in appropriate local coordinate systems, and neglecting

certain higher order terms for efficiency are adopted from the aforementioned classical

formulations. Based on these ideas, an isogeometric solid-like shell element was

developed by Hokkanen and Pedroso (2019a) and is given as Appendix A. The purpose

of this section is, however, to develop shell formulations based on Kirchhoff-Love



3.3. ISOGEOMETRIC SHELL TECHNOLOGY 35

and Reissner-Mindlin theories.

Several Kirchhoff-Love formulations are proposed in the literature. Kiendl et al. (2009,

2015b) developed an isogeometric Kirchhoff-Love formulation where the displacements

are used as the primary variables and the second derivatives of the shape functions are

explicitly calculated to model the bending response. An application to fluid-structure

interaction simulations of bioprosthetic heart valves was demonstrated by Hsu et al.

(2015) and the extension to elasto-plastic materials was discussed by Ambati et al.

(2018). Echter et al. (2013) proposed a hierarchic family of isogeometric shell elements

where a Kirchhoff-Love type shell model is used as a basis and additional degrees of

freedom are added to a represent shear and thickness deformations. This concept

was later further developed by Oesterle et al. (2016, 2017).

A Kirchhoff-Love formulation where the primary variables represent a velocity was

proposed by Benson et al. (2011). This formulation constructs representative control

point normals, and as a consequence, the second derivatives of the shape functions

need not be explicitly calculated. However, the authors indicate that the formulation

is susceptible to shear locking. Later, Benson et al. (2013) proposed a blended

shell formulation where the Kirchhoff-Love shell is used for smooth regions and the

Reissner-Mindlin assumption for sharp corners.

Furthermore, an isogeometric Reissner-Mindlin shell element for explicit dynamic

simulations was proposed by Benson et al. (2010). The Reissner-Mindlin elements

were also discussed in the context of IGA by Dornisch et al. (2013) and Adam et al.

(2015a), among others.

3.3.1 The principle of virtual power

The balance of linear momentum is enforced following the Galerkin method presented

in Section 3.1. However, the variation introduced herein represents a virtual velocity

instead of a virtual displacement. This leads to the principle of virtual power (cf.

virtual work). Analogously to the expression derived in Section 3.1 for the virtual

work, the expression for the virtual power including inertial, internal, and external

virtual power contributions takes the form

∫
Ω

ρ .a · δ .v dΩ︸ ︷︷ ︸
δPiner

+

∫
Ω

..σ : δ ..D dΩ︸ ︷︷ ︸
δPint

=

∫
Ω

.b · δ .v dΩ +

∫
Γ

.t · δ .v dΓ︸ ︷︷ ︸
δPext

(3.36)
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where δ .v is the virtual velocity and δ ..D is the virtual rate-of-deformation defined as

the symmetric part of the spatial virtual velocity gradient δ .v,.x:

δ ..D =
1

2
(δ .v,.x + δ .v

T
,.x

) (3.37)

3.3.2 Shell kinematics

The kinematics of the proposed shell formulation are derived by first considering

the continuum-based (CB) approach, also called degenerated continuum approach.

The shell geometry is described by the reference surface coordinate .r(ξ, η, t) and

the shell fiber vector .d(ξ, η, t) which remains straight during the deformation. This

interpretation results in

.x(ξ, η, ζ, t) = 1
2

(
.xtop(ξ, η, t) + .xbot(ξ, η, t)

)︸ ︷︷ ︸
.r(ξ,η,t)

+1
2
ζ
(

.xtop(ξ, η, t)− .xbot(ξ, η, t)
)︸ ︷︷ ︸

.d(ξ,η,t)

(3.38)

where .xtop(ξ, η, t) represents the top surface and .xbot(ξ, η, t) the bottom surface.

Lines along the ζ axis are called fibers and a unit vector along a fiber is called a

director (Belytschko et al., 2013).

However, in the Kirchhoff-Love shell theory, the fiber vector is required to remain

normal to the reference surface of the shell, i.e., the surface formed by setting ζ = 0.

The shell geometry can now be written as

.x(ξ, η, ζ, t) = .r(ξ, η, t) + ζ
h(ξ, η, t)

2 .n(.r(ξ, η, t)) (3.39)

where h(ξ, η, t) is the shell thickness and .n(.r(ξ, η, t)) is the shell director which

remains normal to the reference surface, i.e., the mid-surface unit normal. Taking the

time derivative of (3.39), one ends up with the following expression for the velocity

.v =
.
.r + ζ

(h
2

.

.n+

.
h

2 .n
)

(3.40)

where the function dependencies are omitted. The last term contributing to the

thickness stretch is generally neglected in shell formulations enforcing the plane

stress condition (Belytschko et al., 2013). Instead, the thickness change is calculated

from the accumulated total strains. The resulting shell velocity definition for the

Kirchhoff-Love shell element is referred to as “KL3” and simply given by

.v =
.
.r + ζ

h

2
.
.n (3.41)
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One drawback of this definition is its inability to model transverse shear effects.

Following the concept of hierarchical shells and the shear rotation introduced by

Echter et al. (2013), the definition (3.41) is augmented by an angular shear velocity

field to enhance the Kirchhoff-Love formulation (3.41) as

.v =
.
.r + ζ

h

2

(
.
.n+ .Ψ× .n

)
(3.42)

where .Ψ is the angular shear velocity contributing to the transverse shear effects.

This shear enhanced Kirchhoff-Love formulation is referred to as “KL6”. However,

it is also possible to represent both, the velocity of the shell unit normal as well

as the shear angle by an angular velocity field. This choice leads to a classical

Reissner-Mindlin type shell formulation referred to as “RM6” and given by

.v =
.
.r + ζ

h

2 .ω × .n (3.43)

The equations in this section are derived for the KL6 shell formulation, i.e., Equation

(3.42). However, switching to the KL3 or RM6 formulation is trivial and can be

accomplished by simply setting .ΨA = .f
Ψ
intA = .f

Ψ
extA = 0 or

.

.nA = .f
r1
intA = .f

r1
extA = 0,

respectively.

Although the velocity definitions (3.42) and (3.43) are inconsistent with the shell

geometry definition (3.39), many shear deformable shell elements approximate the

actual shell director of the deformed geometry by the unit normal to simplify the

formulation and to increase its robustness (Benson et al., 2013; Belytschko et al.,

2013). It should be noted that this approximation does not prevent transverse shear

stresses from appearing as the velocity field still accumulates the transverse shear

strains. Moreover, good accuracy is preserved for most applications, particularly, if

the transverse shear strains are small. In fact, more accurate results may be obtained

in some instances where the rotational inertias are scaled up and the response of

the shell fiber vectors is slowed down as this could deteriorate the accuracy of the

updated fiber vectors (Benson et al., 2010).

Furthermore, the developed solid-like shell formulation (Hokkanen and Pedroso,

2019a) which is capable of directly representing thickness changes and supports

complete three-dimensional constitutive laws is referred to as “S7”. This formulation

does not require plane stress enforcement nor it assumes normality of the shell fiber

vector to the reference surface.



38 CHAPTER 3. ANALYSIS

3.3.3 Control point normals

In isogeometric analysis, the control points are not interpolatory, i.e., there are no

unique material points associated with the control points. Therefore, the determina-

tion of representative control point normals is not trivial. The normals required by

the developed formulations are constructed following the lifting operator method

introduced by Benson et al. (2011). The normal of the control point A is defined as

.nA = .pA

‖ .pA‖
(3.44)

where

.pA = .t
ξ
A × .t

η
A

(3.45)

The vectors .t
ξ
A and .t

ξ
A are obtained from

.t
ξ
A =

∑
B

cξAB .rB, .t
η
A =

∑
B

cηAB .rB (3.46)

Taking the time derivative of .nA, one ends up with the following definition for the

normal velocity,

.

.nA =
1

‖ .pA‖
(..I − .nA ⊗ .nA) · .

.pA (3.47)

where

.

.pA =
.
.t
ξ
A × .t

η
A + .t

ξ
A ×

.

.t
η
A (3.48)

and

.

.t
ξ
A =

∑
B

cξAB
.
.rB,

.

.t
η
A =

∑
B

cηAB
.
.rB (3.49)

Furthermore, the virtual normal velocity is defined similarly to (3.47), i.e.,

δ
.
.nA =

1

‖ .pA‖
(..I − .nA ⊗ .nA) · δ .

.pA (3.50)

where

δ
.
.pA = δ

.

.t
ξ
A × .t

η
A + .t

ξ
A × δ

.

.t
η
A (3.51)

and

δ
.
.t
ξ
A =

∑
B

cξABδ
.
.rB, δ

.

.t
η
A =

∑
B

cηABδ
.
.rB (3.52)
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The coefficients cξAB and cηAB are determined such that the exact tangent vectors at

the integration points given by

.t
ξ(.ξg) =

∑
A

NA,ξ(.ξg).rA, .t
η(.ξg) =

∑
A

NA,η(.ξg).rA (3.53)

are required to be interpolants of the tangent vectors associated with the control

points, i.e.,

.t
ξ(.ξg) =

∑
A

NA(.ξg).t
ξ
A, .t

η(.ξg) =
∑
A

NA(.ξg).t
ξ
A (3.54)

The coefficients cξAB and cηAB are constant throughout the analysis and can be

determined in advance by selecting (p+ 1)2 points from the corresponding Bézier

element and solving the following systems of linear equations,∑
A

NA(.ξg)c
ξ
AB = NB,ξ(.ξg),

∑
A

NA(.ξg)c
η
AB = NB,η(.ξg) (3.55)

where .ξg represents the location of the selected point g. It is noted that the number

of in-plane integration points is typically smaller than the number of points required

to solve (3.55), in which case additional points must be chosen. Furthermore,

the coefficients cξAB and cηAB are specific to the corresponding Bézier element, and

therefore also .nA,
.
.nA, and δ

.

.nA vary from one element to another, or more specifically,

are step functions of parametric coordinates ξ and η such that the value may only

change across the element boundaries.

Other methods to determine the control point tangent vectors are also possible.

The chosen lifting operator method was compared by Benson et al. (2011) to two

other methods which extract the control point tangent vectors either from the point

determined by the closest point projection, or from the point where the shape function

reaches its maximum. However, the lifting operator method was shown to result in

superior accuracy in comparison with the two other methods. Unfortunately, as the

chosen lifting operator method makes the control point normals and normal velocities

dependent on the Bézier element, the numerical integration can be performed at

most one element at a time, i.e., the integration points cannot be shared between

the adjacent elements. Therefore, the patchwise quadratures discussed in Appendix

B are not directly applicable with this method.

3.3.4 Local coordinate system

A local orthonormal coordinate system is defined for each mid-surface integration

point such that it approximately follows the material rotation. This type of coordinate
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system is often referred to as a corotational coordinate system. The exact material

rotation can be obtained from the deformation gradient ..F which relates the current

configuration .x to the initial configuration .x0:

..F = .x,.x0 = ..V · ..R = ..R · ..U (3.56)

The polar decomposition of the deformation gradient gives the left or the right

stretch tensor, ..V or ..U , respectively, and the material rotation ..R as follows:

..V =
√

..F · ..F
T , ..U =

√
..F
T · ..F , ..R = ..V

−1 · ..F = ..F · ..U
−1 (3.57)

However, the polar decomposition is somewhat costly and none of the bases of

the resulting coordinate system are guaranteed to follow the surface unit normal

which is undesirable for the plane stress enforcement. The original formulations

proposed by Belytschko et al. (1984, 1992) construct the local coordinate system

using Hughes-Liu’s (1981) scheme which defines the orthonormal basis vectors .e1,

.e2, and .e3 such that .e1 is aligned along ξ, i.e.,

.e1 = .t
ξ

‖.tξ‖
(3.58)

Then, .e3 is defined to be normal to the surface,

.e3 = .e1 × .t
η

‖.e1 × .t
η‖

(3.59)

and .e2 is required to be orthogonal to .e1 and .e3:

.e2 = .e3 × .e1 (3.60)

However, in the aforementioned scheme, .e2 is not generally aligned along .t
η. To

align both .e1 and .e2 to match with the tangent vector directions .t
ξ and .t

η as closely

as possible, and to consequently improve the accuracy of the approximated material

rotation, Hughes (2012) proposed another definition for the basis vectors. The basis

vector normal to the surface does not change:

.e3 = .t
ξ × .t

η

‖.tξ × .t
η‖

(3.61)

The tangent vectors are normalized, i.e.,

.̄t
ξ = .t

ξ

‖.tξ‖

.̄t
η = .t

ξ

‖.tξ‖

(3.62)
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and auxiliary vectors are defined as

.tα = .̄t
ξ + .̄t

η

‖.̄tξ + .̄t
η‖

.tβ = .e3 × .tα

(3.63)

Finally the basis vectors .e1 and .e2 are given by

.e1 =

√
2

2
(.tα − .tβ)

.e2 =

√
2

2
(.tα + .tβ)

(3.64)

The material rotation is now approximated by

R ≈ [e1 e2 e3] (3.65)

and the transformation from the global to the local coordinate system is given by

.̂x = ..R
T · .x (3.66)

where the “hat” (•̂) is used to denote variables expressed in the local coordinate

system.

3.3.5 Internal virtual power

To evaluate the internal virtual power of (3.36), i.e.,

δPint =

∫
Ω

..σ : δ ..D dΩ (3.67)

one must first calculate the Cauchy stress ..σ. The Cauchy stress is obtained as a

time integral of the Cauchy stress material derivative, which in turn is a function of

the spatial velocity gradient .v,.x. The spatial velocity gradient given by

.v,.x =
.
.r,.x

+
(
ζ
h

2

)
,.x

(
.
.n+ .Ψ× .n

)
+ ζ

h

2

(
.
.n+ .Ψ× .n

)
,.x

(3.68)

is calculated in the local coordinate system (3.66) where .̂x = x̂ .̂e1 + ŷ .̂e2 + ẑ .̂e3. Noting

that .r, .n, and .Ψ are independent of ẑ, and since ζ is not a function of x̂ or ŷ, the

components of the spatial velocity gradient in the local coordinate system are given

as

.̂v,χ =
.
.̂r,χ + ζ

h

2

( .
.̂n+ ˆ

.Ψ× .̂n
)
,χ

.̂v,ẑ = ζ,ẑ
h

2

( .
.̂n+ ˆ

.Ψ× .̂n
) (3.69)
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where the derivatives of h are neglected (Belytschko et al., 2013) and χ represents

either x̂ or ŷ. The derivative ζ,ẑ is obtained from (3.39) by first calculating the

component along .e3 in the local coordinate system:

ẑ =
(

.̂r + ζ
h

2 .̂n
)
· .̂e3 (3.70)

Differentiating ẑ with respect to ζ and noting that .̂n · .̂e3 = 1 yields

ẑ,ζ =
h

2
(3.71)

hence,

ζ,ẑ =
2

h
(3.72)

The spatial velocity gradient and the spatial virtual velocity gradient can now be

written by

.̂v,χ =
.
.̂r,χ + ζ

h

2

( .
.̂n+ ˆ

.Ψ× .̂n
)
,χ

.̂v,ẑ =
.
.̂n+ ˆ

.Ψ× .̂n

(3.73)

and

δ .̂v,χ = δ
.
.̂r,χ + ζ

h

2

(
δ

.
.̂n+ δ ˆ

.Ψ× .̂n
)
,χ

δ .̂v,ẑ = δ
.
.̂n+ δ ˆ

.Ψ× .̂n

(3.74)

respectively. The components for the symmetric rate-of-deformation tensor ˆ
..D =

1
2
( .̂v.x

+ .̂v
T

.x
) are given in the local coordinate system by

Dx̂x̂ =
.
rx̂,x̂ + ζ

h

2

(
.
nx̂,x̂ + (Ψŷnẑ),x̂ − (Ψẑnŷ),x̂

)
Dx̂ŷ =

1

2

(
.
rx̂,ŷ +

.
rŷ,x̂

)
+ ζ

h

4

(
.
nx̂,ŷ + (Ψŷnẑ),ŷ − (Ψẑnŷ),ŷ +

.
nŷ,x̂ + (Ψẑnx̂),x̂ − (Ψx̂nẑ),x̂

)
Dx̂ẑ =

1

2

(
.
rẑ,x̂ +

.
nx̂ + Ψŷnẑ −Ψẑnŷ

)
+ ζ

h

4

(
.
nẑ,x̂ + (Ψx̂nŷ),x̂ − (Ψŷnx̂),x̂

)
Dŷŷ =

.
rŷ,ŷ + ζ

h

2

(
.
nŷ,ŷ + (Ψẑnx̂),ŷ − (Ψx̂nẑ),ŷ

)
Dŷẑ =

1

2

(
.
rẑ,ŷ +

.
nŷ + Ψẑnx̂ −Ψx̂nẑ

)
+ ζ

h

4

(
.
nẑ,ŷ + (Ψx̂nŷ),ŷ − (Ψŷnx̂),ŷ

)
(3.75)
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and Dẑẑ is determined from the plane stress condition. The discretized form of (3.75)

is given below:

Dx̂x̂ =
∑
A

N0
A,x̂

.
rx̂A + ζ

h

2

∑
A

(
N1
A,x̂

.
rx̂A +N0

A,x̂(
.
nx̂A + ΨŷAnẑA −ΨẑAnŷA)

)
Dx̂ŷ =

1

2

∑
A

(
N0
A,ŷ

.
rx̂A +N0

A,x̂
.
rŷA

)
+ ζ

h

4

∑
A

(
N1
A,ŷ

.
rx̂A +N1

A,x̂
.
rŷA+

N0
A,ŷ(

.
nx̂A + ΨŷAnẑA −ΨẑAnŷA) +N0

A,x̂(
.
nŷA + ΨẑAnx̂A −Ψx̂AnẑA)

)
Dx̂ẑ =

1

2

∑
A

(
N0
A,x̂

.
rẑA +NA

.
nx̂A +NA(ΨŷAnẑA −ΨẑAnŷA)

)
+

ζ
h

4

∑
A

(
N1
A,x̂

.
rẑA +N0

A,x̂(
.
nẑA + Ψx̂AnŷA −ΨŷAnx̂A)

)
Dŷŷ =

∑
A

N0
A,ŷ

.
rŷA + ζ

h

2

∑
A

(
N1
A,ŷ

.
rŷA +N0

A,ŷ(
.
nŷA + ΨẑAnx̂A −Ψx̂AnẑA)

)
Dŷẑ =

1

2

∑
A

(
N0
A,ŷ

.
rẑA +NA

.
nŷA +NA(ΨẑAnx̂A −Ψx̂AnẑA)

)
+

ζ
h

4

∑
A

(
N1
A,ŷ

.
rẑA +N0

A,ŷ(
.
nẑA + Ψx̂AnŷA −ΨŷAnx̂A)

)

(3.76)

The expression for the virtual rate-of-deformation δ ˆ
..D = 1

2
(δ .̂v.x

+ δ .̂v
T

.x
) is calculated

similarly. The underlined terms in (3.75) cancel out at the mid-surface in the KL3

and KL6 formulations, see Lemma 1. However, in the discretized form, these terms

do not generally cancel out which causes shear locking. Mesh refinement diminishes

the problem as the situation approaches the continuum limit. A simple strategy

of dropping the underlined terms in (3.76) is investigated in Chapter 4 to tackle

the shear locking problem. However, it should be noted that this approach is not

applicable to RM6 formulation.

Lemma 1. Under the Kirchhoff-Love assumption, the transverse shear must vanish

at the mid-surface. This implies that
.
rx̂,ẑ +

.
nx̂ = 0 and

.
rŷ,ẑ +

.
nŷ = 0 in (3.75).

Proof. In the local coordinate system defined in Section 3.3.4, where n̂ =
[
0 0 1

]T
,

the expression for the normal velocity (3.47) can be written as

.
n̂ =

1

‖p̂‖


.
px̂
.
pŷ

0

 =
1

‖p̂‖


.
rŷ,ξrẑ,η −

.
rẑ,ξrŷ,η + rŷ,ξ

.
rẑ,η − rẑ,ξ

.
rŷ,η

.
rẑ,ξrx̂,η −

.
rx̂,ξrẑ,η + rẑ,ξ

.
rx̂,η − rx̂,ξ

.
rẑ,η

0

 (3.77)

where

‖ .̂p‖ =
√

(rŷ,ξrẑ,η − rẑ,ξrŷ,η)2 + (rẑ,ξrx̂,η − rx̂,ξrẑ,η)2 + (rx̂,ξrŷ,η − rŷ,ξrx̂,η)2 (3.78)



44 CHAPTER 3. ANALYSIS

Noting that rẑ,ξ = rẑ,η = 0, one may write the x̂ and ŷ components of the normal

velocity as

.
nx̂ =

− .
rẑ,ξrŷ,η + rŷ,ξ

.
rẑ,η√

(rx̂,ξrŷ,η − rŷ,ξrx̂,η)2
,

.
nŷ =

.
rẑ,ξrx̂,η − rx̂,ξ

.
rẑ,η√

(rx̂,ξrŷ,η − rŷ,ξrx̂,η)2
(3.79)

On the other hand, the terms
.
rẑ,x̂ and

.
rẑ,ŷ can be obtained by[ .

rẑ,x̂
.
rẑ,ŷ

]
=

1

JS

[
rŷ,η −rŷ,ξ
−rx̂,η rx̂,ξ

][ .
rẑ,ξ
.
rẑ,η

]
, JS =

∣∣∣∣∣rx̂,ξ rŷ,ξ

rx̂,η rŷ,η

∣∣∣∣∣ (3.80)

which can be written as

.
rẑ,x̂ =

.
rẑ,ξrŷ,η − rŷ,ξ

.
rẑ,η

rx̂,ξrŷ,η − rŷ,ξrx̂,η
,

.
rẑ,ŷ =

− .
rẑ,ξrx̂,η + rx̂,ξ

.
rẑ,η

rx̂,ξrŷ,η − rŷ,ξrx̂,η
(3.81)

Therefore, from (3.79) and (3.81):

.
nx̂ = − .

rẑ,x̂,
.
nŷ = − .

rẑ,ŷ, ∀ JS ∈ R+ (3.82)

In (3.76), the derivatives of the shape functionsNA,χ are approximated by the constant

and linear terms in ζ, denoted by N0
A,χ and N1

A,χ, respectively. A similar approach is

suggested by Belytschko et al. (1989) and was adopted in the developments of the S7

element (Hokkanen and Pedroso, 2019a). As the shell formulation does not consider

quadratic variation in ζ for the velocity strains, N1
A,χ is not considered for

.
.̂n,χ or

( ˆ
.Ψ× .̂n),χ. The relations for the derivatives of the shape functions with respect to

the local coordinates are derived from
NA,ξ

NA,η

NA,ζ

 = J


NA,x̂

NA,ŷ

NA,ẑ

 =


x̂,ξ ŷ,ξ ẑ,ξ

x̂,η ŷ,η ẑ,η

x̂,ζ ŷ,ζ ẑ,ζ



NA,x̂

NA,ŷ

NA,ẑ

 (3.83)

where J is the Jacobian matrix of the transformation from the Euclidean to the

parametric space. The expression for the shape function derivatives NA,x̂ and NA,ŷ

can be written as[
NA,x̂

NA,ŷ

]
=

1

J

[
ŷ,ηẑ,ζ − ŷ,ζ ẑ,η −ŷ,ξẑ,ζ + ŷ,ζ ẑ,ξ

−x̂,ηẑ,ζ + x̂,ζ ẑ,η x̂,ξẑ,ζ − x̂,ζ ẑ,ξ

][
NA,ξ

NA,η

]
(3.84)

where

J = x̂,ζ

∣∣∣∣∣ŷ,ξ ẑ,ξ

ŷ,η ẑ,η

∣∣∣∣∣− ŷ,ζ
∣∣∣∣∣x̂,ξ ẑ,ξ

x̂,η ẑ,η

∣∣∣∣∣+ ẑ,ζ

∣∣∣∣∣x̂,ξ ŷ,ξ

x̂,η ŷ,η

∣∣∣∣∣ (3.85)
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is the Jacobian determinant.

As ẑ is aligned along ζ, x̂,ζ = ŷ,ζ = 0. Additionally, as the shape functions are not

functions of ζ, they are not functions of ẑ either, and therefore NA,ẑ = NA,ζ = 0.

