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Abstract

The confined flow of multiphase fluids is relevant in a range of applications in both science and

engineering. For example, the two-phase flow of gas and liquid can commonly be observed in boilers

used for power production, nuclear reactors (particularly in a loss-of-coolant accident) as well as in

the transportation of hydrocarbons in the oil and gas industry. The optimal design and operation of

these systems relies on an understanding of how the phases interact and the behaviour emergent from

these interactions.

This thesis studies multiphase flows in the field of natural gas extraction from unconventional

reservoirs, with a focus on coal seam gas (CSG). In this context, the bottom hole pressure (BHP)

in a natural gas well is an important parameter in the effective design of well completions and

artificial lifting systems. Poor estimation of this can lead to liquid loading in the wellbore and reduced

efficiency of the extraction process. The complex interaction of production gas and the associated

water can increase the uncertainty in pressure gradients and ultimately impact the BHP estimation. A

significant body of research has explored pressure gradients in the co-current multiphase flows found in

conventional gas extraction, but these are not expected to hold for the counter-current regimes present

in CSG production. Therefore, this research aimed to develop a fully resolved-numerical model for the

simulation of simultaneous gas and liquid transport in scenarios applicable to CSG extraction.

When two-phases flow in a confined environment such as a pipe or conduit, the topology of the

interface is described by commonly observed flow regimes. When the pipe is in a vertical configuration,

the typical regimes include bubble, slug, churn and annular flow. The models that describe the liquid-

gas interactions are typically dependent on the flow regime and can significantly impact the accuracy

of pressure predictions. As a result, knowledge of the flow regime is required a priori to predicting

the pressure gradient. Once this has been determined, the uncertainty associated with the phase

interaction models can still deteriorate the practical use of predictive tools. The rise velocity of

elongated bubbles in the slug flow regime has recently been identified in the literature as impacting

greatly on the estimation of liquid hold up and pressure gradients in a piping system. Understanding

the behaviour of these bubbles, termed Taylor bubbles, allows operators to reduce pressure oscillations

in the wellbore and more accurately forecast production over the life of the well. This work seeks

to capture the behaviour of these bubbles in flow configurations applicable to CSG extraction. This

involves modelling annular pipe systems at a range of inclinations as well as with fluids propagating in

co- and counter-current directions.

This thesis presents the development, verification and validation of a phase-field lattice Boltzmann

method (PFLBM) that allows for the simulation of dynamic liquid-gas flows with density ratios on the

order of 1000. The PFLBM proposed was able to enhance the locality of numerical operations within

the algorithm and, consequently, improve the efficiency of parallel computations. Additionally, during

the verification and validation process, the robustness of the model was shown through the simulation

of high density ratio flows at Reynolds numbers in excess of previously reported results. From here,

the research investigated the flow of gas in annular piping systems applicable to CSG extraction.



Initially, the work proposes a two-dimensional, velocity-based lattice Boltzmann model (LBM) to

resolve the hydrodynamics coupled with the conservative phase-field model to capture the interfacial

dynamics of a liquid-gas system. The model was verified and evaluated against previous PFLBMs

using a layered Poiseuille flow test. This indicated that the local flow behaviour about the interface

could be resolved using isotropic differences, removing the need for directional-derivatives found

in other models. The well-studied, Rayleigh-Taylor instability provided verification in a scenario

involving high levels of interfacial curvature, where the robustness of the PFLBM was highlighted

with simulations at a high Reynolds number. With the model verified, the dynamics of planar Taylor

bubbles was investigated. Here, the model was able to recover expected rise velocity correlations in

stagnant liquid. The introduction of liquid motion allowed the investigation of counter-current flow.

From this, the value of the empirical distribution parameter, used to describe the liquid contribution to

the gas velocity, was found to be approximately equal to the co-current value present in the literature.

With promising results in two-dimensions, the PFLBM was extended into three-dimensions. In

order to retain the robustness observed in two-dimensions, the implementation employed a weighted-

multiple-relaxation time in the collision process of the velocity-based LBM. After verification, the

model was compared with experimental measurements of a gas bubble rising through a tube of olive

oil. This allowed validation, not only of the macroscopic dynamics such as the bubble rise velocity,

but also the local flow field through particle-image velocimetry. This study was extended to include

pipe inclinations and liquid motion as required to capture scenarios relevant to the oil and gas industry.

In this study it was found that existing correlations perform poorly at intermediary pipe inclination

angles. However, a methodology was presented through which the accuracy of a unified model could

be improved.

To complete the research, the three-dimensional PFLBM was applied to study the dynamics of

Taylor bubbles in annular pipes. This is directly applicable to the slug flow regime that may occur in

CSG wellbores. The first component of this section recreated air-water experiments reported in the

literature with the PFLBM. This validated the model’s ability to capture quantitative parameters relating

to the bubble rise as well as the asymmetric shape experimentally observed with the introduction of

a central tube. From here, inclination effects were studied and it was found that the most accurate

correlation required the coupling of tubular and vertical annular bubble rise models from the literature.

Incorporating liquid motion into the system indicated that the distribution parameter, similar to the

two-dimensional case, remained approximately constant between co- and counter-current flow. This

agreed with some experimental work from the 1970s, but differed substantially from tubular relations

that can be found in existing annular mechanistic models.

This thesis has outlined the development and practical application of a fully-resolved model of

liquid-gas flows. It provided insight into the dynamics of Taylor bubbles in a range of configurations

and proposed a methodology for which a unified bubble rise correlation could be formulated in future

work. Additional avenues of research were identified for both model improvement, such as adaptive

mesh refinement, and model application, including the extension to porous media flow to capture

reservoir dynamics.
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equivalent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.1 Schematic of a tubular Taylor bubble compared with one rising through a concentric

annular configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2 Initialisation shape for annular Taylor bubbles; (a) isometric-style view, (b) x− z plane. . 143

7.3 Taylor bubble profiles through time (a) t∗ = 0, (b) t∗ = 5, (c) t∗ = 10, (d) t∗ = 15, (e)

t∗ = 15, for Case 3 (Mo=2.5587e-11, Eo=21.65). The vorticity of the flow has been

superimposed to show the development of the liquid bridge through which liquid is

transported into the wake region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4 Taylor bubble profiles at t∗ = 20t0 with fluid parameters according to Case 3 (Mo=2.56e-

11, Eo=21.65) and for pipe inclination angles (a) θ = 10, (b) θ = 20, (c) θ = 30, (d)

θ = 40, (e) θ = 45 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 Taylor bubble profiles at t∗ = 20t0 with fluid parameters according to Case 3 (Mo=2.56e-

11, Eo=21.65) and for pipe inclination angles (a) θ = 45, (b) θ = 50, (c) θ = 60, (d)

θ = 70, (e) θ = 80 degrees. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.6 Comparison of simulated predicted bubble velocity in tubular pipes at various inclinations

with the unified correlation proposed by Lizarraga-Garcia et al.(2017) . . . . . . . . . . 150

7.7 The relationship between the bubble Froude number and the liquid Reynolds number

indicating the linear relationship that the liquid flow has on the bubble rise. . . . . . . . . 154

7.8 Case A simulation results for a Taylor bubbles propagating through an annulus after 10t∗

iterations, with liquid flowing at: (a) Rel =−10; (b) Rel =−1; (c) Rel = 0; (d) Rel = 1;

(e) Rel = 10. The colour in the annulus represents the velocity of the liquid with red and

blue indicating upwards and downwards flow, respectively. . . . . . . . . . . . . . . . . 155



List of tables

2.1 Summary of Dimensionless Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Flow configurations for the base and extension cases of the Rayleigh-Taylor instability. . 63

4.2 Planar Taylor bubble results for dimensionless rise velocity (Fr) with negligible surface

tension, re-created from the works of Figueroa-Espinoza and Fabre (2011). . . . . . . . . 68

4.3 Resultant Taylor bubble rise velocity and empirical coefficient value in both co- and

counter-current flowing configurations where Fr∞ = 0 corresponds to a rise velocity of

Frstagnant = 0.2085. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Reynolds numbers found with varying numerical techniques including VOF, TFM, and the

combined TFM-VOF model from Ndinisa et al., as well as the current LBM in comparison

to the reference experimental (Exp) study. . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 Summary of Taylor bubble rise and film thickness over a range of Eo and Nf numbers in

comparison with literature and the finite volume method (FVM) simulations of Lizarraga-

Garcia et al.. Experimental results are highlight with by ∗. . . . . . . . . . . . . . . . . 109

6.2 Results obtained for the stable rise of Taylor bubbles in a vertical, tubular pipe in compari-

son with the correlation presented in Equation 6.14. . . . . . . . . . . . . . . . . . . . . 113

6.3 Results obtained for the stable rise of Taylor bubbles in a vertical, tubular pipe in compari-

son with the correlation presented in Equation 6.14. . . . . . . . . . . . . . . . . . . . . 116

6.4 Summary of non-dimensional parameters used for inclined pipe tests and the vertical

Taylor bubble rise velocities previously obtained. Experimental results are highlighted by a ∗.120

6.5 Measured Froude number using the phase-field LBM in comparison to the correlation

proposed by Lizarraga-Garcia et al. (2017). . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Summary of non-dimensional parameters used for inclined pipe tests and the vertical

Taylor bubble rise velocities determined with the phase-field LBM and the correlation

proposed by Viana et al. (2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.7 The values obtained for the distribution parameter, C0, using the phase-field LBM in

comparison to existing correlations by Bendiksen (1985), Fréchou (1986), Tomiyama et al.
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Chapter 1

Introduction

“Education is the passport to the future, for tomorrow belongs

to those who prepare for it today.”

Malcolm X

Hydrocarbon fuels derived from oil and gas reserves were one of the key products that enabled the

continuation of the industrial revolution in the late half of the 20th century. With great change in terms

of construction materials and inter-connectivity within countries, along with the exhaustion of a number

of coal mines in Western Europe, the supply of fuel became critically important. The dependence on oil

and gas is still evident today with significant use in industries ranging from electricity generation and

transportation through to the production of everyday plastics. In order for developing and developed

nations to continue progressing with this reliance, there is a need for access to such commodities, at

least in the medium-term future. This is particularly evident in the energy sector when one considers

the environmental impact of alternative, low-cost, continuous supply sources currently in use (e.g.

coal). A 2015 report from APGA, APPEA and ENA [7], documented that natural gas was delivering

electricity at one-quarter to one-sixth of the carbon intensity when compared to typical forms of mains

supply.

The transition towards environmentally sustainable energy has brought further focus onto the

natural gas industry. A prevailing mitigation philosophy, termed Carbon Stabilising Wedges, for

reducing CO2 emissions was introduced by two professors from Princeton, Robert Socolow and

Stephen Pacala, and identified “Fuel-Switching for Electricity” as one of their 15 currently available

offset technologies [8]. Here, the recommendation to move from a base load supply of predominately

coal to gas is predicted to halve the emissions in this sector by 2060.

In the year 2015-16, natural gas-fired generation contributed 20% of Australia’s total electricity

production compared with 63% from coal-fired plants. However, high gas prices saw a reduction to

18% supply by the end of 2016 while coal remained stationary [9]. The fixed generation from coal

could be considered surprising with the uptake of renewable technologies in Australia, but perhaps

current cost, intermittency and government policies limit the renewables penetration into grid-scale
1
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main supply. Although the domestic electricity generation from gas as a percentage declined through

2015-16, the international export significantly increased (by 46%) as a result of liquefied natural gas

(LNG) projects reaching export capability in both Queensland and Western Australia [9]. If one looks

outside of electricity generation, to energy consumption as a whole, oil and gas activities supply over

60% of Australia’s requirement. The ability to access natural gas domestically with the increased

international interest while upholding the need for low-cost, low-emission energy is one of the driving

motivations for the work in this dissertation.

In the Australian market there has been large growth in onshore resources, particularly in Queens-

land with coal seam gas (CSG) developments in the Surat and Bowen basins. This is looking to fill the

market gap created from the depletion of more easily accessible resources. Typically these are termed

‘conventional’ due to the method of extraction, in which, the natural permeability of the reservoir

and pressure difference between the subsurface and surface is sufficient for extraction. Contrary

to this, ‘unconventional’ is used to describe storage sites such as coal seams, shale rock and tight

sandstone where the system requires artificial manipulation for feasible production. In coal seams, the

initial dewatering phase is an example of this, while tight reservoirs, like shale and deep sandstone,

may require induced fractures to enhance permeability and ultimately create connection pathways to

the wellbore. Figure 1.1 provides an example of how a conventional reservoir may be formed with

permeable sandstone beneath a cap-rock or other form of low permeability seal. The unconventional

resource depicted in this figure can be seen to have a more complex well trajectory with induced

fractures into the source rock to access previously inhibited gas reserves.

Figure 1.2 shows the depletion of conventional reserves in South East Queensland and the CSG

developments that are providing for this deficit [11]. Here, one can observe rapid growth in both the

Surat and Bowen basins after CSG production initiated. This additional production has allowed the

trend of gas extraction to continue on an upward curve after the depletion of the conventional Cooper

and Eromanga basins. For resources such as CSG from Queensland to continue to compete in the

global market it is essential that production occurs efficiently. To this end, the development of accurate

prediction and modelling tools specifically designed for the extraction of this unconventional resource

are required.

A particular area of note, is the need to accurately assess the bottom hole pressure (BHP) of CSG

wells in the field. The ability to monitor and calculate this pressure provides essential information with

regards to the effective design of well completions and artificial lift systems as well as providing a key

boundary condition in reservoir and surface process simulations [12–14]. Poor estimations of this can

lead to early onset of liquid loading in the wellbore, reduced efficiency of the extraction process and

potential damage to the reservoir if managed incorrectly [14, 15].

The pressure gradient along the wellbore is dependent on a number of factors and becomes compli-

cated based on the fluids and phases present, the flow regime and the direction of flow. Dissimilar to

more conventional gas resources, CSG extraction techniques create a counter-current flow phenomena

in the wellbore. The cause of this lies in the annular construction of the well in which a central casing

is used to pump brine from the subsurface environment allowing for gas desorption and extraction
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Figure 1.1: Schematic indicating the form in which conventional gas is typically captured within a
reservoir in comparison to unconventional gas. Reproduced from [10] under the Creative Commons
Attribution-Share Alike 4.0 International license.

through the outer annuli. This forms a downward flow of liquid and a countering upward flow of

natural gas in the annulus tubing [16].

Typically when two phases flow together in a tubular pipe, the interface between them can be

observed to form characteristic topological patterns called flow regimes. Experimental works indicate

that at low gas flow rates, small bubbles can be observed to propagate through a liquid-continuous

system in a regime termed bubbly flow. With a continued increase in gas flow, the coalescence of

bubbles is promoted and Taylor bubbles form which occupy almost the full cross-section of the pipe.

Characteristically, these bubbles are surrounded by a thin liquid film in contact with the wall and are

followed by a liquid slug giving it the name slug or intermittent flow. With higher flow rates still, these

large bubbles breakdown and a churn-type transitional regime occurs. From here the gas eventually

forces the liquid into a film about the pipe wall known as annular flow. This covers the general

terminology of flow regimes seen in vertical co- and counter-current flow. However, a phenomenon

unique to counter-current flow is observed with a further increase in gas flow where the liquid film is

reversed and moves in a co-current direction, presenting the flooding-limit at which counter-current

flow can exist.

In order to further understand these confined systems containing multiple fluids, the study of

multiphase flows is required. Predicting how multiphase systems behave has intrigued the scientific

community with applications observed in both industrial and natural processes. It is studied by
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Figure 1.2: The development of fields in Queensland, Australia comparing conventional reserves to
coal seam gas production. Recreated from Towler et al. [11].

physicists and applied mathematicians looking to further their knowledge of fundamental interactions.

Additionally, engineers are dependent on the analysis of these systems to optimise designs and

improve operational performance in practice. Currently, the oil and gas industry extensively use one-

dimensional (1D) computational models that are reliant on averaging and correlated closure relations

to simplify the three-dimensional (3D) system [17]. This may work well for large-scale, homogeneous

pipelines stretching hundreds of kilometres, but limits the applicability when looking at a system that

experiences a varied flow configuration, whether this is due to complex fluid types, piping geometry

and or flow directions, for which the derived correlations may not be valid. More recently, the use of

two-dimensional (2D) and 3D computational fluid dynamics (CFD) has been used for the analysis of

multiphase pipe flow. It has allowed for improved accuracy of 1D models by investigating closure

relations over ranges of flow parameters that would be infeasible to investigate experimentally [18].

The use of CFD simulations has become a core aspect of scientific modelling giving detailed

insights into complex and transient systems. However, the extension from single phase to multiphase

flows comes with a number of key distinctions that can be problematic for numerical evaluation.

Namely, it is typical of such systems to consist of at least two fluids that may differ substantially in

properties such as density and viscosity over an infinitesimally thin interface. This interface is preserved

as the equilibrium between the thermodynamic pressure imbalance due to molecular interactions and

the surface tension forces [19, 20]. In order to deal with these problems numerically this discontinuity

is often approximated as a smoothly changing function over a finite number of computational cells

that is advected with the flow. Careful treatment of the sharp gradients within this diffused interface is

often necessary in the form of highly resolved grids or additional stabilisation techniques.

The discretised solutions to the Navier-Stokes equations (NSE) have long been a common approach

to CFD. These methods (such as finite difference, element or volume) provide a high degree of accuracy

and have been used extensively in both research and industry applications. However, it has been
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noted that these solvers can face “operational complications when applied to multiphase flows of

real scales” [21]. One reason for this is the non-linearity and high degree of coupling between the

NS equations, and this along with discontinuities at phase interfaces can limit the applicability of

these methods. On the other hand, kinetic based techniques such as the lattice Boltzmann method

(LBM) have proven themselves as a promising alternative for the problem of computational multi-fluid

dynamics (CMFD), these will be discussed in detail in Chapter 3 [22–28].

1.1 Industrial context

The industrial problem that this research will look to address is often referred to as a production

technology issue in the oil and gas sector. Here, one is concerned with the transport of natural

resources from the subsurface environment in a safe, efficient and economical manner. To do this,

production engineers must have a detailed understanding of the wellbore dynamics as this impacts

greatly on optimal pump rates and predictions of the fluid quantity to be processed through the

surface network. The interest in unconventional gas has grown with the depletion of conventional

reserves, and with this comes the requirement of new techniques for extraction. This is evident in

CSG where counter-current flow is observed down-hole in pumped wells. Work from Firouzi et

al. [29] has highlighted the level of error present in naively applying co-current flow correlations to

predict the pressure drop through such a system. With recent work in the literature still improving

flow correlations [18], it is clear that there is still a lack of fundamental knowledge not only in the

unconventional space, but in general multiphase transport. This fact is discussed and reviewed in

Chapter 2.

Figure 1.3a shows an example configuration for a conventional well, in this an annular packer

is typically used to isolate the central production string through which all fluids are produced. In

comparison, Figure 1.3b shows a pumped CSG well which produces gas through the annulus while

lowering reservoir pressure through the extraction of water in the tubing string. In both of these

diagrams, it is evident that the wellbore provides the critical link between two well developed areas

of engineering, namely reservoir and production. Reservoir or subsurface engineering deals with

upstream issues surrounding the drainage of fluids through the reservoir. Downstream of the well,

process engineers take over surface operations, controlling the flow of produced materials from the

wellhead to delivery points. Understanding the flow within the wellbore itself provides key boundary

conditions for both of these areas, without which there is inherent error down-hole and on the surface

prior to even considering which predictive tools are to be used.

In addition to providing accurate boundary conditions for reservoir and surface operations, the

design of completions is also dependent on the wellbore flow dynamics. The pressure drop along

the well impacts the inflow performance ratio (IPR) which is used in determining parameters such as

optimal pipe geometries and requirements for down-hole lifting equipment. The selection of pump

capacity is critical for efficient production, especially if one wishes to maintain a particular flow regime

in the well. Therefore, due to the associated impacts throughout the life of a well, from design through
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(a) Conventional well completion (b) Coal seam gas well completion

Figure 1.3: A conceptual schematic of completions indicating the difference in flow configurations
between a conventional and unconventional well. Of particular note here is the flow directions from the
reservoir in each case, (a) co-current (Recreated from [30]) vs. (b) counter-current (Image from [31]).

to deliverance, it is understanding the interaction of liquids and gases in this critical link between the

reservoir and surface that this dissertation develops.

1.1.1 Industrial modelling strategies

With the universal existence of multiphase flows in the extraction of oil and or gas from subsurface

environments, various multi-fluid modelling and simulation techniques as well as software pack-

ages have been developed. These tools were initially based on purely empirical correlations before

developing into phenomenological or otherwise termed mechanistic models. Mechanistic models

incorporate physical descriptions of the flow in an attempt to close the set of governing equations.

This improves the ability for models to predict both pressure gradients and phase fractions along

the wellbore in the absence of sufficient experimental data. For co-current flows, researchers have

attempted to homogenise the system by considering two separate phases as a ‘mixture-phase’ with

averaged fluid properties. A slip-velocity based on empirical parameters is often introduced to cater

for varying phase velocities and the formulations are generally classified as drift-flux models [32, 33].

With the development of computational capabilities, the two-fluid model has also seen widespread use

for predicting multiphase system behaviours. These methods will be reviewed in detail in Chapter

2. Here, two predominant industry codes are highlighted as examples of commonly used software

packages:

• the simulator OLGAr, originally designed by Dag Malnes and Kjell Bendiksen at the Institute

for Energy Technology (IFE) in Norway, with rights currently held by Schlumberger after the

acquisition of SPT Group; AND
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• the simulator LedaFlowr, that was developed in Norway by Sintef in collaboration with Total

and Conoco Phillips.

In-built in these software packages generally exist a series of checks to predict an expected flow

regime at certain locations in the system before using this to discern between appropriately tuned

flow correlations. From this, key flow features such as pressure drop, liquid hold up and flow rates

along pipelines can be predicted. This is required as the flow correlations are regime-dependent and as

such, the regime must be known apriori. This can prove problematic when new fields or extraction

techniques are developed as both the correlations for predicting the regime and flow behaviours

thereafter have been developed from significant experimental tuning.

In more recent years, the advent of interface tracking methods (ITM) along with the computational

ability to make use of them, has allowed for multiphase simulations to be conducted independent of

flow regime predictions. In this family of methods, a governing partial differential equation (PDE) is

introduced to describe the evolution of fluid-fluid interfaces. These formulations are typically referred

to as one-fluid models and were introduced as early as the 60s with the Marker-and-Cell method of

Harlow and Welch at Los Alamos [34]. Here, the interface is tracked such that fluid properties on

either side are known and resultantly, the exchange of mass, momentum and energy between phases

can be accurately determined. In order for this to be successful, sufficient resolution surrounding an

interface is required and numerical techniques to resolve sharp gradients that can occur due to varying

fluid properties must be implemented.

1.1.2 A brief history on interface modelling techniques

With the associated difficulty of multiphase experiments, the need for numerical modelling has long

been realised resulting in significant research efforts. Here, a few of the major developments are

presented to give the reader a brief history and more fundamental motivation for certain sections of

work in this thesis. Initial efforts looked to simplify the problem by considering either Stokes flows,

in which a large viscosity dominates inertial forces or inviscid flows, where one neglects viscous

effects. Birkhoff [35] presented one of the first attempts to predict the dynamics between two fluids by

assuming inviscid, irrotational flow. Here, a heavy fluid was modelled over the top of a lighter fluid

within a gravitational field resulting in the now, well-known Rayleigh-Taylor instability. This paper is

highlighted here in particular as this flow configuration was one used to analyse the solver presented in

the chapters to follow. The techniques used to solve inviscid and Stokes flow systems are typically

approached with boundary integral or element methods.

To bridge the gap between zero and infinite Reynolds number flows, the Marker-and-Cell (MAC)

method was formulated in the Los Alamos labs [34]. This method was tested against the Rayleigh-

Taylor instability and numerous other configurations in the years to follow. A shortcoming of the

method was the potential inaccuracies of placing marker particles through the domain, from which the

idea of a marker function was born. Hirt and Nichols [36] coined the name volume-of-fluid (VOF) to

this effect, and so began the development of one of the most active streams of one-fluid simulations
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conducted today. One difficulty associated with this progression is the numerical diffusion associated

with advecting a marker function through the domain that has been averaged within computational

cells. This produces a need for reconstruction schemes to define the shape of the interface, restricting

its advection to a new cell to be physically consistent.

Connecting the philosophies of the MAC and VOF method, Unverdi and Tryggvason [37] used

a series of linked marker points to identify the fluid-fluid interfaces and advect material properties.

However, the domain was still updated with a fixed grid, which is in line with the computations of

the VOF method. Moving away from these discontinuous or sharp-interface approaches, the level-set

(LS) [38] and phase-field methods [39] used a diffuse interface and an average contour to identify

the interface location. These two methods share a number of similarities, but are formulated from a

fundamentally different point of view. The LS method uses a smoothed interfacial zone for numerical

purposes only, whereas the phase-field approach is conducted so that this region is thermodynamically

consistent. Phase field methods present one of the key techniques used in this thesis and will be

thoroughly examined throughout.

Moving away from explicitly tracking the interfacial dynamics of the multiphase system, early

LBM methods were able to recover fluid separation from incorporating intermolecular interactions.

The colour-gradient method (CGM) [40] and pseudo-potential model [22, 41] were amongst the first

to use this idea. Since the introduction of multiphase LBMs, there has been significant development

including those that make use of interface tracking methods like VOF, LS and phase-field models.

1.2 Research question

This thesis aims to answer questions that are related both to the industrial application of fluid flow

in a CSG well and those posed from the theoretical basis of the LBM and multiphase simulations.

However, the overarching research question motivating this work is:

What are the key factors influencing the pressure drop from the bottom of an unconventional (CSG)

well to the surface and how can this be accurately predicted?

The initial phase of the project was focused on the development of a numerical technique capable

of modelling the range of flow regimes expected in a CSG wellbore. Here, the applicability of LBM to

liquid and gas flows within pipes of real scales was investigated. The model developed and proposed

for this is highlighted in Chapter 4 and provides a possible solution for how the pressure drop may be

more accurately predicted.

From here, the developed LBM was applied to analyse current assumptions used by 1D mechanistic-

type models, relating in particular to the slug flow regime. This was conducted to assess the accuracy

of closure correlations for counter-current annular flow as well as to present a methodology for which

new correlations can be formed. The value of CMFD in the oil and gas industry is highlighted in this

work, with the potential to save cost and time through reduced experimental testing and development

of fundamental knowledge.
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1.3 Project aims and objectives

This thesis looks to address limitations currently existing in the simulation of multiphase flows.

Developments in this area could lead to numerous engineering advances in areas such as nuclear

reactor design, chemical processing and subsurface resource extraction as well as in the understanding

of natural phenomena including rain drop formation and coastal wave dynamics. In this dissertation a

particular focus has been placed on the extraction of unconventional resources where efficient transport

of hydrocarbons is essential for feasible production. As such, this research has two primary aims:

(1) develop a fully resolved computational model capable of simulating two phase flows with high

density and viscosity ratios, and

(2) use this modelling capability to gain key insights into the counter-current flow that occurs in the

process of extracting natural gas from coal seams.

In order to achieve these aims and answer the overarching research question, a number of interim

objectives have been constructed:

1. Define the state-of-the-art in CMFD modelling;

2. Develop, verify and validate a numerical model against base-case multiphase flow scenarios;

3. Demonstrate the capability of the model to replicate liquid-gas flows in dynamic scenarios, as

well as to capture the fundamental behaviours expected in flow regimes applicable to a CSG

well;

4. Investigate the effect of annular pipe configurations on the slug flow regime;

5. Investigate the effect of various system configurations including liquid velocities, piping geome-

tries and inclination angles;

6. Propose a methodology for which improved closure relations can be formulated for mechanistic

models applicable in the natural gas industry.

1.4 Methodology and scope of works

In this research, resolved simulations of liquid-gas flows were required to develop understanding of

how separate fluid phases interact within a confined environment, namely piping configurations for the

extraction of natural gas. Here, the objective was to move away from models that imitate momentum

exchange between phases and directly resolve the interfacial dynamics. This was conducted to assist

in determining whether existing models were applicable in a counter-current flow environment as well

as to provide a cost and time effective methodology for the development of such closure models.

In order to accurately describe the interfacial dynamics, a partial differential equation (PDE)

was introduced in the form of the Allen-Cahn equation [42, 43]. This is in addition to resolving the
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hydrodynamics of the system through the Navier-Stokes equations. In order to solve the governing

dynamics, the LBM provided a mature alternative to discretisation techniques such as the finite

difference, finite element and finite volume methods. For this particular case, the LBM provides

a mesoscopic level in which to build surface force interactions. This has been shown to provide

favourable outcomes in terms of interface reconstruction, achieving results that require hybrid methods

in certain finite volume frameworks [3]. Additionally, the LBM is intrinsically dynamic allowing

transient simulations, a requirement to analyse flow regime transition in which the time-dependent

scenarios of coalescence, break-up and instability growth are of key interest.

The lattice Boltzmann algorithm lends itself to efficient implementation on parallel architectures,

which is discussed in Chapter 3. Here, the ‘open-source’ framework, TCLB1, within which the models

developed and tested in this thesis are available. This framework was designed by Dr. Ł. Łaniewski-

Wołłk for rapid model development and deployment on multi-GPU and CPU systems [44]. The

computational advantages gained from the locality of the algorithm, in particular on GPU-architectures,

was one of the inspirations behind the model proposed in Chapter 4.

It is important to identify the limitations placed on the scope of this dissertation, so as to have a

complete description of the project. In simulations, fluids are assumed to be immiscible, isothermal

and Newtonian unless otherwise stated. The scope of works starts with the presentation of a phase-

field LBM specifically designed for systems exhibiting high density and viscosity contrasts as well

as moderate Reynolds numbers. Verification of the model through well established benchmarks is

conducted prior to validation with relevant experimental findings. Following this, the model is applied

to analyse certain closure models and the methodology to improve these is established, however, the

development of new closure relations themselves is placed beyond the scope and remains for future

investigations.

1.5 Thesis structure

This dissertation contains eight chapters that articulate how the work conducted during this project

addresses the aims and objectives outlined. To start with they give an overview of prior knowledge

in both the area of multiphase flow modelling and lattice Boltzmann theory. Following this, a model

designed for liquid-gas flows along with its verification, validation and application to scenarios relevant

to the natural gas industry is presented. Chapter 2 introduces the reader into the fundamentals of

multiphase flow in general as well as in confined environments, such as a wellbore or pipeline. The

fundamentals of LBM are described in Chapter 3 starting from single phase flow and progressing into

multiphase methods. These are extended in Chapter 4 where an LBM capable of solving multiphase

flows with large density and viscosity contrasts is formulated in a 2D setting. Chapter 5 builds on this

theory to stabilise the formulation in 3D and presents a detailed validation study of a Taylor bubble

propagating within a vertical tube. Investigation studies are then conducted in Chapters 6 and 7 to

analyse the behaviour of Taylor bubbles over a range of fluid parameters, pipe configurations and flow

1https://github.com/CFD-GO/TCLB

https://github.com/CFD-GO/TCLB
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directions. The outcomes of the thesis, the major contributions and directions for future work are

summarised in Chapter 8.
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Chapter 2

Fundamentals of Multiphase Flow

“Mathematics is just another way of predicting the future.”

Ralph Abraham

This thesis is primarily focused on the LBM, which is a kinetic approach to fluid mechanics.

However, a detailed understanding of the macroscale hydrodynamics is crucial as it is this behaviour

that one looks to mimic in simulations. In this chapter, a mathematical description of the NSE is first

presented before a set of useful dimensionless numbers for multiphase flow are introduced. From here,

the scope of review is focused on multiphase pipeline flows and the fundamental work conducted in

this area. Moving more towards direct modelling of multiphase flows, the chapter analyses potential

techniques for simulating the dynamics of fluid-fluid interfaces and the developments to date in the

field of LBM.

2.1 Governing equations

To solve a subset of fluid flow problems, one can start by considering three fundamental laws of

physics. In the case of isothermal fluids, this reduces to the conservation of mass and Newton’s second

law as the conservation of energy can be omitted,

∂tρ = 0, (2.1)

ρ
dui

dt
= ∑Fi. (2.2)

There is work, for example by the likes of Michaelides [45], that require up to six principles to resolve

the desired level of physics in the flow of heat and mass. This includes the conservation of mass, linear

momentum, angular momentum, energy, space and “from the second law of thermodynamics, the

principle of entropy increase of an isolated system” [45]. However, for the purposes of this explanation,

Equations 2.1 and 2.2 are sufficient. In these, ρ , ui and t are a fluid particles density, the velocity of

particle, i, and a measure of time, respectively. The force acting on a particle, i, is given by Fi and is
13
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the net contribution from all external forces and attractions. Similar descriptions for the NSE can be

found in numerous texts in the literature [20,46,47], but here it is presented to give the reader sufficient

knowledge of multiphase flows for the following chapters. Equations 2.1 and 2.2 take a Lagrangian

perspective that accounts for the movement of each fluid particle within the simulated system. When

one considers the quantity of fluid molecules that may be present in a simulation, it is not hard to

see that this may quickly approach the current limit of computational capability. Fortunately, for

practical fluids relating to this work, an Eulerian perspective can be used where the fluid is viewed as

a continuum, here the analysis is of a fixed volume in space rather than individual molecules.

To extend the equations above to the new reference frame, an integration over the volume (V) is

required. The translation of Equations 2.1 and 2.2 require one to equate the change of a parameter

in the volume with the fluxes in and out. For the conservation of mass, the change in the integral of

density over the volume with time is equated with the mass in and out of the volume in that time,

∂t

∫
V

ρdV =−
∫

S
(ρu) ·ndS. (2.3)

A similar methodology can be applied to Newton’s second law, but in this case the momentum flux is

used in place of mass and surface and volumetric forces (Fs, Fv respectively) are separated,

∂t

∫
V
(ρu)dV =−

∫
S
(ρuu) ·ndS+

∫
V

FvdV −
∫

S
Fs ·ndS. (2.4)

To achieve the well known NS equations, the divergence theorem is applied to the surface integrals

and the volume of analysis is taken towards zero,

∂tρ +∇ · (ρu) = 0, (2.5)

∂t(ρu)+∇ · (ρuu)−∇ · (−pI+ τN)−ρg = 0. (2.6)

In Equation 2.6, the surface force has been evaluated into components of stress, namely the viscous,

τN , and normal stress as a result of the pressure, p, while the volumetric force is equated as a

gravitational acceleration, g. To solve this set of PDEs, often simplifying assumptions are made

both for ease of implementation and computational efficiency. Some common assumptions include

the incompressibility of the fluid, such that Equation 2.5 reduces to describing a divergence-free

velocity field, as well as the proportionality between the viscous stress and strain tensor, in this case, a

Newtonian fluid [21],

τN = µ(∇u+∇uT ), (2.7)

where µ is the dynamic viscosity. As a result, Equation 2.5 and 2.6 can be written as,

∇ ·u = 0, (2.8)

ρ∂tu+ρ(u ·∇)u+∇p−∇ · (µ(∇u+∇uT ))−ρg = 0. (2.9)

One approach used to extend Equations 2.8 and 2.9 to incorporate an interface between phases

can be thought of as the addition of boundary conditions (BCs) along a surface (S) within the domain.
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These BCs need to be constructed in such a way that surface tension balances the pressure and velocity

gradients, and in the case of immiscible fluids, there must be no mass flux through S. To do this, one

simply equates the surface force previously discussed with the surface tension and looks at a restriction

of the velocity through the interface,

Fs = (−pI+µ(∇u+∇uT )) ·n, (2.10)

u ·n = 0. (2.11)

Therefore, if conventional boundary conditions are applied at the extents of the domain, a general

set of governing equations for a multiphase system can be described by Equations 2.8 to 2.11. However,

in order to implement these a number of questions still need to be resolved, specifically how to handle

the discontinuous jumps in density and viscosity from a numerical point of view as well as the

introduction of surface tension forces. One such method to assist with the discontinuous jump, without

the imposition of internal boundary conditions is to approximate the change with a characteristic or

smoothed Heaviside function, commonly approached with the use of an order parameter, φ [47]. This

is a function that for example, equals zero in fluid A and one in fluid B then varies smoothly between

these values over a finite interface,

φ(x) =


0, if x ∈ fluid A

I(x), if x ∈ close proximity to interface

1, if x ∈ fluid B.

(2.12)

Here, I(x) can take on different forms depending on how one decides to regularise the interface.

Typical formulations can include trigonometric functions or higher order polynomials [21]. This is

done as a means to interpolate the fluid properties at each node in the computational domain, which

can be found as a function of φ . For example the density, ρ , and kinematic viscosity, ν , can be found

by,

ρ(x) = ρA +(ρB−ρA)×φ(x), (2.13)

ν(x) = νA +(νB−νA)×φ(x). (2.14)

With this defined, it is now important to note the principals behind the force of surface tension and

how this is employed in the NSE. In this, two perspectives are generally taken, one from a geometry

argument [47–49] and the other from a chemical-potential/free-energy view point [28, 42, 43, 50].

Geometrically, one can view the surface tension as a force that acts to minimise the interfacial surface

area. From this thinking, a formulation of the surface tension depending on the local curvature, κl , the

vector normal to the interface, n, and a surface tension coefficient, σ , can be found,

Fs = σκln. (2.15)

To apply this as a fixed (Dirichlet) BC along with Equation 2.10 may look simple in its construction;

however, the requirement for this would entail knowing the exact interface location at every point
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in time. Additionally, careful consideration of the interface when it is not aligned directly with the

discretised computational domain would be required and further complicate the implementation. As

such, it is common practice to apply Fs over a certain interface thickness as a volumetric force. This is

referred to as the continuum surface force (CSF) approach and can be used in both sharp and diffuse

interface methods [49].

The second perspective thinks of the interface construction as being the minimisation of the

chemical potential, µφ , of the system. This is often done based on a Cahn-Hilliard [42] or Cahn-

Hilliard-like equation such as that proposed by Allen and Cahn [43]. In this sense, the surface tension

is dependent on the gradient of the chemical potential and the order parameter,

Fs =−φ∇µφ , (2.16)

µφ = 4βφ(φ −1)(φ −0.5)−κ∇
2
φ . (2.17)

This is not the only form that the chemical potential can take, but in this example β and κ are related

to the interface width, W , and the surface tension coefficient by,

β = 12σ/W, (2.18)

κ = 3σW/2. (2.19)

Jacqmin [39] developed the potential form for the surface tension force as,

Fs = µφ ∇φ . (2.20)

This was done in order to avoid calculating gradients of the chemical potential, effectively enhancing

the locality of the numerical method as well as avoiding the numerical stiffness present in this

calculation. Additionally, Kim [51] proposed a continuum surface tension force that did not require

the use of a chemical potential at all,

Fs =−κ|∇φ |2n∇ ·n. (2.21)

Independent of the chosen surface tension derivation, the force is incorporated into the conservation

of momentum equation. This results in the multiphase NSE to be solved in the form,

ρ(∂tu+u ·∇u) =−∇p+∇ · [µ(∇u+∇uT )]+Fs +ρg. (2.22)

Further details of surface tension formulations will be given on a model-specific basis when

discussing methods that are implemented in the progress of this work. At this stage the above is

presented to simply give the reader a listing of potential avenues for incorporating interface forces and

an idea of the governing hydrodynamic equations.

