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  Abstract 
Cancer is one of the most life-threatening types of diseases. Various agents, such as chemical 

drugs, oligonucleotides, and bioactive proteins, are developed for cancer treatment. Due to the 

unsatisfied outcomes of treatment relying on single anticancer agent, more studies are focused 

on developing regimens for combination therapy. Nowadays, nanoparticle (NP) based drug 

carriers have shown great potential to increase the anticancer agent efficacy as they are able to 

provide protection during circulation and improve tumour site accumulation via targeting 

delivery. Moreover, a proper NP-based carrier can deliver multiple anticancer agents with the 

similar efficacy for combinational treatment of tumours. This Ph.D. project aims to engineer 

lipid-coated calcium carbonate/phosphate (LCCP) hybrid nanoparticles (NPs), with optimised 

cargo release property, to carry two anti-cancer agents and achieve effective cancer therapy. 

Calcium carbonate (CaC) and calcium phosphate (CaP) are the most commonly used inorganic 

materials for gene delivery. The difference between the dissolution behaviours of CaC/CaP 

nanoparticles suggests that the pH for the release of loaded therapeutic agents is adjustable by 

controlling the composition of mixed CaC/CaP nanoparticle core. The coated bilayer 

phospholipids endow the particles with good colloidal stability, and are able to load 

hydrophobic drug. Moreover, the bilayer lipids can be conjugated with target moieties for target 

delivery to cancer cells. This Ph.D. thesis first optimised the LCCP core composition (i.e. 

carbonate to phosphate molar ratio) to achieve gene release at endosomal pH using dsDNA-

cy5 as an example. The obtained LCCP NPs showed good colloidal stability with the average 

particle size of 40 nm, high gene loading capacity (~60%), desirable gene release profile, and 

enhanced cellular uptake efficacy. Compared to lipid-coated calcium phosphate (LCP) NPs, 

LCCP NPs achieved higher sensitivity and quicker release under mild acidic pH conditions 

(6.0-5.5). As-prepared LCCP hybrid NPs were then used to deliver small interference RNA 

(siRNA) for mouse programme death ligand 1 (PD-L1) and polo-like kinase 1 (PLK1) to 

B16F10 melanoma cancer cells, with the delivery efficacy higher than Oligofectamine®. This 

tendency endows faster siRNA release during the endocytosis and quicker gene down-

regulation after NP endocytosis, but not affect their long term gene silencing efficacy. 

Folic acid (FA) was then conjugated on the surface to enhance the delivery efficacy via 

interacting with the FA receptor overexpressed on cancer cells. Subsequently, the hydrophobic 

anticancer drug, α-tocopheryl succinate (α-TOS), was loaded in the lipid bilayer in 

combination with Allstar Cell Death siRNA (CD siRNA) in the core of target LCCP NPs for 
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combined target therapy of melanoma cells. The optimised FA density was 5% of lipids on the 

outer layer, as determined by cellular uptake of NPs by B16F0 cells. The combination of CD 

siRNA and α-TOS in LCCP NPs effectively inhibited the cell growth via an additive/synergic 

way.  

To further preventing cancer metastasis, α-TOS loaded LCCP NPs (NP-TOS15) were 

employed to treat 4T1 tumour in combination with interferon-gamma (IFN-γ). The optimised 

NP-TOS15 showed an α-TOS loading efficiency of ⁓60%, and enhanced the uptake by 4T1 

metastatic cancer cells. The IFN-γ/NP-TOS15 treatment significantly induced 90% cell death 

and inhibited migration of tumour cells. Moreover, NP-TOS15 upregulated the anticancer 

immunity via downregulating program death ligand 1 (PD-L1) expression induced by IFN-γ, 

and remarkably prevented the lung metastasis (metastasis index decreased from 10800 to 500), 

particularly in combination with IFN-γ. Further investigation revealed that this combination 

therapy also modulated the CD4+ and CD8+ cytotoxic lymphocyte infiltration into the tumour 

tissue for tumour elimination. Taken together, the NP delivery of α-TOS in combination with 

IFN-γ provides an applicable strategy for cancer therapy. 

In summary, the LCCP NPs were well developed to be a promising platform for gene/drug co-

delivery to combined cancer treatment.  
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image of the EV peptide release from LCC NPs under different pHs. Reprinted with the 

permission from Kim et al. [65] Copyright (2013) Elsevier. B.V. 

Figure 2.11 Scheme showing the synthesis and structure of Ce6(Mn)@CaCO3-PEG NPs. 

Reprinted with the permission from Dong et al.[128]. Copyright (2016) Elsevier. B.V. 

Figure 2.12 Immunotherapy based on PD-1/PD-L1 interaction. (A) The interaction of PD-

1/PD-L1 causes tumour immune tolerance. The PD-1/PD-L1 interaction stimulates the 

downstream signals to suppress T cell activation, resulting in tumour cell survival. (B) 

Breakdown of the PD-1/PD-L1 interaction reactivates T cells and related immune responses. 

Without the PD-1/PD-L1 interaction, the suppression signal is removed, thus leading to T cell 

activation, proliferation, and cytokine generation and tumour cell elimination. 

Figure 2.13 Immunomodulation effects of IFN-γ. IFN-γ produced by immune cells affects 

the behaviour of distinct immune cells within the tumour microenvironment. Specifically, IFN-

γ activates anticancer immunity by promoting the activity of CD4 Th1 cells, CD8 cytotoxic T 

lymphocytes (CTLs), natural killer (NK) cells, dendritic cells (DCs), and macrophages 
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promoting the antigen presentation. Additionally, IFN-γ activates macrophages towards a more 

pro-inflammatory and tumoricidal phenotype (M1 like). Alternatively, IFN-γ inhibits Treg 

cells, Th2, and Th17 differentiation and functions. Reprinted with the permission from Castro 

et al.[170]. Copyright (2019) Frontiers Media S.A. 

Figure 2.14 Two general mechanisms of expression of immune-checkpoint ligands on tumour 

and the concept of (A) innate and (B) adaptive cancer immune resistance. Reprinted with the 

permission from Drew M. Pardoll [162]. Copyright (2012) Springer Nature. 

Figure 2.15 Schematic illustration of LCCP NPs and their drug delivery applications. 

Figure 2.16 The challenges and strategy of this PhD project. 

Chapter 3 

Figure 3.1 Outline of strategical methodology in this thesis.   

Figure 3.2 Schematic routine for LCCP NP synthesis, gene/drug loading, and modification. 

Figure 3.3 Scheme of the detection of apoptosis. 

Chapter 4 

Figure 4.1 (A) and (C): TEM image of P4C0 NP cores and P3C1 NP cores; (B) and (D): The 

core diameter distribution collected using NanoMeasurer (count = 150). 

Figure 4.2 Colloidal stability of LCCP NPs in DMEM containing 10% FBS at 37 °C 

Figure 4.3 dsDNA loading efficiency and loading capacity. (A) The effect of P/C ratios on the 

dsDNA loading efficiency with 3 nmol dsDNA per batch; and (B) the effect of the initial 

dsDNA amount on the loading efficiency and loading capacity of P3C1 NPs. 

Figure 4.4 Sustained dsDNA release from P4C0 and P3C1 NPs within 4 h at different pHs. 

Figure 4.5 The effect of P/C ratio to cellular uptake of NPs with 25 nM dsDNA-cy5 for 4 h. 

Figure 4.6 The effect of (A) dose and (B) incubation time on the internalisation of P4C0-

dsDNA-cy5 and P3C1-dsDNA-cy5 NPs. (A) incubation time: 4 h; (B) dsDNA-cy5: 25 nM. 

Figure 4.7 CLSM images for B16F10 cells treated with PBS, P4C0, and P3C1. Orthogonal 

images were shown. White arrows: dependent localization of dsDNA-cy5 red dots. Yellow 

arrows: co-localization of lysosensor green and dsDNA-cy5 red. Same dots shown in different 

diagrams were labelled with same numbers. 
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Figure 4.8 Down-regulation of PD-L1 expression in B16F10 cells. (A) PD-L1 protein 

expression on the surface of cells at 48 h post transfection; (B) Fold change of PD-L1 mRNA 

expression. PD-L1 siRNA: 40 nM. 

Figure 4.9 The viability of B16F10 cells upon PLK1 siRNA transfection using P3C1 and P4C0 

NPs. (A) The inhibition of cancer cell growth; (B) The growth inhibition comparison of P4C0-

PLK1 siRNA and P3C1-PLK1 siRNA transfection for 48 h. 

Figure 4.10 (A) The schematic pH responsive release of CaC and/or CaP cores. The hybrid 

CaC/CaP cores show unique release profile within pH 6.0-5.5, and the release percentage of 

CaC/CaP is more than that of CaP. (B) The fate of P4C0 and P3C1 NPs after internalisation. 

The clathrin-mediated endocytosis undergoes the endosome/ lysosome digestion pathway. The 

pH value dropped from 7.4 in Step 1 to 5.0-4.0 in Step 5 (lysosome). Sorted by dissolution pH 

value, the release of P4C0 and P3C1 NPs might be mainly in Step 3-4 and Step 4-5, respectively. 

siRNA released in Step 5 might be partially degraded because of lysosomal enzymes. 

Figure S 4.1 (A) The hydrodynamic diameter of LCCP NPs, represented by Number (%); and 

(B) XRD pattern of P4C0 and P3C1 cores. 

Figure S4.2 TEM image of P3C1 NPs negative staining with 1% uranyl acetate. 

Figure S4.3 XPS survey scan of (A) P4C0 and (B) P3C1 cores coated with DOPA. The details 

of P3C1 were shown in high resolution scan of (C) P2p and (D) C1s. 

Figure S4.4 FTIR spectrum for the LCCP cores. 

Figure S4.5 (A) P2C2 release profile; (B) DNA band intensity in Figure 4 normalized by the 

first lane dsDNA in corresponding line; (C) The release trend of P4C0 and P3C1 cores under 

different pH values. 

Figure S4.6 The effect of P/C ratios on the taken up of particles with 25 nM dsDNA-cy5, 

represented by MFI. 

Figure S4.7 The positive cell percentage of B10F10 treated with P4C0 or P3C1 with dsDNA-

cy5 at 25 nM cy5 concentration. Cells were cultured in DMEM containing 10% FBS for 4 h 

with P4C0 or P3C1 NPs. 

Figure S4.8 CLSM images of the same region of cells at different z stacks. The z = 6 and 7 

planes were focused on the central of most cells in the selected area. The individual channels 
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and three-view diagrams based on the images at z = 6 position of each series (blue framed) was 

chosen as examples and shown in Figure 4.7.  

Figure S4.9 The down regulation of PD-L1 expression for B16F10 cells treated with Oligo-

PDL1 (40 nM) 

Chapter 5 

Scheme 5.1 Schematic illustration of the structure of LCCP NPs, loaded with CD siRNA/α-

TOS and FA conjugated onto the surface.  

Figure 5.1 (A) Models of LCCP NP with α-TOS replacing DOPC and cholesterol. (B) TEM 

image of CD/TOS/FA NPs. (C) The size distribution of NPs obtained from DLS. (D) FT-IR 

spectrum of α-TOS, LCCP and LCCP-TOS, with new peaks shown in red (1480-1400 cm-1), 

green (1100-1050 cm-1) and blue (879 cm-1).  

Figure 5.2 Cellular uptake of various LCCP NPs. (A) The effect of FA amount on cellular 

uptake of NPs with 25 nM dsDNA-cy5 for 4 h in DMEM medium with 10% FBS. (B) FA 

blocking assay. (C) and (D) The effect of dose and time on the cellular uptake of FA10-PEG10 

NPs. 

Figure 5.3 B16 cell viability after treatment for 48 h. Cells treated with (A) CD/FA, (B) 

scr/TOS/FA, (C) CD/TOS, or (D) CD/TOS/FA NPs. 

Figure 5.4 The effect of NPs on ROS production by B16 cells after 6 h treatment. ROS 

production (green) was examined using CLSM (A) and quantified using flow cytometry (B). 

The concentration used was: [CD siRNA] = 24 nM and [α-TOS] = 10 µM. 

Figure 5.5 Flow cytometric analysis of cell distribution for early/late apoptosis and necrosis 

on B16F0 cells after typical treatment with (A) CD/FA, (B) scr/TOS/FA, (C) CD/TOS/FA, or 

(D) scr/FA NP treatment for 24 h. The average percentage of cells under apoptosis or necrosis 

status was calculated after three parallel tests and shown (E). 

Figure 5.6 The suppression of Bcl-2 protein expression by treatment with NPs for 48 h. (A) 

Western blot analysis; (B) Densitometry analysis of Bcl-2 expression against β-actin. The 

concentration used was: [CD siRNA] = 24 nM and [α-TOS] = 10 µM. 

Figure 5.7 Cell cycle analysis by staining the DNA in B16F0 cells after 24 h treatment. (A) 

control;  (B) CD/FA NPs; (C) scr/TOS/FA NPs; and (D) CD/TOS/FA NPs. The distribution of 



 

XX 
 

different cell cycle phases in gated cells was counted (E), and the fold change in G1 phase after 

NP treatment was calculated and normalized to that of the control (F). 

Figure 5.8 Proposed mechanism for CD siRNA and α-TOS B16 cancer cell growth inhibition. 

The anticancer action leads to (1) apoptosis and (2) cell cycle arrest. The treatment induces 

ROS production and Bcl-2 suppression, resulting in the damaged mitochondrion and cell 

apoptosis. Here, α-TOS further contributes to cell cycle arrest in G1 phase. Dash arrows: weak 

interactions; Black arrows: strong interactions. 

Figure 5.9 The inhibitory effect of NPs on 4T1 cells and the xenograft tumour growth. (A) 

The inhibition of 4T1 cancer cell growth by NPs in vitro. (B) Tumour growth curve represented 

by tumour size, (C) the tumour weight at Day 14, and (D) the body weight curves of mice with 

various treatment. Coloured stars indicating the statistical analysis results between the 

corresponding group and saline control. Black stars indicating the analysis result between the 

two indicated groups. Purple arrows indicating the injections of NPs and saline. 

Figure 5.10 The metastasis detection in lung and liver. (A) Digital images of metastatic clone 

stained with crystal violet, and (B) the statistical data of metastasis index. 

Figure 5.11 Histological examination of lung tissue sections with hematoxylin and eosin 

staining after treatment. Samples were taken with a 10× objective lens. Black arrows: typical 

metastatic tumour nodules. 

Figure 5.12 Histological examination of liver tissue sections with hematoxylin and eosin 

staining after treatment. (A) Section images captured with a 10× objective lens. (B) 

Enlargement of a typical CV in the dash line area in (A). Black arrows: typical metastatic 

tumour clusters. 

Figure 5.13 Images of heart, spleen and kidney sections stained with hematoxylin and eosin 

under 4× objective lens. 

Figure S5.1 (A) The models after α-TOS intercalation. Surface area of each model was 

calculated by the topological surface area values from PubChem database (see in Table S5.3), 

and compared with the initial LCCP NP. (B) The similarity of α-TOS to DOPC and cholesterol, 

with similar structure marked. 

Figure S5.2 Negative staining TEM image for (A) LCCP NPs and (B) LCCP with 15% α-TOS.  
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Figure S5.3 The mean fluorescence intensity comparison of cells treated FA10-PEG10 NPs 

with and without 15% alpha-TOS in the outer layer lipid. Cells were co-cultured with NPs with 

25 nM dsDNA-cy5 for 4 h in DMEM with 10% FBS. 

Figure S5.4 Effect of scr/FA and CD/FA (100 mg/L) on B16F0 cell growth. 

Figure S5.5 The comparison of cancer cell inhibition effect of free CD siRNA/α-TOS and 

particle-loaded. Two conditions were chosen: (1) 12 nM of CD siRNA with 5 µM of α-TOS; 

(2) 24 nM of CD siRNA with 10 µM of α-TOS. 

Figure S5.6 RT PCR at 24 h post transfection. Cells were treated with NPs containing 24 nM 

CD siRNA and/or 10 uM TOS. The Bcl-2 expression was normalized by the corresponding β-

actin expression. 

Chapter 6 

Figure 6.1 Characterisation of LCCP NPs with α-TOS loading (NP-TOS NPs). (A) 

Hydrodynamic size, and (B) morphology from TEM images of NP-TOS0, NP-TOS15 and 

redispersed NP-TOS15; (C) zeta potential of NP-TOS NPs in deionised water; (D) the loading 

efficiency of α-TOS for NP-TOS with different composition.  

Figure 6.2 Cellular uptake and intracellular distribution of NP-TOS15-FI/PE. (A) The 

model of dual labelled NP-TOS15-FI/PE NP; Cellular uptake of 4T1 cells incubated with (B) 

free PE lipids or NP-TOS15-FI/PE, and (C) the influence of incubation time on positive cell 

percentage; (D) Intracellular distribution of NP-TOS15-FI/PE after incubating with 4T1 cells 

for 4 h. 

Figure 6.3 The effect of NP-TOS15 and α-TOS combined with IFN-γ on cell growth and 

migration. (A) The inhibition of NP-TOS15 and free α-TOS to cells after 48 h treatment. (B) 

The effect of IFN-γ dose on the cells in 48 h combination. The influence on (C) apoptosis 

induction and (D) cell cycle arrest to 4T1 cells with 5 ng/mL IFN-γ, 20 µM α-TOS, and/or 10 

µM NP-TOS15 for 24 h. Migration distance of 4T1 cells in vitro with (E) 0 ng/mL and (F) 

5ng/mL IFN-γ. 

Figure 6.4 The influence of α-TOS on IFN-γ induced PD-L1 expression and translocation 

of NF-κB. (A) The PD-L1 regulation effect of α-TOS and IFN-γ after 48 h. (B) The western 
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blotting bands for NF-κB p65 protein located in nuclei and cytoplasm after 1 h treatment. (C) 

Immunofluorescent images for visualising the intracellular distribution of p65 subunit in NF-

κB complex. (D) The p65 index obtained from fluorescence located in nuclei area. 

Figure 6.5 The anticancer effect of NP-TOS15 combined with IFN-γ in vivo. (A) Tumour 

growth curve, and (B) tumour weight in corresponding groups at day 10 post first injection 

were shown. (n = 5). Dosage for each injection: [IFN-γ] = 0.25 mg/kg, and/or [α-TOS] = 5 

mg/kg in NP-TOS15.  

Figure 6.6 Inhibition of lung metastasis. (A) Images of 4T1 clones in plates, and (B) the 

histogram of metastasis index after selective incubation for 40 days with 60 µM of 6-

thioguanine.; (C) Typical images of lung tissue sections with H&E staining taken with 10× 

lens were shown. Black arrows indicate typical tumour nodules. 

Figure 6.7 Modulation of the immune microenvironment. (A) Cell sorting information to 

obtain cancer cells for PD-L1 analysis. (B) PD-L1 expression in tumour population. Analysis 

of (C) CD4+, (D) CD8+, and (E) PD-1+ TILs in tumour.  

Figure 6.8 Schematically illustration of the effect of IFN-γ/NP-TOS15 treatment in 

different organs. (A) In the lung, IFN-γ boosts the immunity and prevents metastasis, while 

NP-TOS15 NPs may lack accumulation due to the integrity of vessels. (B) In the tumour site, 

IFN-γ treatment results in high PD-L1 expression and failure of tumour inhibition, while IFN-

γ/NP-TOS15 combination treatment effectively controlled tumour progression, with a reverse 

of PD-L1 overexpression on tumour cells. 

Figure S6.1 Characterization of LCCP NPs with α-TOS loading. (A) Hydrodynamic size and 

(B) corresponding morphology from TEM images. Black arrow in (B) indicating the abnormal 

structures (non-LCCP shaped structures). Scale bar: 50 nm. 

Figure S6.2 The combined inhibition of IFN-γ with (A) α-TOS or (B) NP-TOS15 for 48 h. 

The combination index (CI*) values for (C) α-TOS and (D) NP-TOS15. 

Figure S6.3 The influence on (A) apoptosis induction and (B) cell cycle arrest to 4T1 cells 

with 5 ng/mL IFN-γ, 20 µM α-TOS, and/or 10 µM NP-TOS15 for 24 h. Colors indicating 

different phases in cell cycle. Grey, sub-G1; red, G1; green, S; and blue, G2/M.  

Figure S6.4 (A) and (B) Images of cells with different treatment, with dashed red line 

schematically shown the wound distance. (C) and (D) Statistical data. 
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Figure S6.5 (A) The cell viability of 4T1 and B16 to α-TOS at different concentrations for 48 

h. (B) Surface expression of PD-L1 in 4T1 cells with 48 h treatment of α-TOS. (C) Surface 

expression of PD-L1 in B16 cells with 48 h treatment of α-TOS. The number (upper right 

corner) in (B) and (C) indicated the PD-L1 positive percentage. 

Figure S6.6 Quantification of the PD-L1 mRNA expression after 24 h treatment 

Figure S6.7 Intracellular PD-L1 expression with IFN-γ and/or α-TOS for 48 h. After co-

culturing upon IFN-γ/α-TOS, the cells with different treatments were represented as following: 

Ab+Sap, PD-L1 antibody staining, followed by saponin treatment; Ab+Sap+Ab, PD-L1 

antibody staining, saponin treatment, followed by a second time PD-L1 antibody staining; 

Sap+Ab, isotype antibody staining, saponin treatment, followed by PD-L1 antibody staining. 

Ddetailed data and calculation refers to Table S6.3.  

Figure S6.8 The inhibition of IFN-γ induced PD-L1 expression by free α-TOS after 48 h 

treatment. 

Figure S6.9 Densitometry of western blot bands for (A) Nuclei and (B) cytoplasm. 

Figure S6.10 (A) Tumor images and (B) a representative organ image in each group. 

Figure S6.11 Body weight of mice with different treatment. 

Figure S6.12 Histological images of major organs with hematoxylin & eosin staining. 

Figure S6.13 PD-L1 positive percentage in the CD45/MHC-II (+) population. 

Figure S6.14 FACS images indicating the gating of cells to analyze (A) CD4+ and (B) CD8+ 

lymphocytes.  

Figure S6.15 The gating information of PD-1 expression in tumor cite.  

Figure S6.16 CD45 positive population percentage in different groups. 
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This chapter presents an overview to introduce the brief background of this thesis. The 

objectives and significance of this research are outlined, with the proposed aims to achieve. 

The outline of this thesis is documented in the order of chapters. 

 

1.1 Background  

Cancer is one of the leading causes of disease-related death worldwide [1]. A variety of 

therapeutic molecules, such as chemical drugs, natural products, oligonucleotides, and proteins, 

are employed to treat cancers. Generally, these therapeutics require a proper delivery platform 

to achieve efficacious tumour accumulation and further internalisation by tumour cells [2]. In 

this aspect, development of nanoparticles (NPs) provides diverse delivery opportunities. The 

NPs would achieve tumour accumulation due to their suitable size range, and integrate multiple 

functions via delicate designs. As an ideal platform for cancer therapy, the NPs are required to 

be biocompatible and biodegradable. More importantly, the NP delivery system should be 

efficient in loading numerous drugs, and controllable in release.  

In this thesis, we have specifically focused on developing novel lipid-coated calcium 

carbonate/phosphate (LCCP) NPs with the adjustable payload release profile to deliver 

therapeutics for combined cancer therapy. The LCCP NPs were firstly developed for gene 

delivery. Then the drug loading strategy was further improved to broaden the deliverable drug 

range. As an example, a hydrophobic nature product, alpha-tocopheryl succinate (α-TOS), was 

loaded and delivered for gene/drug combination cancer therapy. At last, suitable NP based 



Chapter 1 Introduction 

2 
 

regimens were developed to optimise interferon-gamma (IFN-γ) related combination cancer 

therapy. 

In general, lipid-coated calcium-based NPs, such as lipid-coated calcium phosphate (LCP) and 

lipid-coated calcium carbonate (LCC), can meet the criteria for cancer therapy. The drug 

release of these NPs is majorly controlled by the instinct pH sensitivity of core materials such 

as calcium phosphate or carbonate. In practice, the pH response range of LCP NPs indicates 

that the release may happen in the late endosome/lysosome, which may cause the enzymatic 

degradation of cargoes and lysosomal swelling [3]. On the other hand, the sensitivity of calcium 

carbonate to even neutral pHs (such as pH 6.8-7.0) indicates some therapeutics leakage in the 

tumour extracellular environment or even in blood [4]. Based on this knowledge information, 

this thesis has focused on ameliorating these NP delivery systems with an adjustable release 

profile, in order to optimise the release profile for enhanced cancer therapy. 

As is well known, the lipid-coated calcium-based NPs can load therapeutics by co-precipitation 

within their calcium-based cores. This strategy is suitable for hydrophilic molecules, such as 

gene and protein, while it may be limited in the delivery of hydrophobic and amphiphilic 

molecules. In cancer therapy, some hydrophobic/amphiphilic nature products, such as α-TOS, 

are applied to amplify the anticancer efficiency in combination with other drugs [5, 6]. 

Therefore, a suitable loading strategy for delivering hydrophobic/amphiphilic nature products 

by our NPs was specifically designed, and the NPs were used to co-deliver gene and α-TOS 

for combined cancer therapy in this thesis. 

Moreover, a suitable NP based regimen is developed to optimise cytokine-related cancer 

therapy. Cytokines play a vital role in the anti-tumour immune system, and can suppress 

tumour growth and metastasis [7, 8]. However, long term exposure to cytokines such as IFN-γ 

causes adaptive cancer immune resistance [9, 10]. To reverse the adaptive immune resistance 

caused by cytokines, the LCCP NPs were employed to efficiently deliver α-TOS to the tumour 

site in the presence of exogenous IFN-γ in this thesis, in order to positively modulate the tumour 

microenvironment and more efficiently inhibit the tumour growth and metastasis.  

Of note, successfully completing this Ph.D. project may provide a novel LCCP platform for 

gene/drug delivery to treat cancer in some kinds of combination.  

 

1.2 Research objectives and significance 
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The overall aim of this project is to develop LCCP NPs with precise endosomal release 

character for efficacious combination cancer therapy. To achieve this aim, the folic acid-

modified LCCP NPs were synthesised with the variable carbonate/phosphate ratio to achieve 

controllable cargo release and target delivery. This thesis also provides some practical regimens 

for LCCP NPs as efficient delivery systems for combination cancer therapy.   

Therefore, the objectives of this project are specified as follows: 

(1) To develop novel LCCP hybrid NPs for effective siRNA loading and target endosomal pH 

release; 

(2) To understand the therapeutic efficacy by co-delivering α-tocopheryl succinate (α-TOS) 

and cell death siRNA (CD siRNA) using LCCP NPs for target drug/gene combination cancer 

therapy; 

(3) To determine a suitable regimen by combining interferon-γ (IFN-γ) and LCCP delivered α-

TOS for enhanced cancer immunotherapy 

Aiming to engineer such LCCP NPs as a gene/drug co-delivery platform for combination 

cancer therapy, this project may have the significance in (1) development of novel co-delivery 

platforms, i.e. LCCP NPs with adjustable pH-responsive release profile and capacity of loading 

various deliverable therapeutics, and (2) provision of a suitable regimen to enhance the cancer 

therapy efficacy using the combination strategy.  

 

1.3 Thesis outline 

This thesis is written under the guidelines of The University of Queensland. The outcomes of 

this Ph.D. thesis are presented in the form of journal publications. In detail, the chapters in this 

thesis are illustrated in the following sequence. 

Chapter 1 Introduction 

This chapter presents an overview to introduce the brief background of this thesis. The 

objectives and significance of this research are proposed and this thesis is outlined in each 

chapter. 

Chapter 2 Literature review 
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This chapter reviews the recent progress in applying calcium-based nanoparticles (NPs) for 

cancer therapy. The merits of organic/inorganic NPs leads to the development of biocompatible 

calcium-based organic/inorganic composite NPs. A comprehensive review of calcium 

phosphate (CaP) and calcium carbonate (CaC) based NPs are presented, with their variety of 

applications in cancer therapy and immunotherapy. Sequentially, the LCCP-based strategy is 

proposed to solve the remained challenges. 

Chapter 3 Strategical Methodology 

This chapter summarises the methodology adopted in this PhD project. In specific, the synthetic 

methods for LCCP NPs, the characterisation techniques, biological techniques, and statistical 

considerations are documented. 

Chapter 4 Devising New Lipid-coated Calcium Phosphate/Carbonate Hybrid NPs to Control 

Release in Endosome for Efficient Gene Delivery 

This chapter reports the design and development of the new lipid-coated calcium 

carbonate/phosphate (LCCP) nanoparticles (NPs). Lipid-coated calcium phosphate (LCP) NPs 

are proven to be an effective vehicle for gene and some drug delivery, while it is not desirable 

for NPs to release gene/drug in late endosome/lysosome. To achieve the early endosome 

release and escape, we have designed and developed these new LCCP hybrid NPs. The new 

hybrid LCCP NPs had a spherical structure with an average diameter of 40 nm and a high gene 

loading capacity, and released most of the loaded dsDNA/siRNA was under mildly acidic 

conditions (pH 6.0-5.5). LCCP NPs were also effectively internalised by B16F10 cells in a 

dose and time dependent way. The delivery efficacy was further demonstrated using two 

functional siRNAs, i.e. programmed death ligand 1 (PD-L1) siRNA for PD-L1 silencing and 

polo-like kinase 1 (PLK1) siRNA for growth inhibition of B16F10. As expected, the LCCP 

loaded PD-L1 siRNA showed a quicker PD-L1-mRNA inhibition than LCP NPs, indicating 

that LCCP NPs improve the siRNA silencing capacity probably via release of most siRNA in 

endosome and endosomal escape. 

Chapter 5 Enhanced Combination Cancer Therapy using Lipid-Calcium Carbonate/ 

Phosphate NPs as a Targeted Delivery Platform 

This chapter reports the modification of LCCP NPs as targeting NPs, and co-delivery of cell 

death (CD) siRNA and α-tocopheryl succinate (α-TOS) drug for combination cancer therapy 

in vitro and in vivo. CD siRNA is a commercialised siRNA that can cause cell death, while α-
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TOS is a derivative of vitamin E that holds great anticancer potentiality. In this chapter, LCCP 

NPs were modified with polyethylene glycol (PEG) and folic acid (FA). After modification, 

LCCP NPs exhibited an FA-enhanced cellular uptake by cancer cells with FA receptor 

overexpression. The modified LCCP NPs provided high payloads of CD siRNA and α-TOS 

drug. The in vitro study indicated the synthesised NPs (CD/TOS/FA) enhanced the inhibition 

to B16F0 melanoma growth with a moderate synergy. The mechanism of the high combined 

inhibition to B16F0 cell growth may be associated with the effective induction of cell apoptosis 

and arrest of the cell cycle at the G1 phase. 

Moreover, the in vivo anticancer efficacy of CD/TOS/FA NPs was evaluated in a metastatic 

4T1 mouse model. With FA mediated delivery of two combined therapeutics, CD/TOS/FA 

NPs significantly inhibited 4T1 tumour growth in situ, and prevented its metastasis to lung and 

liver remarkably. No significant toxicity to major organs was observed during the therapy. In 

conclusion, the well-designed CD/TOS/FA NPs held great potential as an efficiency anticancer 

agent delivery platform, and may be used to deliver therapeutics for combination therapy for 

other cancers. 