Hence, (3.84) is simplified to[
NA,x̂

NA,ŷ

]
=

1

J

[
ŷ,ηẑ,ζ −ŷ,ξẑ,ζ
−x̂,ηẑ,ζ x̂,ξẑ,ζ

][
NA,ξ

NA,η

]
(3.86)

where

J = ẑ,ζ

∣∣∣∣∣x̂,ξ ŷ,ξ

x̂,η ŷ,η

∣∣∣∣∣ (3.87)

After carrying out a Taylor expansion about the mid-surface, only the constant and

linear terms in ζ are preserved in (3.86). This can be written as[
NA,x̂

NA,ŷ

]
≈

[
N0
A,x̂

N0
A,ŷ

]
+
ζ

2

[
N1
A,x̂

N1
A,ŷ

]
(3.88)

The constant terms in ζ are given as[
N0
A,x̂

N0
A,ŷ

]
=

1

J0

[
rŷ,η −rŷ,ξ
−rx̂,η rx̂,ξ

][
NA,ξ

NA,η

]
(3.89)

and the linear terms by[
N1
A,x̂

N1
A,ŷ

]
=

1

J0

[
nŷ,η − J1

J0
rŷ,η −nŷ,ξ + J1

J0
rŷ,ξ

−nx̂,η + J1

J0
rx̂,η nx̂,ξ − J1

J0
rx̂,ξ

][
NA,ξ

NA,η

]
(3.90)

where

J0 = rx̂,ξrŷ,η − rx̂,ηrŷ,ξ
J1 = rx̂,ξnŷ,η + rŷ,ηnx̂,ξ − rx̂,ηnŷ,ξ − rŷ,ξnx̂,η

(3.91)

As a consequence of the chosen lifting operator method to determine the control

point normals and normal velocities, the numerical integration to obtain the control

point forces must be performed at most one Bézier element at a time. The force

contribution of the element e associated with δ
.
.rA is given in the global coordinate

system by

e

.f
r0
intA =

∫
Se

..R · .̂r
r0
A dξdη (3.92)
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where Se represents the mid-surface of the element. The resultant r̂r0A = [rr0x̂A r
r0
ŷA r

r0
ẑA]T

is given as follows:

rr0x̂A = N0
A,x̂r

0
x̂x̂ +N0

A,ŷr
0
x̂ŷ +N1

A,x̂r
1
x̂x̂ +N1

A,ŷr
1
x̂ŷ

rr0ŷA = N0
A,x̂r

0
x̂ŷ +N0

A,ŷr
0
ŷŷ +N1

A,x̂r
1
x̂ŷ +N1

A,ŷr
1
ŷŷ

rr0ẑA = N0
A,x̂r

0
x̂ẑ +N0

A,ŷr
0
ŷẑ +N1

A,x̂r
1
x̂ẑ +N1

A,ŷr
1
ŷẑ

(3.93)

The element force contribution associated with δ
.
.nA is given by

e

.f
n
intA =

∫
Se

..R · .̂r
n
Adξdη (3.94)

where r̂nA = [rnx̂A r
n
ŷA r

n
ẑA]T and

rnx̂A = N0
A,x̂r

1
x̂x̂ +N0

A,ŷr
1
x̂ŷ +NAr

0
x̂ẑ

rnŷA = N0
A,x̂r

1
x̂ŷ +N0

A,ŷr
1
ŷŷ +NAr

0
ŷẑ

rnẑA = N0
A,x̂r

1
x̂ẑ +N0

A,ŷr
1
ŷẑ

(3.95)

Finally, the contribution to the transversal shear is given as

e

.f
Ψ
intA =

∫
Se

..R · .̂r
Ψ
Adξdη (3.96)

where r̂Ψ
A = [rΨ

x̂A r
Ψ
ŷA r

Ψ
ẑA]T and

rΨ
x̂A = nŷA(N0

A,x̂r
1
x̂ẑ +N0

A,ŷr
1
ŷẑ)− nẑA(N0

A,x̂r
1
x̂ŷ +N0

A,ŷr
1
ŷŷ +NAr

0
ŷẑ)

rΨ
ŷA = nẑA(N0

A,x̂r
1
x̂x̂ +N0

A,ŷr
1
x̂ŷ +NAr

0
x̂ẑ)− nx̂A(N0

A,x̂r
1
x̂ẑ +N0

A,ŷr
1
ŷẑ)

rΨ
ẑA = nx̂A(N0

A,x̂r
1
x̂ŷ +N0

A,ŷr
1
ŷŷ +NAr

0
ŷẑ)− nŷA(N0

A,x̂r
1
x̂x̂ +N0

A,ŷr
1
x̂ŷ +NAr

0
x̂ẑ)

(3.97)

The resultants .̂.r
0 and .̂.r

1 are obtained by integrating along the fiber as

.̂.r
0 =

∫ 1

−1
.̂.σJdζ, .̂.r

1 =

∫ 1

−1

ζ
h

2 .̂.σJdζ (3.98)

The constitutive relation between the Cauchy stress .̂.σ and the material deformation

is discussed in Section 3.4. Moreover, the underlined internal force contributions in

(3.93) and (3.95) must be dropped if the underlined terms in (3.76) are dropped.

The discretized internal virtual power for the Bézier element e can now be expressed

in the following form:

δePint =
∑
A

δ
.
.rA · e

.f
r0
intA +

∑
A

δ
.
.nA · e

.f
n
intA +

∑
A

δ .ΨA · e

.f
Ψ
intA (3.99)
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However, δ
.
.nA is a function of δ

.

.rB and is given by (3.50). After substituting (3.50)

into (3.99), one may write the total discretized internal virtual power in terms of

δ
.
.rA and δ .ΨA as

δPint =
∑
A

δ
.
.rA ·

∑
e

( e.f
r0
intA + e

.f
r1
intA)︸ ︷︷ ︸

.f
r
intA

+
∑
A

δ .ΨA ·
∑
e

e

.f
Ψ
intA︸ ︷︷ ︸

.f
Ψ
intA

(3.100)

where

e

.f
r1
intA =

∑
B

(cξBA.t
η
B ×

e

.q
n
B + cηBA

e

.q
n
B × .t

ξ
B) (3.101)

and

e

.q
n
A =

1

‖ .pA‖
(..I − .nA ⊗ .nA) · e

.f
n
intA (3.102)

3.3.6 External virtual power

The external body and traction force contributions to the virtual power are given by

δP b
ext =

∫
Ω

.b · δ .v dΩ, δP t
ext =

∫
Γ

.t · δ .v dΓ (3.103)

After discretizing and substituting the virtual velocity

δ .v = δ
.
.r + ζ

h

2

(
δ

.

.n+ δ .Ψ× .n
)

(3.104)

into (3.103), one obtains

δeP b
ext =

∑
A

(
δ

.

.rA ·
∫

Ωe
NA .b dΩ︸ ︷︷ ︸
e
.f
r0
extA

+δ
.
.nA ·
∫

Ωe
ζ
h

2
NA .b dΩ︸ ︷︷ ︸

e
.f
n
extA

+δ .ΨA ·
∫

Ωe
ζ
h

2
NA .nA × .b dΩ︸ ︷︷ ︸
e
.f

Ψ
extA

)

(3.105)

for the body force. The total external body forces associated with δ
.
.rA and δ .ΨA are

obtained by substituting (3.50) into (3.105) which yields

δP b
ext =

∑
A

δ
.
.rA ·

∑
e

( e.f
r0
extA + e

.f
r1
extA)︸ ︷︷ ︸

.f
r
extA

+
∑
A

δ .ΨA ·
∑
e

e

.f
Ψ
extA︸ ︷︷ ︸

.f
Ψ
extA

(3.106)

where e
.f
r1
extA is determined analogously to (3.101). The external traction force

contribution is obtained similarly, but the contribution is usually applied only to the

top, ζ = 1, or bottom surface, ζ = −1.
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3.3.7 Inertial virtual power

The inertial force contribution to the virtual power is given by

δPiner =

∫
Ω

ρ .a · δ .v dΩ (3.107)

where the acceleration is

.a =
..
.r + ζ

h

2

(
..
.n+

.

.Ψ× .n+ .Ψ×
.
.n
)

(3.108)

Equation (3.107) takes the following discretized form:

δPiner =
∑
A,B

∫
Ω

ρNAδ .vA ·NB .aB dΩ (3.109)

In the context of explicit analyses, a lumped mass matrix is preferred for the sake of

computational efficiency. The mass lumping is accomplished by replacing the shape

function associated with the acceleration by the Kronecker delta. This corresponds

to the row sum method in the context of solid elements with three degrees of freedom

per control point. Now, the expression can be written as

δPiner ≈
∑
A,B

∫
Ω

ρNAδ .vA · δAB .aB dΩ (3.110)

After discretizing and substituting (3.108) into (3.110), one obtains

δPiner ≈
∑
A

∫
Ω

ρNAδ .vA ·
(

..
.rA + ζ

h

2

(
..
.nA +

.

.ΨA × .nA + .ΨA ×
.
.nA

))
dΩ (3.111)

The terms involving derivatives of .nA are neglected similarly to the rotation-free

shell element developed by Benson et al. (2011) to simplify the formulation and to

avoid a coupling between
..
.rA and

.

.ΨA. Although the situation is slightly different

from the aforementioned shell element due to shear deformability, the angular shear

acceleration
.
.ΨA is expected to be usually small in comparison with the acceleration

of the shell normal .nA and hence not have significant influence to
..
.rA. The physical

mass associated with
..
.rA is therefore given by

M r
A =

∫
Ω

ρNAdΩ =

∫
Ω0

ρ0NAdΩ0 (3.112)

where 0 in the subscript denotes the initial configuration. An isotropic rotational

inertia is defined similarly to Benson et al. (2010) and is given by

MΨ
A =

αΨM
r
A

12

∫
Ω

h2dΩ (3.113)
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where αΨ is chosen such that the time step is not penalized by the rotational degrees

of freedom. The total expression for the virtual power including internal and external

forces as well as optional damping becomes∑
A

δ
.
.rA ·M r

A
..
.rA =

∑
A

δ
.
.rA ·

(
.f
r
extA − .f

r
intA − .f

r
dampA

)
∑
A

δ .ΨA ·MΨ
A

.

.ΨA =
∑
A

δ .ΨA ·
(

.f
Ψ
extA − .f

Ψ
intA − .f

Ψ
dampA

) (3.114)

3.3.8 Time integration

The time integration is based on the central difference method. The translational

and angular accelerations
..
.r
t
A and

.

.Ψ
t
A of the control point A are calculated by

..
.r
t
A = .f

rt
extA − .f

rt
intA − γ̃M r

A
.
.r
t− 1

2
A

M r
A

.

.Ψ
t
A = .f

Ψt
extA − .f

Ψt
intA − γ̃MΨ

A .Ψ
t− 1

2
A

MΨ
A

(3.115)

where the last term in the numerators represent the artificial damping forces and γ̃ is

the damping coefficient. The translational and angular velocities
.
.r
t+ 1

2
A and .Ψ

t+ 1
2

A are

calculated as

.

.r
t+ 1

2
A =

.

.r
t− 1

2
A + ∆tt

..
.r
t
A

.Ψ
t+ 1

2
A = .Ψ

t− 1
2

A + ∆tt
.
.Ψ
t
A

(3.116)

and .rA for the next time step is finally given by

.r
t+1
A = .r

t
A + ∆tt+

1
2
.
.r
t+ 1

2
A (3.117)

The time increment ∆tt is defined as

∆tt =
∆tt−

1
2 + ∆tt+

1
2

2
(3.118)

where ∆tt±
1
2 is obtained from the element time step estimate (Hokkanen and Pedroso,

2019a). Although not required if the normal assumption of the shell fiber is used, it

is further noted that in the Reissner-Mindlin formulations where the angular velocity

field is responsible for the total rotation of the shell fiber, the actual director vector

can be updated using Rodrigues’ (1840) formula as follows:

.d
t+1
A

‖ .dt+1
A ‖

= ..P
t+ 1

2
A · .d

t
A

‖ .dtA‖
(3.119)
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The rotation tensor ..P
t+ 1

2
A is defined by

..P
t+ 1

2
A = ..I +

sin φ
t+ 1

2
A

‖ .ω
t+ 1

2
A ‖

..Λ
t+ 1

2
A +

1− cos φ
t+ 1

2
A

‖ .ω
t+ 1

2
A ‖2

..Λ
t+ 1

2
A · ..Λ

t+ 1
2

A (3.120)

where .ω
t+ 1

2
A is the total angular velocity, φ is the rotation angle defined as

φ
t+ 1

2
A = ∆tt+

1
2‖ .ω

t+ 1
2

A ‖ (3.121)

and ..Λ
t+ 1

2
A is given by

Λ
t+ 1

2
A =


0 −ωt+

1
2

zA ω
t+ 1

2
yA

ω
t+ 1

2
zA 0 −ωt+

1
2

xA

−ω
t+ 1

2
yA ω

t+ 1
2

xA 0

 (3.122)

3.4 Stress integration

To evaluate the internal force contribution to the weak form, a constitutive relation

between material deformations and stresses is required. The shell formulation pre-

sented in Section 3.3 adopts the principle of virtual power in the updated Lagrangian

framework, and therefore, a constitutive relation between the rate-of-deformation

tensor and an objective stress rate is formed.

Furthermore, the material response is assumed to be hypoelastic-plastic, but the

elastic response is not required to be hyperelastic. The grade zero hypoelastic

materials often lack the existence of a hyperelastic potential, i.e., the energy is not

conserved exactly for a purely elastic closed deformation cycle. However, the energy

error is insignificant for materials such as metals which experience only small elastic

strains (Belytschko et al., 2013).

3.4.1 Objective stress rate

The Cauchy stress is obtained as a time integral of the Cauchy stress material

derivative, i.e.,

..σ =

∫
.
..σ dt (3.123)

However, if ..σ 6= ..0, then generally
.
..σ 6= ..0 under a rigid body rotation even though

..D = ..0. Therefore,
.
..σ 6= ....Cσ : ..D for any material tensor ....Cσ. For this reason, an

objective stress rate must be employed, i.e., a stress rate which is invariant under

rigid body rotations.
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The exact power-conjugate to the Green-Lagrange strain tensor is the Truesdell

rate of Kirchhoff stress, also called the convected rate of Kirchhoff stress. This

noncorotational objective stress rate is obtained by taking the Lie derivative of the

Kirchhoff stress, i.e., the push-forward of the time derivative of the pull-back of the

Kirchhoff stress as (Belytschko et al., 2013)

Lv..τ = ..F · D
Dt

(..F
−1 · ..τ · ..F

−T ) · ..F
T =

.
..τ − .v,.x · ..τ − ..τ · .v

T
,.x

=
∇
..τ T (3.124)

where Lv denotes the Lie derivative. The constitutive relation between
∇
..τ T and the

rate-of-deformation tensor ..D is

∇
..τ T =....CT : ..D (3.125)

where ....CT is the material tensor corresponding to the Truesdell rate of Kirchhoff

stress. For hyperelastic materials, ....CT is known as the fourth elasticity tensor, i.e.,

the spatial form of the second elasticity tensor ....CSE:

....CT = ..F · ..F ·....CSE · ..F
T · ..F

T (3.126)

However, for a hypoelastic-plastic material, Prager’s (1961) yielding stationary

criterion requires the objective stress rate to be corotational (Xiao et al., 2000) and

hence to be expressed as

∇
..τ =

.
..τ − ..Ω · ..τ + ..τ · ..Ω (3.127)

where ..Ω is a skew-symmetric spin tensor.

The exact power-conjugate to the Hencky strain tensor ..H, i.e., the logarithmic

strain or true strain, is the Logarithmic rate of Kirchhoff stress. This corotational

objective stress rate is a relatively new discovery, first proposed by Lehmann et al.

(1991), and later discovered by Reinhardt and Dubey (1995, 1996) and Xiao et al.

(1997). The skew-symmetric spin tensor ..Ωlog for the Logarithmic rate is determined

such that the exact relation between ..D and
.
..H is

.
..H = ..D + ..Ωlog · ..H − ..H · ..Ωlog (3.128)

which gives (Xiao et al., 1997)

..Ωlog = ..ω +
m∑

i,j=1
i 6=j

(
bi + bj
bi − bj

+
2

ln bj − ln bi

)
..βj · ..D · ..βi (3.129)
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where bi are the m distinct eigenvalues of the left Cauchy-Green deformation tensor

..B = ..F ·..F T and ..ω = 1
2
(.v,.x− .v

T
,.x

) is the skew-symmetric vorticity tensor. Furthermore,

the eigenprojections ..βi are given by

..βi =
m∏
j=1
j 6=i

..B − bj..I
bi − bj

for m ≥ 2; ..βi = ..I for m = 1 (3.130)

The Logarithmic rate of Kirchhoff stress is now given by

∇
..τ log =

.
..τ − ..Ωlog · ..τ + ..τ · ..Ωlog (3.131)

where the constitutive relation between
∇
..τ log and ..D is

∇
..τ log =....C log : ..D (3.132)

and ....C log is the respective material tensor. Xiao et al. (1999) showed that for an

isotropic grade zero hypoelastic material of the form

....C log := Cijkl = λδijδkl + µ(δikδjl + δilδjk) (3.133)

the Hencky hyperelastic potential exist. Bruhns et al. (1999) proposed a self-

consistency condition stating that an additive hypoelastic-plastic model should

produce a dissipation-free hyperelastic response in the absence of plastic flow. How-

ever, Jiao and Fish (2017, 2018) showed that the self-consistency condition is violated

when the material is subjected to elastic unloading following yielding. They proposed

a modified Logarithmic rate (known as the Kinetic logarithmic rate) to correct

this problem and showed the equivalence of multiplicative hyperelastic-plastic and

additive hypoelastic-plastic material models. Further discussion on the Logarithmic

rate is found from the works of Xiao et al. (1998), Xiao and Chen (2002), Xiao

et al. (2006), Zhou and Tamma (2003), Freed (2014), and Naumenko and Altenbach

(2018).

Other popular corotational objective stress rates associated with the Kirchhoff stress

include the classical Jaumann and Green-Naghdi rates (Belytschko et al., 2013). The

spin tensor for the Jaumann rate is simply the vorticity tensor

..ΩJ = ..ω (3.134)

For the Green-Naghdi rate, the spin tensor is independent of the material stretch

(Zhou and Tamma, 2003):

..ΩG =
.
..R · ..R

T = ..ω +
m∑

i,j=1
i 6=j

√
bi −

√
bj√

bi +
√
bj

..Bj · ..D · ..Bi (3.135)
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It is worth noting that all the presented objective rates can produce identical results,

but their respective material tensors are different. Some relationships between

the material tensors associated with different objective stress rates are given by

Belytschko et al. (2013). However, if a grade zero hypoelastic material of the form

(3.133) is employed with all rates, the results will differ and only the Logarithmic

rate gives a hyperelastic response. Also, in the absence of shear deformations all the

aforementioned corotational rates coincide, i.e., ..Ωlog=..ΩJ=..ΩG.

Evaluating an objective stress rate directly may introduce notable computational

cost. Furthermore, if an anisotropic material model is used, and the stress update is

performed in a noncorotational coordinate system, a transformation to the material

tensor must be applied. A common practice is to use the rate of corotational Kirchhoff

stress which is objective if the rotation tensor ..Q defining the local coordinate system

can be expressed as

.

..Q− ..Ω · ..Q = ..0 (3.136)

In case the local coordinate system follows the rotation from the polar decomposition

of the deformation gradient, i.e., ..Q = ..R, this corresponds to the Green-Naghdi rate.

If the corresponding rate is instead the Logarithmic rate, the Hencky strain can be

obtained as a corotational time integral of the rate-of-deformation:

ˆ
..H =

∫ .
ˆ
..H dt =

∫
ˆ
..D dt (3.137)

The rate of corotational Kirchhoff stress is given by

.
.̂.τ = ˆ

....C : ˆ
..D (3.138)

where ˆ
....C is the material tensor corresponding to the corotational rate which the

local coordinate system follows. A relation for
.
.̂.τ and

.
.̂.σ which preserves second-order

accuracy in the internal power of the stress rate is given as follows (Bazant and

Cedolin, 2010):

.
.̂.σ =

.
.̂.τ − tr( ˆ

..D).̂.σ = ˆ
....C : ˆ

..D − tr( ˆ
..D).̂.σ (3.139)

Unfortunately, the local coordinate system definition (3.65) does not satisfy (3.136)

exactly for any of the discussed rates, and the expression (3.139) follows the afore-

mentioned corotational rates precisely only in the absence of shear deformations.

However, the approximation is acceptable for many large deformation problems,

particularly, if the shear strains are small (Belytschko et al., 2013).
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3.4.2 Plane stress condition

Not all shell formulations define a transversal normal strain rate component Dẑẑ. In

these cases, Dẑẑ is usually determined from the plane stress requirement σẑẑ = 0. If

the material response is characterized by the material tensor of the form (3.133),

the value for Dẑẑ that satisfies the plane stress condition for the corotational rate of

Kirchhoff stress is given by

Dẑẑ = −λ(Dx̂x̂ +Dŷŷ)

λ+ 2µ
(3.140)

where the Lamé’s parameters λ and µ can be expressed in terms of Young’s modulus

E and Poisson’s ratio ν as follows:

λ =
νE

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
(3.141)

However, if a nonlinear elasto-plastic material model is used, determining Dẑẑ

becomes a nonlinear problem and is solved iteratively. Assuming that the elastic

response follows (3.133), Equation (3.140) provides a good initial guess for the first

iteration n = 0. If this value does not satisfy the plane stress condition, the value

for the next iteration n+ 1 is determined by (de Souza Neto et al., 2011)

Dn+1
ẑẑ = Dn

ẑẑ −
.
σnẑẑ
E

(3.142)

and is substituted into (3.139) to start a new iteration.

It is further noted that the underlying material model does not require any modifica-

tions whether the plane stress condition is enforced or not, and full three-dimensional

material models can be used regardless of the element formulation and necessity for

the plane stress enforcement. The stress update procedure for a nonlinear material

may therefore often consists of two nested iterative loops: the outer loop for finding

Dẑẑ and the inner loop for enforcing the yield condition.

3.4.3 Incremental constitutive update

The Cauchy stress tensor is updated incrementally in the local coordinate system.

Although the time-continuum constitutive equations discussed in Section 3.4.1 ensure

material objectivity, the time-discretized constitutive equations presented within this

subsection are not incrementally objective. However, this is usually acceptable if the

time steps are sufficiently small, which is typically the case with explicit methods

(Hallquist, 2006; de Souza Neto et al., 2011).
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The stress update procedure begins by considering (3.139) and calculating the

so-called trial stress state

.̂.σ
tr = .̂.σt−1 + ∆.̂.σ

tr (3.143)

where the nonupdated Cauchy stress .̂.σt−1 = .̂.σ
∗
t−1 is obtained directly from the stress

state .̂.σ
∗
t−1 calculated during the previous time step in the preceding local coordinate

system. The elastic trial stress increment ∆.̂.σ
tr associated with the underlying rate

is given by

∆.̂.σ
tr =

(
ˆ

....C
e : ˆ

..D − tr( ˆ
..D).̂.σt−1

)
∆t (3.144)

where e in the superscript of ˆ
....C

e implies elastic material tensor.

However, if instead a corotational stress rate of the form (3.127) is applied directly

in the local coordinate system, .̂.σt−1 is obtained by

.̂.σt−1 = .̃.σt−1 +
(

ˆ
..Ω · .̃.σt−1 − .̃.σt−1 · ˆ

..Ω)∆t (3.145)

where

.̃.σt−1 = ( ..R
T
t−1 · ..Rt)

T · .̂.σ
∗
t−1 · ( ..R

T
t−1 · ..Rt) (3.146)

It is worth noting that .̂.σt−1 and ∆.̂.σ
tr may differ between different objective rates

even if .̂.σ
∗
t−1 and .̂.σ

tr do not. Furthermore, ˆ
..D, ˆ

..Ω, and ∆t are evaluated at the

mid-point between the current and the previous time step (which are denoted by t

and t− 1 in the subscript, respectively).

The rate-of-deformation ˆ
..D is further decomposed into elastic ˆ

..D
e and plastic ˆ

..D
p

parts:

ˆ
..D = ˆ

..D
e + ˆ

..D
p (3.147)

The correct updated stress can be obtained by subtracting the plastic part from the

elastic trial stress:

.̂.σ = .̂.σt−1 +
(

ˆ
....C

e : ( ˆ
..D − ˆ

..D
p)− tr( ˆ

..D).̂.σt−1

)
∆t = .̂.σ

tr − ˆ
....C

e : ∆t ˆ
..D
p (3.148)

The plastic part of rate-of-deformation ˆ
..D
p is determined such that the yield condition

is satisfied.

In the framework of isotropic hardening the yield condition takes the generic form

F (..σ, σy) = Φ(..σ)− σy(εp) ≤ 0 (3.149)
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where Φ(..σ) is the yield function, σy(ε
p) represents the yield stress, and εp is the

effective plastic strain. Employing the associative plastic flow rule (de Souza Neto

et al., 2011), one may represent the plastic rate-of-deformation increment in terms

of the nonnegative effective plastic strain increment ∆εp and the flow direction ..n as

follows:

∆t ..D
p = ∆εpΦ,..σ = ∆εp..n (3.150)

If the trial stress does not exceed the yield surface, the material response is elastic

and the stress update is complete. Otherwise, a plastic corrector phase is required

to bring the stress back onto the yield surface such that

F = Φ(..σ)− σy(εp) = 0 (3.151)

Two efficient return mapping methods are presented in the following subsections.

3.4.4 Implicit radial return algorithm (von Mises)

This subsection presents an efficient return mapping algorithm which is specific

for the von Mises (1913) yield criterion. The algorithm is known as the implicit

radial return method and was introduced by Krieg and Key (1976). The derivation

considers isotropic hardening, but extension to mixed isotropic-kinematic hardening

is straightforward and does not add extensive computational overhead. The von

Mises yield function can be written as

Φ(..σ) =

√
3

2
‖..σdev‖ (3.152)

where the deviatoric stress ..σdev is obtained by subtracting the volumetric stress ..σvol

from the total stress ..σ as follows:

..σdev = ..σ − ..σvol, ..σvol =
tr(..σ)

3 ..I (3.153)

Considering the associative plastic flow rule (3.150), one obtains the following

expression for the plastic rate-of-deformation increment:

∆t ..D
p = ∆εpΦ,..σ = ∆εp..n = ∆εp

√
3

2
..σdev
‖..σdev‖

(3.154)

From (3.148) and (3.154):

..σ = ..σ
tr −....C

e : ∆εp
√

3

2
..σdev
‖..σdev‖

(3.155)
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On the other hand, as the flow tensor ..n is purely deviatoric, the volumetric part of

the elastic trial stress is not affected by the plastic corrector phase. Therefore, the

stress return mapping procedure can be decomposed into deviatoric and volumetric

parts

..σdev = ..σ
tr
dev − 2µ∆εp

√
3

2
..σdev
‖..σdev‖

..σvol = ..σ
tr
vol

(3.156)

where ....C
e of the form (3.133) is assumed. Equation (3.1561) implies colinearity of

..σdev and ..σ
tr
dev. This yields to the following relationship

..σdev
‖..σdev‖

= ..σ
tr
dev

‖..σtrdev‖
(3.157)

Substituting (3.157) into (3.1561), one obtains

..σdev =

(
1−

√
3

2

2µ∆εp

‖..σtrdev‖

)
..σ
tr
dev =

(
1− 3µ∆ε̄p

Φtr

)
..σ
tr
dev (3.158)

Considering (3.158), one may now write the von Mises yield function (3.152) as

Φ =

√
3

2
‖
(

1− 3µ∆εp

Φtr

)
..σ
tr
dev‖ (3.159)

which can be further rearranged into

Φ =

(
1− 3µ∆εp

Φtr

)√
3

2
‖..σtrdev‖︸ ︷︷ ︸
Φtr

(3.160)

provided that 1− 3µ∆εp/Φtr ≥ 0. Inserting (3.160) into the yield condition (3.151)

produces a single scalar equation for the effective plastic strain increment:

F (∆εp) = Φtr − 3µ∆εp − σy(εpt−1 + ∆εp) = 0 (3.161)

This equation is generally nonlinear (due to σy being a nonlinear function of εp in

most cases) and can be solved by the Newton-Raphson iterative method. The value

of ∆εp for the next iteration n+ 1 is given by

∆εpn+1 = ∆εpn −
F (∆εpn)

F ′(∆εpn)
(3.162)

where

F ′(∆εpn) = −3µ−H(εpt−1 + ∆εpn) (3.163)
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and H is the slope of the isotropic hardening curve at (εpt−1 + ∆εpn). After the

effective plastic strain increment ∆εp is solved, the stress and the effective plastic

strain can be updated by

..σ = ..σ
tr − 2µ∆εp

√
3

2
..σ
tr
dev

‖..σtrdev‖

εp = εpt−1 + ∆εp
(3.164)

3.4.5 General explicit return mapping algorithm

A general return mapping method proposed by Grilo et al. (2015) is discussed

in this subsection. The algorithm belongs to forward Euler category and uses a

subincrementation technique to improve the accuracy of the stress return mapping

procedure. Similarly to Section 3.4.4, isotropic hardening is considered but extension

to mixed isotropic-kinematic hardening is straightforward. The yield criterion (3.151)

is satisfied incrementally assuming associative plastic flow for each subincrement n

such that

∆Fn = ..nn−1 : ∆∆..σn−1 −Hn−1∆εpn = 0 (3.165)

where ..n = Φ,..σ and H = σy,εp . Substituting (3.148) into (3.165), and considering

(3.150), one ends up with the following equality:

..nn−1 : (∆∆..σ
tr −....C

e : ∆εpn..nn−1)−Hn−1∆εpn = 0 (3.166)

The trial stress subincrement ∆∆..σ
tr is given by

∆∆..σ
tr =

rσ
mσ

∆..σ
tr (3.167)

where mσ is the total number of subincrements and

rσ =
Φ(..σ

tr)− σy(εpt−1)

Φ(..σ
tr)− Φ(..σt−1)

(3.168)

Equation (3.166) can be further rearranged to obtain an expression for the effective

plastic strain increment

∆εpn = ..nn−1 : ∆∆..σ
tr

....C
e : ..nn−1 : ..nn−1 +Hn−1

(3.169)

The effective plastic strain is updated to the current subincrement n by

εpn = εpn−1 + ∆εpn (3.170)
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after which the stress can be updated by

..σn =
σy(ε

p
n)

Φ(.̄.σn) .̄.σn, .̄.σn =
(

..σn−1 + ∆∆..σ
tr −∆εpn....C

e : ..nn−1

)
(3.171)

where the term σy(ε
p
n)/Φ(.̄.σn) contributes to a proportioning procedure (Grilo et al.,

2015). Finally, the elasto-plastic tangent modulus can be calculated by

....C =....C
e − ....C

e : ..n⊗ ..n :....C
e

....C
e : ..n : ..n+H

(3.172)

3.5 Loads and boundary conditions

In the context of classical finite elements, point loads are usually applied to nodal

locations such that the nodal force is simply appended by the point load. Similarly,

line loads are often applied along a line of nodes for which the line load is distributed.