2.1.1 Dimensionless groups

The use of dimensionless groups in fluid mechanics has long been a standard in analysing systems of

scale and generalising solutions to a wider problem set. Multiphase fluids are no different to this, and
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although there remains no globally defined set, there are commonly used groups for certain problems.

Additionally, equivalence of the various number sets can be shown under particular transformations

(for example Archimedes Number (Ar) and the inverse viscosity number (N f ), Ar = N2
f [52]). The

list presented in Table 2.1 has been constructed to support the work in this thesis. However, it is not

exhaustive, and for a comprehensive review of this topic the interested reader is pointed to Awad [53].

Arguably the most common set of dimensionless numbers used to describe a two-phase flow

problem (at least in pipe flows) consists of the Eötvös (Eo), Morton (Mo), Froude (Fr) and Reynolds

(Re) numbers. However, additional dimensionless numbers that frequently appear in the literature

include the Weber number (We) as well as N f or Ar.

Table 2.1: Summary of dimensionless numbers common in multiphase flow problems (formulations
from [53]).

Number Formulation Physical Meaning

Eo (ρl−ρg)gd2/σ Ratio of gravitational to capillary type forces

Mo (ρl−ρg)gµ4
l /(ρ

2
l σ3) Along with Eo is used to describe bubble shape

Fr u/
√

gd Measure of gravitational and inertial forces

Re ρlud/µl Ratio of inertial to viscous type forces

We ρu2d/σ Measure of inertial to interface forces

N f
√

ρl(ρl−ρg)gd3 /µl Ratio of gravitational to viscous type forces

Ca µlu/σ Ratio of viscous drag to surface tension

Cn W/d Ratio of interface thickness to pipe diameter

2.2 Multiphase pipe flow

Due to the scale of modelling required for pipeline flows, specifically in the transport of hydrocarbons,

it is not always feasible to resolve the interfacial interactions directly. In place of this, it is common

practice in the oil and gas industry to approach the problem from an averaged properties perspective

and model the interactions between phases. This can involve using historic data to find empirical

predictions, finding a solution to the NSE based on mixture properties or resolving the governing

dynamics of both phases weighted by the void fraction, αi. In these methods, closure relations are

required to describe the heat, mass and momentum transfer between phases in order to find accurate

predictions of the system behaviour. In order to do this, it becomes highly important to understand

which flow regime is present in the pipeline as well as how this affects the phase interactions. The

definition of flow regimes comes from the characteristic interface topologies that form in confined

multiphase flows [54].

The reliance on models to describe interface interactions often means that new correlations are

required for variance in the flow configuration which lends itself to the need for extensive experimental

testing. Alternatively, multiphase fluid dynamics has been proven as a possible alternative for these
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tests, and it is in this area that this thesis will focus. For completeness, the following sections provide

background on the various flow regimes expected in vertical piping, in particular that of annular

geometry as well as the current mechanistic models available in literature.

Due to the prevalence of two-phase flow in industrial systems, the study of co-current pipe flow has

been extensively investigated and numerous models for predicting liquid hold-up and pressure gradients

have been proposed [55–62]. On the contrary, there are only a handful of studies in the literature

analysing counter-current, two-phase flow, with the majority focusing on the flooding phenomena and

even fewer focusing on annular piping geometries [16]. For a detailed history on the development of

modelling techniques the interested reader is pointed towards the work of Lizarraga-Garcia [63].

2.2.1 Flow regime maps and transitions

In the modelling of multiphase fluid flow through a pipe or conduit system, the pressure drop and

liquid hold-up tend to be the key parameters of interest [29]. These factors are intrinsically linked to

the configuration of the flow and how the phases present interact. In order to recognise this fact, it is

common practice to refer to flow regime maps describing what characteristic distribution of phases can

be expected [5]. Common classifications of flow regimes in vertical piping include bubbly, dispersed,

slug and annular flow. Additional transition stages are often given independent names such as churn

flow, which is used to describe the instability of Taylor bubbles as one progresses from slug flow

towards the annular regime. The naming conventions and appearance hold for co- and counter-current

flow in vertical pipes but are expected to appear at different superficial liquid and gas velocities. As

previously mentioned, one phenomena that is unique to the counter-current flow configuration is that

of flooding. This occurs when the gas has sufficient energy to reverse the flow of the liquid film in the

annular regime presenting the limit of counter-current flow. A sketch of the various regimes can be

seen in Figure 2.1.

Figure 2.1: Schematic of flow regime topologies showing the generally accepted terminology.

The two-phase flow patterns described are dependent on a number of different parameters, including
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the fluid properties (density, viscosity, surface tension) and flow rates as well as geometric restrictions

such as pipe diameter and orientation. Flow pattern maps attempt to reduce this problem to a 2-

dimensional graph with axes that are dependent on the superficial flow velocities of each phase. An

example of a flow pattern map for both co- and counter-current vertical, tubular pipe flow is given in

Figure 2.2. The co-current map was produced by Taitel et al. [58] and later a counter-current map was

presented by Taitel and Barnea [64].

(a) Co-current upward flow map in vertical piping (b) Counter-current flow map in vertical piping

Figure 2.2: Examples of flow regime maps developed from experiments using air-water in a 5 cm
diameter vertical pipe, for (a) co-current [58], and (b) counter-current [64]. Note that in (b) the flow
regimes are listed as, A: annular, S: slug, B: bubble and the region of no solution indicates flooding of
either the liquid or gas phase.

The first counter-current flow map was presented in 1982 by Yamaguchi and Yamazaki [65] after a

series of experimental tests in vertical tubing. Figure 2.3 displays a photograph showing an example

of the flow patterns achieved during the study. Yamaguchi and Yamazaki were able to compare the

predicted void fraction with the drift flux model and for most regimes, inconsistency of results was

observed in comparison with published co-current data. The shortcoming of the correlations to transfer

directly to the counter-current regime has been noted by the authors and can significantly impact flow

regime, liquid hold-up and pressure gradient predictions.

One of the key benefits of the flow maps is the ability to quickly assess the regime based on

superficial velocities. In order to give the reader an idea of how the transition lines are generated, parts

of the model presented by Firouzi et al. [16] are reviewed here. Starting from the bubble flow region,

the progression to slug flow is assumed to occur due to the coalescence of cap bubbles reaching a void

fraction of 0.2 at which point a Taylor bubble is postulated to have formed [66]. It should be noted

that other models exist which take transition void fractions between a much larger range, for example,

Taitel et al. [58] assumed the void fraction for which a Taylor bubble would form was dependent on

the superficial velocities, ranging from 0.25 to 0.53. Taking the assumption from Caetano [66] along

with the correlated rise velocity of a gas bubble in a swarm, the function for the transition line can be
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Figure 2.3: Photographic image of the experimental observations of Yamaguchi and Yamazaki (1982)
displaying the various flow regimes achieved.

written as,

uSL = 0.33u∞−4uSG, (2.23)

where uSL and uSG are the superficial liquid and gas velocities respectively. The rise velocity for a

single bubble, u∞, is defined from the work of Harmathy [67] as,

u∞ = 1.53
[
(ρL−ρG)gσ

ρ2
L

]0.25

. (2.24)

Different approaches have been used in the literature to determine the transition from slug to

annular flow. Here, the view of Taitel and Barnea [64] is highlighted in which a flooding criterion is

applied to the relative velocity of the liquid film and the Taylor bubble. This implies local flooding

is the cause of transition, when this condition is met for the superficial gas and liquid flow rates, the

flooding line above which “no solution” to the equations can be obtained (as seen in Figure 2.2). The

particular flooding criterion used in Taitel and Barnea [64] and Firouzi et al. [16] comes from the

semi-empirical equation from [68],

(ûSG)
0.5 +m(ûSL)

0.5 =C, (2.25)

where m and C are empirical constants and the hat indicates dimensionless velocities defined as,

ûSα = uSα

√
ρα

gD(ρL−ρG)
, α ∈ G,L. (2.26)

Other approaches such as that from Mishima and Ishii [69] describe the instability of the Taylor

bubbles to be a result of the liquid slug size. In this sense, if the slug length is insufficient to slow the

falling liquid film, it may disrupt the subsequent bubble and eventuate into a churn regime.
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2.2.2 Mechanistic pressure gradient models

When modelling two-phase pipe flow, the interest generally lies in the void fraction or liquid hold-up

profiles and the resultant pressure drop in the system. It is common to express the pressure drop in

gradient form, in which it is the summation of hydrostatic pressure, frictional and acceleration losses

expressed as,

(
d p
dz

)
T
=

(
d p
dz

)
G
+

(
d p
dz

)
F
+

(
d p
dz

)
A
. (2.27)

This is obtained through the addition of momentum equations for each phase, resulting in the steady

state mixture equation presented. Lumping the momentum equations together in this sense is the

fundamental difference between a two-fluid and some mechanistic or empirical models. Namely, an

empirical model will look to determine the flow regime and directly apply an experimentally-tuned

expression to solve for the pressure gradients. A mechanistic approach would look to derive the

components of Equation 2.27 from first principles in the hope that it can be extrapolated further from

the benchmark and or lab conditions. Closure models describing bubble flow velocities and certain

features of the expected flow regime are typically required in this process. The two- (or multi-) fluid

model writes a NSE for each phase present but includes phase interactions as a source and or forcing

term. It is noted that correlations are still required to model the phase interactions but the increased

level of physics incorporated has seen both mechanistic and two-fluid techniques gather widespread

support, appearing in commercialised codes such as OLGAr.

The two overarching philosophies for existing multiphase flow models can be described as ho-

mogeneous, where mixture properties are used, and separated, where contributions from each phase

are accounted for. Homogeneous models like that of Hagedorn and Brown [55] were initially used

in the design of proper tubing sizes and to predict well performance. Separated models can be either

empirically based [56, 57, 70, 71] or come from a mechanistic approach [62, 72, 73]. As the mecha-

nistic models are built from considerations of the basic fluid mechanics, it is argued that they can be

extrapolated to new flow conditions with similar levels of confidence. However, these models can be

computationally expensive and still yield poor results when applied in the field [74]. In addition to this,

the benchmarks for these models do not typically cover flow configurations expected in a CSG well. It

was shown by Firouzi et al. [16] that extrapolating previous mechanistic models to the counter-current,

annular flow expected in a pumped CSG well provided insufficient results and further research was

necessary. This may currently be the case, but one could hypothesise that as mechanistic models are

based on first principles, perhaps it is the closure relations rather than the governing equations that

need to be re-developed.

In order to currently predict the pressure gradient, models first determine the expected flow regime

before formulating expressions for the hydrostatic pressure as well as frictional and acceleration losses.

For bubble flow, where gas is dispersed through a continuous liquid phase, the acceleration losses are

typically neglected [56, 70] and the gravitational and frictional losses can be calculated for a vertical
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annular pipe as [16], (
d p
dz

)
G
= gρm, (2.28)(

d p
dz

)
F
= ρmu2

m
2 f

DC−DT
, (2.29)

where DC and DT are the diameter of the casing and tubing, respectively. The mixture velocity is

determined as, um = uSL + uSG, while the mixture density is given by, ρm = ρLHL + ρG(1−HL),

where HL is the liquid holdup. The friction factor, f , is dependent on wellbore geometry, which is

characterised as DR = DT/DC, fluid mixture properties and velocity with expressions given by Caetano

et al. [60]. It is assumed here that the superficial velocities are measured quantities, leaving the liquid

holdup as the unknown to be determined. This is done using Equation 2.30, which relates the rising

velocity of gas bubbles, uG, in a swarm to the continuous liquid, uL,

u∞H0.5
L = uG +uL. (2.30)

Now replacing the average velocities with superficial and rearranging Equation 2.30 gives,

HL(ULS−uGS)−ULS +u∞H3/2
L (1−HL) = 0, (2.31)

the solution to which provides the liquid holdup and ultimately the pressure gradient through the

system.

The slug flow regime is typically analysed as a series of slug units that consist of a leading Taylor

bubble and the liquid slug separating it from the trailing Taylor bubble. Figure 2.4 indicates an idealised

form of this regime where the length of the Taylor bubble, LT B, liquid slug, LS, and the full slug unit,

LSU , are shown. A number of key characteristics can be gathered from this schematic, with the gas

regions consisting of the elongated Taylor bubble occupying the majority of the cross-sectional domain

and as dispersed bubbles in the liquid slug. The liquid can be seen present in the slug region, but also

in a falling film both on the interior and exterior walls of the annular gap. It is noted here that in an

annular piping configuration, the Taylor bubble does not typically occupy the entire cross-sectional

area, with a liquid bridge tending to break the symmetry of the system.

In order to analyse the slug unit, the ratio of the Taylor bubble length to the full unit length is

defined as, β = LT B/LSU , and a material balance is made in the two sections; (1) Taylor bubble region,

(2) liquid slug region [16],

uSL = βuL1HL1− (1−β )uL2HL2 , (2.32)

uSG = βuG1(1−HL1)+(1−β )uG2(1−HL2). (2.33)

Rearranging Equations 2.32 and 2.33 for the ratio β and equating them results in,

uSL +uL2HL2

uL1HL1 +uL2HL2

=
uSG−uG2(1−HL2)

uG1(1−HL1)−uG2(1−HL2)
. (2.34)

In addition to this, a mass balance between region (2) and the Taylor bubble for the fluids results in,

(uT B−uG2)(1−HL2) = (uT B−uG1)(1−HL1), (2.35)
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LT B

LS

LSU

Figure 2.4: The schematic of a slug unit indicating the Taylor bubble trailed by a liquid slug.

(uT B−uL2)HL2 = (uT B +uL1)HL1. (2.36)

The rise velocity of the Taylor bubble, uT B, is then assumed as per Caetano et al. [61],

uT B = 0.345
√

g(DC +DT ) +C(uSG−uSL), (2.37)

where C is typically taken as unity for co-current downward flows, and the first term on the right hand

side represents the Taylor bubble propagation in a stagnant fluid. Keeping in mind Equation 2.34, the

mass balance expressions can be re-written to match the denominators as,

uL1HL1 +uL2HL2 = uT B(HL2−HL1), (2.38)

uG1(1−HL1)−uG2(1−HL2) = uT B(HL2−HL1). (2.39)

Substituting these into Equation 2.34 and rearranging gives,

uSL−uSG +HL2(uL2−uG2)+uG2 = 0, (2.40)

where one can now seek expressions for HL2 , uL2 and uG2 .

As depicted in Figure 2.4, there exist gas bubbles within the liquid slug, the velocity of which can

be described by assuming a slip velocity between the liquid and gas phases,

uG2−uL2 = u∞H0.5
L2

. (2.41)

The difference between velocities is thus equated to the rise of a single bubble, u∞, corrected by a

swarm factor that is related to the liquid holdup in the slug.
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Substituting Equation 2.41 into 2.40 allows the gas velocity in the slug to be removed,

uSL−uSG−HL2(u∞H0.5
L2

)+uL2 +u∞H0.5
L2

= 0. (2.42)

From here, Equation 2.35 can be used to relate the liquid velocity in the slug to that in the liquid film,

which can be analysed to close the set of equations,

uSL−uSG−HL2(u∞H0.5
L2

)+

[
uT B(HL2−HL1)−uL1HL1

HL2

]
+u∞H0.5

L2
= 0. (2.43)

From here, the effect of the liquid film can be analysed by first relating the liquid film velocity, uL1 ,

to the film thickness, δ . The thickness of the film is taken as constant for bubbles of sufficient length

due to a balance between gravity and wall shear forces [58, 61, 64],

uL1 =
µl

4ρl

 δ 1−CM

CK

(
µ2

l
g(ρl−ρg)

)1/3


1/CM

, (2.44)

where CM and CK are analytically determined for laminar flow as 1/3 and 0.9086 respectively. For

turbulent flow, recommended values in the literature are 2/3 and 0.0682, respectively. For the film

thickness, the correlation presented by Caetano et al. [61] is commonly used,

HL1 =
4δ (DC−δ )

D2
C−D2

T
. (2.45)

Substituting Equations 2.44 and 2.45 into Equation 2.43 gives an expression where the unknowns

are the liquid hold up in both the Taylor bubble and slug region,

uSL−uSG +(1− HL1

HL2

)− µlHL1

4ρlHL2

 δ 1−CM

CK

(
µ2

l
g(ρl−ρg)

)1/3


1/CM

+u∞H0.5
L2

(1−HL2) = 0. (2.46)

To solve this equation, one can follow the work of Barnea and Brauner [75], where the liquid holdup in

the slug zone is assumed constant and equal to the bubble-slug transition point, HL2 = 0.8 as measured

by Caetano et al. [61]. Thus, the liquid holdup in the film can be found and back-substituted to find the

other unknown parameters with the exception of the length of the liquid unit. The ratio, β , between the

Taylor bubble and slug region can now be found so to close the system of unknowns Taitel et al. [58,64]

took the slug zone to be a constant length equal to LS = 16D for vertical co- and counter-current pipes.

Firouzi et al. [16] followed on from the work of Caetano et al. [61], and used this same correlation

with the hydraulic diameter as the characteristic length.

To complete the pressure gradient analysis for the slug flow regime, the final assumption is

that in comparison to the liquid slug, the pressure drop over the Taylor bubble region is negligible.

Therefore, the gradient is determined over the slug length, LS, and averaged over the entire slug unit,

LSU [16, 61, 76], for which the pressure gradient contributions are,(
d p
dz

)
G
= (ρlHL2 +ρg(1−HL2))g(1−β ), (2.47)
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d p
dz

)
F
= (ρlHL2 +ρg(1−HL2))u2

m(1−β )
2 f

DC−DT
, (2.48)

and the pressure gradient associated with the acceleration was determined to be negligible by Firouzi

et al. [16].

For the annular flow regime, Hasan and Kabir [77] were able to show that a homogeneous flow

model produced reasonable results in which the mixture velocity and density is simply given by,

um = uSG +uSL (2.49)

ρm =
1

um
(ρguSG +ρluSL) . (2.50)

Taking this model, the thickness of the liquid film is assumed to be negligible resulting in the pressure

gradients predicted by, (
d p
dz

)
G
= ρmg, (2.51)(

d p
dz

)
F
= ρmu2

m
2 f

DC−DT
. (2.52)

From the pressure gradient models presented here, it is clear that the slug regime is the most

complicated from a numerical standpoint. It also relies on a significant number of assumptions and

correlations. After proposing a model for the simulation of multiphase flow, this work looks to analyse

in detail the behaviour of Taylor bubbles to give key insights into this regime.

2.3 Multiphase simulation techniques

This Chapter has demonstrated so far that multiphase flow in pipes and annuli is sensitive to a large

number of parameters whether material, geometrical or operational. This makes comprehensive

experimental investigation of the relevant phenomena difficult. Further, many of the experimental

studies that have been reviewed exhibit incongruent or contradictory findings. In spite of these

challenges, a range of criteria has been developed for the description of the various multiphase flow

regimes and their transitions, but these are constrained by their empirical basis.

Simulation methods represent one possibility for improving the description of the various regimes

of multiphase flow in industrial-scale pipes and annuli. These techniques are typically founded in

the discretisation of widely-accepted analytical systems of equations, which are then solved using

computers. Prominent examples in engineering include the finite element method (FEM) for structural

mechanics and CFD for vehicle aerodynamics. Some of the major benefits of such numerical methods

is that they are deterministic, readily able to explore a wide range of problem parameters, and relatively

inexpensive to use once developed.

As an extension to CFD, the use of computational multiphase fluid dynamics (CMFD) has be-

come common practice in a number of industrial sectors such as nuclear, thermal-hydraulics, and

petrochemical [78]. This first started with the introduction and development of the two-fluid model
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(TFM) in the 1970-80s, which acted as a key driver in the removal of limitations associated with the

use of empirically determined parameters for 1D modelling [79–81]. The use of high resolution 3D

simulation has allowed for more accurate closure relations in 1D models and insights into transition

mechanisms which had previously not been possible. Additionally, the development of interface

tracking methods (ITM) provides researchers with the ability to further reduce modelling assumptions,

particularly those associated with flow topology and momentum interactions between phases [82].

This section describes and presents examples of how numerous simulation methods have been

applied to capture multiphase flow regimes and their development. A detailed description of the

governing equations and their discretisation is not attempted here. For more information the interested

reader is pointed towards texts such as those by Prosperetti [83] and Martin [46]. Instead, it is the

intention that this section elucidates the potential for numerical methods to contribute to the state of

knowledge in multiphase flows and highlights the aspects in need of further research.

2.3.1 Numerical methods

The TFM has seen extensive use in commercial codes including OLGAr in the oil and gas industry

or the more recent PeTra, as well as in general simulation software such as ANSYS Fluent and CFX.

The method relies on phases being treated as interpenetrating continua, and in this sense, continuity

equations for each phase are solved throughout a fixed, or Eulerian numerical domain [83]. This can

be expressed by weighted continuity equations [131],

∂tαiρi +∇ · (αiρiui) = 0, (2.53)

∂t(αiρiui)+∇ · (αiρiui×ui) =−αi∇p+∇ · (αiTi)+αiρig+Finter
i (2.54)

where, the subscript i indicates the phase (gas/liquid/oil) present in the system, αi, is the void fraction

of phase i with ∑i αi = 1, and Finter
i represents the interfacial forces that are used to couple interactions

between phases. Additionally, Ti represents the viscous stress tensor while ui, ρi, p and g represent

the fluid velocity, density, pressure and gravitational acceleration, respectively. It is noted that closure

relations need to be incorporated to account for the phase interactions including drag, lift, wall

lubrication, virtual mass and turbulent dispersion forces within Finter
i . For a detailed description of the

available correlations for these forces, the reader is referred to the literature [46, 84–86].

The ITMs discussed here are generally implemented on an Eulerian grid, however, these methods

only solve one set of continuity equations. The ITMs can be divided further into volume-tracking

or front-tracking methods. The volume-tracking methods were developed from the marker-and-cell

approach proposed by Harlow [34]. In these methods, for example volume-of-fluid (VoF) [36], level-set

(LS) [38] or Phase Field (PF) [42], an order parameter is advected through the flow field to track the

location of each phase present in the system. Thus, the volume of each phase is effectively being

tracked and the interface can be re-constructed from this information. These methods typically solve a

single set of continuity equations weighted by the phase fraction or order parameter, which is tracked

by a marker function of the form,

∂tα +u ·∇α = 0, (2.55)
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The implementation of interfacial interactions, such as surface tension, on an Eulerian grid is

performed via a volumetric force in the momentum equation to account for the likelihood of the

interface location to be ‘off-grid. In this sense the force is applied to a regularised region about the

interface, rather than as a force at the interface point only. There are two ways in which the surface

tension force can be derived. Firstly, one can consider a geometric argument, in which the force acts to

minimise the interfacial area. Alternatively, one can also look at the system from a chemical potential

perspective in which the force acts to minimise the free energy functional of the system [42].

In addition to the previously mentioned TFM (also referred to as the Euler-Euler approach or

multifluid model if more than two phases are present) and interface tracking techniques, another

important class of two-phase solvers is the Euler-Lagrange method. Here, the dispersed phase is

no longer captured on an Eulerian grid, but the position of each particle or bubble is tracked and

propagated using Newtons laws of motion. The behaviour of the individual bubbles is then coupled to

the bulk media, which is solved through the Reynolds-averaged Navier Stokes (RANS) equations. The

bulk media can be resolved with varying techniques including the finite volume and lattice Boltzmann

methods [87].

In multiphase pipe flows, various flow regimes are observed in which the gas-liquid interface

acquires characteristic topologies that affect the phase interactions. As such, the traditional form

of methods such as the one-, two- or three-dimensional TFM require correlations to describe the

phase interactions, creating a dependence on the flow regime. This means that a priori knowledge is

required to describe how the flow will manifest before predictions and or simulations are conducted

and, therefore, the importance of flow regime maps is realised. Contrary to this, recent works have

developed hybrid models that effectively couple the TFM with either a population balance model

(PBM) or an ITM in an attempt to eliminate the dependency on prior knowledge of the flow regime.

The commercial CFD code, CFX for example has implemented an inhomogenous multiple size group

(MUSIG) model [88–90] that has been reported to capture flow regimes consistent with the work of

Taitel et al. [58] on vertical co-current flow.

One criticism of experimentally generated flow maps is the level of subjectivity that arises in

determining the current flow regime. To cater for this, Krepper et al. [90] looked to use more objective

criteria when analysing co-current vertical flows by measuring the bubble size distributions and

radial gas volume fraction profiles. This was performed in both their experimental setup and CFD

simulations. They were able to show that their model could quite accurately capture bubble size

distributions correlating to the transition from bubble to slug flow.

Parvareh et al. [91] used the VOF technique to capture the liquid-gas interface development in

co-current flow for both horizontal and upwards vertical flow configurations. Experimental work was

performed in small diameter pipes of 2 cm diameter and 4 m length. In the tested cases, the researchers

were able to qualitatively match simulation and experimental results for slug, churn and annular flows,

but only a limited discussion of the numerics was given.

Dakshinamoorthy et al. [92] followed the approach of coupling the TFM with the VOF technique

to analyse flow in a large vertical pipe (ID of 189mm) with a superficial liquid velocity of 0.05m/s and
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varying superficial gas velocities from 0.1 to 1.0m/s. In this study, the authors were able to qualitatively

identify flow regimes consistent with experimental results and without the need for pre-identification.

It is noted that slight trouble in identifying a pure bubble regime was observed, with small regions of

high void fraction possibly indicating a move to intermittent slug flow, again highlighting the difficulty

that can arise in determining specific transition points. Quantitatively the same study compared both

pressure drop and void fraction profiles for the slug and annular flow cases that showed reasonable

agreement with experimental measurements.

The following sections discuss the aforementioned simulation techniques for simulation of different

flow regimes.

Bubbly flow

Modelling of dispersed bubbly flow in pipes is typically approached using either the TFM or an

Euler-Lagrangian technique. In order to model this flow regime with an ITM alone, a high-resolution

grid is required to fully resolve the bubble motion which leads to excessive computations for practically

sized scenarios. However, this approach is often used for direct numerical simulation (DNS) of a finite

number of bubbles in order to derive correlations also known as closure models, for the interfacial

forcing terms, such as drag and lift. These forces need to be modelled as sub-grid-scale interactions in

both the TFM and Euler-Lagrange methods [86, 93, 94].

The TFM was validated by Rzehak and Krepper [95] against experimental void fraction and mean

fluid superficial velocities of the bubble flow regime in upward flows through ANSYS CFX. It is

noted that extensive validation with experimental data is still required for closure models under a wide

range of flow conditions (e.g. counter-current flows) and configurations (e.g. inclined or annular pipe

geometry, different pipe sizes). This can potentially limit the TFM, but the possibility of formulating

these correlations from CFD experiments is one option to streamline the process.

Slug flow

Capturing the bubble to slug regime transition can be quite complex using the TFM as the bubble

size tends to be predefined in order to apply closure models. Therefore, MUSIG solvers along with

PBMs have been developed to account for bubble coalescence and break-up. Such models were used

by Lucas et al. [89] and further developed by Das and Das [96] to simulate the transition from bubbly

to slug flow regimes in upwards vertical pipes and annular geometries, respectively. These studies

highlighted the importance of capturing the radial position of different sized bubbles in predicting the

transition point as a function of pipe length over diameter. The simulation results showed that small

bubbles moved closer to the wall, but after coalescence they shifted towards the centre of the pipe.

The application of ITMs such as the VOF, LS and PF techniques have been utilised in the literature

to resolve the shape, velocity and liquid film parameters of Taylor bubbles to assist in the understanding

of the slug flow regime. Additionally, these techniques have been used to analyse the wake region

of the liquid slug in which smaller bubbles are typically found. Taha and Cui [97] used the VOF
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technique within the ANSYS CFX platform to analyse all of these parameters. They used a vertical

pipe with a 19 mm diameter and concluded ranges of dimensionless numbers for which varying shape

profiles, rise velocities and wake behaviour could be expected. In the study, the bubble rise velocity, in

the form of the bubble Froude number, was shown to be a function of the surface tension. The results

were consistent with experimental data from the literature with Eötvös numbers ranging from five to

500. Additionally, the inverse viscosity number, N f , was found to be correlated to the length of the

bubble wake, with numerical results presented for N f between 100 and 750. These such relations can

be essential to close the system of equations in 1D mechanistic models.

Churn/annular flow

With a continued increase in gas velocity, Taylor bubbles become unstable and the flow within a pipe

breaks down into the churn regime. Da Riva and Del Col [98] used the VOF technique and the ANSYS

CFX simulation software in order to simulate the churn flow regime and its transition mechanisms in

small diameter pipes (ID of 32mm). Deforming bubbles in the churn flow regime introduce a great

level of complexity in modelling via the TFM due to the lack of robust closure models for this regime.

A DNS approach is also complicated due to the variation in bubble size and the requirement of a

finely-resolved solution to capture the break-up of small bubbles. Montoya et al. [99] proposed that

perhaps a hybrid model would be effective to capture the sub-grid-scale behaviour, however, this

required the development of accurate break-up and coalescence models.

Further increase in gas flow leads to the annular flow regime in which gas flows in the core of

the pipe carrying entrained liquid droplets and surrounded by a thin liquid film. A simplified view of

annular flow tends to be particularly well suited for interface tracking methods with a high level of

separation. However, similar to the churn flow regime, there is a range of scales evident in the system

and to accurately capture the behaviour of entrained droplets would require a high computational grid

resolution using an ITM alone. Such a problem was addressed by Liu et al. [100] where a two-phase,

two-component numerical model was proposed to analyse vertical upwards annular flow in a small

diameter pipe (ID of 31.8mm). This study used a two-fluid-type mixture model in the gas core and a

VOF method to differentiate the gas core from the liquid film. Good predictions were found for the

pressure gradient, wall shear stress, film thickness and the film flow flux and the parameters associated

with the wave-like behaviour in the liquid film. This presents an interesting technique for capturing

the various scales present in two-phase flows, however, a complete understanding of deposition and

entrainment of liquid droplets is required for varying flow configurations.

Despite the large body of existing literature in the simulation of flow regimes, complete validation

of these models across a large range of flow geometries has not yet been achieved. This indicates

potential work in the future to develop either robust coupling methods to capture bubble size of varying

scales or improved closure relations to model the complex phase interactions. In this work, there

is a focus on improved closure relations through high resolution CMFD using lattice Boltzmann

techniques.
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2.3.2 Multiphase lattice Boltzmann modelling

An alternative method of reconstructing the NS equations that has become prominent in recent literature

is the lattice Boltzmann method. Multiphase and multicomponent (MPMC) fluid dynamics is currently

an active area of research in the lattice Boltzmann community. The method has many inherent traits

that make it a strong candidate for two-phase flow problems. In addition to the discussion of multiphase

LBM techniques presented here, Chapter 3 provides the fundamental theory for the interested reader.

The LBMs derivation from the Boltzmann equation as a mesoscopic method allows more control

over the molecular interactions that lead to macroscopic behaviours seen in multi-fluid flows. Being

comparatively new to its use in multiphase dynamics, there still exist a number of model variations

in active use around the LBM community. The models can be grouped into four categorise based on

the philosophy from which they were derived and the method of implementing inter-particle forcing

terms. There is the chromodynamic or colour-gradient method (CGM) [101], pseudo-potential [22,41],

free-energy [102] and mean-field [103] schemes. In this section, an overview of the timeline in which

methods were proposed as well as the primary strengths and weaknesses are discussed. A mathematical

basis for the models used in this works will be discussed in detail in Chapter 3.

The CGM was proposed by Gunstensen et al. [101] based on the work of Rothman and Keller [40] in

multiphase lattice gas automata. The method has seen continued development in the LBM community

with modifications by the likes of Grunau et al. [104], and with successful implementation in areas

such as porous media flows [105] and ocean-based carbon capture and storage [106]. However, coming

from the lattice gas automata, the method was not originally based on a physical description of the

fluid, but rather a heuristic approach. Following on from this, Shan and Chen [22, 41] proposed a

pseudo-potential method in which a fluid-fluid interaction force is defined enabling non-ideal equations

of state to be obtained. A number of limitations with the original model were observed including

large spurious currents, thermodynamic consistencies and limited density/viscosity ratios as well

as difficulty in adjusting fluid properties independently (e.g. surface tension) [102, 107, 108]. A

number of improvements have been seen over the years with the pseudo-potential technique often

being used in bubbly and slug flow simulations [94, 109–111]. Ngachin et al. [111] for example, used

the pseudo-potential LBM in comparison with a validated level set method in COMSOL Multiphysics.

They were able to obtain reasonable qualitative (Figure 2.5) and quantitative agreement between the

cases.

In order to obtain these type of results, the critical improvements needed in the pseudo-potential

LBM included proper forcing models and implementation schemes as well as techniques for incorpo-

rating realistic equations of state. The benefits of improved forcing models tends to act to reduce the

spurious currents and improve the general stability of the model. This is particularly important in high

density ratio simulations. The currents tend to originate from a lack of isotropy in the discrete gradient

term used to drive ‘like’ fluids together and repel dissimilar fluids [112]. Recent work by Kupershtokh

et al. [113] and Lycett-Brown and Luo [27] have developed new force schemes that not only reduce

spurious currents but allow the independent tuning of parameters such as surface tension. In order to

model higher density ratios, researchers such as He and Doolen [107], Sankaranarayanan et al. [94]
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Figure 2.5: Comparison by Ngachin et al. [111] using a pseudopotential LBM with benchmark test
cases simulated in COMSOL Multiphysics.

and Yuan and Schaefer [26] devised fluid interaction forces that expanded to recover equations of state

including the van der Waals, Peng-Robinson or Carnahan-Starling equations. Even with the above

improvements, this method still struggles to maintain stability in dynamic simulations at high density

ratios. Additionally, there is a disconnect between simulation and physically realisable parameters,

namely, interface thickness and surface tension. Here, interface thickness is typically determined by

the equation of state parameters and surface tension is found as a result of the inter-particle attractions.

Due to the limitations that initially existed in the psuedo-poential LBM, Swift et al. [102, 114]

developed a model through formulation of the free energy in the system so as to ensure thermodynamic

consistency. An additional benefit with the free energy formulation was that it incorporated physical

characteristics such as surface tension and interface thickness allowing them to be directly altered in

place of indirectly through model parameters. The method however, was criticised for lacking Galilean

invariance and had similar issues of density contrast as the original pseudo-potential LBM. In order to

correct the Galilean invariance, Holdych et al. [115] proposed corrective forcing terms such that the

NS equations would be satisfied in regions of high density gradients. In the same work, the model

Swift et al. [102] presented on a D2Q7 lattice was extended to a rectangular, D2Q9 lattice. Lattice

shapes and constructions will be discussed in Chapter 3.

The free energy LBM has found a wide range of application, from bubble rise cases [116]

and multi-component mixing in channels through to complex flow systems such as liquid crystal

hydrodynamics [117]. Takada et al. [116] verified the model against volume of fluid solutions, but

only with a small density ratio applied (see Figure 2.6). A significant breakthrough in free energy

models came in 2006 when Zheng et al. [118] pointed out that the method could be extended to
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correctly solve the Cahn-Hilliard interface tracking equation. This enabled realistic gas-liquid flows

with high density ratios and complex interface topologies to be stably captured. However, certain

limitations were inherited from the original free-energy model. As a result, the model was unable to

correctly recover local density variation in the momentum equations. However, a transformation was

recently proposed by Shao et al. [119] that allowed the model to resolve this issue. Shao et al. [119]

performed verification works against a number of benchmark cases including layered Poiseuille flow,

Rayleigh-Taylor instability as well as droplet splash and collision.

Figure 2.6: Comparison by Takada et al. [116] using a free energy LBM with benchmark test cases
simulated in using a volume of fluids technique.

During the time that the free energy method was being developed, another stream of researches

headed by He, Chen, Zhang and Doolen were investigating an artificial compressibility-like equation

[103]. This was extended by Lee and Lin [25] from the perspective of a simplified pressure evolution

equation that had no reliance on an equation of state after initialisation. They outlined the update

from an equation of state as the cause for pressure fluctuations at phase interfaces, and hence a way

to avoid it in the form of a pressure evolution LBM. A downfall of this method was a lack of mass

conservation, but recent work [28] has corrected this issue with the incorporation of a conservative

phase-field equation. Fakhari et al. [28] then continued to showcase the method, coupled with an

adaptive mesh refinement scheme in order to simulate bubble rise, fall and splashing phenomena.

Certain implementation issues still existed with this model including a lack of locality (lattice update

requires information from cells ±2∆x away) as well as choice in finite difference stencils. Work

presented in Chapters 4 and 5 of this dissertation and published by Fakhari et al. [120] and Mitchell

et al. [3] improve the locality of the phase field method and demonstrate its robustness for both high

density and viscosity ratio systems.
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In addition to the multiphase methods discussed above, LBM has also been coupled with conven-

tional interface tracking techniques such as the VOF and LS methods. Yu et al. [121] and Thommes et

al. [122] for example have looked at coupling the LBM with a LS interface tracking algorithm. These

authors used the verification of Young-Laplace’s law before applying their methods to problems such

as a dam breaking and viscous fingering respectively. The collaborative work from The University

of Erlangen-Nueremberg and the System Simulation Group, Erlangen, analysed bubbly flows with

specific applications in modelling foams using a coupled LBM-VOF technique [123].

2.4 Chapter summary

This chapter has looked to give a theoretical basis for multiphase flow systems, highlight the current

methods employed in day-to-day industry activities as well as introduce available simulation techniques.

The reliance of 1D two-fluid, mechanistic models as well as 1D empirical models on closure relations

defined from a database of experimental results was discussed. However, with a strong focus on

tubular, co-current flows in literature, a gap still exists in relation to the behaviour of counter-current

flow, particularly with internals. This not only includes parameters such as spherical and or Taylor

bubble rise characteristics which affect the pressure drop once a flow regime is determined, but also in

the governing aspects of flow regime transitions. As discussed, a common approach used to determine

transition is through flow regime maps, for which no universal counter-current annular piping map

currently exists. The lack of studies surrounding counter-current flow has greatly restricted the accuracy

of flow predictions in these types of systems.