Chapter 6 Enhanced Prevention of Breast Tumour Metastasis by Nanoparticle-delivered 

Vitamin E in Combination with Interferon-gamma Treatment 

Preventing cancer metastasis is one of the remaining challenges in cancer therapy. To improve 

the efficacy and bioavailability of α-TOS, the lipid-coated calcium carbonate/phosphate (LCCP) 

nanoparticles (NPs) with folic acid and PEG modification were synthesised for efficient 

delivery of α-TOS to 4T1 cancer cells. The optimised LCCP-FA NPs (NP-TOS15) showed an 

α-TOS loading efficiency of ⁓60%, and enhanced the uptake by 4T1 metastatic cancer cells. 

Consequently, the NP-TOS15 NPs significantly enhanced the anticancer effect in combination 

with interferon-gamma (IFN-γ) treatment in terms of apoptosis facilitation and migration 

inhibition. Importantly, NP-TOS15 upregulated the anticancer immunity via downregulating 

program death ligand 1 (PD-L1) expression induced by IFN-γ, and remarkably prevented the 

lung metastasis, particularly in combination with IFN-γ. Further investigation revealed that this 

combination therapy also modulates the cytotoxic lymphocyte infiltration into the tumour 

tissue for tumour elimination. Taken together, the NP delivery of α-TOS in combination with 

IFN-γ provides an applicable strategy for cancer therapy. 

Chapter 7 Conclusion and Future Recommendation 
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This chapter presents the general discussion and conclusion of this thesis, and the outlook for 

future research directions. 
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This chapter reviews the current progress on the application of calcium carbonate/phosphate 

nanoparticles (NPs) in cancer therapy. It firstly overviews the application of general 

organic/inorganic NPs in cancer therapy (Section 2.1), then focuses on the development of 

calcium phosphate (Section 2.2) and calcium carbonate (Section 2.3) NPs and their applications, 

respectively. Next, the calcium-based hybrid NPs and their application in cancer therapy are 

summarised (Section 2.4). To extend, this chapter briefly reviews the principle and applications 

of immunotherapy, with current NP-based strategies to achieve better therapeutic effects 

(Section 2.5). Finally, current challenges are proposed, and the basic strategies for this research 

are outlined (Section 2.6). The review in Section 2.5 is under review for publication in 

Front. Immunol. (2019, review paper). 

 

2.1 Nanotechnology for cancer therapy 

2.1.1 Current cancer therapies 

Cancer is one of the most life-threatening diseases in the world. As reported, 22% of death was 

related to cancer in the United States in 2016 [1]. Traditionally, the conventional methods (such 

as chemotherapy, radiotherapy, and surgery) and more recent methods (such as gene therapy, 

and protein/peptide-based therapy) are effective in eliminating tumour in situ. Nevertheless, 

these strategies may be limited by severe adverse effects (AEs), and the therapeutic efficacy. 
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Nowadays, immunotherapy opens a new chapter for cancer treatments. Compared to the 

traditional regimens, the involvement of the immune system will (1) relieve the AEs, (2) 

broaden the applicable patient cohort, and (3) most importantly, bring more efficacious 

treatment outcomes in both eliminating tumour in situ and preventing cancer metastasis.  

For both the traditional and immune regimens, the anticancer therapeutics are required. 

Assorted by the molecules involved in, the therapeutics include (1) chemical anticancer drugs 

and inhibitors, (2) nature products, (3) interference oligonucleotides, (4) antibodies, (5) other 

bioactive agents like cytokines. However, most of these molecules show high cytotoxicity to 

cancer cells, and also other proliferative cells in normal tissues. This cytotoxicity leads to side 

effects and therefore limits the clinical application. Indeed, these anticancer agents are quickly 

metabolised in the blood, resulting in low accumulation at the lesion site. Specifically, the 

oligonucleotides for cancer therapy, the majority of which are interference RNAs (siRNA, 

shRNA, or miRNA), also face challenges such as low efficiency in cellular uptake, and quick 

degradation upon exposure in the enzymatic environment. Therefore, developing effective 

approaches for systematic delivery of therapeutics is of great importance. 

 

2.1.2 The advantages of using nanotechnology in cancer therapy 

The emerging nanotechnology brings new paradigms to cancer therapies. The application of 

nanotechnology relies on nanomaterials, which refer to the materials with at least one 

dimension of size constrained in 1-100 nanometers (nm). The nanomaterials, especially 

nanoparticles (NPs), provide several benefits for cancer therapies. In general, these NPs are 

used as carriers for therapeutic delivery to optimise the treatment efficacy. Particularly, the 

nanotechnology can also benefit other cancer-related aspects, such as imaging, diagnosis, 

vaccine development, and establishment of the personalised treatment regimen. 
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Figure 2.1. Schematic representation of the EPR effect of nanomedicine. Reprinted with the 

permission from F. Danhier et al. [2]. Copyright (2016) Elsevier. 

 

Firstly, the NPs exhibit definitive accumulation at the tumour site. As shown in Figure 2.1, due 

to the instinct small size, the nanoparticles can be leaked from the hyperpermeable 

neovasculature to the interstitial microenvironment in the tumour tissue [2, 3]. Simultaneously, 

the lack of functional lymphatic vessels contributes to nanoparticle’s entrapment and retention 

in the tumour tissue. Taken together, this process profiles the features of Enhanced 

Permeability and Retention (EPR) effect, the fundamental of NP application in cancer therapy. 

Moreover, NP delivery enhances the pharmaceutical properties of the loaded therapeutics. 

After payload, the therapeutics show improvement in their stability, solubility, and half-life in 

circulation [3]. These improvements also reduce side effects. Furthermore, nanotechnology 

facilitates the transcytosis of cancer therapeutics across some special epithelial barriers, such 

as the blood-brain barrier [4] and gastrointestinal tract [5]. For the delivery of some special 
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bio-macromolecular drugs like oligonucleotides and proteins, NPs provide protection during 

the delivery to maintain their bioactivities [6]. In specific, some NPs hold the inherent 

characteristics that can be used for controlled release, diagnosis, immune boost, and even 

cancer elimination. 

 

2.1.3 Current application of NPs in cancer therapy 

Currently, the application of nanotechnology to cancer therapy attracts growing attention. 

Several therapeutic NP products have been marketed for cancer treatments, such as Doxil® 

(liposomal doxorubicin [7]), Abraxane® (albumin-bound paclitaxel [8]), Onivyde® (liposomal 

irinotecan [9]), and Nanotherm® (iron oxide [10]). Here we review some organic and inorganic 

NPs in terms of their properties and discuss the advantages and disadvantages of each kind of 

NPs for the cancer therapy application. 

2.1.3.1 Organic NPs 

As shown in Figure 2.2A and B [11], there are several NPs approved by FDA for clinic use, 

and most of them are organic NPs. The most commonly used materials for organic NPs are 

liner/branched polymers, lipids, nanocrystals, metallic materials, and proteins. Some lipids can 

act as the precursor/monomer to self-assemble into NPs. According to the surface and internal 

compartment, these NPs can be sorted as micelle (closed monolayer lipid without compartment) 

and liposome (bilayer lipid with an aqueous internal compartment).  

FDA approved nanomedicines are mainly organic NPs consisting of the above materials 

(Figure 2.2A and B). Figure 2.2C and D show the statistical data of clinical trials, suggesting 

the investigation preference in terms of the material categories. Significantly, organic materials 

such as micelles and proteins come through the development process [11]. Moreover, more 

protein-based nanomedicines were approved recently. The instinct biological functions of these 

proteins endow advantageous applications in cancer therapy.  

Although there are some other applications such as imaging and diagnostics, anticancer drug 

delivery is the most important application of these organic NPs. The marketed liposomal 

nanomedicine Doxil® is an ideal paradigm. Since approval in 1995, Doxil® is widely used for 

cancer therapy. Compared to conventional doxorubicin drug formulations, the NP formulation 

achieves much better therapeutic outcomes, with favourable toxicity profiles and less adverse 
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effects [7]. Moreover, the structure of liposomal NPs broadens their application in drug 

delivery, endowing the loading of both hydrophilic and hydrophobic drugs in the aqueous 

compartment and the lipid bilayer, respectively. Meanwhile, other organic NPs may also 

achieve payload of other hydrophilic/hydrophobic drugs. For example, dendrimers and carbon 

nanotubes provide a hydrophobic internal chamber for hydrophobic drug delivery, such as 

curcumin [12], analogues of vitamin E [13], paclitaxel [14, 15], and cisplatin [16, 17]. 

 

Figure 2.2 Trends of the NP based medicines. (A) FDA-approved nanomedicines stratified 

by time and NP category; (B) overall of FDA-approved nanomedicines catalogued by NPs; (C) 

ongoing clinical trials identified in clinical trials.gov from 2001 to 2015, with arrow indicating 

the start date of FDAAA 801 US law that requiring reporting to FDA database; (D) overall of 

nanomedicines under clinical trial assorted by NP category. Reprinted with the permission from 

Bobo D. et al.[11]. Copyright (2016) Springer Nature. 
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2.1.3.2 Inorganic NPs 

According to the component elements, the inorganic NPs may include some of the following 

highlights: (1) magnetic behaviour, (2) potential for diagnosis and sensor development, (3) cell 

death induction ability via photo-thermal effect, photodynamic effect, or other mechanisms, 

and (4) affinity to bio-components, especially to bone and tooth tissues. Table 2.1 summarises 

the unique advantages of inorganic NPs catalogued by their composition. 

Table 2.1. Characteristics of inorganic NPs assorted by composition. 

Composition 

of NPs  

Features Cancer therapy application Ref 

Iron oxide Magnetic properties Magnetic mediated targeting drug 

delivery to the lesion area 

[18-20] 

Imaging ability Diagnosis [21-23] 

Gold  Photo-thermal 

transduction 

Photo-thermal therapy [24-26] 

Imaging ability Diagnosis [27-29] 

Zinc phosphate High affinity to protein 

and immune regulation 

Loading and delivery of peptide-

based anticancer agents and 

vaccine development 

[30, 31] 

 

Copper 

sulphide 

Photo-thermal 

transduction 

Photo-thermal therapy [32, 33] 

 

Imaging ability Diagnosis [34, 35] 

Manganese 

oxide  

Imaging ability Diagnosis [36] 

Gadolinium-

chelate 

Imaging ability Diagnosis [37, 38] 

Calcium 

phosphate 

Gene transfection  Gene delivery [39, 40] 

Bone affinity Bone metastasis and other 

osteoblast cancer therapy 

[41, 42] 

 

Notably, inorganic NPs including calcium are reported to have a high affinity to target bio-

components or tissues. As the most commonly used bone substitutes, calcium phosphate 

materials are suitable for bone-targeted drug delivery, particularly to treat cancers with bone 
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metastasis potential [43]. Furthermore, calcium phosphate is known as a commonly used 

nonviral vector for gene transfection, though the process is not entirely understood. Recent 

studies exhibit good regimens to utilise calcium phosphate-based NPs for gene delivery in 

cancer therapy [44]. Although calcium iron acts as a second messenger in cell signalling, the 

calcium NPs are biosafe and do not bring significant influence to cells in most cases. The 

previous study has elucidated how the ion efflux processes to ensure the calcium homeostasis 

in cells [45]. However, due to the pH response under acidic conditions, a large portion of Ca 

NPs may be cytotoxic to cells. After endocytosis, NPs dissolve and release Ca ions to the 

endosome/lysosome, which may cause endosomal/lysosomal ruptures and cell necrosis [46, 

47]. This Ca-induced cell death can be reversed by supplementing NaCl to raise the 

intracellular osmotic pressure [46].  

The major drawback of inorganic NPs is the relatively high toxicity and poor biocompatibility. 

Indeed, most inorganic NPs show high cytotoxicity if they lack proper modifications. The 

metabolism of metal-doped NPs will increase burdens to organs, such as liver and kidney, 

causing organ exhaustion [48-50]. In certain cases, inorganic NPs may also have stability issues 

under physiological conditions and in circulation [51]. 

 

2.1.4 Inorganic-organic hybrid NPs 

Generally, organic NPs perform better in extending the biocompatibility and colloidal stability, 

offering opportunities for easy modification [52], while they face problems such as rapid 

clearance and mechanically fragile structure [53]. On the other hand, inorganic NPs provide 

the mechanical and thermal stability, and possess specific features in magnetic, redox, 

photothermic, photodynamic, and/or chemical properties [21, 27, 35], while they show 

limitation like nonbiodegradability, lack of biocompatibility and colloidal stability, and high 

cytotoxicity [51]. To take advantages of both organic and inorganic NPs and overcome their 

drawbacks, the inorganic-organic hybrid NPs are designed and applied. The organic/inorganic 

hybrid NPs refer to those composites showing mixed organic/inorganic components at the 

molecular scale, with a characteristic length scale in the nanometer size [54]. Thus, the 

properties of hybrid NPs do not just result from the sum-up of individual components such as 

the simple physical mixtures. Indeed, some unique characters are present in the hybrid 

materials, especially the organic/inorganic interface related characters [54-56]. 
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Since the last decades, hybrid nanomaterials have been developed on a large scale, with the 

number increased in both research publication and patent application [57]. Importantly, some 

hybrid NPs succeed in clinical translations. Up to 2016, about ten hybrid NP/formula products 

have been approved by the FDA, and three of them are for cancerous applications (Table 2.2) 

[11, 58]. Others are majorly focused on deficiency in chronic kidney disease (CKD) with iron-

based NPs. Moreover, clinical trials on gold and silica NPs are recruiting, focusing majorly on 

cancer imaging, with some trials on tumour thermal ablation [58]. Generally, the clinical 

translation products for hybrid NPs on cancer therapy aspects are rare, suggesting a great 

potential of development. 

 

Table 2.2 List of FDA-approved hybrid nanomedicines for cancerous application. Reprinted 

and modified with the permission from B. Daniel et al.[11] and A. Aaron et al.[58]. Copyright 

(2016) Springer Nature, and (2015) Springer Nature.  

Trade name Material 

description 

Indication(s) Year(s) of approval 

Feridex I.V.®; 

 Endorem® 

Iron oxide NPs 

coated with dextran 

MRI Imaging of 

liver lesions 

1996 

Resovist®; 

Cliavist 

Iron oxide NPs 

coated with 

carboxydextran 

MRI imaging of 

liver lesions 

2001 (Approved by 

EMA) 

Nanotherm® Iron oxide NPs 

coated with 

aminosilane 

Thermal therapy for 

glioblastoma 

2010 

 

Apart from iron-, gold-, and silica-based nanomaterials, the calcium-based hybrid 

nanomaterials also show great potential in cancer therapy as a promising anticancer delivery 

candidate for a variety of therapeutics such as oligonucleotides [39, 59], peptides [60, 61], and 

hydrophilic/hydrophobic anticancer drugs [62-64]. Among the variety formula of calcium 

products, calcium phosphate and calcium carbonate are highlighted as there are some 

successful FDA-approved applications in bone structure mimics, acid indigestion, and 

treatment of calcium deficiency [44, 63, 65]. Therefore, devising calcium-based organic-

inorganic hybrid NPs is of great interests. Calcium based NPs, such as calcium phosphate (CaP) 
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and calcium carbonate (CaC), exhibit broad biomedical utilisation due to their biocompatibility 

and biodegradability. Traditionally, these materials are applied in nutrition supplementation, 

orthopaedic and dental substitutes [43, 65]. With the development of nano-sized CaP/CaC, 

their application as drug/gene delivery system in cancer therapy has been developed. As the 

focused nanomaterials in this study, CaP- and CaC-based NPs in cancer therapy are reviewed 

in detail in the next sections. 

 

2.2 CaP-based NPs in cancer therapy 

In this section, CaP-based NPs and their applications in cancer therapy are reviewed. First, the 

bare CaP NPs, including their properties and application, are discussed, and then the lipid-

coating CaP (LCP) NPs are introduced specifically. 

 

2.2.1 CaP NPs  

2.2.1.1 The property of CaP NPs 

The compound formula of CaP is diverse, as listed in Table 2.3 [66].  Generally, a higher Ca/P 

ratio leads to lower solubility [67]. For example, the solubility of CaPs decreases in the order 

of MCPM > DCPD = DCPA > OCP > β-TCP > HA at the physiological pH. The crystal form 

is controlled by precipitation conditions such as temperature, pH, Ca/P feeding ratio [65].   

The CaP NPs are able to dissolve in the acidic organelles such as endosome and lysosome, 

increasing the osmotic pressure due to the dissolved ions. As a consequence, the 

endosome/lysosome swells and releases the payloads into the cytoplasm [61, 68]. Despite that 

the calcium ion concentration higher than 1 µM in the cytoplasm would lead to cell necrosis 

[69-72], most CaP nanomaterials show low to moderate cytotoxicity. Research on PEG-lipid 

coated CaP NP revealed that cells can overcome these exogenous calcium ion increase via 

pumping calcium ions out into the extracellular matrix or into mitochondria [73]. Therefore, 

CaP NPs are theoretically nontoxic materials to cells, and able to deliver and automatically 

release anticancer therapeutics after internalisation by cancer cells. 
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Table 2.3 Main calcium orthophosphate compounds. Taken and modified from the original 

version published by Bohner et al. [66]. 

Name Formula Ca/P  Mineral Symbold 

Monocalcium 

phosphate monohydrate 

Ca(H2PO4)2 .H2O 0.50 - MCPM 

Dicalcium phosphate CaHPO4 1.00 Monetite DCPA 

Dicalcium phosphate 

dihydrate 

CaHPO4.2H2O 1.00 Brushite DCPD 

Octocalcium phosphate Ca8H2(PO4)6 .5H2O 1.33 - OCP 

Precipitated 

hydroxyapatite a 

Ca10-x(HPO4)x(PO4)6-

x(OH)2-x 

1.33-1.67 - PHA 

Precipitated amorphous 

calcium phosphate 

Mu(Ca3)(HPO4)3v(P

O4)3y.zH2O)b,c 

0.67-1.50 - ACP 

Monocalcium 

phosphate 

Ca(H2PO4)2 0.50 - MCP 

α-Tricalcium phosphate α-Ca3(PO4)2 1.50 - α-TCP 

β-Tricalcium phosphate β-Ca3(PO4)2 1.50 - β -TCP 

Sintered hydroxyapatite Ca10(PO4)6(OH)2 1.67 Hydroxyapatite SHA 

Oxyapatite Ca10(PO4)6O 1.67 - OXA 

Tetracalcium phosphate Ca4(PO4)2O 2.00 Hilgenstockite TetCP 
a x may vary between 0 and 2. 
b u may vary between 0 and 3, v may vary between 0 and 1.5, y may vary between 0 and 0.667, and z is unclear at 

this point. M is typically a monovalent cation (Na+, K+, NH4
+) which is only present if there is an overall negative 

charge on the calcium phosphate. 
c ACP produced in basic conditions has generally u = 0, v = 0, y = 0.667, leading to the following composition: 

Ca3(PO4)2.zH2O where z = 3–4.5. In acidic conditions, u = 3, v = 1.5, y = 0, leading to the following composition: 

M3(Ca3(HPO4)4.5.zH2O) where z is unknown. 

d Symbol abbreviations: MCPM: monocalcium phosphate monohydrate; DCPA: dibasic calcium 

phosphate anhydrate; DCPD: dicalcium phosphate dehydrate; OCP: octacalcium phosphate; PHA: precipitated 

hydroxyapatite; ACP: amorphous calcium phosphate; MCP: monocalcium phosphate; TCP: tricalcium phosphate; 

SHA: sintered hydroxyapatite; OXA: oxyapatite; TetCP: tetracalcium phosphate. 
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2.2.1.2 CaP NPs in cancer therapy  

CaP NPs are widely examined to deliver a variety of agents for cancer therapy, such as genes, 

proteins, and chemical drugs. In most of CaP NP applications, the anticancer agents are 

embedded into the CaP crystals by co-precipitation. As one of the most important non-virus 

gene delivery materials, CaP NPs manifest high payload and transfection efficacy. The payload 

efficacy is highly related to their stoichiometry (Ca/P ratio) due to that this ratio controls the 

precipitation and obtained compound formula. In general, an optimal Ca/P ratio ranging 

between 100 to 300 is adopted to get efficient condensation of genes [74]. Olton et al. 

investigated the naked CaP NPs and revealed how synthesis parameters affected the binding, 

condensation, and transfection of pDNA [74]. Moreover, Sokolova et al. tried to prepare a 

multi-shell structured CaP NP, as schematically shown in Figure 2.3. The hydrophilic DNAs 

here were not just simply loaded by CaP NPs, but also employed for colloidal stabilisation. 

[75].  

 

Figure 2.3 Schematic illustration of three types of calcium phosphate/DNA NPs. Single-shell 

NP: DNA coated CaP; double-shell NP: an external layer of CaP crystallised on the single-

shell NP for DNA protection; and triple-shell NP: a second layer of DNA coating outside the 

double-shell NP for colloidal stabilisation. Reprinted with the permission from Sokolova et al. 

[75]. Copyright (2006) Elsevier B.V.  

  

CaP NPs are also able to deliver chemical drugs for cancer therapy. An example is a ceramide 

that has poor water solubility [76]. Barth et al. suggested a micro-emulsion method to prepare 

~20 nm CaP NPs for indocyanine green (ICG) delivery [77]. The ICG molecules can visualise 
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the in vivo distribution of CaP NPs via fluorescence imaging, enabling CaP NPs to perform as 

a theranostic modality. Despite the instinct pH responsive of CaP, the release of anticancer 

agents from CaP NPs may also be achieved by morphology transformation. Cai et al. reported 

an ultrasonic controlled morphology transformation of hollowed CaP NPs [78]. As shown in 

Figure 2.4, the hollow sphere-like CaP NPs were partially transferred to pin-like crystallites 

after 1 min ultrasonication, and this transformation quickly accomplished after 5 min 

ultrasonication. Therefore, the therapeutics that are loaded into the niches will be released 

accordingly. 

 

Figure 2.4 Illustration of an ultrasonic responsive morphology transformation of CaP 

NPs and the application for anticancer agent release. (A) TEM images of an interim stage, 

the co-existence of original sphere-like and transferred pin-like NPs after 1 min ultrasonic, (B) 

TEM and SAED of the final stage of this transformation after 5 min ultrasonic. (C) Scheme of 

the ultrasound controlled drug release. Reprinted with the permission from Cai et al. [78]. 

Copyright (2007) American Chemical Society. 
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2.2.2 Lipid-coated calcium phosphate (LCP) NPs 

Although the application of bare CaP NPs has achieved some success, most of these 

investigations mentioned size control, stability, and agglomeration as the arch problems for 

CaP NP application. In most cases, CaP NPs need further modification or coating with organic 

substances before employment in cancer therapy in vivo. Among the tremendous approaches, 

the lipid coating provides a facile and practical way to gain CaP NPs with controlled size, shape 

and colloidal stability. 

 

2.2.2.1 Synthesis and modification 

The broad application in anticancer drug/gene delivery of CaP NPs requires surface 

modification to the precipitates to produce colloidally stable NPs. Moreover, these coated 

organic substances can affect the crystallisation of CaP, thus leading to the controllable size 

and shape of NPs. Liposomes are good examples to template CaP NP formation. Phospholipids 

such as1,2-dioleoyl-sn-glycero-3 phosphate sodium salt (DOPA) owning negatively charged 

head group help the deposition of calcium and phosphate ions around the liposomes, resulting 

in hollow and small-sized (around 40 nm) NPs [59, 68, 79].   

Pioneeringly, Huang’s lab reported the LCP preparation based on a water in oil (W/O) micro-

emulsion [68, 80]. The typical LCP NP structure obtained is a bilayer phospholipid coated CaP 

core, as schematically shown in Figure 2.5. Briefly, an aqueous solution containing calcium 

ion is dispersed into the oil phase (cyclohexane) with surfactant (igepal as the most commonly 

used). A separate W/O dispersion containing phosphate and inner layer lipid 

(dioleoylphosphatydic acid, DOPA) is added dropwise into the calcium dispersion. The cores 

of LCP NPs are then formed due to precipitation of calcium and phosphate or phospholipid 

(DOPA). After washing with ethanol, the cores are collected and then re-dispersed in 

chloroform containing outer layer lipids. Then a thin-film is obtained by solvent evaporation. 

Accordingly, the final LCP NPs are prepared after hydrating the film. The resulting LCP NPs 

have a small and uniform size distribution and good colloidal stability, combining the 

advantages of both CaP and liposome.  
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Figure 2.5 Schematic illustration of the preparation of LCP NPs via micro-emulsion method. 

  

The LCP NPs have an average hydrodynamic size of 40 nm, with the CaP core size of around 

15-20 nm [59, 68]. The well-designed W/O dispersant and the quick magnetic stirring attribute 

to the controlled size. Theoretically, the precipitation of CaP or Ca-phospholipid forms on the 

interfaces of dual phases [39, 81]. Therefore, the water/oil ratio could judge the size by 

affecting the interface. Similarly, the surfactant between water and oil phases is a second key 

factor for the LCP size [79]. The surfactant molecules stabilising water droplets provide a cage-

like effect that can control the nucleation and growth of CaP precipitate [82]. Recent research 

has revealed that utilising Triton X-100 instead of Igepal CO-520 results in larger NP than 40 

nm, due to the size increase of CaP cores [79]. Moreover, the Ca/P molar ratio is also reported 

to affect LCP size [59, 74, 82]. The possible mechanism may involve in the influence of CaP 

formula, polymorph, and precipitation amount [82]. 

The coated lipids can be used for NP modification. The special lipid molecules can be 

intercalated into the outer lipid layer. Basically, the outer layer lipids used for LCP contain 1,2-

dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol. The neutral charge of DOPC 

and cholesterol leads to a slightly negative zeta potential of LCP NPs (~15 mV) [40, 59]. With 

replacing DOPC by cationic lipids such as 1,2-dioleoyl-3-trimethylammonium propane 

(DOTAP), the surface charge of LCP NPs can be regulated in a broad range [83, 84]. Due to 

the similar structure compared to DOPC, a subset of phospholipids can be employed to modify 

LCP NPs to bring them multiple functions such as increased circulation longevity (distearoyl 

phosphatidylethanolamine, DSPE-PEG), targeting ability (folate conjugated DSPE-PEG), 
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grafting surface moiety (maleimide, carboxylic acid, or amine conjugated DSPE-PEG) and 

illumination (DSPE-PEG grafted with fluorescent groups) [85-87]. The modification of LCP 

NPs can also be achieved by lipid substitution in its outer layer. As known, PEGylation plays 

an important role in NP bio-application [88, 89]. The PEG chains minimise the mononuclear 

phagocyte system (MPS) recognition, thus increasing the circulation time of nanomaterials in 

blood [6, 90]. To achieve this MPS escape, the high surface density of PEG chains is required 

[91]. Despite that liposomes are unable to support more than 6% molar PEG-lipids 

modification during their formation [92], the LCP NPs exhibit the compatibility to as high as 

20% molar ratio of PEG-lipid in the outer layer lipids, as a consequence of CaP core support 

[91]. This increase in PEG-lipid ratio definitely prolongs the LCP circulation in vivo, and 

influence the biodistribution of LCP NPs as well [93, 94].  

 

2.2.2.2 Application of LCP NPs in cancer therapy 

As the most popular non-viral gene vector, CaP materials perform good packaging ability to 

genetic materials such as DNA and RNA. The CaP crystal prevents DNase/RNase binding to 

its target oligonucleotides via steric hindrance and thus provide the protection of loaded genes. 

LCP NPs show effective gene loading, with an optimised 60% loading efficiency [59, 95]. The 

pristine LCP NPs can be internalised by a variety strain of cells, and their modification with 

targeting ligands facilitates the cellular uptake significantly. Especially, Tang et al. reported 

that dual targeting ligands on modified LCP NPs facilitated their quick and specific 

accumulation in vivo [93]. The delivered genes maintained their gene silencing ability. Yang 

et al. demonstrated the luciferase siRNA loaded with LCP NPs could silence 80% of its target 

gene at a dose as low as of 100 µg/kg (Figure 2.6A) [80]. They then evaluated the in vivo 

anticancer ability using an siRNA cocktail (siRNAs against MDM2, c-myc, and VEGF), 

suggesting that the LCP NP delivery would prolong tumour bearing mice survival, and 

eliminate the lung metastasis (Figure 2.6B). Similarly, plenty of work has been done on the 

gene delivery of LCP NP for cancer treatment [96-98].  
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Figure 2.6 Evaluation of gene delivery effect of LCP NPs in vivo. (A) In vivo luciferase 

gene silencing effect of LCP delivered luciferase siRNA in a dose-responsive manner; and (B) 

photographs of lungs from tumour bearing mice showing the anti-metastasis efficacy of 

therapeutic siRNA cocktail in LCP NPs. Reprinted with the permission from Yang et al. [80]. 

Copyright (2012) Elsevier B.V. 

 

Furthermore, LCP NPs have been employed as vehicles for a variety of anticancer drugs. 

Generally, co-precipitation of the drug molecules within the NP core is the most popular 

payload method. Due to the specific affinity with calcium ions, anticancer drug molecules with 

phosphate groups are easy to achieve a high payload. Gemcitabine triphosphate (GTP), a 

nucleoside analogue with anti-tumour therapeutic effect, was delivered by targeting LCP NPs 

(GTP-LCP-PEG-AA) to treat H460 and BxPC-3 solid tumour. After 4 injections at a GTP dose 

of 4 mg/kg, the tumour growth of both tumour models was inhibited compared to control 

groups [99]. Similarly, the delivery of gemcitabine monophosphate (GMP) [98], antiviral 

acyclovir monophosphate (ACVP) [100, 101] and zoledronate [102] were also achieved.  

LCP NPs are also reported as the peptide delivery vehicle for cancer treatment [87, 103]. Xu 

et al. explored the modified tyrosinase-related protein 2 (p-Trp2) peptide payload by LCP NPs 
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as a vaccine for cancer therapy, with CpG oligonucleotide as an adjuvant (Figure 2.7) [60]. The 

mannose mediated dendritic cell (DC) cytosol delivery of exogenous antigen (p-Trp2 peptide) 

by LCP NPs led to the activation of endogenous antigen presenting pathway, resulting in the 

peptide presented by MHC-I complex on DCs to T cell receptor. The process activated CD8+ 

lymphocytes proliferation and a strong cytotoxic T-lymphocyte (CTL) response in vivo. 