Furthermore, Dirichlet boundary conditions are also typically enforced by directly

specifying the nodal values.

In IGA, the control points are generally not interpolatory and applying a load or a

boundary condition directly to a noninterpolatory control point is rarely physically

justifiable. Many authors circumvent the problem by introducing repeated knots such

that the loads or boundary conditions can be directly applied to the control points

that are now interpolatory. However, this approach lowers the patch continuity to

C0 which is undesirable as it may reduce the accuracy as well as the stable time

step size and leads to a geometry definition that does not satisfy the C1 continuity

requirement of the Kirchhoff-Love shell formulations.

3.5.1 Point and line loads

Point and line loads are herein considered as external traction loads applied over

an infinitesimal area similarly to the work of Hokkanen and Pedroso (2019a). The

external traction force contribution to the weak form (3.103) now takes the following

form for a point load applied to ξ = ξpl, η = ηpl, ζ = ζpl = 0:

δP t
ext =

∑
i

∑
j

δ
.
.rij · lim

∆ξ→0
∆η→0

∫ ηpl+∆η

ηpl−∆η

∫ ξpl+∆ξ

ξpl−∆ξ

N ξ
i (ξ)Nη

j (η).t
plJSdξdη

︸ ︷︷ ︸
.f
pl
ij

(3.173)

In (3.173), the multivariate shape function has been decoupled into its univariate

spline basis functions (2.16), i and j are control point indices associated with the
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parametric directions ξ and η, respectively, and JS is the Jacobian determinant.

As the integral is only evaluated over an infinitesimal area, the basis functions are

considered to be constant within the integrated area and can thus be brought outside

the integral expression. The control point forces due to the point load can be now

written as

.f
pl
ij = N ξ

i (ξpl)Nη
j (ηpl) lim

∆ξ→0
∆η→0

∫ ηpl+∆η

ηpl−∆η

∫ ξpl+∆ξ

ξpl−∆ξ
.t
plJSdξdη

︸ ︷︷ ︸
.f
pl(ξpl,ηpl,ζpl)

(3.174)

where the integral expression is equal to the known point load .f
pl(ξpl, ηpl, ζpl).

Line loads are treated in a similar way. In the case of a line load along ξ = ξll,

ζ = ζ ll = 0

.f
ll
ij = N ξ

i (ξll)

∫
η

Nη
j (η) lim

∆ξ→0

∫ ξll+∆ξ

ξll−∆ξ
.t
llJSdξ︸ ︷︷ ︸

¯
.f
ll(ξll,η, ζll)

dη (3.175)

where ¯
.f
ll(ξll, η, ζ ll) represents the line load in the parametric space and can be

obtained from the line load .f
ll(ξll, η, ζ ll) given in the Euclidean space by

¯
.f
ll(ξll, η, ζ ll) =

√
x2
,η + y2

,η + z2
,η

∣∣∣ξ=ξll
ζ=ζll

.f
ll(ξll, η, ζ ll) (3.176)

3.5.2 Dirichlet boundary conditions

An efficient technique compatible with diagonal mass matrices was proposed by

Hokkanen and Pedroso (2019a) to enforce Dirichlet boundary conditions at arbitrary

locations within a patch. A boundary condition of a prescribed acceleration along

ξ = ξbc, ζ = 0 requires that∑
i

∑
j

N ξ
i (ξbc)Nη

j (η)
..
.rij =

..
.r
prescribed(ξbc, η) (3.177)

where the multivariate shape function has been decoupled into its univariate spline

basis functions similarly to (3.173). However, the boundary condition can be satisfied

exactly only if the prescribed acceleration
..
.r
prescribed(ξbc, η) is representable for all η

by the underlying spline interpolation, i.e.,∑
j

Nη
j (η)

..
.r
prescribed
j =

..
.r
prescribed(ξbc, η) (3.178)
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where
..
.r
prescribed
j are the control values for the prescribed acceleration

..
.r
prescribed(ξbc, η).

The acceleration
..
.rij of (3.177) is decoupled into an uncorrected acceleration

..
.r
uc
ij , i.e.,

the acceleration that is obtained without applying the boundary condition, and a

change in the acceleration due to the boundary condition
..
.r
bc
ij :∑

i

∑
j

N ξ
i (ξbc)Nη

j (η)(
..
.r
uc
ij +

..
.r
bc
ij ) =

∑
k

Nη
k (η)

..
.r
prescribed
k (3.179)

Now, it is sufficient to guarantee that∑
i

N ξ
i (ξbc)(

..
.r
uc
ij +

..
.r
bc
ij ) =

..
.r
prescribed
j (3.180)

for all j.

However, (3.180) is often underdetermined as there are generally multiple unknowns
..
.r
bc
ij . Therefore, additional equations are required. Considering (3.175), the control

point forces due to a line load that exactly satisfy the boundary condition are given

by

.f
bc
ij = N ξ

i (ξbc)

∫
η

Nη
j (η) lim

∆ξ→0

∫ ξbc+∆ξ

ξbc−∆ξ
.t
bcJSdξdη︸ ︷︷ ︸

.λj

(3.181)

where .t
bc is the unknown traction exerted by the boundary condition. From (3.181),

the following relation is obtained:

.f
bc
ij = N ξ

i (ξbc) .f
bc
kj

N ξ
k (ξbc)

(3.182)

Considering Newton’s second law .f
bc
ij = M rr

ij
..
.r
bc
ij , i.e.,

M rr
ij

..
.r
bc
ij = N ξ

i (ξbc)
M rr

kj
..
.r
bc
kj

N ξ
k (ξbc)

(3.183)

and thus

..
.r
bc
ij = N ξ

i (ξbc)
M rr

kj
..
.r
bc
kj

N ξ
k (ξbc)M rr

ij

(3.184)

where M rr
ij represents the mass of the control point ij which is obtained from a

diagonal mass matrix. Substituting (3.184) into (3.180) gives the change in the

acceleration due to the boundary condition:

..
.r
bc
kj =

N ξ
k (ξbc)

(..
.r
prescribed
j −

∑
lN

ξ
l (ξbc)

..
.r
uc
lj

)
∑

i
Nξ
i (ξbc)2

Mrr
ij

M rr
kj

(3.185)
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The control point accelerations that exactly satisfy the boundary condition are now

given by

..
.rij =

..
.r
uc
ij +

..
.r
bc
ij (3.186)

The unknown control point forces .f
bc
ij are only used to form the relation (3.184)

between the accelerations
..
.r
bc
ij of the neighboring control points, and need not be

explicitly calculated for the purposes of evaluating the boundary condition. Fur-

thermore, the unknowns .λj can be understood as Lagrange multipliers that exactly

satisfy the boundary condition.

It is further noted that if the boundary condition is enforced along a parametric

coordinate that is simultaneously a knot location, the summations in (3.185) are

evaluated only over p control points, where p is the order of the shape function.

Therefore, for a typical edge constraint with unclamped knot vectors, only two

control points need be considered for each j assuming biquadratic interpolation.

However, if two edge boundary conditions intersect at a patch corner, then a coupled

problem of four control points must be solved at that location.

3.6 Contact

In the context of classical finite elements, contact constraints are often enforced

between the independent surface (master) and the nodes of the dependent surface

(slave). This approach—referred to as the node-to-surface (NTS) method—is rel-

atively simple to implement and computationally inexpensive (De Lorenzis et al.,

2014). Moreover, the NTS method is often considered a collocation approach; the

concentrated nodal contact forces can be determined directly without solving for the

contact pressure. The method satisfies the Ladyzhenskaya-Babuška-Brezzi (LBB)

stability condition (Oden and Kikuchi, 1982), but does not pass the contact patch

test. Furthermore, the accuracy is strongly dependent on the space discretization.

In comparison to the NTS approach, better accuracy can be obtained by evaluating

the contact integral more precisely along both contacting surfaces, not just at the

nodal locations of the slave surface. These type of formulations can be traced back

to the work of Simo et al. (1985) and are often referred to as surface-to-surface (STS)

formulations (De Lorenzis et al., 2014).

In IGA, the control points are not interpolatory, i.e., they do not generally coincide

with the geometry. Therefore it is not physically sensible to enforce the contact
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constraints between the master surface and the control points of the slave surface.

A method which is referred to as isogeometric NTS by De Lorenzis et al. (2014)

was introduced by Matzen et al. (2013), where the contact constraints are evaluated

at certain collocation points within the surface. Matzen et al. (2013) investigated

Greville abscissae as well as Botella points, both of which guarantee that the number

of contact constraints is equal to the number of control points.

An approach belonging in the class of STS formulations and known as Gauss-point-

to-surface (GPTS) method (De Lorenzis et al., 2014) has attracted attention in

the context of classical finite elements (Fischer and Wriggers, 2005, 2006) and IGA

(Lu, 2011; Temizer et al., 2011; Dimitri et al., 2014). In this method, the contact

constraint is enforced at an arbitrary number of contact integration points. However,

if the contact constraint is to be satisfied locally at each integration point (herein

referred to as the nonmortar method), the problem may become overconstrained,

and thus violate the LBB stability condition.

Although the fulfillment of the LBB stability condition is an important requirement

for mixed methods such as Lagrange multiplier method, it is not a compulsory

prerequisite for the penalty method which does not satisfy the constraint exactly

(De Lorenzis et al., 2014). However, unphysical oscillations may appear with large

penalty parameter values due to violation of the LBB stability condition—Temizer

et al. (2011) demonstrated this in the context of IGA. Later, Sauer and De Lorenzis

(2015) showed that a nonmortar GPTS formulation remains stable if the mesh density

is increased appropriately with the increasing penalty parameter.

On the other hand, the so-called mortar method does not satisfy the contact constraint

locally at each integration point, but enforces the constraints in an average sense. In

a way, the contact pressures are smoothed such that the LBB stability condition is

satisfied. However, the mortar method requires significantly higher computational

cost in comparison with the nonmortar method due to the smoothing procedure.

Early applications of mortar method to contact mechanics are demonstrated by

Belgacem et al. (1998), Belgacem (2000), Hild (2000), as well as McDevitt and

Laursen (2000), among others.

In this work, a nonmortar GPTS approach combined with the penalty method is

considered. The formulation satisfies the contact constraint locally at each integration

point leading to a piecewise constant approximation of the contact pressure. In

the wake of the mortar method, an efficient application-specific contact pressure
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smoothing procedure is proposed in Section 3.6.2 to avoid unphysical oscillations

and to improve the robustness of the formulation.

3.6.1 Contact contribution to virtual power

The frictionless normal contact contribution to the virtual power can be written as

(Wriggers, 2006)

δPc =

∫
Γ

δ
.
gN p dΓ (3.187)

where p represents the contact pressure. The contact interface must satisfy the

classical Kuhn-Tucker conditions

gN ≥ 0, p ≥ 0, pgN = 0 (3.188)

which guarantee impenetrability between the contacting surfaces such that the

contact pressure is always nonnegative, and positive only if the gap is zero. The gap

gN and the virtual gap velocity δ
.
gN are given by

gN = ( .x
S − .x

M) · .n
M
Γ

δ
.
gN = (δ .v

S − δ .v
M) · .n

M
Γ + ( .x

S − .x
M) · δ .

.n
M
Γ

(3.189)

where the terms .x
S and .x

M represent the geometry, and the terms δ .v
S and δ .v

M

the virtual velocity of the slave and the master surface, respectively. Furthermore,

.n
M
Γ is the unit normal of the master surface. The contact contribution to the virtual

power now takes the form

δPc =

∫
Γ

p(δ .v
S − δ .v

M) · .n
M
Γ dΓ +

∫
Γ

p( .x
S − .x

M) · δ .
.n
M
Γ dΓ︸ ︷︷ ︸

=0

(3.190)

where the last terms vanishes due to (3.188).

The contact constraint is typically enforced by the Lagrange multiplier method

or the penalty method. In the former method, the Lagrange multiplier represents

the unknown contact pressure p that exactly satisfies (3.188). On the other hand,

the penalty method enforces the contact constraint only in an approximate sense

depending on the choice of the penalty parameter. As the penalty parameter is

increased, the impenetrability condition is satisfied more closely. For the penalty

method, the pressure p is herein considered to be a function of the penalty parameter

and the gap gN .
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Interpolating the virtual velocities of the slave and the master surface by the shape

functions NS
A and NM

B , respectively, one may express the discretized virtual power

contribution by

δPc =

∫
Γ

p
(∑

A

NS
Aδ .v

S
A −

∑
B

NM
B δ .v

M
B

)
· .n

M
Γ dΓ (3.191)

where A and B represent the control points of the slave and the master surfaces,

respectively. Rearranging (3.191), one obtains

δPc =
∑
A

δ .v
S
A ·
∫

Γ

pNS
A .n

M
Γ dΓ︸ ︷︷ ︸

.f
S
cA

+
∑
B

δ .v
M
B ·

∫
Γ

−pNM
B .n

M
Γ dΓ︸ ︷︷ ︸

.f
M
cB

(3.192)

from which the slave and the master contact forces, .f
S
cA and .f

M
cB, are identified. The

contact virtual power contribution for the shell formulation of Section 3.3 is obtained

by substituting the shell virtual velocity definition (3.104) into (3.192). For the slave

surface, this is given by

δePc =
∑
A

(
δ
.
.rA·
∫

Γe
pNA .n

M
Γ dΓ︸ ︷︷ ︸

e
.f
r
cA

+δ
.
.nA·
∫

Γe
ζ
h

2
pNA .n

M
Γ dΓ︸ ︷︷ ︸

e
.f
n
cA

+δ .ΨA·
∫

Γe
ζ
h

2
pNA .nA × .n

M
Γ dΓ︸ ︷︷ ︸

e
.f

Ψ
cA

)

(3.193)

where ζ = 1 for the top, and ζ = −1 for the bottom surface of the shell. However, as

the master surface normal .n
M
Γ is typically close to parallel to the shell mid-surface

normal .n, i.e., .n
M
Γ × .n ≈ .0, the terms δ

.

.nA · e
.f
n
cA and δ .ΨA · e

.f
Ψ
cA may be neglected.

3.6.2 Stylus contact algorithm

In the ISF simulation, a stylus contact algorithm is required for enforcing the contact

constraint between a sheet and a hemispherical headed stylus. The algorithm shall

accurately capture the deformation caused by the tool tip regardless of the tool

diameter. Therefore, a contact integration scheme where the density of the points is

inversely proportional to the stylus diameter is employed. This uniform integration

scheme consists of equal weights for the whole patch such that the distance between

two adjacent integration points is one tenth of the forming tool diameter. However,

if this would result in less number of integration points than given by the uniformly

weighted Gauss-Lobatto scheme (see Figure 3.1b), then the latter is used.

In the adopted nonmortar GPTS approach, the pressure at each integration point

is a function of a global penalty parameter and the local gap gN . For this type
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of formulation, an appropriate choice of the penalty parameter in relation to the

mesh density is important as shown by Sauer and De Lorenzis (2015). However,

as the contact algorithm is explicit, also the time step size must be considered in

the determination of the penalty parameter. If the penalty parameter is too large

relative to the time step size, the overclosure (i.e., the negative gap) which develops

between two consecutive time steps may create excessive contact pressure which

pushes the surfaces too far away from each other (Belytschko et al., 2013). Therefore,

the appropriate choice of the penalty parameter in relation to mesh density and time

step size is crucial for the accuracy of the solution. A special type of piecewise-linear

pressure-overclosure relationship given by

p =

εs(sN − gN) if (sN − gN) > 0

0 otherwise
(3.194)

is suggested for the stylus contact, where εs is the stylus contact global penalty

parameter and sN is referred to as the shift. The penalty parameter εs is adjusted

in time such that

min(gN) & 0 (3.195)

An explicit update procedure for the penalty parameter εs is given by

εts =

(1 + βs)ε
t−1
s if min(gt−1

N ) ≤ 0

(1− βs)εt−1
s otherwise

(3.196)

where βs is referred to as the sensitivity coefficient. Furthermore, a minimum value

for εs is recommended. Good results were obtained by Hokkanen et al. (2018) with

βs = 10−3 and εs ≥ 1, although a time step size dependent expression for βs may be

more adaptive for a general case. However, the algorithm is not very sensitive to the

choice of the these values. The contact pressure is adjusted appropriately for each

mesh density (cf. the mortar method) by the shift sN , given by

sN =

√
r2
s +

l20
4
− rs (3.197)

where l0 is the maximum in-plane edge length of a Bézier element in the undeformed

configuration assuming uniform mesh and rs is the stylus head radius. Furthermore,

a time step dependent minimum value for the shift is required to ensure that the

penalty parameter does not become too large in relation to the time step size. The

relation between the penalty stiffness and the time step size is discussed in more

detail by Hallquist (2006).
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The distance dI between the integration point .pI on a sheet surface and the closest

point on a spherical surface (e.g., the stylus head) is simply given by

dI = ‖ .pI − .xs‖ − rs (3.198)

where .xs is the center of the sphere. To avoid comparing the distance between

the stylus and every single point .pI on a sheet, a neighborhood search method is

suggested. As a preprocessing step, a subgrid of points is associated with each I such

that the subgrid contains all other integration points within a certain radius from .pI .

A recommended value for this radius is the stylus diameter. During the analysis, only

one subgrid is active at a time, i.e., the stylus contact algorithm neglects all points

that do not belong to this set. The active subgrid is updated by keeping track of the

point .pI nearest to the stylus. The algorithm relies on the assumption that if the

nearest point changes from the previous time step, some of the points surrounding

the previously stored point is now closer to the stylus, where the surrounding points

form the first-ring neighborhood of the previously stored point (see Figure 3.2). If

this is the case, the first-ring neighborhood of this new point is further checked.

This recursive procedure is continued as long as the closest point is found. The

neighborhood method for the stylus contact is illustrated by Algorithm 1.

for the surrounding points (of the stored point) do
if the surrounding point is closer (than the stored point) then

replace the stored point by the surrounding point;
restart for-loop;

end

end
update the active subgrid;
for the points within the active subgrid do

calculate the closest point projection;
if contact is detected then

evaluate contact constraint;
end

end
Algorithm 1: The stylus contact neighborhood method.

As the time step size in an explicit analysis is very small, it is very likely that

the nearest point for the next time step is always contained within the first-ring

neighborhood of the previously stored point. This makes the method very efficient for

explicit analyses as the algorithm hardly ever needs to check first-ring neighborhoods

more than twice. However, it is further acknowledged that in the ISF manufacturing
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process, the closest point projection from the stylus onto the sheet is not guaranteed

to follow a continuous path, and therefore, the proposed algorithm may fail in certain

rare circumstances. If this is not acceptable, one could use a simple approach and

check every contact integration point for penetration.current nodenode within the first-ring neighborhood node outside the first-ring neighborhood 
Figure 3.2: The first-ring neighborhood in the context of bilinear finite elements (top view).
The elements within the shaded area are connected to the current node.

3.6.3 Die contact algorithm

In the case of a two-point incremental forming problem, a die contact algorithm is

required for enforcing the contact constraints between a sheet and a rigid die. The

integration scheme proposed in Section 3.6.2 is also suggested for the die contact,

although other options are possible. The special pressure-overclosure relationship

proposed for the stylus contact in Section 3.6.2 is not directly applicable to the die

contact due to multiple possible contact regions. Therefore, a classical pressure-

overclosure relationship given by

p =

−εd gN if gN < 0

0 otherwise
(3.199)

is adopted, where εd is the user defined global die contact penalty parameter which

is constant in time.

The die geometry is represented by a surface that is constructed of either Lagrange

polynomials or splines. In the case of Lagrange polynomials, an analytic expression

can be used for each element to calculate the closest point projection. To determine
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the correct element, a neighborhood method similar to the stylus contact algorithm is

employed. The algorithm keeps track of the node within the die horizontally nearest

to the point .pI on the sheet, where horizontal refers to a plane perpendicular to the

longitudinal axis of the forming tool. This method requires that the boundary formed

by an orthographic projection of the die geometry onto a horizontal projection plane

is convex, and that each point within the die is characterized by a unique horizontal

coordinates.

The procedure begins by determining and storing the horizontally nearest node on

the die surface. This is accomplished by a global search as a preprocessing step;

the computational efficiency is not important because this step is performed only

once. During the analysis, a recursive neighborhood search similar to the procedure

discussed in Section 3.6.2 is employed. However, instead of tracking the total distance,

the horizontal distance is tracked. After the horizontally nearest node is updated,

it suffices to check the elements connected to this node to determine if one them

contains the closest point projection (see Figure 3.2). Similarly to Algorithm 1,

the neighborhood method for the die contact, i.e., Algorithm 2, is very efficient

for explicit analysis as it hardly ever needs to proceed further from the first-ring

neighborhood of the previously converged location due to a small time step size.

for the surrounding nodes (of the stored node) do
if the surrounding node is horizontally closer then

replace the stored node by the surrounding node;
restart for-loop;

end

end
for the elements connected to the stored node do

if the element contains the closest point projection then
calculate the closest point projection;
if contact is detected then

evaluate contact constraint;
end

end

end
Algorithm 2: The die contact neighborhood method.

Another approach is based on the bucket sort method (Cormen et al., 2001). As

a preprocessing step, a hypothetical uniform grid is laid on top of the die. Each

rectangle within the grid represents a bucket for which the underlying elements are

assigned. As the grid is uniform, knowing the horizontal position (i.e., a point on
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a sheet) suffices to determine the right bucket. Increasing the number of buckets

only affects the preprocessing step and does not increase the computational cost of

determining the correct bucket. Therefore, the number of candidate elements can be

reduced into only a few by using a small bucket size.

The die geometry may also be represented by a spline surface. The distance between a

point on a sheet and the closest point on a spline surface can be calculated iteratively

by the procedure given in Section 2.5.2. The algorithm requires relatively accurate

initial guess for the Newton-Raphson iterative method. The initial guess can be

based on the aforementioned methods; either assigning an arbitrary number of guess

points (cf. nodes in the context of Lagrange elements) to the die geometry (e.g., one

for each Bézier element) and tracking the horizontally closest guess point by the

neighborhood method, or applying a bucket sort method and assigning a predefined

initial guess for each bucket.

It is noted that in the context of two-point incremental forming, tracking the

horizontal distance for the die contact instead of the closest point projection is more

reliable as the closest point projection is not guaranteed to follow a continuous path.

For a more general metal forming problem (e.g., a problem where not all points within

the die have unique horizontal coordinates), the closest point projection approach

may be more appropriate choice. However, one must keep in mind that—similarly to

the stylus contact algorithm—this method may fail in some rare cases if the closest

point projection does not follow a continuous path.



Chapter 4

Numerical testing

In this chapter, the shell formulations introduced in Section 3.3 are applied to linear

elastic as well as geometrically nonlinear elastic and elasto-plastic problems. The

thickness stretchable formulation proposed by Hokkanen and Pedroso (2019a) is

also investigated. Sections 4.1 and 4.2 consider static linear elasticity, Sections

4.3–4.5 quasi-static geometrically nonlinear elasticity, and Sections 4.6–4.8 explicit

dynamic elasto-plasticity. Sections 4.7 and 4.8 consider a single point and a two-

point incremental forming problems, respectively, where the simulation results are

compared to experimental data.

The straightforward idea of neglecting the underlined terms in (3.76), (3.93), and

(3.95) to avoid shear locking is further investigated. The benchmarked formulations

are referred to as KL3, KL3 full, KL6, KL6 full, RM6, and S7 following the definitions

given in Section 3.3, and where the formulations for which the shear locking correction

is not applied (i.e., the aforementioned underlined terms are not neglected) are

referred to as full formulations.

Biquadratic b-splines with unclamped knot vectors are employed for the in-plane

interpolation and a hypoelastic or hypoelastic-plastic material model is used. Each

Bézier element is integrated with 2 × 2 reduced Gauss-Legendre quadrature rule

in-plane and 9-point Simpson’s rule through-thickness. In comparison with full

integration, the in-plane 2× 2 reduced Gauss-Legendre quadrature lowers the compu-

tational overhead and alleviates several locking phenomena while still preserving full

rank of the stiffness matrix and providing good accuracy (Hokkanen and Pedroso,

2019b). Different types and orders of spline functions can be used as well, but the

71
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patchwise quadratures discussed in Appendix B are not directly applicable with

the KL3, KL6, and RM6 formulations, and the former two also require at least C1

continuous geometry definition. The central difference scheme discussed in Section

3.3.8 is used for the time integration.