To study the behaviour of multiphase flows, CMFD was discussed as a potential option in place

of experimental works. Here, the use of CMFD can reduce the time and cost required to generate a

database of flow characteristics which has historically been done through experimentation in flow loop

equipment. Additionally, the high resolution results generated over the full domain from 3D CMFD

can provide new insight into flow regime transitions. In comparison, experimental measurements

often require intrusive probes that can disrupt the flow and or expensive sensory equipment in order to

extract useful information from an apparatus. For these reasons the approach in this work will focus

on numerical modelling and simulation results in order to develop understanding. In this, the LBM

provides an alternative approach to accurately incorporate the range of scales evident in multiphase

flows. The computational cost of conventional methods can be exhaustive, with iterative schemes

often required to ensure stability and convergence (e.g. solution of the Poisson equation for the system

pressure), in contrast, the inherent parallelism of the LBM can assist take full advantage of available

computational resources. This stems from the kinetic roots of the LBM making it ideal for modern

computer architectures, including large scale CPU and GPU clusters.

This work looks to exploit the advantages of the LBM to gain detailed insights into the liquid-gas

interactions within an unconventional wellbore. As a result of this, the following chapter looks to

give the reader a detailed overview of the LBM. This includes both the theory of single phase and

multiphase flows, with the limitations discussed where relevant.





Chapter 3

Fundamentals of Multiphase Lattice
Boltzmann Methods

S = k. log W

“If you are out to describe the truth, leave elegance to the tailor.”

Ludwig Boltzmann

The objective of this chapter is to introduce the reader to lattice Boltzmann methods for fluid

mechanics. This is done by a discussion of the single phase LBM and the lattice constructions generally

used in literature. From here, the connection to the NS equations is discussed. This will outline where

some of the key benefits of the method arise. Finally, the numerical details are presented for common

multiphase LB schemes. These methods represent the foundation of this work, facilitating the analysis

of flow scenarios relating to the extraction of natural gas.

3.1 Single phase lattice Boltzmann techniques

In order to simulate the dynamic fluid interactions present in the wellbore, the LBM provided the

primary numerical tool for resolving the governing equations of multiphase flow. Over the past few

decades, the LBM has been increasing in popularity and its use in a broad class of complex flow

cases is evident. Notable inclusions of LBM applications are that of “thermal flows, reactive transport,

turbulent flows, and multiphase flows” [108]. The LBM builds on the observation that macroscale fluid

dynamics is a result of the interaction of particles within a system. Therefore, by looking statistically

at the interaction of the molecules, the macroscopic behaviour is recovered. As a result of the method’s

roots in kinetic theory, it is often referred to as a mesoscopic method.

Figure 3.1 from the work of Delbosc [124], gives an overview of three length scales commonly

applied to describe fluid flow. At the microscopic scale, the trajectories of molecules in the fluid are
35
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represented. The mesoscale then studies the averaged behaviour of these particles by capturing the

evolution of probability or particle distribution functions, f (x,ξ , t). Finally, the macroscale looks at

the fluid as a continuum in which flow parameters (velocity, pressure etc.) are defined at each point in

space and time [124].

Figure 3.1: Image from Delbosc [124] indicating the various physical scales commonly used in the
analysis of fluid flow.

The LBM can be described as the numerical scheme that allows one to solve the discretised

Boltzmann equation. This is obtained from the well known continuum Boltzmann equation,

∂ f
∂ t

+ξ .∇ f +F.
∂ f
∂ξ

= Ω, (3.1)

where f = f (x,ξ , t) is the probability distribution of finding a fluid particle at a point in space, x, with

microscopic velocity, ξ , at time, t. The collision operator, Ω, describes the interaction of molecules

and, F, indicates a body force applied to the system (e.g. gravity). For ease and clarity of description,

the Bhatnagar Gross Krook (BGK) approximation for the collision operator is used [125],

ΩBGK =
f eq− f

τ
, (3.2)

where τ is the relaxation parameter linked to kinematic viscosity through the Chapman-Enskog

expansion [126],

ν =
∆x2

3∆t
[τ−0.5] , (3.3)

and f eq is the Maxwell-Boltzmann equilibrium distribution function. The Chapman-Enskog expansion

was named after Sydney Chapman and David Enskog who were able to independently show the

connection of the lattice Boltzmann method with the Navier-Stokes equations. The method takes

on the form of an asymptotic analysis in which the probability distribution functions and temporal

variables are expanded by assuming a very small Knudsen number, ε ,

f = f (0)+ ε f (1)+ ε
2 f (2)+ . . . (3.4)
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∂t = ∂t0 + ε∂t1 + ε
2
∂t2 + . . . . (3.5)

This expansion is based on the assumption that the mean free time between particle collisions is

sufficiently small in comparison with the time scale of the macroscale flow evolution. In other words,

the flow of the fluid changes only slightly over a large number of particle collisions.

The Maxwell-Boltzmann distribution is traditionally adopted for the defining f eq,

f eq =
ρ

(2πθ)D/2 .exp
(−(ξ −u)2

2θ

)
, (3.6)

and indicates the distribution of molecules moving with certain velocities. Here, D is the dimensional

space covered by ξ , and θ = kBT/m is the normalised temperature with kB, the Boltzmann constant

and T , the temperature. By Taylor expanding the exponential and choosing a discrete velocity set

ξ → ci, Gaussian quadrature can be applied to determine the the equilibrium distribution as [127],

f eq
i (ρ,u) = wiρ

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
. (3.7)

Here, wi is the lattice weights and cs is the numerical speed of sound, both of which depend on the

lattice structure chosen. Integrating Equation 3.1 along the characteristic directions, ci from time t to

t +δt and assuming ideal collisions such that the collision operator is constant through the process, the

lattice Boltzmann equation (with single-relaxation-time BGK collisions) is obtained [127, 128],

fi(x+ ciδt , t +δt) = fi(x, t)−
fi(x, t)− f eq

i (x, t)
τ

+Si(x, t). (3.8)

Here, the subscripts i indicate that the probability distribution function (or forcing term) that is related

to the discrete velocity direction i. The forcing term has been incorporated in the source parameter, Si,

in which body forces and intermolecular forces can be applied.

3.1.1 Common lattice constructions

The discretisation of the physical system is an important aspect of the LBM, as it must be performed in

a manner that allows recovery of the hydrodynamic moments and fluxes relevant to NS fluid mechanics.

As a result of this, lattice constructions need to be symmetric, which helps to ensure isotropy of the

second-rank, or second-order velocity tensors. In the LBM literature, the common terminology to

describe a lattice is given as DdQq, where d is the dimensional space of the system and q is the number

of discrete velocities. Frisch et al. [129] were the first to propose a lattice that could successfully

recover the NS equations in 1986. This was done with the use of a hexagonal (D2Q6) construction and

collisions rules that were able to conserve both mass and momentum. This has since evolved into a

D2Q9 structure, which is currently the most commonly seen 2D lattice. With the D2Q9 lattice, it is

evident that the lengths between orthogonal, diagonal and rest directions are different, and this tends

to be captured in the weightings, wi. Figure 3.2 shows the links between the lattice nodes in which

probability distribution functions, fi, move from the centre to each node in the direction ci.
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Figure 3.2: The connection between a node and its neighbours showing the discrete velocity space in
two dimensions. Solid lines represent the discrete velocity directions from a computational node at the
centre of each stencil.

Lattices that can be found in the literature for three dimensions include the D3Q13, D3Q15, D3Q19

and the D3Q27 and are displayed in Figure 3.3. Using a higher-order lattice allows the capturing of

hydrodynamic moments and can enhance both the stability and accuracy of the LBM. The lattices

touched on thus far only include links to nearest neighbours. Lattices exist that extend beyond this

single stencil layer, but are generally incorporated only if higher order physics is required (e.g. energy

conservation) [130]. Extending the stencil causes a loss in locality of the algorithm and can hinder

computational efficiency.

(a) D3Q13 (b) D3Q15

(c) D3Q19 (d) D3Q27

Figure 3.3: The connection between a node and its neighbours showing the discrete velocity space
in three dimensions. Here, solid lines represent the discrete velocity directions from a computational
node at the centre of each cube.
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3.1.2 Stream and collide

The LB algorithm can be broken into two stages, a streaming or communication step and a collision

step. This is one of the benefits of the LBM, as the streaming step requires neighbouring node

information to be processed, but all operations are linear. Whereas the nonlinear operations involved

in the collision step are confined locally to be performed at each node. The order of the stream/collide

steps do not affect the accuracy of the algorithm, but can alter the computational efficiency. This is a

result of memory location on computing architectures and the fact that an unordered (uncoalesced)

read of data followed by an ordered (coalesced) write is typically faster than the reverse. Work by

Delbosc [124] found a 10% speed up on a TESLA K40, by simply using this pull-in streaming in place

of a push-out technique. In this sense, the general computer algorithm used for the LBM consists of:

1. Initialise: here the domain is set to an equilibrium distribution

fi = f eq
i (ρ,u) = wiρ

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
(3.9)

2. pull-in stream: read neighbour populations into update node

fi(x, t) = fi(x− ciδ t, t) (3.10)

3. Calculate macroscopic properties from the streamed populations.

ρ = ∑
i

fi (3.11)

ρu = ∑
i

fici (3.12)

p = c2
s ρ. (3.13)

4. Collide: perform relaxation and write new state to local update node (alternatively, incorporate

boundary conditions to be discussed in Section 3.1.4).

fi(x, t +δ t) = fi(x, t)−
fi(x, t)− f eq

i (x, t)
τ

+Si. (3.14)

Here it is noted, that the collision stage can vary significantly, with various techniques used in

the literature to improve stability. The BGK relaxation described above is commonly used due to

its simplicity, but a number of limitations exist. The connection of the relaxation parameter, τ , to

viscosity puts a lower bound of 0.5 to maintain physical realness. For example, the parameterisation of

viscosity shown in Equation 3.3 requires that the relaxation parameter, τ , is always greater than 0.5.

Additionally, values far away from 1 can result in larger errors and tend to show a τ-dependency, not

seen in physical problems. Therefore, in order to obtain low viscosities, or a range of viscosities (e.g.

for a liquid and a gas) it is necessary to employ a more advanced collision kernel. Of particular use in

this work is the multiple-relaxation time (MRT) operator.

In addition to the BGK and MRT methods, further work has been undertaken in an attempt

to improve accuracy and stability of the LBM with relaxation kernels such as the entropic [131],

cascaded [132] and cumulant [133] operators. The scope of this work does not include the development

of new operators, but both the MRT and cascaded methods are utilised.
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3.1.3 Multiple-relaxation-time collision operators

The MRT operator was proposed by d’Humieres [134] in 1992, and has seen widespread use in the

LBM community, especially in multiphase dynamics. The collision operator was tested in detail

by Lallemand and Luo [135], where results indicated a significant improvement in stability when

compared with the BGK operator. The MRT looks to separate out the hydrodynamic quantities and

their fluxes explicitly as moments of the probability distribution functions, fi. This allows each mode

to be relaxed independently and overcomes a number of the deficits present in the BGK simplification.

In order to convert the system to the macroscopic moments relating to hydrodynamic properties,

a transformation matrix, M, is defined. In the following, the standard notation is used to represent

column vectors, [ f0, ..., fi]
T = | f 〉. The moments can then be given as,

|m(x, t)〉= M| f (x, t)〉. (3.15)

Following the description from Lallemand and Luo [135], |m(x, t)〉 for the nine-velocity LBM (D2Q9)

is chosen as,

|m(x, t)〉= (ρ,e,ε, jx,qx, jy,qy, pxx, pxy), (3.16)

such that the rows of the transformation matrix, M, are given by,

M0 = (1,1,1,1,1,1,1,1,1) (3.17a)

M1 = (−4,−1,−1,−1,−1,2,2,2,2) (3.17b)

M2 = (4,2,2,2,2,1,1,1,1) (3.17c)

M3 = (0,1,0,−1,0,1,−1,−1,1) (3.17d)

M4 = (0,−2,0,2,0,1,−1,−1,1) (3.17e)

M5 = (0,0,1,0,−1,1,1,−1,−1) (3.17f)

M6 = (0,0,−2,0,2,1,1,−1,−1) (3.17g)

M7 = (0,1,−1,1,−1,0,0,0,0) (3.17h)

M8 = (0,0,0,0,0,1,−1,1,−1). (3.17i)

Here, the above parameters from ρ to pxy are described as the density and energy modes, energy

square, mass and energy fluxes and the diagonal/off-diagonal components of the second order stress

tensor. If higher order lattice constructions are considered, it is possible for non-physical modes to

occur and their relaxation tuned for stability. Treatment of these is often left to the user, so long as the

collision matrix remains invertible. The discretised evolution equation then becomes,

| f (x+ ciδ t, t +δ t)〉= | f (x, t)〉−M−1Ŝ(|m(x, t)〉− |meq(x, t)〉) (3.18)

where Ŝ is a diagonal matrix corresponding to the relaxation parameters of each mode and M−1

transforms the result back to f -space. If the diagonal values of the relaxation matrix are selected

to be equal, the MRT method becomes equivalent to the LBGK. However, with the hydrodynamic
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properties separated, it is clear that each can be relaxed independently, giving the user the ability

to tune parameters such as the bulk and shear viscosity [136]. Particular note is made in numerous

studies that pressure oscillations are also reduced with the use of MRT-LBM, which is advantageous in

this work, but the primary reason for its implementation is the requirement of viscosity contrast in a

liquid-gas system.

3.1.4 Boundary conditions

The specification of boundary conditions in any CFD code is crucial for the accuracy and stability of

the method. The effects of a poorly-implemented boundary can result in large errors even in far-field

areas. This is no different in the LBM, and can be complicated due to the abstraction of distribution

functions from macroscopic parameters. Therefore, when implementing boundaries in the LBM, it

is commonplace to map specified macroscopic conditions (pressure, velocity etc.) to the unknown

distribution functions found at boundary nodes after the streaming stage. There has been a number

of proposed methods to deal with boundary nodes over the development of LBM. This section looks

at those boundary conditions applicable in this work. An exhaustive review of all LBM boundary

implementations is not given, but the interested reader is pointed to the work of Delbosc [124] and

references therein.

Bounce-back

When looking at flow within a pipe, there is an obvious need for solid wall boundaries in order to

confine the flow. Achieving this in the LBM framework turns out to be a straightforward exercise,

and one that has contributed greatly to its popularity. To achieve the no-slip boundary condition the

distribution functions entering a boundary node are simply reversed,

fi(x, t) = fī(x, t), (3.19)

where i and ī correspond to opposing lattice directions.

There exist two schemes to implement this boundary, namely the full-way (FBB) and half-way

bounce-back (HBB). The primary difference between these methods is the characterisation of the

bounding node; in FBB the boundary node is flagged as solid and no collision operation is performed.

All distribution functions streamed into the node are reversed and streamed back out in the proceeding

time step. This gives a wall location at the halfway point between the bounding solid node and interior

fluid node. In comparison, the HBB requires a post (or during)-streaming operation to reverse only the

distribution functions moving out of the domain, allowing the bounding node to be treated as a fluid,

with normal relaxation procedures applied. The result of the HBB scheme is a wall boundary half a

grid spacing outside the computational domain. In this work, the FBB has been applied as it eliminates

the need for specifying wall normal directions in order to determine reversed distribution functions.
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Periodic domain

Periodicity is arguably the most common (and simple) boundary to be applied in LBM simulations. In

this, populations exiting from one side of the domain are simply redirected to the opposing side using

modular arithmetic. Here, it is noted that the populations need to be mapped to their true advection

position based on the discrete velocity directions, not simply straight across the periodic bound. This

allows for steady-state behaviour to be determined by effectively simulating flow through an infinite

domain.

Pressure/velocity conditions

In conventional CFD, fixed pressure and velocity boundaries are often selected for inlet and outlet

conditions. In the LBM these macroscopic properties are not in themselves streamed through the

domain, but can be used to reconstruct the unknown populations at an inlet/outlet node. The first to

propose this reconstruction process was Zou and He, and as such the method is often referred to as the

ZOU-HE boundary condition [137]. To provide an insight to the workings of the ZOU-HE boundary

condition, the following demonstrates the reconstruction process for a fixed velocity, left wall using a

D2Q9 lattice. At the boundary node, the unknown properties post-streaming include the fluid density

as well as f1, f5 and f8 (refer to Figure 3.2b for directions). This gives four unknowns, and using the

moments of mass and momentum, we only have three equations,

ρ = ∑
i

fi (3.20)

ρux = ∑
i

ci,x fi (3.21)

ρuy = ∑
i

ci,y fi (3.22)

In order to provide the closing equation for the system of unknowns, the bounce-back rule is

applied for the non-equilibrium component of the distribution functions normal to the boundary,

f1 + f eq
1 = f3 + f eq

3 (3.23)

Therefore, one starts by combining Equations 3.20 and 3.21 to obtain the density as,

ρ =
1

1−ux
[ f0 + f2 + f4 +2( f3 + f6 + f7)] . (3.24)

Expanding Equation 3.23, and using the known density f1 is given by,

f1 = f3−ρw3

[
1+
−ux

c2
s

+
u2

x
2c4

s
− u2

x
2c2

s

]
+ρw1

[
1+

ux

c2
s
+

u2
x

2c4
s
− u2

x
2c2

s

]
= f3 +

2
3

ρux. (3.25)

From here it is simply a matter of rearranging Equations 3.21 and 3.22 to find,

f5 = f7 +
ρ

2

(ux

3
+uy

)
+

1
2
( f4− f2) (3.26)
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f8 = f6 +
ρ

2

(ux

3
−uy

)
− 1

2
( f4− f2) (3.27)

This same logic can be applied to various lattice stencils and holds in 3D. However, Delbosc [124]

reported that the method requires significant changes for higher order lattices such as the D3Q19

and D3Q27, that can make it difficult to implement. To get around this, a method proposed by HO-

CHEN-LIN [138] looks to write the unknown distribution functions as a summation of the equilibrium

distribution and an additional source vector, Q = (Qx,Qy,Qz). This effectively reduces the number

of unknowns to three no matter the lattice stencil size. The interested reader is pointed to a detailed

description of this work in Ho et al. [138] or a brief overview in Delbosc [124].

3.2 Multiphase models

As discussed in Chapter 2, there are a variety of models within the LB framework that look to solve

multiphase (and multicomponent) flow problems. A number of these schemes have been adopted in

both commercial and research codes [21], and it is these models as well as extensions to them that

will be described in this section. These methods include the colour-gradient model [101], the Shan-

Chen psuedo-potential model [22], the free energy model [102], and the phase-field coupled pressure

evolution LBM presented by Lee and Lin [25]. From these, the Shan-Chen model is particularly

well-known, and has been credited as the inspiration for the later two models.

3.2.1 Colour-gradient

As the name suggests, the colour-gradient model assigns each phase in the system a different colour

(commonly red and blue). For each colour, a set of distribution functions (referred herein as a

population) are initialised, | fb〉 and | fr〉, and the total mixture population is then given as, | f 〉 =
| fb〉+ | fr〉. In this, a perturbation term, Γ

p
i , is included to account for the inter-particle interactions and

allow for phenomena such as phase separation [139],

fi(x+ ciδ t, t +δ t) = fi(x, t)+Ωi +Γ
p
i . (3.28)

The macroscopic properties for each fluid phase are then constructed in the normal way from each

respective population and mixture properties are simply the summation of the phase density and

velocity at each node. In order to determine Γ
p
i an order parameter is first introduced in order to

determine the local colour gradient, G(x, t), for each node,

ψ(x, t) = ρr(x, t)−ρb(x, t) (3.29)

G(x, t) = ∑
i

ciψ(x+ ciδ t, t). (3.30)

Following this, the perturbation term is calculated by [139],

Γ
p
i = A|G(x, t)|cos(2θi), (3.31)



44 CHAPTER 3. FUNDAMENTALS OF MULTIPHASE LATTICE BOLTZMANN METHODS

where θi is the angle between ci and G(x, t), while A is a parameter used to control the surface tension.

Having determined the perturbation term the nodal relaxation can be performed according to

Equation 3.28, following this a re-colouring step is required. This effectively enforces “the direction

of the [colour] flux H = ρrur−ρbub to match that of the [colour] gradient” [139]. As a result of this,

the fluid is forced into regions of its own colour, inducing phase separation. As previously discussed,

being an early method of the multiphase LBM family, the colour-gradient models tend not to have a

strong physical description of the fluid [124], but advances in this model have seen to a wide range

of applications. The interested reader is pointed to the book by Guo and Shu [139] for a detailed

description of the theoretical basis of this model.

3.2.2 Pseudo-potential

The model proposed by Shan and Chen [22] looked to improve on the colour-gradient model by

replacing the perturbation term with a pseudo-potential force between molecules. In a single component

system, this could be thought of as an approximation of the Lennard-Jones potential. It is noted here,

that the psuedo-potential model can be used in either a single-component multi-phase (SCMP) or

multi-component multiphase (MCMP) formulations. In order to extend the SCMP to an MCMP,

additional populations must be introduced and the interaction force between components described. In

the original model proposed on a D2Q9 lattice, the SCMP inter-particle force is given by [140],

Fint =−Gψ(x, t)∑
i

wiciψ(x+ ciδ t, t), (3.32)

where ψ represents the mean-field potential and G controls the strength of the interaction force.

Different potential forms have been used in literature, but it is generally a function of density, ψ =ψ(ρ).

Shan and Chen [22] originally proposed,

ψ(ρ) = ρ0(1− exp(−ρ/ρ0)), (3.33)

where ρ0 is simply a constant, usually taken as one. This form allowed for density variation, but

capped the magnitude of the gradient of ψ over an interface. Further understanding of the force being

applied from Equation 3.32 is given by analysing its Taylor expansion for example on a D2Q9 lattice,

Fα =−G
δ t
6

∂αψ
2−G

δ t3

18
ψ∂α∇

2
ψ, (3.34)

where α refers to the Cartesian coordinates. Combining this with the knowledge that at equilibrium,

∇p = ∇(ρc2
s )−F, (3.35)

one can find the non-ideal equation of state and rearrange to obtain an expression for ψ ,

p = ρc2
s +

Gc2
s

2
ψ(ρ)2 (3.36)

ψ =

√
2(p−ρc2

s )

Gc2
s

. (3.37)
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Here, it is clear that Equation 3.33 is not equivalent to 3.37. This is the thermodynamic inconsistency

that has been criticised extensively in the early pseudo-potential models. The inconsistency is primarily

a result of the assumption that a molecule at a computational node interacts only with its nearest

neighbours, whereas a Lennard-Jones potential includes both short range repulsion and long range

attractions. Therefore, as the errors due to this truncation grow, the model can suffer from non-physical

diffusion and spurious currents at the interface [21]. In the original model, these issues caused

instabilities for moderate density ratios and provided a serious limitation to the method.

An example of how researchers have circumvented these effects can be seen in the works of Yuan

and Schaefer [26]. They improved the psuedo-potential model such that generic equations of state

could be selected by proposing ψ to align with Equation 3.37, where the pressure is defined by a desired

equation of state. This allowed the model to be extended to higher density ratios, but careful selection

of initial conditions are required to maintain consistency with thermodynamics (namely the Maxwell

equal area rule). Lycett-Brown and Lou [27] further extended this method to allow independent

tuning of physical parameters including surface tension and interface thickness. Sbragaglia et al. [141]

looked to resolve these issues by including two or more layers of nodes in order to improve Equation

3.32. Additional aspects of importance in pseudo-potential models include the forcing scheme and the

mechanical stability condition. A discussion of these aspects is not presented in this dissertation, but

the interested reader is again pointed to books of Guo and Shu [139] and Huang et al. [140] and recent

work by Lycett-Brown and Lou [27].

3.2.3 Free-energy

Swift et al. [114] proposed another approach, formulated with the use of a free-energy functional in

order to capture interfacial interactions. This allowed the dynamics of the interface to be captured

in a “thermodynamically consistent manner” [142]. Similar to the psuedo-potential method, the

free-energy approach has both a SCMP and MCMP formulation. Here, the SCMP is introduced, but

the interested reader is pointed to the formulation in Swift et al. [114] and reviewed in Liu et al. [142].

The concept for this model was to incorporate the phase interactions by generalising the equilibrium

particle distribution function to include a non-ideal pressure tensor term.

In its simplest form, the Landau free-energy functional for a single component fluid is described

as [42, 143],

Ψ =
∫

V

[
ψ(T,ρ)+

κ

2
(∇ρ)2

]
dV, (3.38)

where ψ describes the bulk free-energy,the second term is used to model the associated free-energy

of the interface within which κ is related to the surface tension. Additional terms can be included

in Equation 3.38 to account for interactions with solid interfaces, and can be controlled to capture a

variety of contact angles at the three-phase interaction point.

The free-energy functional is then related to both the pressure (p) and the thermodynamic pressure
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tensor (P) through Equations 3.39 and 3.40 (where p0 is given by an equation of state).

p(x) = ρ
∂Ψ

∂ρ
−Ψ

= p0−κρ∇
2
ρ− κ

2
(∇ρ)2 (3.39)

Pαβ = pδαβ +κ
∂ρ

∂xα

∂ρ

∂xβ

(3.40)

In addition to constructing the pressure and pressure tensor, the equilibrium distribution function

(given for a single-phase fluid in Equation 3.7) is generalised to,

f eq
i = A+B(ci ·u)+C(u ·u)+D(ci ·u)2 +G : cici, (3.41)

where A,B,C,D and G are determined by the requirements for the moments of the equilibrium

distribution function. Namely,

∑
i

f eq
i = ρ, (3.42)

∑
i

f eq
i ciα = ρuα , (3.43)

∑
i

f eq
i ciαciβ = Pαβ +ρuαuβ . (3.44)

Therefore, the original formulation was closed by combining the constraints, the generalised

equilibrium distribution and the pressure tensor formulated from the Landau free-energy functional.

The derivation of the unknown constants is not presented here, but the interested reader is pointed

to [143].

3.2.4 Multiphase pressure evolution LBM

The final model introduced from the literature is the interface tracking model proposed by Lee and

Lin [25] and further developed by Fakhari et al. [28], as an improvement to the models introduced by

He et al. [103]. The major development for these models in capturing the behaviour of high density

ratio systems was the decoupling of the LBE from the density variations, such that they would not

be present in the collision step. Instead, the LBM is constructed in such a way that the macroscopic

velocity and dynamic pressure are recovered as moments of the first lattice population, eliminating the

need for the use of an equation of state. To recover the local density, a second lattice population is

introduced and typically used to solve an Cahn-Hilliard-like equation. The model presented here was

one of the key inspirations for the phase-field LBM developed and presented in Chapter 4.

Lee and Lin [25] extended from the work of He et al. [103] in which the discrete Boltzmann

equation was presented as,

Dt fi =
∂ fi

∂ t
+ ci ·∇ fi =−Λ( fi− f eq

i )+
(ci−u) ·F

c2
s

Γi, (3.45)
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where,

Γi = wi

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
, (3.46)

Λ represents the collision type (e.g. BGK, MRT, ...) and F is a volumetric force. From here, the new

pressure evolution distribution function, gi = gi(x, t), is defined as,

gi = fic2
s +wi(p−ρc2

s ) (3.47)

geq
i = f eq

i c2
s +wi(p−ρc2

s ) (3.48)

The forcing term is then described as,

F =−∇(p−ρc2
s )+FB +Fs, (3.49)

where FB is a body force (e.g. gravity) and Fs is the resultant force due to the surface tension between

fluids and or phases. Here, the continuum surface tension form is taken as [39, 51],

Fs = µφ ∇φ , (3.50)

where φ is the order parameter (or phase indicator) and the chemical potential, µφ , is given as,

µφ = 4βφ(φ −1)(φ −0.5)−κ∇
2
φ . (3.51)

Here, κ and β are chosen to control both the surface tension (σ ) and the interface width (W ) . The

transformation from fi to the governing equation for gi given in Equation 3.52 can be seen in Appendix

A.2.

Dtgi =−Λ(gi−geq
i )+

[
(Γi−wi)(ρh−ρl)c2

s +Γiµφ

]
(ci−u) ·∇φ +Γi(ci−u) ·FB. (3.52)

To reduce compressibility errors in the low density phase, the order parameter is designed to vary

between 0 and 1 rather than −1 and 1. In the model of Fakhari et al. [28], the dynamics of the order

parameter is governed by the conservative phase-field equation,

∂φ

∂ t
+∇ ·φu = ∇ ·

[
M
(

∇φ − 1−4(φ −0.5)2

W
n
)]

, (3.53)

where M controls the diffusional arrangement of the phase field about the interface, W is the interface

width in lattice units and n is the vector normal to the interface. The mobility coefficient, M, is not a

physical parameter but plays an important role in the interfacial behaviour. Ultimately, it affects the

“thickness and perturbation magnitude of the chemical potential boundary layers” [39] which can act

to encourage or inhibit coalescence phenomena. It is noted that this equation could also be replaced by

a LS or VOF-type equation and the pressure evolution LBM would still remain valid. The solution to

Equation 3.53 minimises the free-energy associated with the interface, and is defined at equilibrium

to fit a hyperbolic tangent profile in the direction normal to the interface. This is different from the

commonly used Heaviside function in conventional sharp interface models as the parameter varies

over the diffuse interface rather than experiencing a step jump.
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With two governing equations to solve, a double-distribution-function approach is required. As

such, a second population is introduced to the lattice and evolved through,

hi(x+ ciδ t, t +δ t) = hi(x, t)−
hi−heq

i
τφ +0.5

, (3.54)

where heq
i = φΓφ +

M
c2

s

[
1−4(φ −0.5)2

W

]
wici ·n. (3.55)

This equation takes a very similar form to that used to solve the Navier-Stokes equations, and as such,

it may not be how this resolves Equation 3.53. One can consider the adaption of the LBM to the

advection-diffusion-type equation (ADE) by considering the Navier-Stokes equation as an ADE for

the fluid momentum. There are a number of differences that should be highlighted between these,

namely that an ADE typically has just one conserved quantity, in the case of Equaton 3.53 it is φ . As

a result, this is included in the equilibrium distribution while the velocity is imposed from the fluid

externally. The single-relaxation or BGK model is used in the collision stage for this population, where

the relaxation time τφ is related to the interface mobility, M = τφ c2
s δ t.

From here, the macroscopic properties obtained are,

φ = ∑
i

hi, (3.56)

ρ = ρl +φ(ρh−ρl), (3.57)

µ = µl +φ(µh−µl), (3.58)

u =
1

ρc2
s
∑

i
gici +

1
2ρ

(Fs +FB), (3.59)

p = ∑
i

gi +
1
2
(ρh−ρl)c2

s u ·∇φ . (3.60)

This method has been applied to a number of test cases including bubble collision, coalescence,

falling and rising [28, 144], however a number of limitations still exist. In order to accurately capture

the behaviour at the interface, Lee and Lin [25] had to apply mixed derivatives to determine the

gradient of the order parameter, ∇φ . This causes a loss in the locality of the collision operation and

the resultant non-coalesced memory reads can have a severe impact on the algorithm speed on parallel

architectures. A further limitation of a diffuse interface method is the requirement for high resolution

at liquid-gas boundaries. The mixture of high resolution, non-local memory calls and the need for a

double-distribution-function model can lead to excessive computational costs. In order to partially

alleviate this issue, authors such as Fakhari et al. [28] have looked to use adaptive mesh refinement.

This saves memory and required lattice updates per iteration by concentrating the Cartesian mesh

around complex zones, while remaining coarse in areas of bulk media.

3.3 Chapter summary

This chapter aimed to introduce the reader to lattice Boltzmann modelling. It started with a description

of the single phase formulation, introducing it as a mesoscopic method, in between that of continuum
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fluid mechanics and molecular simulations. From here, the common domain deconstructions were

discussed along with their respective advantages and disadvantages. In the interest of applying the

scheme, a step-by-step breakdown of the algorithm was presented, including the relation between the

probability distribution function and macroscopic parameters through moments. As with all solutions

to partial differential equations, boundary conditions are essential and as such, the commonly used

formulations were introduced and the methodology behind them outlined.

Following on from this, the focus shifted to multiphase lattice Boltzmann models. Four main

categories were outlined including the colour-gradient [40], pseudo-potential [22, 41], free-energy

[102, 114] and the variant of these that is commonly referred to as phase-field models [103]. The key

philosophies behind these methods were discussed as well as a number of their limitations and the

progressive developments to alleviate them. From this chapter, the reader should have a base level of

understanding as to both lattice Boltzmann modelling of single and multiphase flow. With this, the

work of the subsequent chapter formulates an improved phase-field model to enhance the density ratios

and Reynolds numbers able to be simulated with multiphase lattice Boltzmann schemes. The purpose

of this is to allow for simulations to address a large range of potential well operating conditions in the

extraction of coal seam gas.
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Chapter 4

Improved Phase-Field Lattice Boltzmann
Modelling

“Logic will get you from A to B.

Imagination will take you everywhere.”

Albert Einstein

This chapter develops a robust multiphase lattice Boltzmann model that is capable of accurately

simulating systems that exhibit both high density ratios and Reynolds numbers. The work from this

chapter was published in the papers referenced on the previous page and resolved issues of non-locality

and erroneous interface velocity profiles that had been observed in previous phase-field models. The

model is introduced in a two-dimensional setting and benchmark test cases are examined. This includes

the layered Poiseuille flow in which the model results are compared with the phase-field model by

Fakhari et al. [28] and to high resolution finite difference solutions to verify its implementation. The

robustness is then tested by examining the Rayleigh-Taylor instability that occurs when a heavy fluid

is situated above a lighter one within a gravitational field. With the model verified, the computational

benefit of the improved locality is assessed. From here, the dynamics of a Taylor bubble in a duct

are investigated for cases where the bulk media is stationary as well as flowing in both a co-current

and counter-current configuration. In doing this, the proposed model shows good agreement with the

available numerical and experimental data as well as improved capability in relation to alternative

phase-field LBMs in terms of the parameter range that can be simulated.

4.1 Lattice Boltzmann equations

The model developed for the simulation of multiphase flows uses a double-distribution-function

approach, similar to that described for phase-field methods in Chapter 3. In this, one population is

used to recover the NSE and the other for the conservative phase-field equation.
51
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4.1.1 LBE for hydrodynamics

In this study, the velocity-based LB approach used by Zu and He [145] is extended and allows for the

governing hydrodynamics to be resolved,

∂ρ

∂ t
+∇ ·ρu = 0 (4.1)

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+∇ · (µ[∇u+(∇u)T ])+Fs +FB. (4.2)

The LBE used for this can be given in a general form as,

gi(x+ ciδ t, t +δ t) = gi(x, t)+Ωi(x, t)+Fi(x, t), (4.3)

where Ωi(x, t) represents the collision operator of choice and gi is the velocity based distribution

function with a modified equilibrium distribution given by,

ḡeq
i = geq

i −0.5Fi, (4.4)

where,

geq
i = wi

(
p∗+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

)
, (4.5)

and p∗ = p/ρc2
s is the normalised pressure. The collision operator can then be expressed, for example,

in the simplest BGK form as,

Ω
BGK
i =−gi− ḡeq

i
τ +0.5

, (4.6)

or the more sophisticated MRT model [135, 146],

Ω
MRT
i =−(M−1SM)(gi− ḡeq

i ). (4.7)

The orthogonal collision matrix, M, transforms the distribution functions from physical to momentum

space and the diagonal relaxation matrix is given by,

S = diag(1,1,1,1,1,1,sν ,sν), (4.8)

where, sν = (τ +0.5)−1. The hydrodynamic forcing term is incorporated in Fi(x, t) as,

Fi(x, t) = wi
ci ·F
ρc2

s
δ t. (4.9)

After substituting Equation 4.9 into Equation 4.4, it can be seen that this is consistent with the leading

order term in the forcing scheme of Guo et al. [147]. It is noted here that the higher order form,

Fi(x, t) = δ twi

[
ci−u
ρc2

s
+

(ci ·u)ci

ρc4
s

]
·F, (4.10)

was examined, but no noticeable difference was observed in simulation results.
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Due to the velocity-based approach, additional pressure, Fp, and viscous, Fµ , forces need to be

accounted for in the hydrodynamic forcing term,

F = Fp +Fµ +FB +Fs. (4.11)

Here, FB represents external body forces on the system and Fs is taken as per Equation 3.50. A

Chapman-Enskog analysis can be used to determine the form of the pressure term as [4, 145],

Fp =−p∗c2
s ∇ρ, (4.12)

The viscous term is then given by,

Fµ = ν
[
∇u+(∇u)T ] ·∇ρ, (4.13)

which can be determined locally through the relation of the deviatoric stress tensor to the hydrodynamic

distribution function,

FBGK
µ,α =

−ν

(τ +0.5)c2
s δ t

[
∑

i
ciαciβ (gi−geq

i )

]
∂ρ

∂xβ

, (4.14)

FMRT
µ,α =

−ν

c2
s δ t

[
∑

i
ciαciβ ×∑

j
(M−1SM)i j(g j−geq

j )

]
∂ρ

∂xβ

, (4.15)

for the BGK and MRT collision schemes, respectively. For a detailed analysis of obtaining the velocity

gradients locally with the LBM, the interested reader is referred to the work of Krüger et al. [148]. In

both of these equations, the kinematic viscosity is related to the relaxation time by,

ν = τc2
s δ t. (4.16)

Given the relation of the relaxation time to the physical fluid properties, there exist multiple options

to determine its value from the phase-field. One approach is to use a harmonic interpolation that

favours lower values [149],

1
τ
=

1
τl
+(φ −φl)

(
1
τh
− 1

τl

)
, (4.17)

where τl and τh are the relaxation rates associated with the light and heavy fluids, respectively. The

second common method seen in the literature is to take a simple linear interpolation as is conducted

with the density and typically favours higher values,

τ = τl +(φ −φl)(τh− τl). (4.18)

This is equivalent to performing a linear interpolation on the kinematic viscosity of the fluid, alterna-

tively, this could also be conducted with the dynamic viscosity,

µ = µl +(φ −φl)(µh−µl). (4.19)

The relaxation parameter can then be calculated as, τ = µ/ρc2
s . These methods are tested in Section

4.2.1, where the linear interpolation in Equation 4.18 is observed to provide a reasonable balance
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between stability and accuracy. This was used in the early work of He et al. [128], but the finding

here highlights both the benefit and issues around the dynamic viscosity implementation proposed in

Ding et al. [150]. The interpolation scheme used for the fluid parameters in the diffuse interface can

impact the spurious velocities observed in phase-field models, particularly in the presence of interface

curvature. The recent work by Gruszczyński et al. [1] analysed this using a droplet centred in a square

domain. The authors found that Equation 4.19 produced larger spurious velocities, on the order of

10−6 lattice units in contrast to Equation 4.18 were the currents were on the order 10−8 lattice units.