In practical, LCP NPs can load more than one therapeutics to treat cancers in a combined 

method. In particular, LCP NPs are widely employed in gene therapy-related combination 

therapy. Chen et al. synthesised LCP NPs with dsRNA [poly (I:C)] and anticancer drug 

(zoledronic acid) to treat melanoma [104]. They further confirmed the superior antitumor 

activity in the tumour bearing mouse model. More significant results were obtained from the 

combination of gene therapy and photodynamic/photothermal therapy (PDT/PTT). In related 

studies, the volumes of tumour significantly shrank after treatment. In the presence of oxygen, 

photo-illumination can activate photosensitizing drugs, producing singlet oxygen species (ROS) 

and finally inducing tumour apoptosis [105]. Recent studies proved the HIF1α, which related 

to cell overcoming hypoxia mechanism, was upregulated during the PDT therapy, as resistance 

to PDT-induced hypoxia [106]. A co-delivery of a photosensitizing drug (PpIX) and HIF1α 

siRNA by LCP NPs, therefore, resulted in a ~40% decrease in tumour volume in the mouse 

model [107]. Moreover, the co-delivery of the PTT drug (indocyanine green, ICG) with cell 

death siRNA (CD siRNA) using the EGFR targeted LCP NPs can almost eliminate both small 

tumours (~100 mm3) and large tumours (~500 mm3) [108]. 
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Figure 2.7 Design strategy and characterisation of mannose-LCP NP based vaccine. (A) 

Strategy illustration of LCP based vaccine to induce CD8+ lymphocyte dominated cytotoxic 

T-lymphocyte (CTL) response. The (B) CaP cores and (C) the final vaccine NP delivery system 

is characterised by TEM. Reprinted with the permission from Xu et al. [60]. Copyright (2013) 

Elsevier B.V. 

 

2.3 CaC-based NPs in cancer therapy 

Apart from CaP, calcium carbonate (CaC) is also an important calcium material. In general 

CaC NPs showed lots of similarity to CaP NPs, such as low cost, easy acquisition, and good 

biocompatibility/biodegradability. These features bring them the widespread interest in their 

medical applications. As inorganic materials, they also face problems in areas such as colloidal 

stability. In this section, we first review the bare CaC NPs, focusing on their unique characters 

compared to CaP NPs. Sequentially, the CaC NP’s application in cancer therapy is summarised. 

Finally, the lipid-coated CaC (LCC) NPs with their application are reviewed. 
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2.3.1 CaC NPs 

2.3.1.1 The property of CaC NPs 

Compared to CaP, CaC exhibits differences in crystallisation and structure formation. The 

common formula of CaC is CaCO3, with three crystal structures illustrated in Figure 2.8. The 

solubility of these polymorphs is slightly different (5.79×10-4 mol/L for calcite, 7.75×10-4 

mol/L for aragonite, and 1.10×10-4 mol/L for vaterite). In addition, their mineral hardness 

varies, though rarely discussed in drug delivery applications. Among these polymorphs of CaC, 

the metastable vaterite is the most practicable due to its large porosity, surface area, rapid pH-

response, and low thermodynamic stability.[81] 

 

Figure 2.8 Different polymorphs of CaC NPs. Vaterite belongs to the hexagonal crystal 

system, whereas calcite occurs in the trigonal and aragonite in the orthorhombic systems. The 

morphological forms of CaC are related to the synthesis conditions, such as the concentration 

of reactants, temperature and nature of additives. Reprinted with the permission from Maleki 

D.S. et al. [63]. Copyright (2015) Taylor & Francis. 

 

Although CaP and CaC are both responsible to pH changes, they show a slight difference in 

the sensitive range.  Table 2.4 summarise some typical reports about the pH triggered release 

from CaP and/or CaC NPs. Generally, the reported responsive pH of CaC (6.0-6.8) is higher 

than that of CaP (4.5-6.0) in NP drug delivery applications. This is attributed to their Ksp of 
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CaP and CaC precipitates in various forms [81]. In particular, dissolution of CaC NPs generates 

carbon dioxide gas, which may lead to a higher solubility of CaC. This feature also endows 

CaC NPs a potential application in ultrasound-based cancer diagnosis. 

 

Table 2.4 The pH-responsive release of CaP and/or CaC NPs. 

NP Cargo in delivery Release pH Ref 

CaC based NPs 

Amorphous CaC coated with silica DOX 6.5 [109] 

CaC with gold nanostar Indocyanine green 6.4  [110] 

CaC (vaterite polymorph) Cisplatin 6.0 [111] 

Silica conjugating CaC DOX 6.2-5.4 [112] 

CaC linked hyaluronate DOX 6.8-5.5 [113] 

CaC DOX 6.8 [114] 

CaP based NPs 

Gold nanorod with polymer-CaP DOX 5.0 [115] 

Hyaluronan coated CaP siRNA 5.0 [116] 

Gold embedded polymer CaP Gold and DOX 5.1 [117] 

polymer coated CaP Adenosine and DOX 6.0-4.5 [118] 

 

2.3.1.2 CaC NPs in cancer therapy application 

Due to the high affinity of calcium ions for the carboxyl groups, CaC NPs have been employed 

for therapeutic protein/peptide delivery [62]. In general, two different ways are adopted for 

protein payload. CaC NPs can (1) adsorb proteins onto their surface, or (2) co-precipitate with 

proteins when NPs are fabricated [119]. Similarly, some anticancer drugs can be loaded by 

CaC NPs. Wu et al. reported a facile approach to co-load and co-deliver hydrophobic and 

hydrophilic drugs at the same time [120]. In most examinations, the pH sensitivity of CaC is 

utilised for sustained release within an acidic pH value range corresponding to the tumour 

microenvironment. 

Specifically, CaC NPs are potentially applied for cancer theranostics due to the carbon dioxide 

gas generated in the acidic environment. In particular, the gas generation can be trigged even 

under a very mild acidic pH. As shown in Figure 2.9, Min et al. developed CaC-based NPs for 
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ultrasound imaging and anticancer drug delivery.[114] The hypersensitive CaC NPs can 

dissolve and generate CO2 gas at pH 6.8, thus leading to the extracellular gas generation in the 

acidic tumour microenvironment for tumour ultrasound imaging.  

 

Figure 2.9 Example of carbon dioxide gas generation from CaC based NPs for tumour 

imaging application. (A) Schematic illustration of the pH triggered gas generation; (B) optical 

micrographs of CO2 generating from CaC based NPs incubated in PBS at pH (i) 6.8   and (ii) 

7.4 for 90 min; (C) ultrasound imaging of the SCC-7 tumour bearing mouse by intratumoural 

injection of CaC based NPs; and (D) the histogram of an ultrasound intensity profile from 

tumour size as a function of time. Reprinted with the permission from Min KH et al.[114]. 

Copyright (2015) American Chemical Society. 

 

2.3.2 Lipid-coated calcium carbonate (LCC) NPs applied in cancer therapy 

Using a similar way for LCP synthesis and modification, LCC NPs with a bilayer coating can 

be prepared [61]. The obtained LCC NPs exhibit sphere yolk-shell structure, and the size of 

NPs is uniformly around 40 nm in diameter. Moreover, surface modification of CaC-based NPs 

uses additional organic substances containing carboxylic, hydroxyl, carboxylate, phosphonate, 

sulfonate and amino groups, inducing the formation of applicable vaterite CaC polymorph [64, 

121-123]. 
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Due to the high affinity of calcium ions for the carboxyl groups, LCC NPs are employed to 

load and deliver therapeutic protein/peptide delivery [62]. As shown in Figure 2.10, Kim et al. 

developed a therapeutic EV peptide (EEEEpYFELV) that mimics the Y845 site of EGFR and 

induces cell apoptosis via diminishing EGFR-initiated cell proliferation. They demonstrated 

that EV delivered by LCC NPs provoked a high tumour growth retardation effect. Notably, the 

LCC delivery system exhibited better efficacy than the hollow membrane/core lipid NP 

composed of the same lipids. The postulated reason for the enhanced therapeutic effect is the 

facile pH response of CaC cores in LCC improves the peptide release, decreasing retention of 

the dissociated peptide-encapsulating NPs in endosome. 

 

Figure 2.10 LCC NPs for peptide delivery. (A) The TEM image of LCC NPs, (B) tumour 

growth inhibition of LCC NPs with EV peptide in an H460 tumour bearing nude mouse model. 

(C) The disruption of the CaC cores measured by dynamic light scattering, and (D) SDS-PAGE 

image of the EV peptide release from LCC NPs under different pHs. Reprinted with the 

permission from Kim et al. [61] Copyright (2013) Elsevier. B.V. 
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Dong et al. developed an LCC-based NPs encapsulating Mn2+-chelated chorin e6 (Ce6(Mn)) 

for cancer theranostics [124]. The Ce6(Mn) were mixed with calcium micro-emulsion, and co-

precipitated when carbonate was added under vacuum. The drug-loaded core formation is 

postulated to be a consequence of manganese ion and carbonate combination. The bilayer lipids 

were next assembled to achieve biological and colloidal stability for further in vivo application. 

Detailed synthesis scheme is shown in Figure 2.11.  

 

Figure 2.11 Scheme showing the synthesis and structure of Ce6(Mn)@CaCO3-PEG NPs. 

Reprinted with the permission from Dong et al.[124]. Copyright (2016) Elsevier. B.V. 

 

Due to the high sensitivity of CaC to mild acidic pHs, the DNA/RNA delivery by LCC NPs 

are limited. Nevertheless, there are still certain successful outcomes in this aspect [121, 125, 

126]. More investigations on LCC NPs are focused on protein and anticancer drug delivery. In 

general, the mild pH response indicates that NPs would be partially degraded in the tumour 

microenvironment (around 6.5-7.0), leading to a portion of undesirable gene leakage. 

According to the Ksp values, CaC crystals are more pH sensitive than CaPs, although the pH 

response of a particular NP differs slightly due to the formula changes. Therefore, we postulate 

the CaP based NPs are more suitable for gene delivery than CaC NPs. 
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2.4 Calcium-based hybrid NPs in cancer therapy 

2.4.1 CaP/CaC hybrid NPs and their application  

The unique advantages of CaP or CaC nanomaterials motivate us to strategically make a 

CaP/CaC hybrid nanomaterial that inherits the merits of both materials and overcome their 

drawbacks. Simply, incorporation of carbonate into CaP cores will endow its gas generation 

ability, which can be used for ultrasound imaging technique guided theranostics. The difference 

in pH responses between those of pure CaP and CaC suggests that the hybrid nanomaterials 

would own an adjustable in-between responsible pHs [40].  

Despite the advantages of CaP-mediated gene delivery such as biosafety and non-toxicity, this 

method suffers from the lower consistent transfection efficiency and difficulty in controlling 

the condition for transfection [74, 127]. Incorporation of carbonate provides an attractive 

option for modification of this method [126, 128]. Notably, the mixture of CaP and CaC in the 

cores would lead to some improvement in size control when the co-precipitates form. The DNA 

encapsulation efficiency would not be affected, while the CaC crystal growth seems to be 

limited by the existence of CaP, with the smallest NP size obtained under the 

carbonate/phosphate initial molar ratio of 31/1 [126]. As a consequence, the gene transfection 

ability by the synthesised CaCO3/CaP/DNA is enhanced tremendously with an appropriate 

phosphate doping ratio. This report provides an inspiring approach to control the particle size 

and crystallisation, improve the thermodynamic stability, and further enhance gene delivery 

efficiency with CaP/CaC hybrid NPs. 

 

2.4.2 Polymer coated CaP/CaC hybrid NPs  

To develop CaP/CaC hybrid NPs with ideal biocompatibility and biodegradability for in vivo 

applications, these materials are necessarily coated with biopolymers or lipids. Wu et al. 

reported a facile self-assembly approach to synthesise biotin-heparin/heparin/CaC/CaP hybrid 

NPs (HPB/HP/CaC/CaP NPs) to treat cancer [129]. The negatively charged heparin chains 

endow the NPs with good stability in the presence of serum, and provide anticancer activities 

in tumour progression and metastasis. The biotin on NP surfaces was to achieve cancer cell 

targeting. The obtained NPs were around 100 nm in deionized water, and slightly increased to 
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120-160 nm in medium containing 10% serum. Although NPs were protected by polymers, a 

significant increase in PDI was still noticed when the NPs were dispersed in medium with 10% 

serum. As revealed in TEM and SEM images, the NPs seemed to be somehow aggregated. 

These findings suggest that the polymer coating, although efficient, may need further 

optimisation for better colloidal stability. Notably, this is the only report on using the organic 

coating to improve the dispersity of CaP/CaC NPs. Therefore, more efforts are required in this 

aspect. 

 

2.5 Nanotechnology in cancer immunotherapy 

The past decade has witnessed the arising of cancer immunotherapy as an efficient cancer 

therapeutic strategy. Cancer immunotherapy is able to eliminate cancer cells by enhancing or 

modulating the host immune system. With the onset of cancer, multiple immune resistance 

mechanisms, such as local immune evasion, tolerance induction, and immune edition, are 

developed for tumour escape from immune surveillance [130, 131]. Immunotherapy is thus 

proposed to stimulate the effectors and/or counteract inhibitory mechanisms [132], including 

the regulation of immune cells (vaccine and T cell engineering), cytokines (ILs, IFNs, TGFs, 

TNFs, etc.) and immune checkpoints. Here we focus on both immune checkpoint blockade and 

cytokine regulation. The mechanism and influence on cancer immunity were reviewed, 

followed by the paradigms of how NPs improved their efficacy in cancer immunotherapy. 

 

2.5.1 Immune checkpoints in immunotherapy with NP enhancement  

Immune checkpoints refer to the regulator pairs in the immune system. Their interaction leads 

to either facilitating or preventing the immune process. Recent investigations revealed that 

cancer escape from immune surveillance is through the control of immunosuppressive 

checkpoints. In 2018, the Nobel Prize in physiology or medicine was awarded to those work 

on uncovering the immune activation to attack cancer based on immunosuppressive 

checkpoints, such as CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) and PD-1 

(Programmed Death 1) [133, 134]. These findings led to the successful marketing of several 

drugs (Table 2.5), which show significant therapeutic efficacy in selected patient cohorts with 

late-stage cancer, combining with remarkable pain relief and less adverse effects. Among the 
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immunosuppressive checkpoints, Programmed Death 1 (PD-1) and its major ligand (PD-L1) 

are focused. 

 

Table 2.5 Marketed PD-L1 antibodies. 

Name  

(Trade name) 

Company First FDA 

approval 

Medical uses ORR tr-AE 

(Grade ≥3)  PD-

L1+ 

PD-

L1- 

Atezolizumab 

(Tecentriq) 

Roche Genetech 2016 Urothelial 

carcinoma, 

NSCLC 

26% 9.5% 17% 

Avelumab 

(Bavencio) 

Merck Serono & 

Prizer 

2017 Merkel-cell 

carcinoma 

53.8% 4.2% 6.8% 

Duralumab 

(Imfinzi) 

AstraZeneca 2017 Urothelial 

carcinoma 

31% 0% 4.9% 

Abbreviations: ORR, objective response rate; AE, adverse event; tr-AE, treatment-related 

adverse event. NSCLC, non-small cell lung cancer. 

Data source: Highlights of prescribing information for Tecentriq, Bavencio, and Imfinzi. ORR 

and AE data refer to references [135-138]. 

 

2.5.1.1 PD-1/PD-L1 checkpoint 

PD-L1, also known as CD274 and B7-H1, is transmembrane protein commonly expressed on 

the surface of antigen presenting cells and tumour cells. PD-L1 specifically binds to its receptor, 

PD-1, which is expressed on the surface of immune-related lymphocytes, such as T cells, B 

cells, and myeloid cells [134, 139]. As shown in Figure 2.12, the binding of PD-L1 to PD-1 is 

able to activate the downstream signalling of PD-1 receptor in T cells, thus inhibiting the 

proliferation, cytokine generation and release, and cytotoxicity of T cell. This down-regulation 

guards against autoimmunity and chronic infection. However, many tumour cells also use this 

mechanism to protect themselves from immune attack, causing the tumour immune evasion 

[139]. Inhibition of either PD-1 or PD-L1 will enhance T cell responses to cancer. This 

approach is known as PD-1/PD-L1 based immunotherapy.  
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Figure 2.12 Immunotherapy based on PD-1/PD-L1 interaction. (A) The interaction of PD-

1/PD-L1 causes tumour immune tolerance. The PD-1/PD-L1 interaction stimulates the 

downstream signals to suppress T cell activation, resulting in tumour cell survival. (B) 

Breakdown of the PD-1/PD-L1 interaction reactivates T cells and related immune responses. 

Without the PD-1/PD-L1 interaction, the suppression signal is removed, thus leading to T cell 

activation, proliferation, and cytokine generation and tumour cell elimination. 

 

Based on this understanding, six antagonists have been developed and successfully approved 

by the FDA. These antagonists are monoclonal antibodies and can bind to the surface PD-1 or 

PD-L1. Notably, these antibodies have been demonstrated with remarkably durable and 

persistent antitumour responses, with some patients remaining free from cancer progression for 

many years [140, 141]. The success in PD-1/PD-L1 therapy regimens boosts the mechanism 

studies. Further studies of PD-L1 reveal its intracellular and extracellular existence, and lead 

to the issue of whether the antibody is the only optimal solution in all cancer cases. Moreover, 

the investigation of PD-L1 regulation provides targeted sites for PD-L1 therapy. 
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Despite that PD-L1 antibody treatment would be recommended to those patients with high PD-

L1 expression, the objective response in this cohort is not always in concordance to their PD-

L1 positive index in cancer (Table 2.5). Recent investigations suggest the broad distribution of 

PD-L1 in different cellular compartments. The known PD-L1 format includes membrane PD-

L1 (mPD-L1) [142, 143], cytoplasm PD-L1 (cPD-L1) [143, 144], nuclear PD-L1 (nPD-L1) 

[144, 145], and serum PD-L1 (sPD-L1) [146, 147]. The reported PD-L1 formats and their 

functions are summarised in Table 2.6. With the understanding of PD-L1 distribution, we 

propose a new hypothesis that all PD-L1 formats, not only mPD-L1, are able to influence the 

response to the antibody. The intracellular PD-L1 formats may translocate to the membrane or 

secrete outside cells, and bind to antibodies, contributing to the ORR in PD-L1- cohort (Table 

2.5). The mPD-L1, on the other hand, would translocate into cells as cPD-L1 under the stress 

of antibody, causing the low (<50%) ORR in PD-L1+ cohort (Table 2.5). 

 

Table 2.6 The reported PD-L1 formats. 

Format Location Structure Source Possible 

functions 

Treatmen

t response  

Detection

* 

Ref 

mPD-L1 Membrane Integrity  Endogenous 

translation  

Bind with 

PD-1 for 

immune 

regulation 

Antibody, 

gene, and 

chemo-

inhibitor  

WB, IHC [142, 143] 

cPD-L1 Cytoplasm  - Endogenous 

translation  

Transfer to 

the 

membrane, 

shorten 

disease-free 

survival, and 

cell growth 

and migration 

Gene and 

chemo-

inhibitor 

WB, IHC [144] 

nPD-L1 Nuclei  - - Enhance 

chemo-

resistance 

Gene and 

chemo-

inhibitor 

WB, IHC [144, 145] 
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sPD-L1 Serum  Integrity Secretion 

from cancer 

cells/mature

d APCs 

Bind with 

PD-1, 

associated 

with immune 

state 

Antibody, 

gene, and 

chemo-

inhibitor 

ELISA [147] 

Serum  Without 

transmem

brane 

motifs 

Enzyme 

cleavage 

Bind with 

PD-1, 

associated 

with immune 

state 

Antibody, 

gene, and 

chemo-

inhibitor 

ELISA [146] 

- - Dimeric Crystallisati

on 

Functional 

units or 

evolution 

relic 

- - [148] 

* The typical detection method abbreviations: WB (Westerner blotting), IHC 

(Immunohistochemistry), and ELISA (Enzyme-linked immunosorbent assay). 

 

2.5.1.2 NP-based application in PD-1/PD-L1 therapy 

In general, NPs are involved in PD-1/PD-L1 based cancer immunotherapy in three major ways: 

(1) NP acting as a delivery platform of some PD-1/PD-L1 related agents, (2) PD-1/PD-L1 as 

the target molecule for NP’s delivery, and (3) immunogenic booster for the anti-PD-1/PD-L1 

therapies. 

Elimination of PD-1/PD-L1 expression on the cancer cell surface can expose the cell to the 

immune system. Currently, the blockade of PD-1/PD-L1 can be achieved via three methods: 

(1) antibody blockade, (2) gene silencing, and (3) pathway inhibition. Most of the NP 

applications are focused on genes or inhibitors, with some efforts been paid to antibody 

delivery [149]. Pei et al demonstrated successful delivery of PD-L1 siRNA to EOC cells by 

polymer-based NPs could enhance T cell immunotherapy for EOC treatment via interrupting 

PD-1/PD-L1 interactions [150]. Wu et al. suggested simultaneous knockdown of PD-1 and PD-

L1 led to more significantly increase in the killing efficiency of TILs obtained from patients 

[83]. In addition, the delivery of proper inhibitors by NPs can also achieve the PD-1/PD-L1 

downregulation [151]. 
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Preclinical studies have demonstrated PD-L1 is one of the overexpressed surface markers for 

late-stage cancer. Therefore, this molecule can be employed for targeting delivery of anticancer 

therapeutics to this cell cohort. Some works have been done to devise NPs conjugated with 

PD-L1 antibodies for targeting delivery, resulted in strongly enhanced cellular uptake within 

as early as 1 h [152, 153]. However, these in vitro works lacked attention on the influence of 

PD-L1 mediated endocytosis on immunotherapy. And they did not discuss the interaction 

between PD-L1 antibodies and intracellular PD-L1 molecules.   

With efficacious delivery property, the NPs provide opportunities for boosting the anticancer 

immunity. Chen et al. employed PLGA NPs for cancer photothermal therapy to ablate primary 

tumour for tumour-associated antigen release [154]. The following immune checkpoint 

blockade therapy generated immunological responses and eliminating the remaining tumour 

prognosis. Similarly, Song et al. used chemical agent oxaliplatin (OxP) to induce immunogenic 

cell death (ICD), and the plasmid encoding PD-L1 trap protein was delivered to the tumour site 

by NPs [155]. Compared to the systematical injection of antibodies, this method triggered 

locally and transiently produce of PD-L1 agonist products in the targeted site, resulting in 

synergistic anticancer efficacy with low adverse effects. 

 

2.5.2 Cytokines in immunotherapy application with NP enhancement 

Cytokines in the tumour microenvironment play an important role in cancer pathogenesis [156]. 

Compellingly, the interferons (IFNs), some interleukins (ILs), and tumour necrosis factors 

(TNFs) endow cancer apoptosis via regulating the tumour immune environment to facilitate 

cancer inhibition by the immune system. Alternatively, there is a high risk that cancer cells 

exposing to cytokine environment may undergo malignant transformation [157], and gain 

adaptive immune resistance [158]. On this regard, one of the arch demand for cytokine based 

cancer immunotherapy is to diminish the acquirable resistance. In specific, we focus on IFN-γ, 

a typical cytokine with dual faces in cancer immunotherapy. The resistant mechanism and how 

NPs reverse this resistance are reviewed. 
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2.5.2.1 Cytokine IFN-γ and its dual faces in cancer immunotherapy 

IFN-γ, a pluripotent cytokine that mainly produced by activated T cells and natural killer cells, 

plays a vital role in anti-tumour immunity, suppressing tumour growth and metastasis through 

various mechanisms. When binding to its receptors, IFN-γ can regulate JAK-STATs (Janus 

kinase- signal transducer and activator of transcription proteins) pathway to activate the STAT1 

transcription factor, leading to a series of response [159, 160]. One of the most important 

responses is the upregulation of major histocompatibility complex class I (MHC-I), which 

induces cell-mediated immunity [161, 162]. Meanwhile, highly immunogenic cells such as 

CD4+ and CD8+ T cells, and the infiltration of M1 phase tumour associated macrophages (TAM) 

is recruited to the lesion site with high IFN-γ [163]. Type I CD4+ T helper (Th1) cells improve 

anticancer immunity, while regulatory T (Treg) cells facilitate tumour immune tolerance. IFN-

γ, as the major product of Th1 cells, could stimulate these Th1 cells and inhibit the proliferation 

of Treg, simultaneously [164, 165]. In general, the major role of IFN-γ is anticancer. The major 

immunomodulation of IFN-γ to immune cells were shown in Figure 2.13[166].  

 

Figure 2.13 Immunomodulation effects of IFN-γ. IFN-γ produced by immune cells affects 

the behaviour of distinct immune cells within the tumour microenvironment. Specifically, IFN-

γ activates anticancer immunity by promoting the activity of CD4 Th1 cells, CD8 cytotoxic T 

lymphocytes (CTLs), natural killer (NK) cells, dendritic cells (DCs), and macrophages 

promoting the antigen presentation. Additionally, IFN-γ activates macrophages towards a more 

pro-inflammatory and tumoricidal phenotype (M1 like). Alternatively, IFN-γ inhibits Treg 

cells, Th2, and Th17 differentiation and functions. Reprinted with the permission from Castro 

et al.[166]. Copyright (2019) Frontiers Media S.A. 

 

https://en.wikipedia.org/wiki/Janus_kinase
https://en.wikipedia.org/wiki/Janus_kinase
https://en.wikipedia.org/wiki/STAT_protein
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Inconsistent with the conclusion in basic research, serval clinical outcomes indicant the 

controversial of IFN-γ in cancer therapy as well. IFN-γ treatment did not result in any 

meaningful outcomes in patients with metastatic renal cancer and colon cancer [167, 168]. 

These results indicate the dual faces of IFN-γ in cancer treatment. Recent studies on IFN-γ 

related PD-L1 induction and cancer adaptive immune resistance provide a theoretical 

postulation [158, 169]. 

As known, the expression of PD-L1 on cancer cells protects the cells from immune clearance, 

thus causes cancer immune resistance. Recent researches believe the PD-L1 expression can be 

divided into two kinds: the constitutive expression and the induced expression [169]. IFN-γ is 

reported as a cytokine that strongly induces PD-L1 expression, and this PD-L1 induction 

happens in a variety of cancer cell lines as well as in some host cells like APCs. Highly or 

lower constitutive expression of PD-L1 does not affect the cell responses to IFN-γ stimulation. 

The constitutive/inducible PD-L1 causes innate/adaptive immune resistance, correspondingly, 

as schematically illustrated in Figure 2.14 [158]. 

 

 

Figure 2.14 Two general mechanisms of expression of immune-checkpoint ligands on tumour 

and the concept of (A) innate and (B) adaptive cancer immune resistance. Reprinted with the 

permission from Drew M. Pardoll [158]. Copyright (2012) Springer Nature. 
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2.5.2.2 NP application in IFN-γ related cancer immunotherapy 

In clinic, several products of recombined cytokine protein have been marketed. Actimmune 

(InterMune), a commercialized IFN-γ protein, showed enhanced anticancer effect in patients 

with bladder or colorectal carcinoma. Significant immune response and effective against cancer 

recurrence were observed [170-172]. In particular, IFN-γ combining with the standard 

treatment of platinum-based chemotherapy shows a synergistic anticancer effect. The results 

from a randomized phase III trial indicates subcutaneous administration of IFN-γ and cisplatin 

improves the complete response rates from 56% to 68%, with prolonged progression-free 

survival in patients [173, 174]. These advances enlighten the investigation of cytokine-related 

cancer immunotherapy. 

With efficient delivery efficacy to cancer site, NPs hold a great potential to optimise cytokine 

related cancer immunotherapy. Here, the combination of cytokine and NPs provides two kinds 

of applications: (1) improving cytokine-mediated NP targeting ability, and (2) improving 

cytokine delivery to tumour by NPs. Gao et al developed polymeric NPs (IRNPs) modified 

with arginine-glycine-aspartic acid (RGD) and interleukin-13 (IL-13) peptide for targeted 

delivery to glioblastoma multiforme (GBM) cells and neovasculature cells [175]. With the 

peptide modification, RGD targeted to αvβ3 on neovasculature while IL-13 targeted to its 

receptor (IL13Rα2) on GMB cells. They demonstrated an enhanced targeting ability to these 

two cells in vivo, while did not mention any influence on immunity in this work. On the other 

hand, more efforts are endeavoured to enhancing cytokine delivery by NPs, and the application 

is not limited to cancer therapy, but also the treatment of virus infection [176, 177]. Mejias et 

al prepared magnetic NPs for IFN-γ delivery, and achieved enhanced antitumor effect on Pan02 

xenograft tumour model [178]. A high degree of NP accumulation and cytokine delivery at 

tumour site was observed, with the increase of T cell and macrophage infiltrations. Co-

delivering of anticancer drug DOX and cytokine (IFN-γ or interleukin 2) achieved better 

anticancer effect than that of every single free agent in vivo [179, 180].  

As known, the anticancer ability of a cytokine is consisted of (1) their activation of immunity 

and (2) their pro-apoptosis to tumour cells. Although in vitro studies of cytokines focus more 

on how they interact and active immune cells, NP-based chemical drug-cytokine combination 

studies rely more on the direct anticancer functions of cytokines. The delivery of NP leads to 

strongly enhanced endocytosis, which is demonstrated with the in vitro data in all related 

studies. Considering the leakage of cytokine in the tumour microenvironment, these drug-
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cytokine NPs could enhance local cytokine concentration to a certain degree, which can trigger 

infiltrated immune cells. However, this hypothesis lacks direct evidence in vitro and in vivo. 

Particularly for IFN-γ, the key for regimen optimisation may lie in PD-L1 downregulation, thus 

eliminating tumour adaptive immune resistance. To our knowledge, no attempts have been 

done in this aspect. 

  

2.6 Challenges and strategy for this research 

2.6.1 Challenges 

To develop a proper NP for cancer therapy, we face the following challenges. Firstly, the 

responsive release pH of NPs needs to be improved (the challenge for objective 1 in this 

research). As shown in Table 2.4, the instinct responsive range differs between CaC and CaP. 

The payload release pH from CaP based NPs indicates the majority of cargo release would 

happen in late endosome/lysosome stage, whereas the acidic and enzymatic condition in these 

organelles may be harmful to the anticancer agents, especially genes. On the other side, the 

CaC based NPs are too sensitive and may cause some release extracellularly and in blood 

circulation. In gene delivery application, both situations are not desirable. To lead to a sustained 

release within a precisely controlled pH range, CaP/CaC hybrid NPs may be considered. As 

reviewed in Section 2.4, current hybrid NPs based on calcium materials neglect effective 

surface coating to endow them good dispersity and stability. Inspired by some pioneer 

investigations on LCP and LCC NPs, it is reasonable to improve the lipid coating method for 

CaP/CaC hybrid NP preparation. 