Different types of boundary conditions are treated as follows. A typical simply

supported boundary condition is employed by constraining the degrees of freedom

associated with the velocity of the mid-surface. A fixed boundary condition is

enforced by constraining all degrees of freedom for the corresponding edges. However,

for the KL3 and KL6 formulations, the shell normal velocity is constrained as well.

If biquadratic interpolation is used, this is accomplished simply by constraining the

degrees of freedom associated with the velocity of the mid-surface for two rows of

control points, see the work of Kiendl et al. (2009). This approach enforces the

physical fixed constraint exactly for the KL3 shell, but only approximately for the

KL6 shell. The approximation results from the fact that both, the mid-surface

normal velocity
.
.n and the angular shear velocity .Ψ are constrained instead of the

total angular velocity .ω, i.e., the constraint is more restrictive in comparison with

the usual fixed boundary condition. However, the error is insignificant in many

applications, particularly if the transversal shear strains remain small in the close

proximity of the constrained location.

The implementation takes advantage of general-purpose computing on graphics

processing units (GPGPU). The implemented GPU-based code was shown to be

between one and two orders of magnitude faster for a representative incremental

forming problem in comparison with traditional CPU-based implementations (e.g.,

Abaqus) on a modern desktop PC (Elford et al., 2018). Most calculations required

by the benchmark problems of this chapter are distributed among 5120 CUDA cores

located on a single Nvidia Titan V GPU.

4.1 Timoshenko beam (SS)

The first example considers the linear elastic response of a simply supported Timo-

shenko beam under a uniformly distributed load of magnitude q0 (see Figure 4.1a).

A beam of slenderness ratio L/h = 100 and Poisson’s ratio ν = 0 is considered,

where L and h represent the length and the thickness of the beam, respectively.

The analytical solution for the nondimensionalized deflection w̄exact(x) of a simply
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supported Timoshenko beam under a uniformly distributed load is given as follows:

w̄exact(x) =
w(x)EI

q0L4
(4.1)

The absolute deflection w(x) is given by

w(x) =
q0L

4

24EI

(x
L
− 2

x3

L3
+
x4

L4

)
+

q0L
2

2κµA

(x
L
− x2

L2

)
(4.2)

where E is Young’s modulus, I is the second moment of area, κ is the shear correction

factor, µ is Lamé’s second parameter, A is the cross-sectional area, and x is the

coordinate along the length of the beam proceeding from 0 to L.

The relative error in the L2-norm of the nondimensionalized deflection w̄iga given by

‖ew̄‖L2 =

√∫
Ω

(w̄exact − w̄iga)2 dΩ∫
Ω
w̄2
exact dΩ

(4.3)

is plotted against the normalized control point spacing in Figure 4.1b for all element

types. The shear corrected KL3 and KL6 formulations produce identical results with

the respective full formulations which are prone to shear locking, and thus these

identical result are represented by a single common line plot. The same observation

applies to the RM6 and S7 formulations which produce practically indistinguishable

results.
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Figure 4.1: Timoshenko beam under a uniformly distributed load.

The KL3 formulation can only reach a certain level of accuracy as it is unable to

capture the transversal shear deformations. On the other hand, the shear deformable
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KL6 formulation achieves the optimal 2 : 1 convergence rate for a formulation relying

on a continuous normal definition (at least C1 continuous geometry). The RM6

and S7 formulations achieve the optimal 3 : 1 convergence rate for these type of

formulations, but show a clear shear locking tendency for coarser meshes.

4.2 Mindlin plate (SSSS)

The second example considers the linear elastic response of a simply supported

Mindlin plate under a uniformly distributed load q0 (see Figure 4.2a). The square

plate of slenderness ratio L/h = 100 and Poisson’s ratio ν = 0.3 is considered, where

L and h represent the edge length and the thickness of the plate, respectively. The

analytical solution for the nondimensionalized deflection w̄exact(x, y) of a simply

supported Mindlin plate under a uniformly distributed load is given as follows:

w̄exact(x, y) =
w(x, y)D

q0a4
(4.4)

The absolute deflection w(x, y) is given in terms of the Kirchhoff plate solution

wk(x, y) and Marcus moment Mk(x, y) by

w(x, y) = wk(x, y) +
Mk(x, y)

κµh

wk(x, y) =
16q0

π6D

∞∑
m=1,3,5...

∞∑
n=1,3,5...

sin(mπx
a

) sin(nπy
b

)

mn
(
m2

a2 + n2

b2

)2 , Mk(x, y) = −D∇2wk(x, y)

(4.5)

where a represents the lengths of the edges at y = 0 and y = b and b represents the

lengths of the edges at x = 0 and x = a. For a square plate a = b. Furthermore, the

flexural rigidity is given as D = Eh3

12(1−ν2)
.

The relative error in the L2-norm of the nondimensionalized deflection w̄iga (4.3) is

plotted against the normalized control point spacing in Figure 4.2b for all element

types. Similar response compared to the Timoshenko beam problem is observed (cf.

Figure 4.1b). The shear corrected KL3 and KL6 formulations still produce identical

results with their non-shear-corrected counterparts. Furthermore, the RM6 and S7

formulations also still produce practically indistinguishable results.

The difference between the KL3 and the shear deformable KL6 formulations is now

more pronounced compared to the Timoshenko beam problem. For the coarsest

mesh, the KL3 and KL6 formulations provide better accuracy compared to the RM6
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Figure 4.2: Mindlin plate under a uniformly distributed load.

and S7 formulations regardless of lower convergence rates, as the latter formulations

suffer from shear locking. Nevertheless, all shear deformable formulations converge

to the correct solution and achieve their optimal convergence rates (2 : 1 or 3 : 1).

4.3 Straight cantilever plate strip

This example considers large deformations of the elastic straight cantilever plate

strip shown in Figure 4.3a. The plate strip has the length L = 10, the width w = 1.0

and the thickness h = 0.1. Young’s modulus and Poisson’s ratio are E = 107 and

ν = 0.3, respectively. The applied line load is given as F = 40λ, where λ is the load

factor ranging from 0.0 to 1.0.

The maximum vertical tip displacement is plotted against the load factor λ in Figures

4.3b, 4.3c, and 4.3d for three different discretizations—5, 9, and 17 control points

along the length of the plate strip (referred to as the coarse, medium, and fine grid,

respectively). The theoretical solution is given by Frisch-Fay (1962).

In contrast to the previous small deformation problems, a significant difference

is observed between the shear corrected KL3 and full KL3 formulations. This

is likely to be associated with curvature of the Bézier elements. The full KL3

formulation suffers from severe transversal shear locking and produces the worst

results of all formulations. On the other hand, the shear corrected KL3 and KL6

formulations produce the best results, the difference between these two formulations
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Figure 4.3: Cantilever plate strip under a tip line load.

being practically indistinguishable. The accuracy of the RM6 and S7 formulations is

quite close to each other, although the RM6 formulation is slightly more accurate.

All element types converge towards the theoretical solution when the mesh is refined.

4.4 Cantilever ring plate

The thin cantilever ring plate shown in Figure 4.4a subjected to a vertical line load

is considered. According to Cardoso and Yoon (2005), this example is one of the

most sensitive tests for finite rotations and element warping. The geometric data

is characterized by the inner radius R1 = 6.0, the outer radius R2 = 10.0, and the

thickness h = 0.03. Young’s modulus and Poisson’s ratio are given by E = 2.1× 1010
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and ν = 0.0, respectively. The applied line load is given as F = 100λ, where the

load factor λ ranges from 0.0 to 2.0.
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(b) The load factor versus the displace-
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Figure 4.4: Cantilever ring plate under a tip line load.

The vertical displacements of points A and B are compared with the reference

results given by Buechter and Ramm (1992), Sze et al. (2004), and Valente et al.

(2003) in Figures 4.4b and 4.4c for coarse and fine meshes using 25 × 5 × 1 and

49× 7× 1 control points, respectively. The full KL3 formulation suffers from extreme

transversal shear locking and produces incorrect results for both mesh sizes. However,

the shear corrected KL3 and KL6 formulations do not suffer from any noticeable

locking and produce very good results even for the coarse mesh size. The RM6 and

S7 formulations suffer from slight shear locking when the coarse mesh is used, the

RM6 formulation being slightly ahead.
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4.5 Snap-through of a thick roof

In this example, a snap-through behavior of a thick cylindrical roof structure is

investigated. The geometric data is given by the edge length L = 508, the angle

Θ = 0.2, the radius R = 2540, and the thickness h = 12.7. Young’s modulus and

Poisson’s ratio are set to E = 3102.75 and ν = 0.3, respectively.
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Figure 4.5: A cylindrical roof structure under a point load.

The two opposite edges of the cylindrical shell are simply supported and the two other

opposite edges are free. A concentrated vertical load F is applied in the mid-point

of the roof as shown in Figure 4.5a. The analysis is carried out by prescribing

the displacement in the explicit solver and moving slowly (i.e., keeping the inertial

forces small). No external damping is applied. The full model is analyzed and the

symmetry of the problem is not exploited.

The load-displacement curves for two mesh configurations are shown in Figures 4.5b
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and 4.5c, where the given number of control points or nodes in the legend has been

scaled for the full geometry mesh, even if only a quarter of the problem was originally

analyzed.

All element types are in a good agreement with the reference solutions given by Sze

et al. (2004) as well as Schwarze and Reese (2011), but particularly with Sze et al.

(2004) who used a very fine mesh. Furthermore, no difference is observed between

the shear corrected and full KL3 formulations, i.e., shear locking does not seem to

cause problems with the corresponding thick problem.

4.6 Dynamic elasto-plastic response of a square

plate

The last benchmark problem found from the literature evaluates the undamped

dynamic elasto-plastic behavior of a square plate under an impulsively applied

pressure load. The plate dimensions are given by the edge length L = 10 and the

thickness h = 0.5. The properties of the elastic-perfectly-plastic material are given

by the density ρ = 2.588× 10−4, Young’s modulus E = 107, Poisson’s ratio ν = 0.3,

and the yield stress σy = 3 × 104. The plate is simply supported and a uniform

pressure p = 300 is applied to the reference surface (Figure 4.6a).

The dynamic response of all elements match well with the biquadratic isogeometric

Reissner-Mindlin shell element proposed by Benson et al. (2010) as shown in Figure

4.6b. The response of the Belytschko-Tsay element (Belytschko et al., 1984) employ-

ing a significantly finer mesh in comparison to the other element types is given as

a reference as well. The KL3 element deviates slightly from the shear deformable

element formulations. Furthermore, no practical difference is observed between the

shear corrected and full KL3 formulations.

The degrees of freedom associated with the transverse deformations often needs be

selectively scaled to increase the stable time step size. The influence of scaling these

masses is evaluated in Figures 4.6c, 4.6d, and 4.6e for mass scaling factors of 10,

100, and 1000, respectively. Scaling these masses by 10 does not significantly alter

the results for any element type. However, scaling of 100 already causes notable

deviation in the dynamic response for the RM6 and S7 formulations. Increasing

the corresponding mass scaling factor up to 1000 has a huge impact on the results

provided by the RM6 and S7 formulations.
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Figure 4.6: Dynamic elasto-plastic response of a square sheet under a uniform pressure
and the influence of fiber mass scaling.
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The KL3 formulation possesses only 3 translational degrees of freedom associated

with the mid-surface geometry and therefore is not affected by the applied mass

scaling. However, the shear deformable KL6 formulation remains very insensitive

to scaling the masses associated with the angular shear velocity. This is a very

important feature of the proposed shear deformable formulation. In fact, if the

selective mass scaling factor approaches infinity, the solution of the KL6 formulation

just approaches the solution of the KL3 formulation as suggested by Figures 4.6c,

4.6d, and 4.6e.

The selective mass scaling is typically related to the element slenderness ratio such

that when the element becomes thinner, the mass scaling factor must be increased.

However, when the thickness approaches zero, the solution approaches the Kirchhoff-

Love solution anyway as the transversal shear vanishes. Therefore, the proposed KL6

formulation which does not show any signs of shear locking is a very appealing choice

for a wide variety of applications ranging from very thin problems to moderately

thick problems.

4.7 Single point incremental forming example

In this section, the shell elements are applied to a single point incremental forming

(SPIF) problem introduced by Hokkanen and Pedroso (2019b). A classical BWC

shell element (Belytschko et al., 1992) is included as well. The formed part from

the experiment shown in Figure 4.7 is 3D scanned to obtain a measure of the true

thinning of the part. The resulting normalized thickness distribution is illustrated

by Figure 4.8.

The simulation uses the stylus contact algorithm discussed in Section 3.6.2, which

was also applied to ISF problems by Hokkanen et al. (2018) and Hokkanen and

Pedroso (2019b). A uniform control point spacing is considered with three different

space discretizations: 6 mm (coarse), 4 mm (medium), and 2 mm (fine). The resulting

initial element dimensions along the direction of the edges of the sheet are therefore

approximately 30%, 20%, and 10% of the stylus diameter, respectively. A detailed

description of the geometry and numerical model is given by Hokkanen and Pedroso

(2019b) (see Appendix B).

The deformed shape is plotted in Figure 4.9 for all space discretizations by considering

a slice along the dotted line shown in Figure 4.8. The yellow region in the plots
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Figure 4.7: A photograph of the formed part
(SPIF).

Figure 4.8: The experimental normal-
ized thickness from the 3D scanning
(SPIF). The contours vary linearly
from 0.62 (red) to 1.0 (blue).

Final shape along a slice x = 0

-100 -50 0 50 100
-40

-30

-20

-10

0

10

Experiment

IGA KL3/KL6

IGA RM6

IGA S7

BWC

(a) 6mm grid.
Final shape along a slice x = 0

-100 -50 0 50 100
-40

-30

-20

-10

0

10

Experiment

IGA KL3/KL6

IGA RM6

IGA S7

BWC

(b) 4mm grid.
Final shape along a slice x = 0

-100 -50 0 50 100
-40

-30

-20

-10

0

10

Experiment

IGA KL3/KL6

IGA RM6

IGA S7

BWC

(c) 2mm grid.

Figure 4.9: The final shape of the formed part along a slice x = 0 for the SPIF example.
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(a) KL3 (b) KL6

(c) RM6 (d) S7

(e) BWC w/o grid (f) BWC w/ grid

Figure 4.10: The normalized thickness plot of the SPIF example for each element type
(6mm grid). The contours vary linearly from 0.62 (red) to 1.0 (blue).
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(a) KL3 (b) KL6

(c) RM6 (d) S7

(e) BWC w/o grid lines (f) BWC w/ grid lines

Figure 4.11: The normalized thickness plot of the SPIF example for each element type
(4mm grid). The contours vary linearly from 0.62 (red) to 1.0 (blue).
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(a) KL3 (b) KL6

(c) RM6 (d) S7

(e) BWC w/o grid lines (f) BWC w/ grid lines

Figure 4.12: The normalized thickness plot of the SPIF example for each element type
(2mm grid). The contours vary linearly from 0.62 (red) to 1.0 (blue).
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represent the experimental result, i.e., area between the top and the bottom surfaces

of the sheet. This is obtained from the 3D scan data. The curves denoting the

simulation results represent only the mid-surface of the sheet and do not contain

any information about the simulated thinning of the sheet.

Overall, the simulated shapes along the slice agree very well with the experimental

data. The KL3 and KL6 results are represented by a single curve as they produce

nearly identical results. The thickness stretchable S7 formulation converges towards

a slightly different solution as it does not make the plane stress assumption. A closer

inspection reveals that the difference between the coarsest and the finest solutions is

largest for the S7 formulation, and smallest for the KL3 and KL6 formulations. This

suggests the best performance for the KL3 and KL6 element types.

The simulated thinning is shown in Figures 4.10, 4.11, and 4.12. The results match

very well with the experimental thinning shown in Figure 4.8 when a fine grid is

employed. A notable difference is observed between the coarsest and the finest

discretizations. However, the differences between the formulations are quite small.

Closer inspection of Figure 4.10 reveals that the BWC element underestimates the

thinning most when compared to the finer grids. It is also noted that the BWC result

for the finest discretization is slightly noisy in comparison with the isogeometric

elements.

The simulated forming forces experienced by the stylus in the global z-direction

(vertical direction) are shown in Figure 4.13. The forces are filtered as the raw data is

somewhat noisy. Refining the grid consistently lowers the z-forces. This is expected

behavior as the smaller elements can better capture the local material response, i.e.,

the local deformations do not influence an overly large area. The forces are still

reduced over 5% by refining the grid size from 4 mm to 2 mm.

For the coarsest discretization, the RM6 and S7 formulations predict notably higher

forces in comparison with KL3 and KL6 formulations. This is likely to be due to

the KL3 and KL6 formulations being less prone to locking issues as demonstrated

by the previous sections. However, the gap between the aforementioned elements

narrows down when the grid is refined.

The forces predicted by the BWC formulation are slightly inconsistent in comparison

with the isogeometric elements. The most notable deviation occurs for the finest

discretization which may be related to the noisy thickness plot. Somewhat similar
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(b) Medium grid (4mm)
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(c) Fine grid (2mm).

Figure 4.13: Forming forces in the global z-direction (vertical direction) for the SPIF
example.

behavior was observed by Hokkanen and Pedroso (2019b) with isogeometric elements

when integration schemes that are prone to hourglassing were used. Therefore, the

observation may be associated with the rank deficiency of the BWC element, even

though an hourglass control is used.

Table 4.1: SPIF simulation runtime for each element type using Nvidia Titan V GPU.

Formulation Order Cost per el. Time step Runtime: 6/4/2 mm (s)

KL3 2 = 4 1.5x 542/1356/6893
KL6 2 = 4 1.5x 615/1483/7534
RM6 2 = 4 1.5x 585/1424/7651
S7 2 = 4 1.5x 489/1241/7145
BWC 1 = 1 0.9x 580/1157/4779

The simulation runtimes for different element types are shown in Table 4.1. The
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isogeometric S7 formulation is fastest for the coarse grid whereas the KL6 formulation

is slowest requiring ∼25% more time. For the medium grid, BWC formulation is

fastest and the KL6 formulation, which is the slowest, takes ∼30% longer. For the

finest mesh, the BWC is significantly faster than the isogeometric formulations, the

slowest formulation requiring ∼60% more time than the BWC formulation.

In comparison with Lagrange finite elements, the isogeometric elements benefit from

larger stable time step sizes. For the ISF problem of this section, the maximum

stable time step size for the isogeometric elements is over 60% larger in comparison

to the BWC shell element, and therefore, a significantly smaller number of time

increments are required. On the other hand, the isogeometric elements use somewhat

costlier spline interpolation and roughly four times as many stress integration points.

4.8 Two-point incremental forming example

The last section considers a two-point incremental forming (TPIF) problem intro-

duced by Hokkanen et al. (2018). The formed part from the experiment shown in

Figure 4.14 is 3D scanned to obtain a measure of the true thinning of the part. The

resulting normalized thickness distribution is illustrated by Figure 4.15.

In addition to the stylus contact algorithm of Section 3.6.2, the die contact algorithm

discussed in Section 3.6.3 is used. Similarly to Section 4.7, a uniform control point

spacing is considered with three different space discretizations: 6 mm (coarse), 4 mm

(medium), and 2 mm (fine). A detailed description of the geometry and numerical

model is given by Hokkanen et al. (2018) (see Appendix C). However, the isotropic

material model used in Section 4.7 is employed instead of the original anisotropic

material model.

The deformed shape is plotted in Figure 4.16 for all space discretizations similarly to

Section 4.7. The dotted line along which the slice is taken is shown in Figure 4.15.

The simulated shapes along the slice are in a good agreement with the experimental

result although the converged simulation results deviate slightly more from the

experimental results in comparison with the single point forming problem of Section

4.7. All element formulations converge towards almost exactly the same solution.

The edges of the sheet bend upwards after the sheet is unclamped from the frame

due to the springback effect. However, when the coarsest grid is employed, the RM6,

S7, and BWC element formulations do not capture the springback effect correctly
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Figure 4.14: A photograph of the formed
part (TPIF).

Figure 4.15: The experimental nor-
malized thickness from the 3D scan-
ning (TPIF). The contours vary lin-
early from 0.66 (red) to 1.0 (blue).
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(c) 2mm grid.

Figure 4.16: The final shape of the formed part along a slice x = 0 for the TPIF example.
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(a) KL3 (b) KL6

(c) RM6 (d) S7

(e) BWC w/o grid (f) BWC w/ grid

Figure 4.17: The normalized thickness plot of the TPIF example for each element type
(6mm grid). The contours vary linearly from 0.66 (red) to 1.0 (blue).
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(a) KL3 (b) KL6

(c) RM6 (d) S7

(e) BWC w/o grid lines (f) BWC w/ grid lines

Figure 4.18: The normalized thickness plot of the TPIF example for each element type
(4mm grid). The contours vary linearly from 0.66 (red) to 1.0 (blue).
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(a) KL3 (b) KL6

(c) RM6 (d) S7

(e) BWC w/o grid lines (f) BWC w/ grid lines

Figure 4.19: The normalized thickness plot of the TPIF example for each element type
(2mm grid). The contours vary linearly from 0.66 (red) to 1.0 (blue).
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whereas the KL3 and KL6 formulations do. This again suggests best accuracy for

the KL3 and KL6 formulations.

The simulated thinning is shown in Figures 4.17, 4.18, and 4.19. Again, a very

good match is obtained by using the finest discretization in comparison with the

experimental thinning shown in Figure 4.15. However, now the difference between

the coarsest and the finest discretizations is even larger in comparison with the single

point forming problem, but the differences between the formulations are still small.

The BWC element produces slightly thinner results than the isogeometric elements

for the finest discretization.
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(b) Medium grid (4mm)
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(c) Fine grid (2mm).

Figure 4.20: Forming forces in the global z-direction (vertical direction) for the TPIF
example.

The simulated forming forces in the global z-direction are shown in Figure 4.20.

Similarly to Section 4.7, refining the grid size consistently lowers the z-forces. Again,

the RM6 and S7 formulations predict notably higher forces in comparison with the
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KL3 and KL6 formulations for the coarsest discretization, although the gap between

the former two element types is now much larger. The BWC element predicts

consistently slightly lower forces than the isogeometric elements.

Table 4.2: TPIF simulation runtime for each element type using Nvidia Titan V GPU.

Formulation Order Cost per el. Time step Runtime: 6/4/2 mm (s)

KL3 2 = 4 1.5x 665/1409/7464
KL6 2 = 4 1.5x 647/1494/7926
RM6 2 = 4 1.5x 672/1467/7949
S7 2 = 4 1.5x 523/1367/7631
BWC 1 = 1 0.9x 671/1255/5593

The simulation runtimes for different element types are shown in Table 4.2. The

results are very similar to Section 4.7 which implies that the die contact algorithm

does not have significant influence to the relative performance between the elements.

The isogeometric elements still suffer relatively more from the grid refinement in

comparison to the BWC element. This is explained by the four times larger number

of integration points per element and the limited parallel computing resources of

the GPU. The computations start becoming increasingly serialized after a certain

mesh size when the mesh is refined—the penalty due to this serialization is relatively

larger for the isogeometric elements. This drawback can be avoided by employing a

one-point in-plane quadrature for the isogeometric elements, but one should expect

reduced accuracy and possible hourglassing problems (Hokkanen and Pedroso, 2019b).
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Conclusions

The main objective of this work was to investigate the applicability and beneficiality

of isogeometric shell technology to incremental sheet forming simulations. However,

most findings and contributions to the field are beneficial for a vast variety of ap-

plications ranging from modeling of bioprosthetic heart valves to automobile crash

simulations. The most significant contributions include advancement of isogeometric

shell technology, demonstration of usage of unclamped knot vectors in the isoge-

ometric analysis, and evaluation of some recently proposed numerical integration

rules using a complex real-world application. All important research objectives are

fulfilled and ISF simulations are found to benefit from the isogeometric analysis in

many ways with few disadvantages in comparison to classical finite elements.

An isogeometric thickness stretchable shell formulation was proposed by Hokkanen

and Pedroso (2019a) and is given as Appendix A. This formulation supports full three-

dimensional constitutive models and does not require the plane stress assumption. To

improve the efficiency of the formulation, the stress resultant approach was adopted

and the higher-order terms in the velocity gradient were neglected after performing a

Taylor expansion about the reference surface. Furthermore, the concept of fiber mass

scaling was successfully extended to the degree of freedom representing a quadratic

thickness deformation to benefit from the larger stable time step size provided by

the spline interpolation. The sensitivity of this degree of freedom to mass scaling

was found to be small.

An explicit time integration scheme was used for numerical testing which makes

the maximum stable time step size extremely small. Clamped and unclamped

95
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knot vectors were compared, and unclamped knot vectors were found to provide a

larger stable time step size for the boundary elements as suggested by Adam et al.

(2015b). Moreover, an efficient technique compatible with diagonal mass matrices

was proposed for enforcing Dirichlet boundary conditions at arbitrary locations

within the patch. In the work of Hokkanen et al. (2018), the thickness stretchable

shell was applied to an ISF simulation requiring an anisotropic material model and

double-sided contact enforcement, see Appendix C.

In Section 3.3, three different shell formulations were developed based on Kirchhoff-

Love and Reissner-Mindlin theories. The Kirchhoff-Love formulation which is com-

prised of three degrees of freedom per control point follows the developments of

Benson et al. (2011), but the original formulation is modified in five ways: 1) the

velocity gradient and the stress resultants are evaluated in a local coordinate system

such that no computationally expensive transformations need be performed for any

tensors of second order; 2) only terms up to linear along the thickness direction are

considered for the velocity gradient in order to speed up the formulation; 3) the

in-plane Jacobian matrix is decoupled from the through-thickness Jacobian such

that only a 2× 2 matrix inversion is calculated instead of a 3× 3 inversion; 4) the

through-thickness Jacobian is made independent of the control point normals and

depends only on the local shell thickness; 5) the terms contributing to the transversal

shear which were shown to vanish at the continuum limit are dropped in order to

cure the shear locking problem. All five modifications reduce the number of floating

point operations and therefore speed up the formulation. The last modification cures

the observed shear locking issue, and as a consequence, improves the accuracy of the

element significantly for thin problems.

Furthermore, a shear enhanced Kirchhoff-Love formulation was developed following

the concept of hierarchic shells proposed by Echter et al. (2013). The resulting

element does not show any signs of shear locking, and its only difference to the basic

Kirchhoff-Love element is the additional degrees of freedom which represent angular

shear velocity. This shear deformable formulation was shown to converge to the

exact analytical Mindlin plate solution and it does not suffer from the increasing

fiber mass scaling factor when the shell thickness decreases.