The hydrodynamic model presented here has some subtle, but notable, differences when compared

with the work of Zu and He [145]. Firstly, the method of calculating the viscous forcing term was

originally that of finite differences, introducing the velocity vector as a nonlocal variable to the

computational grid and ultimately impeding on parallel compute ability. In this work, the benefit of

the LBM in determining the deviatoric stress tensor is utilised to reduce computational communication

costs. A further difference can be observed in the equilibrium function, which is now designed to

simplify the collision step. The third difference comes in the calculation of macroscopic parameters;

in the model of Zu and He [145] the pressure and velocity calculations are coupled and, consequently,

an iterative, predictor-correct scheme is required. Here, a routine collision-streaming sequence can be

used and after which the pressure and velocity can be updated independently by,

p = ρc2
s ∑

i
gi, (4.20)

u = ∑
i

gici +
F

2ρ
δ t. (4.21)

It is worth noting that the pressure is not dependent on the velocity as in the case of Zu and He [145],

and the velocity is calculated after the pressure, eliminating the need for a predictor-corrector step.

To reduce the number of variables communicated between computational nodes, the gradients for

the density in Equations 4.12 and 4.13 are related to the phase-field,

∇ρ = (ρh−ρl)∇φ . (4.22)

As a result, the only nonlocal information that is required in the collision stage is the phase-field of the

neighbouring nodes. Additionally, the phase gradient is determined with the use of a second-order,

isotropic centred difference [151],

∇φ =
c

c2
s δx ∑

i
ciwiφ(x+ ciδ t, t), (4.23)

avoiding the need for directional derivatives along lattice links as used in phase-field models of, for

example, Lee and Liu [149]. Additionally, the Laplacian of the phase-field, which is required to

calculate the chemical potential is given by,

∇
2
φ =

2c2

c2
s (δx)2 ∑

i
wi [φ(x+ ciδ t, t)−φ(x, t)] . (4.24)
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4.1.2 LBE for interface dynamics

The Allen-Cahn equation [43] is used to predict the dynamic behaviour of the fluid-fluid interface in

this study rather than the commonly used work of Cahn and Hilliard [42]. The Cahn-Hilliard equation

is typically used for the conservative properties evident in the scheme, however, the method requires

a fourth-order derivative term to be resolved. Special treatment of this high-order term can reduce

the numerical efficiency of the model in addition to its inherent complexity. In contrary to this, the

Allen-Cahn equation was initially criticised for lossing mass, but when reformulated in a conservative

form, allows for only second-order derivative terms while still maintaining mass conservation. In

particular, the phase-field model proposed by Sun and Beckermann [152] and reformulated in a

conservative form by Chiu and Lin [153] provides the governing equation,

∂φ

∂ t
+∇ ·φu = ∇ ·M

[(
∇φ − ∇φ

|∇φ |
[1−4(φ −φ0)

2]

W

)]
. (4.25)

The equilibrium profile of the phase-field perpendicular to an interface located at, x0, is assumed to fit

a hyperbolic tangent,

φ(x) = φ0±
φh−φl

2
tanh

(
x−x0

W/2

)
, (4.26)

which is typically used to set the initial condition of the phase-field to enhance stability across the

domain. A technique that can be applied for complex initialisation shapes is that of smoothing, where

no collision procedure is conducted but the populations are allowed to diffuse for a small number of

iterations (O(10)). This was found to assist with stability in the early stages of simulations.

In order to resolve Equation 4.25 a second distribution function, hi, is introduced and evolved

according to,

hi(x+ ciδ t, t +δ t) = hi(x, t)−
hi(x, t)− h̄eq

i (x, t)
τ

φ

h +1/2
+Fφ

i (x, t), (4.27)

where the forcing term is given by,

Fφ

i (x, t) = δ t
[1−4(φ −φ0)

2]

W
wici ·

∇φ

|∇φ |+ ε
, (4.28)

where ε is a small parameter used to avoid a divide by zero singularity. The mobility, M, is related to

the phase-field relaxation time through,

M = τφ c2
s δ t, (4.29)

and the equilibrium of the phase-field distribution function is defined as,

h̄eq
i = heq

i −0.5Fφ

i , (4.30)

where,

heq
i = φwi

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
. (4.31)
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In order to update the value of the phase-field, the zeroth order moment can be determined after the

streaming stage,

φ = ∑
i

hi. (4.32)

From this, the local density in the domain can be calculated through a linear interpolation,

ρ = ρl +(φ −φl)(ρh−ρl). (4.33)

In the phase-field model presented above, a high-order temporal term is neglected to enhance the

efficiency and locality of the formulation. Ren et al. [144] included this term in a recent phase-field

model, however, neglected the nonlinear terms appearing in the equilibrium distribution function.

The additional numerical diffusion associated with this may increase the importance of this temporal

derivative but for the work conducted here, no significance was observed. In testing, the temporal term

is included by taking,

Fφ ,∂t
i = Fφ

i +
wici ·∂t(φu)

c2
s

. (4.34)

Finite differences are applied to the continuous temporal derivative such that it can be consistently

applied,

Fφ ,∂t
i = Fφ

i +
wici · [(φu)|t− (φu)|t−1]

c2
s

, (4.35)

where the subscript t indicates the current timestep and t−1 the previous.

4.2 Model verification

With the proposal of a new method, it is first necessary to show that the model is able to correctly

recover the equations that it set out to solve. As such, this section focuses on the layered Poiseuille

and Rayleigh-Taylor instability flow cases. These are commonly used benchmarks for multiphase

flow models and will be used to show the robustness of the phase-field LBM for a range of parameter

values.

4.2.1 Layered Poiseuille flow

The gravity-driven flow of fluids in a rectangular channel has been used as a benchmark for numerous

multiphase LB models [154, 155]. This simple test case can be used to compare the accuracy and

convergence of formulations as well as give an initial indication towards their ability to handle density

and or viscosity contrasts. Figure 4.1 provides a schematic for this benchmark in which the top (y = L)

and bottom (y = 0) are fixed walls created using the bounce-back scheme. The bottom half of the

domain is then filled with a light fluid with density, ρl , and viscosity, µl . The fluid motion is driven
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through a body force, FB = ρgx, where gx is the applied acceleration along the x-axis. With the absence

of surface tension effects, the NSE with the conditions stated can be reduced to,

d
dy

(
µ

du
dy

)
+ρgx = 0, (4.36)

where u represents the component of velocity in the x direction. The system is initialised with a diffuse

interface, in which the density and viscosity become functions of the vertical height,

ρ(y) = 0.5
[

ρh +ρl− (ρh−ρl)tanh
(

2y−L
W

)]
, (4.37)

µ(y) = 0.5
[

µh +µl− (µh−µl)tanh
(

2y−L
W

)]
. (4.38)

With a known profile for the density and viscosity, Equation 4.36 can be readily solved using a

high-resolution finite difference scheme. The results from this are used to analyse the accuracy of the

phase-field model presented in which the measured velocities are normalised through the maximum

velocity of the finite difference solution, max(uFD), and the vertical position through the domain

height, L. This allows the velocity profiles predicted from the LBM to be compared with a diffuse

interface solution to the simplified Navier-Stokes equation and errors quantified through an L2-norm

defined as,

||δu||2 =
√

∑y(ux−ux,FD)2

∑ j(ux,FD)2 . (4.39)

In addition to this, if one assumes the interface is a discontinuity in which,

µ(y) =

µh, y ∈ [0.5L,L]

µl, y ∈ [0.0L,0.5L),
(4.40)

a sharp interface solution can be obtained by applying boundary and interface conditions. Namely,

nonslip wall boundaries are imposed at the top and bottom of the domain while continuous shear stress

and velocity must be maintained at the interface,

ux|y=0 = ux|y=L = 0, (4.41)

µh∂yux|y=0.5L = µl∂yux|y=0.5L, (4.42)

ux|y=0.5L+ = ux|y=0.5L−. (4.43)

From this, the analytical solution for the sharp interface is found in which L/2 = l is specified for

convenience,

u(y) =


gxl
2µh

[
−ρh

y2

l2 − y
l

(
µhρl−µlρh

µh+µl

)
+µh

ρh+ρl
µh+µl

]
, y ∈ [l,L]

gxl
2µl

[
−ρl

y2

l2 − y
l

(
µhρl−µlρh

µh+µl

)
+µl

ρh+ρl
µh+µl

]
, y ∈ [0, l).

(4.44)

This is superimposed on the following results, however, note is made that comparison with the finite

difference results capturing the diffuse interface resolved in simulations is still used for the L2-norm.
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ρl,µl

ρh,µh

gx

L/2

L

Figure 4.1: Two-phase Poiseuille flow schematic with a light fluid occupying y = 0 to y = L/2 and a
heavy fluid from y = L/2 to y = L.

With the general flow domain described, it can now be used to analyse the interpolation schemes

used in the phase-field LBM to determine the relaxation parameter across the interface. For this, three

methods are compared, namely, the harmonic interpolation (Eq. 4.17), the linear interpolation (Eq.

4.18) and interpolation through the dynamic viscosity (Eq. 4.13). Density ratios of one, ρ∗ = 1, and

ten, ρ∗ = 10, are tested and the domain resolution is specified by setting the height to 64 lattice units,

L = 64. With the relaxation rate being linked to the fluid viscosity, the dynamic viscosity ratio is

specified at 100, µ∗ = 100, to exaggerate the effect of the chosen interpolation scheme. The interface

width is specified as four lattice units, the mobility is set to 0.02 and the gravitational acceleration in

the x-direction is 10−6 lattice units.

Figure 4.2(a) reveals that the harmonic interpolation scheme is unable to capture the required

behaviour with such a large viscosity contrast. However, for this density matched case both the linear

and dynamic viscosity updates provide results consistent with the high resolution finite difference

solution. However, from Figure 4.2(b), it is evident that when a density contrast is introduced, only the

dynamic viscosity update provides results consistent with the expected velocity profile.

In order to determine the cause of inconsistency in the relaxation parameter interpolation scheme,

Figure 4.3 provides the τ-profiles over the domain for the various interpolation schemes. Here, it is

clear that in the density matched case the linear and dynamic viscosity updates are consistent while

the harmonic interpolation provides too much weight to the lower viscosity in the system. Once the

density contrast is introduced, the dynamic update can be seen to provide more weighting to the more

viscous fluid, which appears to result in a velocity profile consistent with the high resolution finite

difference solution.

With a consistent interpolation scheme found, the model is now compared to two momentum-based

phase-field LBMs. The first employs mixed, directional derivatives [28, 149] in determining the

phase-field gradients and the second uses only centred, isotropic differences [120, 156], as used in the

current model. The layered Poiseuille domain aligns with that described in the interpolation scheme
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(a) ρ∗ = 1 (b) ρ∗ = 10

Figure 4.2: The layered Poiseuille flow test case used in the comparison of interpolation schemes for
determining the relaxation parameter, τ .
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Figure 4.3: The layered Poiseuille flow test case used in the comparison of interpolation schemes for
determining the relaxation parameter, τ .

analysis, however, here the density ratio is specified as 10, 100 and 1000 while the viscosity ratio is

fixed at 100. Figure 4.4 presents the velocity profiles found for each of these three cases and allows

for a comparison of the model performance. It is evident that all three models are able to consistently

capture the expected behaviour for relatively low density ratios (i.e. ρ∗= 10). As the contrast increases,

the momentum-based LBM with centred, isotropic mixed differences fails to mimic the interface

behaviour with large and obvious oscillations observed. This is due to the directional gradient term,

ci∇φ , evident in the momentum based LBM (see Equation 3.52). The purpose in using the centred

difference in place of mixed derivatives is the increase in computational locality, allowing for improved

run-time performance. However, it can be seen that this approach coupled with a momentum-based
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evolution does not recover the governing hydrodynamics. When the LBM is formulated with velocity

as the first moment as per the current model presented here, it is evident that the isotropic difference

is sufficient to recover the desired velocity profile as the directional gradient term listed above is

eliminated. Additionally, when analysing the L2-norm the current model is superior to the previous

momentum-based LBMs for this particular flow configuration.

(a) ρ∗ = 10 (b) ρ∗ = 100

(c) ρ∗ = 1000

Figure 4.4: The layered Poiseuille flow test case used to compare various phase-field models including
the current model proposed in this Chapter, the model requiring mixed differences by Fakhari et al. [28]
and the modified version of this using isotropic centred differences by Fakhari and Bolster [120].

Figure 4.5 provides a quantitative comparison of the models as well as their convergence behaviour.

The convergence case was conducted with a density ratio of 1000 and a dynamic viscosity ratio of

100. It is noted here that the Cahn number which relates the interface thickness to the domain was held

constant, Cn =W/L = 3/32. It can be seen here that the current method produces the lowest error and

converges marginally faster than the other models tested. However, it is also observed that no model

retains the second-order convergence rate of the single phase LBM [157]. It is speculated that this
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could be a result of the viscosity contrast at the top compared to bottom wall. This causes different

relaxation rates which may cause the zero velocity point to shift from the halfway location as the mesh

is refined [158].

16 32 64 128 256 512
10−4

10−3

10−2

10−1

100

u/max(uFD)

y
/L

Current: slope=−1.76
Mixed: slope=−1.68
Centred: slope=−1.56

Figure 4.5: Convergence behaviour of the layered Poiseuille flow case for a density ratio of 1000 and
viscosity ratio of 100.

4.2.2 Rayleigh-Taylor instability

The instability created when a heavy fluid layer is situated above a lighter fluid within a gravitational

field, g, provides another common benchmark problem for multiphase models [103, 144, 145, 159].

To initiate the characteristic dynamics, known as the Rayleigh-Taylor instability, the fluid interface

is perturbed and the heavy fluid is observed to penetrate into the lower layer. The initial deviation

from planarity drives the instability where sections of fluid situated above the interface mean height

experience higher pressure than required for support causing them to rise and displace the heavy fluid.

Equivalently, the fluid situated below the mean height requires more than the average pressure for

support, and as a result penetrates further into the lower layer [160]. The instability has been widely

studied due to its prevalence in both natural occurring phenomena and engineering systems.

The base level setup of this benchmark case has become a de facto standard between authors

[103, 144, 145, 159]. Here, a two-dimensional domain of size [0,L]× [−2L,2L] is initialised with

wall boundaries restricting the y-axis and periodic bounds in the x. The top of the domain is filled

with a heavy fluid, ρh,µh, while the light fluid, ρl,µl , is situated below this. The interface that would

currently be lying along y = 0 is then perturbed by a cosine function such that it is located along,

y0(x) = 0.1L× cos(2πx/L). (4.45)

The phase-field can then be initialised according to,

φ(x) = φ0 +
φh−φl

2
tanh

( |x−x0|⊥
W/2

)
, (4.46)
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where x = (x,y), x0 is the interface location and |x− x0|⊥ is the shortest signed distance from any

grid point to the interface location. It should be noted that three additional initialisation schemes

were tested with no observable differences. The first method was to simply initialise a sharp interface

between the fluids, the second used the displacement in the y-direction from the interface only,

φ(y) = φ0 +
φh−φl

2
tanh

(
y− y0

W/2

)
, (4.47)

and the final method consisted of a sharp interface that was smoothed by performing a stream update

without any collision dynamics for O(10) iterations before conducting the normal LBM update. No

noticeable difference was observed between these methods, the results shown here were initialised

using Equation 4.46.

In order to compare the results of the presented model to others existing in the literature, it is

necessary to define a set of dimensionless numbers to define the flow cases tested. Here, the density

contrast is reflected by the Atwood number,

At =
ρl−ρg

ρl +ρg
, (4.48)

a reference velocity scale is defined as, U0 =
√

gL , allowing the Reynolds number to be specified as,

Re =
ρlU0L

µl
. (4.49)

To uniquely define the remaining physical parameters in the simulation, two additional dimensionless

expressions are required, namely the dynamic viscosity ratio, µ∗, and the Capillary number,

Ca =
µlU0

σ
. (4.50)

The simulation also requires user inputs for two numerical phase-field parameters for which the

interface width is held constant, W = 5 lattice units, and the mobility is defined through the Péclet

number,

Pe =
U0L
M

. (4.51)

To verify the model formulation and implementation, computational parameters for the Rayleigh-

Taylor benchmark are specified consistently with the work of Ren et al. [144]. As such, a reference

length of 256 lattice units and a reference time given as t0 =
√

L/(g.At) = 16000 lattice units is taken.

In this work, two cases are conducted, firstly the model is compared with previous works like that of

Ren et al. [144] in the base case before an extension test is conducted to show the robustness of the

model in capturing flow configurations with density ratios and Reynolds numbers beyond previous

models [103, 144, 145]. Table 4.1 indicates the relevant parameters for both cases.

Figure 4.6 depicts the time evolution of the Rayleigh-Taylor instability for the base case parameters.

Here, the heavy fluid is observed to symmetrically penetrate the lighter fluid. As time progresses, the

generation of counter-rotating vortices can be observed and their notable instability as they shed into

the wake region behind the liquid front.
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Table 4.1: Flow configurations for the base and extension cases of the Rayleigh-Taylor instability.

Parameter L t0 At Re µ∗ Ca Pe W
Base case 256 16000 0.500 3000 1 0.26 1000 5
Extension case 256 16000 0.998 3000 100 0.44 1000 5

(a) t∗ = 0 (b) t∗ = 1 (c) t∗ = 2 (d) t∗ = 3

Figure 4.6: The evolution of a single mode Rayleigh-Taylor instability with At = 0.500 (i.e. ρ∗ = 3),
Re = 3000, µ∗ = 1, Ca = 0.26 and Pe = 1000.

The results of the widely used momentum-based LBM with both an isotropic central [120] and a

mixed difference [28] scheme, along with the benchmark data from previous studies [103,144,145], are

compared with the current model. Figure 4.7 shows the dimensionless position of the bubble and liquid

fronts versus the dimensionless time. It is clear that the results obtained using the current model agree

well with previously published data. The time evolution of the interface using the momentum-based
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lattice Boltzmann schemes are also in close agreement with each other and the data extracted from the

literature, suggesting reasonable accuracy for the case where the density ratio is relatively low. This is

particularly interesting for the isotropic difference scheme [120], which failed to capture the expected

behaviour in the Poiseuille case. On closer inspection, it can be seen that the erroneous velocity in

the low density fluid is still exhibited but the correct behaviour for the higher density dominates the

dynamics.
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Figure 4.7: Time evolution of the Rayleigh-Taylor instability at At = 0.5, Re = 3000, µ∗ = 1, Ca =
0.26, and Pe = 1000 for (a) the bubble front location along x = 0 and (b) the liquid front position along
x = L/2.

Currently, there exists few studies which analyse the high density ratio Rayleigh-Taylor instability

using phase-field theory. Ren et al. [144] looked to qualitatively assess this problem for a moderate

density ratio at a high Reynolds number (ρ∗ = 99 and Re = 3000), while Shao and Shu [119] presented

results for a high density ratio at a moderate Reynolds number (ρ∗ = 1000 and Re = 200). Here,

the presented model is used to capture the extension case previously discussed with both a high

density ratio and a high Reynolds number flow (ρ∗ = 1000 and Re = 3000). The viscosity ratio for

the simulation was taken as 100 to show that it could be applicable to a system such as air and water.

Figure 4.8 shows the time evolution where the model is seen to robustly capture the propagation of

both the high and low density fronts. This is particularly promising as the model proposed in Ren et

al. [144] with an MRT collision scheme was reportedly not able to capture the situation investigated

here.

4.3 Computational efficiency

For many applications of scientific and industrial relevance, the number of lattice sites in the domain

of interest is often substantial. Hence, efficient parallel performance is essential. The previous model,

presented in Fakhari and Bolster [120], uses a stencil consisting of a single layer of neighbouring
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(a) t∗ = 0 (b) t∗ = 1.0 (c) t∗ = 1.5 (d) t∗ = 2.0

Figure 4.8: The evolution of a single mode Rayleigh-Taylor instability with At= 0.998 (i.e. ρ∗= 1000),
Re = 3000, µ∗ = 100, Ca = 0.44 and Pe = 1000.

cells, but is not able to capture the low density flow field if a viscosity or density contrast exists. This

was shown using the Poiseuille flow case where the accuracy deteriorated around the interface. In

order to capture the interfacial dynamics more accurately, the model in Fakhari et al. [28] uses mixed

differences, which requires two auxiliary lattice sites (two ghost cells) in each direction. The current

model requires only a single stencil and is able to model the flow field at the liquid-gas interface with a

high level of accuracy. In the following we aim to probe the computational efficiency of these models.

To investigate the performance of the aforementioned phase-field models, a stationary bubble test

on a square domain, L×L, with a bubble radius of R = L/4 is conducted. Taking L = 5120 lattice

units resulted in a test domain of approximately 26 million cells. With this setup, the strong scalability

of the methods was analysed, namely, the domain was divided into smaller portions, inducing sublinear
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parallelism. This is in contrast to weak scaling, where the size of the mesh is kept proportional to the

number of processors. The simulations were completed using the open-source TCLB solver [44] on

the Prometheus cluster at Cyfronet, Krakow. This is equipped with CPU nodes fitted with two 12-core

Intel Xeon E5-2680v3 processors and eight additional GPU nodes with two nVidia Tesla K40 cards on

each.

Figure 4.9 shows the performance of the TCLB solver for the various models implemented on a

CPU architecture. It is clear that the compared methods have a similar performance, with the speed

per node generally decreasing for higher numbers of utilised cores. For the current model, as in all

the previous benchmark simulations, the MRT operator was used in the calculation of both the stress

tensor and the collision step. In the computational results, it is seen that the MRT formulation of the

proposed model increases the computation required per node beyond the memory reduction benefit on

the CPU architecture for this simulation domain.
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Figure 4.9: The strong scalability of the phase-field models tested using the TCLB solver on CPU
cores.

Figure 4.10 shows the scaling of the TCLB code on a GPU architecture for the compared phase-

field methods. As expected, the parallel performance can be seen to marginally decrease with core

saturation (2880 CUDA cores per nVidia Tesla K40). It is on this parallel architecture that the benefit

of the reduced stencil is realised. The difference between the CPU and GPU performances is well

explained by the memory access patterns. Here, it is clear that the CPU performance is compute bound,

whereas on the parallel architecture the performance is bound by memory. As a result of this, the

mixed difference approach, which requires a larger computational stencil than the central difference

and current model, sees a significant reduction in computational efficiency. In comparison to the CPU

architecture, where the memory access speed is higher, there appears no significant distinction between

the models for this simulation domain.
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Figure 4.10: The strong scalability of the phase-field models tested using the TCLB solver on GPU
cards.

It is often difficult to objectively compare the performance of GPU and CPU codes [161]. In

the presented tests, the speed of a single CUDA core is substantially lower than a single CPU core.

However, there are 2880 CUDA cores on a single GPU allowing it to vastly outperform a single CPU

processor. One technique to compare these computing architectures is to look at the energy efficiency

of the computation. The power consumption of a GPU node, consisting of two K40 processors, was

measured at 490.5 W. Whereas for a CPU node, with two processors consisting of 24 total cores, the

power consumption was 277.0 W. However, this increase in power gives approximately a factor of 4

increase in lattice updates for the proposed model, outweighing the increased energy cost.

4.4 Taylor bubble dynamics

There is significant practical interest in the motion of long bubbles due to their relation to modelling

the flow of liquid slugs commonly seen in the oil and gas industry, nuclear reactors, and chemical

engineering. As previously discussed, the variable rate of gas flow within a confined geometry such as

a pipe or channel can lead to a number of characteristic interface topologies, commonly reported as

flow regimes. Here, the focus turns to the slug flow regime in which bubbles have coalesced to a stage

where they form an elongated bullet shape due to the wall confinement and are often referred to as

Taylor bubbles. The Taylor bubbles are separated by liquid slugs, within which smaller gas bubbles

may still be observed.

As a single Taylor bubble rises through a dense fluid, the viscous, inertial, and interfacial forces

acting on it can have significant influence on both its shape and its rise velocity. The shape of the

Taylor bubble can be characterised by a rounded leading surface followed by an almost cylindrical or
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Table 4.2: Planar Taylor bubble results for dimensionless rise velocity (Fr) with negligible surface
tension, re-created from the works of Figueroa-Espinoza and Fabre (2011).

Authors Result Type Fr
Birkhoff & Carter (1957) [35] Inviscid theory 0.23
Watson (in [35]) Experimental 0.22-0.23
Griffith (in [35]) Experimental 0.23
Collins (1964) [163] Inviscid theory 0.23
Collins (1964) [163] Experimental 0.22-0.23
Mao & Dukler (1990) [164] Numerical 0.22
Ha-Ngoc & Fabre (2004) [165] Numerical 0.22

rectangular body depending on the flow domain. The trailing edge shape depends strongly on the flow

condition and liquid properties with flat, rounded, indented, or jagged profiles reported in the literature.

Flow separation in the wake can also be expected for Taylor bubbles at moderate Reynolds numbers,

with the transition to separation observed at a Reynolds number between 13.4 and 32.6 for tubular

flows [162]. An increasing Reynolds number also indicates a transition to an inertial regime, in which

viscous and interfacial forces have a lesser, or in some cases negligible, impact on the flow dynamics

4.4.1 Planar Taylor bubble validation

In this section, the proposed model is used to simulate the rise of a planar Taylor bubble through

stagnant fluid in an inertial regime. This case has been studied theoretically [35, 163], numerically

[164, 165], and experimentally [163] by a number of authors, and a summary of these works can be

found in Figueroa-Espinoza and Fabre [166]. Table 4.2 reproduces the findings of this to present the

propagation speeds expected for this benchmark case. Similar to the Rayleigh-Taylor instability, the

Froude number is given as,

Fr =
ur

U0
, (4.52)

where ur represents the rise velocity of the bubble and U0 =
√

gL is the characteristic velocity for the

simulation. The results presented in this table are determined under the assumption of small surface

tension and a bubble rise Reynolds number,

Rer =
ρlurL

µl
≥ 100. (4.53)

In addition to the results provided in Table 4.2, Ha-Ngoc and Fabre [165] provided the numerical

results for the bubble Froude number as a function of the Eötvös number,

Eo =
(ρl−ρg)gL2

σ
. (4.54)

They were able to conclude that at low surface tensions, the Froude number of the Taylor bubble was

independent of the Eötvös number, tending towards Fr = 0.22. Additionally, the authors managed to

predict the Taylor bubble shapes using the boundary element method for Eo = 10, 100, and 1000. In
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this section, Ha-Ngoc and Fabre’s work is used to compare the predicted interface profile, as well as

the bubble rise velocity for the case where Eo = 100 from the proposed LBM.

Figure 4.11 provides a schematic of the computational domain used to analyse the planar Taylor

bubble. Here, a rectangular gas region with a semi-circular front is initialised and a gravitational

acceleration is applied acting against the direction of curvature. The bubble then propagates along the

channel, transported by the liquid movement and gravitational effects. The domain size is 10LL, with

L being equal to 256 lattice units and an outer layer of nodes flagged as solid surrounding this with full

bounce-back applied. The fluid properties are µ∗ = 100 and ρ∗ = 1000, typical of an air-water system,

and the gravitational force, Fb = ρgx̂ is applied to the entire fluid. The reference time is defined as per

the Rayleigh-Taylor simulations and set to t0 = 24000, such that the dimensionless time is given by,

t∗ = t/t0, and 20t∗ iterations are conducted.

x

y

ρl, µlρg, µg
Fb

Figure 4.11: Domain schematic of the slug flow tests for the Taylor bubble rise. The fluid domain size
is 10L×L, and the initial bubble size is 3L×4L/5.

Figure 4.12 shows the time evolution of the Taylor bubble with the grey region representing fluid

where φ = φl = 1 and the white region where φ = φg = 0. The expansion of the liquid film as it passes

the end of the bubble induces a recirculating wake region that causes extension of the trailing edge

and is capable of liberating smaller bubbles from the initial gas region. Here, the shearing force from

the heavy fluid and the re-circulation of the falling liquid layer was sufficient to cause a continuous

breakup and coalescence-type behaviour in the bubble wake. This behaviour in the wake region was

observed to have no significant impact on the shape of the Taylor bubble front or the rise velocity.

Five contours of the equilibrium interface profile found at the conclusion of the simulation are

displayed in Figure 4.13. Here, the diffuse-interface is highlighted, as such, contours of the phase-field

are graphed for comparison with the sharp-interface result in Ha-Ngoc and Fabre [165]. It is seen

that the centre of the diffuse interface produces a thinner Taylor bubble, but the curvature of the outer

regions of the diffuse layer appear to match quite well with the sharp interface solution.

The steady rise velocity was found by tracking the position of the bubble front, where φ = φ0 = 0.5,

at intervals of 0.5t0 throughout the simulation. A linear regression was then performed using the final

five data points with consistency checked against the remainder. This was additionally verified by

assessing the average velocity of the entire gas bubble, as well as the instantaneous velocity at the front

of the bubble where φ = 0.5. In the test case, a bubble Froude number of 0.217 was measured, which

very closely matches the expected range of 0.22−0.23 from Table 4.2.

Overall, the results using the proposed LBM were shown to agree well with those based on the

sharp-interface model as well as with experimental data in terms of the planar Taylor bubble’s shape

and rise velocity. However, an additional finding of this initial validation was that of improved model

stability when using the linear interpolation scheme for the relaxation parameter. Here it was observed
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Figure 4.12: The time evolution of the planar Taylor bubble with snapshots taken at t∗ = 0, 4, 8, 12, 16,
20. The fluid properties are defined by ρ∗ = 1000 and µ∗ = 100, while the flow condition is specified
through Rer = 200 and Eo = 100.
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Figure 4.13: Contours of the phase-field for a Taylor bubble at t∗ = 20 with Eo = 100 and Rer = 200.
The results from Ha-Ngoc and Fabre [165] were supplied by Dr. J. Fabre allowing for the current LBM
outputs to be compared with the profile obtained using the boundary element method. The values xi
and yi are used to define the interface location with respect to the bubble nose located at (3,0).

that simulations quickly progressed to instability when the diffuse interface was updated via the

dynamic viscosity. Thus, there appears a trade off when looking at the methodology in choosing

physically relevant parameters within the diffuse interface. Even so, with the model capturing the

expected physical behaviour, this Chapter looks to assess the effect surface tension has on the Taylor
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bubble rise and then introduce both co- and counter-current fluid flow into the domain.

4.4.2 Effect of Eötvös and Morton number

This section aims to validate the phase field LBM presented over a large parameter space and highlight

its applicability to physically-relevant phenomena associated with the multiphase flow of fluids in a

confined setting, e.g. the pipe configurations of a wellbore. In this chapter, the model is restricted to a

2D formulation which provides a proof of concept for extension into high resolution 3D simulations as

well as a qualitative expectation on the dynamics of the slug flow regime.

The computational domain size length for this section was increased to, 20L×L, but the charac-

teristic width was reduced to, L = 128 lattice units. Noting certain stability issues at higher Eötvös

numbers, various reference times were tested, t0 = {16000,24000,32000}, with a higher reference

time being analogous to a more refined time-step. Similar to the detailed validation test conducted

in the previous section, a density and viscosity ratio of 1000 and 100 were used, respectively. The

work of Ha-Ngoc and Fabre [165] was used to predict a reference velocity, ure f , so that the Reynolds

number could be guaranteed to be in the inertial regime.

Figure 4.14 indicates the measured rise velocity of the planar Taylor bubbles for various Eötvös

numbers and reference times. It is observed from this figure, that a reference time of t0 = 16000

was insufficient to capture the expected behaviour of the bubble. However, increasing the temporal

resolution to t0 = 24000 and t0 = 32000, it was evident that the results agreed well with the work of

Ha-Ngoc and Fabre [165]. This is particularly clear for, Eo < 100, where the predicted rise velocity is

a function of the surface tension, prior to plateauing at Fr ≈ 0.225.
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Figure 4.14: The bubble Froude number as a function of the Eötvös number for a planar Taylor bubble
in an inertial regime.

The measured rise velocities at higher Eötvös numbers can be seen to deviate slightly from the

results of Ha-Ngoc and Fabre [165]. The loss in accuracy for these cases is believed to be a result
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of the wake behaviour of the Taylor bubble. Figure 4.15 shows the Taylor bubble and wake region

for various Eötvös numbers. Here, as the value increases, namely as the gravitational forces start to

dominate surface tension effects, a continuous system of bubble detachment, break-up, coalescence and

reattachment in the wake region is formed. The unsteadiness of this behaviour may have contributed

to the minor variation from the predicted macroscopic rise velocity in this range.

(a) Eo = 10

(b) Eo = 100

(c) Eo = 1000

Figure 4.15: The shape profile of the Taylor bubbles at t∗ = 20 for (a) Eo = 10, (b) Eo = 100 and, (c)
Eo = 1000, displayed on a heat map of the lattice total velocity.

In order to gain further insight into the behaviour of the Taylor bubble wake, simulations were

conducted at various Morton numbers. Figure 4.16 indicates the shape profiles of the Taylor bubble,

with an initial symmetry observed prior to the wake region progressing to a more chaotic structure. As

the simulations approach the inertial regime (decreasing Morton number), it is evident that vortices in

the continuous fluid shed from the tail of the Taylor bubble and strongly influence the behaviour of

smaller bubbles that have detached into the wake. In Figure 4.16, it is clear that there is a variation in

rise velocity for the different Morton numbers. This demonstrates that while not in an inertial regime,

the rise velocity of a Taylor bubble with specified density and viscosity ratios, is at the least, a function

of both the Eötvös and Morton number, Fr = Fr(Eo,Mo).

The simulations conducted here were conducted with both the MRT formulation described in this

dissertation as well as with a cascaded relaxation implemented into the developed TCLB code base

for Gruszczyński et al.(accepted). The cascaded formulation does not fall under the scope of this

thesis, as such the detail has been omitted and the simulations results included here were conducted

with MRT relaxation. However, it is noted that there was negligible difference in the results of these

particular simulations as the lattice velocities are relatively low. When this is the case, the shift matrix

that transforms the distribution functions into central moment space for the cascaded relaxation tends

towards the identity matrix and the scheme returns to an MRT relaxation.

This subsection has demonstrated that the developed phase field LBM is capable of capturing the
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(a) Mo = 10−6

(b) Mo = 10−5

(c) Mo = 10−4

(d) Mo = 10−3

Figure 4.16: The shape profile of the Taylor bubbles at t∗ = 20 for Eo = 100 and (a) Mo = 10−6, (b)
Mo = 10−5, (c) Mo = 10−4 and, (d) Mo = 10−3, displayed on a heat map of the lattice total velocity.

key dynamics of a Taylor bubble, rising through a stagnant fluid in a scenario with fluid properties

similar to a liquid-air system. Furthermore, the highly resolved detail of the simulations allowed the

wake behaviour to be qualitatively inspected. It was observed to progress from a symmetric flow field

for high Morton numbers (O(10−3)) to a scenario of vortex shedding prior to the detachment, and in

some cases coalescence and re-attachment, of smaller bubbles from the Taylor bubble itself. In addition

to this, the model showed accuracy and stability over a wide range of dimensionless parameters, a key

feature when considering the range of fluid types that are applicable in coal seam gas extraction, let

alone the broader oil and gas industry.

4.4.3 Effect of flowing fluid

To assess the behaviour of a Taylor bubble in flowing fluid, as could be expected in natural gas

extraction, a moving reference frame is used. To transform into this frame of reference, velocity

boundaries need to be implemented for the incoming and outgoing fluid as well as the channel walls.

The formulation for these boundaries is given in the work of Zu and He [145] as well as in Appendix

A.1.1, allowing for both co- and counter-current flow conditions to be created. When the continuous

phase is flowing, a complex interaction occurs between the liquid force on the bubble and the buoyancy

forces present. In order to describe this, the average liquid velocity, u∞, measured in the far field is

weighted by an empirical scaling factor, C0, and superimposed onto the expected bubble rise velocity
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in a stagnant channel, ustagnant ,

ur =C0u∞ +ustagnant . (4.55)

In order to determine ustagnant , simulations were run with zero velocity in the channel walls using

the Zu and He conditions. These were found to align with the previous simulations that utilised the

full-bounce-back boundary condition. This can also be non-dimensionalised in the form of Froude

numbers by dividing through by a reference velocity scale similar to that of the Rayleigh-Taylor

instability, U0 =
√

gxL ,

Frr =C0Fr∞ +Frstagnant . (4.56)

The size of the domain is held constant to the previous section at, 20L×L, with L = 128 lattice

units. However, the bubble is now initialised in the centre of the domain with the front situated at,

x0 = 10L. The density and viscosity ratios are again kept at 1000 and 100, respectively while the

flow configuration is defined through t∗ = 24000, Eo = 100 and Mo = 10−3. These parameters were

chosen such that the wake region would have a low-level of bubble detachment, reducing the need for

a multiphase outlet in this 2D, proof of concept test.

To simulate the incoming fluid flow, a Poiseuille flow profile (fully developed channel flow) is

assumed for the inlet and outlet of the domain. In the moving reference frame, this is given by

Uin/out(y) =UT B +6U∞

(yD− y2)

D2 . (4.57)

With this definition, a negative value of liquid velocity corresponds to counter-current flow while

a positive value indicates a co-current configuration. The velocity of the top and bottom walls is

prescribed based on the expected rise velocity of the Taylor bubble through the flowing fluid.

Table 4.3 shows the results obtained for the rise velocity of the Taylor bubble in both co- and

counter-current flow configurations. Here, one observes a relatively constant value for the empirical

coefficient, C0, which agrees with common assumptions typically taken in the literature. To further

validate the co-current dynamics determined in the moving reference frame, the values of C0 were

compared with the previous work of Ha-Ngoc and Fabre [167]. Interestingly, the value obtained for

this parameter was found to be approximately constant for both liquid flow configurations.

Figure 4.17 presents the results obtained in comparison to Ha-Ngoc and Fabre [167] as well as the

independence of C0 with respect to the liquid Froude number, Fr∞, and flow direction. It is highlighted

here, that future work will look to incorporate a larger range of pipe configurations (inclination

angle, internal obstructions, etc.) to address global correlations of rise velocity to dimensionless flow

parameters. This will enable otherwise difficult experiments to be conducted numerically to determine

suitable models describing the rise velocity of Taylor bubbles. This is useful, for example, in predicting

pressure drops through piping systems, including wellbores, where simplified models are required to

describe phase interactions due to the system scales.

This subsection has demonstrated that the phase field LBM can be solved within a moving reference

frame allowing the realisation of flowing fluids and Taylor bubble development without the need for
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Table 4.3: Resultant Taylor bubble rise velocity and empirical coefficient value in both co- and counter-
current flowing configurations where Fr∞ = 0 corresponds to a rise velocity of Frstagnant = 0.2085.