Furthermore, more attempts should be done to broaden the range of deliverable therapeutics 

(the challenge for objective 2 in this research). We have noted that the current application 

of LCP and LCC NPs neglects the role of their lipid layer. Theoretically, anticancer drugs, 

depending on their hydrophilicity, can be encapsulated in both core and lipid bilayer of the NPs, 

as shown in Figure 2.15. Hydrophilic drug molecules, such as DNA/RNA chains, and most 

peptides/proteins are encapsulated in the core part. Hydrophobic drugs are loaded in the cavity 

of lipid layers. Amphiphilic molecules can be intercalated in the outer layer. Indeed, drugs 

loaded in the lipid layers are rarely reported. Most of the investigations utilised the cores to 

make co-precipitation of drugs with CaP or CaC, as introduced in Section 2.2 and 2.3. With 

more focused on the lipid layers of LCP/LCC NPs, the loading of hydrophobic/amphiphilic 
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anticancer drugs may be achieved. Inspired by some pioneer reports on liposome delivery, the 

outer lipid layer coated on LCP/LCC NPs provides a vehicle for the payload of a typical vitamin 

E (VE) based drug, α-tocopheryl succinate (α-TOS). The interaction of phenoxyl hydroxyl 

group by hydrogen bond to either carbonyl or phosphate oxygen of phospholipid can help to 

locate the chromanol head of VE analogue close to the aqueous interface, and the phytyl chain 

of this VE analogue is able to extend into the centre of bilayer due to its hydrophobicity [181, 

182]. 

 

Figure 2.15 Schematic illustration of LCCP NPs and their drug delivery applications. 

 

At last, proper approaches should be established to optimise cytokine-related cancer therapy in 

combination with LCP/LCC NPs (the challenge for objective 3 in this research). As 

reviewed in Section 2.5, long term exposure to cytokines such as IFN-γ causes adaptive cancer 

immune resistance. When dealing with cytokine sensitive cancers, their adaptive immune 

resistance should be reversed to enhance anticancer immunity. Considering the strong 

correlations of immune system and cancer invasion, development of the cytokine-related 

cancer therapy would further benefit the prevention of cancer metastasis in combination with 

developed LCP/LCC NPs. 
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2.6.2 Strategy 

Inspired by the exciting outcomes using CaP/CaC hybrid NPs and the merits of lipid 

coating to make organic-inorganic NPs, our strategy is to develop the lipid-coated calcium 

carbonate/phosphate (LCCP) NP platform to integrate the merits of CaP, CaC, and lipid coating 

for overcoming these challenges. For this new particle, its behaviour in gene loading efficiency, 

release profile, cellular uptake, and gene silencing ability are investigated. To enlarge the 

deliverable range of anticancer therapeutics, the outer lipid layer of LCCP NPs is manifested 

to deliver hydrophobic/amphiphilic anticancer drugs. A typical drug α-TOS is employed as an 

example. The LCCP NPs with FA and PEG modification is engineered for co-delivery of α-

TOS and cell death siRNA for combined cancer therapy. In the end, the FA targeted LCCP 

NPs with α-TOS loading (NP-TOS) are combined with IFN-γ treatment for cancer 

chemotherapy/immunotherapy. The influence on cancer growth inhibition, metastasis 

prevention, and the reversal of PD-L1 mediated cancer adaptive immune resistance, are studied 

in this chemical drug/cytokine combination system. The challenges and strategy in this project 

are outlined in Figure 2.16. 

 

Figure 2.16 The challenges and strategy of this PhD project. 
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Chapter 3Strategical Methodology 
 

 

This chapter mainly summarises the methodology applied in the whole PhD project, including 

synthetic methods and modifications, characterisation techniques, in vitro and in vivo tests, and 

finally biological techniques. A brief illustration of the methodology outline is shown in Figure 

3.1.  

 

Figure 3.1 Outline of strategical methodology in this thesis.   
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3.1 Synthetic methodology of LCCP NPs with gene/drug loading 

3.1.1 Synthesis of LCCP NPs 

The synthetic method of LCCP hybrid NPs is based on the reported method for preparation of 

LCP NPs [1], with a modification to incorporate calcium carbonate (CaC) in the cores. Initially, 

the cores of NPs are prepared using a water in oil micro-emulsion for size control. The emulsion 

containing NaHCO3/Na2HPO4 in a variable ratio is added in the second emulsion containing 

CaCl2 to form the precipitate, i.e. calcium carbonate/phosphate core in the merged emulsion, 

with the first layer phospholipids surrounding the core. Sequentially, the collected lipid-cores 

are washed with ethanol and dispersed in chloroform. The outer layer lipids in chloroform are 

added to the lipid-core suspension and a thin film of NPs is obtained by solvent evaporation. 

The final nanoparticles, i.e. lipid-coated calcium carbonate/phosphates (LCCP), are obtained 

by thin-film hydration method. The synthesis routine is illustrated in Figure 3.2. Some 

treatments are conducted to maintain the LCCP NPs with a uniform size (~40 nm) and good 

dispersion, including ultrasonic probe, rotovap, and vortex. In particular, carbonate/phosphate 

ratio is carefully examined as this ratio strongly affects the gene loading and release profile. 

 

Figure 3.2 Schematic routine for LCCP NP synthesis, gene/drug loading, and modification. 
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3.1.2 Gene/drug loading strategy 

The loading of gene/drug is schematically shown in Figure 3.2. The loading of genes is 

achieved by incorporating genes into the micro-emulsion containing CaCl2 and/or NaHCO3/ 

Na2HPO4 before mixing the two emulsions. In a typical synthesis, the aqueous solution 

containing CaCl2 and/or NaHCO3/Na2HPO4 are prepared and added dropwise into the organic 

solvent to make the water in oil micro-emulsions. The genes are loaded by co-precipitating 

within the core of NPs. In particular, the input amount and method are crucial to the loading 

efficiency of genes. 

The loading of a hydrophobic anti-cancer drug, α-tocopheryl succinate (α-TOS), is achieved 

by replacing part of the outer layer lipids. During the synthesis, the core-lipids are dispersed in 

chloroform, and mixed with another chloroform solution containing the outer layer lipid, such 

as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol. To load α-TOS, DOPC 

and/or cholesterol are replaced by the equal mole of α-TOS in chloroform before mixing. Of 

note, the total input mole and replaced lipids/cholesterol are crucial to loading efficiency, NP 

size distribution, and colloidal stability. 

3.1.3 Modification of LCCP NPs 

The surface modification to LCCP NPs is also demonstrated in Figure 3.2. In this study, LCCP 

surface modification was achieved in a method similar to α-TOS loading. The PEGylation and 

folic acid (FA) loading are achieved by using 1,2-distearoyl-sn-glycero-3-

phosphoethanolamine-N-(polyethylene glycol)-2000 (DSPE-PEG2000) and/or 1,2-distearoyl-

sn-glycero-3-phosphoethanolamine-N-[folate(polyethylene glycol)-2000] (DSPE-PEG2000-FA) 

to replace the equal mole of DOPC in the outer layer. Specifically, the molar ratio of DSPE-

PEG2000 and DSPE-PEG2000-FA is crucial to the targeting ability of LCCP NPs to cancer cell 

overexpressing the FA receptor. 
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3.2 Characterization 

3.2.1 Dynamic light scattering (DLS) 

The dynamic light scattering (DLS) is a convenient method that is used to measure the NP size 

and distribution in solution. The NP size affects the Brownian motion speed, leading to the 

different scattered light intensity, which can be converted to a hydrodynamic size distribution 

[2]. The particles can be dispersed in deionized water, PBS, or medium with serum for DLS 

analysis. The general conducted concentration is approximately 40-4000 µg/mL. 

Ultrasonication with a probe or in a water bath can be also applied if necessary before DLS 

analysis. The characterisation is generally performed at 25 °C with 0-120 s equivalent time on 

a Malvern Zetasizer Nano-ZS with triplicate measures. Meanwhile, the polydispersity index 

(PDI) is read at the same time to represent the variance of the NP size distribution. 

3.2.2 Zeta potential  

Zeta potential is the general parameter that represents the charge of NPs. Theoretically, the zeta 

potential refers to the potential difference between the medium and the stationary layer of NPs 

[3]. The zeta potential was quantified using a Malvern Zetasizer Nano-ZS in this thesis. In 

general, a solution of 40-4000 µg/mL NPs is infused into a folded capillary cuvette and the 

potential difference (i.e. zeta potential) is measured in triplicate.   

3.2.3 Transmission electron microscopy (TEM) 

The transmission electron microscopy (TEM) is often used to visualize the NPs for morphology 

and size, as well as the microstructure. The image of a specimen is formed by interacting 

sample electrons and the electron beam transmitted through. To make the specimen, a drop of 

NP suspension is dropped onto a copper grid coated with 300 mesh carbon, and dried with a 

filter paper under ambient condition, followed by images taken on a JEM-3010 or HT7700 

operating under 100 kV. The grid can be negatively stained with 1% uranyl acetate for 1 min 

if necessary. The size of the LCCP NPs or the cores was estimated using Nanomeasure 1.2 

software by measuring randomly selected 100-200 particles in this thesis. 
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3.2.4 X-ray diffraction (XRD) 

The XRD is a useful method that is used to determine the crystal structure and regularity. 

According to the elastic scattering phenomenon, the X-ray is scattered by the electrons of 

specimen when passing through, and the formed scattering waves obey Bragg’s law (2dsinθ = 

nλ, where d is the distance between two Miller planes in the crystal, θ is the scattering angle, n 

is a positive integer, and λ is the wavelength of the incident wave). In this project, wide-angel 

XRD patterns were obtained to determine the crystal structure of NPs using a Cu Kα radiation 

on a Philips PW 3040/60 X’Pert PRO diffractometer. In this thesis, the scanning was conducted 

from 10° to 70° at a rate of 2°/min and the pattern obtained compared to the standard XRD 

cards to judge the crystal form and estimate the NP size. 

3.2.5 Ultraviolet–visible spectroscopy (UV-vis) 

Molecules can absorb energy from ultraviolet to visible light in a characteristic wavelength 

range to excite its electrons to higher anti-bonding molecular orbitals, and the absorbance (A) 

obeys Lambert-Beer Law (A = εcL, where ε is the molar attenuation coefficient, c is the 

concentration of sample, and L is the path length through the sample). Therefore, this technique 

can be used for quantification and qualification. In this thesis, UV-vis spectroscopy (UV-2450) 

was used to determine the absorbance from Arsenazo III-Ca at 655 nm, α-TOS at 285 nm, and 

some other molecules. A standard absorbance curve calculated from solutions with known 

concentration was first profiled, and the concentration from unknown samples was estimated 

by its absorbance using the fitting curve equation based on the standard curve. 

3.2.6 Nanodrop 

The Nanodrop (Thermo Scientific 1000) was used to quantify the concentration of 

biomolecules (such as nuclear acid and protein) via the UV-vis absorbance in a tiny volume 

(1-5 µL). For western blotting and RT PCR, the concentration of extracted protein/nuclear acid 

was determined by measuring the A260/A280 value to check the purification before subsequent 

experiments. 

3.2.7 Agarose gel electrophoresis 

The agarose gel electrophoresis is often used to separate and semi-quantify nuclear acids with 

different sizes. Under a constant electric field, the nuclear acid migrates in the agarose matrix. 
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The migration rate is determined by the molecular weight, charge, and shape. A biosafety 

GelRed dye is normally used to visualize the nuclear acid band and semi-quantification. In a 

typical test in the thesis, the specimen was loaded into the well of a 2% agarose gel and ran in 

TAE buffer at 100 V for 20 min. The NPs with dsDNA or siRNA were lysed in a lysis buffer 

or acidic condition to release the genes for measurement in this research. 

3.2.8 Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) 

Attenuated total reflectance (ATR)-Fourier transform infrared (FTIR) spectroscopy can be 

used to analyse the composition of NPs through the specific infrared absorbance. The 

absorbance of infrared light when it passes through a certain specimen reflects the specimen 

characteristic chemical bonds. In this thesis, a powder sample was loaded onto the 

measurement crystal and the spectrum recorded using a NEXUS 670 FT-IR spectrometer 

(Thermo Nicolet) at a resolution of 2-4 cm-1 from 4000-400 cm-1 for 32 or 64 scans. A 

background of ATR is generally scanned for normalization and baseline correction before the 

sample measurement. 

3.2.9 Element analysis (EA) 

The element analysis (EA) was conducted in this research using a CHNS analyser (Thermo 

Scientific FLASH 2000 Organic EA) to determine the carbon content in samples. Cystine and 

pure sodium carbonate powders are used as the standards. All samples were carefully 

embedded into tin capsules and weighted. The carbon weight percentage was determined as 

the average of three individual repeats. 

3.2.10 Inductively coupled plasma atomic emission spectroscopy (ICP-AES) 

Inductively coupled plasma atomic emission spectroscopy (ICP-AES, Varian Vista) was used 

to quantify the chemical elements in NPs in this research. All samples were fully digested in 

70% nitric acid, followed by dilution to a defined volume with a 50/50 (v/v) mixture of nitric 

acid (0.4% m/V) and H2O2 (30%) solution. The measurement of calcium concentration and 

phosphate was conducted in triplicate and the result was represented as the average. 

3.2.11 X-ray photoelectron spectroscopy (XPS) 

 X-ray photoelectron spectroscopy (XPS) can quantitatively analyse elemental composition 

and the element valence states of a specimen. In this research, the carbon analysis of LCCP NP 
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cores coated with DOPA was carried out using XPS equipped with a state of the art Kratos 

Axis Ultra photoelectron spectrometer using mono Al Kα (1486.6 eV) X-rays. The energy for 

survey scan and high resolution scan was 200 and 20 eV, respectively. The XPS spectra were 

processed and analysed using CasaXPS software. The binding energy of C peak at 284.6 eV 

after fitting the curve of C 1s spectrum was used as the reference [4]. 

 

3.3 In vitro and in vivo tests 

3.3.1 Cancer cell line culture 

All cancer cells were handled in accordance with the PC2 laboratory guidelines in this research. 

B16F10, B16F0, and 4T1 cells were obtained from the American Type Culture Collection 

(ATCC, Manassas, VA), and routinely cultured under the guidance listed on the ATCC website. 

The B16F10 and B16F0 melanoma cells were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/ streptomycin 

(P/S). The 4T1 breast cancer cells were grown in RPMI-1640 medium supplemented with 10% 

FBS and 1% P/S. All cells were cultured in an incubator at 37 °C and 5% CO2 with 95% 

humidity. Cells were subcultured at 80% of confluence using a 0.25% trypsin-EDTA solution. 

3.3.2 Cellular uptake 

The cellular uptake of NPs is normally quantified by trancing the NP-related fluorescence 

signals using either flow cytometry analysis (FACS) or confocal laser scanning microscopy 

(CLSM). The continuously cultured cells are seeded in 12 well plates, and allowed one night 

to bring the cells to confluence. Then fresh medium containing 10 vol% of NPs’ suspension 

(the concentration of LCCP was normally less than 200 µg/mL) is supplemented to the attached 

cells for a predetermined time period. All cell samples are collected using trypsin, and washed 

with PBS, followed by FACS analysis.  

To visualize the intracellular fluorescence, the cells are seeded on a 14 mm coverslip (pre-

treated with acid for polishing and 70% ethanol for sterile) in 24 well plates overnight to allow 

cell attachment. The next day, the cells are fed with medium containing 10 vol% of NPs’ 

suspension and cultured for a certain period of time. Then the coverslips are rinsed with PBS 

and fixed in 4% PFA, and mounted on a slice with a drop of DAPI-fluoshield. A Zeiss 710 

CLSM is generally used for observation. 
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3.3.3 Cell viability 

Briefly, cells are seeded in 96 well plates with a density of 4,000 per well. Different treatment 

is conducted in the next day under various conditions, including the NP concentration, 

drug/gene concentration in the NP form, and incubation time. After culture, the viability of 

cells is quantified using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide 

(MTT) assay. 

3.3.4 Apoptosis analysis 

Apoptosis is a physiological process that can be induced by several stimuli, as schematically 

shown in Figure 3.3. During the process, the cell membrane structure changes, such as exposure 

of phosphatidylserine on the membrane surface at the early stage, and the loss of membrane 

integrity at the late stage [5]. Therefore, the apoptosis status can be detected using annexin V, 

a calcium dependent binding protein with high affinity for phosphatidylserine. The permeable 

membrane at the late apoptosis stage allows the propidium iodide (PI) to enter into the nuclear 

and stain the chromosome. Accordingly, this assay discriminates intact cells (FITC-/PI-), early 

apoptotic cells (FITC+/PI-) and late apoptosis cells (FITC+/PI+). 

 

 

Figure 3.3 Scheme of the detection of apoptosis. 
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In this research, the apoptosis status was detected using the Annexin-FITC/PI kit. After cell 

treatment, the cells were collected and processed according to the manufactory’s guide, and the 

annexin V-FITC and PI signals were collected and analysed using FACS. 

3.3.5 Cell cycle assay 

During the cells cycle, the chromatin quantity changes from G0/G1 (2N), S (2N~4N), to G2/M 

(4N). Accordingly, the cell cycle can be evaluated by the chromosome-dependent fluorescence 

intensity in singlet cells. In our experiments, the cells were treated and cultured in normoxia. 

After harvesting, all cells were fixed at 4 ℃ for 30 min using a pre-chilled 70% ethanol, 

followed by PI staining (50 µg/mL). The fluorescence intensity of each cell was recorded using 

FACS machine, and singlet cells were gated for analysing the PI intensity. 

3.3.6 Reactive oxygen species (ROS) detection 

ROS, including peroxide, superoxide, and singlet oxygen, are byproducts of cell metabolism, 

and affect cell signalling and homeostasis [6]. Excess ROS can cause cell damage and the 

injury of DNA and proteins, finally inducing cell apoptosis. In general, a cell-permeable probe 

2’,7’-dichlorofluorescin diacetate (DCFH-DA) is used to detect ROS, as ROS de-esterifies  this 

dye into the fluorescence form. In this thesis, cells were co-cultured with 20 µM of DCFH-DA 

for 30 min, and rinsed before ROS detection using FACS or CLSM. 

3.3.7 Mouse model 

All animal work in this thesis was performed in accordance with the University of 

Queensland’s Animal Ethics Committee (AE224_18), and conformed to the University of 

Queensland Institutional Animal Care and Use Committee guidelines. The animals were 

housed at the EnGeneIC Animal Facility under specific pathogen-free conditions (SPF). 

Female Balb/c mice (6-8 weeks old) were kept in filter-topped cages with standard rodent chow 

and water available ad libitum in a 12 h light/dark cycle.  

The xenograft tumour model was established by subcutaneously injecting 2×106 4T1 cells 

(suspended in 100 µL RPMI-1640 medium) to the left flank of mice using a 27G needle syringe, 

and allowed to grow for 7 days before various treatments in this thesis. In general, the time-

dependent profiles of the tumour size and the mouse body weight represent the inhibition of 

the tumour growth upon the treatment. These two parameters were measured every other day, 
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and the tumour size calculated using a formula (0.5×length×wide2). Mice were euthanized 

when the tumour size reached the ethics permission. 

3.3.8 Organ dissociation and primary cell culture 

In this thesis, freshly harvested mouse organs were minced by scissors, and then digested with 

Collagenase IV (1.5 mg/mL in PBS, Sigma-Aldrich) for 1 h in a 37 ℃ water bath with 

occasionally homogenising. The second step of digestion was performed in an Enzyme cocktail 

(2 mg/mL dispase and 0.1 mg/mL DNase in PBS, Sigma-Aldrich) for 10 min at 37 ℃. The 

excess medium was added to cease the digestion. The singlet cell suspension was obtained by 

passing the mixture through a 70 µm strainer. Cells were counted against trypan blue staining 

when necessary.  

3.3.9 Primary cancer cell culture 

Fresh organs were dissociated to obtain singlet cell suspension, as described in section 3.3.8. 

The primary cancer cells were seeded in 6-well plates with a series of dilutions. To select cancer 

cells (4T1) against normal tissue cells, 60 µM of 6-thioguanine was supplemented to the culture 

medium. The plates were cultured in normoxia with medium refreshment for a certain time 

when necessary. 

3.3.10 Clone staining 

The selected primary cancer cells in culture plates exhibit typical colony morphology, 

indicating the formation of cell clones. Crystal violet is therefore used to visualize the number 

and area of the clones. As a commonly used alkane dye, crystal violet can bind with proteins 

in permeabilised cells. In this thesis, the cell clones in plates were first fixed with 4% 

paraformaldehyde (PFA) for 30 min, followed by staining with 0.1% crystal violet for 30 min. 

The images were taken by a camera and analysed using ImageJ software for semi-

quantification. 

3.3.11 Surface marker detection 

To detect surface marker expression, cancer cells after transfection treatment are normally 

stained with the corresponding antibody conjugated with a fluorescent dye. After 20-40 min 
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staining in FACS buffer (PBS containing 2% FBS blocking), the cells are then rinsed 3 times 

before analysis by FACS or CLSM.  

For primary cells obtained from 4T1 xenograft tumour tissues in this thesis, the cell suspension 

with a density of 108/mL was obtained. The cells were stained with APC-anti CD45, APC-anti 

I-A/I-E, PE-anti PD-L1, FITC-anti CD4, PerCP-Cy5.5-anti CD8, and/or PE-anti PD-1 

antibodies with recommended dilution. After staining for 30 min, the cells were then rinsed 

with FACS buffer and analysed in flow cytometry. 

3.3.12 Histological staining 

As one of the principal staining method in histological analysis, the haematoxylin and eosin 

staining (H&E staining) are often used to check the toxicity of NP to the organs. According to 

the pH affinity, the haematoxylin stains the nuclei blue, while eosin stains the extracellular 

matrix and cytoplasm pink. Other structures in specimen show a combination of these colours 

accordingly. Thus the H&E staining provides a general overview of the tissue structure. 

In this thesis, the fixed organs embedded in paraffin were cut into 5 µm thick sections. H&E 

staining was next conducted. The sections were then imaged using an Olympus BX41 

microscope with 4×, 10×, and 20× lens. 

 

3.4 Biological techniques  

3.4.1 Flow cytometry (FACS) 

Flow cytometry (FACS) is a commonly-used technique for single cell sorting and analysis 

based on fluorescence signals. By suspending cells in the sheath fluid and passing through an 

electronic detection apparatus, the fluorescence signals are generated and recorded. In general, 

the scattered light signals collected from forward scatter channel (FSC) and side scatter channel 

(SSC) are used to distinguish the target population of cells in priority. FSC suggests the living 

cells and debris, while SSC provides information about the granularity or internal complexity 

[7]. In this thesis, FACS was used to detect fluorescence signals within cells or from cell surface 

markers using either an Accuri C6 flow cytometer (BD Biosciences) or a CytoFLEX flow 

cytometry (Beckman, IN), followed by corresponding analysis. 
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3.4.2 Confocal laser scanning microscopy (CLSM) 

Confocal laser scanning microscopy (CLSM) enables the collection of high resolution images 

by “confocaling” light using a spatial pinhole to block off-focus light in image formation. 

Moreover, CLSM enables to obtain a series of two dimensional images along the optical axis 

(Z), resulting in a reconstructed three dimensional model of the specimen. In this thesis, a Carl 

Zeiss LCM 710 microscopy was used to examine cellular samples.   

3.4.3 MTT assay 

MTT assay is used to evaluate cell viability according to the activity of NADPH-dependent 

cellular oxidoreductase enzymes. These enzymes are able to reduce the MTT to an insoluble 

form, providing formazan precipitates in purple colour. The resulting intracellular formazan 

crystals can be dissolved in DMSO, and the UV absorbance can be used for live cell 

quantification. In this thesis, the cell viability of B16F10, B16F0, and 4T1 cells after treatment 

were assessed using MTT. 

3.4.4 Reverse transcription quantification polymerase chain reaction (RT-PCR)  

Reverse transcription quantification polymerase chain reaction (RT-PCR) is the technique for 

assessing the gene expression level. Generally, the mRNA is extracted, reversely transcripted 

into cDNA (complementary DNA), and amplified using a quantifiable PCR technique. The 

involved fluorescent DNA labelling techniques allows the copy number of a specific piece of 

DNA to be monitored during the molecular cloning, providing information for quantification. 

In this thesis, the RT-PCR technique was used for quantifying the expression of Bcl-2 and PD-

L1 genes. 

3.4.5 Western blot 

Western blot is a widely used technique to analyse specific proteins [8]. In brief, the denatured 

protein samples are separated by gel electrophoresis [usually sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) electrophoresis] according to molecular 

weights, followed by transferring onto a PVDF membrane. After background blocking, the 

primary antibody for targeted protein is added and incubated. The labelled secondary antibody 

is then used to bind to the primary antibody for further visualization of the target proteins by 
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staining, immunofluorescence, and radioactivity. In this thesis, western blot was used to detect 

Bcl-2 expression and p65 subunit of NF-κB complex translocation. 

3.4.6 BX-41 microscopy 

 The optical microscope can be used to directly magnify objects under visible light. In this 

experiment, the BX41 microscope was used to obtain H&E staining images with specified 

colours under visible light. 

 

3.5 Statistics analysis 

In all cases, experiments were performed at least two times. When applicable, statistical 

analysis was performed by student’s t-test using GraphPad if no further instructions. Data with 

a p-value <0.05 difference were deemed significant at the minimum. *, p < 0.05; **, p < 0.01; 

***, p < 0.001; and ****, p < 0.0001. 
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This chapter reports the devising of the new lipid-coated calcium carbonate/phosphate (LCCP) 

nanoparticles (NPs). Lipid-coated calcium phosphate (LCP) NPs are proven to be an effective 

vehicle for gene and some drug delivery, while it is not desirable for NPs to release gene/drug 

in late endosome/lysosome. To achieve the early endosome release and escape, we have 

designed and developed new LCCP hybrid NPs. The new hybrid LCCP NPs had a spherical 

structure with an average diameter of 40 nm and a high gene loading capacity. We particularly 

demonstrated that the loaded dsDNA/siRNA was mostly released under mildly acidic 

conditions (pH 6.0-5.5). LCCP NPs were also effectively internalised by B16F10 cells in a 

dose and time-dependent way. The delivery efficacy was further demonstrated using two 

functional siRNAs, i.e. programmed death ligand 1 (PD-L1) siRNA for PD-L1 silencing and 

polo-like kinase 1 (PLK1) siRNA for growth inhibition of B16F10. As expected, the LCCP 

loaded PD-L1 siRNA shew a quicker PD-L1-mRNA inhibition than LCP NPs, indicating that 

LCCP NPs improved the siRNA release in endosome. This part of work has been published 

in J. Mater. Chem. B (2017, full paper). 
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4.1 Introduction  

Gene therapy, especially RNA interference (RNAi) based therapy, has been intensively studied 

for the treatment of many types of diseases including cancers [1]. RNAi utilizes small 

interference RNA (siRNA) to regulate cellular machinery that allows efficient down-regulation 

of specific gene transcription, leading to death or growth inhibition of cancer cells [2]. The co-

delivery of siRNA with anticancer drugs does not only help overcome multiple drug resistance 

(MDR) [3, 4], the high potency of RNAi also results in a much lower dose and weaker side 

effects in therapeutic applications compared to traditional chemotherapeutic drugs like 

doxorubicin, cisplatin, and camptothecin [5, 6]. However, the quick enzymatic degradation and 

limited cell membrane permeability limit the in vivo application of naked siRNA. Thus, proper 

nanoparticles (NPs) as gene delivery vehicles, including dendrimers [1], liposomes [7], layered 

double hydroxide (LDH) [8], calcium carbonate [9] and calcium phosphate [10] are recently 

proposed and developed for siRNA delivery. 

An ideal gene delivery vehicle should process merits including (1) stability under physiological 

conditions, (2) high payload of gene materials, (3) low cytotoxicity and good biocompatibility 

[11], and (4) suitable release profile. In particular, the release kinetics is crucially important for 

the delivered oligonucleotides to function effectively. The quick dissolution and release within 

cells, or more specifically, within endosomes, will lead to the quick utilization of cargos and 

avoid lysosomal digestion [12-15]. According to the endocytic pathway, a clathrin-coated 

vesicle containing particles will sequentially mature into an endosome with pH of ~6.9-5.2, 

then into a lysosome with pH of ~5.2-4.5 [16-18]. Thus it is worth developing a gene delivery 

system that is able to release DNA/RNA just within the endosome and undergo the subsequent 

endosomal escape.  

Lipid-coated calcium phosphate (LCP) NPs have been demonstrated as a promising gene 

delivery system [19-22]. DNA/RNA can be rapidly released from LCP NPs at pH 4-5, while 

maintained quite stable within the particle at pH > 6 [22, 23]. Therefore, it is plausible that the 

majority of DNA/RNA is released from LCP NPs in the late endosome/lysosome. In contrast, 

calcium carbonate (CaC) NPs release cargoes (genes and drugs) at a relatively high pH. For 

example, the release of anticancer drug from CaC NPs occurred at pH of ~6.8 [24, 25]. For in 

vivo applications, such a release might lose some cargoes in the blood during circulation, 



Chapter 4 Devising New Lipid-coated Calcium Phosphate/Carbonate Hybrid 
NPs to Control Release in Endosome for Efficient Gene Delivery 

70 
 

particularly siRNA in the tumour extracellular environment (pH 6.5-6.9), thus reducing the 

siRNA delivery efficacy to tumour cells using CaC NPs.  

Therefore, we designed and prepared lipid-coated calcium phosphate/carbonate (LCCP) hybrid 

NPs by partially substituting phosphate in LCP NPs with carbonate. We aim to achieve the 

gene release from LCCP NPs in endosome by elucidating the incorporated carbonate effects 

on (1) particle size and colloidal stability, (2) loading efficiency and release profile, (3) 

internalisation and intracellular distribution and (4) the efficacy of functional siRNA cellular 

delivery. Our results show that as-designed LCCP NPs released the loaded dsDNA/siRNA 

mainly in pH 6.0-5.5, which led to a quicker mRNA downregulation. To our knowledge, this 

is the first attempt to utilize calcium carbonate/phosphate hybrid nanoparticles to control gene 

release just in endosome. 

 

4.2 Experimental methods 

4.2.1 Materials 

All the oligonucleotide duplexes and primers were purchased from IDTDNA or Sigma-Aldrich, 

with the detailed sequences shown in Table S4.1. All the oligonucleotides were dissolved in 

DNase/RNase free water and stored in a -20 °C freezer for further use according to the 

manufacturer’s instructions. The phospholipids (DOPA and DOPC) were obtained from Avanti 

Polar Lipid. All other chemicals and reagents were purchased from Sigma-Aldrich. 

LysosensorTM-DND 189, TrizolTM Reagent, High-Capacity cDNA Reverse Transcription Kit 

(RT kit), and 2X PCR Master Mix were purchased from Life Technologies Co. (Carlsbad, CA). 

The antibodies were obtained from Biolegend Inc. (San Diego, CA). All biochemicals and 

materials were used as received without any further purification unless specifically mentioned. 

Water used in this experiment was deionized Milli-Q water (Ω = 18.2 at ambient temperature). 