The third shell formulation resembles the Reissner-Mindlin shell proposed by Benson

et al. (2013), but differs from the original formulation due to the aforementioned

modifications 1–4. Typically to the Reissner-Mindlin shells, the accuracy of this
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shear deformable shell element suffers from the increasing fiber mass scaling factor

when approaching the thin limit. However, one advantage of this element is its

ability to handle sharp corners (i.e., C0 continuous geometry can be used), although

this is rarely important in the context of ISF simulations.

A study on several quadrature rules recently proposed in the literature was conducted

by Hokkanen and Pedroso (2019b) and is given as Appendix B. In contrast to most

other works, a complex incremental sheet forming problem was used as one of the

benchmark cases which led to some important new findings. The performance of

the thickness stretchable shell element was found to benefit from using bicubic

interpolation functions combined with a recently proposed patchwise quadrature

rule. In comparison to the interpolation functions and the quadrature employed in

the original paper (Hokkanen and Pedroso, 2019a), the results showed an improved

convergence rate and less locking without introducing spurious modes or increasing

the total computational cost of the ISF simulation. Additionally, an irregular

patchwise quadrature recently proposed in the literature was found to result in a

wavy pattern leading to a poor solution. Also, some simple stabilization strategies

for quadratures suffering from spurious modes were found inadequate for a complex

real-world simulation.

An automatically adjusting application-specific contact pressure smoothing algorithm

was proposed in Section 3.6.2 which is applicable to the stylus contact modeling in

ISF simulations. Furthermore, efficient contact tracking algorithms for the stylus and

the die contact evaluation were discussed in Sections 3.6.2 and 3.6.3, respectively.

General-purpose computing on graphics processing units (GPGPU) was found to

be a very cost-efficient way of speeding up the simulations, and is therefore highly

recommended for future developments of IGA or FEM codes. The implemented

GPU-based code was shown to be between one and two orders of magnitude faster

for a representative incremental forming problem in comparison with traditional

CPU-based implementations (e.g., Abaqus) on a modern desktop PC (Elford et al.,

2018). The performance difference between the investigated isogeometric and classical

elements is, however, much smaller. The developed isogeometric elements benefit

from a larger stable time step size, but, on the other hand, require approximately

four times as many integration points per element in comparison to the fastest

classical shell elements. A reduction in the total number of time steps is however

much more beneficial than a reduction in the number of integration points because
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the time steps cannot be evaluated in parallel. The availability of parallel computing

resources is likely to keep improving in the future, and therefore, the minimization

of the number of integration points (which can be evaluated parallel) becomes less

important. However, irrespective of the development of computing technology, the

simulation time is expected to remain approximately proportional to the total number

of time steps.

Although the implementation was moderately optimized, further optimizations have

the potential to improve the performance significantly. Optimizing the GPU memory

management using pitched memory allocations and optimal coalesced memory access

patterns was shown to result in a very significant performance improvement for a

trilinear solid-shell element with 24 degrees of freedom per element (Stephan et al.,

2018). On the other hand, each isogeometric thickness stretchable shell element

is associated with 7(p + 1)2 degrees of freedom (where p denotes the order of the

spline interpolation functions), and may therefore benefit proportionally more from

optimizing the GPU memory management in comparison to the aforementioned

solid-shell element, or any low-order classical shell element.
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Appendix A

Isogeometric thickness stretchable

shell: efficient formulation for

nonlinear dynamic problems

An isogeometric shell element with through-thickness stretch is introduced and

applied to quasi-static and dynamic problems. The shell element supports full

three-dimensional constitutive laws, i.e., the plane stress assumption is not required.

An updated Lagrangian rate formulation is adopted, and biquadratic spline-based

interpolation functions are used for in-plane interpolation. The concept of fiber mass

scaling is proposed to lower the highest eigenfrequencies to improve the performance

of the formulation. Clamped and unclamped knot vectors are compared, and the

advantages of using unclamped knot vectors are demonstrated. The shell element

is validated using several benchmark tests which indicate good performance of the

proposed formulation.

A.1 Introduction

Isogeometric analysis (IGA) first proposed by Hughes et al. (2005) has attracted

growing interest among the computational mechanics community. This concept

adopts spline-based interpolation functions resulting in several potential advantages

over conventional finite elements, such as increased accuracy per degree of freedom

(Cottrell et al., 2006, 2007; Evans et al., 2009; Großmann et al., 2012), increased

stable time step size (Adam et al., 2015b), and continuous stress and strain fields,
101
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among others (Cottrell et al., 2009).

Many of the advantages result directly from the higher-order continuity of the interpo-

lation functions, which also enables straightforward implementation of Kirchhoff-Love

shell models (Kiendl et al., 2009; Benson et al., 2011, 2013). A Kirchhoff-Love shell

formulation for general hyperelastic materials was proposed by Kiendl et al. (2015b),

which was later applied to fluid-structure interaction simulations of bioprosthetic

heart valves (Hsu et al., 2015). An application of a Kirchhoff-Love shell model to

elasto-plastic materials was discussed by Ambati et al. (2018). A hierarchic family

of isogeometric shell elements was proposed by Echter et al. (2013), and further

developed by Oesterle et al. (2016, 2017), where a Kirchhoff-Love type shell model is

used as a basis, and additional degrees of freedom are added to represent shear and

thickness deformations.

Isogeometric Reissner-Mindlin shell elements were discussed by Benson et al. (2010),

Dornisch et al. (2013), and Adam et al. (2015a), among others. Benson et al. (2010)

considered explicit dynamics and scaled the rotational masses to increase the stable

time step size.

Recently, the focus in the shell finite element technology has shifted towards more

advanced formulations such as thickness stretchable shell elements and solid-shells.

Two isogeometric solid-shell elements have been proposed by Hosseini et al. (2013,

2014); the latter formulation was extended to model propagation of delamination

in composite materials (Hosseini et al., 2015). Other contributors to isogeometric

solid-shell technology include Bouclier et al. (2013, 2015a,b), Cardoso and Cesar de

Sa (2014), and Caseiro et al. (2015).

Most of the isogeometric solid-shell element formulations proposed in the literature do

not consider dynamic problems nor the implications of using explicit time integration.

However, numerous recently published contributions show a great interest in using

solid-shell elements in explicit dynamic simulations, e.g., many formulations have

been proposed in the context of classical finite elements (Tan and Vu-Quoc, 2005;

Li et al., 2011b; Pagani et al., 2014; Mattern et al., 2015). Furthermore, explicit

metal forming simulations with solid-shell elements were demonstrated by Li et al.

(2011a) and Xu et al. (2012). Traditionally, bilinearly interpolated shell elements

have dominated explicit analyses because using higher-order shape functions (which

are Lagrange polynomials) reduces the stable time step size. This drawback of using

higher-order interpolation functions does not necessarily show up in IGA. In fact,
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the stable time step size increases with increasing smoothness across the elements

(Adam et al., 2015b); this can be achieved by raising the order of the interpolation

functions.

The purpose of this paper is to introduce an isogeometric solid-like shell formulation

for dynamic simulations which is applicable to thick shell problems including double-

sided contact. Therefore, no plane stress assumption is made. The proposed

formulation strives for efficiency and robustness which is important for demanding

highly nonlinear dynamic simulations such as automobile crash dynamics or sheet

metal forming problems. The formulation is based on the degenerated solid approach

with only translational degrees of freedom.

Reduced integration is used to alleviate several locking problems (Adam et al., 2015c)

and to reduce computational cost. The chosen integration scheme preserves full rank

of the stiffness matrix, and therefore no ad hoc hourglass control procedures are

required. The concept of fiber mass scaling is adopted to prevent the eigenfrequencies

associated with the transverse deformations from lowering the larger stable time

step size allowed by the spline-based in-plane interpolation. Moreover, unclamped

knot vectors are investigated due to their potential advantages over conventionally

employed clamped knot vectors (Adam et al., 2015b).

The paper is structured as follows. Section A.2 briefly presents the calculation of

b-spline and NURBS interpolation functions. Section A.3 explains thoroughly the

internal, external, and inertial force calculations as well as the Dirichlet boundary

conditions, the fiber mass scaling, and the stable time step estimate. In Section A.4,

the proposed shell formulation is validated using biquadratic b-spline interpolation

functions. Two linear elastic, and five nonlinear elastic or elasto-plastic benchmark

cases are considered. Finally, conclusions are given in Section A.5.

The following notation is used throughout the text. The order of a tensor variable

is indicated by the number of dots added under the corresponding symbol. For

instance, .a and ..a are different tensors of first and second orders, respectively. A

similar dot on top of a variable indicates a time derivative. Furthermore, a partial

derivative is denoted by a comma in the subscript. Lastly, although the concept of

Bézier extraction is not employed, the subdomains bounded by the knots are still

referred to as Bézier elements, similarly to the works of Schillinger et al. (2014),

Adam et al. (2015c), and Hiemstra et al. (2017).
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A.2 Isogeometric analysis fundamentals

The reference surface of the shell formulation is interpolated using spline-based

interpolation functions. A general spline geometry is given by

.r(.ξ) =
∑
A

NA(.ξ).rA (A.1)

where .ξ represents all parametric coordinates and .rA are the control points. The mul-

tivariate b-spline interpolation functions NA(.ξ) (later referred to as shape functions)

are given as

NA(.ξ) =
∏
l

N l
A(ξl) (A.2)

where N l
A(ξl) is the univariate b-spline basis function of the Ath control point.

Denoting the order of the univariate b-spline basis function by p, one may calculate

the basis function of the ith control point in the lth parametric direction using the

Cox-de Boor recursion formula (Piegl and Tiller, 1996) as

N l
i0(ξl) =

1 if ξli ≤ ξl ≤ ξli+1

0 otherwise

N l
ip(ξ

l) =
ξl − ξli
ξli+p − ξli

N l
i(p−1)(ξ

l) +
ξli+p+1 − ξl

ξli+p+1 − ξli+1

N l
(i+1)(p−1)(ξ

l) ∀ p ∈ Z+

(A.3)

where 0/0 ≡ 0 by convention. The knots ξli are stored in nondecreasing sets of real

numbers known as knot vectors for which the following notation is used:

Ξl = {ξl1, ξl2, . . . , ξlnl+pl+1} (A.4)

In (A.4) nl and pl represent the number of control points and the order associated

with the lth parametric direction, respectively. If the values of the first pl + 1 knots

of a knot vector are equal, and also the last pl + 1 knots are equal, the knot vector is

called clamped. If neither end of the knot vector has pl + 1 repeated knots, the knot

vector is called unclamped. A simple algorithm to convert a geometry definition

from clamped to unclamped knot vectors without changing the number of control

points is given by Piegl and Tiller (1996). The exact geometry is preserved and all

important mathematical properties required by the isogeometric analysis still hold

throughout the geometric domain such as the partition of unity condition for the

basis functions.
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A generalized nonuniform rational b-spline (NURBS) geometry can be obtained by

introducing a weight w associated with each control point, and replacing (A.2) by

the rational multivariate interpolation functions

NA(.ξ) =
wA
∏

lN
l
A(ξl)∑

B wB
∏

lN
l
B(ξl)

(A.5)

where N l
A(ξl) is still given by (A.3). It should be noted that the weights wA do not

change during the analysis, but come from the initial geometry definition.

A.3 Updated Lagrangian rate formulation

A.3.1 Shell kinematics

The kinematics of the proposed shell formulation are derived from the degenerated

solid element approach where the shell geometry is described by the reference surface

coordinates and the shell fiber vector which remains straight during the deformation.

The shell geometry is hence written as

.x(ξ, η, ζ, t) = 1
2

(
.xtop(ξ, η, t) + .xbot(ξ, η, t)

)︸ ︷︷ ︸
.r(ξ,η,t)

+1
2
ζ
(

.xtop(ξ, η, t)− .xbot(ξ, η, t)
)︸ ︷︷ ︸

.d(ξ,η,t)

(A.6)

where .xtop(ξ, η, t) represents the top surface and .xbot(ξ, η, t) the bottom surface.

Furthermore, .r(ξ, η, t) and .d(ξ, η, t) represent the reference surface and the shell

fiber vector, respectively. The extensible fiber shell formulations are capable of

directly representing thickness changes and do support complete three-dimensional

constitutive laws. Therefore, the plane stress enforcement is not needed. These type

of formulations usually adopt additional degrees of freedom to avoid Poisson locking,

which is caused by the lack of a linear transversal normal strain distribution, and

which does not vanish even if the mesh is refined. The two common procedures to

avoid the aforementioned problem are to either introduce internal degrees of freedom

by following the enhanced assumed strain (EAS) procedure proposed by Simo and

Rifai (1990), or to introduce a quadratic term in ζ contributing to the displacements.

The latter approach was first proposed by Parisch (1995) who introduced the following

shell geometry definition

.x = .r +
ζ

2 .d+ (1− ζ2)q .d (A.7)

where the new term involving q vanishes when ‖ζ‖ = 1, and therefore does not

contribute to the top and bottom surface locations. The shell geometry definition
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adopted herein was proposed by Seifert (1996) and results in a simpler formulation

given by

.x = .r +
ζ

2 .d+ ζ2q .d (A.8)

where the quadratic term now vanishes at the reference surface. Regardless of

the definition, the term involving q results in a linear transversal normal strain

distribution (see Section A.3.4).

A.3.2 The principle of virtual power

The proposed shell element formulation is based on the Galerkin method. The

expression for the virtual power including inertial, internal, and external virtual

power contributions is given by (Belytschko et al., 2013)∫
Ω

ρ .a · δ .v dΩ︸ ︷︷ ︸
δPiner

+

∫
Ω

..σ : δ ..D dΩ︸ ︷︷ ︸
δPint

=

∫
Ω

.b · δ .v dΩ +

∫
Γ

.t · δ .v dΓ︸ ︷︷ ︸
δPext

(A.9)

where ρ is the density, .a is the acceleration, δ .v is the virtual velocity, ..σ is the Cauchy

stress, .b is the body force, and .t is the traction. The domain and its boundary are

represented by Ω and Γ, respectively. The virtual rate-of-deformation, δ ..D, is defined

in terms of the spatial virtual velocity gradient δ .v,.x by

δ ..D =
1

2
(δ .v,.x + δ .v

T
,.x

) (A.10)

A.3.3 Local coordinate system

A local orthogonal coordinate system independent of ζ is defined at each reference

surface integration point. The covariant basis vectors .g1, .g2, and .g3 are defined as

.g1 = .x,ξ, .g2 = .x,η, .g3 = .x,ζ (A.11)

where .x represents the global coordinates of the current configuration. The basis

vector .e3 for the local coordinate system is aligned along .g3:

.e3 = .g3

‖.g3‖
(A.12)

The remaining basis vectors .e2 and .e1 defining the local coordinate system are given

as

.e2 =
.e3 × .g1

‖.e3 × .g1‖
(A.13)
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and

.e1 = .e2 × .e3 (A.14)

The transformation from the global to the local coordinate system is given by

.̂x = ..R
T · .x (A.15)

where the “hat” (•̂) is used to denote variables expressed in the local coordinate

system. The rotation tensor ..R is constructed from the basis vectors .e1, .e2, and .e3

by

R = [e1 e2 e3] (A.16)

where the underdots are omitted due to the employed matrix notation.

Another option is to use a local orthogonal coordinate system where .e3 is always

aligned along the surface normal, and the other two basis vectors are aligned

with .g1 and .g2 as closely as possible (Hughes, 2012). This would result in many

additional small terms to be calculated as the fiber is generally not aligned along the

surface normal due to shear deformations. However, many Reissner-Mindlin shell

elements assume that the fiber vector of the current configuration is normal to the

reference surface in order to simplify the formulation and increase its robustness—

without preventing transverse shear stresses from accumulating (Benson et al., 2013;

Belytschko et al., 2013). This approach is suggested as the second option as it does

not affect the computational efficiency and requires only a minimum change to the

implementation (modification of the local coordinate system definition).

A.3.4 Internal force calculation

Taking the time derivative of (A.8), one ends up with the following expression for

the velocity:

.v =
.
.r +

ζ

2

.

.d+ ζ2(
.
q .d+ q

.

.d) (A.17)

The spatial velocity gradient .v,.x is calculated in the local coordinate system where

.̂x = x̂ .̂e1 + ŷ .̂e2 + ẑ .̂e3. Noting that .r, .d, and q are independent of ẑ, and since ζ is

not a function of x̂ or ŷ, the components of the spatial velocity gradient in the local

coordinate system are given as

.̂v,χ =
.
.̂r,χ +

ζ

2

.
ˆ
.d,χ + ζ2(

.
qˆ
.d+ q

.
ˆ
.d),χ

.̂v,ẑ =
ζ,ẑ
2

.
ˆ
.d+ 2ζζ,ẑ(

.
qˆ
.d+ q

.
ˆ
.d)

(A.18)
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where χ represents either x̂ or ŷ. Similarly,

δ .̂v,χ =
.
δ .̂r,χ +

ζ

2
δ

.
ˆ
.d,χ + ζ2(δ

.
qˆ
.d+ qδ

.
ˆ
.d),χ

δ .̂v,ẑ =
ζ,ẑ
2
δ

.
ˆ
.d+ 2ζζ,ẑ(δ

.
qˆ
.d+ qδ

.
ˆ
.d)

(A.19)

The derivative ζ,ẑ is obtained from (A.8) by first calculating the component along .e3

in the local coordinate system as

ẑ =
(

.̂r +
ζ

2
ˆ
.d+ ζ2qˆ

.d
)
· .̂e3 (A.20)

Differentiating ẑ with respect to ζ yields

ẑ,ζ =
(1

2
ˆ
.d+ 2ζqˆ

.d
)
· .̂e3 (A.21)

hence,

ζ,ẑ =
2

(ˆ
.d+ 4ζqˆ

.d) · .̂e3

(A.22)

Substituting (A.22) into (A.182) and performing a Taylor expansion about the

reference surface, one may represent the spatial velocity gradient in the following

form:

.̂v,χ =
.
.̂r,χ +

ζ

2

.
ˆ
.d,χ + ζ2(

.
qˆ
.d+ q

.
ˆ
.d),χ

.̂v,ẑ =
1

ˆ
.d · .̂e3

( .
ˆ
.d+ 4ζ

.
qˆ
.d− 16qζ2 .

qˆ
.d+ 64q2ζ3 .

qˆ
.d− . . .

) (A.23)

Parisch (1995), who first introduced a quadratic term in ζ for shell models, justified

the exclusion of higher-order strain components in ζ by q being small in comparison

with the other corresponding quantities. Considering only the terms constant and

linear in ζ, and noting from (A.8) and (A.12) that

.̂e3 =
ˆ
.d

ˆ
.d · .̂e3

(A.24)

the final expressions for the spatial velocity gradient and the spatial virtual velocity

gradient interpolated using spline-based shape functions become

.̂v,χ =
∑
A

N0
A,χ

.
.̂rA +

ζ

2

∑
A

(
N1
A,χ

.
.̂rA +N0

A,χ

.
ˆ
.dA

)
.̂v,ẑ =

1∑
B NB

ˆ
.dB · .̂e3

∑
A

NA

.
ˆ
.dA + 4ζ

∑
A

NA
.
qA .̂e3

(A.25)
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and

δ .̂v,χ =
∑
A

N0
A,χδ

.
.̂rA +

ζ

2

∑
A

(
N1
A,χδ

.
.̂rA +N0

A,χδ
.
ˆ
.dA

)
δ .̂v,ẑ =

1∑
B NB

ˆ
.dB · .̂e3

∑
A

NAδ
.
ˆ
.dA + 4ζ

∑
A

NAδ
.
qA .̂e3

(A.26)

respectively. Due to definition (A.25), the quadratic term of (A.8) now only con-

tributes to the linear component of the transversal normal strain, i.e., the component

that is required to overcome Poisson locking. The proposed solid-like shell model is

comprised of seven degrees of freedom associated with each A, which correspond to
.
.rA,

.

.dA, and
.
qA.

In (A.25) and (A.26), the derivatives of the shape functions NA,χ are approximated

by the constant and linear terms in ζ, denoted by N0
A,χ and N1

A,χ, respectively.

A similar approach is suggested by Belytschko et al. (1989), who showed that the

higher-order terms in ζ are small in the context of classical Reissner-Mindlin elements.

As the shell formulation does not consider quadratic variation in ζ for the velocity

strains, N1
A,χ is not considered for

.

.d,χ. The relations for the derivatives of the shape

functions with respect to the local coordinates are derived from
NA,ξ

NA,η

NA,ζ

 = J


NA,x̂

NA,ŷ

NA,ẑ

 =


x̂,ξ ŷ,ξ ẑ,ξ

x̂,η ŷ,η ẑ,η

x̂,ζ ŷ,ζ ẑ,ζ



NA,x̂

NA,ŷ

NA,ẑ

 (A.27)

where J is the Jacobian matrix of the transformation from the Euclidean to the

parametric space. The expression for the shape function derivatives NA,x̂ and NA,ŷ

can be written as[
NA,x̂

NA,ŷ

]
=

1

J

[
ŷ,ηẑ,ζ − ŷ,ζ ẑ,η −ŷ,ξẑ,ζ + ŷ,ζ ẑ,ξ

−x̂,ηẑ,ζ + x̂,ζ ẑ,η x̂,ξẑ,ζ − x̂,ζ ẑ,ξ

][
NA,ξ

NA,η

]
(A.28)

where

J = x̂,ζ

∣∣∣∣∣ŷ,ξ ẑ,ξ

ŷ,η ẑ,η

∣∣∣∣∣− ŷ,ζ
∣∣∣∣∣x̂,ξ ẑ,ξ

x̂,η ẑ,η

∣∣∣∣∣+ ẑ,ζ

∣∣∣∣∣x̂,ξ ŷ,ξ

x̂,η ŷ,η

∣∣∣∣∣ (A.29)

is the Jacobian determinant.

As ẑ is aligned along ζ, x̂,ζ = ŷ,ζ = 0. Additionally, as the shape functions are

independent of ζ, they are independent of ẑ as well, and therefore NA,ẑ = NA,ζ = 0.

Hence, (A.28) is simplified to[
NA,x̂

NA,ŷ

]
=

1

J

[
ŷ,ηẑ,ζ −ŷ,ξẑ,ζ
−x̂,ηẑ,ζ x̂,ξẑ,ζ

][
NA,ξ

NA,η

]
(A.30)
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where

J = ẑ,ζ

∣∣∣∣∣x̂,ξ ŷ,ξ

x̂,η ŷ,η

∣∣∣∣∣ (A.31)

After carrying out a Taylor expansion of (A.30) about the reference surface, and

retaining only the constant and linear terms in ζ, one obtains[
NA,x̂

NA,ŷ

]
≈

[
N0
A,x̂

N0
A,ŷ

]
+
ζ

2

[
N1
A,x̂

N1
A,ŷ

]
(A.32)

The constant terms in ζ are given as[
N0
A,x̂

N0
A,ŷ

]
=

1

J0

[
rŷ,η −rŷ,ξ
−rx̂,η rx̂,ξ

][
NA,ξ

NA,η

]
(A.33)

and the linear terms by[
N1
A,x̂

N1
A,ŷ

]
=

1

J0

[
dŷ,η − J1

J0
rŷ,η −dŷ,ξ + J1

J0
rŷ,ξ

−dx̂,η + J1

J0
rx̂,η dx̂,ξ − J1

J0
rx̂,ξ

][
NA,ξ

NA,η

]
(A.34)

where

J0 = rx̂,ξrŷ,η − rx̂,ηrŷ,ξ
J1 = rx̂,ξdŷ,η + rŷ,ηdx̂,ξ − rx̂,ηdŷ,ξ − rŷ,ξdx̂,η

(A.35)

Instead of directly interpolating the fiber vectors, only the displacements of the fiber

vectors are interpolated by the control points. In the initial undeformed configuration,

the fibers remain normal to the surface and can be obtained from the surface normal.

For quadratic and higher order interpolation, the surface normal is fully defined

within the patch if no repeated knots are introduced. The fiber vector .d is modeled

by summing the exact initial fiber and the interpolated fiber displacement as

.d = h0
.n

0 +
∑
A

NA .wA (A.36)

where h0 is the initial thickness, .wA is the fiber displacement of the Ath control

point, and the initial normal vector .n
0 is defined by the basis vectors .g

0
1 and .g

0
2 of

(A.11) in the undeformed configuration as

.n
0 = .g

0
1 × .g

0
2

‖.g
0
1 × .g

0
2‖

(A.37)
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The derivatives .d,ξ and .d,η needed in the calculation of the Jacobian matrix are

given by

.d,ξ = h0
.n

0
,ξ +

∑
A

NA,ξ .wA, .d,η = h0
.n

0
,η +

∑
A

NA,η .wA (A.38)

where the initial thickness h0 is assumed to be constant across the domain, and the

derivatives of the normal vector in the initial local coordinate system are given by
n0
x̂,ξ

n0
ŷ,ξ

n0
ẑ,ξ

 =
∑
A


−NA,x̂ξr

0
ẑA

−NA,ŷξr
0
ẑA

0

 ,

n0
x̂,η

n0
ŷ,η

n0
ẑ,η

 =
∑
A


−NA,x̂ηr

0
ẑA

−NA,ŷηr
0
ẑA

0

 (A.39)

The second derivatives of the shape functions NA,x̂ξ, NA,x̂η, NA,ŷξ, and NA,ŷη appear

in the calculation of .n
0
,ξ and .n

0
,η. These initial normal derivatives are constant

throughout the analysis and can be calculated for each reference surface integration

point in advance.

To evaluate the Cauchy stress correctly, one must employ an objective stress rate.

The commonly used Jaumann rate of Kirchhoff stress (Bazant and Cedolin, 2010) is

given by

∇
..τ =

.
..τ + ..τ · ..ω − ..ω · ..τ (A.40)

where ..ω = 1
2
(.v,.x − .v

T
,.x

) is the skew-symmetric spin tensor and ..τ is the symmetric

Kirchhoff stress. The constitutive relation between
∇
..τ and the rate-of-deformation

tensor ..D = 1
2
(.v,.x + .v

T
,.x

) is

∇
..τ =....C : ..D (A.41)

where ....C is the elasto-plastic tangent modulus for the Jaumann rate of Kirchhoff

stress. The employed relation for
∇
..τ and

.
..σ which preserves second-order accuracy in

the internal work of infinitesimal stress increments is given as follows (Bazant and

Cedolin, 2010):

.
..σ =

∇
..τ + ..ω · ..σ − ..σ · ..ω − tr( ..D)..σ (A.42)

The stress rotation between the global and the local coordinate systems is given by

.̂.σ = ..R
T · ..σ · ..R (A.43)

However, the formulation is not restricted to the Jaumann stress rate, and one is free

to choose another objective stress rate. For example, the rate of corotational Cauchy
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stress may be an appealing choice with the second local coordinate system suggested

in Section A.3.3, particularly if an anisotropic material model is used (Belytschko

et al., 2013).