Counter-current
Fr∞ -0.25 -0.20 -0.15 -0.10 -0.05
Frr -0.1022 -0.0386 0.0233 0.0856 0.1470
C0 1.2429 1.2355 1.2350 1.2297 1.2298

Co-current
Fr∞ 0.05 0.10 0.15 0.20 0.25
Frr 0.2714 0.3338 0.3984 0.4656 0.5294
C0 1.2574 1.2526 1.2656 1.2855 1.2836
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Figure 4.17: Comparison of the value of C0 for various liquid Froude numbers, F∞, and the work of
Ha-Ngoc and Fabre [167].

excessive domain sizes. When looking to conduct resolved 3D simulations, this is particularly important

as domains can quickly exceed computational limits when searching for steady-state behaviours using

an explicit numerical scheme. In addition to this, the velocity boundary conditions from Zu and

He [145] were validated for the presented, velocity-based LBM.

4.5 Chapter summary

The ability to simulate high density ratio flows over a large range flow conditions defined through

dimensionless parameters such as the Eötvös and Morton numbers is essential when looking to

produce reduced-order models that are useful in industrial applications. This chapter extended, verified
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and validated an improved multiphase lattice Boltzmann model based on phase field theory. The

formulation was first presented before benchmark cases including the layered Poiseuille flow and

Rayleigh-Taylor instability were investigated. These indicated that the model was able to out-perform

the previous state-of-the-art phase field models published in the literature in terms of stability at

high density ratios and Reynolds number. Additionally, the computational locality of the model was

improved whilst being shown to consistently recover the Navier-Stokes Equation across the interface

with only a single layer of neighbouring nodes. This is in comparison to models that use mixed

derivatives and require two layers of neighbouring nodes, and those that use isotropic differences, but

fail to capture the velocity profile when a density or viscosity contrast exists. A balance was also found

with the techniques used to determine the relaxation parameter over the diffuse interface. In this, three

methods were tested including a harmonic and linear interpolation of the relaxation parameter as well

as an update via a linear interpolation of the dynamic viscosity. It was found that the dynamic viscosity

update provided the most accurate result, however, suffered stability issues in complex flows. As

such, the linear interpolation was primarily used, managing to outperform the harmonic interpolation

scheme.

Following the benchmark cases, the dynamics of a Taylor bubble was investigated due to its

importance in modelling the slug flow regime. Initially, a detailed validation case was constructed

looking at the elongated bubble propagation through a stagnant fluid in an inertial regime, a scenario

previously analysed by numerous authors with the main comparison made with the work of Ha-Ngoc

and Fabre [165]. The model was found to perform well, accurately predicting the correct macroscopic

rise velocity of the bubble as well as its shape profile. This was done with fluid properties exhibiting

density and viscosity contrasts beyond that of water-gas to test the robustness of the model and ensure

its applicability to a range of possible scenarios.

With the planar model validated, the effect of surface tension on the rise velocity was investigated.

Here, the phase field LBM indicated that the bubble propagation was a function of the surface tension.

When non-dimensionalised, it was able to show that the Froude number was a function of the Eötvös

number only, when in an inertial flow regime. However, when not in this regime (Re . 100) it was

observed that the Morton number was also important. This was a promising result, however, in the

transport of hydrocarbons, where both the liquid and gaseous phase are expected to be in motion. As

such, the simulation was transformed into a reference frame moving with the bubble and velocity

boundaries were implemented to allow for both co- and counter-current flows to be generated. An

empirical relation to predict the effect of flowing fluid on the Taylor bubble is tested for co-current

flow, aligning closely with the LBM results. The flow configuration was then reversed to explore the

dynamics in a counter-current regime. Interestingly, the empirical factor used in the correlation holds

relatively constant for both flow directions ranging from 1.2298 to 1.2855 for the Froude numbers

tested.

This chapter has provided a detailed description of the developed phase field LBM as well as its

verification, validation and application to planar Taylor bubble dynamics. The subsequent chapter

extends this work to 3D and discusses the modifications required to retain the robustness displayed in
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2D. Following this, it verifies and validates the 3D implementation in flow scenarios applicable to the

slug flow regime.
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Chapter 5

Extension of the Phase-Field Lattice
Boltzmann Model

“We can only see a short distance ahead,

but we can see plenty there that needs to be done.”

Alan Turing

The work conducted in Chapter 4 was restricted to two-dimensions (2D). This allowed for the

formulation to be rigorously tested without the additional computational overhead that is entailed in

resolving a three-dimensional (3D) domain. The findings indicated that the proposed LBM improved

the computational efficiency on parallel architectures as well as the stability at high density ratios

and moderate Reynolds numbers when compared to certain state-of-the-art, phase-field models.

Furthermore, an investigation into the rise behaviour of planar Taylor bubbles carried out over a range

of flow configurations proved that the governing equations could accurately mimic physically relevant,

multiphase systems. However, the 3D nature of multiphase flows in the oil and gas industry limits the

applicability of 2D, planar simulations, particularly from a quantitative point of view. At moderate

Reynolds numbers it is expected that the symmetry of a confined, multiphase flow will break down

reducing the applicability of axisymmetric formulations. As such, this chapter extends the planar

implementation described in the previous chapter to handle 3D domains.

Building on Chapter 4, the Navier-Stokes (NSE) and Allen-Cahn (ACE) equations that govern

the system dynamics are not repeated here. However, to retain the stability improvements observed

in 2D, a weighted-multiple-relaxation-time (WMRT) scheme had to be implemented. The details of

this collision operator and how it is included in the model framework provides the starting point for

this chapter. Following on from this, the implementation is verified by analysing the deformation of a

droplet in a density-matched binary fluid. The results obtained are compared with the work of Leclaire

et al. [168] to ensure consistency of the model. The 3D Rayleigh-Taylor instability is the second test

case investigated, in which the current results are compared with the work of Zu and He [145] and He

et al. [103] at a low Reynolds number and a small density contrast. The capability of the model is then
79
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shown by simulating the Rayleigh-Taylor instability at a relatively high Reynolds number with fluid

properties similar to that of an air-water system. This particular case extends beyond previous literature,

indicating the capability of the model as well as supplying data for the testing of new formulations.

The model is validated via comparison with the experimental work of Bugg and Saad [169], analysing

the rise of a Taylor bubble in a tube filled with olive oil. This experimental case has previously been

used to validate finite-volume methods in commercial codes such as ANSYS CFX 5.6 by Ndinisa et

al. [170] and ASCOMP’s TransAT by Lizarraga-Garcia et al. [18]. The model is observed to accurately

capture the experimental findings, proving its potential applicability to modelling multiphase transport

through tubular geometries, e.g. piping networks.

5.1 Improved collision operator

Traditional techniques for computational fluid dynamics were based on the discretisation of the NSE,

whereas the LBM finds its roots in kinetic theory [171, 172]. Here, the conservation laws are solved

based on linearised kinetic models within which a collision, or relaxation, model is required to close

the system. A number of collision kernels have been proposed as part of the LBM framework and they

can have significant impact on the model’s stability and accuracy. As per the previous chapter, the

multiple relaxation time (MRT) methodology is applied here. This consists of performing the advection

(or streaming) component of the LBM algorithm in particle velocity space, however, projecting the

distribution functions to their velocity moments for collision. The benefit here comes from the fact

that a number of these moments are related to macroscopic parameters and as such can be relaxed in a

physically meaningful process.

The first description of the MRT consisted of taking moments of the particle velocity which are

mutually orthogonal for the specified discrete set, {ccci}. The issue here arises from an undesirable

coupling of conserved hydrodynamic modes and higher-order, non-hydrodynamic modes that is not

consistent with the continuous velocity space. In particular, the coupling of the density with the fourth-

order moment has been reported to generate numerical instabilities for certain multiphase systems [173].

To mitigate this, it has been proposed by Fakhari et al. [173] that a weighted orthogonalisation should

be used, for which the inner product for the D3Q27 lattice is defined as,

〈
mi,m j

〉
=

26

∑
k=0

wkmikm jkδi j, (5.1)

where mi is the ith row vector of the collision matrix, M.

The weighted orthogonality stated above is summated based on the use of 27 discrete velocities.

This follows from the D3Q27 lattice that is used to recover the NSE in this work. It is noted here that a

D3Q15 lattice along with a single-relaxation-time scheme is sufficient for the ACE [174], and the use

of the reduced stencil supports the computational efficiency of the algorithm. The discrete velocity set
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for the ACE population is given by,

ccc15 =


cx

cy

cz

=


0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1

0 0 0 1 −1 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

 . (5.2)

and the corresponding lattice weights are,

wi =
1

72


16, i = 0,

8, i = 1−6,

1, i = 7−14.

(5.3)

As for the discrete velocity set for the D3Q27 lattice used for the hydrodynamics, a slightly unconven-

tional ordering was used to align the first 15 velocity directions with the D3Q15 model,

ccc27 =


cx

cy

cz

 , (5.4)

=


c0−14,x 1 −1 1 −1 1 −1 1 −1 0 0 0 0

c0−14,y 1 1 −1 −1 0 0 0 0 1 −1 1 −1

c0−14,z 0 0 0 0 1 1 −1 −1 1 1 −1 −1

 . (5.5)

The corresponding lattice weights are then given by,

wi =
1

216



64, i = 0,

16, i = 1−6,

1, i = 7−14,

4, i = 15−26.

(5.6)

With the lattice velocity and weights defined, the details of the WMRT implemented on the D3Q27

can be formulated. The collision operator can be defined as,

Ω
WMRT
i =−(M−1SM)(gi− ḡeq

i ). (5.7)

Here, M−1 is the inverse of the transformation matrix and S is a diagonal matrix of relaxation rates.

Optimisation of these was not necessary or attempted in the simulations presented in this chapter, but

this could present an avenue for future studies. Here, the relaxation of the second-order moments,

which are related to shear stress, are varied according to the kinematic viscosity of the fluid, while

all other modes are relaxed directly to their equilibrium values. It is noted here that one may be able

to improve the stability of the collision scheme through optimising the relaxation of higher-order

moments through either mapping that stability parameter space [175] or analysing the modes of the

linearised lattice Boltzmann equation [176–178]. The matrix used in this works follows from the

studies of Fakhari et al. [173], which can be written as,

S = diag(1,1,1,1,sν ,sν ,sν ,sν ,sν ,1,1, . . . ,1), (5.8)
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where,

sν =
1

τ +1/2
, (5.9)

and τ is the relaxation time related to the kinematic viscosity by, ν = τc2
s δ t.

The transformation matrix is presented as row vectors up to the sixth-order for a D3Q27 lattice:

Zeroth-order:

m0 = 1

First-order:

m1 = ci,x

m2 = ci,y

m3 = ci,z

Second-order:

m4 = ci,xci,y

m5 = ci,yci,z

m6 = ci,zci,x

m7 = 3c2
i,x−|ccci|2

m8 = c2
i,y− c2

i,z

m9 = |ccci|2−1

Third-order:

m10 = ci,x(3|ccci|2−5)

m11 = ci,y(3|ccci|2−5)

m12 = ci,z(3|ccci|2−5)

m13 = ci,x(c2
i,y− c2

i,z)

m14 = ci,y(c2
i,z− c2

i,x)

m15 = ci,z(c2
i,x− c2

i,y)

m16 = ci,xci,yci,z

Fourth-order:

m17 = 0.5(3|ccci|4−7|ccci|2 +2)

m18 = (3|ccci|2−4)(3c2
i,x−|ccci|2)

m19 = (3|ccci|2−4)(c2
i,y− c2

i,z)

m20 = ci,xci,y(3|ccci|2−7)
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m21 = ci,yci,z(3|ccci|2−7)

m22 = ci,zci,x(3|ccci|2−7)

Fifth-order:

m23 = 0.5ci,x(9|ccci|4−33|ccci|2 +26)

m24 = 0.5ci,y(9|ccci|4−33|ccci|2 +26)

m25 = 0.5ci,z(9|ccci|4−33|ccci|2 +26)

Sixth-order:

m26 = 0.5(9|ccci|6−36|ccci|4 +33|ccci|2−2)

Using these definitions, the transformation matrix can be created and the phase-field LBM presented
in the previous chapter can be extended into 3D while maintaining numerical robustness,

M
=
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5.2 Verification of the three dimensional implementation

5.2.1 Deformation of a droplet in shear

To start benchmarking the 3D phase-field LBM, the deformation of a droplet placed in a shear flow

is first analysed. This test case can be found in numerous works in the literature [179–182], but

here particular note is taken of the work by Leclaire et al. [168]. The authors sought to compare the

colour-gradient and pseudopotential lattice Boltzmann models across numerous test cases. Using a

droplet in shear flow they were able to show that both models were capable of reproducing analytical

relations in the small Capillary number limit. They noted that the colour-gradient model showed

good stability and accuracy for a larger range of parameters than those obtained with the chosen

pseudopotential model. The aim of this section is to include a phase-field model into this benchmark

case through applying a similar test methodology. As such, a domain, D , is defined consistently with

the work of Leclaire et al. [168] such that,

D = (x,y,z) ∈ [0,X ]× [0,Y ]× [0,Z]. (5.10)

A spherical droplet with radius, R, is initialised with centroid, (X/2,Y/2,Z/2). To do this, the

phase-field is specified by,

φx,y,z =
1
2

[
1− tanh

( |x−x0|−R
W/2

)]
, (5.11)

where x is the spatial location and x0 is the centroid of the spherical droplet. For simplicity, the

number of dimensionless parameters associated with this problem is reduced by defining the following

geometric ratios: X/Z = 2, Y/Z = 1 and R/Z = 0.2 [168]. Additionally, the density and viscosity

ratios are both set to unity while the interface width, W , is specified to be three lattice units. With these

values, the bubble deformation, D, becomes a function of the Capillary and Reynolds numbers only,

defined respectively as

Ca =
γ̇Rµl

σ
, (5.12)

Re =
γ̇R2ρl

µl
, (5.13)

where γ̇ = 2U/Z is the shear rate due to an imposed velocity, U and −U , at the top and bottom of the

domain, respectively. To provide results over a range of Ca, the same approach used by Leclaire et

al. [168] is taken, in which µl is held constant and the surface tension, σ , is varied. To characterise

the final degree of freedom associated with the diffuse interface model, an interface Péclet number is

defined as [183],

Peint =
γ̇RW

M
. (5.14)

This is used to relate the convective and diffusive time scales of the interface. For this study of droplet

deformation, the mobility is specified as M = 0.2 for all Re and Ca tested. For a detailed analysis
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on the effect of Peint , the interested reader is pointed towards the work of van der Sman and van der

Graaf [184] as well as the more recent study by Komrakova et al. [183].

With the geometric constraints stated, the original analysis describing the bubble deformation

conducted by Taylor [179] breaks down with violation of the assumption that, R/Z � 1. Since

this seminal study, numerous authors have utilised techniques such as perturbation theory to gain

further understanding of the system. The work of Shapira and Haber [180], for example, incorporated

a corrective term in Taylor’s formulation to account for wall effects. The expression for bubble

deformation from their analysis was expressed for Stokesian flows (Re� 1) and was found to be

D =
19κ +16
16κ +16

Ca

[
1+Csh

2.5κ +1
κ +1

(
R
Z

)3
]
, (5.15)

where κ = µl/µg and Csh = 5.6996 is the corrective wall term for a droplet centred in the domain. It

is highlighted that the wall effects incorporated in the analytical works of Shapira and Haber [180] are

derived to O(Ca). As such, it is expected that the results will deteriorate progressively with increasing

capillary number. In this work, results are reported for Reynolds numbers between 0.05 and 0.2 for

capillary numbers ranging between 0.02 and 0.3. If one takes Csh = 0, the original form proposed by

Taylor [179] is recovered,

D = Ca
19κ +16
16κ +16

. (5.16)

Taking note from Leclaire et al. [168], the grid resolution is specified based on an input parameter,

r, and a constant, N0 = 50, such that,

Nx = 2rN0−2, (5.17)

Ny = rN0, (5.18)

Nz = rN0−1. (5.19)

Here, Nx,y,z are the number of nodes in the X , Y , and Z directions, respectively. A node is subtracted

from the periodic axis to enforce the geometric requirements of X/Z and Y/Z for the domain extents.

For simplicity, velocity boundary conditions on the top and bottom of the domain are implemented by

assuming bounce-back of the non-equilibrium parts of the hydrodynamic population, gi [185].

An alternative approach was taken to analyse the deformation results in comparison with the work

of Leclaire et al. [168], who formulated the analysis as an optimisation problem. To do this, a contour

indicating the centre of the interface was found and an optimisation problem was solved for the shortest

and longest distances to the centre of the ellipse (i.e. major and minor axes). The authors then used

two additional contours in the interface and performed a similar analysis to determine the angle of

rotation. In this work, an ellipsoidal shape is fit to the contour given at φ = 0.5 and then the parameters

of the function are utilised to determine the major and minor axes.

Figure 5.1a compares the results of the present phase-field LBM using r = 1 with the analytical

results of Shapira and Haber [180] and the numerical results of Leclaire et al. [168]. It is clear that the

phase-field model is in agreement with the results obtained using the colour gradient model. The results
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also reinforce the findings of the previous work, where agreement with analytical predictions is seen

in the limit of small Ca number. However, at higher Ca, it is evident that the predicted deformation

departs significantly from the analytical solution for small Re. This appears contradictory to the

formulated correction of Shapira and Haber [180] that is specifically valid for Re� 1. In this case, it

appears evident that the resolution r = 1 is insufficient to capture the flow characteristics for Ca greater

than approximately 0.075. This is clear from the increased resolution results in Figure 5.1b, in which

results progressively improve for decreasing Re for all Ca tested.

A particular point highlighted by Leclaire et al. [168] was the fact that, in contrast to the pseudo-

potential LBM, the colour-gradient model was able to achieve a constant interface width across the

range of Ca and Re numbers. This is also achieved using the phase-field LBM with direct control given

by the interface width parameter, W . What was not investigated however, was the effect of the interface

width on the deformation of the droplet. To study this relation, a series of tests were conducted at

Ca = 0.02. The interface width was varied from three to nine and Re between 0.05 and 0.20, while the

remaining parameters were kept consistent with the previous test. Figure 5.2 displays the deterioration

of results with increasing interface thickness, particularly for the resolution of r = 1. This behaviour is

expected as the simulations tend away from the sharp interface limit. For the results at resolution r = 2

a similar, but much less pronounced trend is observed with only a minor deterioration of accuracy

observed.

5.2.2 Three dimensional Rayleigh-Taylor instability

To demonstrate the accuracy and stability of the model in 3D, the Rayleigh-Taylor instability represents

a common benchmark. This phenomenon occurs when a heavy fluid is situated above a lighter fluid

within a gravitational field, and the interface between the two is subject to a perturbation. In this

configuration, the heavy fluid is observed to penetrate into the lighter fluid, for which the characteristics

of motion have been investigated by many authors [4, 103, 119, 144, 145, 159].

The previous work in Chapter 4 and published in Fakhari et al. [4] demonstrated that the proposed

model could accurately simulate the Rayleigh-Taylor instability up to high density ratios (ρ∗ = 1000)

and relatively high Reynolds numbers (Re= 3000) in two-dimensions. As such, the instability provides

a reasonable test case for which to analyse the three-dimensional extension.

The construction of the flow domain for this case consists of a rectangular prism given by,

D = (x,y,z) ∈ [−L/2,L/2]× [−2L,2L]× [−L/2,L/2]. (5.20)

For the base case, the model parameters were chosen according to the work of Zu and He [145], with

L = 128 and dimensionless parameters including Atwood number, At, Reynolds number, Re, and

Capillary number Ca defined as

At =
ρl−ρg

ρl +ρg
= 0.5, (5.21)

Re =
L
√

gL
ν

= 128, (5.22)
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Figure 5.1: Comparison of the colour-gradient model results presented in Leclaire et al. [168] (markers)
with those from the 3D phase-field LBM proposed in this work (solid lines) with all simulations
conducted at a resolution of (a) r = 1 and (b) r = 2. The arrows indicate the Re for the ‘Current’
solutions decreasing from 0.2 to 0.05 and the dotted red line is the analytical result of Shapira and
Haber [180].
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Figure 5.2: Variation of the deformation parameter with interface width for Ca = 0.02 with a resolution
of (a) r = 1 and (b) r = 2.
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Ca =
µl
√

gL
σ

= 9.1. (5.23)

From the definitions above, it is clear that At describes the density ratio, while the Re indicates the

relative effect of gravitational to viscous forces, and the Ca provides the relative effect of viscous

forces to surface tension. To close the dimensionless system, the kinematic viscosity of the two fluids

is specified to be equal, ν∗ = 1, giving a dynamic viscosity ratio of three, µ∗ = 3. Additionally, the

numerical Péclet number is,

Pe =
L
√

gL
M

= 744, (5.24)

and the reference time is defined as t0 =
√

L/g = 6000, such that t∗ = t/t0 is the dimensionless time.

In order to initiate the Rayleigh-Taylor instability, the interface between the two-fluids is initially

perturbed by,

y(x,z) = 0.05L× (cos(2πx/L)+ cos(2πz/L)) . (5.25)

After initialisation, a constant gravitational acceleration applied to the system causes the heavy

fluid to penetrate into the lighter fluid. Figure 5.3 shows the evolution of the interface at dimensionless

times, t∗ = 1,2,3,4 and 4.5, with the colour contour based on the local velocity magnitude. The

definitions of the points tracked in the simulation are also found on this figure, namely the bubble,

spike, and saddle points of the initial perturbation. Qualitatively, similar results to those obtained by

Zu and He [145] are observed. The saddle points are the first to display the roll-up like behaviour with

the mushroom-like shape forming at the spike shortly after.

A quantitative comparison is performed by tracking the position of the bubble, spike, and saddle

points through the simulation in order to compare with the works of Zu and He [145] and He et

al. [103]. Figure 5.4a shows a close agreement with these studies, showing the accuracy of the 3D

model. However, this flow scenario features both a low Reynolds number and low density ratio, with

neither of the previous studies extending their analysis beyond this. Therefore, another case with

the viscosity and density ratios similar to that found in an air-water system (ρ∗ = 1000, µ∗ = 100)

is considered with a Reynolds number of 3000. As per the previous case, the characteristic length

scale is taken as L = 128. However, the reference time is reduced to t0 = 4000 to maintain a similar

capillary number at Ca = 8.7. A density ratio of 1000 implies that the Atwood number for this case is

0.998. The evolution of the bubble, spike, and saddle points for this case are displayed in Fig. 5.4b.

Figure 5.5 shows the time evolution of the interface between the heavy and light fluids. Here

the midplane view of the 3D results show qualitative agreement with available 2D data [4, 119, 144].

It is evident that the shear stress parallel to the interface is insufficient to cause the mushroom-like

formation of the spike.

Currently, there exist few studies of the Rayleigh-Taylor instability of immiscible fluids with

high-density ratios in 2D or 3D [4,144]. The model presented in this work was not only able to achieve

a stable simulation of a high-density ratio flow case, but one with a relatively high Reynolds number

as well. This indicates that the solver is sufficiently robust to be applied to practical liquid-gas systems,

which is further demonstrated in the following section.
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(a) t∗ = 1 (b) t∗ = 2 (c) t∗ = 3 (d) t∗ = 4 (e) t∗ = 4.5

Figure 5.3: The evolution of the three-dimensional Rayleigh-Taylor instability with flow conditions
defined by At = 0.500, Re = 128, µ∗ = 3, Ca = 9.1, and Pe = 744.

5.3 Experimental Taylor bubble validation

The evolution of Taylor bubbles is observed in a wide range of natural and industrial flows. Under-

standing the associated physics of these flows can provide critical insight into applications such as the

concentration polarisation and fouling of membranes [170], and the transportation of hydrocarbons

through pipeline systems [18, 169]. It has been reported in the literature that the rise velocity of a

Taylor bubble is a key model parameter used in certain mechanistic modelling frameworks in order to

predict liquid hold-up and pressure gradients through piping networks. A full review of the literature

investigating the motion of rising Taylor bubbles in vertical pipes is not attempted here, and the

interested reader is referred to Lizarraga-Garcia et al. [18] for an in-depth discussion of the extensive

work in this area. The aim of this section is to study the flow features of a Taylor bubble using the

three-dimensional phase-field LBM. As such, the macroscopic rise velocity, the local flow field and

the interface profile of the bubble will be investigated and compared with experimental work available

in the literature [169].

The experimental work of Bugg and Saad [169] has been used by numerous researchers to validate

commercial multiphase codes. Lizarraga-Garcia et al. [18] recently used this data to validate a level-set
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Figure 5.4: Time evolution of the bubble front (0,y,0), the saddle point (0,y,64) and the spike
(64,y,64) in the case of the 3D Rayleigh-Taylor instability. The base case (a) indicates the evolution
with At = 0.500 and Re = 128 while the extension case (b) presents the results with At = 0.998 and
Re = 3000.
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(a) t∗ = 0 (b) t∗ = 0.5 (c) t∗ = 1.0 (d) t∗ = 1.5 (e) t∗ = 2.0

Figure 5.5: The evolution of the three-dimensional Rayleigh-Taylor instability with flow conditions
defined by At = 0.998, Re = 3000, µ∗ = 100, and Ca = 8.7. The model parameters achieve density
and viscosity ratios similar to that of an air-water mixture.

formulation in the TransAT software developed at ASCOMP. Additionally, the work of Ndinisa et

al. [170] used these experimental results to assess the volume-of-fluid method, two-fluid method, and a

combined model available in the CFX 5.6 code from ANSYS. The experimental work was conducted

in a vertical tube with the diameter, DT = 19 mm, filled with olive oil as the working fluid. The relevant

dimensionless numbers include the Eötvos number, Eo, which is the ratio of gravitational to interfacial

forces, the Morton number, Mo, which assists in defining the expected shape of the bubble, and the

Reynolds number, Rer, based on the terminal rise velocity of the bubble, Ut . These are defined as

Eo =
(ρl−ρg)gD2

T
σ

= 100, (5.26)

Mo =
gµ4

l
(ρl−ρg)σ3 = 0.015, (5.27)

Rer =
ρlUtDT

µl
= 27. (5.28)

For this study, it is assumed that the density and viscosity of the air injected into the olive oil is 1.225

kg/m3 and 1.983×10−5 Pa.s, respectively. This gives a density ratio of 744 and a viscosity ratio of

4236, which when combined with the reported olive oil properties [169], supplies the five π-groups

required to define the bubble dynamics.
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Particle image velocimetry (PIV) was used by Bugg and Saad [169] in order to obtain results for the

liquid flow field surrounding the Taylor bubble. Macroscopically, the results of the experiment found a

terminal rise velocity of Ut = 0.131 m/s, which equates to a Froude number of 0.303 (Fr =Ut/
√

gDT )

and the Reynolds number calculated in Eq. (5.28). The work done in CFX 5.6 by Ndinisa et al. [170]

was able to provide comparable results to this with terminal velocities of 0.140 m/s, 0.119 m/s, and

0.110 m/s obtained using the volume-of-fluid (VOF) technique, the two-fluid model (TFM), and a

combined model, respectively. Here it can be seen that the order of error is within 8%. However, it

was reported that the bubble shape was inadequately captured by the VOF technique and the interfacial

transition region was excessive for the TFM. The combined model was thus suggested by Ndinisa

et al. [170] to match the flow field measured by Bugg and Saad [169], in which large features are

captured by the VOF and sub-grid bubbles modelled with the TFM.

In order to capture the system using the phase-field LBM described in this dissertation, one only

needs to define a characteristic length (tube diameter) and a time scale in order to derive the remaining

simulation parameters from the dimensionless variables stated. Three different resolutions were tested

to demonstrate the results were independent of the grid, with similar findings obtained using 64, 128

and 256 cells across the tube diameter. The time scale for these simulations was defined according

to the diffusive scaling such that, t0 = 2000, 8000, and 32000, for the different grid resolutions,

respectively. A total run time of, 10t0, was found to be sufficient for convergence of both shape and

rise velocity for these cases. The results using DT = 128 are presented here, with the length of the

simulation domain specified as 10DT . As in the work of Ndinisa et al. [170], the low density region

was initialised as a cylinder with a diameter of 0.75DT and a height of 3DT . Figure 5.6 shows the

time evolution of the bubble, with 3D images showing an iso-plane of φ = 0.5 and a 2D-slice of the

phase-field distribution across the pipe diameter. With this simulation the macroscopic bubble rise

velocity, the local flow field dynamics about the bubble, and the interface profile in regions of interest

can be compared.

5.3.1 Bubble rise velocity

During the simulation, the bubble interface location and interface velocity was recorded to check

steady-state convergence. This was approximately achieved at 6−7t0 depending on the resolution.

The rise velocity was then taken as the average of the local velocity between 9t0 and 10t0. Table 5.1

provides a comparison of the terminal velocity found in the current study with those from the literature.

Here it is seen that the proposed LBM is able to provide a very close match to the experimental

data [169] for all the resolutions tested, outperforming the previous numerical results [170].

5.3.2 Flow field analysis

The flow field is assessed in the same manner as in previous works by interrogating the velocity

field along the tube centreline in front of the bubble nose as well as along four radial lines at various

locations relative to the bubble. The locations for the radial lines of interest are given by 0.111DT
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(a) t∗ = 0 (b) t∗ = 5 (c) t∗ = 10

Figure 5.6: The evolution of a three-dimensional Taylor bubble inside of a cylindrical tube is shown
at time increments of 5t0 from left to right. The flow conditions were specified according to the
experimental work of Bugg and Saad [169] with DT = 128, ρ∗ = 744, Rer ≈ 27, µ∗ = 4236, Mo =
0.015, and Eo = 100. In each figure, the right frame indicates the mid-plane view of the simulation
domain.

Table 5.1: Reynolds numbers found with varying numerical techniques including VOF, TFM, and the
combined TFM-VOF model from Ndinisa et al. [170], as well as the current LBM in comparison to
the reference experimental (Exp) study [169].

Study [170] [169] DT = 64 DT = 128 DT = 256
Method VOF TFM Combined Exp LBM LBM LBM
Re 28.9 24.5 22.7 27 27.98 26.99 26.77
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ahead of the bubble nose as well as at 0.504DT and 2DT behind the bubble nose where the liquid film

is developing and developed, respectively, and at, DT/5, behind the bubble in the wake region. It is

noted here that the flow behaviour in the wake region changes rapidly, thus with only an approximate

location given in the experimental work [169], this study provides two additional measurements at

DT/6 and DT/7 behind the bubble (measured from the centre-line) for comparison. For clarity, these

lines have been superimposed onto the interface contour defined at φ = 0.5 in Fig. 5.7.
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Figure 5.7: Contour of φ = 0.5 from simulation results with a resolution defined by DT = 128, this is
used to indicate the position of flow velocity profile lines in subsequent figures marked out by cut lines
A-A through to G-G.

Figure 5.8 shows that the velocity along the tube axis in front of the bubble nose is captured

accurately, with the LBM results matching well with both the experimental and numerical findings in

the literature. The figure shows that the bubble has limited influence on the liquid ahead of it, with the

velocity decaying to near zero at around, 0.3DT .

A characteristic of the Taylor bubbles modelled in this regime is the existence of a liquid film

between the low density phase and the wall. The development of this film was well reported through

the PIV experiments providing a further means of validation for the present 3D LBM. Figure 5.9

provides a comparison with the axial velocity along a radial line 0.111DT in front of the bubble

nose. In agreement with the conclusions of Ndinisa et al. [170], this figure indicates a transition from

upwards to downwards flow of the high density fluid roughly halfway between the tube wall and the

central axis. Additionally, the radial profile indicates a strong velocity component above the bubble
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Figure 5.8: The profile of the axial velocity, ua, directly in front of the Taylor bubble along slice A-A.
The comparative numerical results including the TFM, VOF, and the combined TFM-VOF model were
supplied by Ndinisa et al. [170].

where the fluid is accelerating into the liquid film region near the tube wall. The model presented in

the current work performs in a similar fashion to the numerical methods from the literature, closely

matching the axial velocity, but unable to capture the premature decay in the radial velocity observed

at approximately 0.8DT in the experimental results.
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Figure 5.9: The velocity profiles along a radial line positioned 0.111DT above the bubble nose (B-B).

The heavy fluid that is forced towards the tube wall by the rising bubble develops into the liquid film.

Figure 5.10 shows the high axial velocity of the heavy fluid as it propagates downwards surrounding

the Taylor bubble. At this point, it is evident that there is still a large radial component of velocity,

indicating that the film is still developing. The present model is again seen to perform on a similar

level of accuracy as the reference numerical methods [170].

As the liquid film moves past the elongated bubble, it tends towards a fully-developed profile with

negligible velocity in the radial direction and high velocities in the axial direction of the pipe. At this
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Figure 5.10: The velocity profiles along a radial line positioned 0.504DT behind the bubble nose
(C-C).

stage, the shear stress at the wall is capable of supporting the weight of the film with zero velocity at

the solid contact, but high velocity near the liquid-gas interface where the shear stress is negligible in

comparison [170]. Figure 5.11 shows the axial velocity at this stage where it can be observed that the

maximum velocity in the liquid film is over twice that of the bubble propagation speed. This result

again shows a close agreement between the LBM simulations conducted in this study and the CFX 5.6

results [170] as well as the experimental findings [169].
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Figure 5.11: The axial velocity profile along a radial line positioned 2DT behind the bubble nose
(D-D).

When the liquid film moves past the end of the bubble a significant deceleration is observed as

flow expands and recirculates in the wake region. Figure. 5.12 highlights this fact with the axial flow

component still downwards in the near wall region, but upwards near the axis of the tube. Additionally,

this figure shows that the wake has the region of maximum radial flow as the energy from the liquid

film dissipates into the bulk. It is observed that the results measured at DT/5 slightly under predict
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the magnitude of axial velocity, but at DT/6 (which is only four computational cells above the DT/5

location) a significantly better match is obtained. This could be a result of either the diffuse-interface

modelling approach adopted in the LBM algorithm or an uncertainty in the experimental location

measurement. Nonetheless, this deviation seems to denote only a minor error in comparison to

experimental results. To identify possible causes of this discrepancy, an analysis of the bubble shape is

undertaken.
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Figure 5.12: The velocity profiles along radial lines positioned behind the bubble (in the wake region)
at distances of DT/5 (E-E), DT/6 (F-F), and DT/7 (G-G).

5.3.3 Bubble shape analysis

So far, a detailed comparison of the flow field surrounding the Taylor bubble in relation to experimental

[169] and numerical [170] works available in the literature has been shown. In this section, the key

features of the bubble profile in the nose and tail regions are analysed. Furthermore, the profile for

various simulation resolutions is presented to demonstrate the grid dependency of the results. The

purpose of this is to provide a complete validation and analysis of the macroscopic propagation of

Taylor bubbles, the local flow field, and the interface topology.

Figure 5.13a gives a comparison of the Taylor bubble nose profile using the current LBM and

the reference experimental work [169]. It is noted here that the phase-field model for capturing the

interface dynamics is a diffuse interface model, and as such the interface is distributed over a finite

distance rather than being a sharp discontinuity. The contour shown represents the iso-line for which

φ = 0.5. A good fit can be seen between the works, however a discrepancy is evident about the

radial location of r/R = 0.5. The grid dependency of the nose profile is evident in the case where the

resolution is defined by DT = 64, but is clearly negligible with only minor variation from DT = 128 to

DT = 256.

Figure 5.13b provides the profile about the tail of the Taylor bubble for various resolutions. Here the

discrepancy between experiment and numerics is more pronounced. Additionally, the grid resolution
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Figure 5.13: The profiles of the Taylor bubble interface are indicated by the contour of φ = 0.5 in
the LBM results. Here the vertical location is given with reference to an arbitrary location: (a) the
front of the bubble is defined at a dimensionless height of 0.5; (b) the centre line of the interface tail
is defined at a dimensionless height of 0.2. The interface profile is compared with the reference PIV
experiments [169].
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is observed to have a higher influence on the interface topology, particularly for the lowest resolution

of DT = 64. The converged shape of the higher resolution tests seemingly do not capture the lower

bubble tail observed in experimental measurements, with an error of approximately 20% observed at

r/R≈ 0.52. The discrepancy in shape is likely the cause of minor deviations observed in the flow field

of the wake presented in Fig. 5.12. In particular, the elongation observed in the tail of the experimental

bubble could be expected to lead to a greater axial, but lower radial velocity component near the

tube centre line. This occurs as a result of the expansion of the liquid film at a location closer to the

measurement point (D/5 below the central axis of the bubble). This is further verified by the numerical

results presented at a location of D/6, which provide a close fit to experimental data. Qualitatively, the

reduced elongation observed numerically agrees with the findings presented in Fig. 10 of Ndinisa et

al. [170].

5.3.4 Summary of experimental validation

In this section, it has been shown that the phase-field LBM is able to accurately capture the Taylor

bubble rise velocity, the local flow field, and the interface profile in key areas of interest. The rise

velocity determined during simulation was observed to more accurately align with experimental results

in comparison with previous numerical work in the literature. Furthermore, the local flow field showed

only minor discrepancies with the PIV measurements. This finding shows particular promise as

the expected rise velocity of a Taylor bubble has a significant effect on the pressure gradient when

analysing the slug flow regime in tubular pipes with certain mechanistic models [18].

The convergence of the interface profile was observed at a computational resolution of DT = 128

and agreed closely with experimental images. This, along with the flow field data, indicate that the

developed model is able to capture both local and macroscopic details of the flow, correctly resolving

the desired level of physics. With this, extrapolation to a wider range of dimensionless numbers to

cover an array of pipe sizes and fluid properties will allow existing closure models to be evaluated and

updated if required.

5.4 Conclusions

This chapter presented the development, verification and validation of a phase-field LBM in three

dimensions. The model was benchmarked and validated against numerical and experimental works.

The use of a WMRT collision scheme enhanced the numerical stability of the model, enabling

the simulation of high density ratios and high Reynolds numbers. The model itself employs the

conservative phase-field LBE designed to simulate immiscible fluids coupled with a velocity-based

LBE to recover the system hydrodynamics at high density ratios. The current model contains just

one non-local parameter in the LB collision step, offering an improved locality in comparison with

other available LB models. The benefit of this was highlighted in 2D in which computational
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efficiency on parallel architectures was enhanced; in 3D this would be more noticeable again with

more communication required due to an increase in neighbour nodes.

The performance of the model for density matched droplet deformation, a common case used in the

benchmarking of certain LB models, was first demonstrated. Here, similar performance to published

results using a colour-gradient model was observed, with theoretical results being reasonably well

matched in the low capillary number limit. Similarly to the existing LB models, the present LBM

upheld useful features such as an easily adjustable surface tension and a consistent interface thickness.