4.2.2 Synthesis of LCCP NPs with different P/C ratios 

The hybrid NPs were prepared based on a similar protocol reported previously with slight 

modification [22].  Briefly, 150 µL of 2.5 M CaCl2 (pH = 7.0) aqueous solution was dispersed 

into 5 mL of cyclohexane/igepal-CO520 (7/3; v/v) dropwise under magnetic stirring to form 

water-in-oil emulsion. The similar emulsion was prepared by dispersing 150 µL of 25 mM 

Na2HPO4/NaHCO3 (pH = 9.0) into 5 mL of cyclohexane/igepal-CO520 (7/3; v/v), followed by 
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adding 50 µL of 20 mM DOPA in chloroform dropwise. The Na2HPO4/NaHCO3 molar ratio 

(P/C ratio) was set at 4/0, 3/1, 2/2 and 1/3. Then the latter emulsion was added dropwise into 

the former one, followed by magnetic stirring for 20 min. An equal volume of absolute ethanol 

was next added into the mixture, with continuous stirring for 5 min. The core hybrid NPs were 

collected via centrifugation at 12,500 g for 20 min, followed by 3 times of washing with 

absolute ethanol. The hybrid NP core pellet was then redispersed in 1 mL of chloroform, and 

mixed with 70 µL of DOPC/cholesterol (20 mM). After evaporation of the solvent under the 

reduced pressure, the lipid film was then hydrated in water or PBS buffer to form LCCP NP 

suspensions with gentle ultrasound treatment. The obtained LCCP NPs were denoted as P4C0, 

P3C1, P2C2 and P1C3, according to their corresponding phosphate/carbonate ratios (P/C 

ratios). 

4.2.3 siRNA encapsulation  

The loading of dsDNA/siRNA into LCCP NPs was performed using a similar procedure, where 

half the amount of dsDNA/siRNA was mixed with both aqueous solutions before 

emulsification. The dsDNA payload was optimised via changing the dsDNA amount from 1 to 

4 nmol in each batch experiment. The P/C ratio for payload optimisation was fixed to 3/1. The 

payload of cy5-labelled dsDNA was estimated by measuring the fluorescence intensity of 

cyanine 5 (cy5) using a fluorescent plate reader (BioTek, Winooski, VT, USA). LCCP NPs 

samples were treated with lysis buffer (2 mM EDTA and 0.05% Triton X-100 in pH 7.8 Tris 

buffer) at 65 °C for 10 min for complete dissolution before measurement. All the experiments 

were done in triplicate.    

4.2.4 Characterization  

The hydrodynamic diameter and zeta potential of hybrid NPs with/without dsDNA were 

measured using a dynamic light scattering (DLS, zetasizer Nano, Malvern, UK) method. The 

morphology of these particles was profiled using transmission electron microscope (TEM, 

JEM-3010, ZEOL, Tokyo, Japan) by dropping aqueous solution containing 0.1 mg/mL of 

particles onto a 300 mesh carbon-coated cooper grid, and the diameter of the particle core was 

estimated using Nanomeasure 1.2 software by measuring 150 NPs (randomly selected). For 

negative staining, the grid was treated with 1 % uranyl acetate for 2 min, and dried on a filter 

paper. The chemical analysis of particle cores coated with DOPA was carried out using X-ray 

photoelectron spectrometer (XPS) equipped with a state of the art Kratos Axis Ultra 
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photoelectron spectrometer using mono Al Kα (1486.6 eV) X-rays. The energy for survey scan 

and high resolution scan was 200 and 20 eV, respectively. The XPS spectra were processed 

and analyzed using CasaXPS software. The binding energy of C peak at 284.6 eV after fitting 

the curve of C 1s spectrum was used as the reference [26].  

The composition of particle cores without any lipids was examined using a Fourier transform 

infrared spectroscopy (FTIR, Nicolet 5700), UV/Vis, and CHN analyzer. The main elements 

(Ca, P, and C) were examined to predict the possible formula of the particle core. Arsenazo III- 

Ca method was used for Ca quantification [25, 27]. Samples were digested with 0.1 mL of HCl 

(1 M) for 10 min, then mixed with 2 mL of Arsenazo III solution (0.2 mM Arsenazo III, 150 

mM NaCl, and HEPES buffer, pH = 7.4) for 30 min. The absorbance of Arsenazo III-Ca2+ at 

655 nm was used to determine the Ca concentration using a UV-vis spectrometer (UV-2450, 

Shimadzu). Molybdate blue method was used for phosphate quantification [28, 29]. Samples 

were dissolved in 1 mL of HCl (1 M) for 10 min, then mixed equal volume of 5% ammonium 

molybdate solution, followed by adding 2 mL of 20% fresh Na2SO3 solution under stirring for 

1 h. The absorbance of molybdenum blue at 710 nm was used to measure the P concentration 

using the UV-vis spectrometer. CHN analyzer was used to determine the carbon amount in 

samples. All the experiments were conducted in triplicate. 

4.2.5 Colloidal stability 

The colloidal stability of as-prepared LCCP NPs in suspensions was evaluated using DLS. 

Briefly, 50 µL of as-prepared LCCP NP suspension was diluted with DMEM medium 

containing 10% serum to 1 mL, then incubated at 37 °C for a predetermined time period from 

0 to 48 h. The particle size was monitored by DLS at each time point. 

4.2.6 In vitro release of dsDNA from LCCP NPs 

The dsDNA release profile from hybrid LCCP NPs in solutions with pH = 7.4 to 5.0 was 

examined using agarose gel electrophoresis. The pHs were chosen to mimic physiological 

condition (7.4), early/late endosomal condition (6.0 and 5.5), and lysosomal condition (5.0) in 

B16F10 cells, based on a few reports [16, 17, 30, 31]. Briefly, 50 µL of LCCP-dsDNA NP 

suspension containing 25 µg of LCCP and 975 ng of dsDNA was mixed well with 450 µL of 

disodium hydrogen phosphate – citric acid buffer solution (0.2 M) with pH adjusted to 7.4, 6.0, 

5.5, or 5.0, and incubated in a 37 oC shaking water bath for 10 min to 4 h. At each predetermined 

time point, the sample was centrifuged at 20,000 g for 10 min at 4 oC to remove non-dissolved 
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particles, and 10 µL of the supernatant (corresponding to 16 ng of dsDNA if 100% released) 

was loaded to a 2% agarose gel in 1 ×TAE buffer containing 5 µL of gel staining safe dye 

(GelRed, Nucleic Acid Gel Stain, 10,000 × in water, Biotium Inc., Hayward, CA). Ten 

microliters of dsDNA sample containing 16 ng dsDNA was added in the first lane as the 

reference. Electrophoresis was carried out under 100 V voltage for 30 min. The image of 

agarose gel was recorded using Geldoc (Bio-Rad Laboratories, Inc., Hercules, CA). The 

dsDNA concentration of each band was quantified using Geldoc and normalized by the first 

lane dsDNA in corresponding line. 

4.2.7 Cellular uptake of hybrid LCCP NPs 

The cellular uptake of LCCP-dsDNA-cy5 NPs was investigated using flow cytometry (FCM, 

BD Accuri™ C6, BD Biosciences, San Jose, CA). In brief, B16F10 cells were seeded in 12-

well plates with a density of 1×105 per well, and cultured overnight to 70-80% confluence at 

37 °C in 5% CO2 humid environment. Then the DMEM medium was replaced with 0.5 mL of 

DMEM containing 1% penicillin/ streptomycin and LCCP-dsDNA-cy5 NPs where the cy5 

concentration was 25 nM. After culture for 4 h, the medium was withdrawn and cells were 

rinsed by PBS for three times. The cells were trypsinized, centrifuge-collected, and 

resuspended in 4% PFA solution for FACS analysis.  

Similarly, the cellular uptake of B16F10 cells was also examined in the medium containing 

LCCP hybrid NPs with the dsDNA-cy5 concentration varied from 0 to 50 nM for 4 h, or with 

a 25 nM dsDNA-cy5 for 0.5 to 6 h. Then the fluorescent intensity was evaluated as described 

above. All the experiments were done in triplicate. 

4.2.8 Imaging cellular uptake of LCCP NPs using confocal laser scanning microscope 

Fourteen mm round coverslips were pretreated with 5% hydrochloric acid, 30% nitric acid, and 

75% ethanol sequentially before use. Cells were harvested and seeded on the pretreated 

coverslips at a density of 5×105 per well, and cultured for one day. Then the medium was 

replaced by 0.5 mL of DMEM containing LCCP-dsDNA-cy5 NPs (cy5 dsDNA: 25 nM). After 

4 h incubation, the cells were rinsed by PBS for 3 times and stained with 2 µM lysosensor-

DND 189 for 30 min to visually display the distribution of lysosome/endosome in cytoplasm. 

Then the cells were rinsed with PBS, followed by fixing with 4% PFA for 20 min. Finally the 

coverslips were mounted cell-side down on slides using mounting medium fluoshield with 4'6-

diamidino-2-phenylindole (DAPI, Invitrogen). Cells were visualized using a Carl Zeiss LCM 
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510 confocal laser scanning microscope (CLSM, Carl Zeiss MicroImaging GmbH, Germany) 

with 40× objective lens. For 3-dimension imaging, 8 slices were taken for a 10 µm Z-stack 

with 40× objective lens and 2.0× zoom. 

4.2.9 Knockdown of PD-L1 expression 

To quantify surface PD-L1 protein expression using FACS, B16F10 cells were seeded in 12-

well plates at a density of 5×104 per well, and cultured overnight to allow the cells to 70-80% 

confluence. The medium was then replaced with 500 µL of DMEM containing LCCP-PD-L1 

siRNA (siRNA concentration: 40 nM). After transfection for 4 h without serum, the medium 

was discarded and 500 µL of fresh DMEM containing 10% FBS were added to continue the 

culture for 48 h. The surface PD-L1 protein expression was stained by PE conjugated anti-

mouse PD-L1 antibodies. Untreated cells without any antibody staining were used to gate 

positive cells, and untreated cells stained with PD-L1 antibody as the positive control. Cells 

treated with LCCP-negative control siRNA at the same concentration were stained with an 

equal amount of anti-mouse IgG antibody as the negative control.  

The PD-L1 mRNA expression level was also examined using real time reverse transcription 

qPCR (real time RT PCR). Briefly, B16F10 cells were seeded in 6-well plates with a density 

of 2×106 per well overnight. The transfection was performed using the same protocol described 

above. After 4 h transfection, the medium was replaced by fresh DMEM with 10% FBS. At 

each predetermined post transfection time point from 0 to 20 h, cells were harvested in 1 mL 

Trizol reagent. The RNA extraction was performed according to the standard protocol, 

followed by reverse transcription using RT Kit. Then RT qPCR was used to enlarge and 

quantify PD-L1 specific fragment. Mouse beta-actin gene was used as the internal control to 

normalize gene expression.  

Similarly, B16F10 cells were cultured with medium containing P3C1-PLK1 siRNA NPs for 

functional siRNA transfection. Cells were seeded in a 96-well plate at a density of 4×103 per 

well. After overnight culture, the medium was replaced by 100 µL of DMEM containing P3C1-

PLK1 siRNA NPs with the siRNA concentration from 10 to 80 nM and the cell cultured for 4 

h. Then the medium was replaced with 100 µL of fresh DMEM containing 10% FBS. After 

treatment for 48 h, 20 µL of MTT (5 mg/mL in sterilized PBS solution) was added to react for 

4 h, followed by adding 100 µL of DMSO to dissolve formazan. The cell viability was 

calculated by measuring the formazan absorbance at 490 nm using a plate reader (BioTek, 

Winooski, VT, USA). Cells treated with PBS were used as the control. Cells treated with naked 
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PLK1 siRNA (80 nM), Oligofectamine-PLK1 siRNA (80 nM), P3C1-scrambled siRNA (80 

nM), and blank P3C1 NPs (40 mg/L) were used for comparison. All the experiments in this 

section were repeated 3 times. 

4.2.10 Statistical analysis 

Data presented as Mean ± SD were analyzed via t-test using GraphPad Prism 7.00 software; a 

p value < 0.05 was considered statistically significant. *, p < 0.05; **, p < 0.01; ***, p < 0.001. 

 

4.3 Results  

4.3.1 Physicochemical features of LCCP nanoparticles 

As shown in Figure S4.1A and summarized in Table 4.1, the number mean hydrodynamic 

particle size of hybrid LCCP NPs was from 38.1±3.4 to 41.4±2.4 nm, similar to that reported 

for LCP NPs [22] (i.e. P4C0 NPs in this study). Given that the particle size is mainly controlled 

in the W/O micelles, it is plausible that the average particle size maintains unchanged after 

carbonate incorporation.  

The polydispersity index (PDI, Table 4.1) of as-prepared LCCP hybrid NPs was slightly 

increased from 0.27 to 0.42-0.38 when more carbonate was incorporated. Overall, the particle 

size distribution was moderately narrow and slightly broad at P/C = 2/2 and 1/3, which might 

be due to the influence of mismatch of calcium carbonate phase with calcium phosphate phase 

in the hybrid system. At pH 8.0, the precipitates should be mostly composed of two different 

crystallites (CaHPO4, PDF number 01-0653 and CaCO3, PDF number 04-0636). However, the 

XRD pattern of P4C0 and P3C1 cores were similar without any characteristic peaks (Figure 

S4.1B), indicating calcium phosphate and carbonate were amorphous.  
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Figure 4.1 (A) and (C): TEM image of P4C0 NP cores and P3C1 NP cores; (B) and (D): 

The core diameter distribution collected using NanoMeasurer (count = 150). 

 

The zeta potential of particles slightly increased from -18.8±0.9 to -15.6±1.2 mV when the P/C 

ratio changed from 4/0 to 1/3 (Table 4.1). Slight increasing of the zeta potential could be 

attributed to carbonate incorporation where the dangling phosphate groups (P-OH) may be 

relatively less. Note that when dsDNA was loaded, the zeta potential became a little more 

negative (-22.5±1.1 to -23.5±0.5 mV, Table 4.1) as there were more dangling P-OH groups in 

the system. As all genes used in this study (dsDNA or siRNA, see in Table S4.1) were 21 base 

pair in length, the influence of their sequence differences on the particle size, zeta potential, 

loading amount, and loading efficiency were very much limited. Therefore the data listed in 

Table 4.1 for P4C0 and P3C1 with/without gene should represent the size, PDI, and zeta 

potential of other LCCP NPs with/without gene loaded.  

In particular, the TEM images show that both P4C0 and P3C1 NP cores were sphere-like with 

uniform hollows (Figure 4.1). The core diameters were 14.5±3.0 (P4C0) and 14.6±2.4 nm 

(P3C1) (Figure 4.1B and D). The boundary of lipids can hardly be recognized by TEM (Figure 

4.1, A and C), but it can be clearly seen in the negatively stained images (Figure S4.2). After 

staining, a 15-20 nm increase in the nanoparticle diameter was observed corresponding to the 

lipid coating, in accordance with our previous report [22]. This increase would lead to a 
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hydrodynamic size of around 40 nm if the first lipid layer expectedly increases the diameter by 

another 5 nm. 

Table 4.1 The number-mean particle size, PDI, zeta potential of LCCP NPs with different P/C 

ratios loaded with/without dsDNA 

Sample code  Number-mean 
Particle Size (nm) PDI Zeta potential 

(mV)    
P4C0 38.1±3.4 0.27±0.01 -18.8±0.9 
P4C0 (with genes) 40.3±1.6 0.36±0.01 -23.5±0.5 
P3C1 41.4±2.4 0.31±0.02 -18.6±0.8 
P3C1 (with genes) 41.1±2.5 0.33±0.01 -22.5±1.1 
P2C2 40.7±6.4 0.42±0.02 -16.7±1.3 

 

P4C0 and P3C1 NP cores predominantly contained Ca, O, P, and C (Figure S4.3A and B), in 

accordance with the existence of amorphous Ca(HPO4) and CaCO3 (Figure S4.1B), as well as 

DOPA. In the high resolution scan for P 2p in sample P3C1, the binding energy peak of P 2p3/2 

was around 133.0 eV (Figure S4.3C), suggesting the main form of phosphorous in the core is 

phosphate [32]. The high resolution scan reveals that C 1s had a weak peak at 289.4 eV (Figure 

S4.3D), suggesting the existence of carbonate in sample P3C1 [33].  

The FTIR spectrum (Figure S4.4) of P4C0 cores without any lipids was characteristic of 

orthophosphate-derived peaks at 1010-1020 (ν3) and 566 (ν4) cm-1 [34, 35]. New peaks 

appeared at 1420-1480 (ν3 of carbonate) and 878 cm-1 (ν2 of carbonate) after carbonate 

incorporation. With the increase of the carbonate portion (from P4C0 to P1C3), the intensity 

of carbonate-derived peaks was enhanced. The stretching band at 878 cm-1 implies that CaCO3 

might be mineralized in a vaterite form under this condition [24, 36], while the crystallites may 

be too tiny to detect in XRD (Figure S4.1B).  Taken together, XPS and FTIR spectra verified 

the existence of PO4
3- and CO3

2-. 

Furthermore, the components of particle cores without any lipids were quantified, as listed in 

Table S4.2. Overall, the incorporation of carbonate decreased the content of phosphate, but did 

not affect the amount of calcium. The C/P ratio determined was slightly higher than the 

theoretical value, probably due to (1) CO2 absorption by alkaline solution as CO3
2- which might 

incorporate simultaneously, and (2) the residual organic materials in the system. The chemical 

formula was estimated in the form of Ca[(HPO4)x(CO3)y(OH)2-2x-2y] (Table S4.2). 
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Figure 4.2 shows the change of the average particle hydrodynamic size of LCCP NPs in 

DMEM containing 10% FBS with the incubation time. The average size of P4C0 NPs remained 

unchanged in two days, consistent with our previous report [22]. The size of P3C1 and P2C2 

NPs was also kept unchanged, while the size of P1C3 NPs seemed to increase from 39 to 50 

nm at day 1 and 58 nm at day 2. The increasing size of P1C3 NPs may be attributed to the 

adsorption of macromolecules onto the surface and the slight dissolution of carbonate cores in 

medium, as discussed shortly. 

 

Figure 4.2 Colloidal stability of LCCP NPs in DMEM containing 10% FBS at 37 °C 

 

4.3.2 Loading and release of dsDNA 

As presented in Figure 4.3A, about 50 % of dsDNA was loaded into P4C0, P3C1 and P2C2 

NPs. However, the loading efficiency was sharply decreased to 22.2% in sample P1C3, which 

may be attributed to the higher affinity of carbonate for calcium ion than phosphate group in 

dsDNA. In addition, the particle size was maintained around 40 nm after dsDNA encapsulation 

(Table 4.1). The zeta potential of these dsDNA-LCCP NPs slightly decreased to about -23 mV, 

due to the excess dangling phosphate groups (P-OH) of loaded dsDNA. 
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Figure 4.3 dsDNA loading efficiency and loading capacity. (A) The effect of P/C ratios on the 

dsDNA loading efficiency with 3 nmol dsDNA per batch; and (B) the effect of the initial 

dsDNA amount on the loading efficiency and loading capacity of P3C1 NPs. 

 

As shown in Figure 4.3B, the loading amount of dsDNA in P3C1 sample increased with the 

initially added dsDNA amount from 1 to 4 nmol. This loading amount reached at 40 µg/mg 

and was remained unchanged when the initial dsDNA amount increased from 3 to 4 nmol. 

Reversely, the loading efficiency was kept declining from 75% to 38% when the initial dsDNA 

amount increased from 1 to 4 nmol. Taken together, P3C1 reached its capacity of dsDNA 

loading (40 µg/mg) at a reasonable loading efficiency (51%) when the initial dsDNA amount 

was 3 nmol, and thus was used in the subsequent experiments. The loading efficiency and 

payload capacity are all comparable to our previous report [22]. The majority of dsDNA loss 

may come from (1) the saturation of loading amount during the increasing of DNA input, and 

(2) the unavoidable sample loss during the collection, i.e. some sample adhered on the wall of 

glassware. 

The dsDNA release kinetics was further profiled under different pH conditions (Figure 4.4 and 

S4.5A). For P4C0 NPs, almost no dsDNA was released at pH 7.4 in 2 h (<10%, Figure S4.5B), 

and only a small amount of released dsDNA was traced at pH 6.0 for 2 h (∼20%, Figure S4.5B), 

indicating the stability of P4C0 NPs under physiological conditions. More dsDNA was released 

at pH 5.5 with the incubation time (∼50%, Figure S4.5B) and almost all dsDNA released at pH 

5.0 in 10 min (Figure 4.4). This observation is similar to previous reports [22, 23], with the 

release of dsDNA through the dissolution of calcium phosphate NPs in the acidic environment. 
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Figure 4.4 Sustained dsDNA release from P4C0 and P3C1 NPs within 4 h at different pHs. 

 

In comparison, the release kinetics of dsDNA from P3C1 NPs seemed a bit faster at each pH 

compared with P4C0.  At pH 5.5, most dsDNA was released from P3C1 NPs in 10 min (∼60%, 

Figure S4.5B). At pH 6.0, the dsDNA band became stronger with the incubation time and much 

brighter than the corresponding one for P4C0 sample, with 35-40% dsDNA released in 1-2 h 

(Figure S4.5B). Even at pH 7.4, dsDNA was observed to be released from P3C1 in 1-2 h (10-

20%, Figure S4.5B). Clearly, the main form of aqueous phosphate and carbonate is H2PO4
- and 

HCO3
-/H2CO3 at pH 6.0-5.5. Given that the solubility of Ca(HCO3)2 (16.6 g/100 g, Ksp = 4.1 

[37]) is much higher than that of Ca(H2PO4)2 (1.8 g/100 g, Ksp = 0.0018 [38]), we can 

reasonably postulate that P3C1 NPs dissolve more quickly than P4C0, releasing dsDNA in a 

much quicker way than P4C0 at pH 6.0 and 5.5. In addition, P2C2 NPs released dsDNA in a 

way similar to P3C1 under the same conditions (Figure S4.5A). Relatively, the release of 

dsDNA from LCCP cores without any lipids (Figure S4.5C) seemed a little quicker at pH 7.4 

and 6.0, but dsDNA release at pH 5.5 similar in all cases. The slightly slower release of dsDNA 

from LCCPs at pH 6.0-7.4 may be attributed to the lipid bilayer protection on the core surface. 

 



Chapter 4 Devising New Lipid-coated Calcium Phosphate/Carbonate Hybrid 
NPs to Control Release in Endosome for Efficient Gene Delivery 

81 
 

4.3.3 Efficient cellular uptake of LCCP NPs  

The cellular uptake of LCCP NPs with different P/C ratios by B16F10 cells was further 

examined using FACS (Figure 4.5). The positive cell percentage of P3C1 group was the highest, 

but not statistically significant than that of P4C0 and P2C2, indicating the carbonate-

incorporated NPs do not compromise their cellular uptake. The positive cell percentage of 

P1C3 treated group was just half of these groups and significantly lower, probably caused by 

the aggregation of P1C3 particles. FACS data of mean fluorescence intensity (MFI) (Figure S 

4.6) show the trend similar to that of the positive cell percentage. Note that the cellular uptake 

of LCCP NPs here is much higher than the previous report [22], and the main reason is that 

this experiment was taken place in FBS free medium. The cellular uptake of P4C0 and P3C1 

in DMEM containing 10% FBS was also performed (Figure S4.7), and this result (15-20% 

positive cell) is in accordance with the previous report [22]. 

 

Figure 4.5 The effect of P/C ratio to cellular uptake of NPs with 25 nM dsDNA-cy5 for 4 h. 

 

We next explored the effect of the dose and incubation time on the cellular uptake of LCCP 

NPs. As shown in Figure 4.6A, the cellular uptake of particles with dsDNA-cy5, represented 

by positive cell percentage, was increased with the dsDNA-cy5 concentration, indicating that 

the cellular uptake is dose-dependent. Note that the positive cell percentage using P4C0 and 

P3C1 was very similar under the same dsDNA-cy5 concentrations, in accordance with the 

result shown in Figure 4.5. As expected, the positive cell percentage was increased gradually 

with the incubation time in the first 4 h, and almost the same at 4 and 6 h (Figure 4.6B). This 
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trend suggests that the cellular uptake of LCCP NPs is time-dependent, and reaches the uptake 

saturation after 4 h incubation.  

 

Figure 4.6 The effect of (A) dose and (B) incubation time on the internalisation of P4C0-

dsDNA-cy5 and P3C1-dsDNA-cy5 NPs. (A) incubation time: 4 h; (B) dsDNA-cy5: 25 nM. 

 

Furthermore, confocal laser scanning microscope (CLSM) images (Figure 4.7 and Figure S4.8) 

were recorded to reveal the localization of LCCP NPs within the cell as well as internalisation 

pathway. In Figure 4.7, it was obvious that both P4C0 and P3C1 NPs showed red dots located 

within the cell boundaries in the bright fields. The 3-D view diagrams show that four particular 

particles (arrow pointed) were located in the same confocal z-stacks around cell nuclei and in 

cytoplasm (Figure S4.7). Taken together, these dsDNA-cy5 related red dots were located in 

cytoplasm, suggesting the successful internalisation of LCCP NPs by B16F10 cells. It seems 

that the red fluorescence intensity is very similar in the case of P4C0 and P3C1 (Figure 4.7B 

and C).  

Furthermore, the pH-dependent lysosensor green fluorescence signals in PBS treated group 

were very strong, indicating that there are many acidic organelles in PBS-treated cells. This is 

because that the lysosensor dye is an acidotropic probe and accumulates in acidic organelles in 

cytoplasm as a result of protonation, exhibiting a pH-dependent increase in green fluorescence 

intensity. However, this green fluorescence intensity was very much weakened in P4C0 and 

P3C1 treated cells, indicating the acidic organelles (such as endosome and lysosome) were well 

neutralized by the internalised P4C0 or P3C1 NPs to a higher pH value [39] due to dissolution 

of P4C0/P3C1 cores. Interestingly, few P4C0 NPs were co-localized with acidic organelles and 

appeared to be very weak yellow (Figure 4.7B, yellow arrow pointed Particle 1 and 2), while 
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the co-localization of P3C1 NPs and acidic organelles could hardly be found (Figure 4.7C, 

white arrow pointed Particle 3 and 4). 

 

Figure 4.7 CLSM images for B16F10 cells treated with PBS, P4C0, and P3C1. Orthogonal 

images were shown. White arrows: dependent localization of dsDNA-cy5 red dots. Yellow 

arrows: co-localization of lysosensor green and dsDNA-cy5 red. Same dots shown in different 

diagrams were labelled with same numbers. 

 

4.3.4 Effective inhibition and PD-L1 knockdown of skin cancer cells 

For therapeutic applications, it is of importance to evaluate the efficacy of LCCP NPs 

delivering functional siRNA to silence the target gene or kill the cancer cells. Thus, P4C0 and 

P3C1 NPs with programmed death ligand 1 (PD-L1) siRNA were first used to deliver PD-L1 

siRNA to B16F10 cells to down-regulate the PD-L1 expression (Figure 4.8). PD-L1 protein 

expressed on the surface of B16F10 cells was quantified by FACS with the fluorescence 

antibody (Figure 4.8A). The surface PD-L1 protein expression was initially 24% (positive 

control), and then declined to 14% and 12% after 48 h post transfection using P4C0 and P3C1 

NPs, suggesting that about 50% of PD-L1 expression was down-regulated. Consistently, the 
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MFI was also significantly reduced after siRNA transfection using P4C0 and P3C1 NP. For 

comparison, the commercialized delivery vector Oligofectamine encapsulated with PD-L1 

siRNA (Oligo-PD-L1) was also used to treat cells under the same conditions (Figure S4.9). 

The data suggested around 15% of PD-L1 expression was down-regulated (positive cell 

percentage declined from 33% to 28%). Taken together, the P4C0 and P3C1 NPs are more 

effective in inhibition of PD-L1 expression. 

 

Figure 4.8 Down-regulation of PD-L1 expression in B16F10 cells. (A) PD-L1 protein 

expression on the surface of cells at 48 h post transfection; (B) Fold change of PD-L1 mRNA 

expression. PD-L1 siRNA: 40 nM. 

 

To further show the efficacy, we next determined the mRNA expression using real time RT-

PCR (Figure 4.8B). After 4 h transfection, PD-L1 mRNA expression by cells treated with 

P4C0-PD-L1 and P3C1-PD-L1 siRNA was 0.4 and 0.2 fold of the untreated group, respectively, 

and the low expression was maintained up to 20 h post transfection. The reduced mRNA 

expression level suggests continuous PD-L1 suppression, in accordance with the protein 

expression down-regulation (Figure 4.8A). In particular, P3C1-PD-L1 siRNA NPs down-

regulated PD-L1 expression much more than P4C0 NPs (0.4 vs 0.2 fold), indicating an 

enhanced silencing ability within a short time period for P3C1 NPs (4 h, Figure 4.8B). 

Considering the similarity in the cellular uptake of LCCP NPs, more efficient silencing of the 

target gene using P3C1 NPs may be attributed to the quicker release of siRNA from P3C1 NPs 

in endosome (pH 5.5-6.0) and in cytoplasm (pH 7.4) (Figure 4.4). Nevertheless, this quicker 
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release does not affect long term suppression efficacy, as the release kinetics difference 

between P4C0 and P3C1 would diminish with the incubation time prolonging. 

To further validate the gene delivery efficiency using LCCP NPs, we chose another functional 

siRNA, polo-like kinase 1 (PLK1) siRNA, to lethally knockdown PLK1 and kill B16F10 cells. 

Blank LCCP NPs, naked PLK1 siRNA, the commercialized delivery vector OligofectamineTM 

encapsulated PLK1 siRNA (Oligo-PLK1), P4C0 and P3C1 NPs with scrambled siRNA (Scr 

siRNA) were examined. As shown in Figure 4.9A, the proliferation inhibition of B16F10 cells 

treated with P3C1-PLK1 siRNA was dose-dependent. The viability of cells treated with P3C1-

PLK1 siNRA at 80 nM was only 23%, significantly lower than that treated with 80 nM naked 

PLK1 siRNA (85%), Oligo-PLK1 (44%), and previous reported data (40%) [40], suggesting 

that the siRNA transfection efficacy has been significantly enhanced by P3C1 NPs. Also note 

that the cell viability of 20 nM P3C1-siRNA (47%) was the same as that of 80 nM Oligo-PLK1 

(44%) (Figure 4.9A), meaning that the delivery efficacy is enhanced by nearly 4 times. Given 

that cells treated with P3C1 and P3C1-Scr siRNA did not show significant inhibition compared 

with untreated group, the proliferation inhibition is mainly attributed to the activity of PLK1 

siRNA transfected into the cells.  

  

Figure 4.9 The viability of B16F10 cells upon PLK1 siRNA transfection using P3C1 and P4C0 

NPs. (A) The inhibition of cancer cell growth; (B) The growth inhibition comparison of P4C0-

PLK1 siRNA and P3C1-PLK1 siRNA transfection for 48 h. 
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In comparison, the inhibition efficacy of P4C0-PLK1 and P3C1-PLK1 siRNA NPs to B16F10 

cells was quite similar (Figure 4.9B). The cell viability using P4C0-PLK1 siRNA NPs was also 

similar to that in our previous report [22]. The IC50 values of P4C0-PLK1 and P3C1-PLK1 

were 19.8 and 22.0 nM. The similar inhibition efficacy may be attributed to the similar cellular 

uptake kinetics (Figure 4.5 and 4.6). Although the release profiles of P4C0 and P3C1 slightly 

differ at pH 6.0 and 5.5, the inhibition ability is not affected as the delivery test lasted for 48 h. 