The internal forces for each control point are given in the global coordinate system

by

.f
r
intA =

∫
S

..R ·
(
N0
A,.̂x

· ˆ
..f

0 +N1
A,.̂x

· ˆ
..f

1
)

dξdη

.f
d
intA =

∫
S

..R ·
(
N0
A,.̂x

· ˆ
..f

1 +
NA .̂e3∑

B NB
ˆ
.dB · .̂e3

· ˆ
..f

0
)

dξdη

f qintA =

∫
S

8NA
ˆ
..f

1 : ( .̂e3 ⊗ .̂e3)dξdη

(A.44)

where S represents the reference surface. The resultants ˆ
..f

0 and ˆ
..f

1 are obtained by

integrating along the fiber as

ˆ
..f

0 =

∫ 1

−1
.̂.σJdζ, ˆ

..f
1 =

∫ 1

−1

ζ

2 .̂.σJdζ (A.45)

where the small terms in the Jacobian determinant J involving q or its derivatives

may be neglected. It should be further emphasized that all “hatted” quantities (•̂)
are meant to be evaluated in the local coordinate system, e.g., ê3 = [0 0 1]T .

A.3.5 External force calculation

The discretized external force contributions to the virtual power can be derived

knowing that the virtual velocity δ .v is given as

δ .v = δ
.
.r +

ζ

2
δ

.

.d+ ζ2(δ
.
q .d+ qδ

.

.d) (A.46)

Now, the external body and traction force contributions to the virtual power are

given by

δP b
ext =

∫
Ω

.b · δ .v dΩ, δP t
ext =

∫
Γ

.t · δ .v dΓ (A.47)

After discretizing and substituting the virtual velocity δ .v from (A.46) into (A.47),

one obtains

δP b
ext =

∑
A

(
δ

.

.rA·
∫

Ω

NA .b dΩ︸ ︷︷ ︸
.f
r
extA

+δ
.
.dA·
∫

Ω

(
ζ

2
+ ζ2qA)NA .b dΩ︸ ︷︷ ︸

.f
d
extA

+δ
.
qA

∫
Ω

ζ2NA .dA · .b dΩ︸ ︷︷ ︸
fqextA

)

(A.48)



A.3. UPDATED LAGRANGIAN RATE FORMULATION 113

for the body force. The external traction force contribution is given similarly, but

the contribution is usually applied only to the top, ζ = 1, or bottom surface, ζ = −1.

Furthermore, the term involving qA in (A.48) is small in most cases and may be

neglected.

Additionally, point and line loads are considered as external traction loads applied

over an infinitesimal area. For example, the external traction force contribution

to the weak form (A.47) now takes the following form for a point load applied to

ξ = ξpl, η = ηpl, ζ = ζpl = 0:

δP t
ext =

∑
i

∑
j

δ
.
.rij · lim

∆ξ→0
∆η→0

∫ ηpl+∆η

ηpl−∆η

∫ ξpl+∆ξ

ξpl−∆ξ

N ξ
i (ξ)Nη

j (η).t
plJSdξdη

︸ ︷︷ ︸
.f
pl
ij

(A.49)

In (A.49), the multivariate shape function has been decoupled into its univariate

spline basis functions (see (A.3)), i and j are control point indices associated with

the parametric directions ξ and η, respectively, and JS is the Jacobian determinant.

As the integral is only evaluated over an infinitesimal area, the basis functions are

considered to be constant within the integrated area and can thus be brought outside

the integral expression. The control point forces due to the point load can be now

written as

.f
pl
ij = N ξ

i (ξpl)Nη
j (ηpl) lim

∆ξ→0
∆η→0

∫ ηpl+∆η

ηpl−∆η

∫ ξpl+∆ξ

ξpl−∆ξ
.t
plJSdξdη

︸ ︷︷ ︸
.f
pl(ξpl,ηpl,ζpl)

(A.50)

where the integral expression is equal to the known point load .f
pl(ξpl, ηpl, ζpl).

Line loads are treated in a similar way. In the case of a line load along ξ = ξll,

ζ = ζ ll = 0

.f
ll
ij = N ξ

i (ξll)

∫
η

Nη
j (η) lim

∆ξ→0

∫ ξll+∆ξ

ξll−∆ξ
.t
llJSdξ︸ ︷︷ ︸

¯
.f
ll(ξll,η, ζll)

dη (A.51)

where ¯
.f
ll(ξll, η, ζ ll) represents the line load in the parametric space and can be

obtained from the line load .f
ll(ξll, η, ζ ll) given in the Euclidean space by

¯
.f
ll(ξll, η, ζ ll) =

√
x2
,η + y2

,η + z2
,η

∣∣∣ξ=ξll
ζ=ζll

.f
ll(ξll, η, ζ ll) (A.52)
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A.3.6 Inertial force calculation

Differentiating the velocity given by (A.17) with respect to time, one ends up with

the following expression for the acceleration:

.a =
..
.r +

ζ

2

..
.d+ ζ2(

..
q .d+ 2

.
q

.

.d+ q
..
.d) (A.53)

The inertial force contribution to the virtual power is given by

δPiner =

∫
Ω

ρ .a · δ .v dΩ (A.54)

and the discretized form as

δPiner =
∑
A,B

∫
Ω

ρNAδ .vA ·NB .aB dΩ (A.55)

In the context of explicit analyses, a lumped mass matrix is preferred for the sake of

computational efficiency. The mass lumping is accomplished by replacing the shape

function associated with the acceleration by the Kronecker delta. This corresponds

to the row sum method in the context of solid elements with three degrees of freedom

per control point. Now, the expression can be written as

δPiner ≈
∑
A,B

∫
Ω

ρNAδ .vA · δAB .aB dΩ (A.56)

Substituting the acceleration .aB from the discretized (A.53) into (A.56):

δPiner ≈
∑
A

∫
Ω

ρNAδ .vA ·
(

..
.rA + (

ζ

2
+ ζ2qA)

..
.dA + ζ2

.dA
..
qA + 2ζ2 .

qA
.
.dA

)
dΩ (A.57)

Substituting the virtual velocity δ .vA from the discretized (A.46) into (A.57), the

total expression for the virtual power including internal and external forces as well

as optional damping is given by∑
A

δ
.
.rA ·

(
M rr
A

..
.rA +M rd

A

..
.dA + .M

rq
A

..
qA

)
=
∑
A

δ
.
.rA ·

(
.f
r
extA − .f

r
intA − .f

r
dampA − .f

r
vA

)
∑
A

δ
.
.dA ·

(
M rd
A

..
.rA +Mdd

A

..
.dA + .M

dq
A

..
qA

)
=
∑
A

δ
.
.dA ·

(
.f
d
extA − .f

d
intA − .f

d
dampA − .f

d
vA

)
∑
A

δ
.
qA

(
.M
rq
A · ...rA + .M

dq
A ·

..
.dA +M qq

A
..
qA

)
=
∑
A

δ
.
qA

(
f qextA − f

q
intA − f

q
dampA − f

q
vA

)
(A.58)

where the mass terms and the forces denoted by v in the subscript are given in

Appendix A.A. Equation (A.58) forms a symmetric 7× 7 system of equations in the
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following form independently for each control point:

M rr 0 0 M rd 0 0 M rq
x

0 M rr 0 0 M rd 0 M rq
y

0 0 M rr 0 0 M rd M rq
z

M rd 0 0 Mdd 0 0 Mdq
x

0 M rd 0 0 Mdd 0 Mdq
y

0 0 M rd 0 0 Mdd Mdq
z

M rq
x M rq

y M rq
z Mdq

x Mdq
y Mdq

z M qq





..
rx
..
ry
..
rz
..
dx
..
dy
..
dz
..
q


=



F rx
total

F
ry
total

F rz
total

F dx
total

F
dy
total

F dz
total

F q
total


(A.59)

It is further noted that although a mass lumping procedure is applied in (A.56), a

nondiagonal submatrix appears due to substitution steps (A.57) and (A.58) for each

control point A. This submatrix couples the different degrees of freedom internally

for each control point but does not introduce a coupling between adjacent control

points.

A.3.7 Dirichlet boundary conditions

In the context of classical finite elements, Dirichlet boundary conditions are usually

applied by directly specifying the nodal values. In IGA, the control points are

generally not interpolatory and applying a boundary condition directly to a nonin-

terpolatory control point is rarely physically justifiable. Many authors circumvent

the problem by introducing repeated knots such that the boundary conditions can

be directly applied to the control points that are now interpolatory. However, this

approach lowers the patch continuity to C0 which is not always desirable.

An efficient technique compatible with diagonal mass matrices is proposed for

enforcing Dirichlet boundary conditions at arbitrary locations within a patch. This

technique is directly applicable to the proposed shell formulation if the off-diagonal

terms in each submatrix (A.59) are neglected. Alternatively, the Lagrange multiplier

method is employed to solve the full inertia coupling. A boundary condition of a

prescribed acceleration along ξ = ξbc, ζ = 0 requires that∑
i

∑
j

N ξ
i (ξbc)Nη

j (η)
..
.rij =

..
.r
prescribed(ξbc, η) (A.60)

where the multivariate shape function has been decoupled into its univariate spline

basis functions similarly to (A.49). However, the boundary condition can be satisfied

exactly only if the prescribed acceleration
..
.r
prescribed(ξbc, η) is representable for all η
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by the underlying spline interpolation, i.e.,∑
j

Nη
j (η)

..
.r
prescribed
j =

..
.r
prescribed(ξbc, η) (A.61)

where
..
.r
prescribed
j are the control values for the prescribed acceleration

..
.r
prescribed(ξbc, η).

The acceleration
..
.rij of (A.60) is decoupled into an uncorrected acceleration

..
.r
uc
ij , i.e.,

the acceleration that is obtained without applying the boundary condition, and a

change in the acceleration due to the boundary condition
..
.r
bc
ij :∑

i

∑
j

N ξ
i (ξbc)Nη

j (η)(
..
.r
uc
ij +

..
.r
bc
ij ) =

∑
k

Nη
k (η)

..
.r
prescribed
k (A.62)

Now, it is sufficient to guarantee that∑
i

N ξ
i (ξbc)(

..
.r
uc
ij +

..
.r
bc
ij ) =

..
.r
prescribed
j (A.63)

for all j.

However, (A.63) is often underdetermined as there are generally multiple unknowns
..
.r
bc
ij . Therefore, additional equations are required. Considering (A.51), the control

point forces due to a line load that exactly satisfy the boundary condition are given

by

.f
bc
ij = N ξ

i (ξbc)

∫
η

Nη
j (η) lim

∆ξ→0

∫ ξbc+∆ξ

ξbc−∆ξ
.t
bcJSdξdη︸ ︷︷ ︸

.λj

(A.64)

where .t
bc is the unknown traction exerted by the boundary condition. From (A.64),

the following relation is obtained:

.f
bc
ij = N ξ

i (ξbc) .f
bc
kj

N ξ
k (ξbc)

(A.65)

Considering Newton’s second law .f
bc
ij = M rr

ij
..
.r
bc
ij , i.e.,

M rr
ij

..
.r
bc
ij = N ξ

i (ξbc)
M rr

kj
..
.r
bc
kj

N ξ
k (ξbc)

(A.66)

and thus

..
.r
bc
ij = N ξ

i (ξbc)
M rr

kj
..
.r
bc
kj

N ξ
k (ξbc)M rr

ij

(A.67)
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where M rr
ij represents the mass of the control point ij which is obtained from a

diagonal mass matrix. Substituting (A.67) into (A.63) gives the change in the

acceleration due to the boundary condition:

..
.r
bc
kj =

N ξ
k (ξbc)

(..
.r
prescribed
j −

∑
lN

ξ
l (ξbc)

..
.r
uc
lj

)
∑

i
Nξ
i (ξbc)2

Mrr
ij

M rr
kj

(A.68)

The control point accelerations that exactly satisfy the boundary condition are now

given by

..
.rij =

..
.r
uc
ij +

..
.r
bc
ij (A.69)

The unknown control point forces .f
bc
ij are only used to form the relation (A.67)

between the accelerations
..
.r
bc
ij of the neighboring control points, and need not be

explicitly calculated for the purposes of evaluating the boundary condition. Fur-

thermore, the unknowns .λj can be understood as Lagrange multipliers that exactly

satisfy the boundary condition.

It is further noted that if the boundary condition is enforced along a parametric

coordinate that is simultaneously a knot location, the summations in (A.68) are

evaluated only over p control points, where p is the order of the shape function.

Therefore, for a typical edge constraint with unclamped knot vectors, only two

control points need be considered for each j assuming biquadratic interpolation.

However, if two edge boundary conditions intersect at a patch corner, then a coupled

problem of four control points must be solved at that location.

A.3.8 Fiber mass scaling and time step estimate

For the underlying mechanical problem, the maximum stable time step size for the

explicit central difference time integration scheme is given by (Adam et al., 2015b)

∆tmax =
2

ωmax
(A.70)

where ωmax is the maximum natural frequency of the system.

To minimize the computational cost, the maximum stable time step calculation is

based on the element time step estimate. This commonly used estimate assumes

that the maximum natural frequency of the system is bounded from above by the

maximum natural frequency among individual Bézier elements, i.e.,

ωmax ≤ max{ωemax}e=1:n (A.71)
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where n is the number of Bézier elements. Now, the estimate based on the element

characteristic length is given as

∆tmax =
1

c
min{αele}e=1:n (A.72)

where αe and le are the time step scaling coefficient (Adam et al., 2015b) and the

characteristic length of the eth Bézier element, respectively. The dilatational wave

speed in the material is calculated as

c =

√
E(1− ν)

(1 + ν)(1− 2ν)ρ
(A.73)

In contrast to the conventional Lagrange elements, raising the order of the spline-

based interpolation functions generally increases the stable time step size as the order

of continuity between the elements is elevated. Therefore, repeated knots typically

reduce the stable time step, e.g., if clamped knot vectors are used (which consist of

repeated knots in both ends), the boundary elements penalize the time step. The

stable time step estimates in isogeometric analysis are discussed in more detail by

Adam et al. (2015b) as well as Hartmann and Benson (2014).

Solid and solid-shell elements are known to suffer from ill-conditioned systems of

equations in the thin limit (Gee et al., 2005; Klöppel et al., 2011). This is a result

of an increasing gap between the highest and lowest eigenfrequencies of the system

when the thickness decreases. The highest eigenfrequencies typically relate to the

transverse shear and thickness deformations whereas the lowest eigenfrequencies are

associated with the bending and in-plane deformations. Unfortunately, as pointed

out by Simo et al. (1990), the shell formulations adopting only displacement-based

degrees of freedom and coupling the thickness with the director vector are prone to

the same ill-conditioning problem. One possible way to circumvent the problem is to

decouple the thickness from the shell fiber and introduce rotational degrees of freedom.

This approach was adopted by El-Abbasi and Meguid (2000) as well as Cardoso and

Yoon (2005), but the increased complexity would increase the computational cost of

the proposed formulation.

In this paper, the highest eigenfrequencies are lowered by scaling the fiber masses

Mdd and M qq. This concept of fiber mass scaling is similar to the rotational mass

scaling often adopted by many explicit Reissner-Mindlin shell formulations as it

prevents the transversal deformations from reducing the maximum stable time step

size. An intriguing way of determining the adequate fiber mass scaling is to scale
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the fiber masses such that the highest eigenfrequency is associated with the in-plane

deformations and therefore the larger stable time step size provided by the spline-

based in-plane interpolation can be exploited. The influence of fiber mass scaling is

investigated in Section A.4.

It is further noted that quasi-static solvers where the inertia term is neglected, the

ill-conditioning of the stiffness matrix can be efficiently circumvented by the scaled

director conditioning (SDC) or the scaled thickness conditioning (STC) procedures

as proposed by Gee et al. (2005) and Klöppel et al. (2011), respectively.

A.4 Numerical examples

In this section, the performance of the proposed shell formulation is evaluated using

biquadratic b-spline interpolation functions and a hypoelastic or hypoelastic-plastic

material assumption. The benchmark problems consist of two linear elastic, and five

nonlinear elastic or elasto-plastic examples: Sections A.4.1 and A.4.2 consider static

linear elasticity, Sections A.4.3–A.4.5 quasi-static geometrically nonlinear elasticity,

and Sections A.4.6 and A.4.7 explicit dynamic elasto-plasticity.

Each Bézier element is integrated with 2× 2 reduced Gauss-Legendre quadrature

rule in-plane and 9-point Simpson’s rule through-thickness. In comparison with full

integration, the in-plane 2× 2 reduced Gauss-Legendre quadrature lowers the compu-

tational overhead and alleviates several locking phenomena while still preserving full

rank of the stiffness matrix and providing good accuracy (Schillinger et al., 2014).

The formulation is, however, not restricted to the chosen interpolation functions

and quadrature rules, and higher order spline interpolation and the selection of

the in-plane quadrature are currently under investigation (Hokkanen and Pedroso,

2019b). The central difference scheme is used for the time integration.

Benchmark problems considered in Sections A.4.1–A.4.3 are evaluated using clamped

and unclamped uniform knot vectors. Rough estimates for the maximum stable time

step scaling coefficients are presented based on numerical experimentation where

αe = α for each e. Three different techniques to form the space discretization are

investigated: clamped knot vectors with uniform control grid (Type C1), clamped

knot vectors with uniform Bézier element size (Type C2), and unclamped knot vectors

with uniform control grid (Type U). The Type C1 discretization leads to larger

Bézier element sizes at the boundaries, whereas the Type C2 case leads to smaller
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control point spacings at the boundaries. The Type U discretization employing

unclamped knot vectors considers a uniform control grid which simultaneously leads

to a uniform Bézier element size.

Different types of boundary conditions are treated as follows. A typical simply

supported boundary condition is employed by constraining the degrees of freedom

associated with the velocity of the reference surface. However, the analytical solution

in Section A.4.2 assumes no shear deformations along the simply supported edges

(also known as hard support). Therefore, the degrees of freedom representing the

velocity component of the fiber vector in the direction parallel to the simply supported

edges are also constrained in this case. The fixed boundary conditions encountered

in Sections A.4.2–A.4.4 and A.4.7 are enforced by constraining all degrees of freedom

for the corresponding edges.

A.4.1 Timoshenko beam (SS)

In this example, the linear elastic response of a simply supported Timoshenko beam

under a uniformly distributed load of magnitude q0 is assessed (see Figure A.1a). The

analytical expression for the nondimensionalized deflection w̄ is given in Appendix

A.B. The beam of slenderness ratio L/h = 10 and Poisson’s ratio ν = 0 is considered,

where L and h represent the length and the thickness of the beam, respectively.

h

L

q0

(a) The problem setup.
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Figure A.1: Timoshenko beam under a uniformly distributed load.
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The relative error in the L2-norm of the nondimensionalized deflection w̄ given by

‖ew̄‖L2 =

√∫
Ω

(w̄exact − w̄iga)2 dΩ∫
Ω
w̄2
exact dΩ

(A.74)

is plotted against the averaged normalized control point spacing in Figure A.1b for

Type C1, Type C2, and Type U discretizations. Significantly worse accuracy is

observed for the Type C1 discretization in comparison with the Type C2 or Type

U discretizations for which identical results are obtained. This is due to the larger

boundary elements resulting from the clamped knot vectors and uniform control

grid being less accurate than the interior elements. In the Type C2 and Type U

cases, the boundary element size does not differ from the interior elements and better

accuracy is preserved. The rate of convergence, however, approaches a similar value

when the mesh is refined. The convergence of the Belytschko-Wong-Chiang element

(Belytschko et al., 1992) employing bilinear interpolation functions is given as a

reference.

However, the maximum stable time step size for the Type C2 discretization is

significantly smaller in comparison with the Type C1 or Type U discretizations. The

Type C2 case remains stable up to the time step scaling coefficient of αC2 ≈ 0.8,

whereas the Type C1 and Type U cases remain stable up to αC1 ≈ αU ≈ 1.3.

Therefore, the discretizations adopting clamped knot vectors suffer from either lower

accuracy or lower stable time step size associated with the boundary elements in

comparison with the Type U discretization adopting unclamped knot vectors. The

maximum stable time step scaling coefficient for the classical Belytschko-Wong-

Chiang element is α ≈ 1.

A.4.2 Mindlin plate (SCSC)

This example considers the linear elastic response of a Mindlin plate under a uniformly

distributed load. The boundary conditions are imposed such that two opposite edges

are simply supported (hard support) and two opposite edges are fixed as shown

in Figure A.2a. The analytical expression for the nondimensionalized deflection

w̄ is given in Appendix A.C. The square plate of slenderness ratio L/h = 10 and

Poisson’s ratio ν = 0.3 is considered, where L and h represent the edge length and

the thickness of the plate, respectively.

The relative error in the L2-norm of the nondimensionalized deflection w̄ is plotted

against the averaged normalized control point spacing in Figure A.2b. Again, Type
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Figure A.2: Mindlin plate under a uniformly distributed load.

C1, Type C2, and Type U discretizations are considered. The latter two still produce

identical results by computer precision. However, now an even bigger difference

in results is observed between the Type C1 and the other two discretizations in

comparison to the beam problem (Figure A.1b). The rate of convergence still

approaches a similar value when the mesh is refined, but slower.

The maximum stable time step size for the Type C2 discretization is again significantly

smaller in comparison with the Type C1 or Type U discretizations. However, the

Type C2 case now remains stable up to αC2 ≈ 1.3, whereas the Type C1 and Type U

cases remain stable up to αC1 ≈ αU ≈ 1.6. The larger time step scaling coefficients

in comparison to the beam problem of Section A.4.1 are explained by more strictly

constrained boundaries. Due to sufficient fiber mass scaling, the degrees of freedom

that determine the stable time step size represent the velocity of the reference surface.

In the current example, these degrees of freedom are constrained throughout the

whole boundary. This prevents instabilities originating from the boundary control

points which are associated with smaller masses than the interior control points.

The connection between the boundary conditions and the maximum stable time step

size was also observed by Hokkanen et al. (2018) in a metal forming simulation.

A.4.3 Straight cantilever plate strip

In this example, the elastic straight cantilever plate strip shown in Figure A.3a is

considered. The plate strip has the length L = 10, the width w = 1.0 and the

thickness h = 0.1. Young’s modulus and Poisson’s ratio are E = 107 and ν = 0.3,
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respectively. The applied line load is given as F = 40λ, where λ is the load factor

ranging from 0.0 to 1.0.
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Figure A.3: Cantilever plate strip under a tip line load.

The maximum vertical tip displacement is plotted against the load factor λ in Figure

A.3b. The performance of the element is evaluated for Type C1, Type C2, and Type

U discretizations using 9 and 17 control points along the length of the plate strip. The

results obtained from the Type C1 case and the coarser mesh (9×3×1 control points)

underestimate the maximum deflection by almost 15% due to locking. However, the

Type C2 and Type U cases show significantly better results in comparison with the

theoretical solution (Frisch-Fay, 1962)—even with the coarse mesh. The difference

between the solid line and the fully converged solution is less than 0.5% for any given

load factor.

In the case of the coarse mesh, the maximum stable time step scaling coefficients for

Type C1, Type C2, and Type U discretizations are now αC1 ≈ 0.7, αC2 ≈ 0.7, and

αU ≈ 1.1, respectively. For the fine mesh, the respective coefficients are αC1 ≈ 1.1,

αC2 ≈ 0.7, and αU ≈ 1.2.

The different time step scaling coefficient values for different mesh sizes are explained

by the fact that only one element along the width of the cantilever plate strip is

used. For the coarse mesh, the dimension along the width of the plate constrains the

time step. The discretization along this dimension is identical for the Type C1 and

Type C2 cases which explains their identical time step scaling coefficients. For the

fine mesh, it is the dimension associated with the length of the plate that constrains
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the time step.

These observations further demonstrate the importance of using unclamped knot

vectors to take full advantage of isogeometric analysis, at least, in the context of

explicit analyses.

A.4.4 Cantilever ring plate

The thin cantilever ring plate shown in Figure A.4a subjected to a vertical line load

is considered. According to Cardoso and Yoon (2005), this example is one of the

most sensitive tests for finite rotations and element warping. The geometric data

is characterized by the inner radius R1 = 6.0, the outer radius R2 = 10.0, and the

thickness h = 0.03. Young’s modulus and Poisson’s ratio are given by E = 2.1× 1010

and ν = 0.0, respectively. The applied line load is given as F = 100λ, where the

load factor λ ranges from 0.0 to 2.0.
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Figure A.4: Cantilever ring plate under a tip line load.

Two mesh configurations are considered with unclamped knot vectors (Type U

discretization) only; the coarser mesh with 25× 5× 1 control points and the finer

mesh with 49 × 7 × 1 control points. The vertical displacements of points A and

B are compared with the reference results in Figure A.4b. The coarser mesh case

clearly suffers from locking as this example represents a moderately thin problem.

However, the results obtained with the finer mesh are in good accordance with the

reference solutions (Buechter and Ramm, 1992; Sze et al., 2004; Valente et al., 2003).
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A.4.5 Snap-through of a thick roof

In this example, a snap-through behavior of a thick cylindrical roof structure is

investigated. The geometric data is given by the edge length L = 508, the angle

Θ = 0.2, the radius R = 2540, and the thickness h = 12.7. Young’s modulus and

Poisson’s ratio are set to E = 3102.75 and ν = 0.3, respectively. The two opposite

straight edges of the cylindrical shell are simply supported and the two other opposite

edges are free. A concentrated vertical load F is applied in the mid-point of the roof

as shown in Figure A.5a.
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Figure A.5: Snap-through behavior of a cylindrical roof structure under a point load.

The analysis is carried out by prescribing the displacement in the explicit solver and

moving slowly (i.e., keeping the inertial forces small). No external damping is applied.

The full model is analyzed and the symmetry of the problem is not exploited. The

load-displacement plot is shown in Figure A.5b, where the given number of control

points or nodes has been scaled for the full geometry mesh, even if only a quarter

of the problem was originally analyzed. The two mesh configurations run with the

Type U discretization are in very good agreement with the reference solutions (Sze

et al., 2004; Schwarze and Reese, 2011), particularly with that of Sze et al. (2004),

who used a very fine mesh.