Flow cases where the density contrast of the fluids have a significant impact on the system dynamics

were also investigated. This included the Rayleigh-Taylor instability in 3D, in which a slight interface

perturbation was introduced causing the heavy fluid to characteristically penetrate into the lighter one.

The model was benchmarked against previous literature where a density ratio of three was used and a

mushroom-like roll-up of the heavy fluid spike was observed. From here, the model was extended

beyond the comparative literature by simulating the Rayleigh-Taylor instability with fluids similar in

properties to an air-water system. The model was observed to capture the dynamics of such a system

stably up to relatively high Reynolds numbers.

Having verified the model with the previous numerical tests, validation against experimental results

investigating the rise of a Taylor bubble in a quiescent fluid was conducted. The experiment injected

an air bubble into a tube filled with olive oil and utilised PIV technology to capture high resolution

flow field data. The phase-field LBM was not only able to recover the observed rise velocity reported

in experiments, but the local flow field data about the bubble was also accurately captured. The steady-

state interface profile about the bubble nose and tail was extracted from simulations and compared with

that found experimentally. Minor discrepancies were observed, but overall the results were deemed to

capture the physical system, providing a detailed validation case for the model presented.

The following chapter will look to investigate the applicability of the phase-field LBM over a large

parameter range that is expected to be of interest for oil and gas operations. A tubular pipe geometry

is maintained, however, the fluid properties and pipe inclination are varied. Additionally, the effect

of flowing fluid is investigated and provides motivation for the development of moving cylindrical

boundary conditions.
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Chapter 6

Taylor Bubble Dynamics in Tubular Pipes

“All models are wrong, but some are useful.”

George Box

This chapter uses the phase-field LBM developed in this dissertation to study the dynamics

associated with Taylor bubbles in tubular pipes. Up until here, the focus of the work was to formulate

the multiphase model, verify that the governing equations were being resolved and validate that

the equations were incorporating all the necessary physics to mimic systems of practical relevance.

Characterisation of Taylor bubbles and their associated dynamics is closely related to the slug flow

regime commonly observed in oil and gas wellbores, gathering networks and major transport pipelines.

In order to effectively design and operate artificial lifting equipment as well as to determine surface

equipment sizing at a well site, it is essential to understand the flows that can manifest within the

confined pipe environment.

As described in Chapter 2, a Taylor bubble is known for its characteristic shape in which an

elongated bullet-type profile is observed to occupy almost the entire pipe cross section. In a continuous

flow, the Taylor bubbles are often separated by liquid slugs in which additional gas volume may be

present in the form of smaller dispersed bubbles. A flowing liquid film forms around the Taylor bubbles

separating them from the pipe wall, and can cause detachment and circulation effects as it expands into

the liquid slug. This flow regime can occur at a range of superficial gas and liquid velocities as well as

in various flow configurations; co-current upwards, downwards and counter-current. Depending on

the application, slug flow can be detrimental due to its inherent pulsatile nature causing cyclic/fatigue

damage; or beneficial with its ability to carry liquid, for example in gas-lift techniques applied to

enhance oil extraction.

Primarily due to the industrial relevance of slug flows, Taylor bubble dynamics has been studied

extensively in the literature. Experimental work in this area typically focuses on stagnant, co-current

upwards or downwards flows in vertical [6, 169, 186–189], horizontal [190, 191] or inclined pipes
103
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[6, 192–195]. Nevertheless, accurate and non-invasive measurements of gas-liquid flows can be

complex and expensive especially when looking to conduct them for a large range of pipe configurations

and fluids with varying properties. Numerical simulation provides a means in which one can validate

with experiments using simple geometries and safe fluids before extrapolating the parameter range in a

computational setting (i.e. substituting methane). For this, it is common for researchers to apply the

volume-of-fluid (VOF) [170] or level-set (LS) [18] techniques to resolve interfacial dynamics within a

flow field. However, with promising results presented in Chapter 5, phase-field theory provides an

alternative to this and will be the basis for this analysis.

With the model validated, its ability to capture a wide parameter range is first tested by varying

fluid properties through the Eötvös and Morton numbers, and pipe configurations by analysing the

effect of inclination on bubble rise. Following this, the chapter looks to gain insights into the effect of

flowing liquid on the propagation of Taylor bubbles, for which boundary conditions are presented and

comparisons with pre-existing rise velocity correlations are made.

6.1 Taylor bubble domain setup

For conducting parameter sweeps, it is desirable for the solution algorithm to be as efficient as possible,

minimising computational cost. In order to do this, the forcing term seen in Equation 4.3 is updated

such that it is applied in moment space. To do this, the update rule for the model is written as,

gi(x+ ciδ t, t +δ t) = M−1 [mi− (mi−meq
i +0.5Fm,i)Ŝi,i +Fm,i

]
, (6.1)

where m=Mg and the forcing term is given by Fm = ρ−1 (0,Fx,Fy,Fz,0, . . . ,0). This minor adjustment

to the algorithm saw a significant speedup by a factor of approximately two for the Taylor bubble

domain simulated in the previous chapter. This increased computational efficiency was primarily

due to the ease of calculation of the viscous stress tensor as well as the cancelation observed in the

relaxation of higher-order moments to equilibrium in this space [2].

Figure 6.1 provides an image output from Paraview of the initial configuration for the Taylor

bubble simulations. For this, a cylindrical gas region is specified with a diameter of 0.75D and length

of 3D, where D is the diameter of the solid pipe. The pipe itself has a length of 10D and is closed on

the top and bottom with the use of the bounce back boundary conditions. A gravitational force, G,

is applied in the negative x-direction causing the bubble to propagate in the positive x-direction due

to buoyancy effects. For all the cases tested, both experimental and numerical, it was assumed that

the gas density and viscosity were negligible in comparison to the liquid and as such a density and

viscosity ratio of 1000, ρ∗ = µ∗ = 1000, is defined in the simulations in this section. As a result of

this, the dimensionless numbers that define the flow configurations are given by,

Mo =
Gµ4

l
ρlσ

3 , (6.2)

Eo =
GρlD2

σ
, (6.3)
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N f =
ρl
√

GD3

µl
, (6.4)

Fr =
uT B√
GD

, (6.5)

Re =
ρluT BD

µl
, (6.6)

Pe =
D
√

GD
M

, (6.7)

Ca =
W
D
, (6.8)

where the Peclet number, Pe, and Cahn number, Ca, have been introduced to define the phase-field

parameters.

Figure 6.1: The initial configuration for the Taylor bubble simulations where the red contour indicates
the liquid-gas interface and the grey contour shows the liquid-solid interface.

Unless otherwise stated, the diameter of the tube in this chapter is 128 lattice units and a reference

time,

t∗ =
√

D/G = 12000, (6.9)

is specified. This defines the gravitational acceleration for each simulation, which along with the

required Eötvös and inverse viscosity or Morton number, can be used to define the surface tension and
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viscosity, respectively. The phase-field parameters are provided by setting the Peclet number to a value

of five and the Cahn number to 0.0391 (corresponding to an interface width of five lattice units).

6.2 Effect of fluid parameters

To investigate how Taylor bubbles behave as well as how the developed model performs for a range

of dimensionless numbers, the work of Lizarraga-Garcia et al. [196] is used as a benchmark. This

consists of a mixture of experimental results as well as correlations provided by the literature for which

simulation results can be compared. The test matrix of parameters is graphically presented on the chart

of White and Beardmore [6] in Figure 6.2. Here, the x- and y-axis represent the Eo number and the Mo

number, respectively. Additionally, the chart displays zoned regions identifying where certain effects

have negligible contributions to the Taylor bubble dynamics (i.e. where the motion is independent of

inertial, viscous or surface tension effects).

Of the eight cases initially tested, four were constructed from experimental works; Case C was

based on the studies of Shosho and Ryan [194]; Case D was from Bugg and Saad [169]; Case F

was from Nogueira et al. [189]; and Case G was from Jeyachandra et al. [195]. To analyse the

hydrodynamic characteristics of these Taylor bubbles, both the normalised thickness of the liquid film

surrounding the bubble, h∗ = 2h/D, and the dimensionless rise velocity in the form of the Froude

number, Fr, are measured. These parameters give insights into both the motion and shape of the Taylor

bubble which can impact predicted pressure gradients in mechanistic models [18].

6.2.1 Modelling of liquid film thickness

Knowledge of the liquid film development, equilibrium state and propagation into the wake region

behind a Taylor bubble is fundamentally relevant to the behaviour of both single and consecutive

bubbles. The film has impacts on all four regions typically used to describe a Taylor bubble; (1) the

hemispherical-like nose, (2) the body section consisting of both the developing and developed film, (3)

the tail region that may be convex, flat or concave depending on the system parameters, and (4) the

wake [197, 198].

The importance of the liquid film was noted as far back as the 1940s by Dumitrescu [199].

Dumitrescu’s analysis of the Taylor bubble assumed a spherical nose along with a potential flow.

Thus, by fixing the coordinate system to the bubble, the condition of conserved vorticity allows an

approximate solution to be found for a stagnant fluid in this region. A complete picture of the bubble is

then obtained by matching this solution with the results of an asymptotic analysis of an inviscid falling

film. The asymptotic analysis assumes a thin film, allowing for the curvature of the pipe wall to be

neglected [188, 199, 200]. Later, Brown [188] extended this by taking the film to be in an equilibrium

state, balancing gravitational forces with the wall shear. The effect of surface tension was incorporated

into the analysis procedure of Dumitrescu by Bendiksen [193], but this did not make a significant

difference to the result for the parameters tested.
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Figure 6.2: The Taylor bubble regime chart of White and Beardmore [6] identifying the test cases used
to further validate the multiphase LBM.

Alongside analytical attempts to define the Taylor bubble, significant experimental work has greatly

contributed to the understanding of the liquid film. Goldsmith and Mason [200] were amongst the

early attempts to characterise the liquid flow in the thin film by tracking aluminium tracer particles

through photographs. Nicklin et al. [201] were able to visualise velocity profiles around a rising Taylor

bubble, and identified the falling film as fully developed when the velocity at the edge of the film

matched that of the bubble rise. This constant film thickness is typically used to describe the flow

through the film Reynolds number,

Re f = 4
ρlu f h

µl
, (6.10)
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where u f is the film velocity. However, by taking a thin film assumption, where h� D, Llewellin et

al. [197] were able to show that the film Reynolds number is equivalent to the bubble Reynolds number

previously defined. With this, a number of early correlations written as a function of Re f could be

rewritten based on N f , Fr, and Re. Notable correlations were proposed by Nusselt [202], Karapantsios

and Karabelas [203] and Lel et al. [204]. Here, the later work of Llewellin et al. [197] is used for

comparison.

Llewellin et al. [197] studied the falling films surrounding Taylor bubbles from a dimensionless

approach and found that the thickness of the film, h, was a function of only the inverse viscosity

number. This was then empirically tuned with their own measurements along with the results of

Nogueira et al. [189]. From this, they concluded the film thickness normalised by the pipe radius,

could be predicted by,

h∗ = 0.204+0.123tanh(2.66−1.15log10 N f ). (6.11)

6.2.2 Modelling of bubble rise velocity

In the doctoral work of Lizarraga-Garcia [63], a sensitivity study of contributions to pressure gradient

predictions was conducted using a range of modelled parameters. Lizarraga-Garcia identified the rise

velocity of the Taylor bubble as having a significant impact on prediction uncertainties and as such,

developed an improved, unified correlation for tubular pipes. The sensitivity study was conducted for

a range of existing predictive tools for two-phase flow. Originally, these tools were largely empirical,

but have continued to incorporate further physical relevance and are now commonly based on a

mixture or mechanistic multi-fluid formulation [18, 205]. The specific models used in the study of

Lizarraga-Garcia included the mechanistic models of Orell and Rembrand [206], Ansari et al. [72],

and Petalas and Aziz [73].

There is extensive literature surrounding the propagation of Taylor bubbles through stagnant

liquid in vertical pipes. In addition to the work of Dumitrescu [199] previously discussed, Davies and

Taylor [186] also made significant progress from an analytical approach in the limit of negligible surface

tension and viscosity. White and Beardmore [6] took an experimental approach and proposed the

graph used in Figure 6.2. Initially, it was common for correlations to vary depending on dimensionless

parameters, for example the correlation proposed by Wallis [68],

uT B = 0.345
[

1− exp
(−0.01N f

0.345

)][
1− exp

(
3.37−Eo

m

)]√
GD(ρl−ρg)

ρl
, (6.12)

m =


10, if N f ≥ 350

69N−0.35
f , if 350 > N f > 18.

25, if N f ≤ 18

(6.13)

Viana et al. [207] collected data from 255 experiments from the literature and conducted seven of

their own in an attempt to improve upon previous rise velocity correlations. In doing this, they were

able to define the rise velocity through the Froude number as Fr = Fr(Eo,N f ). The curves obtained by
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Viana et al. [207] gave rise to two separate power laws when graphed against Eo for small (N f < 10)

and large (N f > 200) inverse viscosity numbers. A universal correlation was derived using logistic

dose curves to fit the transition region leading to,

Fr =
0.34

(1+(14.793/Eo)3.06)0.58

/(
1+
(

N f

31.08(1+(29.868/Eo)1.96)0.49

)a)b

(6.14)

a =−1.45(1+(24.867/Eo)9.93)0.094 (6.15)

b =−1.0295/a (6.16)

Lizarraga-Garcia et al. [196] was not the first to look at the dynamics of a Taylor bubble with

interface-resolved computational fluid dynamics, however they were one of the few groups to use a 3D

domain. Ndinisa et al. [170] used axisymmetric formulations of the volume-of-fluid and two-fluid

models in ANSYS Fluent to determine the characteristics of a Taylor bubble in olive oil. Araùjo et

al. [208, 209] also used ANSYS Fluent to study both single and consecutive Taylor bubbles using a

volume-of-fluid technique in an axisymmetric domain. Taha and Cui [97] extended a 2D analysis to

3D resolved simulations and were able to conclude that the symmetry of the Taylor bubble breaks

down for N f > 500. From the numerical database created by Lizarraga-Garcia et al. [18], the vertical

rise prediction given by Equation 6.14 was found to be suitable, as such this is used for comparison

when experimental results are not available.

6.2.3 Comparison of results

As previously mentioned, the setup for cases C, D, E and F were from experimental work, of which,

cases D and F reported on film thickness as well as bubble rise velocity. For the remaining tests,

comparisons were made using Equation 6.14 for the rise velocity and Equation 6.11 for the film

thickness. Table 6.1 provides the dimensionless numbers describing the flow system as well as the

simulation results.

Table 6.1: Summary of Taylor bubble rise and film thickness over a range of Eo and N f numbers in
comparison with literature and the finite volume method (FVM) simulations of Lizarraga-Garcia et
al. [196]. Experimental results are highlighted by a ∗.

Case Mo Eo Nf Fr (lit.) Fr (FVM) Fr (LBM) h∗ (lit.) h∗ (FVM) h∗ (LBM)
A 0.328 76.5 34.2 0.210 0.212 0.209 0.295 0.288 0.289
B 4.03e-3 187 201 0.324 0.306 0.322 0.198 0.189 0.197
C 1.17e-4 38.6 149 0.276∗ 0.295 0.292 0.212 0.234 0.209
D 1.52e-2 98.4 89.0 0.303∗ 0.291 0.293 0.246∗ 0.238 0.242
E 1.50e-3 9.88 82.3 0.0411 0.0458 0.048 0.192 0.189 0.194
F 4.75e-2 192 111 0.336∗ 0.322 0.308 0.235∗ 0.218 0.230
G 8.38 747 84.0 0.289∗ 0.299 0.301 0.250 0.261 0.247
H 8.38 181 29.0 0.199 0.216 0.206 0.306 0.295 0.301

Here, it is evident that the results found using the phase-field lattice Boltzmann method are able to

accurately capture both the Froude number and the film thickness for all tested cases. The average
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error for the rise velocity was 5.4%, which aligned closely with the accuracy of Lizarraga-Garcia

et al. [196] at 5.6%. For the film thickness, the phase-field method appears superior to the level-set

methods employed in the previous study with an average error of only 1.4% compared to 4.7%.
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Figure 6.3: Comparison of the Froude number simulated with the phase-field LBM (PFLBM) compared
to the work of Lizarraga-Garcia et al. [196] and to correlated/experimental results.

Figures 6.3 and 6.4 further indicate the comparison of the lattice Boltzmann results compared to

the level set-finite volume method used by Lizarraga-Garcia et al. [196] as well as reported literature

values. These simulations further validate the performance of the proposed model and provide insight

into the accuracy of correlations formulated for Taylor bubble characteristics in vertical tubular pipes.

However, it is noted here that the viscosity values that correspond to the tested Morton numbers is

more similar to that of heavy oil rather than brine, as may be expected in a coal seam gas wellbore.

The stability of Taylor bubbles propagating in low viscosity liquid (or equivalently liquid with a high

inverse viscosity number, N f ) can introduce additional modelling complexities. As previously stated,

Taha and Cui [97] found that the symmetry of Taylor bubbles breaks down for N f over 500 which

significantly increases the computational cost through the need for 3D simulations. Due to this, Section

6.2.4 extends the parameter range tested by Lizarraga-Garcia [63] to Morton numbers more applicable

for an air-water system,

Mo =
Gµ4

l
ρlσ

3 =
9.81×0.0010024

998×0.072863 = 2.5618e−11. (6.17)
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Figure 6.4: Comparison of the normalised film thickness simulated with the PFLBM compared to the
work of Lizarraga-Garcia et al. [196] and to correlated/experimental results.

6.2.4 Extension of parameter space

Having validated the proposed phase-field LBM’s applicability to high viscosity liquids (e.g. heavy

oils), the stability is now tested by extending the parameter sweep to lower viscosity values. Figure 6.5

indicates in blue the proposed test area in which natural gas wells producing from coal seams may be

expected to operate, while in red is shown the primary area of interest for Lizarraga-Garcia [63]. The

specific test set used here can be defined by,

Mo ∈ {10−3,10−5,10−7,10−9,10−11}, (6.18)

Eo ∈ {10,20,40,100,200,400,1000}. (6.19)

Initially, the reference time was set to t∗ = 20000 to produce favourable lattice values of viscosity

and surface tension. The primary aim of this subsection is to identify methods for enhancing stability

of certain dimensionless parameter ranges. Lessons learned from this will be taken forward into

Chapter 7 in which annular piping configurations will be investigated. From these tests, Figure 6.6

indicates the stable regions for the initial test suite. Here, it can be seen that there is a clear strip of

stability for the specified reference time, t∗. It is evident in the regions of high Eötvös number (low

surface tension) and low Morton number (low viscosity), instabilities appear to be initiated from the

deformability of the interface under such conditions. Further testing will be conducted into this area,

but first the correlation used by Lizarraga-Garcia et al. [18] and developed by Viana et al. [207] is

assessed for the completed simulations.
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Figure 6.5: The Taylor bubble regime chart of White and Beardmore [6] indicating the area of interest
(red) for the study by Lizarraga-Garcia [63] compared to that explored in this section (blue).

Table 6.2 presents the comparison for each stable simulation with Equation 6.14. The level of

accuracy here is clear, with an average error percentage of only 2.900%. This indicates the correlation

is sufficient as the multiphase system progresses into a viscosity independent regime. However, with

both the independence of viscosity and surface tension, the deformation of the bubble wake caused

instabilities in the lattice Boltzmann simulations to arise. Figure 6.7 indicates the variation in bubble

profile as the Morton number is reduced for a fixed Eötvös number, while Figure 6.8 presents the effect

of increasing Eötvös number for a fixed Morton number.

To assess if this limitation could be relaxed, the reference time was the first ‘user-specified’

parameter to be adjusted in the workflow. Initially, the value had been set to, t∗ = 20000, as this
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Figure 6.6: Stability zone for preliminary parameter sweep to explore lower viscosity fluids applicable
to natural gas extraction. Hollow red dots indicate that numerical instability was detected during the
running of the simulation, while green filled circles indicate the completion to a steady rise condition.
The blue filled diamonds represent the additional stability gained from setting t∗ = 30000.

Table 6.2: Results obtained for the stable rise of Taylor bubbles in a vertical, tubular pipe in comparison
with the correlation presented in Equation 6.14.

Mo 10−9 10−11 10−5 10−7 10−9 10−3 10−5 10−7 10−3 10−5 10−3

Eo 20 20 40 40 40 100 100 100 200 200 400
Fr (Corr.) 0.280 0.280 0.318 0.329 0.331 0.320 0.336 0.339 0.331 0.338 0.336
Fr (LBM) 0.274 0.284 0.300 0.318 0.327 0.310 0.327 0.360 0.320 0.338 0.324
Error (%) 1.995 1.305 5.794 3.097 0.927 3.276 2.501 6.159 3.184 0.017 3.634

resulted in what appeared to be a suitable balance between the numerical viscosity, surface tension

and gravitational acceleration for the majority of flow cases. To investigate its effect on stability,

the reference time was first increased to, t∗ = 30000, for a subset of, Mo ∈ {10−9,10−10,10−11},
and Eo ∈ {10,20,40,100} numbers. Testing these improved the stability, with previous successful

simulations unaltered, but additionally allowing for the Eo = 10 cases to be computed, with the results

reported in Table 6.3 and shown graphically in Figure 6.6.

The next set of tests assessed the effect of numerical viscosity and surface tension, for which,

Figure 6.6 was analysed as the respective νl and σ values. This indicated a potentially stable region for

values for νl and σ which could be used along with the desired dimensionless parameters to specify

t∗ and D in simulations. However, it was observed that as the Morton number decreased and Eötvös

number increased, the size of the reference time and domain quickly became impractical to test on the
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(a) Mo = 10−3 (b) Mo = 10−5 (c) Mo = 10−7

Figure 6.7: Taylor bubble profiles at t∗ = 15t0 with an Eötvös number of 100 and Morton numbers; (a)
Mo = 10−3, (b) Mo = 10−5, (c) Mo = 10−7.
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(a) Eo = 100 (b) Eo = 200 (c) Eo = 400

Figure 6.8: Taylor bubble profiles at t∗ = 15t0 with an Morton number of 10−3 and Eötvös numbers;
(a) Eo = 100, (b) Eo = 200, (c) Eo = 400.
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Table 6.3: Results obtained for the stable rise of Taylor bubbles in a vertical, tubular pipe in comparison
with the correlation presented in Equation 6.14.

Mo 10−9 10−10 10−11

Eo 10 10 10
Fr (Corr.) 0.146 0.146 0.146
Fr (LBM) 0.158 0.161 0.163
Error (%) 8.486 10.827 11.863

available architectures. It is also expected that this stability band would be influenced by the dynamics

of the simulated system, in which the large interfacial curvatures and complex bubble breakup and

coalescence behaviours, may result in instabilities within the numerics. Incorporation of an adaptive

mesh refinement algorithm could assist with this problem, however, this is placed out of the scope

of works in the current study and is instead recommended for future work. The interested reader is

pointed towards the work of Fakhari et al. [28, 157, 173] for literature on adaptive grids and their

implementation with multiphase LBM.

One potential technique for improving stability in the numerical simulations, while still gaining an

insight into the system dynamics, is to reduce the gradients through a reduction in the density ratio.

The work of Hua and Lou [210] as well as Amaya-Bower and Lee [211] indicated variations in the

rise velocity of a spherical bubble to be on the order of 10% with density ratios examined between

ρ∗ ∈ {10, . . . ,1000}. Hua and Lou concluded that for a density ratio larger than 50, little effect could

be seen on the terminal shape and rise velocity of the spherically initialised bubble. As such, the subset

of simulations conducted for t∗ = 30000 were analysed with ρ∗ = 100 and the original reference

time of t∗ = 20000. The new stability plot can be seen in Figure 6.9, in which it is evident that the

lower density ratio improved the stability of simulations for increasing Eötvös and decreasing Morton

numbers. Figure 6.10 compares the simulation results with the correlation of Viana et al. [207] for the

rise velocity of a Taylor bubble, the average variation here was found to be 6.2%. Note that this is

ignoring the outliers evident in Figure 6.10 obtained with Eo = 400, which appears to be at the limit

of stability for this current configuration. This aligns with the order of error observed by Hua and

Lou [210] and Amaya-Bower and Lee [211], however, it is interesting to note that the simulation with

a reduced density ratio measured a rise velocity greater than the prediction from Viana et al. [207].

From the work conducted in this section, it is clear that the phase-field LBM is able to accurately

capture the bubble dynamics of high-viscosity fluids as well as low viscosity fluids, if restricted to

smaller pipe sizes (i.e. lower Eötvös numbers) or certain simplifications are accepted. In addition to

this, an avenue of future work is evident for the proposed model, in which it could be coupled with

an adaptive mesh refinement scheme to assist with instabilities arising from the complex interfacial

deformations evident in low viscosity, liquid-gas systems. Following on from this, the next section

highlights the benefits of numerical modelling by investigating pipe inclination effects. The costs to

conduct tests like this experimentally can be quite high as they require significant spatial clearances

and a dynamic setup allowing for the pipe system to be adjusted between runs. In comparison to this,

one may simply adjust the gravitational datum in the numerical framework such that both vertical and
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Figure 6.9: Stability zone for preliminary parameter sweep to explore lower viscosity fluids applicable
to natural gas extraction. Hollow red dots indicate that numerical instability was detected during the
running of the simulation, while green filled circles indicate the completion to a steady rise condition.

horizontal components are applied onto the pipe, mimicking the effects of inclining the system.

6.3 Effect of pipe inclination

6.3.1 Rise velocity correlations

Inclined pipe dynamics have been widely studied in the literature, with the first elongated bubble prop-

agation speed correlation proposed by Bendiksen [193]. This was formulated based on a combination

of the velocity predicted for a Taylor bubble through a stagnant fluid in a vertical and horizontal tube,

commonly referred to as its drift velocity,

vv
d = 0.351

√
GD , (6.20)

vh
d = 0.542

√
GD , (6.21)

respectively. From this, Bendiksen predicted the Taylor bubble velocity in an inclined tube would be

given by,

uT B = vh
d cosθ + vv

d sinθ . (6.22)

This was further developed by Weber et al. [212] following an experimental campaign that included

Eötvös numbers in the range [4.9, 490] and Morton numbers between [2.2×10−11, 1.5×104]. From
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Figure 6.10: Comparison of the Froude number simulated with the phase-field LBM (PFLBM)
compared to the correlation proposed by Viana et al. [207]. Highlighted in red are the results observed
with an Eo = 400 that indicate the edge of stability in the current configuration.

the experimental findings, vertical (Frv
d) and horizontal (Frh

d) dimensionless velocities were extracted

and a correction term included in the correlation of Bendiksen such that,

FrT B = Frh
d cosθ +Frv

d sinθ +Q, (6.23)

Q =

1.37(δFrd)
2/3 sinθ(1−θ), if δFrd > 0,

0, if δFrd ≤ 0,
(6.24)

where δFrd = Frv
d−Frh

d . Other researchers, particularly when looking at angles far from horizontal,

simplified their analysis by assuming the horizontal drift component was negligible, vh
d ≈ 0. Using

this, Hasan and Kabir [213] proposed,

uT B = vv
d

√
sinθ (1+ cosθ)1.2 (6.25)

vv
d = 0.35

√
GD , (6.26)

from their experimental work, in which angles from 58 degrees to vertical were explored. Later, Petalas

and Aziz [73] built on the work of Bendiksen [193], Wallis [68] and Zukoski [192] to formulate,

uT B = fm(vh
d cosθ + vv

d sinθ), (6.27)

where vh
d =

[
0.54

1.76
Eo0.56

]√
GD(ρl−ρg)

ρl
, (6.28)
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vv
d = 0.345(1− e−Eo·exp(3.278−1.424lnEo))

√
GD(ρl−ρg)

ρl
, (6.29)

and fm is the minimum of unity and 0.316
√

ρlvv
dD/2µl .

A number of other notable works have been undertaken in this area. Here, the studies of Shosho

and Ryan [194] and Jeyanchandra et al. [195] are highlighted as they are used for comparison of

simulation results. Shosho and Ryan investigated the behaviour of Taylor bubbles in both Newtonian

and non-Newtonian fluids while Jeyachandra proposed a new correlation for the horizontal drift

velocity based on experimental works. They coupled this with a correlation from Joseph [214] to

obtain,

FrT B = Frh
d cosθ +Frv

d sinθ , (6.30)

where Frh
d = 0.53exp(−13.7N0.46

f Eo−0.1), (6.31)

Frv
d =−1

3

(
8N−1

f −
√

2ρl

ρl−ρg
+64N−2

f

)
. (6.32)

Lizarraga-Garcia et al. [18] performed computational experiments with the commercial multiphase

simulation code TransAT. This was used to generate a numerical database from which a unified bubble

velocity correlation was formulated. Initially, an attempt was made to fit the data with an expression

based on a balance between buoyancy and drag forces, but poor results were obtained for low angles of

inclination as well as for high Morton numbers and low Eötvös numbers. Due to this, it was proposed

that the velocity could be found from an expression of the form,

Fr = Frv(1− exp(−bθ))(1+ c · sin2θ), (6.33)

where, Frv, is given by Equation 6.14 and the coefficients b = b(Eo,Mo) and c = c(Eo,Mo) are

chosen to fit the simulated results. After analysing the database, the best fit was obtained with,

b(Eo,Mo) = 47.06Frv +4, (6.34)

c(Eo,Mo) =−0.9118Frv +0.67−
0.0148(log10 Mo)2−0.125log10 Mo−0.9118Frv−1.118

[1+(0.05Eo)8]
8 , (6.35)

in which c is a logistic dose-response curve which allows a unified correlation which can describe the

transitions in governing behaviours.

6.3.2 Numerical experiments

To determine the effect of pipe inclination, the test cases investigated by Lizarraga-Garcia et al. [196]

were studied for a wider range of rotations. Cases A, C, G and H were analysed at inclinations of

θ = (5,15,30,45, ...,90) degrees from horizontal, for which experimental work is used for comparison

with cases C [194] and G [195]. In this section, three dimensional computational fluid dynamics results

of Lizarraga-Garcia et al. [196] as well as correlations from Hasan and Kabir [213], Jeyanchandra et
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al. [195] and Petalas et al. [73] are included to determine the suitability of existing correlations for

inclined pipe flow. From here, the unified correlation proposed by Lizarraga-Garcia et al. [18] is tested

against a low Morton number case, similar to that of an air-water system.

The construction of the numerical domain for the inclined pipes follows from the vertical pipe tests.

The variation comes with the introduction of gravitational components in both the horizontal, y, and

vertical, x, directions such that,

gx = Gsinθ , (6.36)

gy = Gcosθ . (6.37)

The reference time is specified as per originally stated, t∗ = 12000, to maintain a practical number of

iterations expected until convergence to a steady-state rise velocity and interface profile is reached.

For convenience, the non-dimensional parameters for the test cases are re-stated in Table 6.4.

Table 6.4: Summary of non-dimensional parameters used for inclined pipe tests and the vertical Taylor
bubble rise velocities previously obtained. Experimental results are highlighted by a ∗.

Case Mo Eo Nf Fr (lit.) Fr (FVM) Fr (LBM)
A 0.328 76.5 34.2 0.210 0.212 0.209
C 1.17e-4 38.6 149 0.276∗ 0.295 0.292
G 8.38 747 84.0 0.289∗ 0.299 0.301
H 8.38 181 29.0 0.199 0.216 0.206

Figure 6.11 provides a visualisation of the inclination angle effects for θ ∈ {15,30, . . . ,75}. As

the phase-field method provides a diffuse interface in simulations, it can be seen that there is a minor

interaction with the walls of the pipe as the inclination approaches horizontal. To cater for this, the three

phase contact interactions described by Fakhari and Bolster [120] were implemented on a stairwise

approximation of the pipe wall. The details for implementing this can be found in Appendix A.1.2. It is

highlighted here that other methods exist for imposing a desired contact angle, in the current approach

the value of the phase field is determined geometrically. Other methods such as that by Connington and

Lee [215] look to build in the free energy of the solid boundary into the free energy functional when

deriving the flow model. These methods show promising results, but can require complex treatment

of phase gradients. When implementing the three-phase contact dynamics a suitable contact angle

needs to be specified, for an air-water contact, literature values of 22 degrees was taken in this work.

Furthermore, this figure indicates the maximum propagation distance occurs at a pipe inclination angle

of 45 degrees, which agrees with reports in the literature.

Figures 6.12 to 6.15 present the relationship found between angle of inclination and bubble rise

velocity for the cases introduced. It can be seen here that the maximum velocity occurs at an inclination

of 45 degrees for all cases. This is a result of the competing forces, namely, the drag force which

reduces with lower inclination angles due to the reduction in bubble cross-sectional area and the effect

of buoyancy which, as expected, increases as the pipe tends towards vertical. Figure 6.12 shows

excellent agreement between the LBM findings in this study and the available range of numerical

results from Lizarraga-Garcia et al. [196]. However, it can be observed that the correlations existing
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(a) θ = 15 (b) θ = 30 (c) θ = 45 (d) θ = 60 (e) θ = 75

Figure 6.11: Taylor bubble profiles at t∗ = 10t0 with fluid parameters according to Case A (Mo=0.328,
Eo=76.5) and for pipe inclination angles of (a) θ = 15, (b) θ = 30, (c) θ = 45, (d) θ = 60, (e) θ = 75.
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from the literature vary significantly from the numerical simulations. The method from Hasan and

Kabir [213] provided the only close match with the high-fidelity simulations conducted for Case A,

agreeing well for vertical and near horizontal pipe, but over-predicting the propagation speed for

intermediary inclinations.

The difference between both the simulation and correlations as well as the correlations themselves

is further displayed in Figure 6.13. The Hasan and Kabir [213] correlation again performs relatively

well for vertical and near horizontal pipe configurations. Case C had experimental data from Shosho et

al. [194] that agreed well with simulations from 15 degrees until vertical. However, there appears to

have been additional wall interactions in the experimental case that slowed the propagation of bubbles

at near (5 degrees) horizontal pipe inclinations. It is clear in this figure that the correlations for Taylor

bubble propagation at intermediary pipe inclination are inadequate, deviating from both the simulated

and experimental results.

The results from Case G are presented in Figure 6.14, with both experimental and correlated

data to compare with. For this case, the PFLBM results agree very accurately with the experimental

measurements of Jeyanchandra et al. [195] and the simulation results from Lizarraga-Garcia et

al. [196]. This provides confidence in both the governing equations being resolved and the numerical

method applied to do this. The final case analysed from the literature can be seen in Figure 6.15,

in which the correlation of Hasan and Kabir [213] again appears the most accurate of the literature

correlations tested. The same trend as previous cases is observed in which near vertical and horizontal

pipe configurations are accurately determined by the correlation, but intermediary inclinations are

over-predicted.

The results of inclination tests imply serious limitations and poor predictive capability of Taylor

bubble velocity models. This observation agrees with the recent work of Livinus et al. [216] where

correlation errors of over 20% were common, even for their proposed model. The reason for such

large uncertainty when predicting the velocity of these elongated bubbles comes from two primary

sources. The first of which comes down to the cost and time required to undertake an experimental

study often resulting in a parameter range too narrow for correlations to be extended. The second

cause can be related to the formulation of the correlation itself in which its form may not be suited for

describing the physical characteristics of the Taylor bubble.

Using data such as that presented, Lizarraga-Garcia et al. [18] formulated a unified bubble rise

velocity correlation. However, this was completed with a database primarily focused on high-viscosity

oils rather than fluids such as brine, which are expected in CSG extraction. As such, the following

test builds on the confidence in the PFLBM created from the previous simulations to determine the

applicability of this closure to low viscosity flows. Table 6.5 provides a comparison of the simulated

bubble rise velocity for a tubular pipe flow in which, Eo = 20, and, Mo = 10−11, with that predicted

by Lizarraga-Garcia et al. [18].

Figure 6.16 presents Table 6.5 in graphical form, indicating the over-prediction of rise velocities.

Here, it is clear that the accuracy of the correlation deteriorates for intermediary inclination angles, as

was observed with correlations compared in the higher viscosity simulations previously conducted.
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Figure 6.12: Comparison of simulated results for Case A with the numerical results of Lizarraga-Garcia
et al. [196] and the correlations of Hasan and Kabir [213], Jeyanchandra et al. [195] and Petalas et
al. [73].
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Figure 6.13: Comparison of simulated results for Case C with the numerical results of Lizarraga-Garcia
et al. [196], the correlations of Hasan and Kabir [213], Jeyanchandra et al. [195] and Petalas et al. [73]
as well as the experimental work of Shosho et al. [194].
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Figure 6.14: Comparison of simulated results for Case G with the numerical results of Lizarraga-Garcia
et al. [196], the correlations of Hasan and Kabir [213], Jeyanchandra et al. [195] and Petalas et al. [73]
as well as the experimental work of Jeyanchandra et al. [194].
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Figure 6.15: Comparison of simulated results for Case H with the numerical results of Lizarraga-Garcia
et al. [196] and the correlations of Hasan and Kabir [213], Jeyanchandra et al. [195] and Petalas et
al. [73].
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Table 6.5: Measured Froude number using the phase-field LBM in comparison to the correlation
proposed by Lizarraga-Garcia et al. [18].

Inclination Angle (θ ) Mo Eo Fr [18] Fr (LBM) Variation (%)
5 10−11 20 0.2328 0.2478 6.44

15 10−11 20 0.3333 0.3074 7.77
30 10−11 20 0.3788 0.3255 14.07
45 10−11 20 0.3941 0.3431 12.94
60 10−11 20 0.3788 0.3265 13.81
75 10−11 20 0.3371 0.2936 12.90
90 10−11 20 0.2800 0.2740 2.14

Additionally, the bubble profiles at t∗ = 15t0 are presented in Figure 6.17. These differ substantially

from the high viscosity case displayed in Figure 6.11, with significant shedding of small, dispersed

bubbles into the wake region for higher angles of inclination. The reduction in viscous drag results in

less elongation of the gas region in the axial pipe direction and provides less protection in terms of

bubble interaction with the pipe walls.
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Figure 6.16: Comparison of simulated predicted bubble velocity in tubular pipes at various inclinations
with the unified correlation proposed by Lizarraga-Garcia et al. [18].

From the simulations conducted in this study, it appears that a unified correlation applicable

across not only a broad range of fluid parameters, but pipe dimensions and inclinations is yet to be

formulated. However, with the model developed and simulation methodology presented, the phase-field

LBM is shown to be an invaluable tool for determining the applicability of correlations for desired

circumstances. Furthermore, a future direction of work with this model is apparent in modelling pipe

inclination effects in tubular pipes with the potential of contributing towards the accuracy of a unified
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velocity rise correlation, particularly at intermediary angles, θ ∈ {15, . . . ,75}. This is placed out the

scope of work in this dissertation with interest focused on annular piping configurations.