Taken together, these two NPs are able to efficiently deliver siRNA to cancer cells and maintain 

similar gene silencing efficacy for 48 h.  

 

4.4 Discussion 

Here we have shown the physicochemical properties of lipid-coated calcium 

carbonate/phosphate (LCCP) hybrid NPs, and the influence of carbonate incorporation on 

physiological characters, dsDNA loading/release profile, cellular uptake, and gene silencing.  

The particle size and zeta potential of P3C1 and P2C2 NPs maintained unchanged (Table 4.1), 

with very similar gene loading efficacy and loading amount. These similarities might be the 

reason why P3C1 and P2C2 showed a similar internalisation manner to P4C0 (Figure 4.5 and 

4.6). The colloidal stability does not change obviously when the P/C ratio was 4/0, 3/1 and 2/2 

(Figure 4.2). However, a large portion of carbonate incorporation (P1C3) resulted in unstable 

LCCP NP suspension, and the poor colloidal stability could further influence loading and 

uptake efficiency (Figure 4.3 and 4.5).  

It is significant that the dsDNA release profile from LCCP NPs is controlled by the P/C ratio. 

As reported previously [22, 25], the drug/gene release from calcium carbonate (CaC) and LCP 

(i.e. P4C0) NPs is mainly controlled by the dissolution of cores, and seldom influenced by the 

lipid coating outside [23]. The dissolution of cores are through the following dissolution 

reactions: 

        CaCO3 + H+→ Ca2+ + HCO3
-                                                                   (1) 

        CaHPO4 + H+→ Ca2+ + H2PO4
-                                                                (2) 

These reactions result in the exposure of loaded dsDNA/siRNA and the subsequent release, 

and simultaneously increase the ion concentrations (i.e. Ca2+, HCO3
- and H2PO4-/HPO4

2-) in 

endosome/lysosome. The increased ion concentration leads to the influx of water into the 

endosome/lysosome due to the reverse osmotic pressure, which thus swell and rupture 
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endosome/lysosome, and release NPs and dissociated dsDNA/siRNA into cytoplasm, as 

schematically presented in Figure 4.10B. 

These reactions are also pH dependent. Reaction (1) for CaC NPs starts at pH 7.0 and probably 

completes at pH 6.0 [25], while Reaction (2) for P4C0 NPs starts at 6.0 and finishes at 5.0 

(Figure 4.4 and S4.5), as simulated in Figure 4.10A. Therefore, CaC NPs may release the gene 

during the circulation and before cellular uptake (i.e. not so stable at pH 7.0), reducing the 

delivery efficacy. In contrast, P4C0 NPs may undergo the late endosome/lysosome escape, 

biodegrading some released gene molecules and reducing the delivery efficacy.  

Very fortunately, P3C1 and P2C2 NPs start the gene release at >6.0 and release most genes at 

pH 5.5 within 10 min, which exactly leads to the endosomal escape for efficient cellular 

delivery (Figure 4.10A), avoiding the gene release during the circulation and the gene 

biodegradation during the late endosome/lysosome escape. The faster release from P3C1 NPs 

is confirmed by the real time PCR (Figure 4.8), i.e. more mRNA inhibition was achieved using 

P3C1 NPs. Nonetheless, the inhibition efficacy of both PD-L1 and PLK1 expression using 

P4C0 and P3C1 NPs to deliver siRNAs do not show significant difference after 48 h, which 

may be relevant to other factors, such as the dose and the incubation time. 

Moreover, we postulate that LCCP NPs may undergo quicker endosomal/lysosomal escape 

than other materials that engaged in gene delivery, such as cationic polymers and Au NPs. As 

known, this escape process is explained by the proton sponge theory [41]. This theory implies 

the positively charged materials, such as poly ethylene imine (PEI) and gold NPs, would 

consume protons that are pumped into the endo-/lysosomes while they do not affect the 

compensated anion (like Cl-) influx [41-43]. This escape is achieved by evolving osmotic 

imbalance, causing water entrance then endo-/lysosomal swelling. Note these materials 

maintain their integrity during the whole process, even without gene release in some cases [43]. 

In contrast, the proton consumption of LCCP NPs results in the dissolve of their cores and the 

generation of extra irons (Ca2+, HCO3
-, and H2PO4

-). Considering the anion influx would not 

be affected, more irons are trapped in endo-lysosomes, leading to higher osmotic pressure and 

quicker endo-/lysosomal swelling. Additionally, the loaded genes are partly released for gene 

silencing when the endo-lysosome is ruptured. To conclude, the LCCP NPs are suitable for 

gene delivery, and worthy to be applied for further studies.  

 



Chapter 4 Devising New Lipid-coated Calcium Phosphate/Carbonate Hybrid 
NPs to Control Release in Endosome for Efficient Gene Delivery 

88 
 

 

Figure 4.10 (A) The schematic pH responsive release of CaC and/or CaP cores. The hybrid 

CaC/CaP cores show unique release profile within pH 6.0-5.5, and the release percentage of 

CaC/CaP is more than that of CaP. (B) The fate of P4C0 and P3C1 NPs after internalisation. 

The clathrin-mediated endocytosis undergoes the endosome/ lysosome digestion pathway. The 

pH value dropped from 7.4 in Step 1 to 5.0-4.0 in Step 5 (lysosome). Sorted by dissolution pH 

value, the release of P4C0 and P3C1 NPs might be mainly in Step 3-4 and Step 4-5, respectively. 
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siRNA released in Step 5 might be partially degraded because of lysosomal enzymes. 

Intracellular pH ranges were referred to Ref[31] [30]and[16]. 

 

4.5 Conclusion  

In conclusion, we developed LCCP NPs for precisely controlled release at the endosomal pH. 

LCCP NPs were prepared by partially substituting phosphate with carbonate. The obtained 

LCCP NPs were comparable with LCP NPs in colloidal stability, gene loading capacity, and 

cellular uptake efficacy. Moreover, LCCP NPs have higher sensitivity and quicker release 

under mild acidic pH conditions (6.0-5.5) than LCP NPs. This tendency endows faster siRNA 

release during the endocytosis and quicker gene down-regulation after NP endocytosis. 

However, the release profile divergence between LCCP and LCP did not affect their long term 

gene silencing efficacy. Considering the good colloidal stability, high gene loading capacity, 

and quick uptake ability, LCCP NPs hold the potential as a promising gene delivery vehicle 

candidate with the precise release property at the endosome pH. 
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4.7 Supplementary Information 

Table S4.1 Information of oligonucleotides 

Name  Supplier Sequence   

dsDNA-cy5 (sense) IDTDNA TTCTCCGAACGTGTCACGTTT-cyanine 5 

dsDNA-cy5 (antisense) IDTDNA AAACGTGACACGTTCGGAGAA 

PD-L1 (sense) Sigma AGACGUAAGCAGUGUUGAA 

PD-L1 (antisense) Sigma  UUCAACACUGCUUACGUCU 

Negative control (sense) Sigma  CUUACGCUGAGUACUUCGA 

Negative control 

(antisense) 

Sigma  UCGAAGUACUCAGCGUAAG 

PD-L1 primer (Forward) Sigma  CCCTCTGATCGTCGATTGGC 

PD-L1 primer (Forward) Sigma  GCTTAGCAGTGTCTCCCTGG 

Plk1 (sense) IDTDNA CCAUUAACGAGCUGCUUAA 

Plk1 (antisense) IDTDNA CCAUUAACGAGCUGCUUAA 

Scramble-Plk1 (sense) IDTDNA UUCUCCGAACGUGUCACGU 

Scramble-Plk1 

(antisense) 

IDTDNA ACGUGACACGUUCGGAGAA 

 

Table S4.2 The component element analysis of LCCP cores with different P/C ratios.  

Molar 

ratio 

(P:C) 

Ca 

(mmol/g) 

P 

(mmol/g) 

C 

(mmol/g) 

C/P molar ratios 

(calculated/theoretical) 

Possible formula*  

4:0 9.38 6.84 0.69 0.26/0.00 Ca[(HPO4)0.8(CO3)0.1(OH)0.2] 

3:1 9.55 5.80 1.73 0.46/0.33 Ca[(HPO4)0.7(CO3)0.2(OH)0.2] 

2:2 9.46 3.72 4.16 1.26/1.00 Ca[(HPO4)0.4(CO3)0.5(OH)0.2] 

1:3 9.44 2.09 7.15 3.44/3.00 Ca[(HPO4)0.2(CO3)0.7(OH)0.2] 

* Assuming the existence patterns of phosphorous and carbo are HPO4
2- and CO3

2-, 

respectively.    
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Figure S 4.1 (A) The hydrodynamic diameter of LCCP NPs, represented by Number (%); and 

(B) XRD pattern of P4C0 and P3C1 cores. 

 

 

 

Figure S4.2 TEM image of P3C1 NPs negative staining with 1% uranyl acetate. 
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Figure S4.3 XPS survey scan of (A) P4C0 and (B) P3C1 cores coated with DOPA. The details 

of P3C1 were shown in high resolution scan of (C) P2p and (D) C1s. 

 

 

Figure S4.4 FTIR spectrum for the LCCP cores. 
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Figure S4.5 (A) P2C2 release profile; (B) DNA band intensity in Figure 4 normalized by the 

first lane dsDNA in corresponding line; (C) The release trend of P4C0 and P3C1 cores under 

different pH values. 
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Figure S4.6 The effect of P/C ratios on the taken up of particles with 25 nM dsDNA-cy5, 

represented by MFI. 
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Figure S4.7 The positive cell percentage of B10F10 treated with P4C0 or P3C1 with dsDNA-

cy5 at 25 nM cy5 concentration. Cells were cultured in DMEM containing 10% FBS for 4 h 

with P4C0 or P3C1 NPs. 

 

 

Figure S4.8 CLSM images of the same region of cells at different z stacks. The z = 6 and 7 

planes were focused on the central of most cells in the selected area. The individual channels 

and three-view diagrams based on the images at z = 6 position of each series (blue framed) was 

chosen as examples and shown in Figure 4.7.  
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Figure S4.9 The down regulation of PD-L1 expression for B16F10 cells treated with Oligo-

PDL1 (40 nM) 
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Chapter 5 
 

Chapter 5Enhanced Combination Cancer Therapy 

using Lipid-Calcium Carbonate/Phosphate NPs as 

a Targeted Delivery Platform 
 

 

 

This chapter reports the modification of LCCP NPs as targeting NPs, and co-delivery cell death 

(CD) siRNA and α-tocopheryl succinate (α-TOS) drug for combination cancer therapy in vitro 

and in vivo. In this chapter, we designed and synthesised LCCP NPs modified with 

polyethylene glycol (PEG) and folic acid (FA). After modification, the LCCP NPs exhibited 

an FA-enhanced cellular uptake in cancer cells with FA receptor overexpression. The modified 

LCCP NPs provided high payload to CD siRNA and α-TOS drug. The in vitro study in B16F0 

melanoma cells indicated the synthesised NPs (CD/TOS/FA) enhanced the inhibition to cancer 

growth with a moderate synergy. The mechanism of the high combined inhibition to B16F0 

cell growth may be associated with the effective induction of cell apoptosis and arrest of cell 

cycle at the G1 phase. This part of in vitro work was in section 5.1, and has been published 

in Nanomedicine (2018, full paper). 

Moreover, the in vivo anticancer efficacy of CD/TOS/FA NPs was evaluated in a metastatic 

4T1 mouse model. With FA mediated efficiency delivery of the combined two therapeutics, 

CD/TOS/FA NPs significantly inhibited 4T1 tumour growth in situ, and prevented its 

metastasis to lung and liver remarkably. No significant toxicity to major organs was observed 

during the therapy. In conclusion, the well-designed CD/TOS/FA NPs held great potential as 

an efficiency anticancer agent delivery platform, and may be further used to deliver 

therapeutics for combination cancer therapy. 
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5.1 In vitro work 

In this section, a new FA receptor-targeted LCCP NP was devised and loaded with the CD 

siRNA and α-TOS in the core and outer lipid layer, respectively. Herein, the new NPs had a 

high gene/drug payload and an FA-enhanced cellular uptake, exhibiting a high inhibition to 

cancer cell growth due to combination therapy of CD siRNA and α-TOS with a moderate 

synergy. This high combination inhibition to cancer cell growth may be associated with the 

effective apoptosis induction and cell cycle arrest at the sub G1 phase. The in vitro work section 

thus indicates this LCCP-based NP platform is potential as a new vehicle for combined cancer 

therapy. 

 

5.1.1 Introduction  

Melanoma is the most life-threatening type of skin cancer and accounts for the majority of 

deaths [1]. Clinical therapy for melanoma relies heavily on single chemical drug treatment, 

such as doxorubicin [2], cisplatin [3], and 5-fluorouracil [4] often with unsatisfactory outcomes. 

The main issue with chemotherapy is the side effects caused by high toxicity of the chemical 

drugs. To date, the most commonly used strategy is combination therapy, aiming to improve 

therapeutic efficacy with minimized doses of drugs and reduced side effects. This includes the 

combination of two drugs or one drug with an oligonucleotide or a signalling pathway inhibitor 

or an antibody. The combination therapy may benefit from the additive or even synergistic 

effect if two therapeutics have interactive effects and cooperatively suppress cancer cell growth 

[5]. 

α-tocopheryl succinate (α-TOS) is the most effective derivative of vitamin E and exerts a 

therapeutic effect on a broad spectrum of cancers including melanoma [6]. The main obstacles 

preventing α-TOS from wider medical applications are poor hydrophilicity and the high 

dosages required. However, the combination of α-TOS with other drugs is able to achieve 

effective therapeutic outcomes [7-9]. Most of these studies focused on the co-delivery of two 

chemical drugs, while the combination of α-TOS with small interfering RNAs (siRNAs) has 

not been reported. We have expected that combination therapy with siRNAs might achieve a 

similar anti-cancer efficacy with less side effects as siRNA is more effective and much more 

biocompatible than chemical drugs. However an efficient delivery system for α-TOS/siRNA 

co-delivery is required for potential combination therapy of melanoma.  
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Calcium phosphate and calcium carbonate-based nanoparticles (NPs) have been proven to be 

promising gene delivery systems [10-12]. Maitra et al demonstrated that calcium phosphate 

nanoparticles were able to load pDNA and increase the transfection efficacy in HeLa cells [13]. 

Huang et al optimised calcium phosphate nanoparticles with bilayer lipid coating for better 

colloidal stability, biocompatibility, and further modification [11]. Inspired by these outcomes, 

lipid-coated calcium carbonate/phosphate (LCCP) NPs were designed, with precise endosomal 

release characteristics, and efficient siRNA loading and release [14]. In this study, we 

demonstrated that LCCP NPs can be internalized by B16F10 cells with a moderate uptake 

efficiency due to the negative surface charge [14]. To increase the delivery efficacy and 

melanoma targeting capability for in vivo use, a targeting molecule is essential. Many targeting 

ligands have been studied, including folic acid, mannose, and hyaluronic acid [15-17], whose 

receptors are normally overexpressed on the surface of some cancer cells. Folic acid (FA) is 

the most widely used one as the FA receptor is overexpressed in melanoma cells [16, 18, 19]. 

Apart from the siRNA loading and FA modification to enhance the delivery efficacy, we have 

uniquely co-loaded the hydrophobic α-TOS in the hydrophobic region of lipid bilayer for 

combination therapy to further improve the therapy, which is schematically illustrated in 

Scheme 5.1. 

Thus using LCCP nanoparticles to co-deliver hydrophobic α-TOS and hydrophilic CD siRNA 

with FA molecule on the surface as the targeting ligand is a new concept. In this work, FA 

receptor-targeted LCCP NPs were first prepared and loaded with certain amounts of α-TOS 

and Allstars Cell Death siRNA (CD siRNA). Then the new CD/TOS/FA NPs were utilized to 

treat B16 melanoma cells and we found an enhanced anticancer effect with the new delivery 

system. CD siRNA and α-TOS inhibited melanoma cell growth by increasing ROS level, cell 

apoptosis, and disturbing the cell cycle. To our knowledge, this is the first attempt to co-deliver 

a hydrophobic (α-TOS) and a hydrophilic (siRNA) therapeutic using one NP (LCCP) for 

combination cancer treatment. 

 

5.1.2 Experimental methods 

5.1.2.1 Materials 

All the chemicals and oligonucleotide duplexes were purchased from Sigma-Aldrich if not 

specifically mentioned. CD siRNA (AllStars Cell Death siRNA) was purchased from QIAGEN 
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Pty. Ltd. (Vic, Australia). All lipids were obtained from Avanti Polar Lipid. The kits and 

reagents for RT-PCR were purchased from Life Technologies Co. (Carlsbad, CA). Bcl-2 and 

beta-actin antibodies were purchased from BioLegend Inc. (San Diego, CA). The predesigned 

forward/reverse mouse-Bcl-2 primers were bought from Sigma-Aldrich. All chemicals and 

biomaterials were received and used according to the manufacturer’s guidelines, without 

further modification. Water used for all experiments was deionized Milli-Q water (Ω = 18.2 at 

ambient temperature). All siRNAs sequences are shown in Table S5.1. 

5.1.2.2 Synthesis and optimisation of targeted nanoparticles with dual drug loading 

The synthesis of LCCP NPs was based on the reported protocol with some modifications [10, 

14]. Briefly, 150 µL of 25 mM Na2HPO4/NaHCO3 (3/1 molar ratio, pH = 9.0, aq.) was 

dispersed in 5 mL oil phase (cyclohexane/igepal CO 520 = 7/3, v/v) and then added dropwise 

into 150 µL of 2.5 M CaCl2 (pH = 7.0, aq.) dispersed in 5 mL oil phase (cyclohexane/igepal 

CO 520 = 7/3, v/v), followed by adding 1 µmol DOPA under magnetic stirring (Scheme 5.1). 

After 20 min, the LCCP cores were collected via centrifugation after washing with a total of 

30 mL of absolute ethanol (3 times). The obtained LCCP core pellet was redispersed in 

chloroform with 70 µL of DOPC/cholesterol (20 mM, 1/1, v/v) for coating the second layer 

lipids. After solvent evaporation, the final LCCP NPs were obtained by hydrating the formed 

film in 1.6 mL of water or PBS. 

For dsDNA/siRNA loading, 15 µL of 20 µM dsDNA/siRNA in DNase/RNase free water was 

mixed with aqueous calcium and phosphate/carbonate solutions, respectively, prior to 

dispersion in the oil phase. The dsDNA/siRNA were loaded into LCCP cores during the 

formation of calcium phosphate.  

For α-TOS and/or folic acid (FA) loading, the modification was made by incorporating DSPE-

PEG-FA and/or α-TOS into the outer layer of lipids. The portion of α-TOS was 15%, replacing 

an equal portion of DOPC and/or cholesterol to form α-TOS loaded LCCP NPs (Table S5.2). 

A total of 14 µL of DOPC (equalled to 20% of DOPC) was replaced by DSPE-PEG/DSPE-

PEG-FA to achieve PEGylation and FA mediated targeting. The NPs were named CD/FA, 

scr/TOS/FA, and CD/TOS/FA for LCCP (with 10 % DSPE-PEG-FA and 10 % DSPE-mPEG) 

loading with CD siRNA, scrambled siRNA/α-TOS, and CD siRNA/α-TOS, respectively. 

LCCP loaded with CD siRNA and α-TOS with 20 % DSPE-mPEG was named CD/TOS. The 

details of the outer layer composition and DNA/RNA input were shown in Table S5.2.  
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5.1.2.3 Characterization 

The hydrodynamic nanoparticle size distribution and surface charge were measured by a 

Malvern NanoSizer (Malvern, UK) series using a dynamic light scattering (DLS) method. NPs 

were diluted in either water or PBS to a concentration of about 40 µg/mL. The morphology of 

NPs was visualized using a transmission electron microscope (TEM, JEM-3010, ZEOL, Tokyo, 

Japan). Ten microliters of NP suspension was dropped onto a 300 mesh carbon-coated copper 

grid and dried on a filter paper at room temperature. Then the grid was negatively stained with 

1% uranyl acetate for 1 min, and observed in the TEM. The core diameter of NPs was estimated 

using Nano Measure software, and the mean size was calculated by counting 200 randomly 

selected NPs. The composition of LCCP with/without α-TOS was examined using Fourier 

transform infrared spectroscopy (FTIR).  

5.1.2.4 Loading efficiency  

To determine the loading efficiency of siRNA, a mimic oligo dsDNA labelled with cyanine 5 

(cy5) was used as a model and encapsulated into the nanoparticles in the same way. The loading 

efficiency of dsDNA-cy5 was determined by measuring the cy5 fluorescence intensity (Ex = 

488 nm, and Em = 665 nm) of the nanoparticle lysate after nanoparticles were completely 

dissolved in Tris buffer containing 2 mM EDTA and 0.05% Triton X-100 at pH 7.8 using a 

plate reader (BioTek, Winooski, VT, USA). Similarly, the yield of FA was also determined by 

measuring the dissolved NPs using the plate reader (Ex = 270 nm, and Em = 450 nm). 

The NPs with α-TOS were centrifuged at 12000 g for 10 min to collect NP pellets and discard 

supernatant that may contain free α-TOS.  The NPs were dissolved in citric acid-sodium citric 

acid buffer at pH = 5, and the α-TOS loading amount in NPs was calculated from the 

absorbance at λmax = 278 nm using UV-vis spectroscopy. Baseline measurements were done 

on NPs without α-TOS. 

 

5.1.2.5 Cellular uptake of NPs 

B16F0 cells were cultured routinely in DMEM medium containing 10% fetal bovine serum 

(FBS), 1% penicillin/streptomycin and seeded in a 12 well plate with a density of 1×105 cells 

per well and cultured overnight in an incubator at 37 °C with 5% CO2. The culture medium 

was then replaced by 0.5 mL fresh medium containing FA modified NPs encapsulating 

dsDNA-cy5 (25 nM). After 4 h incubation, the cells were washed 3 times with PBS, followed 
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by treatment with 0.25% trypsin and centrifugation. The cell pellets were redispersed in 0.2 

mL of paraformaldehyde (PFA, 4 %) for fixation and the cy5 fluorescence intensity of the fixed 

cells was determined using BD Accuri C6 FACS flow cytometer (BD Biosciences, San Jose, 

CA).   

To illustrate the specificity of FA receptor targeting delivery, cellular uptake was examined 

under an FA blocking condition. LCCP-dsDNA-cy5 NPs with 10% DSPE-PEG-FA and 10% 

DSPE-mPEG were used. Cells were blocked in PBS containing FA (0.1 mM or 1 mM) for 1 h, 

followed by NP treatment in FA free PBS for another 1 h. The cy5 concentration in this 

experiment was 25 nM. The control group was cells cultured in FA-free PBS for the initial 1 

h, followed by the NP treatment. Cells treated in PBS containing 1 mM FA alone for 2 h were 

also analyzed to verify the influence of FA blockade on cy5 fluorescence intensity.  

Furthermore, B16F0 cells were treated with LCCP NPs modified with 10% DSPE-PEG-FA 

and 10% DSPE-mPEG for cellular uptake assay. The cells were incubated in the medium 

containing these targeted NPs with 25 nM dsDNA-cy5 for 0.5 to 6 h, or with 3 to 100 nM 

dsDNA-cy5 for 4 h. Cells treated with LCCP NPs modified with 20% DSPE-mPEG containing 

25 nM dsDNA-cy5 for 4 h were also tested for comparison. The cellular uptake of these LCCP 

NPs was determined and experiments were repeated 3 times. 

5.1.2.6 MTT assay 

B16F0 cells (4×103 /well) were seeded in a 96-well plate and incubated overnight. Cells were 

treated with CD/FA, scr/TOS/FA, CD/TOS, or CD/TOS/FA at a CD siRNA concentration of 

3 to 48 nM and an α-TOS concentration of 1.3 to 20 µM. Cells treated with LCCP-FA NPs 

loaded with scrambled siRNA (scr/TOS/FA) were used as controls. After 48 h culture in 

medium with nanoparticles, the cell viability was determined using standard MTT assay 

protocol. As controls, free α-TOS or CD siRNA were supplemented in medium containing 

CD/FA, scr/TOS/FA or LCCP-FA for cell treatment. The cell viability was determined 

similarly after 48 h treatment.  

 

5.1.2.7 Reactive oxygen species (ROS) detection 

B16F0 cells were seeded in a 12 well plate at a density of 1×105 cells per well, and cultured 

overnight to bring to confluence, followed by treatment with FA-loaded LCCP NPs containing 

24 nM CD siRNA and/or 10 µM α-TOS at 37 °C for 6 h. Then the cells were co-cultured with 
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20 µM 2`,7`-dichlorodihydrofluorescein diacetate (DCFH-DA, Sigma Aldrich, MO, USA) for 

another 30 min. After washing 3 times with PBS, the amount of ROS was immediately 

analyzed using either flow cytometry (Accuri C6 flow cytometer, BD Biosciences) or confocal 

laser scan microscopy (CLSM).  

5.1.2.8 Reverse transcription PCR (RT-PCR) 

B16F0 cells were seeded in a 6-well plate (4×105 cells/well) and incubated overnight. Cells 

were then treated with FA-loaded NPs containing 24 nM CD siRNA and/or 10 µM α-TOS for 

24 h, and then harvested in 1 mL Trizol. Total RNA was extracted and reverse transcription 

was conducted according to the manufacturer’s protocol. Real time RT-PCR was carried out 

as described previously [20]. Mouse beta-actin gene was assayed in the same way as a 

housekeeping gene to normalize the expression of Bcl-2. 

5.1.2.9 Western Blot analysis 

B16F0 cells were seeded in a 6-well plate at 4×105 cells/well and treated with FA-loaded NPs 

for 48 h (CD siRNA = 24 nM and/or α-TOS = 10 µM). The cells were then lysed in 120 µL 

chilled RIPA buffer, followed by 10 s sonication for complete lysis. After centrifugation at 

12,000 g for 5 min, the supernatant was collected, and the protein concentration was measured 

using a Nanodrop 1000 (ThermoFisher). Samples were heated for 5 min at 95 oC with loading 

buffer and proteins were separated by a 4-15% gradient SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) with 100 µg of total protein loaded, followed by transfer onto a 

polyvinylidene difluoride (PVDF) membrane (wet transfer method). The membrane was then 

blocked using freshly prepared Tris buffer saline (TBS) containing 5% skim milk overnight at 

4 °C. After rinsing 3 times with TBST (TBS with 0.1% Tween 20), the membrane was 

incubated in the primary antibody solution (1:1000, diluted in TBS containing 3% BSA and 

stored at 4 °C before use) overnight at 4 °C, followed by TBST rinse and incubation with the 

HRP conjugated secondary antibody solution (1:5000, diluted in TBS containing 3% BSA and 

stored at 4 °C before use) for 1 h at 24 °C. All incubations were performed with constant 

shaking. Then the membrane was rinsed 3 times with TBST, and immersed in 2 mL Clarity 

ECL blotting substrate (Bio-Rad Laboratories, Inc., Hercules, CA) for 1 min. The blot image 

was acquired using Geldoc (Bio-Rad Laboratories, Inc., Hercules, CA). Mouse beta-tubulin 

protein was assayed as the loading control. All the experiments were repeated 3 times, and the 

band intensity was calculated using Geldoc software.  
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5.1.2.10 Apoptosis analysis  

B16F0 cells were seeded in a 12-well plate at 2×105 cells/well and treated with FA-loaded NPs 

for 24 h (CD siRNA = 48 nM and/or α-TOS = 20 µM). After incubation, the cells were washed 

twice with cold PBS, followed by collecting cells using 0.25% trypsin and centrifuging at 2,000 

rpm for 5 min. Any detached cells in the supernatant were also collected in the same tube by 

centrifugation. The cell pellets were resuspended in 0.1 mL Annexin V Binding Buffer (from 

the FITC Annexin V Apoptosis Detection Kit with PI, BioLegend), followed by adding 5 µL 

of FITC Annexin V and 10 µL of propidium iodide (PI) solution and incubating in the dark for 

15 min. Then 400 µL of Annexin V Binding Buffer was added to each tube to stop the staining. 

The samples were analyzed using a CytoFLEX flow cytometer (Beckman, IN). Untreated cells 

were stained with FITC Annexin V and/or PI as the control. Cells with single staining were 

used to adjust the compensation between these two fluorescent channels. 

5.1.2.11 Cell cycle analysis 

B16F0 cells were seeded in a 12-well plate at 1×105 cells/well and cultured for 48 h, followed 

by cell collection and counting to roughly estimate the period of one life-cycle for B16F0 cells 

growing at confluence. For analysis, cells were seeded in a 12-well plate with a density of 

2×105 cells per well and cultured overnight to bring them to confluence. Then cells were treated 

with FA-loaded NPs for another 24 h (CD siRNA = 48 nM and/or α-TOS = 20 µM). The cells 

were washed 3 times with PBS and harvested using trypsinization and centrifugation at 2,000 

rpm for 5 min. The cells were then fixed by adding dropwise 200 µL of cold 70% ethanol to 

the pellets while vortexing to minimize clumping. After incubating at 4 °C for 30 min, the cells 

were spun down at 2,000 rpm for 5 min with caution, and washed twice with PBS. Two hundred 

microliter of PI (50 mg/L) was added to each sample for staining, followed by analysis using 

a CytoFLEX flow cytometer. The cell-cycle phase of the gated singlet cells was identified 

according to their PI fluorescence intensity: sub G1 (100 k-180 k), G1 (180 k – 220 k), S (220 

k – 360 k), and G2/M (360 k – 440 k). 

5.1.2.12 Statistical analysis 

Data is presented as Mean ± SD and analyzed via t-test using GraphPad Prism 7.00 software; 

a p value < 0.05 was considered statistically significant. *, p < 0.05; **, p < 0.01; ***, p < 

0.001. The t-test in the software was used to compare the statistical difference between two 

groups as it is more accurate. One-way ANOVA analysis method with post hoc Turkey test 
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was also performed to assess multiple group experimental data, and a p value < 0.05 was 

considered statistically significant. #, p < 0.05; ##, p < 0.01; ###, p < 0.001. 

 

5.1.3 Results 

5.1.3.1 Physicochemical features of LCCP NPs loaded with CD siRNA and α-TOS 

α-TOS was loaded onto LCCP NPs (without DSPE-PEG and DSPE-PEG-FA modification) by 

replacing approximately 15% of outer layer lipids (Table 5.1 and Figure 5.1A). The NPs were 

named as α/DOPC, α/ChoL, and α/DOPC/ChoL according to the outer layer lipid composition 

(detailed information listed in Table 5.1 and Table S5.2, ESI). Compared to LCCP NPs without 

α-TOS (α/BLK), the α-TOS loaded NPs had a similar hydrodynamic diameter (⁓40 nm). 