A.4.6 Dynamic elasto-plastic response of a square plate

This example tests the undamped dynamic elasto-plastic behavior of a square plate

under an impulsively applied pressure load. The plate dimensions are given by the
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edge length L = 10 and the thickness h = 0.5. The properties of the elastic-perfectly-

plastic material are given by the density ρ = 2.588×10−4, Young’s modulus E = 107,

Poisson’s ratio ν = 0.3, and the yield stress σy = 3 × 104. The plate is simply

supported and a uniform pressure p = 300 is applied to the reference surface (Figure

A.6a).
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Figure A.6: Dynamic elasto-plastic response of a square plate under a uniform pressure.

The dynamic response obtained by the Type U discretization matches well with the

biquadratic isogeometric Reissner-Mindlin shell element proposed by Benson et al.

(2010) as shown in Figures A.6b and A.6c. The response of the Belytschko-Tsay

element (Belytschko et al., 1984) employing a very fine mesh is given as a reference

as well. To prevent the degrees of freedom associated with the fiber vector from

reducing the stable time step size, one may need to scale the corresponding masses.

The influence of scaling the mass Mdd is evaluated for the scaling factors of 10 and

100 as shown in Figure A.6b. Scaling the mass Mdd by 10 does not significantly alter
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the response of the plate. However, scaling this mass by 100 already causes notable

deviation in the dynamic response.

The quadratic term contributing to the geometry poses the strictest requirement for

the time step size if no mass scaling is applied. Nevertheless, this requirement can

be circumvented by scaling the mass M qq. The influence of M qq scaling is given in

Figure A.6c for the scaling factors of 100 and 10,000. In contrast to Mdd scaling,

applying the scaling factor of 100 to M qq makes practically no difference to the

results, and, in fact, the scaling factor can be increased up to 10,000 while still

leading to a good result. This implies that M qq can easily be scaled such that q does

not penalize the time step. However, it should be noted that further increasing M qq

slowly worsens the results, which demonstrates the importance of the corresponding

degree of freedom.

A.4.7 Dynamic elasto-plastic response of a straight

cantilever plate strip

The last example evaluates the damped dynamic elasto-plastic behavior of a cantilever

plate strip. The geometric dimensions of the plate strip are given by the length

L = 6000, the width w = 200, and the thickness h = 100. The properties of the

elastic-perfectly-plastic material are given by the density ρ = 7.5× 10−9, Young’s

modulus E = 2× 105, Poisson’s ratio ν = 0.3, and the yield stress σy = 250. The

setup is similar to Figure A.3a; the other end of the plate strip is fixed and the

line load F = 80 is applied to the reference surface of the other end. The diagonal

damping matrix is obtained by scaling the mass matrix by the damping coefficient

γ̃ = 10, e.g., the damping term Ddd
A is given as Ddd

A = γ̃Mdd
A .

Again, the Type U discretization is employed. The damped dynamic response agrees

well with the solid-shell reference element proposed by Pagani et al. (2014) and is

given in Figure A.7. Additionally, the figure shows the effect of scaling the mass

Mdd associated with the fiber vector by 100 and 10,000. In contrast to the previous

example (cf. Figure A.6b), scaling Mdd by 100 produces an almost indistinguishable

curve with respect to the nonscaled reference case. However, a significantly different

response is obtained by applying the mass scaling factor of 10,000 for which a large

error even in the quasi-static final state is obtained. Smaller sensitivity to the Mdd

mass scaling compared to Figure A.6b is explained by the slower dynamic response

of the damped problem.
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Figure A.7: Dynamic elasto-plastic response of a straight cantilever plate strip under a tip
line load.

A.5 Conclusions

An isogeometric thick shell formulation incorporating thickness stretch was developed.

The shell element is derived from the degenerated solid approach and results in

seven degrees of freedom per control point. Various benchmark tests including

geometric and material nonlinearities, as well as dynamic response, were evaluated

to demonstrate the performance of the proposed formulation. It is also noted that

the proposed formulation has been verified to produce a constant transversal normal

stress state of unit magnitude when the bottom and the top surfaces of the shell

are subjected to a positive uniform pressure of unit magnitude, although a separate

benchmark problem was not constructed for this trivial verification. The formulation

has also been applied to a two-point incremental forming problem requiring treatment

of double-sided contact and anisotropic material by Hokkanen et al. (2018), wherein

both the thinning and final geometry of the formed part were found to match well

with the experimental results.

Several locking phenomena are alleviated by biquadratic spline-based interpolation,

reduced integration and quadratic through thickness displacement field. However,

the formulation is not fully locking-free, and a small amount of locking is still present,

although this diminishes when the mesh is refined. It is further observed that

unclamped knot vectors offer advantages over clamped knot vectors in that they

provide either better accuracy or a larger stable time step size for the boundary

elements. The accuracy of the boundary elements usually plays a big role especially

in the academic benchmark cases where coarse meshes are often used to evaluate the

element performance. However, this may not always be the case in the industrial
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applications, particularly, if a fine mesh is used or the boundary elements do not

significantly contribute to the overall solution. Unclamped uniform knot vectors

offer also implementational benefits, e.g., b-spline shape functions need not be stored

separately for each Bézier element as the boundary elements do not differ from

the interior elements, at least, if each Bézier element uses the same quadrature.

On the other hand, increased complexity is encountered in enforcing the boundary

conditions.

The main contributions of IGA to the speed are increased accuracy per degree of

freedom (fewer elements) and increased stable time step size relative to the element

size. Furthermore, it is observed that running only the diagonal terms of the 7× 7

inertia coupling system makes practically no difference in any of the benchmark cases.

Therefore, the off-diagonal terms may be neglected to reduce the computational

overhead. Another possibility to speed up the formulation, particularly if the shear

strains are small, is to treat the stress stored in the local coordinate system as the

corotational Cauchy stress, i.e., the rotation tensor defining the local coordinate

system is assumed to follow the rotation given by the polar decomposition of the

deformation gradient. As a consequence, the Cauchy stress does not need to be

rotated between the time steps, and no Jaumann type update is required. However,

the second local coordinate system suggested in Section A.3.3 is often more robust

with this assumption.

The formulation was implemented using CUDA parallel computing platform, and

most computations were performed parallel on a modern consumer level GPU.

Some more complex simulations carried out by the authors (Hokkanen et al., 2018)

indicate that the formulation is very competitive even against traditional low-order

reduced integration shell elements in speed. In many applications, such as metal

forming simulations, often over 50% larger time step size can be used in comparison

to classical shell elements, either due to suitable boundary conditions or a larger

boundary element size. This increase in the time step alone has been observed to make

the proposed isogeometric element faster in comparison to a similarly implemented

classical shell element (Belytschko et al., 1992)—even for the same mesh size (provided

that sufficient computing resources are available for parallelization).



130 APPENDIX A. ISOGEOMETRIC THICKNESS STRETCHABLE SHELL

A.A Mass terms

Due to the conservation of mass
∫

Ω0
ρ0dΩ0 =

∫
Ω
ρ dΩ. This implies that ρ0J0 =

ρJ = const throughout the analysis, where ρ0 and J0 represent the density and the

Jacobian determinant in the initial configuration, respectively (note that J0 in this

appendix differs from the definition (A.35) in Section A.3). Now, all the masses can

be evaluated only once during the analysis and no recurring mass assemblies are

required in contrast to many Reissner-Mindlin shell elements adopting rotational

degrees of freedom. The physical mass contribution for each control point is calculated

as

M rr
A =

∫
Ω0

ρ0NAdΩ0 = ρ0J0

∫
ξ

∫
η
NA

∫ 1

−1
1dζdηdξ (A.75)

where the constant ρ0J0 has been moved outside the integral. The other terms are

derived similarly as

M rd
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(A.76)

where the integrals along ζ can be evaluated analytically in advance (as qA can

always be moved outside the integral and the shape functions NA are only functions

of ξ and η).

A.B Analytical solution for Timoshenko beam (SS)

The analytical solution for the nondimensionalized deflection w̄(x) of a simply

supported Timoshenko beam under a uniformly distributed load is given as follows:

w̄(x) =
w(x)EI

q0L4
(A.77)
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The absolute deflection w(x) is given by

w(x) =
q0L

4

24EI

(x
L
− 2

x3

L3
+
x4

L4

)
+

q0L
2

2κGA

(x
L
− x2

L2

)
(A.78)

where q0 is the uniformly distributed load, L is the beam length, E is Young’s

modulus, I is the second moment of area, κ is the shear correction factor, G is the

shear modulus, A is the cross-sectional area, and x is the coordinate along the length

of the beam proceeding from 0 to L.

A.C Analytical solution for Mindlin plate (SCSC)

The analytical solution for the nondimensionalized deflection w̄(x, y) of a Mindlin

plate under a uniformly distributed load that has two opposite edges simply supported

(hard support) and two opposite edges fixed is given as follows:

w̄(x, y) =
w(x, y)D

q0a4
(A.79)

The absolute deflection w(x, y) is given by (Wang et al., 2000)

w(x, y) = wK(x, y) +
∞∑
m=1

qm
κGh
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where
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and
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The Kirchhoff plate solution wK , i.e., the solution neglecting shear deformations, is

given as follows:

wK(x, y) =
a4

Dπ4

∞∑
m=1

qm
m4

(
1 + Am cosh

mπy

a
+Bm

mπy

a
sinh

mπy

a

)
sin

mπx

a

Am = − 1 + ψm cothψm
coshψm + ψm cschψm

(A.83)

In the above equations, a represents the lengths of the fixed edges at y = − b
2

and

y = b
2

whereas b represents the lengths of the simply supported edges at x = 0 and

x = a. For a square plate a = b. Furthermore, q0 is the uniformly distributed load,

κ is the shear correction factor, and G is the shear modulus. The flexural rigidity

is given as D = Eh3

12(1−ν2)
, where E is Young’s modulus, h is the thickness, and ν is

Poisson’s ratio.
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Appendix B

Quadrature rules for isogeometric

shell formulations: study using a

real-world application about metal

forming

This paper studies quadrature rules for simulating large deformations of shells

using isogeometric analysis. Several recently proposed rules and their effects on a

real-world application known as incremental sheet forming are investigated. It is

observed that, when tackling real-world applications, unexpected problems arise and,

therefore, theoretical studies only with manufactured solutions are not enough for a

complete verification of a method. The chosen application reveals problems with

certain quadratures and that some simple stabilization strategies cannot completely

suppress hourglass modes. Additionally, the effects of quadrature rules on the total

computational costs are demonstrated and the influence of the maximum stable time

step is assessed using a highly demanding simulation.

B.1 Introduction

In isogeometric analysis (IGA), two notions of elements can be identified which have

features in common with the classical perception of a finite element: Bézier elements

and patches. Early papers on isogeometric analysis follow the standard practice from

the classical finite element analysis and use Gauss-Legendre quadratures for each
135
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Bézier element for numerical integration. However, in IGA, the integrand function

is often continuous across the Bézier elements, which makes it possible for a single

integration point to contribute to multiple Bézier elements. In 2010, Hughes et al.

initiated a study on optimal quadrature rules for isogeometric analysis by considering

the whole patch as the basic entity for determining the quadrature instead of a

single Bézier element. This subject has attracted significant interest among the

computational mechanics community leading to several published contributions

(Auricchio et al., 2012b; Schillinger et al., 2014; Adam et al., 2014, 2015a,c; Hillman

et al., 2015; Ait-Haddou et al., 2015; Barto and Calo, 2016; Barto et al., 2017;

Johannessen, 2017; Hiemstra et al., 2017), most of which concentrate on methods

for determining the optimal patchwise quadratures.

If the corresponding integrand is polynomial in the parametric coordinates and is

exactly integrated using a numerical method, the quadrature rule is referred to as a

full integration rule. On the other hand, a rule resulting in an approximate integration

is referred to as a reduced rule. However, spline-based interpolation functions may

also be rational, and a quadrature resulting in an approximate integration of the

corresponding rational function is still considered a full integration rule, provided that

it exactly integrates the polynomial numerator of the respective rational function.

The main motivations to use reduced integration are to reduce the computational

cost and to alleviate numerical locking.

Many quadrature rules are proposed for isogeometric analysis in the literature. In

most cases, the testing applications are limited to small-scale elastic and geometri-

cally linear problems without considering the locking aspect. This paper, however,

compares the capability of each quadrature rule to alleviate locking, and also extends

benchmarking to a large-scale metal forming application, which leads to a discovery of

certain new problems associated with the previously proposed patchwise quadratures.

In contrast to most previous works, the comparisons are made by using unclamped

knot vectors to maintain good comparability between different orders of interpolation

functions and to improve the performance of the boundary elements (Hokkanen and

Pedroso, 2019a). Moreover, based on numerical experimentation, the maximum

stable time step estimates for the explicit central difference time integration scheme

are listed, and the computational cost is evaluated for a large-scale problem using a

modern parallel GPU-based implementation.

The paper is structured as follows. Section B.2 describes the investigated quadrature
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rules. Section B.3 assesses the performance of the quadrature rules using two simple

examples with manufactured solutions: a Mindlin plate and a straight cantilever

plate strip. Section B.4 presents the application to the real-world metal forming

problem—a manufacturing process known as incremental sheet forming. Finally,

some conclusions are given in Section B.5.

B.2 Quadrature rules

The investigation is limited to quadrature rules which have been proposed for

polynomial interpolation functions of orders p = 2 and p = 3 with regularity

q = p − 1. Assuming affine transformation from the parametric domain to the

physical domain, the required target space to exactly integrate the corresponding

mass and stiffness integrals has the minimum order of 2p and the maximum regularity

of q − 1; this target space is denoted as follows:

target space ≡ S2p
q−1 with p:order and q:regularity (B.1)

In this paper, a quadrature rule that integrates a certain space exactly using the

minimum number of integration points is referred to as optimal rule. Optimal rules

for spaces other than the corresponding target space are used as reduced integration

rules. Five of the quadrature rules considered for biquadratic interpolation functions

are reduced rules, whereas the sixth rule results in full integration. Furthermore,

two reduced rules are tested for bicubic interpolation.

The following six quadrature rules have been applied to biquadratic Bézier elements

by Benson et al. (2010), Schillinger et al. (2014), Adam et al. (2015a,c), and Hiemstra

et al. (2017). The first rule is referred to as the Center scheme and is exact for up to

S1
−1⊗S1

−1 space. It was proposed (in the context of IGA) by Adam et al. (2015a) who

suggested over-integrating the boundary elements to avoid hourglass modes (Figure

B.1a). The optimal rule for S2
0⊗S2

0 space (Figure B.1b) was proposed by Adam et al.

(2015c), who also recommended over-integrating the boundary elements to suppress

the hourglass modes. In this paper, the corner Bézier elements are integrated using

the Gauss 2 × 2 scheme (Figure B.1e) to obtain the over-integrated Center and

S2
0⊗S2

0 schemes. The Center-edge and the Gauss 2×2 integration schemes discussed

by Schillinger et al. (2014) and illustrated in Figures B.1c and B.1e, respectively,

were reported to result in the same accuracy as the full Gauss rule in numerical

testing. The Center-edge scheme is classified as a monomial rule (as opposed to the
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tensor-product rules) and integrates monomials exactly up to a total degree of 3.

The Gauss 2× 2 scheme is exact for up to S3
−1 ⊗ S3

−1 space. Hiemstra et al. (2017)

suggested using the optimal rule for S3
0 ⊗ S3

0 space (Figure B.1d). The sixth scheme

considered in this paper is the optimal rule for the corresponding S4
0 ⊗ S4

0 target

space (Figure B.1f).

Moreover, the following two reduced rules proposed for bicubic Bézier elements are

investigated. Adam et al. (2015c) suggested using the optimal rule for S3
1 ⊗ S3

1 space

with over-integrated boundary elements. In this paper, the over-integrated S3
1 ⊗ S3

1

scheme (Figure B.2a) is obtained by taking the corner Bézier element integration

point locations and weights from the optimal scheme for S4
1 ⊗ S4

1 space (see Adam

et al. (2015c)) to minimize locking. The second rule is the optimal rule for S5
1 ⊗ S5

1

space (Figure B.2b) and was proposed by Hiemstra et al. (2017).

The performance of the aforementioned quadrature rules is evaluated using the shell

formulation of Hokkanen and Pedroso (2019a), which uses spline-based interpolation

along the in-plane dimensions of the shell. Three benchmark cases are examined:

typical geometrically linear and nonlinear small-scale elastic problems, and a large-

scale elasto-plastic incremental sheet forming problem with contact. All examples

use unclamped uniform knot vectors and uniform control point spacing. The through-

thickness integration uses 9-point Simpson’s rule. The optimal rule for S2
0 ⊗S2

0 space

is evaluated with and without over-integrated boundary Bézier elements. The Center

scheme as well as the optimal scheme for S3
1 ⊗ S3

1 space do not produce meaningful

results for all benchmark cases without any type of hourglass stabilization and are

hence only considered with over-integrated boundary elements. The central difference

scheme is used for the time integration.

B.3 Verifications using manufactured solutions

B.3.1 Mindlin plate (SCSC)

The first example considers the linear elastic response of a Mindlin plate under a

uniformly distributed load. The boundary conditions are imposed such that two

opposite edges are simply supported and two opposite edges are clamped as shown

in Figure B.3a. The analytical expression for the nondimensionalized deflection w̄

is given by Hokkanen and Pedroso (2019a). The square plate of slenderness ratio

L/h = 100 and Poisson’s ratio ν = 0.3 is considered, where L and h represent the
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(a) Over-integrated Center scheme
(cost → 1).

(b) S2
0 ⊗ S2

0 scheme (cost → 1).

(c) Center-edge scheme (cost → 3). (d) S3
0 ⊗ S3

0 scheme (cost → 2.25).

(e) Gauss 2× 2 scheme (cost = 4). (f) S4
0 ⊗ S4

0 scheme (cost → 4).

Figure B.1: In-plane quadrature point locations proposed for biquadratic splines.
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(a) Over-integrated S3
1 ⊗ S3

1 scheme
(cost → 1).

(b) S5
1 ⊗ S5

1 scheme (cost → 4).

Figure B.2: In-plane quadrature point locations proposed for bicubic splines.

edge length and the thickness of the plate, respectively.

The relative error in the L2-norm of the nondimensionalized deflection w̄ is plotted

against the normalized control point spacing in Figures B.3b and B.3c, for biquadratic

and bicubic splines, respectively. The results from the coarsest discretizations suggest

the largest errors for the Center-edge and S4
0⊗S4

0 schemes. This is a result of numerical

locking and does not indicate inaccuracy in calculating the corresponding integrals.

The observed numerical locking vanishes by refining the mesh, which explains the

higher than optimal convergence rates for the Center-edge and S4
0 ⊗ S4

0 rules. The

convergence rates are expected to approach the optimal rate as the mesh is refined.

The Gauss 2 × 2 scheme is a good example of this behavior as it is less prone to

locking and reaches the optimal convergence rate for the finest discretizations.

The over-integrated Center scheme suffers from severe hourglassing and converges

towards the correct solution much slower than any other scheme. The S2
0 ⊗ S2

0 and

S3
0⊗S3

0 schemes show no significant locking tendencies in this case and perform much

better for the coarse discretizations than any other scheme used with biquadratic

interpolation. Furthermore, the accuracy of the over-integrated S2
0 ⊗ S2

0 scheme

is close to its non-over-integrated counterpart. For biquadratic splines, the best

accuracy for the fine discretizations is obtained by the Gauss 2× 2 scheme.

In contrast to the work of Adam et al. (2015c), the over-integrated S3
1 ⊗ S3

1 scheme

is observed to suffer from hourglassing and does not achieve the optimal convergence

rate for bicubic splines. The S5
1 ⊗ S5

1 scheme shows slight locking tendency for the
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coarsest discretization but quickly achieves the optimal convergence rate.
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Figure B.3: Mindlin plate under a uniformly distributed load.

B.3.2 Straight cantilever plate strip

In this example, the elastic straight cantilever plate strip shown in Figure B.4 is

considered. The plate strip has length L = 10, width w = 1.0 and thickness h = 0.1.

Young’s modulus and Poisson’s ratio are E = 107 and ν = 0.3, respectively. The

applied line load is given as F = 40λ, where λ is the load factor ranging from 0.0 to

1.0.

The maximum vertical tip displacement is plotted against the load factor λ in Figure

B.5. The theoretical solution is given by Frisch-Fay (1962). The performance of

the quadrature rules is evaluated using three different discretizations—5, 9, and

17 control points along the length of the plate strip. For biquadratic splines, the

S2
0 ⊗ S2

0 scheme performs the best and shows no locking tendencies. In contrast to
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F

deform
ed shape

initial shape

Figure B.4: Cantilever plate strip under a tip
line load—the problem setup.

the Mindlin plate problem, the performance of the over-integrated Center scheme is

not significantly hindered by hourglassing as only small numbers of control points

are used, and the over-integrated boundary elements are able to provide sufficient

resistance against the hourglass modes. The over-integrated S2
0 ⊗ S2

0 scheme is

identical to the Gauss 2 × 2 scheme for the coarsest mesh due to a small number

of Bézier elements and performs only slightly better after mesh refinement against

the latter. The S3
0 ⊗ S3

0 scheme shows a clear locking tendency in this problem

and performs significantly worse than the Gauss 2 × 2 scheme. Furthermore, the

Center-edge and S4
0 ⊗ S4

0 schemes suffer from severe locking, the Center-edge scheme

being clearly the worst.

The over-integrated S3
1 ⊗ S3

1 scheme performs very well for bicubic splines and

shows no locking tendencies. Similarly to the Center scheme, hourglassing does not

deteriorate the results due to small numbers of control points. The S5
1 ⊗ S5

1 rule

performs reasonably well and experiences slight locking only for the coarsest mesh.

B.4 Real-world application: incremental sheet

forming

The real-world application considers a manufacturing process known as incremental

sheet forming (ISF). The ISF process is a challenging large-scale problem well suited

for a study about efficient explicit shell formulations. The study proposed in this

paper also includes a detailed qualitative evaluation of the deformed geometry and
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(a) 5× 5× 1 control points (biquadratic
splines).
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(b) 5 × 5 × 1 control points (bicubic
splines).
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(c) 9× 5× 1 control points (biquadratic
splines).
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(d) 9 × 5 × 1 control points (bicubic
splines).
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(e) 17× 5× 1 control points (biquadratic
splines).
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(f) 17 × 5 × 1 control points (bicubic
splines).

Figure B.5: Cantilever plate strip under a tip line load—load factor versus the vertical tip
displacement.
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thinning based on the results from an innovative experimental programme carried out

at The University of Queensland in Australia. The numerical results obtained with

the different quadrature rules are processed to visually demonstrate the implications

resulting from the choice of the quadrature rule. Furthermore, the simulations are

used to compare the computational overhead between each quadrature rule and to

give a rough estimate of the maximum stable time step size for the interior Bézier

elements.

B.4.1 Problem definition and numerical model

The target geometry dimensions for the ISF simulation are given in Figure B.6. The

path followed by the indenting tool (stylus) is illustrated in Figure B.7. The tool

has a hemispherical head, 20 mm in diameter, which makes sliding contact with the

metal sheet. The square sheet has the thickness of 1.6002 mm (0.063 inches) and the

edge length of 290 mm.

The isogeometric formulation uses a nonmortar Gauss-point-to-surface (GPTS)

penalty contact algorithm (Temizer et al., 2011; De Lorenzis et al., 2014) for the

stylus contact similarly to the work of Hokkanen et al. (2018). The stylus tool

proceeds in the counterclockwise direction and steps down 2 mm after each full

revolution. The assumed tool speed is 4000 mm/min.

Nondimensional mass scaling of 4000 is applied to increase the stable time step size

and to speed up the simulation. A relatively coarse control point spacing (4 mm) is

used to better demonstrate the differences between the quadrature rules. The six

outer rows of control points are fixed for each edge to account for sheet clamping.

After the stylus tool has finished the whole toolpath, the constraints are removed

and the sheet finds its unclamped equilibrium state.

The simulation assumes hypoelastic-plastic material behavior. The material model is

based on the isotropic von Mises yield criterion. The required parameters describing

the constitutive relations for aluminum 7075-O are the density ρ = 2.81× 10−9 Ns2

mm4 ,

Young’s modulus E = 71.7 × 103 MPa, Poisson’s ratio ν = 0.33, and the initial

yield stress σy0 = 261 MPa. The hardening coefficient and the hardening exponent

required by the Hollomon type hardening law σy = Cεnp are given as C = 334.59 MPa

and n = 0.157, respectively.
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Figure B.6: The target geometry dimen-
sions.

Figure B.7: The path followed by the in-
denting stylus (toolpath).

B.4.2 Numerical results

The formed parts from the laboratory experiments are brought to a 3D scanner

to measure the change in thickness due to the indentation process. The measured

thickness can then be compared with the numerical results. Figure B.8 shows the

formed part of the experimental test and Figure B.9 shows the measured thickness

distribution over the part.

The simulation results for biquadratic splines are given by Figures B.10 (geometry)

and B.11 (thickness) for each quadrature rule. It is observed that the Center rule

suffers from severe hourglassing as shown in Figure B.10a. The hourglass problem

also appears in the thickness plot (Figure B.11a), but it is less obvious. The thickness

plot is somewhat rough but still well in line with the experimental result.

The geometry plot (Figure B.10b) resulting from the S2
0 ⊗ S2

0 scheme shows no

obvious signs of hourglassing. However, small “imperfections” in the formed surface

can be observed under closer inspection compared to the Center-edge, Gauss 2× 2,

and S4
0 ⊗ S4

0 schemes. The thickness plot (Figure B.11b) is also clearly rougher in

comparison with the three aforementioned schemes.

The S3
0 ⊗ S3

0 rule produces a wavy pattern associated with the deformed areas only.

According to Hiemstra et al. (2017), this quadrature rule does not possess any

hourglass modes. The wavy pattern is suspected to originate from the irregular

nature of the scheme. It is worth noting that the integration point locations with

respect to the Bézier elements differ from one element to another. The elements with

more integration points are typically more susceptible to numerical locking which
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may explain the observed behavior. The same wavy pattern can be observed in the

thickness plot (Figure B.11d).

The Center-edge, Gauss 2×2 and S4
0⊗S4

0 schemes all result in a very clean geometry

and thickness plots (Figures B.10c, B.10e, B.10f and B.11c, B.11e, B.11f). However,

it is noticed that the interruption in the thickness contours in the bottom right

region of each plot (i.e., the stylus tool step down location) is less visible the more

the scheme suffers from locking.

The simulation results for the bicubic splines are given in Figures B.12 (geometry)

and B.13 (thickness). The S3
1 ⊗ S3

1 scheme suffers from hourglassing producing a

similar out-of-plane hourglass mode as the Center scheme for biquadratic splines.