(a) θ = 5 (b) θ = 15 (c) θ = 30 (d) θ = 45 (e) θ = 60 (f) θ = 75

Figure 6.17: Taylor bubble profiles mimicking an air-water system in a small pipe at t∗ = 15t0 with
Mo=10−11, Eo=20 and pipe inclination angles of (a) θ = 5, (b) θ = 15, (c) θ = 30, (d) θ = 45, (e)
θ = 60, (e) θ = 75 degrees.



6.4. EFFECT OF FLOWING FLUID 127

6.4 Effect of flowing fluid

In practical scenarios relating to the extraction of hydrocarbons from the subsurface environment, it

is expected that gas may rise through upward (co-current), downward (counter-current) as well as

stagnant fluid, depending on the stage of production. Understanding how this flowing fluid alters the

behaviour of Taylor bubbles is critical in predicting the dynamics associated with the slug flow regime.

In general, the propagation rate of the bubble, uT B, in a flowing fluid is considered to be a function of

the drift velocity, ud of an elongated bubble in a stagnant fluid and the velocity of the liquid phase, ul ,

uT B =C0ul +ud. (6.38)

The approach for this was first proposed by Nicklin et al. [201], where the coefficient, C0, was used

to capture effects associated with nonuniform flow and void concentration profiles [63, 217]. The

drift velocity, ud , of the Taylor bubble may be determined through any of the correlations previously

discussed to determine the rise velocity through stagnant fluid. The introduction of this method

highlighted the importance of the liquid flow in front of a Taylor bubble, with the value of C0ul often

assumed to be equal to the maximum local velocity in this region [218]. Early in the literature, values

were typically taken as C0 ≈ 1.2 for turbulent and C0 = 2 for fully developed laminar flows. This

has proved to be a reasonable engineering approximation, and is still common place in industry and

research studies [63]. Polonsky et al. [217] showed that the value of the coefficient was a function of

flow velocity presenting results where it decreased from a value of, C0 = 1.86, for a liquid velocity

of, ul = 0.87 m/s, to C0 = 1.16, for a liquid velocity of, 25.5 m/s. Additionally, Polonsky et al.

investigated the developing behaviours of a Taylor bubble in liquid flow from which they were able to

suggest physical models for understanding undeveloped slug flow.

Bendiksen [193] further tested this correlation in inclined pipes and found reasonable agreement

with the previously proposed ‘engineering’ values for, C0. Soon after Bendiksen [219] proposed

correlations for this coefficient based on potential flow theory and vertical pipe flow experiments,

C0 =

2.29
(
1− 20

Eo(1− e−0.0125Eo)
)
, laminar flow and Eo > 40,

logRel+0.309
logRel−0.743

(
1− 2

Eo(3− e−0.025Eo logRel)
)
, turbulent flow.

(6.39)

Here, it can be seen that the liquid Reynolds number, ρlulD/µl , and the Eötvös number are used

to approximate the effects of liquid motion and surface tension. Developments on this are still

evident today with additional terms being introduced, for example, to cater for varying fluid viscosity

ratios [220]. Around a similar time to the work conducted by Bendiksen, Fréchou [221] proposed a

correlation for upward liquid flow based on the liquid Reynolds number only,

C0 = 1.2+
0.8

1+10−8Re2.55
l

. (6.40)

Tomiyama et al. [222] used air-water experiments to correlate the coefficient to the Eötvös number in

laminar flows and to the liquid Reynolds number in the transitional/turbulent regime,

C0 =

1.5−0.5e−4·10−4Eo2.36
, Rel < 2000,

1.18+0.32e1.7·10−3(2300−Rel), Rel > 2300.
(6.41)
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With the variance in behaviour observed from the onset of turbulence, it is critical to understand

where this transition point occurs. Pinto et al. [223] conducted an experimental study to this end in

tubular pipes with internal diameters of 22 mm, 32 mm and 52 mm. The authors reported that the

transition towards turbulence initiated at a liquid Reynolds number of 2100, however, the value of the

coefficient, C0, varied prior to this indicating dependence on additional dimensionless parameters even

in the laminar regime. Based on their experimental work, Pinto et al. [223] were able to establish a

correlation for rise velocity as a function of the liquid Reynolds number, the ratio of liquid to Taylor

bubble drift velocity and the Weber number defined as, Weud = ρlDu2
d/σ . To present their correlation,

the parameter,

c1 = RelWe0.21
ud

(
ul

ud

)0.28

, (6.42)

is introduced such that,

C0 =


2.0±0.1, c1 < 1000,

2.08−1.38 ·10−4c1, 1000≤ c1 < 6000,

1.2±0.1, c1 > 6000.

(6.43)

In addition to combining potential flow theory and experimental findings to formulate these

correlations, recent studies have seen the use of numerical simulations to verify these or at least assess

their bounds of validity. Taha and Cui [97] used a 2D axisymmetric volume of fluid formulation and

fully 3D simulations to analyse the behaviour of air and water inside a 20 mm diameter pipe with

stagnant and flowing fluids. They obtained favourable comparisons with published experimental results

for the velocity of the bubble and the local wall shear. Lu and Prosperetti [224] also performed 2D

simulations with a volume of fluid technique finding reasonable agreement with measurable quantities

available in the experimental literature. Lizarraga-Garcia et al. [18] performed a numerical survey with

fully 3D simulations using the level-set method to determine interfacial interactions. They concluded

that additional work is still required to determine the effect of pipe inclination angle and Eötvös

number on the coefficient, C0. In this section, the flowing fluid configuration is used to validate the

performance of velocity boundaries in the proposed phase-field LBM as well as to assess the selection

of C0 in co- and counter-current scenarios.

6.4.1 Simulation details

In order to simulate co- and counter-current flows, a similar methodology to Chapter 4 is used.

Therefore, boundary conditions need to be specified to allow for the cylindrical pipe walls to propagate

at the expected rise velocity for the instantiated Taylor bubble. The unknown lattice populations

incoming to the pipe wall vary with azimuthal position, and so a generalised boundary condition that

caters for an arbitrary wall normal is required. By assessing any motion of the Taylor bubble in relation

to the moving reference frame, the value of C0 can be determined.



6.4. EFFECT OF FLOWING FLUID 129

Velocity boundaries for arbitrary normal directions

For a defined velocity, u, on a boundary located at xb, the probability distribution functions for the

velocity-based LBM must satisfy momentum conservation, namely,

∑
i

gi(xb)ci = ∑
i

geq
i (xb)ci = u. (6.44)

In addition to this, taking the normal approach of performing the bounce-back scheme for the nonequi-

librium component of the distribution functions gives,

gi(xb)−geq
i (xb) = gī(xb)−geq

ī (xb), (6.45)

where ī indicates the opposing lattice direction to i. This satisfies conservation of momentum in the

normal direction, however, an excess of momentum can be observed tangentially along the boundary.

This is where the set of tangential directions are identified through the known normal, Π= {i|ci ·n= 0}.
Therefore, the excess momentum can be found through,

Mg(xb) = ∑
i∈Π

ci
[
gi(xb)−geq

i (xb)
]
. (6.46)

This is then distributed over the N unknown distributions as discussed by Zu and He [145], but

proposed as far back as Zou and He [137],

gi(xb) = gī(xb)+
[
geq

i (xb)−geq
ī (xb)

]
− 1

Nc2 ci ·Mg(xb). (6.47)

A similar methodology can be applied to the distribution used to resolve the Allen-Cahn equation.

Here, the moving boundary generally has a known value of phase, φ , that is being applied and as such,

the distribution functions should satisfy mass conservation [145],

∑
i

hi(xb) = ∑
i

heq
i (xb) = φ . (6.48)

The nonequilibrium component of the distribution can be written as,

hi(xb)−heq
i (xb) =−

[
hī(xb)−heq

ī (xb)
]
, (6.49)

which results in an excess of density according to [145],

Mh(xb) = ∑
i∈Π

[
hi(xb)−heq

i (xb)
]
. (6.50)

This is distributed over the unknown distributions allowing the boundary to be resolved,

hi(xb) =

hi(xb)−
[
hī(xb)−heq

ī (xb)
]
, if ci ·n = 0

hi(xb)−
[
hī(xb)−heq

ī (xb)
]
− Mh(xb)

N , if ci ·n 6= 0.
(6.51)

Therefore, it can be seen from the above formulation, that if the normal to the boundary is known,

conditions can be specified to determine the unknown distribution functions required to specify a

desired velocity and phase. This is used for the cylindrical pipe walls as well as for the inlet and

outlet of the domain in this section. It is noted here that three phase interactions are not expected to

be significant, but if required, the method from Fakhari et al. [120] is used to determine the value of

phase to be set.
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Case configuration and simulation setup

To validate that the moving reference frame configuration can capture the Taylor bubble rise behaviour

in stagnant, co- and counter-current regimes, two cases are taken from Lizarraga-Garcia [63]. In

addition to this, a third case is conducted with dimensionless quantities progressing towards fluids

relevant in the extraction of natural gas from coal seams. The important quantities for these cases

are specified in Table 6.6 along with the predicted Taylor bubble drift velocity from Equation 6.14

and that found with the phase-field LBM in the moving reference frame. With the first two cases

providing support for the model accuracy, the third will be used to assess the validity of the closure

relations previously discussed and determine the variation in hydrodynamic response between co- and

counter-current configurations.

Table 6.6: Summary of non-dimensional parameters used for inclined pipe tests and the vertical Taylor
bubble rise velocities determined with the phase-field LBM and the correlation proposed by Viana et
al. [207].

Case Mo Eo Nf Frd Eqn. 6.14 Frd LBM Variation (%)
A 7.1e-2 29 24 0.1341 0.1326 1.1523
B 7.1e-2 240 120 0.3086 0.3079 0.2422
C 1.0e-5 20 168 0.2605 0.2512 3.5825

In order to determine the empirical coefficient, C0, for the flow cases described by Table 6.6 the

domain constructed for the stagnant fluid simulations is transformed into a moving reference frame.

Therefore, the domain resolution is specified as {x× y× z}= {10D×D×D}, where D = 128. At the

centre of this domain, a cylindrical, low density region is initialised with a length of 3D and diameter

of 0.75D. The initial Taylor bubble shape is finalised with the addition of a hemisphere on the front of

the cylinder as indicated in Figure 6.18. The moving reference frame is created through the velocity

boundary condition previously discussed. It is used to set all boundary velocities to oppose the drift

velocity of the Taylor bubble, −ud . Therefore, the buoyancy force acts to propagate the bubble in the

positive x-direction, but is counteracted by the imposed velocity at the boundary walls. To incorporate

co- and counter-current flow into this setup, a fully developed pipe flow condition is superimposed at

the top and bottom of the domain,

ux(0,y,z) = ux(10D,y,z) = ud +2ul(1−
[
(y−R)2 +(z−R)2]/R2), (6.52)

where R = 0.5D is the radius of the pipe.

To assess the performance of the phase-field LBM for flowing fluid simulations, liquid Reynolds

numbers were tested for Rel = {−10,−1,0,1,10}. The motion of the bubble could then be used

to determine C0 in comparison to existing correlations from the literature, namely, Equations 6.39

6.40, 6.41 and 6.43 by Bendiksen [219], Fréchou [221], Tomiyama et al. [222] and Pinto et al. [223],

respectively.
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Figure 6.18: The initial configuration for the Taylor bubble simulations with a moving reference frame
where the red contour indicates the liquid-gas interface and the grey contour shows the liquid-solid
interface.

6.4.2 Results

Table 6.7 provides the coefficients determined using the proposed multiphase LBM in a moving

reference frame in comparison to the correlations discussed in the previous section. Here, it is evident

that the correlations predict a constant value of, C0, for each case. This was not found to be consistent

with the simulation results in which the value of the coefficient decreased as the absolute rate of liquid

flow increased. In the work of Lizarraga-Garcia [63], it was evident that the Taylor bubble Froude

numbers were not a linear function of the liquid velocity, indicating that C0 =C0(Eo,Rel) at the least.

This is observed in the current results and formulating an improved coefficient based on simulation

results highlights a potential avenue for future work using the model proposed in this dissertation.

When considering the value of the coefficient chosen, it is important to understand the effect it

has on the actual rise velocity of the Taylor bubble. Figure 6.19 shows the measured Froude number

for the simulated bubbles in comparison to the correlations previously introduced. The formulation

by Bendiksen [219] proves very effective in predicting the bubble behaviour, even considering the

limitation on Eötvös number is not strictly met. This appears to be the case as the coefficient determined

matches relatively well at higher fluid velocities, where its effect compared to the drift velocity of the
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Table 6.7: The values obtained for the distribution parameter, C0, using the phase-field LBM in
comparison to existing correlations by Bendiksen [219], Fréchou [221], Tomiyama et al. [222] and
Pinto et al. [223].

Case Rel C0 Eqn. 6.39 C0 Eqn. 6.40 C0 Eqn. 6.41 C0 Eqn. 6.43 C0 LBM
A -10 1.8098 n/a 1.3386 n/a 1.8500
A -1 1.8098 n/a 1.3386 n/a 2.2285
A 1 1.8098 2.0000 1.3386 2.0 ± 0.1 2.0253
A 10 1.8098 2.0000 1.3386 2.0 ± 0.1 1.7019
B -10 2.1087 n/a 1.5000 n/a 1.9487
B -1 2.1087 n/a 1.5000 n/a 2.0544
B 1 2.1087 2.0000 1.5000 2.0 ± 0.1 1.9829
B 10 2.1087 2.0000 1.5000 2.0 ± 0.1 1.6206
C -10 1.7835 n/a 1.1876 n/a 1.4213
C -1 1.7835 n/a 1.1876 n/a 1.4222
C 1 1.7835 2.0000 1.1876 2.0 ± 0.1 1.4125
C 10 1.7835 2.0000 1.1876 2.0 ± 0.1 1.4121

Taylor bubble is more apparent. This results in the deviation at low flow rates to have a negligible

impact on predicted rise velocity. An additional point of note from Figure 6.19 is the breakdown of

bubble rise at a liquid Reynolds number of approximately two, where the entrainment of the Taylor

bubble is observed. Here, the Taylor bubble no long rises but is entrapped by the moving liquid phase

creating a co-current downward flow.
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Figure 6.19: Effect of liquid motion on the bubble rise velocity with fluid parameters from Case A.
Note that in this regime, the correlations of Fréchou (1986) and Pinto et al. (2005) are equivalent.
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Increasing the Eötvös number for Case B results in a deterioration of correlation accuracy when

compared with the simulated results. Figure 6.20 shows the decrease in linearity of the bubble Froude

number versus liquid flow as the surface tension effects are reduced. In this figure, the gradient of

the simulated velocity varies quite significantly between co- and counter-current flow. The results for

co-current matching reasonably with the correlation of Tomiyama et al. [222] and counter-current with

that of Bendiksen [219], however, further testing would be required to verify this conclusion. In Case

B, the effect of surface tension is reduced as a result of the higher Eötvös number which results in

elongation of the bubble and a larger annular film through which the liquid can propagate, without

reversing the bubble rise direction.
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Figure 6.20: Effect of liquid motion on the bubble rise velocity with fluid parameters from Case B.
Note that in this regime, the correlations of Fréchou (1986) and Pinto et al. (2005) are equivalent.

The rise velocity results for the simulations of Case C are displayed in Figure 6.21. The purpose

of this case is to observe the effects of decreasing the Mo number in the tubular pipe configuration

when liquid flow is present. Here, the value of the empirical coefficient, C0, is observed to be almost

independent of liquid velocity. This is expected from the correlations proposed in the literature,

however, understanding why this is observed here and not for Case A and B is important. Considering

the physical meaning of a lower Morton number, namely a lower liquid viscosity for this configuration,

one can reason the independence of C0. The rise velocity of the bubble is effectively determined from

a balance of the viscous drag and buoyancy forces, as such, the lower viscosity reduces the influence

of the liquid on the Taylor bubble and leads towards an inertially dominated system. The inverse

viscosity number, N f , appears to be correlated with this, taking into account effects of both viscosity
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and surface tension. This is further observed by the lower value of C0 obtained for increasing N f in all

simulations within this section. For Case C in particular, the empirical coefficient did not match well

with correlations, determined to be in between the predictions of Bendiksen [219] and Tomiyama et

al. [222].
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Figure 6.21: Effect of liquid motion on the bubble rise velocity with fluid parameters from Case C.
Note that in this regime, the correlations of Fréchou (1986) and Pinto et al. (2005) are equivalent.

In this section, Taylor bubbles have been simulated in stagnant, co- and counter-current flow for

various dimensionless parameters. From these simulations, it is clear that further work is required

for a unified relation between liquid flow and Taylor bubble rise for both co- and counter-current

configurations. The correlation by Bendiksen [219] performed the best for a low inverse viscosity

number, but deteriorated in accuracy as the flow became more inertially dominated. However, in this

regime, the results seemed to be bounded by the predictions of Bendiksen [219] and Tomiyama et

al. [222]. The simulations performed here provide a methodology for which one could build a database

of relations between the relevant dimensionless parameters and the empirical coefficient, C0, in order

to determine a universal model for the rise of an elongated bubble in stagnant and flowing liquid.

6.5 Conclusions

In this chapter, the proposed phase-field LBM was used to investigate the behaviour of elongated

bubbles within tubular pipes for a range of different configurations. This highlighted numerous

shortcomings in the current literature, with limited accuracy observed for existing correlations when
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predicting the rise velocity of Taylor bubbles for intermediate pipe inclinations as well as when there

is bulk liquid motion. Initially, fluids with relatively high Morton numbers were investigated so as to

compare to previous works by the likes of Lizarraga-Garcia et al. [18], further developing confidence in

the developed model. From here the parameter range was increased to capture liquid-gas systems that

could be expected in the extraction of natural gas from coal seams. Here, the stability of the phase-field

LBM was tested and the limit of the current implementation reached. It is believed that coupling

the method with an adaptive mesh refinement algorithm would significantly extend the capability of

the model for flows that can be practically simulated on modern architectures. A further possibility

for improving the model stability is to investigate the use of recent LBM collision operators, for

example, using cascaded, cumulant or entropic relaxation. Having analysed Taylor bubble flow for a

range of fluid properties, the piping configuration was tested through an imposed angle of inclination.

These tests indicated the benefits of numerical modelling to investigate scenarios that would present

design issues (e.g. spatial and financial requirements) for experimental studies. Limited applicability

was found for correlations describing the dynamics of a Taylor bubble in pipes with intermediary

inclination angles, however, accurate predictions were observed in near vertical and horizontal systems.

In coal seam gas extraction, typically the bulk liquid phase is also extracted from the wellbore creating

co- or counter-current liquid-gas flows at various stages of a well’s life cycle. As such, understanding

the effect of a flowing liquid phase on a Taylor bubble is essential for determining the pressure gradient

and void fraction in the slug flow regime. Testing of various liquid flow rates indicated inaccuracies

in the values currently chosen for the empirical coefficient, C0. The results of simulations performed

show dependence of C0 on the liquid flow rate at low inverse viscosity numbers. The simulation of

more cases is recommended to extract a quantitative relation for C0 to ensure accurate prediction of

bubble behaviours. Additionally, the work in this chapter validated the phase-field model for complex,

practical flows and the implementation of velocity wall, inlet and outlet boundary conditions. The

lessons learnt in regards to stability and the model developments made are taken into the following

chapter in which annular piping configurations are studied.
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Chapter 7

Taylor Bubble Dynamics in Annular Piping

“An approximate answer to the right problem is worth a good deal

more than an exact answer to an approximate problem.”

John Tukey

Following on from Chapter 6, in which the dynamics of elongated bubbles in tubular pipes was

investigated, the effect of annular piping configurations is analysed. Applications for this can be found

in numerous areas from double pipe heat exchangers to nuclear reactors with the presence of catalyst

rods creating an annular flow condition. However, the primary motivation for this work comes from

the extraction techniques associated with coal seam gas (CSG). As previously discussed, the wellbore

designed to transport fluids from the reservoir to the surface uses an annular configuration such that

water can be removed through the central tubing string to alleviate reservoir pressure at the early stages

of production. Additionally, the use of artificial lifting equipment may be required at later stages of a

well’s life, namely, when the energy of the reservoir is insufficient to facilitate fluid flow to the surface.

Due to the unconventional well configuration and operation, various flow conditions from gas flow

through a stagnant liquid column to co- and counter-current liquid-gas flow can be expected in the

production annulus. In addition to this, it is rare for CSG wells to be drilled completely vertical, thus,

an understanding of how pipe inclination can alter the associated fluid dynamics is also important. A

rich array of fluid behaviours can be observed in multiphase flows through annular conduits that are

not apparent in the tubular analogue. For example, Taylor bubbles that are characteristic of the slug

flow regime, evolve asymmetrically about the cylindrical insert forming an open sectorial wrap. The

nose of the bubble in this form takes on an ellipsoidal shape, unlike the spherical cap seen in a tubular

pipe for a fully developed Taylor bubble.

In this chapter, the focus is again placed on the slug flow regime with a detailed analysis of annular

Taylor bubbles. This starts with a review of previous work conducted in the literature. Following

from this, the experimental cases investigated by Das et al. [225] are reproduced with the phase-field

LBM (PFLBM). With confidence that the expected annular behaviour can be naturally captured in the
137
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simulations, the effect of pipe inclination is studied. Finally, liquid flow is introduced into the annular

geometry to assess if existing rise velocity correlations are valid for conditions expected in CSG wells.

7.1 Annular Taylor bubbles

In comparison to the body of literature available on Taylor bubbles in tubular conduits, research into

the dynamics associated with flow in an annulus is limited [226, 227]. The primary variation between

the two flow confinements comes from the shape of the bubble nose that develops and the breakdown

of symmetry observed in the annular configuration. As was discussed in Chapter 6, a Taylor bubble in

a tube has an almost hemispherical cap region which leads to a liquid film that continues at a constant

thickness around a cylindrical gas volume. In comparison, the nose of an annular Taylor bubble is

elliptic when the major axis is orientated vertically and progresses into a region of inner and outer

liquid films. Additionally, the symmetry of the bubble is lost with an incomplete wrapping of the

central pipe creating a liquid bridge through which fluid is accelerated into the wake region. Figure

7.1 indicates the variation of the commonly observed topology of Taylor bubbles in a tubular versus

annular pipe geometry. Here it can be seen that the cross section of a tubular bubble is broken into two

regions, namely the Taylor bubble and the liquid film, whereas for the annular pipe, Das et al. [225]

defined four regions in an attempt to understand the bubble’s dynamics.

Figure 7.1: Schematic of a tubular Taylor bubble compared with one rising through a concentric
annular configuration. This image has been reproduced from Das et al. [225]
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In the axial direction, the bubble is differentiated into the nose region in which the thickness

of the surrounding fluid varies, and the tail region where it has a constant thickness. As the liquid

film expands past the tail of the bubble, it creates a vortex which can cause the dissociation of small

bubbles into the liquid slug. According to Das et al. [225] these bubbles have negligible impact on the

macroscale rise behaviour of the Taylor bubble itself. The definition of the nose region in the annular

bubble is slightly more complex with the need to define the thickness of the inner film, δ1, and the

outer, δ2, in addition to the wrap angle of the inner pipe, 2θ . In the nose region, these parameters

are all functions of the axial distance from the bubble tip, whereas they remain constant through the

tail region. This asymmetric shape caused by the incomplete wrapping is a unique feature of bubbles

rising through annular configurations which is not evident when a bubble rises either in a tubular pipe

or encompasses a tubular pipe in an infinite pool. Previous researchers have explained this by picturing

the channel flow that would be formed by cutting the cross-section of the annulus and opening it. This

channel would have two parallel walls with lengths equal to the circumference of the inner and outer

tubes and a thickness equal to the size of the annular gap [225, 228]. If a large gas bubble was then

situated in this channel, it would evolve with liquid films about all sides due to the surface tension at the

walls. When transforming this back to a circular restriction, the liquid film on the thinner sides could

be seen to coalesce forming the liquid bridge that restricts the full closure of the annular wrap. Due to

the potential flow techniques employed in the early stages of Taylor bubble analysis, understanding

the shape and governing forces in these different bubble regions became critical to the analysis. A

limited number of studies look to investigate this problem in detail, with recent investigations by the

likes of Rohilla and Das [227], finding novel conclusions about the nature of the annular Taylor bubble

shape. From the previous chapter, it is clear that high resolution data is obtainable with the proposed

PFLBM, and as such the aim of this chapter is to demonstrate the capability of the model and present a

methodology for which the behaviour of Taylor bubbles can be further understood.

7.2 Propagation in a stagnant fluid

Griffith [229] presented one of the earliest investigations into the dynamics of bubbles inside an

annulus in order to predict boiling behaviours in heated conduits. In their work, a velocity correlation

was proposed in which the inner diameter of the outside pipe, D2, was used as the characteristic length,

uT B = K
√

gD2 , (7.1)

and the tuning parameter, K = K(D1/D2), was taken as a weak function of the inner pipe, D1, to

outer pipe diameter ratio. Continuing on from the work of Griffith, Sadatomi et al. [230] studied

liquid-gas flows in conduits with various cross-sectional shapes. When looking at the slug flow regime,

they recognised the dependence of the Taylor bubble rise on the periphery diameter, D1 +D2. Then

matching this with their own data and that of Griffith [229] obtained,

uT B = 0.345
√

g(D1 +D2) . (7.2)
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This finding was later supported by the work of Caetano et al. [60, 61]. Caetano’s group additionally

investigated the effect of eccentricity and concluded that the maximum velocity was observed in a

concentric annulus. This correlation has seen application in mechanistic models for counter-current

annular flow, such as that proposed by Firouzi et al. [16].

Barnea and Shemer [231] took a different approach assuming the Taylor bubble to be an open

annular ring with negligible film thickness, and then relating the characteristic dimension to the

curvature of the cap bubble obtained,

uT B = K
√

gDe , (7.3)

De =
D2

4

(
(π +1)+(π−1)

D1

D2

)
. (7.4)

Hasan and Kabir [62] used the data of Barnea and Shemer along with the theory proposed by Griffith to

formulate an expression of their own. They found K to be weakly related to the ratio of pipe diameters

through,

uT B = (0.345+0.1D1/D2)
√

gD2 . (7.5)

Later, Das et al. [225] produced a detailed study on the dynamics of Taylor bubbles in air-water flow

for a range of annular gap sizes. They were able to determine correction terms for small, D2 ≤ 0.0254

m, and large, D2 ≥ 0.247 m, pipe configurations, with which accurate predictions were obtained for

their own and existing experimental data in the literature. From this study, the rise velocity of a Taylor

bubble in pipe sizing applicable to natural gas wells can be predicted as,

uT B =

uT B = 0.322×0.765
√

g(D1 +D2) , D2 ≤ 0.0254 m

uT B = 0.323
√

g(D1 +D2) , 0.0254 m < D2 < 0.247 m.
(7.6)

This correlation was further validated by Agarwal et al. [228], where it was used to make conclusions

about the practicality of extending the analysis from a circular annulus to a square shaped conduit.

Rohilla and Das [227] more recently made use of it when analysing the effects of eccentricity as well

as investigating the transition from a tubular to annular Taylor bubble as it passed over a cylindrical

insert. These few findings represent the main body of research existing for annular Taylor bubbles,

“despite being a widely observed phenomenon” [227]. To further develop understanding of annular

Taylor bubbles, the experimental test cases from Das et al. [225] were recreated with computational

fluid dynamics. Following on from the experimental validation, pipe inclination and liquid flow were

introduced into the system to observe the effects on the annular Taylor bubble. This investigation

provides a proof-of-concept study from which the methodology presented could be extended to

formulate a unified bubble rise model.

7.2.1 Simulation details

Three test cases were initially simulated with the PFLBM in order to compare to both experimental

results and correlations existing in the literature. The relevant dimensionless numbers and physical
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annuli dimensions are presented in Table 7.1, along with the measured experimental Froude number

and correlations from Das et al. [225], Sadatomi et al. [230] and Hasan and Kabir [62]. It is noted here

that the correlation of Das et al. [225] was tuned using these experimental works and as such, it is not

a surprise that it provides the most accurate prediction of rise velocity.

With the change in piping configuration, the definitions of the relevant dimensionless parameters

are adjusted slightly from Chapter 6. Here, the reference time, Eötvös, Morton, inverse viscosity and

Froude numbers are defined as,

t∗ =

√
D2−D1

G
, (7.7)

Eo =
(ρl−ρg)G(D2−D1)

2

σ
, (7.8)

Mo =
(ρl−ρg)Gµ4

ρ2
l σ3 , (7.9)

N f =

√
(ρl−ρg)ρlG(D2−D1)3

µl
, (7.10)

Fr =
uT B√

G(D2 +D1)
, (7.11)

respectively. In addition to these, the ratios of density, ρ∗ = ρl/ρg, viscosity, µ∗ = µl/µg, and pipe

diameter, D∗ = D2/D1, are used to define each flow case. The experimental work carried out by Das

et al. [225] was conducted with air and water, as such the density and viscosity ratios are taken as,

ρ
∗ =

998
1.2047

= 828.4220, (7.12)

µ
∗ =

1.0020×10−3

1.8205×10−5 = 55.0398. (7.13)

Table 7.1: Summary of annular experimental geometry and flow cases from Das et al. [225]. Predictions
of the dimensionless rise velocity are provided by Das et al. [225], Sadatomi et al. [230] and Hasan
and Kabir [62].

Case D2 [m] D1 [m] Eo Mo N f Fr (Exp.) Fr [225] Fr [230] Fr [62]
1 0.0508 0.0254 86.587 2.559e-11 12620 0.334 0.324 0.345 0.323
2 0.0381 0.0127 86.587 2.559e-11 12620 0.338 0.326 0.345 0.328
3 0.0254 0.0127 21.647 2.559e-11 4462 0.277 0.260 0.345 0.323

To discretise the annular piping system, the outer tube diameter, D2, is set to 128 lattice units (lu)

and the reference time is fixed to, t∗ = 12000 lu. From here, all fluid parameters and the pipe geometry

can be determined using the dimensionless numbers stated in Table 7.1. To initialise the system, one

can take the naive analogue of the simulations conducted in Chapter 6, and initialise an axi-symmetric,

toroidal bubble that encapsulates the entire inner tube. To do this, first the pipe is assumed to align

parallel with the x-axis and as such, the surface of the liquid-gas interface can be specified,

x2
int = r2

1−
(

r2−
√

(y− yc)2 +(z− zc)2
)2

, (7.14)
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where r1 is the radius of the toroidal tube, r2 is the distance from the axis of the annular pipe to the

centre of the toroidal tube and the subscript, c, specifies the location of the annular pipe axis. From

here, a dilation factor, d f , is applied to extend the cross-section of the toroid into an elliptical form,

xint = d f

√
r2

1−
(

r2−
√

(y− yc)2 +(z− zc)2
)2

. (7.15)

Using this shape is suitable for capturing the behaviour of an annular Taylor bubble with simulations

naturally evolving into the asymmetrical shape observed in Figure 7.1. However, to reduce the time

to steady-state it is favourable to initialise the Taylor bubble in a shape closer to that expected from

experiments reported in the literature. To do this, an angle, α , from the y-axis in the y− z plane is

specified as,

α = tan−1
(

z− zc

y− yc

)
. (7.16)

From here, the phase-field in the domain is defined as,

φ(x,y,z) =


1.0, x≤ x0− xint

0.0, x0− xint < x < x0 + xintsin(α/2)

1.0, x≥ x0 + xintsin(α/2),

(7.17)

where, x0, is the location of the bubble centre along the pipe axis. The resultant initialisation shape

is shown in Figure 7.2, for which yc = zc = D2/2, r1 = (D2−D1)/6, r2 = (D2 +D1)/4, d f = 0.1D2

and x0 = 2D2.

7.2.2 Results

In this section, the attempts to simulate the experimental cases of Das et al. [225] are described

and the findings presented. These are then compared with existing correlations developed by Das et

al. [225], Sadatomi et al. [230] and Hasan and Kabir [62]. The initial attempt to simulate the flow

cases described in Section 7.2.1 with the specified discretisation led to instabilities in Case 1 and 2

while Case 3 progressed to a steady-state rise velocity. According to the combination of Morton and

Eötvös numbers for these flows, this stability behaviour aligns with the findings presented in Figure

6.6. In order to alleviate the instability present in the simulations, the density ratio was reduced by a

factor of 10 for Case 1 and 2. In Chapter 6, when the density ratio was reduced by a factor of 10, there

did not prove to be a significant impact on the rise velocity results of the Taylor bubble, with ρg� ρl

still evident.

To determine the bubble rise velocity from simulations, the axial velocity of gas cells in the Taylor

bubble was tracked during the simulation. The average of the local gas velocity corresponds to the

bubble propagation speed. Simulations are run for 15t∗ and the velocity is averaged over the final

t∗, before being converted into the bubble Froude number as per Equation 7.11. Table 7.2 shows the

results obtained for this in comparison to the experimental measurements and correlated predictions.
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(a) (b)

Figure 7.2: Initialisation shape for annular Taylor bubbles; (a) isometric-style view, (b) x− z plane.

For Cases 1 and 2, it is evident that the CFD results underpredict the experimental measurements due

to the reduced effect of buoyancy at the lower density ratio specified. However, the results for these

still show good agreement with the experimental measurements and the correlated predictions of Das

et al. [225]. For Case 3, the experimental conditions were replicated and the accuracy of the CFD

findings in comparison to the measured experimental result is clear, with a variation of only 2.3%.

Table 7.2: Summary of vertical annular simulation results for the experimental flow cases from Das et
al. [225]. Comparisons can be drawn between experimental measurements as well as the correlations
of Das et al. [225], Sadatomi et al. [230] and Hasan and Kabir [62].

Case ρ∗ Fr (LBM) Fr (Exp.) Error (%) Fr [225] Fr [230] Fr [62]
1 82.8422 0.316 0.334 -5.33 0.324 0.345 0.323
2 82.8422 0.317 0.338 -6.08 0.326 0.345 0.328
3 828.4220 0.283 0.277 2.31 0.260 0.345 0.323

Figure 7.3 plots the progression of the Taylor bubble described by Case 3, from initialisation

through to a steady rise velocity and nose shape. Additionally, the vorticity of the flow has been

contoured to allow the progression of the liquid bridge to be observed. It is noted that the steady

state shape forms even if a cylindrical initialisation of the gas region is used, however, the required
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number of iterations increases. The use of the vorticity field provides a means in which the length of

influence from the Taylor bubble can be assessed. With this, it is possible to gain insight on the length

of the liquid slug propagating behind a single annular Taylor bubble, another factor that influences

mechanistic pressure drop predictions discussed in this dissertation. For vertical pipes, a rule of thumb

of approximately 16 times the pipe diameter is used for the size of the liquid slug [29]. The simulations

here do not provide sufficient pipe length to interrogate the accuracy of this for vertical pipe flow,

but this presents another future avenue of work with the model developed. The methodology applied

for these three simulations provides a means with which one can analyse Taylor bubble dynamics in

vertical annular pipes. This could replace the use of physical experiments in correlating dimensionless

flow parameters with the bubble rise behaviour, and as such gives a potential method for developing a

unified rise velocity correlation.

7.3 Effect of pipe inclination

With the limited literature available on the flow of Taylor bubbles in annular piping [226, 227], it is

not surprising that their flow in inclined annuli is also remiss. The general problem of two-phase flow

in a deviated annulus has seen more focused research interest in the past than the particulars of the

slug flow regime. Johnson and Cooper [232] used a polymer mud, in addition to water, to test various

fluids in both pipes and annuli. In their work, they concluded that the slip velocity remained effectively

constant from vertical to 45 degrees. Hasan and Kabir [62] conducted an experimental study in small

diameter pipes and annuli using air and water as the working fluids. They observed a reduction in

curvature as the bubble nose sharpened for inclined conduits. This initially resulted in a reduction of

drag and as such, an increase in bubble rise velocity. However, as the conduit inclination progressed

below 45 degrees to the horizontal, the buoyancy reduction offsets the drag and the bubble propagation

speed reduces. From their experiments, and a balance of buoyancy to drag forces, they proposed the

velocity in inclined flows, uθ , to be,

uθ = uT B
√

sinθ (1+ cosθ)1.2. (7.18)

The drift velocity, uT B, of the Taylor bubble in a vertical annulus was taken as,

uT B = (0.345+0.1(D1/D2))
√

GD2(ρl−ρg)/ρl . (7.19)

This correlation has seen use in mechanistic models by the likes of Yu et al. [233], which follows a

similar process to the tubular mechanistic model of Zhang et al. [234].

In addition to comparing with the correlation of Hasan and Kabir [62], this section examines the

validity of the unified tubular correlation proposed by Lizarraga-Garcia et al. [18] for annular pipes. To

do this, the characteristic diameter is taken as the hydraulic diameter, Dh = D2−D1, for dimensionless

parameters, and the rise velocity is determined as per Equations 6.33 to 6.35. The choice of hydraulic

diameter is commonly used by researchers, for an example in the a recent correlation by Ibarra and
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(a) t∗ = 0 (b) t∗ = 5 (c) t∗ = 10 (d) t∗ = 15 (e) t∗ = 15

Figure 7.3: Taylor bubble profiles through time (a) t∗ = 0, (b) t∗ = 5, (c) t∗ = 10, (d) t∗ = 15, (e)
t∗ = 15, for Case 3 (Mo=2.5587e-11, Eo=21.65). The vorticity of the flow has been superimposed to
show the development of the liquid bridge through which liquid is transported into the wake region.
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Nossen [226],

uθ = (Frv sinθ +Frh cosθ)
√

GDh(1−ρg/ρl) . (7.20)

For the vertical and horizontal dimensionless rise velocities, Dumitrescu [199] found Frv = 0.351

and Benjamin [235] found Frh = 0.542, respectively. This was used later by Ibarra et al. [236]

for horizontal and low-inclination annuli, in which the models developed agreed well with their

experimental work later presented in [237].

7.3.1 Simulation details

As per Chapter 6, the ease of transition from a vertical to inclined annuli highlights the benefits

associated with numerical modelling. Case 3 is used for further analysis in this section due to the

accuracy and stability observed in the vertical case. To test the correlations introduced, inclination

angles of θ ∈ {10,20,30,40,45,50,60,70,80} are specified allowing for the gravitational forces to be

determined as,

gx =−Gsinθ , (7.21)

gy = Gcosθ . (7.22)

As per the previous simulations conducted, the axis of the annular pipes aligns with the x-axis of

the computational domain. Thus, the initialisation of the domain can be seen in Figure 7.2 in which

the buoyancy of the gaseous phase drives the Taylor bubble in the positive x-direction and negative

y-direction.