Meanwhile, PDI increased from 0.22 to 0.33-0.35 after α-TOS loading, meaning that loading 

α-TOS resulted in a broader size distribution.   

 

Scheme 5.1 Schematic illustration of the structure of LCCP NPs, loaded with CD siRNA/α-

TOS and FA conjugated onto the surface.  

 

The zeta potential of the α/BLK sample was -15.1 mV (Table 5.1). Loading α-TOS decreased 

the zeta potential to -16.8 for α/ChoL and -18.8 mV for α/DOPC/ChoL, but increased to -12.8 

mV for α/DOPC. Previously, we showed that the surface charge of LCP NPs was mainly 

attributed to negative charged DOPA, but not the neutral DOPC/cholesterol in the outer layer 
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[10]. Similarly, the change in NP surface charge in this study should be mainly attributed to 

the loading of negatively charged α-TOS, not the change in DOPC/cholesterol composition. 

Notably, a slight increase of zeta potential in sample α/DOPC may be related to the lowest α-

TOS loading yield. 

 

Table 5.1 The hydrodynamic particle size, zeta potential, PDI, and α-TOS loading yield of 

LCCP NPs. 

Sample code Outer layer composition 
(DOPC/ChoL/α-TOS %) 

Size (nm) PDI Zeta (mV) TOS yield 

(%) 

α/DOPC/ChoL 42.5/42.5/15 40.8±1.4 0.33±0.02 -18.8±1.3 59.3±5.2 

α/DOPC 35/50/15 37.7±1.2 0.35±0.02 -12.8±0.6 23.2±4.3 

α/ChoL 50/35/15 40.6±0.6 0.35±0.02 -16.8±0.8 58.7±7.1 

α/BLK 50/50/0 39.8±0.2 0.22±0.01 -15.1±0.6 - 

 

The yields of α-TOS loading in α/DOPC, α/ChoL, and α/DOPC/ChoL were 23.2±4.3%, 

58.7±7.1%, and 59.3±5.2%, respectively, meaning that there were 8.9%, 3.5% and 8.9% of 

outer layer lipids being replaced by α-TOS in three samples, respectively. The unusually low 

yield of α-TOS in α/DOPC sample may be due to (1) the size mismatch of α-TOS with the 

lipid in the outer layer according to their structure, and (2) the poor outer layer coating caused 

by the defects in the outer layer under the DOPC insufficient conditions (detailed explanation 

given in Figure S5.1 and Table S5.3) [21].  

As shown in Table S5.4, the loading of CD siRNA in α/DOPC/ChoL NPs resulted in particles 

with the size of 39.2 nm and the zeta potential of -22.6 mV. The loading of siRNA did not 

greatly affect the NP size, but resulted in slightly more negative charges with an increased 

loading efficiency of siRNA/dsDNA (63% vs. 51%), due to the smaller amount of 

siRNA/dsDNA used in the current synthesis (0.6 vs. 3 nmol used in the previous report)  [14]. 

As shown in Figure 5.1B, the LCCP-TOS NPs were sphere-like, with a typical core-shell 

structure. The core size of NPs with a hollow hole was around 20 nm, with a semi-transparent 

lipid shell coating. Negative staining showed the lipid thickness was around 10 nm for α-TOS 
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loaded LCCP NPs (Figure S5.2), which was similar to that of the blank LCCP NPs in our 

previous report [14]. These experimental data suggest the salient structure of LCCP NPs is 

maintained after α-TOS loading. The hydrodynamic diameter of LCCP cores in chloroform 

was around 15 nm (Figure 5.1C). The overall NP size measured in TEM images was about 35 

nm, slightly smaller than that measured using DLS (40 nm, Figure 5.1C and Table 5.1). These 

α-TOS-loaded LCCP NPs exhibited a similar structure and size to the previous reported LCCP 

NPs [14]. Further loading of dsDNA/siRNA resulted in an unchanged size distribution [10]. 

LCCP NPs with α-TOS in PBS solution remained stable as the NP size just slightly increased 

from 40 to 50 nm after 72 h (Figure 5.1C, LCCP-TOS vs. LCCP-TOS in PBS).  

 

Figure 5.1 (A) Models of LCCP NP with α-TOS replacing DOPC and cholesterol. (B) TEM 

image of CD/TOS/FA NPs. (C) The size distribution of NPs obtained from DLS. (D) FT-IR 

spectrum of α-TOS, LCCP and LCCP-TOS, with new peaks shown in red (1480-1400 cm-1), 

green (1100-1050 cm-1) and blue (879 cm-1).  

 

The presence of α-TOS was further confirmed using FT-IR. As shown in Figure 5.1D, the 

spectrum of LCCP NPs shows peaks at 3300 (broad), 2915-2857, 1640, and 1050 cm-1, 
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corresponding to O-H bond (stretching), C-H (stretching), C=O (stretching), and P-O 

(stretching), respectively. The spectrum of LCCP-TOS NPs shows some extra peaks located at 

around 1480-1400, 1100-1050, and 879 cm-1, associated with C-H bond of –CH2/-CH3 

(bending), ether C-O-C bond (stretching), and substitution on benzene, respectively [22, 23]. 

The C=O from α-TOS was merged with a broad peak at around 1640 cm-1 from LCCP NPs.  

 

5.1.3.2 FA mediated targeting delivery of nanoparticles 

To optimise the FA density per NP, DSPE-PEG and DSPE-PEG-FA were used to replace 20% 

DOPC in the outer layer, for which the NPs (without α-TOS loading) were denoted as FA(n)-

PEG(20-n), such as FA5-PEG15 and FA10-PEG10. The loading yield of DSPE-PEG-FA was 

around 60%, estimated from the FA fluorescence in all cases (data not shown).  

As shown in Figure 5.2A, the cellular uptake of LCCP-dsDNA-cy5 increased with the FA 

percentage from 0% to 10% in the outer layer lipid, with the positive cell percentage being 

around 55%.  When the FA density continuously increased from 10% to 20%, both the positive 

cell percentage and the mean fluorescence intensity (MFI) were very similar, suggesting that 

the interactions between FA in LCCP NPs and FA receptors on the cell membrane are saturated 

when there is 10% FA in the outer layer of lipids. Therefore, FA10-PEG10 LCCP NPs were 

used in subsequent experiments. According to the method reported [24], the number of FA 

molecules per PEG10-FA10 NP was estimated to be ~220. The optimum FA number per NP 

for targeting B16F0 cells in our study is different from that for MDA-MB-468 cells (220 v.s. 

100) [24]. This difference may be caused by the FA receptor density variation between these 

two cancer cell lines. 
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Figure 5.2 Cellular uptake of various LCCP NPs. (A) The effect of FA amount on cellular 

uptake of NPs with 25 nM dsDNA-cy5 for 4 h in DMEM medium with 10% FBS. (B) FA 

blocking assay. (C) and (D) The effect of dose and time on the cellular uptake of FA10-PEG10 

NPs. 

 

To verify that the increased cellular uptake of LCCP NPs is due to FA meditation, the FA 

receptors on the cell membrane were blocked with free FA and then the cells were treated with 

FA10-PEG10 NPs at 25 nM of dsDNA-cy5. As shown in Figure 5.2B, the positive cell 

percentage dropped from ⁓95% to ⁓50% after FA blocking. In terms of the MFI, the cellular 

uptake amount of LCCP NPs was reduced by 80-85% (Figure 5.2B).  Interestingly, the positive 

percentage and MFI for cells blocked with 0.1 and 1.0 mM FA were almost the same, which 

can be attributed to non-FA mediated endocytosis. In addition, the effect of α-TOS loading on 

cellular uptake was also evaluated. As shown in Figure S5.3, cells treated with α-TOS-loaded 
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NPs showed a similar MFI to those treated with α-TOS free NPs, suggesting that loading α-

TOS has no obvious influence on the cellular uptake of NPs.  

As shown in Figure 5.2C, the uptake of NPs increased with the concentration of dsDNA-cy5 

from 3 to 50 nM for 4 h, but then maintained a similar level when the dsDNA-cy5 concentration 

was 50-100 nM. Similarly, the uptake of NPs increased with longer incubation time (Figure 

5.2D). Therefore, FA-modified NPs are taken up by B16 cells both in a dose and time 

dependent manner, with the optimal dsDNA-cy5 concentration being 50 nM. 

 

5.1.3.3 Efficient inhibition of cancer cell growth 

To evaluate the cancer cell growth inhibition ability of CD siRNA/α-TOS-loaded NPs, a series 

of LCCP NPs were prepared based on FA10-PEG10 NPs with FA modification and α-

TOS/siRNA loading, with the NPs named scr/FA, CD/FA, scr/TOS/FA, CD/TOS, and 

CD/TOS/FA (basic physicochemical features are listed in Table 5.2). The growth inhibition of 

melanoma cancer cells by CD siRNA/α-TOS-loaded NPs was then determined. As shown in 

Figure 5.3, cell viability decreased upon treatment with CD/FA, scr/TOS/FA, CD/TOS, and 

CD/TOS/FA for 48 h (Figure 5.3A-D) in a dose-dependent manner. The cells treated by CD/FA 

had a viability of 70-80% at CD siRNA concentrations from 12-48 nM (Figure 5.3A), and the 

scr/TOS/FA treatment reduced the cell viability to 50% when the α-TOS concentration was 10-

20 µM (Figure 5.3B). Obviously, the blank scr/FA NPs did not show any inhibition of cell 

growth at NP concentrations up to 100 mg/L (containing 54 nM scrambled siRNA, data shown 

in Figure S5.4), suggesting that nonspecific interference was limited.  

Table 5.2 The zeta potential and gene/drug loading of nanoparticles. 

Sample code 
Zeta potential 

(mV) 

FA number 

per NP 

Gene loading 

efficiency (%) 

α-TOS 

yield (%) 

scr/FA* -19.2±2.3 220 63.4% - 

CD/FA -19.0±2.5 220 62.8% - 

scr/TOS/FA -18.7±1.6 220 61.1% 57.7±1.4 

CD/TOS -17.2±1.1 0 62.5% 59.0±1.8 

CD/TOS/FA -19.3±2.6 220 58.7% 57.6±2.8 
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* scrambled siRNA loaded FA10-PEG10 LCCP NPs 

Interestingly, when the cells were treated with siRNA/α-TOS-combined FA-target NPs 

(CD/TOS/FA), much stronger inhibition than either CD/FA or scr/TOS/FA in all cases was 

observed (Figure 5.3D). The combination effect was assessed using the method reported in the 

literature [25-27], as detailed in Table S5.5. The combination of CD siRNA and α-TOS in 

LCCP NPs showed an additive to moderately synergistic effect. Inhibition of cancer cell 

growth by non-FA-target CD/TOS NPs was also examined (Figure 5.3C). Inhibition by NPs 

without FA modification was significantly less than CD/TOS/FA NPs at doses from 12 to 48 

nM for CD siRNA and 5 to 20 µM for α-TOS. This significant enhancement in cell growth 

inhibition by CD/TOS/FA NPs indicates that cells take up more FA-modified siRNA/α-TOS-

loaded NPs via FA-mediated pathway.  

 

Figure 5.3 B16 cell viability after treatment for 48 h. Cells treated with (A) CD/FA, (B) 

scr/TOS/FA, (C) CD/TOS, or (D) CD/TOS/FA NPs. 
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For a better understanding of the inhibitory capacity of CD siRNA/α-TOS dual delivery by 

NPs, a supplementary experiment was performed by adding free CD siRNA and/or α-TOS in 

culture medium at the same concentrations. As shown in Figure S5.5 and Table S5.6, the 

corresponding inhibition effect in all cases was weaker than that in CD/TOS/FA NP-treated 

group, indicating the free CD siRNA and α-TOS cannot achieve the same anti-cancer effect. 

As is well known, free siRNA is vulnerable under culturing conditions due to the existence of 

RNase and is hardly taken up by cells.  α-TOS has a lower water solubility and is also 

negatively charged at pH 7.4, which may hinder its cellular uptake. Therefore, neither free CD 

siRNA nor α-TOS is not efficiently taken up by cells. In a word, the targeted co-delivery of 

CD/TOS/FA NPs more effectively facilitates cellular uptake and inhibits B16 cell proliferation. 

5.1.3.4 Induction of ROS and apoptosis upon NP treatment  

ROS production by B16 cells treated with NPs for 6 h was examined by staining with 2’, 7’-

dichlorodihydrofluorescein diacetate (DCFH-DA) [28, 29]. CD siRNA or α-TOS delivered to 

B16 cells with NPs (CD/FA or scr/TOS/FA) led to an increase in intracellular ROS levels 

(Figure 5.4A). Moreover, the combination treatment with CD/TOS/FA NPs resulted in the 

significantly higher ROS production. Our results are consistent with previous studies that α-

TOS induces ROS production in cells, causing damage to mitochondrion and DNA due to the 

relatively high oxidative stress [8]. 

 

Figure 5.4 The effect of NPs on ROS production by B16 cells after 6 h treatment. ROS 

production (green) was examined using CLSM (A) and quantified using flow cytometry (B). 

The concentration used was: [CD siRNA] = 24 nM and [α-TOS] = 10 µM. 
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Cell apoptosis was further analyzed using Annexin-PI staining method, as shown in Figure 5.5. 

Compared to the control group (Figure 5.5D), all other treatments significantly increased the 

cell percentage in both late apoptosis and necrosis, with a small portion of early apoptotic cells. 

The CD/FA NP treatment resulted in 10.1±2.4% apoptotic cells and 6.1±0.8% necrotic cells 

(Figure 5.5E). The scr/TOS/FA NP treatment led to more apoptosis and necrosis of cells 

(15.7±1.4% and 17.5±0.6%, Figure 5.5E). For cells treated with CD/TOS/FA NPs (Figure 

5.5C), 35.4±1.9% cells were in late apoptotic status and 17.3±3.0% of cells were necrotic. 

These results suggest that both CD siRNA and α-TOS induced cell apoptosis, and the dual 

treatment (CD/TOS/FA) resulted in increased cell apoptosis (Figure 5.5E). In contrast, α-TOS 

also caused strong necrosis while CD siRNA seemed to only cause very weak necrosis (Figure 

5.5E). In conclusion, all NPs showed cytotoxicity to B16F0 cells through induction of late 

apoptosis, with α-TOS inducing more necrosis. The additive effect may result from the high 

ROS levels generated when cells were treated with CD/TOS/FA (Figure 5.4), and may further 

indicate that CD siRNA and α-TOS involve different pathways to induce cell death, as 

discussed shortly. 

 

Figure 5.5 Flow cytometric analysis of cell distribution for early/late apoptosis and necrosis 

on B16F0 cells after typical treatment with (A) CD/FA, (B) scr/TOS/FA, (C) CD/TOS/FA, or 

(D) scr/FA NP treatment for 24 h. The average percentage of cells under apoptosis or necrosis 

status was calculated after three parallel tests and shown (E). 
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5.1.3.5 Suppression of Bcl-2 expression and cell cycle G1 arrest upon NP treatment 

The expression of Bcl-2 protein was examined in cells treated with LCCP NPs. As shown in 

Figure 5.6, compared to the control, the Bcl-2 protein level significantly decreased to ⁓60% 

and ⁓50% after CD/FA and CD/TOS/FA NP treatment, respectively, whereas the level just 

decreased to 80 % upon scr/TOS/FA NP treatment. Similarly, Bcl-2 mRNA expression level 

at 24 h post transfection decreased to around 0.6 fold compared to that of blank cells (Figure 

S5.6). Both assays suggest that the suppression of Bcl-2 expression is mainly attributed to the 

effect of CD siRNA delivered by LCCP NPs, in agreement with the previous report that CD 

siRNA is able to suppress anti-apoptotic Bcl-2 gene expression and thereby induce cancer cell 

death [30]. In contrast, the effect of α-TOS on the Bcl-2 gene expression was much weaker, 

and not significant (Figure 5.6). 

 

Figure 5.6 The suppression of Bcl-2 protein expression by treatment with NPs for 48 h. (A) 

Western blot analysis; (B) Densitometry analysis of Bcl-2 expression against β-actin. The 

concentration used was: [CD siRNA] = 24 nM and [α-TOS] = 10 µM. 

Cell cycle changes in treated cells were further examined. As shown in Figure 5.7, the B16F0 

cell cycle phases with CD/FA treatment were similar to the blank cells (Figure 5.7A, B and E), 
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indicating CD siRNA does not affect the B16F0 cell cycle. In comparison, cells treated with 

scr/TOS/FA and CD/TOS/FA showed obvious differences in cell cycles (Figure 5.7A, C, D 

and E). The G1 phase increased from 54% in blank cells to 66% and 72% for cells treated with 

scr/TOS/FA and CD/TOS/FA, respectively, while the S and G2/M phases decreased 

correspondingly. The results indicate that α-TOS is mainly responsible for G1 phase arrest in 

the cell cycle, consistent with the previous report [31]. Interestingly, CD siRNA assisted α-

TOS (i.e. CD/TOS/FA NP treatment) to induce more G1 arrest (compared to scr/TOS/FA NP 

treatment, 1.45 v.s. 1.25 fold compared to BLK, Figure 5.7F), suggesting an additive treatment 

effect of both therapeutics. Because CD siRNA is a commercial product and the gene target is 

unclear, we postulate that this stronger G1 phase arrest may be due to: 1) overproduction of 

ROS that reduces ATP production of mitochondrion and ATP hydrolytic activity, and 

inactivates the mitochondrial electron transport chain components [32, 33]. With the high level 

of ROS produced in our studies, the CD/TOS/FA NP-treated cells (Figure 5.4) would be in a 

severe energy-insufficient condition; 2) the decrease in Bcl-2 that causes delay of S phase entry 

to some degree [34]. Thus, the significant Bcl-2 decrease in CD/TOS/FA NP-treated cells 

(Figure 5.6) may be involved in the arrest of G1 phase.  

Figure 5.7 Cell cycle analysis by staining the DNA in B16F0 cells after 24 h treatment. (A) 

control;  (B) CD/FA NPs; (C) scr/TOS/FA NPs; and (D) CD/TOS/FA NPs. The distribution of 

different cell cycle phases in gated cells was counted (E), and the fold change in G1 phase after 

NP treatment was calculated and normalized to that of the control (F). 
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5.1.4 Discussion 

In this study, we demonstrated that LCCP NPs are an efficient targeted co-delivery system of 

hydrophobic anticancer drug α-TOS and hydrophilic functional CD siRNA for combination 

therapy of melanoma. The particle size and zeta potential of these α-TOS loaded LCCP NPs 

were similar to those of pristine LCCPs, when it just replaced 15% of DOPC/cholesterol in the 

outer lipid layer (Figure 5.1 and Table 5.1). To minimize the potential nonspecific interference 

in healthy cells, FA was conjugated on LCCP NPs to increase the targeted delivery to FA-

receptor overexpressing tumour cells, including B16F0. As a result, the FA conjugation led to 

more efficient NP internalisation by B16 melanoma cells, with the cost-effective efficacy 

achieved using 10% DSPE-PEG-FA and 10% DSPE-PEG in the outer lipid layer (Figure 5.2). 

We then evaluated the combination therapy of CD siRNA and α-TOS co-delivered with LCCP 

NPs. The CD/TOS/FA NPs exhibited a dose-dependent anticancer effect (Figure 5.3), which 

is additive to moderately synergistic (Table S5.5) and much stronger than the free drugs (Figure 

S5.5). Our study suggests that the targeted delivery of CD siRNA and α-TOS with LCCP NPs 

is a promising approach for the more effective treatment of melanoma. 

To understand the possible mechanism of the combination therapy, we examined the apoptotic 

status of cells treated with these NPs. CD siRNA and α-TOS together caused more cell 

apoptosis than single treatment (Figure 5.5). In this regard, the ROS production level and Bcl-

2 protein expression were further quantified. As shown in Figure 5.4 and 5.6 and previous 

studies [7, 30, 35, 36], α-TOS induces ROS production while CD siRNA tends to suppress Bcl-

2 expression. Interestingly, the combination of CD siRNA and α-TOS in LCCP NPs led to the 

highest ROS level and the strongest Bcl-2 suppression, which resulted in the highest inhibition 

of cell growth (Figure 5.3). In our opinion, these results may be a consequence of active 

interaction of the two pathways: (1) Bcl-2 down-regulation by increased ROS production; and 

(2) ROS level further enhanced by Bcl-2 suppression (Figure 5.8). It is well-known that ROS 

regulates Bcl-2 family proteins by both controlling expression levels and activity modulation 

via phosphorylation/ubiquitination [37, 38]. High intracellular ROS leads to the 

polyubiquitination of Bcl-2 protein, followed by degradation by ribosomal enzymes. On the 

other hand, Bcl-2 is able to prevent mitochondrion from producing excessive ROS due to its 

interaction and localization with GSH in mitochondrion [39, 40]. In our case, the scr/TOS/FA-

treated cells showed a strong ROS up-regulation (Figure 5.4), leading to mitochondrial damage 
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and cell apoptosis. The CD siRNA induced down-regulation of Bcl-2 protein and cell apoptosis 

(Figure 5.6). Consequently, the co-delivery nanoparticle CD/TOS/FA resulted in the highest 

cell apoptosis rate, showing the strongest inhibitory effect. 

Furthermore, the anticancer action also involved cell cycle arrest (Figure 5.7). α-TOS, as 

reported [31, 41], can cause G1 phase arrest, while the influence of CD siRNA on the cell cycle 

is not obvious. Therefore, the G1 phase arrest by CD/TOS/FA is mainly induced by α-TOS 

and can be facilitated by CD siRNA treatment because less Bcl-2 and more ROS cause 

mitochondrial damage [42-44], and leading to the cell cycle arrest at G1 [45]. 

Taken together, the CD/TOS/FA NPs cause cancer cell death more effectively due to the 

additive to moderately synergistic actions of α-TOS and CD siRNA in the induction of 

mitochondrial damage and cell apoptosis, and cell life cycle arrest in G1 phase (Figure 5.8).  

 

 

Figure 5.8 Proposed mechanism for CD siRNA and α-TOS B16 cancer cell growth inhibition. 

The anticancer action leads to (1) apoptosis and (2) cell cycle arrest. The treatment induces 

ROS production and Bcl-2 suppression, resulting in the damaged mitochondrion and cell 

apoptosis. Here, α-TOS further contributes to cell cycle arrest in G1 phase. Dash arrows: weak 

interactions; Black arrows: strong interactions. 
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5.1.5 Conclusions  

We have developed LCCP based NPs for co-delivery of CD siRNA and α-TOS with FA to 

specifically target skin cancer cells. FA-lipid and α-TOS were loaded in NPs by replacing 

DOPC/cholesterol in the outer layer lipid. The designed CD/TOS/FA NPs, with similar 

physical structure and physicochemical properties, were taken up effectively by B16F0 cells 

via the FA-mediated pathway in a dose-dependent manner. In particular, the combination of 

CD siRNA and α-TOS in LCCP NPs more effectively inhibited cell growth in an 

additive/synergic manner. The mechanism may involve in (1) an enhanced apoptotic effect 

through interactions between ROS generation and Bcl-2 down-regulation, and (2) the cell cycle 

arrest in G1 phase. Thus the CD/TOS/FA NPs hold great potential as a promising anticancer 

formulation for melanoma therapy. 

 

5.1.6 Future Perspective 

The hybrid LCCP NPs developed in this study can be used as platforms for cancer theranostics 

in the future. The incorporation of calcium carbonate in the particle cores could generate 

carbon-dioxide under acidic conditions, which may be used for ultrasonic diagnosis of cancer. 

In addition, other hydrophobic drugs with similar structure to α-TOS (such as γ-tocotrienols) 

can be also loaded onto the LCCP NPs for cancer therapy. Moreover, other forms of therapeutic 

oligos, such as pDNA, dsDNA, and shRNA can be delivered by LCCP NPs for other 

combination therapy regimens. Nevertheless, more work is needed to develop lipid-coated 

calcium phosphate/carbonate materials for cancer diagnosis and/or therapy.  
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5.1.8 Supplementary Information 

 

 

Figure S5.1 (A) The models after α-TOS intercalation. Surface area of each model was 

calculated by the topological surface area values from PubChem database (see in Table S5.3), 

and compared with the initial LCCP NP. (B) The similarity of α-TOS to DOPC and cholesterol, 

with similar structure marked. 
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Figure S5.2 Negative staining TEM image for (A) LCCP NPs and (B) LCCP with 15% α-TOS.  

 

 

Figure S5.3 The mean fluorescence intensity comparison of cells treated FA10-PEG10 NPs 

with and without 15% alpha-TOS in the outer layer lipid. Cells were co-cultured with NPs with 

25 nM dsDNA-cy5 for 4 h in DMEM with 10% FBS. 
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Figure S5.4 Effect of scr/FA and CD/FA (100 mg/L) on B16F0 cell growth. 
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Figure S5.5 The comparison of cancer cell inhibition effect of free CD siRNA/α-TOS and 

particle-loaded. Two conditions were chosen: (1) 12 nM of CD siRNA with 5 µM of α-TOS; 

(2) 24 nM of CD siRNA with 10 µM of α-TOS. 

 

 

Figure S5.6 RT PCR at 24 h post transfection. Cells were treated with NPs containing 24 nM 

CD siRNA and/or 10 uM TOS. The Bcl-2 expression was normalized by the corresponding β-

actin expression. 

 

Table S5.1 The detailed sequences used in this work. 

Name  Supplier Sequence   

dsDNA-cy5 (sense) IDTDNA TTCTCCGAACGTGTCACGTTT-cyanine 5 

dsDNA-cy5 (antisense) IDTDNA AAACGTGACACGTTCGGAGAA 

scramble control (sense) Sigma  CUUACGCUGAGUACUUCGA 

scramble control (antisense) Sigma  UCGAAGUACUCAGCGUAAG 

 

The sequence of CD siRNA is unrevealed by the company. 
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Table S5.2 Detailed outer layer lipid composition (%) and DNA/RNA loading (ng) of all 

nanoparticles mentioned. 

Code  Outer layer lipid composition (%) DNA/RNA input (nmol) 

DOPC Cholesterol α-TOS DSPE-

PEG-FA 

DSPE-

PEG 

dsDNA-

cy5 

Scramble 

siRNA 

CD 

siRNA 

α/DOPC 35 50 15 - - - - - 

α/ChoL 50 35 15 - - - - - 

α/DOPC/ChoL 42.5 42.5 15 - - - - - 

α/BLK 50 50 0 - - - - - 

FA0-PEG20 40 50 - 0 10 0.3 - - 

FA5-PEG15 40 50 - 2.5 7.5 0.3 - - 

FA8-PEG12 40 50 - 4 6 0.3 - - 

FA10-PEG10 40 50 - 5 5 0.3 - - 

FA20-PEG0 40 50 - 10 0 0.3 - - 

CD/FA 40 50 0 5 5 - 0 0.3 

scr/TOS/FA 32.5 42.5 15 5 5 - 0.3 0 

CD/TOS 32.5 42.5 15 0 10 - 0 0.3 

CD/TOS/FA 32.5 42.5 15 5 5 - 0 0.3 

 

Table S5.3 The estimation of NP’s surface area changes according to their outer layer lipid 

composition. The topological polar surface area values were obtained from PubChem database 

as: DOPC = 111 Ǻ2, cholesterol = 20.2 Ǻ2, and alpha-TOS = 72.8 Ǻ2. 

Sample code Lipid molecule number Area 

(nm2) 

A/ABLK 

DOPC Cholesterol Alpha-TOS 

α/BLK 3835 3835 0 5031.5 1.00 

α/DOPC 2684 3835 1151 4591.8 0.91 

α/DOPC/ChoL 3260 2684 1151 5115.0 1.02 

α/ChoL 3835 2684 1151 5636.9 1.12 

 

According to the literature, the lipid molecule number on each nanoparticle is estimated 

using the equation below: 

NFA = P×4π (d/2)2/a  
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Where P is the percentage of the specific lipid in the outer layer, d is the diameter of 

nanoparticle obtained from light scattering measurement and taken as 40 nm, and a is the 

average area per lipid molecule, and calculated as a = a1N1 + a2N2 + … anNn, where N is the 

molar fraction of each component.  The approximate area was shown in Table S5.1. 

  

As the topological polar surface area (a) of DOPC is far larger than that of cholesterol (1.11 

nm2 v.s. 0.202 nm2, data obtained from PubChem database), the decrease of DOPC in the outer 

layer from 50% to 35% may result in less close-contact outer layer (Figure S1A, defective 

model). On the contrary, the decrease of ChoL in the outer layer would lead to a crowded lipid 

outer layer (Figure S1A, oversaturated model). According to a calculation, 15% α-TOS 

replacement would cause about 10% surface area change (decrease in α/DOPC NPs and 

increase in α/ChoL NPs) compared to the pristine one (α/BLK NPs), whereas the 

α/DOPC/ChoL NPs remains similarly. 

 

Table S5.4 The effect of gene loading on the physiological features of LCCP NPs with 15% 

alpha-TOS loading. 

Particles Number-mean 

Particle Size (nm) 

PDI Zeta potential 

(mV) 

Loading 

efficiency (%) 

Without genes 40.8±1.4 0.33 -18.8±1.3 - 

With genes 39.2±1.2 0.38 -22.6±1.2 62.6% 

 

Table S5.5 Analysis of the coefficient of drug interaction (CDI) of CD siRNA and alpha-TOS 

using the mean values of cell viability (%). 

Concentrations  Cell viability  CDI* Effect  

CD siRNA (nM) TOS (µM) CD/FA scr/TOS/FA CD/TOS/FA 

3 1.3 0.92 0.90 0.79 0.95 Moderate 

synergistic 

6 2.5 0.86 0.87 0.64 0.86 Moderate 

synergistic 

12 5 0.82 0.82 0.56 0.83 Moderate 

synergistic 
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24 10 0.80 0.54 0.44 1.01 Additive 

48 20 0.74 0.51 0.34 0.90 Moderate 

synergistic 

 

* CDI = [CD/TOS-FA] / ([CD/FA]*[TOS-FA]) 

Where CDI < 0.7 indicates a strong synergistic effect, CDI < 1 indicates a synergistic effect, 

CDI = 1 indicates an additive effect, and CDI > 1 indicates an antagonistic effect. 

 

Table S5.6 The comparison of cell viability of CD/TOS-FA and other kind of NPs with free 

CD siRNA and/or alpha-TOS supplement.  

CD siRNA 

(nM) 

TOS  

(µM) 

CD/TOS/FA CD/FA   

+TOS 

scr/TOS/FA  

+CD 

scr/FA   

+CD/TOS 

3 1.3 79.27 95.36 97.83 93.05 

6 2.5 64.43 75.00 96.13 89.78 

12 5 56.04 66.40 71.80 76.02 

24 10 44.97 60.59 60.06 65.91 

48 20 34.32 54.82 56.60 65.06 
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5.2 In vivo work  

In this section, we utilized the CD/TOS/FA NPs to treat a metastatic 4T1 tumour model in 

Balb/c mice. All NPs were synthesized using the optimised condition reported in the previous 

Section 5.1. The inhibition of tumour growth and metastasis was evaluated. We found that the 

CD/TOS/FA NPs significantly enhanced the efficacy of inhibiting cancer growth, compared 

with the control group. Moreover, fewer metastatic clones were found in both lung and liver. 