The S5
1 ⊗ S5

1 scheme produces clean geometry and thickness plots which match well

with the experimental results.

For each quadrature rule, the vertical forces experienced by the stylus tool are

shown in Figures B.14a and B.14b. It is observed that the schemes that suffer from

hourglassing such as the over-integrated Center and S3
1 ⊗ S3

1 schemes experience

the smallest forming forces and deviate most from the average. The differences in

the forming forces between the other quadrature rules are relatively small. The

over-integrated S2
0 ⊗ S2

0 scheme predicts the smallest forces among the schemes that

do not suffer from obvious hourglassing. It is noted that these results correspond to

the previous benchmark problems in Section B.3.

Figure B.8: A photograph of the formed
part.

Figure B.9: The experimental
normalized thickness from the 3D
scanning. The contours vary lin-
early from 0.62 to 1.0.
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(a) Center scheme. (b) S2
0 ⊗ S2

0 scheme.

(c) Center-edge scheme. (d) S3
0 ⊗ S3

0 scheme.

(e) Gauss 2× 2 scheme. (f) S4
0 ⊗ S4

0 scheme (full integration).

Figure B.10: The deformed geometry for each quadrature rule (biquadratic splines).

B.4.3 Time step and computational cost

An important advantage of the isogeometric formulation is the possibility of an

increased stable time step size in explicit time integration. In IGA, the stable time

step size increases when the order of spline-based interpolation functions is increased

(if no repeated knots are introduced). It is worth noting that this behavior is opposite

to simulations based on conventional Lagrange elements. From the experiments

carried out in this paper, the maximum time step sizes relative to the element time

step estimate (Adam et al., 2015b; Hokkanen and Pedroso, 2019a) that lead to a

somewhat stable solution are given in Table B.1 along with the total computational

time. The total computational times are obtained by using the maximum stable

time step size for each quadrature rule.

It is important to note that the placement of the integration points is not only crucial
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(a) Center scheme. (b) S2
0 ⊗ S2

0 scheme.

(c) Center-edge scheme. (d) S3
0 ⊗ S3

0 scheme.

(e) Gauss 2× 2 scheme. (f) S4
0 ⊗ S4

0 scheme (full integra-
tion).

Figure B.11: The normalized thickness plot for each quadrature rule (biquadratic splines).
The contours vary linearly from 0.62 to 1.0.
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(a) S3
1 ⊗ S3

1 scheme. (b) S5
1 ⊗ S5

1 scheme.

Figure B.12: The deformed geometry for each quadrature rule (bicubic splines).

(a) S3
1 ⊗ S3

1 scheme. (b) S5
1 ⊗ S5

1 scheme.

Figure B.13: The normalized thickness plot for each quadrature rule (bicubic splines). The
contours vary linearly from 0.62 to 1.0.
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(a) Biquadratic splines.
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(b) Bicubic splines.

Figure B.14: Forming forces in the global z-direction (vertical direction).
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for the accuracy of the solution, but it also affects the computational cost of the

simulation. When using bicubic splines, each Bézier element is associated with 16

control points. However, only 9 of these control points have nonzero interpolation

function or the first derivative of the interpolation function at a vertex location. This

makes the cost of evaluating a vertex integration point for bicubic splines the same

as the cost of evaluating an interior integration point for biquadratic splines. If an

integration point is located at a Bézier element edge, but not a vertex, then 12 control

points are required for interpolation (assuming bicubic interpolation functions).

The computational cost per degree of freedom increases by raising the order of

interpolation functions, as the support of the basis functions becomes wider. For an

explicit solver, this is usually a significant cost. However, the S3
1 ⊗ S3

1 and S5
1 ⊗ S5

1

schemes greatly benefit from having the majority of the integration points located

at Bézier element edge or vertex locations. As shown by Table B.1, the cost of

increasing the order of the interpolation functions from 2 to 3 is minimal, mostly due

to the increased time step size, but also because the placement of the integration

points is ideal. In comparison to biquadratic splines, bicubic splines offer higher

convergence rate and better accuracy for the same number of degrees of freedom,

without necessarily increasing the total computational cost even if an explicit solver

is used.

According to Table B.1, the single most important factor affecting the computational

cost is the number of integration points. The optimal S2
0⊗S2

0 and S3
1⊗S3

1 schemes offer

significant savings in computational costs while being locking-free. Unfortunately, this

comes at the cost of lower accuracy and possible hourglass problems. Both of these

schemes have been shown to lead to rank-deficient stiffness matrices without over-

integrated boundary elements (Adam et al., 2015c). However, severe hourglassing is

observed even for the over-integrated S3
1 ⊗ S3

1 scheme. The over-integrated S2
0 ⊗ S2

0

scheme does not show obvious signs of hourglassing.

B.4.4 General observations

It is further noted that the hourglassing problems associated with the over-integrated

Center and S3
1 ⊗S3

1 schemes appear well before the boundary conditions are removed

at the end of the simulation. The same conclusion applies to the wavy pattern

associated with the S3
0 ⊗ S3

0 scheme. Moreover, it is observed that removing the

boundary conditions from all edges reduces the maximum stable time step size even
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Table B.1: Quadrature rule cost comparison using Nvidia Titan V GPU.

Quadrature rule Order Cost per el. Time step Total time (s)

Center over-int 2 → 1 1.6x 726
S2

0 ⊗ S2
0 over-int 2 → 1 1.6x 742

Center-edge 2 → 3 1.6x 1088
S3

0 ⊗ S3
0 optimal 2 → 2.25 1.6x 912

Gauss 2× 2 2 = 4 1.6x 1279
S4

0 ⊗ S4
0 optimal 2 → 4 1.6x 1304

S3
1 ⊗ S3

1 over-int 3 → 1 1.8x 710
S5

1 ⊗ S5
1 optimal 3 → 4 1.8x 1288

though unclamped knot vectors are used. In this case, the interpolation functions

between the boundary elements and the interior elements do not differ in any way.

However, the control points located at the boundaries are associated with smaller

masses than the interior control points.

Another important observation is that the instabilities occurring after removing the

boundary conditions (if the time step size is not adjusted appropriately) originate

from the corners of the patch where the control points with smallest masses are

located. This time step penalty can be circumvented by selectively scaling the

masses of the affected control points or by increasing the size of the boundary Bézier

elements, although both methods reduce the accuracy of the solution.

B.5 Conclusions

In many applications, the motivation to use reduced integration is not only to

reduce the computational cost, but also to alleviate numerical locking. However,

reduced integration often leads to rank-deficient stiffness matrices and hourglassing.

Some recent papers have suggested that the hourglass problem can be controlled

by stabilizing only small part of Bézier elements within the patch (Adam et al.,

2015a; Bouclier et al., 2015a). Although this approach guarantees full rank of the

global stiffness matrix, the only resistance against the hourglass modes comes from

the stabilized Bézier elements, and therefore, the other elements are still prone to

hourglassing. In fact, this behavior is not any different from the classical finite

elements where the global spurious zero-energy modes can also be suppressed by

stabilizing only a small part of the elements, but that does not guarantee nonexistence

of spurious finite energy modes. In the context of IGA, this problem was recognized
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for the Center-vertex quadrature by Schillinger et al. (2014). Herein further evidence

is provided that the patchwise quadratures are not an exception, and stabilizing only

a small proportion of Bézier elements is generally not sufficient to suppress hourglass

modes.

In the context of biquadratic splines, the S2
0 ⊗ S2

0 scheme provides a locking-free low-

cost option while maintaining the optimal convergence rate. However, the accuracy

of this scheme is worse than the accuracy provided by the Gauss 2× 2 scheme which

was reported to provide accuracy comparable to the full integration in numerical

tests by Schillinger et al. (2014). In the incremental sheet forming application

studied in this paper, the S2
0 ⊗ S2

0 scheme produces a somewhat rough solution,

which is suspected to originate from the lower accuracy of the quadrature, but the

possibility of hourglassing playing a role is not ruled out. The Gauss 2× 2 scheme

provides good accuracy while alleviating locking to some extent, but is not fully

locking-free. Furthermore, the Gauss 2× 2 scheme offers no significant reduction in

the computational cost in comparison to full integration. It is further noted that the

Gauss-Lobatto scheme investigated for biquadratic splines by Schillinger et al. (2014)

produces almost identical results with the Center-edge scheme for the benchmark

problems investigated in this paper.

A new problem associated with irregular quadrature rules such as the S3
0⊗S3

0 scheme

proposed by Hiemstra et al. (2017) is discovered. This problem exhibits a wavy

pattern in the incremental sheet forming example. The problem may also concern

the schemes for which the integration points are positioned unsymmetrically with

respect to each Bézier element (e.g., the S2
0 ⊗ S2

0 and S4
0 ⊗ S4

0 schemes), as these

schemes require a remainder row of integration points for both parametric directions,

i.e., at least one row of Bézier elements in both parametric directions must have

more integration points in comparison with the other rows. The positioning of the

remainder rows can be adjusted freely to minimize the potential problem. However,

if the remainder rows are not positioned symmetrically, the result may become

unsymmetric even if a symmetric problem is analyzed.

The over-integrated low-cost S3
1 ⊗ S3

1 scheme proposed for bicubic splines by Adam

et al. (2015c) suffers from severe hourglassing even with over-integrated boundary

elements and is hence not recommended without any form of additional hourglass

stabilization. The S5
1 ⊗ S5

1 scheme proposed by Hiemstra et al. (2017) provides

good accuracy, maintains the optimal convergence rate for bicubic splines, and
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suffers from only slight locking. Due to the larger maximum stable time step size and

favorable placement of the integration points, the bicubic splines do not require longer

computational times for the investigated problems in comparison with biquadratic

splines and are, therefore highly recommended.
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Appendix C

Efficient isogeometric shell

element with through-thickness

stretch: application to incremental

sheet forming

An isogeometric shell element with through-thickness stretch is applied to a two-point

incremental forming problem. The shell element supports full three-dimensional

constitutive laws and therefore does not make the plane stress assumption. An

anisotropic material model is implemented to account for the sheet rolling direction.

Automatically adjusting penalty stiffness is proposed for modeling the contact

between the stylus tool and the sheet, whereas the die contact algorithm uses

traditional constant penalty stiffness. A comparison is made between experimental

results as well as results from a conventional shell formulation.

C.1 Introduction

Highly nonlinear problems such as automobile crash dynamics or sheet metal forming

simulations often utilize the four-node, bilinearly interpolated Reissner-Mindlin

shell elements combined with explicit time integration. These Reissner-Mindlin

elements imposing the plane stress condition have dominated the finite element

shell analysis for decades. The use of bilinear interpolation functions has resulted

in efficient formulations and larger stable time step sizes compared to higher-order
155
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Lagrange shell elements. However, the interest in more advanced formulations such

as thickness stretchable shell elements and solid-shells has increased as the plane

stress assumption is not always acceptable, particularly if thick plates or problems

involving double-sided contact are considered. Many recent contributions show a

great interest in using solid-shell elements in explicit dynamic simulations. However,

the computational speed has yet to be improved for demanding problems such as

incremental sheet forming.

Isogeometric analysis (IGA) first proposed by Hughes et al. (2005) has recently

attracted growing interest among the computational mechanics community. This

concept adopts spline-based interpolation functions resulting in several potential

advantages over conventional finite elements, such as increased accuracy per degree

of freedom, increased stable time step size, and continuous stress and strain fields,

among others (Cottrell et al., 2006, 2007; Evans et al., 2009; Großmann et al.,

2012; Adam et al., 2015b). Isogeometric solid-shell elements have been proposed

by Hosseini et al. (2013), Bouclier et al. (2013, 2015a), and Caseiro et al. (2015).

However, most of the isogeometric solid-shell element formulations proposed in the

literature do not consider dynamic problems nor the implications of using explicit

time integration.

The isogeometric shell element introduced by Hokkanen and Pedroso (2019a) supports

full three-dimensional constitutive laws and is capable of simulating geometrically

nonlinear dynamic problems. The purpose of this paper is to evaluate the suitability

of the aforementioned shell element to incremental sheet forming (ISF) using explicit

time integration.

C.2 ISF simulation

C.2.1 Shell formulation

The implemented formulation is based on the degenerated solid approach with

only displacement degrees of freedom. Reduced integration is used to alleviate

several locking problems and to reduce computational cost. The reduced Gauss

2 × 2 quadrature preserves full rank of the stiffness matrix and therefore no ad

hoc hourglass control procedures are required. The fiber mass scaling prevents the

eigenfrequencies related to the transverse deformations from lowering the larger

stable time step size associated with the spline-based in-plane interpolation. The
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implementation relies on CUDA and most computations are performed parallel on a

modern consumer level GPU. A detailed description of the shell element is given by

Hokkanen and Pedroso (2019a). The BWC shell element (Belytschko et al., 1992)

based on the plane stress assumption is used as reference.

C.2.2 Material model

The simulation assumes hypoelastic-plastic material behavior. The material model is

based on Yld2004-18p yield criterion proposed by Barlat et al. (2005) to consider the

anisotropy introduced by the process of rolling the sheet. The required parameters

describing the constitutive relations for aluminum 7075-O are the density ρ =

2.81× 10−9 Ns2

mm4 , Young’s modulus E = 71.7× 103 MPa, Poisson’s ratio ν = 0.33, and

the initial yield stress σy = 261 MPa. The hardening coefficient and the hardening

exponent required by the Swift type hardening law are given as Csw = 333 MPa

and nsw = 0.16, respectively. Moreover, the 18 parameters required by Yld2004-18p

yield criterion are given by Esmaeilpour et al. (2017). The return mapping uses the

explicit closest point projection method (Grilo et al., 2015).

C.2.3 Contact

The isogeometric formulation uses a nonmortar Gauss-point-to-surface (GPTS)

penalty contact algorithm (Temizer et al., 2011; De Lorenzis et al., 2014) for the

stylus contact. The linear pressure-overclosure relationship is given as

p = ε(g + s) (C.1)

where ε is the penalty stiffness, g is the overclosure and s is the shift which causes

the contact pressure to start increasing slightly before the actual contact occurs. The

penalty stiffness ε (i.e., the slope of the pressure-overclosure relationship) adjusts

automatically such that zero maximum penetration is maintained (i.e., g . 0).

However, a minimum value for ε is specified. The described contact formulation is

found robust for the stylus contact in many ISF simulations as the contact between

the sheet and the spherical-headed tool comprises mostly of a single contact region.

The die contact algorithm uses nonmortar Gauss-point-to-surface (GPTS) penalty

contact, a linear pressure-overclosure relationship, and traditional constant penalty

stiffness.
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Moreover, the traditional BWC shell formulation uses a simple node-to-surface (NTS)

contact formulation and traditional constant penalty stiffness for the stylus and the

die.

C.2.4 Results

The die geometry and the toolpath for the ISF simulation are given in Figures C.1

and C.2, respectively. The square sheet has the thickness of 0.063 inches and the

edge length of 290 mm. The tool has a hemispherical head, 20 mm in diameter, which

makes sliding contact with the sheet. The stylus tool proceeds in the counterclockwise

direction and steps down 2 mm after each full revolution. The assumed tool speed is

4000 mm/min. Mass scaling of 4000 is applied to increase the stable time step size

and to speed up the simulation. The control point (or node) spacing is 2 mm.

Figure C.1: The dimensions of the die. Figure C.2: The toolpath.

The formed part is shown in Figure C.3. The smooth results from the isogeometric

solver are given in Figures C.5 and C.7. The simulation accounts for the unclamping

step, i.e., the release of the clamps after the forming process has finished. After

the unclamping step, the springback effect bends the edges of the sheet slightly

upwards. The edges perpendicular to the longer sides of the die become more curved

than the other edges. The springback predicted by the simulation matches very well

with the experimental results. Furthermore, Figure C.4 shows the actual thickness

determined by 3D scanning both surfaces and aligning them to produce the thickness

contours. The simulated thinning shown in Figure C.7 is in a good agreement with

the experimental results (same scales). The results from the bilinearly interpolated

BWC shell element that is based on the plane stress assumption are given as a

reference in Figures C.6 and C.8. The solution is rough in comparison with IGA as
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the displacement field is now only C0 continuous. The thickness plot is even rougher

as the thickness is only available at the integration points. Nevertheless, the results

are still good in comparison with the experimental results.

Figure C.3: A photograph of the formed

part.

Figure C.4: The 3D scanned normalized

thickness. The contours vary linearly

from 0.66 to 1.0.

Unfortunately, both element types over-

estimate the averaged tool forces by

∼50%. However, this is a common

problem which has been associated with

many FEM formulations in the past

(Elford et al., 2013). Furthermore, the

isogeometric shell formulation overesti-

mates these forces slightly more than the

traditional BWC element. The overesti-

mation is suspected to originate from the

material model (mostly due to lack of a

damage model), but also the contact for-

mulation and element locking may play

a role. Further investigation is required.

In the isogeometric analysis, the bound-

ary Bézier elements pose stricter require-

ments for the stable time step size com-

pared to the interior elements as shown

by Adam et al. (2015b). One way to over-

come this limitation is to increase the

boundary element size, which, indeed,

may be acceptable for many ISF simu-

lations. However, it is noticed that pre-

serving the uniform control point spac-

ing, but simply clamping all the edges

also effectively prevents instabilities orig-

inating from the boundaries. The implemented explicit isogeometric shell formulation

is found visually stable with up to ∼50% larger maximum time step size compared

to the traditional BWC shell. This increase in the time step size makes close to

no difference to the final results. However, it is found that the large time step size

cannot be preserved if all edges are not clamped (with uniform control point spacing).

Therefore, the time step size must be reduced right before the unclamping step at
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the end of the simulation.

Figure C.5: The simulation result of the
isogeometric shell formulation.

Figure C.6: The simulation result of
BWC shell formulation.

Figure C.7: The normalized thickness
plot of the isogeometric shell formulation.
The contours vary linearly from 0.66 to
1.0.

Figure C.8: The normalized thickness
plot of BWC shell formulation. The con-
tours vary linearly from 0.66 to 1.0.

C.3 Conclusions

The isogeometric shell formulation proposed by Hokkanen and Pedroso (2019a) is

applied to a challenging ISF problem. A comprehensive anisotropic material model is

implemented to take into account the sheet rolling direction. As the chosen problem

requires a die, double-sided contact must be considered. The automatically adjusting

penalty stiffness is proposed to model the contact between the stylus tool and the

sheet, whereas the die contact algorithm uses traditional constant penalty stiffness.

Qualitatively good results are obtained by the isogeometric shell as well as the

traditional BWC shell formulation. The displacements, springback effects, and
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thinning agree very well with the experimental results. However, the forming forces

are significantly overestimated by both shell types which requires further investigation.

The isogeometric shell formulation is found very competitive even against low-order

reduced integration shell elements in speed due to the increased accuracy per degree

of freedom and larger stable time step size.
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quadrature rules for quadratic and cubic splines in isogeometric analysis. Computer

Methods in Applied Mechanics and Engineering, 277:1–45.

Schoenberg, I. J. (1946). Contributions to the problem of approximation of equidistant

data by analytic functions. Quarterly of Applied Mathematics, 4(1-2):112–141.

Schwarze, M. and Reese, S. (2011). A reduced integration solid-shell finite ele-

ment based on the EAS and the ANS concept—Large deformation problems.

International Journal for Numerical Methods in Engineering, 85(3):289–329.



BIBLIOGRAPHY 175

Scott, M., Li, X., Sederberg, T., and Hughes, T. (2012). Local refinement of analysis-

suitable T-splines. Computer Methods in Applied Mechanics and Engineering,

213-216:206–222.

Sederberg, T. W., Zheng, J., Bakenov, A., and Nasri, A. (2003). T-splines and

T-NURCCs. In Proceedings of ACM SIGGRAPH 2003, volume 22, pages 477–484,

New York, USA. ACM Press.

Seifert, B. (1996). Zur theorie und numerik finiter elastoplastischer deformationen

von schalenstrukturen. PhD thesis, Universität Hannover.

Shima, A., Yoshikawa, T., Nakamura, K., Sudo, Y., and Suzuki, S. (1997). Formation

of successively expanding metallic plate and apparatus therefor. Japanese Patent:

09-085355.

Simo, J., Rifai, M., and Fox, D. (1990). On a stress resultant geometrically exact shell

model. Part IV: Variable thickness shells with through-the-thickness stretching.

Computer Methods in Applied Mechanics and Engineering, 81(1):91–126.

Simo, J. C. and Rifai, M. S. (1990). A class of mixed assumed strain methods and

the method of incompatible modes. International Journal for Numerical Methods

in Engineering, 29(8):1595–1638.

Simo, J. C., Wriggers, P., and Taylor, R. L. (1985). A perturbed Lagrangian

formulation for the finite element solution of contact problems. Computer Methods

in Applied Mechanics and Engineering, 50(2):163–180.

Stam, J. (1998). Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary

parameter values. In Proceedings of the 25th annual conference on Computer

graphics and interactive techniques - SIGGRAPH ’98, pages 395–404, New York.

ACM Press.

Stephan, A. J., Daniel, W. J., and Elford, M. C. (2018). A GPU Based Explicit

Solid-Shell Finite Element Solver. Journal of Physics: Conference Series, 1063(1).

Sze, K., Liu, X., and Lo, S. (2004). Popular benchmark problems for geometric

nonlinear analysis of shells. Finite Elements in Analysis and Design, 40(11):1551–

1569.

Tan, X. G. and Vu-Quoc, L. (2005). Efficient and accurate multilayer solid-shell

element: non-linear materials at finite strain. International Journal for Numerical

Methods in Engineering, 63(15):2124–2170.



176 BIBLIOGRAPHY

Temizer, I., Wriggers, P., and Hughes, T. (2011). Contact treatment in isogeometric

analysis with NURBS. Computer Methods in Applied Mechanics and Engineering,

200(9-12):1100–1112.

Valente, R. A. F., Jorge, R. M. N., Cardoso, R. P. R., Cesar de Sa, J. M. A.,

and Gracio, J. J. A. (2003). On the use of an enhanced transverse shear strain

shell element for problems involving large rotations. Computational Mechanics,

30(4):286–296.

von Mises, R. (1913). Mechanik der festen Körper im plastisch-deformablen Zustand.

Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-

Physikalische Klasse, pages 582–592.

Wang, A., Zhao, G., and Li, Y.-D. (2014). Linear independence of the blending

functions of T-splines without multiple knots. Expert Systems with Applications,

41(8):3634–3639.

Wang, C. M., Reddy, J. N., and Lee, K. H. (2000). Shear deformable beams and

plates: relationships with classical solutions. Elsevier.

Wang, Y. and Peng, W. (2015). A deformation analysis and experimental study

for a novel full kinematic incremental forming. Australian Journal of Mechanical

Engineering, 14(2):73–81.

Wei, X., Zhang, Y., Liu, L., and Hughes, T. J. (2016). Truncated T-splines: Funda-

mentals and methods. Computer Methods in Applied Mechanics and Engineering.

Wriggers, P. (2006). Computational Contact Mechanics. Springer Berlin Heidelberg,

Berlin, Heidelberg.

Wu, S. R. and Gu, L. (2012). Introduction to the explicit finite element method for

nonlinear transient dynamics. Wiley.

Xiao, H., Bruhns, O., and Meyers, A. (1998). Objective corotational rates and

unified work-conjugacy relation between Eulerian and Lagrangean strain and

stress measures. Archives of Mechanics, 50(6):1015 – 1045.

Xiao, H., Bruhns, O., and Meyers, A. (2006). Objective stress rates, cyclic deforma-

tion paths, and residual stress accumulation. ZAMM, 86(11):843–855.

Xiao, H., Bruhns, O. T., and Meyers, A. (1997). Logarithmic strain, logarithmic

spin and logarithmic rate. Acta Mechanica, 124(1-4):89–105.



BIBLIOGRAPHY 177

Xiao, H., Bruhns, O. T., and Meyers, A. (1999). Existence and uniqueness of the

integrable-exactly hypoelastic equation (...) and its significance to finite inelasticity.

Acta Mechanica, 138(1-2):31–50.

Xiao, H., Bruhns, O. T., and Meyers, A. (2000). The choice of objective rates

in finite elastoplasticity: general results on the uniqueness of the logarithmic

rate. Proceedings of the Royal Society A: Mathematical, Physical and Engineering

Sciences, 456:1865–1882.

Xiao, H. and Chen, L. S. (2002). Hencky’s elasticity model and linear stress-strain

relations in isotropic finite hyperelasticity. Acta Mechanica, 157(1-4):51–60.

Xu, H., Liu, Y., and Zhong, W. (2012). Three-dimensional finite element simulation

of medium thick plate metal forming and springback. Finite Elements in Analysis

and Design, 51:49–58.

Young, D. and Jeswiet, J. (2004). Wall thickness variations in single-point incremental

forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal

of Engineering Manufacture, 218(11):1453–1459.

Zhou, X. and Tamma, K. (2003). On the applicability and stress update formulations

for corotational stress rate hypoelasticity constitutive models. Finite Elements in

Analysis and Design, 39(8):783–816.

Zienkiewicz, O., Taylor, R., and Zhu, J. (2013). The Finite Element Method: its

Basis and Fundamentals. Elsevier.


	List of figures
	List of tables
	List of abbreviations
	Introduction
	Incremental sheet forming (ISF)
	Mechanics of ISF
	Modeling of ISF
	Isogeometric analysis (IGA)
	Research questions
	Thesis outline
	Notational remarks

	Geometry representation
	Bézier curves
	B-spline curves
	Nonuniform rational b-splines (NURBS)
	T-splines
	Algorithms

	Analysis
	Galerkin method
	Numerical integration
	Isogeometric shell technology
	Stress integration
	Loads and boundary conditions
	Contact

	Numerical testing
	Timoshenko beam (SS)
	Mindlin plate (SSSS)
	Straight cantilever plate strip
	Cantilever ring plate
	Snap-through of a thick roof
	Dynamic elasto-plastic response of a square plate
	Single point incremental forming example
	Two-point incremental forming example

	Conclusions
	Isogeometric thickness stretchable shell
	Introduction
	Isogeometric analysis fundamentals
	Updated Lagrangian rate formulation
	Numerical examples
	Conclusions
	Mass terms
	Analytical solution for Timoshenko beam (SS)
	Analytical solution for Mindlin plate (SCSC)

	Quadrature rules for isogeometric shell formulations
	Introduction
	Quadrature rules
	Verifications using manufactured solutions
	Real-world application: incremental sheet forming
	Conclusions

	ISF simulation
	Introduction
	ISF simulation
	Conclusions

	Bibliography