Table 7.3: Summary of annular experimental geometry and fluid parameters for Case 3 from Das et
al. [225].

Case D2 [m] D1 [m] Eo Mo N f ρ∗ Fr (Exp.) Fr (LBM)
3 0.0254 0.0127 21.647 2.559e-11 4462 828.422 0.277 0.283

For convenience, the relevant numerical parameters are displayed in Table 7.3. The simulations

are run with a reference time of t0 = 12000 for a total of 20t0. The numerical parameters for the

phase-field population are specified as M = 0.05 for the interface mobility and W = 5 for the diffuse

interface width. This value of mobility was used in validation tests, in which the experimental data

was accurately captured by the phase field model. Selection of the mobility using scaling arguments

as specified by Jacqmin [39] or methods discussed by Donaldson et al. [238] could also be used to

determine an appropriate value. The simulation domain is defined as (10D2×D2×D2) with D2 = 128

lu.

7.3.2 Results

Figures 7.4 and 7.5 indicate the final state of the Taylor bubbles from the simulations conducted. These

depictions have the vorticity field superimposed to indicate areas of fluid motion, in particular, the
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wake region. The void fraction in the wake can be observed to increase with pipe inclination as the

effect of the liquid jet causes shedding of smaller bubbles from the Taylor bubble. As the inclination of

the pipe tends towards vertical, a higher gravitational force in the direction of the wake and a reduction

in the buoyancy force towards the upper wall of the annulus is evident. This results in an expansion of

the wake region length as well as an increase in the wrap angle of the bubble around the annular pipe.

The rise velocity determined from simulations along with those predicted by correlations from

Lizarraga-Garcia et al. [18], Hasan and Kabir [62] and Ibarra and Nossen [226] are presented in Table

7.4. To remain consistent in this comparison with the varied methods for non-dimensionalising the rise

velocity, each correlation was used to determine uθ in lattice units before being normalised such that

the Froude number displayed in the table is given by,

Fr =
uθ√

G(D1 +D2)
. (7.23)

Additionally, as the drift velocity in a vertical pipe used in the correlation of Lizarraga-Garcia et

al. [18] is based on tubular flow, a further comparison was made in which the experimentally measured

rise velocity from Das et al. [225] was coupled with the inclination closure. This is displayed in Table

7.4 by the Froude number, Frexp.

Table 7.4: Summary of inclined annular pipe simulations results comparing the measured velocity in
the LBM simulations with the correlations of Lizarraga-Garcia et al. [18], Hasan and Kabir [62] and
Ibarra and Nossen [226].

Inclination Fr (LBM) Frexp [18] Fr [18] Fr [62] Fr [226]
10o 0.329 0.300 0.315 0.328 0.343
20o 0.356 0.350 0.365 0.447 0.363
30o 0.373 0.377 0.392 0.516 0.372
40o 0.380 0.391 0.406 0.548 0.370
45o 0.380 0.393 0.408 0.552 0.364
50o 0.381 0.391 0.406 0.548 0.356
60o 0.368 0.377 0.392 0.523 0.332
70o 0.350 0.351 0.366 0.477 0.297
80o 0.322 0.317 0.331 0.415 0.254
90o 0.283 0.277 0.290 0.345 0.203

Figure 7.6 plots the data in Table 7.4, and shows that the correlation extrapolated from tubular

pipe configurations performs the best, closely aligning with the simulated results. Here, the results

from Lizarraga-Garcia et al. [18] capture the inclination effect on the bubble more accurately than

correlations currently applied to annular piping configurations. The correlation is further improved

with the use of the Taylor bubble rise velocity measured in an annulus. From this, it is recommended

that the rise velocity correlation from Das et al. [225] to determine the velocity of the Taylor bubble in a

vertical annulus be coupled with the inclination effects from Lizarraga-Garcia et al. [18]. However, this

cannot be universally concluded from the results of a single test and as such, future work consists of

generating a database of relations between inclination angle, fluid parameters and the Froude number.

In order to highlight that multiple possibilities exist when formulating closure relations, a minor

tuning was performed on the correlation of Ibarra and Nossen [226]. Here, it is noted that this was
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(a) θ = 10o (b) θ = 20o (c) θ = 30o (d) θ = 40o (e) θ = 45o

Figure 7.4: Taylor bubble profiles at t∗ = 20t0 with fluid parameters according to Case 3 (Mo=2.56e-11,
Eo=21.65) and for pipe inclination angles (a) θ = 10, (b) θ = 20, (c) θ = 30, (d) θ = 40, (e) θ = 45
degrees.
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(a) θ = 45o (b) θ = 50o (c) θ = 60o (d) θ = 70o (e) θ = 80o

Figure 7.5: Taylor bubble profiles at t∗ = 20t0 with fluid parameters according to Case 3 (Mo=2.56e-11,
Eo=21.65) and for pipe inclination angles (a) θ = 45, (b) θ = 50, (c) θ = 60, (d) θ = 70, (e) θ = 80
degrees.
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Figure 7.6: Comparison of simulated predicted bubble velocity in tubular pipes at various inclinations
with the unified correlation proposed by Lizarraga-Garcia et al. [18].

initially formulated for horizontal and near-horizontal annuli, which is where it is observed to be most

accurate. This is based on a competition between the drift velocity of a Taylor bubble in horizontal,

Frh, and vertical, Frv, annuli along with a dependence on the hydraulic diameter. In Figure 7.6 it is

evident that specifying these two parameters at a value of 0.48, (arbitrarily chosen to optimise the fit)

allows the dynamics of the full inclination range to be predicted.

This section has indicated that the current methods employed to determine the rise velocity of a

Taylor bubble in an inclined annulus lack accuracy, however, this appears rectifiable by extending

tubular pipe models and or tuning model parameters. It further indicates the need for the creation of a

database relating dimensionless parameters describing the geometry and fluid properties of a Taylor

bubble in an annulus to its rise velocity. In this section, two potential formulations were shown for

the Taylor bubble rise in inclined pipes. The first was based on extrapolating the tubular model from

Lizarraga-Garcia et al. [18] by coupling it with a vertical rise model for bubbles in annular pipes.

The second was determined through tuning of the closure model originally proposed by Ibarra and

Nossen [226] for horizontal and near-horizontal pipes.

7.4 Propagation in a flowing fluid

In terms of predicting the effect of liquid flow on the dynamics of an annular Taylor bubble, previous

investigators have taken a similar approach to that of tubular pipes. In this sense, the interaction

between the phases is superimposed onto the drift velocity of the Taylor bubble with an empirical
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distribution parameter, C0,

uT B =C0ul +ud, (7.24)

as per Equation 6.38. It was concluded by Bendiksen [193] and Zhang et al. [234] that a value

of C0 = 2.0 should be used in laminar flow and C0 = 1.3 in turbulent flows. This was used in the

mechanistic model for vertical upward flows in an annulus by Yu et al. [233] along with a simple linear

interpolation in the transitional region (2000 < Re < 4000),

C0 = 2.0−0.7(Re−2000)/2000. (7.25)

Yu et al. [233] coupled this model with the drift velocity correlation of Hasan and Kabir [62], however,

did not include the effect of inclination.

A similar form of Equation 6.38 was also used by Firouzi et al. [16], however, the drift velocity

was determined by the model from Caetano et al. [61] and formulated with the superficial liquid, uSL,

and gas, uSG, velocities,

uT B =C0(uSG−uSL)+ud, (7.26)

=C0(uSG−uSL)+0.345
√

g(D1 +D2) . (7.27)

There is no gas phase injection into the simulations in this chapter, as such, uSG = 0. Also, it is noted

here that the form is presented as per the works of Firouzi et al. [16], in which the negative corresponds

to the counter-current flow imposed. The values for the flow distribution parameter, C0, were referred

to by the works of Martin [239] in which it was reported to be less than unity for completely downward

flows in moderate and large diameter pipes, and,

C0 =

1.0, stagnant fluid,

1.2, upward flowing fluid.
(7.28)

For downward flows in small pipes, namely with a low Eötvös number, it was reported that the value

of C0 may be greater than one. In particular, in a pipe of diameter, D2 = 2.6 cm, the average value was

determined to be 1.14 by three investigators [239].

As can be seen, inconsistency exists in the conclusions that have been drawn in the early works

studying the dynamics of a Taylor bubble within annular pipes. Not only are there limited published

results, but there is a disconnect between authors that take tubular pipe values for coefficients such as

the distribution parameter and those that use values tailored for annular pipe. Findings from mechanistic

models are often reported using a certain closure relation for the rise behaviour of the gaseous phase

without a description of the inaccuracies that it could entail. In this section, the methodology for

conducting flowing fluid simulations with the phase-field LBM is provided along with results that

show a proof-of-concept for which these correlations could be improved.

7.4.1 Simulation details

In order to impose a flowing fluid on the computational domain, the reference frame was shifted from

stationary to one moving with the expected drift velocity of a Taylor bubble in an annulus. In order to
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do this, the velocity boundary condition described in Chapter 6 was applied to both the extents of the

computational domain as well as the pipe walls. This is used to set the velocity of the outer and inner

tubing to the drift velocity, ud . The inlet and outlet at the top and bottom of the system, are specified

as a fully developed single phase flow in an annulus. In order to derive this, one can consider the

steady-state, incompressible Navier-Stokes equation as,

0 =−ρ∂x p+µ∂r (r∂rux) , (7.29)

where cylindrical co-ordinates, (x,r), are used. For simplicity, one can apply zero-velocity boundary

conditions at the inner, ri, and outer, ro, pipe walls. Using this, the equation can be integrated to give,

ux =
−r2

o∂x p
4µ

(
1− (r/ro)

2 +
1− (ri/ro)

2

ln(ro/ri)
ln(r/ro)

)
. (7.30)

Here, it can be seen that the term in front of the main bracket corresponds to the maximum velocity,

utube,0, that would be observed in a tubular pipe of radius, ro. To write this in terms of an average

velocity, one can integrate ux for the flow rate and divide by the cross-sectional area to obtain,

uavg = 0.5utube,0

(
1+(ri/ro)

2− 1− (ri/ro)
2

ln(ro/ri)

)
. (7.31)

Thus, in order to define the liquid flow conditions in this section, a liquid Reynolds number,

Rel =
2uavg(ro− ri)

ν
, (7.32)

is specified. From here, the average velocity can be determined and used to calculate, utube,0. With

the value of this found, the velocity at the inlet and outlet can be specified in the moving frame of

reference as,

uinlet/outlet(r) = ud +utube,0

(
1− (r/ro)

2 +
1− (ri/ro)

2

ln(ro/ri)
ln(r/ro)

)
. (7.33)

It is noted here, that one can also apply a constant velocity, uavg, to the entire inlet and outlet region

as long as sufficient separation exists between the bubble and the domain extents. Both of these

configurations were tested without significant variation observed in the results. In this section, the

results are presented in which the inlet and outlet are specified as fully developed flow.

The domain used in this section is consistent with that presented for the analysis of Taylor bubble

propagation through stagnant liquid in vertical and inclined annuli, with the minor modification of

shifting the bubble centre to align with that of the annular pipe. Therefore, the reference time is

t∗ = 12000 with simulations run for a total of 10t∗ to reach a steady state rise velocity. The diameter

of the outer annulus is again discretised such that D2 = 128 lu. For the diffuse interface parameters,

the mobility is held constant at M = 0.05 and the interface width at W = 5 lu. Table 7.5 provides the

relevant dimensionless numbers for the three test cases used to investigate the effect of flowing fluid.

The Froude number presented here is determined using the hydraulic diameter and the rise velocity

correlation of Viana et al. [207] given in Equation 6.14.
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Table 7.5: Summary of annular experimental test cases for investigating the effects of flowing liquid
on a Taylor bubble’s dynamics.

Case D2 [lu] D1 [lu] Eo Mo N f Fr [207] Rel
A 128 64 21.647 2.559e-3 45 0.175 {−10,−1,0,1,10}
B 128 64 21.647 2.728e-4 78 0.226 {−10,−1,0,1,10}
C 128 64 21.647 6.550e-5 112 0.250 {−10,−1,0,1,10}

7.4.2 Results

Table 7.6 provides the dimensionless rise velocity of the bubble in the form of the Froude number and

the corresponding distribution parameter, C0, that were extracted from simulations. Here, it is evident

that the value of C0 remains relatively constant for the tests conducted, effectively being independent

of the liquid Reynolds number, Morton number and inverse viscosity number. As the liquid velocity

has been specified based on the Reynolds number, more viscous fluids (lower value of NF ) have a

larger fluid velocity to balance the inertial and viscous forces. This corresponds to a larger variation in

bubble rise velocity, however, the distribution parameter describing the liquid contribution remains

almost constant.

Table 7.6: Summary of the bubble rise behaviour incorporating the effect of flowing liquid through
annular piping.

Case Rel Frl Eo Mo N f Fr [LBM] C0
-10 0.1293 0.0566 1.1552
-1 0.0129 0.1910 1.1612

A 0 0.0000 21.6478 2.5587e-3 45 0.2060 -
1 -0.0129 0.2210 1.1625
10 -0.1293 0.3544 1.1479
-10 0.0259 0.1579 1.2076
-1 0.0026 0.2382 1.2082

B 0 0.0000 21.6478 2.7281e-4 78 0.2471 -
1 -0.0026 0.2560 1.2050
10 -0.0259 0.3360 1.2029
-10 0.0517 0.1980 1.1800
-1 0.0052 0.2530 1.1695

C 0 0.0000 21.6478 6.5502e-5 112 0.2590 -
1 -0.0052 0.2652 1.1821
10 -0.0517 0.3199 1.1766

The results presented in Table 7.6 are displayed graphically in Figure 7.7. This confirms the linear

relation between liquid velocity and bubble rise that is observed by the constant value of C0. The

average value found for this coefficient in the three test cases was,

C̄0,case−A = 1.16, (7.34)

C̄0,case−B = 1.21, (7.35)

C̄0,case−C = 1.18. (7.36)
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These agree very closely with the findings of Martin [239], that were used in the recent mechanistic

model proposed by Firouzi et al. [16].

The Eötvös number used here corresponds to a relatively small pipe size, and as a result, it could be

expected that the co- and counter-current flow simulations retain a similar value for C0. However, for

larger pipe sizes and or higher flow rates, it has been reported that the eccentricity of the Taylor bubble

can increase for downward flowing liquid. This results in the bubble rising in a region with less velocity

than the cross-sectional average and thus, a lower expected value for C0 [239]. The methodology used

in this section could be extended to investigate the critical diameter at which the concentricity of the

bubble degrades. This is not attempted in this dissertation, however, is recommended for future work

as it could potentially provide a correlation for C0 in the counter-current flow regime that does not

currently have sufficient data to make accurate predictions.
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Figure 7.7: The relationship between the bubble Froude number and the liquid Reynolds number
indicating the linear relationship that the liquid flow has on the bubble rise.

Figure 7.8 provides a visualisation of Case A in which the Taylor bubble propagates through the

annular gap between two pipes with liquid motion imposed. Comparing these qualitatively to the

experimental cases recreated from the work of Das et al. [225], it can be observed that the bubbles

are more elongated and the radial wrap of the inner tubing has reduced. Here, it is noted that with

the velocity boundary conditions presented, the model was unable to reach a numerical viscosity low

enough to recreate the experimental case in the moving reference frame. As such, the simulations

conducted here have a higher viscosity, which can be seen to result in a larger liquid bridge as well as

the elongation of the Taylor bubble.
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(a) Rel =−10 (b) Rel =−1 (c) Rel = 0 (d) Rel = 1 (e) Rel = 10

Figure 7.8: Case A simulation results for a Taylor bubbles propagating through an annulus after 10t∗

iterations, with liquid flowing at: (a) Rel =−10; (b) Rel =−1; (c) Rel = 0; (d) Rel = 1; (e) Rel = 10.
The colour in the annulus represents the velocity of the liquid with red and blue indicating upwards
and downwards flow, respectively.
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In this section, the effect of flowing liquid on the propagation rate of a Taylor bubble in an annular

gap was investigated. It was found that for small pipes, the coefficient proposed by Nicklin [201]

and Martin [239] to model the phase interaction was the most accurate. The application of this to

counter-current flow in large pipes, however, is debatable and requires further investigation. As such,

it is recommended for future work, that the methodology applied here is used to study and propose a

model for C0 in both large pipe and high flow rate cases. In additional to this, further assessment of the

effects of fluid properties is required to confirm the accuracy in small pipes, particularly under various

conditions.

7.5 Conclusions

This chapter presented an investigation into the dynamics of Taylor bubbles within annular piping

configurations. This highlighted the limited work currently in existence as well as established a method

through which further studies could be conducted. Initially, the work analysed the experimental test

cases reported by Das et al. [225], validating the capability of the model to capture relevant flow cases.

This indicated that the axi-symmetric shape of Taylor bubbles observed in tubular pipes breaks down

in the annular analogue. Here, a liquid bridge formed (whether artificially initiated or not), which

allowed the downward transportation of the liquid into the wake region of the bubble. The size of the

liquid bridge, or equivalently, the angle of wrap observed for the Taylor bubble about the inner tube,

was qualitatively seen to depend on the inclination angle of the pipe as well as the viscosity of the

liquid phase.

The effect of pipe inclination on the rise of the Taylor bubble proved to be another gap in the

literature. Here, the recent work of Ibarra and Nossen [226] was shown to reasonably predict the rise

behaviour in horizontal and low pipe inclinations, but quickly deteriorated in accuracy as the annular

pipe approached vertical. Additionally, the correlation of Hasan and Kabir [62] failed to capture the

bubble velocity at intermediary inclination angles, with smaller errors observed at near horizontal and

near vertical flow configurations. Looking to resolve the inaccuracies of these models, the correlation

proposed by Lizarraga-Garcia et al. [18] for tubular pipes was coupled with the hydraulic diameter and

the drift velocity correlation proposed by Das et al. [225]. This provided a very accurate prediction of

the rise velocity for all inclination angles. Further to this, it was noted that the form of the model by

Ibarra and Nossen [226] balanced the horizontal and vertical drift velocity for a Taylor bubble. Using

these two values as tuning parameters, another possible model was presented that could capture the rise

behaviour with reasonable accuracy at all inclination angles tested. This provided a proof-of-concept

for correlating the Taylor bubble dynamics in inclined annuli, however, it is recommended as future

work that the parameter range be increased so as unified models can be proposed.

Finally, liquid flow was introduced into the domain to assess the competing behaviours of buoyancy

and viscous drag. In this area, there appeared to be a lack of rigorously tested closure correlations

to describe the propagation rate of the Taylor bubble, which can significantly affect the accuracy of

pressure gradient predictions [63]. Simulations were conducted in relatively small pipe and it was
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found that the value for the distribution parameter, C0, agreed well with the conclusions made by

Martin [239]. The work in this section provided a methodology through which the proposed LBM

could be applied to generate a database of dimensionless flow parameter relations. This could be used

in place of experimental works and ultimately lead to the formulation of a unified rise velocity model

for Taylor bubbles in a range of piping configurations and flow conditions.





Chapter 8

Conclusions and directions for future study

“Imagination is more important than knowledge.

Knowledge is limited. Imagination encircles the world.”

Albert Einstein

The transportation of hydrocarbons through piping networks is a critical component of the oil

and gas production life cycle. In particular, it is evident in linking the subsurface environment to the

wellhead and the wellhead to delivery points. In the wellbore there exists both production liquids and

gases that can inhibit the accurate calculation of pressure gradients which are required for operational

processes.

To further the current understanding of these multiphase systems, this work defined two primary

aims:

(1) develop a fully resolved computational model capable of simulating two phase flows with high

density and viscosity ratios, and to

(2) use this modelling capability to gain key insights into the counter-current flow that occurs in the

process of extracting natural gas from coal seams.

To this end, a computational multi-fluid dynamics model was developed within the lattice Boltzmann

framework and was shown to robustly resolve flows with density and viscosity contrasts, mimicking

liquid-gas systems. After verification and validation, the model was applied to investigate the behaviour

of Taylor bubbles in annular piping, a flow configuration similar to the slug flow regime observed

in unconventional gas extraction. This provided insights into the effects of fluid properties through

varying dimensionless quantities such as the Morton and Eötvös numbers of the simulated flow as well

as inducing bulk motion of the liquid phase. Additionally, pipe configurations were varied to include

inclination angles, increasing the relevance to practical wells, and internal obstructions, such as the

production tubing in a coal seam gas wellbore. This not only gave key insights into the accuracy and

applicability of pre-existing correlations, but provided a methodology through which they could be

improved and or extended to new flow configurations.
159
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8.1 Major contributions and summary of works

The major contributions of this work can be summarised as:

• Verification and validation of a two-dimensional, multiphase lattice Boltzmann model that is

capable of simulating flows with high density and viscosity contrasts. The initial form of the

model was developed by Dr. Fakhari in collaboration with the author to extend on the existing

work in the literature by enhancing the locality of the algorithm. Additionally, the proposed

model was seen to improve stability, highlighted by the simulation of relatively high Reynolds

number flows with fluid properties similar to that of an air-water system reportedly out of reach

for other models.

• Extension of the two-dimensional model to three-dimensions along with the proposed methods re-

quired to retain its stability. This involved the implementation of the weighted-orthogonalisation

of the transformation matrix [173] from particle-distribution to moment space. The weighting

allowed for de-coupling of moments that had been seen to degrade the model stability. This

indicated the first coupling of the relaxation method with a velocity-based LBM and provided a

correction for higher-order moments listed in Fakhari et al. [173].

• Verification and validation of the 3D model with existing benchmarks as well as the extension

of these (e.g. results for the Rayleigh-Taylor instability with high density ratio and Reynolds

number) to provide data for the testing of models developed for ‘real’ liquid-gas systems.

• Investigation of confined, multiphase flows relevant to the transport of hydrocarbons in both

conventional and unconventional wells. This included the effects of pipe inclination on the

multiphase dynamics as well as the behaviour of elongated bubbles in the presence of internal

obstructions, similar to the central tubing used in the extraction of coal seam gas. Furthermore,

the study was able to conclude the behaviour of Taylor bubbles in a counter-current flow could

be captured with the distribution parameter from co-current flow.

This clearly outlines the stages of the work, in which the initial focus was on the development

of capability and its extension beyond what was available in the literature. From here, a rigorous

process of verification and validation was undertaken to test the limits of the proposed model. With

this understood, the thesis entered the investigation stage in which flows relevant to the oil and gas

industry were interrogated. Finally, the work outlined the methodology used, highlighting its ability to

replace physical experiments in the development of closure correlations. This was shown in particular

for the rise velocity of a Taylor bubble which is used in determining the pressure gradient and liquid

hold-up in a well when the slug flow regime is evident.

The initial development of the phase field lattice Boltzmann model was outlined in Chapter 4. Here,

the model was proposed in two-dimensions and tested against the layered Poiseuille flow and Rayleigh-

Taylor instability as benchmarks. In testing the layered Poiseuille flow, the method of determining fluid

properties in the diffuse interface was investigated. Ultimately, this was used to determine the relaxation
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rate for the collision operation in the hydrodynamic Boltzmann update. From this investigation it

was concluded that updating the relaxation rate by first using a linear interpolation of the dynamic

viscosity with respect to the phase parameter gave the most accurate result. However, when a density

contrast was imposed this method suffered from stability issues and as such, directly interpolating the

relaxation rate with the phase parameter supplied the best balance of accuracy and stability from the

methods tested. Comparing to reported results of the Rayleigh-Taylor instability provided verification

of the implementation for a flow system exhibiting significant interface deformation. This benchmark

was extended to a system with a large density contrast and a high Reynolds number, in a case that was

reportedly out of reach for certain existing phase field models. Following the model verification, planar

Taylor bubbles were analysed in stagnant and flowing fluids. Here, the model was able to recreate the

relation between surface tension and rise velocity for Taylor bubbles in an inertial regime (Re > 100).

To impose liquid flow on the system, the model was coupled with the boundary conditions presented

by Zu and He [145], allowing the simulation domain to move with the propagating Taylor bubble.

From this investigation it could be concluded that the empirical scaling factor used to assess the impact

of liquid velocity on bubble rise was almost constant for both co- and counter-current flow, with an

average value of 1.2518 across the planar simulations.

In Chapter 5, the model was extended to three-dimensions making use of a D3Q27 lattice for

the hydrodynamics and a D3Q15 lattice for the interfacial dynamics of the system. Apart from the

extension of the velocity space, a weighted-multiple relaxation scheme was also required to retain

the stability properties observed in two-dimensions. The implementation was benchmarked against a

colour-gradient lattice Boltzmann model through the analysis of bubble deformation in a shear flow.

Here, no density contrast was imposed and as such similar results were obtained for both models. A

three-dimensional Rayleigh-Taylor instability allowed further testing, where again, the proposed model

was able to extend on the density ratio - Reynolds number combination existing in the literature. The

experimental work of Bugg and Saad [169] was then used for a thorough validation using the rise of a

Taylor bubble in olive oil. Their experimental study was conducted with PIV measurements allowing

both local flow velocities and macroscopic bubble dynamics to be captured, all of which were used for

comparison with the simulated results. This investigation highlighted the model’s ability to capture the

physical flow of elongated bubbles in pipes, a regime closely related to the system of interest.

With the model validated against a single experiment, it was desirable to test its range of stability

by performing a parameter sweep across a variety of experimental and numerical results reported on by

Lizarraga-Garcia et al. [196]. This proved that the model was able to capture the bubble propagation

and shape for a range of fluid properties, however, more so relevant to oils. On the contrary, liquids

extracted from coal seam gas operations are expected to be similar to water in terms of density and

viscosity, as such, a lower viscous drag could be expected on the elongated bubbles. To investigate

this, the dimensionless parameter range was extended from the later works of Lizarraga-Garcia [63] to,

10−7 ≤Mo≤ 10−11, and, 10≤ Eo≤ 1000. In doing this, the current stability limit of the implemented

model was found. From the results that were obtained, it could be concluded that the correlation

proposed by Viana et al. [207] is sufficient for describing Taylor bubble rise in vertical, tubular pipes.
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Following on, the practicality of a computational multi-fluid dynamics model was shown through

the ease in which pipe inclination effects can be incorporated. The results of this agreed very well

with experimental measurements, however, indicated that the current correlations do not predict the

bubble rise velocity with sufficient accuracy at intermediary inclination angles. The final component

of this chapter assessed the influence of liquid velocity on the Taylor bubble dynamics. To do this,

the constant velocity boundary conditions were implemented in three-dimensions and used to create a

reference frame that moved with the expected drift velocity of the bubble. Here, the empirical tuning

factor was determined for three different cases in which the accuracy of existing correlations varied

significantly. This indicates the possibility of a weak dependence of the coefficient on fluid properties

that is not currently captured correctly in the literature.

The primary motivation of this work came from the coal seam gas sector in which annular piping

configurations are required for the construction of the wellbore. As such, a central tubing string was

introduced into simulations to improve the understanding of multiphase flows in annular systems.

The initial stages of this chapter investigated three air-water flows experimentally studied by Das et

al. [225]. In this, the model was able to capture the evolution of the Taylor bubble to the asymmetric

shape expected from experimental observations. The macroscopic rise properties agreed closely with

those measured, however, the larger pipe diameters challenged the stability of the model and the

numerical density ratio had to be reduced to obtain meaningful results. From here, inclination was

introduced and the rise behaviour was compared with existing correlations for tubular and annular

pipes. It was found that the tubular correlation of Lizarraga-Garcia et al. [18] was the most accurate

when coupled with the hydraulic diameter of the system and the drift velocity correlation of Das et

al. [225]. However, it was shown that tuning of other model types, like that of [226], could also

provide reasonable accuracy for the case simulated. From here, the effect of flowing liquid was studied

following a similar methodology to Chapter 6. The drift velocity of the annular Taylor bubble was

applied to the inner and outer tubing while a fully developed annular flow was superimposed on the

drift velocity at the inlet and outlet of the annulus. The three cases studied were found to have an

approximately constant value for the flow distribution parameter, agreeing well with the work of

Martin [239]. The average value obtained was C0 ≈ 1.18 for small annular pipes, irrespective of flow

direction.

8.2 Avenues for future work

A number of potential avenues for further study can be identified from the research conducted in

this dissertation. These relate both to the multiphase flow in annular tubing as well as the continued

development of the phase field lattice Boltzmann model. Here, a non-exhaustive list has been compiled

of potential opportunities:

• Taylor bubble rise in inclined annular pipes: in Chapter 7 a modification on the existing

correlations was shown, however, this was for just one case. Extension of this would involve a

systematic parameter sweep, determining the rise behaviour of bubbles for various Morton and
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Eötvös numbers. From here, model fitting could be used to define a unified model for Taylor

bubble velocity in annular pipes.

• Inclined annular pipes with flowing fluid: this was not discussed in the current work, but

combines the uncertainties of both inclined and flowing fluid correlations. As such a systematic

parameter sweep would significantly enhance the accuracy of models currently employed to

predict the propagation of a Taylor bubble in this system.

• Breakdown of Taylor bubbles - flow regime transition: apart from determining the pressure

gradients within flow regimes, the onset of regime transition is another critical component of

modelling confined multiphase flows. Directly resolving the interaction of multiple Taylor

bubbles and or Taylor bubbles in the transition regions could provide high resolution data on the

processes involved with the transition from slug to churn flow.

• Two-fluid model correlations: the closure relations studied in this dissertation were primarily

for one-dimensional mechanistic models, however, the two-fluid model requires methods to

determine mass and momentum exchanges between phases that could be examined with the

proposed phase field lattice Boltzmann model.

• Improved collision operator: the stability of lattice Boltzmann schemes can be very dependent

on the collision operator employed for the relaxation of the distribution functions. Work on

this was required in this thesis when extending the model to three-dimensions, however, it was

not the focus. As such, coupling the model with the cascaded, cumulant or entropic relaxation

schemes has the potential to provide additional stability.

• Adaptive mesh refinement: this avenue comes with possibly the strongest recommendation

from the author, in terms of improving the model applicability. With diffuse interface approaches,

high resolution is desirable around the interface such that its size is significantly less than the

characteristic dimension of the domain. However, when working on a fixed, Cartesian grid this

level of resolution is applied throughout the domain. As such, simulations can often become

computationally expensive and even impractical without supercomputing facilities. It was found

that to counter this, a very low numerical viscosity was required in simulations to achieve the

desired dimensionless parameters for realistic air-water flows of interest in this work.

• Three-phase contact behaviour: the model used here was applied to the flow in the connection

between a natural gas reservoir and the wellhead. However, the extension of no-slip boundaries

to cater for variable contact angles would open up the possibility of simulating multiphase flow

in the reservoir as well.

• Three-phase flow model: often in oil and gas operations, it can be expected that oil, gas and a

water or brine type fluid will be extracted. There currently exists phase field models capable of

this three-phase flow, and introducing this to the current solver would further the applications

that could be investigated.
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• Non-Newtonian flow model: for certain unconventional resources to be feasibly extracted,

stimulation techniques such as hydraulic fracturing may be required. In hydraulic fracturing,

non-Newtonian fluids can be used to enhance the transport of proppant into the reservoir. These

interact with the Newtonian fluids present in the reservoir. With the phase field model, it would

be possible to include a Newtonian and non-Newtonian phase in the multifluid framework

allowing this interaction to be examined. Further to this, coupling in a discrete-element solver

would allow the proppant itself to be included in this analysis.
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Appendix A

Details of LBM Processes

A.1 Boundary conditions for the phase field LBM

A.1.1 Velocity boundary condition

To construct the Taylor bubble simulation domains in this work for stagnant fluid flow, zero-velocity

conditions were set on the pipe walls. In the lattice Boltzmann method, this is commonly conducted

with the bounce-back boundary condition, but advanced methods also exist. These allow imposed

non-zero velocity conditions to be specified (in addition to zero velocity). This appendix presents the

boundary conditions from the work of Zu and He [145] that were used in this study. For a defined

velocity, u, on a boundary located at xb, the probability distribution functions for the velocity-based

lattice Boltzmann method must satisfy momentum conservation, namely,

∑
α

gα(xb)c = ∑
α

geq
α (xb)c = u. (A.1)

In addition to this, taking the normal approach of performing the bounce-back scheme for the nonequi-

librium component of the distribution functions gives,

gα(xb)−geq
α (xb) = gᾱ(xb)−geq

ᾱ
(xb), (A.2)

where ᾱ indicates the opposing lattice direction to α . This satisfies conservation of momentum

in the normal direction, however, an excess of momentum can be observed tangentially along the

boundary. This is where the set of tangential directions are identified through the known normal,

Π = {α|c ·nb = 0}. Therefore, the excess momentum can be found through,

Mg(xb) = ∑
α∈Π

c
[
gα(xb)−geq

α (xb)
]
. (A.3)

This is then distributed over the N unknown distributions as discussed by [145], but proposed as far

back as [137],

gα(xb) = gᾱ(xb)+
[
geq

α (xb)−geq
ᾱ
(xb)

]
− 1

Nc2 c ·Mg(xb). (A.4)
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A similar methodology can be applied to the distribution used to resolve the Allen-Cahn equation.

Here, the moving boundary generally has a known value of phase, φ , that is being applied and as such,

the distribution functions should satisfy mass conservation [145],

∑
α

hα(xb) = ∑
α

heq
α (xb) = φ . (A.5)

The nonequilibrium component of the distribution can be written as,

hα(xb)−heq
α (xb) =−

[
hᾱ(xb)−heq

ᾱ
(xb)

]
, (A.6)

which results in an excess of density according to [145],

Mh(xb) = ∑
α∈Π

[
hα(xb)−heq

α (xb)
]
. (A.7)

This is distributed over the unknown distributions allowing the boundary to be resolved,

hα(xb) =

hα(xb)−
[
hᾱ(xb)−heq

ᾱ
(xb)

]
, if c ·nb = 0

hα(xb)−
[
hᾱ(xb)−heq

ᾱ
(xb)

]
− Mh(xb)

N , if c ·nb 6= 0.
(A.8)

Therefore, it can be seen from the above formulation, that if the normal to the boundary is known,

conditions can be specified to determine the unknown distribution functions required to specify a

desired velocity and phase.

A.1.2 Three-phase contact treatment

The three-phase contact interaction in this work was modelled based on a stairwise implementation of

the work of Fakhari et al. [120]. In order to do this, one needs to determine the normal of the solid

boundary, nw, as well as the halfway distance, h, between the solid node and the next fluid node in the

normal direction. With these details, the desired contact angle, θ , can be achieved by imposing [120],

nw ·∇φ |xw = Θφw(1−φw), (A.9)

where xw is the position of the wall, φw is the value of the phase at the solid boundary location and

Θ =
4

W
cosθ . (A.10)

From here, a central difference is used such that,

nw ·∇φ |xw =
∂φ

∂nw
|xw , (A.11)

=
φm−φi, j

2h
, (A.12)

where φm is the phase value of the next fluid node in the normal direction and φi, j is the phase in the

solid node that needs to be determined. The value of the phase at the wall is then eliminated from the
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equations by assuming, φw = 0.5(φm +φi, j). Substituting this into the initial equation and rearranging

gives,

φi, j =
(1+a−

[
(1+a)2−4aφm

]0.5
)

a+ ε
−φm, (A.13)

a =−hΘ. (A.14)

Here, ε has been included as a small parameter that eliminates the possibility of a divide by zero error.
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A.2 Transformation from density to pressure evolution

Starting from,

Dt fi =
∂ fi

∂ t
+ ei ·∇ fi =−Λ( fi− f eq

i )+
(ci−u) ·F

c2
s

Γi (A.15)

where Γi = wi

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
, (A.16)

we want to perform the transformation,

gi = fic2
s +wi(p−ρc2

s ) (A.17)

geq
i = f eq

i c2
s +wi(p−ρc2

s ) (A.18)

with a forcing term of the form,

F =−∇(p−ρc2
s )+FB +µφ ∇φ . (A.19)

Performing the transformation on the term within the collision operator and the right hand side of

A.15 gives,

fi− f eq
i =

1
c2

s

[
(gi−wi(p−ρc2

s ))− (geq
i −wi(p−ρc2

s ))
]

(A.20)

=
1
c2

s

[
gi−geq

i
]

(A.21)

Dt fi =
1
c2

s

[
Dtgi−wi(Dt p−Dtρc2

s )
]
. (A.22)

From here one must look to simplify the material derivatives of p and ρc2
s . To do this we note the

law of continuity and chain rule for derivatives

∂ρ

∂ t
+∇ ·ρu = 0 =⇒ ∂ρc2

s
∂ t

=−∇ ·ρc2
s u (A.23)

∂ p
∂ t

=
∂ p
∂ρ

∂ρ

∂ t
=⇒ ∂ p

∂ t
=−∂ p

∂ρ
(∇ ·ρu). (A.24)

The incompressibility constraint is then applied to this giving

∂ρc2
s

∂ t
=−

[
u ·∇ρc2

s +ρc2
s ·���*

0
∇u
]

(A.25)

∂ p
∂ t

=−∂ p
∂ρ

(u ·∇ρ)

=−u · ∂ p
∂ρ

∂ρ

∂xi

=−u ·∇p (A.26)

Now applying Equations A.25 and A.26 to Equation A.22

Dt fi =
1
c2

s

[
Dtgi−wi((ci−u) ·∇p− (ci−u) ·∇ρc2

s )
]

(A.27)
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With this, Equation A.15 can now be expressed in terms of the new distribution function as

Dtgi =−Λ(gi−geq
i )+

[
wi((ci−u) ·∇p− (ci−u) ·∇ρc2

s )
]

+(ci−u) · (−∇(p−ρc2
s )−µφ ∇φ +Fb)Γi (A.28)

To remove the dependence on the gradient of the density field, the relation between density and the

phase field parameter is used

∇ρ =
∂ρ

∂φ

∂φ

∂xi
= (ρh−ρl)∇φ . (A.29)

This gives the result for the discrete update equation for gi

Dtgi =−Λ(gi−geq
i )− (Γi−wi)(ci−u) ·∇p

+
[
(Γi−wi)(ρh−ρl)c2

s +Γiµφ

]
(ci−u) ·∇φ

+(ci−u) ·FbΓi (A.30)

According to [25] this expression can be further simplified by using the low Mach number

assumption used in lattice Boltzmann simulations. At this asymptotic limit the pressure can be split

into the thermodynamic and hydrodynamic pressures. From which the “thermodynamic pressure is

assumed uniform in space [25],” giving the resultant gradient dependent on the change in hydrodynamic

pressure. From dimensional analysis it is evident that ∇p∼ O(Ma2), which means

(Γi−wi)(ci−u) ·∇p∼ O(Ma3) (A.31)

which is omitted in line with the second order terms retained in the usual Chapman-Enskog expansion

of Equation A.15.
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