No significant cytotoxicity (pathology) were seen in major organs by the treatment. In 

conclusion, the designed CD/TOS/FA NPs have provided an enhanced anticancer ability by 

gene/drug combination therapy. 

5.2.1 Experimental section 

5.2.1.1 Materials 

All chemicals used in this work were from Sigma-Aldrich (St Louis, MO) if no specific 

mentioned. NPs were prepared as previously described. The deionised Milli-Q water (Ω = 18.2 

at 25 ℃) was used for all experiments. All materials were stored and used according to the 

manufactory’s guide without further modification. 

5.2.1.2 Cell culture 

The mouse 4T1 cells were obtained from American Type Culture Collection (ATCC), and 

cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), and 1% 

penicillin/ streptomycin if no specific mention. The cells were routinely incubated in at 

incubator pre-set at 37 ℃ with 5% CO2 under certain humidity. The 0.25% trypsin with EDTA 

was used to subculture cells.  

5.2.1.3 Mouse model 

All animal experiments were processed according to the protocols approved by the University 

of Queensland’s Animal Ethics Committee (AE224_18). The 6-8 week old female Balb/c mice 

were randomly divided into the following 4 groups (n = 5): saline group, CD/FA group, 

scr/TOS/FA group, and CD/TOS/FA group. All mice were subcutaneously (s.c.) inoculated 

with 2×106 of 4T1 cells suspended in serum and antibiotics free medium to the left flank on 

day -14, followed by a second s.c. inoculation with 1×106 of 4T1 cells to the right flank on day 

-7. When the tumour volume reached 50-70 mm3 at day 0, the mice were intraperitoneally 

injected with saline, or NP suspension containing 0.2 mg/kg CD siRNA and/or 5 mg/kg α-TOS. 
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The treatments were repeated at day 2, 4, and 6 with the same dosage. The tumour size and 

body weight were recorded every other day. Mice were sacrificed when the average tumour 

size of this group reached the ethics permission (1000 mm3
). The tumour volume (V) was 

calculated using a simple algorithm equation: V = 0.5×length×wide2.  

5.2.1.4 Organ dissociation  

The freshly harvested liver and lung were dissociated for metastasis clone culturing according 

to the reported protocol [1]. In brief, the whole organs were cut into dices and merged into 

collagenase IV (1.5 mg/mL in PBS, Sigma). After 1 h digestion at 37 ℃, the tissue was spun 

down and treated with a dispase (2 mg/mL in PBS with calcium/magnesium, Sigma) and 

DNase (0.1 mg/mL, Sigma) cocktail for 10 min at 37 °C. The digestion was ceased by exceeded 

medium to form 10 mL cell suspension (as 1:10 dilution), followed by passing through a 70 

µm strainer to obtain the singlet cells. The cells were then cultured in 6-well plates in a series 

of dilution (1:10-1:250). All culturing was performed in medium containing 60 µM of 6-

thioguanine to select 4T1 cancer cells. After 20 days selection, the 4T1 tumour clones were 

fixed with 4% paraformaldehyde (PFA) for 30 min, followed by visually staining by 0.1% 

crystal violet for another 30 min. The images were taken and analysed using ImageJ software 

to quantify the clone area. The metastasis index was calculated (clone area% × dilution) to 

represent the cancer metastasis. 

5.2.1.5 Histopathological analysis and imaging 

The freshly harvested organs were merged in 4% PFA, followed paraffin inclusion to prepare 

5 µm thick sections. Haematoxylin-eosin (H&E) staining was performed for histological 

analysis. Tissue slides were imaged using an Olympus BX61 light microscope.  

5.2.1.6 Statistical analysis 

In all experiments, date shown were representatives that performed at least two time. When 

applicable, statistical analysis was performed by student’s t-test using GraphPad if no further 

instructions. The difference with a p-value <0.05 was deemed significant at a minimum. *, p < 

0.05; **, p < 0.01; ***, p < 0.001; and ****, p < 0.0001. 

5.2.2 Results 

The inhibitory effect on 4T1 cell growth by NPs was evaluated by MTT assay in vitro (Figure 

5.9A). All NP treatments inhibited cell growth in a dose-dependent manner. In general, the 
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CD/TOS/FA NPs exerted a comparable efficacy to scr/TOS/FA NPs, but were more efficient 

than CD/FA NPs. These data suggest CD/FA NPs had a weaker influence on 4T1 cell growth. 

In comparison, these NPs performed similar inhibitory effect on 4T1 and B16F0 cells (Figure 

5.9 vs. Figure 5.3), suggesting the CD/TOS/FA NPs could be applied as nanomedicines for the 

combination therapy of multiple types of cancer. The effects of NP treatment on 4T1 tumour 

growth in Balb/c mice were shown in Figure 5.9. The tumour size of mice with placebo (saline 

group) quickly reached 1000 mm3 at day 10, whereas the mice treated with different NPs 

showed 57.8% (CD/FA group), 51.6% (scr/TOS/FA group), and 28.4% (CD/TOS/FA group) 

tumour sizes, compared to saline control group on that day (Figure 5.9B). At day 14, mice 

exerted 1036, 932, and 428 mm3 of tumour in CD/FA, scr/TOS/FA, and CD/TOS/FA groups, 

respectively (Figure 5.9B). A similar trend was observed in tumour weight on the same day 

(Figure 5.9C). The average weight of tumour in these three groups were 1.20 g, 1.10 g, and 

0.52 g. These data indicate all NPs can inhibit 4T1 tumour growth compared to the control 

group. Moreover, the CD/TOS/FA NP presented the strongest anticancer ability compared to 

CD/FA and scr/TOS/FA NPs in all cases, suggesting gene/drug combination therapy performs 

enhanced inhibition to in situ primary cancer growth. These results are in accordance with our 

in vitro data obtained with B16F0 [2] and 4T1 cells, suggesting CD/TOS/FA NPs exerts 

enhanced anticancer efficacy in multiple cancer cell lines. Generally, significant body weight 

loss indicated server adverse effect or other health concerns [3]. As shown in Figure 5.9D, a 

slight weight increase (< 2 g) was observed in all groups during the treatment period. The result 

suggested no noticeable systematic toxicity was observed. 
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Figure 5.9 The inhibitory effect of NPs on 4T1 cells and the xenograft tumour growth. (A) 

The inhibition of 4T1 cancer cell growth by NPs in vitro. (B) Tumour growth curve represented 

by tumour size, (C) the tumour weight at Day 14, and (D) the body weight curves of mice with 

various treatment. Coloured stars indicating the statistical analysis results between the 

corresponding group and saline control. Black stars indicating the analysis result between the 

two indicated groups. Purple arrows indicating the injections of NPs and saline. 

 

We next examined the effect of different treatments on 4T1 metastasis to lung and liver. As 

shown in Figure 5.10A, 4T1 clones (purple dots) were detectable in both lung and liver, with 

lung tissues presented more clones than liver in all cases. The metastasis index was calculated 

by purple area index × dilution, and used to quantify the severity of metastasis (Figure 5.10B). 

The saline group showed highest metastasis index in lung (61830) and liver (5438) compared 

to the groups with NP treatment. In contrast, CD/TOS/FA group presented the lowest 

metastasis index (1135 in lung and 31 in liver) in this experiment. CD/FA and scr/TOS/FA 

groups showed moderate index values in lung and liver. The results suggest both CD siRNA 

and α-TOS treatment can inhibit 4T1 metastasis to lung and liver, and the combination of gene 

and drug provide the best treatment efficacy. Specifically in liver, scr/TOS/FA treatment 

exerted a metastasis index that was 35.5 fold higher than that of CD/FA treatment (2669 vs. 
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75). This result suggested α-TOS treatment was not efficient at inhibiting 4T1 metastasis, 

especially in liver. 

 

Figure 5.10 The metastasis detection in lung and liver. (A) Digital images of metastatic clone 

stained with crystal violet, and (B) the statistical data of metastasis index. 

 

To further verify the metastasis in lung and liver, and check the treatment influence on organs, 

the H&E staining of major organs were taken for histopathological examination. Figure 5.11 

showed the lung histopathological changes after treatment. The lungs in the saline group 

showed significant abnormal structure, and alveolar decrease. No typical metastatic tumour 
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nodules were clearly observed, suggesting the tumour cells may not evenly metastasize to the 

whole organ. In CD/FA and scr/TOS/FA groups, the typical alveolar structure was still 

observed. Typical tumour nodules with abnormal structure and slightly faint colour were 

captured (black arrow indicated). The morphology changes suggested moderate metastasis to 

lung after treatment. For the lung images obtained from CD/TOS/FA group, a structure with 

abundant alveolar was observed, and almost no tumour nodules and colour changes were found 

in the stained sections. The results indicated CD/TOS/FA treatment decreased the lung 

metastasis to the largest extent. The histological examination results were in accordance with 

that obtained from metastatic clone culture (Figure 5.10). The histological images of lung with 

4T1 metastasis were similar to those reported previously [3, 4]. In addition, we did not find any 

morphology changes in lung cells and blood cells, suggesting our NPs were not toxic to this 

tissue. 

 

Figure 5.11 Histological examination of lung tissue sections with hematoxylin and eosin 

staining after treatment. Samples were taken with a 10× objective lens. Black arrows: typical 

metastatic tumour nodules. 
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The histological images of liver were shown in Figure 5.12. As shown in Figure 5.12A, some 

area with abnormal dark colour was observed around the central vein (CV) in these images. 

One of a typical CV was enlarged in each section for examination in Figure 5.12B. In saline 

group, a large cluster of metastatic cells was found, suggesting the 4T1 cancer cells were able 

to metastasize to liver through CV. Much less and smaller metastatic cell clusters were found 

in CD/FA, scr/TOS/FA, and CD/TOS/FA groups around CV in the zoom images in Figure 

5.12B, suggesting these treatments led to metastasis inhibition. The histological examination 

confirmed the metastasis results obtained from clone culturing (Figure 5.10). In addition, some 

dark and small singlet cells were found in the sinusoid. These cells should be lymphocytes, 

suggesting these livers were under inflammatory condition due to cancer progression. The 

histological images of lung with 4T1 metastasis were similar to those reported previously [5, 

6]. As shown, hepatocytes in all these section images displayed similar morphology, suggesting 

all treatments did not cause extra changes to normal liver cells. 

 

Figure 5.12 Histological examination of liver tissue sections with hematoxylin and eosin 

staining after treatment. (A) Section images captured with a 10× objective lens. (B) 

Enlargement of a typical CV in the dash line area in (A). Black arrows: typical metastatic 

tumour clusters. 
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The H&E images of heart, spleen, and kidney were shown in Figure 5.13. In general, no 

obvious changes were observed in all these organ sections. The enlarged images (data not 

shown) did not present any abnormal cells or regions, suggesting no significant cancer 

metastasis or treatment-related organ damage happened in these organs. These images 

indicated our NP related treatments are safe to these organs. 

 

Figure 5.13 Images of heart, spleen and kidney sections stained with hematoxylin and eosin 

under 4× objective lens. 

 

5.2.3 Conclusion 

In this study, the well-designed CD/TOS/FA NPs were used to treat 4T1 tumour. The 

CD/TOS/FA NPs led to more significant inhibition of in situ cancer growth compared to NPs 

loading with only one therapeutics. Moreover, the NPs can minimize 4T1 metastasis to both 

lung and liver during progression. In particular, the combination of CD siRNA and α-TOS drug 

exhibited a remarkable decrease in both metastatic cancer clones and lesions in the lung and 

liver. Therefore, our designed CD/TOS/FA NPs provide a promising approach for targeted 

gene/drug combination cancer therapy. 
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Preventing cancer metastasis is one of the remaining challenges in cancer therapy. As an 

efficient nature product, alpha-tocopheryl succinate (α-TOS), the most effective form of 

Vitamin E, holds a great anticancer potentiality. To improve its efficacy and bioavailability, 

the lipid-coated calcium carbonate/phosphate (LCCP) nanoparticles (NPs) with folic acid and 

PEG modification were synthesised for efficient delivery of α-TOS to 4T1 cancer cells. The 

optimised LCCP-FA NPs (NP-TOS15) showed an α-TOS loading efficiency of ⁓60%, and 

enhanced the uptake by 4T1 metastatic cancer cells. Consequently, the NP-TOS15 NPs 

significantly enhanced the anticancer effect in combination with interferon-gamma (IFN-γ) 

treatment in terms of apoptosis facilitation and migration inhibition. Importantly, NP-TOS15 

upregulated the anticancer immunity via downregulating program death ligand 1 (PD-L1) 

expression induced by IFN-γ, and remarkably prevented the lung metastasis, particularly in 

combination with IFN-γ. Further investigation revealed that this combination therapy also 

modulates the cytotoxic lymphocyte infiltration into the tumour tissue for tumour elimination. 

Taken together, the NP delivery of α-TOS in combination with IFN-γ provides an applicable 

strategy for cancer therapy. 
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6.1 Introduction 

Cancer has been recognised as the leading cause of death worldwide. Apart from the morbidity 

associated with unrestrainable tumour growth, cancer metastasis remains the most significant 

cause of cancer-related death, due to the limited success of controlling metastatic progression 

[1, 2]. As is well known, the tumour invasion is companied with the modulation of the 

microenvironment and the suppression of anticancer immunity at the early stage [3, 4]. During 

this modulation, the immune cells are reshaped by tumour milieu to fulfil tumour invasion 

requirements. Therefore, enhancing the anticancer immunity will benefit the treatment of 

highly metastatic cancers.  

Cytokines, small peptides secreted by immune cells, affect cell signalling and 

immunomodulation and are often employed in preventing cancer progression. One example is 

interferon-gamma (IFN-γ), a typical anticancer cytokine produced by activated T cells and 

natural killer cells. IFN-γ facilitates anticancer immunity via recruiting highly immunogenic 

cells such as CD4+ and CD8+ T cells, and infiltrates M1 phase tumour associated macrophages 

(TAMs) [5].  However, most of the clinical trials have failed in inhibiting cancer progression 

by IFN-γ [6]. The major reason is that long-term exposure to IFN-γ causes adaptive cancer 

immune resistance [3]. The most important mechanism of this resistance is induction of 

program death-ligand 1 (PD-L1) expression on the tumour surface. PD-L1 binds to its receptor 

program death 1 (PD-1) expressed on T cells, causing the inactivation of T cells and cancer 

immune escape [7]. In clinical, high PD-L1 expression correlates with metastasis and poor 

prognosis [8, 9]. Unlike the endogenous controlled expression of constitutive PD-L1s [10], 

IFN-γ-induced PD-L1 expression is associated with a quick response of the p65 subunit to IFN-

γ stimulation for the nuclear factor kappa B (NF-κB) signalling in cancer cells [11].   

To maintain the positive but minimise the negative effect on the anticancer immunity,  IFN-γ 

treatment has been often combined with other therapy, such as chemotherapy [12, 13]. Some 

natural products, such as vitamins and their derivates, are able to reverse IFN-γ-mediated 

immune resistance. One example is alpha-tocopheryl succinate (α-TOS), the most effective 

derivate form of vitamin E that is often used in cancer treatment. As a broad spectrum 

anticancer agent, α-TOS has been reported to induce significant apoptotic cell death in about 

50 cancer cell lines [14]. Related studies reveal that α-TOS exerts selective toxicity to cancer 

cells, with low toxicity to the non-cancer cells [15-17]. Moreover, α-TOS regulates the anti-



Chapter 6 Enhanced Prevention of Breast Tumour Metastasis by Nanoparticle-
delivered Vitamin E in Combination with Interferon-gamma Treatment 

142 
 

tumour immunity. Previous investigations indicate that α-TOS activates T cells and has been 

combined with other cancer treatment to facilitate the therapy [18, 19]. Particularly, α-TOS is 

able to regulate NF-κB signalling by limiting its typical protein p65’s translocation [20]. In this 

context, we hypothesise that combining α-TOS with IFN-γ inhibits the tumour growth and 

moreover promotes suitable anti-tumour immunity for effective prevention of tumour 

metastasis. 

Here is an issue that the application of α-TOS requires a high dose mainly due to its poor water 

solubility and bioavailability. Thus, a proper delivery system is required. The lipid-coated 

calcium carbonate/phosphate (LCCP) nanoparticles (NPs) have been proven to be efficient in 

gene/drug delivery in vitro and in vivo [21-23]. As demonstrated in our previous study, the 

outer lipid layer of LCCP NPs is able to load α-TOS, with further modifications for long 

circulation (PEGylation) and tumour targeting delivery (with folic acid, FA) [23]. In this 

research, we aimed to develop such a nano-platform and confirm whether NP-loaded α-TOS is 

able to inhibit tumour growth and prevent tumour metastasis in combination with IFN-γ 

treatment. Our data have revealed that NP-formulated α-TOS efficiently inhibited tumour 

growth and downregulated PD-L1 expression induced by IFN-γ, so as to promote anti-tumour 

immunity and prevent tumour metastasis. This research has thus provided a new cancer 

therapeutic regimen by just combining two commonly-used biomolecule drugs (α-TOS and 

IFN-γ) not only for the treatment of the primary metastatic tumour, but also for prevention of 

tumour metastasis.  

 

6.2 Experimental 

6.2.1 Materials 

All chemicals were purchased from Sigma-Aldrich (St Louis, MO) if not specially mentioned. 

Antibodies were from BioLegend Inc. (San Diego, CA), with catalogue numbers shown in 

Table S6.1. All lipids were obtained from Avanti Polar Lipid. Mouse recombinant IFN- γ was 

from BioLegend Inc., and human recombinant IFN-γ was from Abcam. All chemicals and 

biomaterials were stored and used according to the manufactory’s guide, without further 

modification.  
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6.2.2 Synthesis and characterisation of LCCP NPs loaded with α-TOS (NP-TOS)  

The preparation of α-TOS loaded (NP-TOS) NPs was based on our previous method, with 

slight modification [23]. In particular, the molar percentage of each lipid composition in the 

second layer (Table S6.2) was tested in this research. The NPs were coded as NP-TOS0, NP-

TOS15, NP-TOS20, and NP-TOS 30 according to the initial α-TOS percentage used for the 

second lipid layer. To prepare FITC labelled NP-TOS15 NPs (NP-TOS15-FI), BSA-FITC was 

added in the phosphate/carbonate micro-emulsion before mixing with calcium micro-emulsion. 

To prepare Rh-PE labelled NP-TOS15 NPs (NP-TOS15-Rh-PE), an extra 0.5 mol% of 18:1 

Liss Rhod PE lipid was included in the second lipid layer. 

The loading efficiency of α-TOS was examined by measuring its absorbance at 278 nm after 

dissolving NP-TOS NPs in pH 5 buffer solution. For quantifying FITC and Rhod-PE, NP-

TOS15 NPs were dissolved in lysis buffer (2 mM EDTA, and 0.05% Triton X-100 at pH 7.8). 

The fluorescent intensity of the lysate was measured for FITC (Ex = 488 nm, Em = 525 nm) 

and Rhod-PE (Ex = 488 nm, Em = 585 nm) using a plate reader (BioTek, Winooski, VT, USA). 

The hydrodynamic diameter and zeta potential of NP-TOS15 were measured using a Malvern 

NanoSizer (Malvern, UK). All samples were dispersed in water at about 40 µg/mL. The 

morphology of NP-TOS NPs was observed using a transmission electron microscope (TEM, 

JEM-3010, ZEOL, Tokyo, Japan) by drying a drop of NPs on a 300 mesh carbon-coated copper 

grid. 

6.2.3 Cellular uptake of NP-TOS15 

The 4T1 cells from the American Type Culture Collection (ATCC) were grown in RPMI-1640 

medium supplemented with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin in 

an incubator at 37 °C with 5% CO2. The cells were seeded in a 24-well plate with acid-treated 

coverslip at a density of 2×105 cells per well and cultured overnight. Then cells were cultured 

in fresh medium containing NP-TOS15-PE NPs with 300 nM Rhod-PE for 4 h. The coverslips 

were rinsed with PBS and fixed in 4% PFA, then mounted on a slice with a drop of DAPI-

fluoshield. The specimens were visualised using a confocal laser scanning microscope. 

Similarly, cells were seeded in a 12-well plate at 105 per well for detecting the intracellular 

fluorescence using flow cytometry. After the overnight culture, the cells were fed with NP-

TOS15 NPs at 200 nM Rhod-PE and/or 1 µg/mL BSA-FITC. After culturing for 1-4 h, cells 
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were collected and re-suspended in PBS. The samples were analysed using a CytoFLEX flow 

cytometry (FACS, Beckman, IN). 

6.2.4 Anticancer activity of NP-TOS15 in vitro 

Cells were seeded in a flat-bottom 96-well plate at 8,000/well overnight. Then cells were 

treated with free α-TOS, NP-TOS15, and/or IFN-γ for 48 h. Fresh medium with MTT ((3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was replenished and after 4 h 

incubation, the medium was replaced by 100 µL/well DMSO to dissolve formazan crystal. 

Values presenting cell viability were determined by the absorbance at 570 nm on a Tecan plate 

reader. Cell viability was calculated accordingly [24]. 

The apoptosis/necrosis of treated cells was analysed using a FITC Annexin V Apoptosis 

Detection Kit (BioLegend). Briefly, 4T1 cells in a 12-well plate at 2×105/well were treated 

with IFN-γ (5 ng/mL), free α-TOS (20 µM), NP-TOS15 (10 µM) and IFN-γ/NP-TOS15 (5 

ng/mL and 10 µM) for 24 h. The cells were then collected and suspended to 106 cell/mL in 

Annexin V binding buffer, followed by adding 5 µL FITC Annexin V and 10 µL propidium 

iodide (PI) to each 0.1 mL suspension and incubating in the dark for 15 min. Then 400 µL of 

Binding buffer was added in each sample to cease the staining. Cells were analysed using a 

Beckman flow cytometer. Untreated cells without staining or with single staining were used 

for control to adjust the compensation. 

The cell cycle analysis was performed using 12-well plates seeded with 2×105 4T1 cells in each 

well. After overnight culturing, cells were treated with IFN-γ (5 ng/mL), free α-TOS (20 µM), 

and/or NP-TOS15 (10 µM) for 24 h. Then the cells were harvested and fixed at 4 °C for 30 

min using pre-chilled 70% ethanol, followed by staining with PI (50 µg/mL). The samples were 

analysed using a Beckman FACS flow cytometer. Singlet cells were gated for cell cycle phase 

analysis according to their PI intensity as Sub G1 (0-120 k), G1 (120 k-200 k), S (200 k-240 

k), and G2/M (240 k-400 k). 

6.2.5 NP-TOS15 effect on cell migration  

The migration ability of 4T1 cells was assessed by the wound healing in vitro model. Briefly, 

2×105 cells /well were seeded in a 12-well plate and cultured for 24 h to fully spread in the 

well. Then the wound was artificially made using a 200 µL yellow tip drawing a straight line 
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in each well. After washing with PBS to remove suspended cells, 1 mL of medium without 

FBS and PS was added in each well, containing 10 µM α-TOS or 5 µM NP-TOS15 in the 

presence/absence of 5 ng/mL IFN-γ. After 24 h treatment, the medium was replenished by fresh 

medium (FBS and PS free) for another 24 h culturing. Cells in complete medium with FBS/PS 

for 48 h, or with/out IFN-γ for 24 h were imaged to assess the influence on migration. The 

digital images were taken at 0 h, 24 h, and 48 h after wounding. The width of the wound was 

randomly measured in 6 places using ImageJ software and the average cell migration degree 

and average migration distance were calculated:  

Migration degree = 100% × (WW0-WWt)/WW0 

Migration distance = (WW0-WWt)/2 

where WW0 is the wound width at 0 h and WWt the wound width at t h post treatment.  

6.2.6 Evaluation of surface and intracellular PD-L1 expression 

For surface PD-L1 expression detection, 105/well of 4T1 cells were seeded in a 12 well plate 

overnight, followed by 48 h treatment with IFN-γ, free α-TOS, NP-TOS and IFN-γ/NP-TOS15. 

The treated cells were then collected and stained with 1:1000 diluted PE-conjugated anti-mouse 

PD-L1 antibody (BioLegend) in FACS buffer (PBS containing 2% FBS). After 20 min staining, 

cells were rinsed with FACS buffer before analysis in a Beckman FACS flow cytometer. 

Similarly, this experiment was done in B16F0 and MCF-7 cell lines, with PE-conjugated 

mouse/human anti-PD-L1 staining.  

For determining intracellular PD-L1 expression, the treated cells were stained with PD-L1 

antibody firstly, then permeabilised with 1% saponin, and restained with PD-L1 antibody. Cells 

without first or second PD-L1 antibody staining were similarly prepared for comparison.  

To prepare samples for reverse transcription PCR (RT-PCR), 4T1 cells were seeded in 6-well 

plates (4×105 cells/well) overnight. After treatment with IFN-γ, free α-TOS, NP-TOS15 and 

IFN-γ/NP-TOS15 for 24 h, the cells were rinsed and harvested in Trizol reagent (1 mL/well). 

The total RNA was extracted and the reverse transcription was performed using a High capacity 

RT kit (Invitrogen). Rea-time RT-PCR was carried out to quantify the expression of PD-L1 

mRNA gene. Mouse β-actin was recorded in the same assay as the internal control for 

calculating the relative expression of PD-L1 mRNA gene.  
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To prepare cell fractionation lysate, 6-well plates were seeded with 106 /well of 4T1 cells. After 

1 h treatment with IFN-γ, free α-TOS, NP-TOS15 and IFN-γ/NP-TOS15, the cells were 

collected and fractionated in a lysis buffer (20 mM HEPES, 10 mM KCl, 2 mM MgCl2, 1 mM 

EDTA, 1 mM EGTA, 1 mM DTT, and 1×PI cocktail, pH adjusted to 7.4). The samples were 

kept on ice for about 40 min to allow adequate lysis, with the help of passing through a 25G 

needle occasionally. The suspension was centrifuged at 3,000 rpm for 10 min to harvest the 

pellet containing nuclei and supernatant containing cytoplasm. Nuclei were resuspended in 

RIPA buffer and homogenised to briefly shear the genomic DNA. Western blotting for nuclei 

and cytoplasm was conducted according to the previous protocol [23].  

The confocal microscope observation of p65 protein was performed using the same method as 

for cellular uptake. The anti-p65 antibody (BioLegend) was incubated at 4°C overnight and the 

Alex 488-anti Rabbit IgG antibody (Abcam) was incubated at the ambient temperature for 1 h. 

Both antibodies were used at the recommended dilutions. 

6.2.7 Evaluation of in vivo antitumor activity  

All experiments were approved by the University of Queensland, and carried out in accordance 

with the institutional guidelines for animal experimentation. Female Balb/c mice at 6-8 weeks 

old were used for this set of experiment. For tumour model establishment, 2 million of 4T1 

cells suspended in PBS were subcutaneously inoculated to the left flank of mice. When the 

tumour grew to about 100 mm3 in volume, saline containing NP-TOS15 (5 mg/kg α-TOS 

equivalent) and/or IFN-γ (0.25 mg/kg, equivalent 5×105 IU/kg, BioLegend) was injected to 

each mouse intraperitoneally on day 0, 2, 4, and 6. Tumour size and body weight were 

measured with a digital calliper every other day. The tumour size was calculated using a simple 

algorithm (0.5×length×wide2). Mice were sacrificed at day 10 as the tumour volume in the 

saline group reached the permitted size. 

The freshly harvested organs were fixed in 4% PFA, followed by paraffin embedding to prepare 

5 µm thick sections. Haematoxylin and eosin (H&E) staining was conducted for histological 

analysis. The slices were examined using an Olympus BX41 light microscope with 4×, 10×, 

and 20× lens. 
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6.2.8 Lung metastasis detection 

Freshly harvested lung/liver tissues were digested using the method reported elsewhere [25]. 

After digestion, the tissue suspensions were spun down at 400 g for 5 min to collect dissociated 

cells. The pellets were resuspended in 10 mL medium with FBS and antibiotics at a 1:10 

dilution, and passed through a 70 µm strainer. The obtained cells were then diluted to 1:100, 

1:500 and 1:1000 in 6-well plates for further culturing. To select 4T1 cancer cells against 

normal tissue cells, 60 µM of 6-thioguanine was supplemented to each well. The medium was 

refreshed 3-4 times during the culture. After culture for 40 days, the 4T1 clones were fixed 

with 4% PFA for 30 min, followed by staining with 0.1% crystal violet for 30 min. The images 

were taken and analysed using ImageJ software to quantify the area% of clones in each well. 

An average metastasis index (MI) for each specimen was calculated as  

𝑀𝑀𝑀𝑀 = �(Ai% × Ni)
3

𝑖𝑖=1

 

Where Ai% is the clone area, and Ni the dilution time 

6.2.9 Quantification of tumour cell population and surface marker expression 

Tumours were harvested at day 10 and digested with Collagenase IV (1.5 mg/mL in PBS with 

calcium/magnesium, Sigma) for 1 h at 37 °C, followed by dispase (2 mg/mL in PBS with 

calcium/magnesium, Sigma) and DNase (0.1 mg/mL, Sigma) cocktail for 10 min at 37 °C. The 

digestion was ceased by adding exceeded medium, and the singlet cell suspension was 

collected by passing through a 70 µm strainer. The cell number was counted using trypan blue, 

and adjusted to 108 cells/mL. The suspension was stained with APC-anti CD45, APC-anti I-

A/I-E, PE-anti PD-L1, FITC-anti CD4, PerCP-Cy5.5-anti CD8, and/or PE-anti PD-1 antibodies 

at recommended dilutions. After staining for 30 min, the cells were rinsed with FACS buffer 

and analysed using a Beckman flow cytometer. 

6.2.10 Statistical analysis 

In all cases, data are presented as the mean of at least two repeated data. When applicable, 

statistical analysis was performed by student’s t-test using GraphPad if no further instructions. 

Data with a p-value <0.05 were deemed significant at a minimum. *, p < 0.05; **, p < 0.01; 

***, p < 0.001; and ****, p < 0.0001.  
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6.3 Results 

6.3.1 Physicochemical features of LCCP NPs loaded with α-TOS (NP-TOS)  

The LCCP NPs with DSPE-PEG and DSPE-PEG-FA modification was synthesised based on 

the method reported previously [23]. Accordingly, partial outer layer lipids of LCCP NPs were 

supposedly replaced by a portion of α-TOS, as shown in Table S6.2 in detail. The size and 

morphology of these NPs are illustrated in Figure 6.1A and S6.1. The α-TOS-loaded NPs 

showed a slight increase in the hydrodynamic diameter from 39.5±6.4 to 67.9±4.3 nm with the 

nominal molar percentage of α-TOS changing from 0% to 30% in the outer layer composition. 

Simultaneously, the PDI increased from 0.24 to 0.55, suggesting α-TOS loading resulted in a 

broader size distribution [23]. The TEM image in Figure 6.1B elucidated the morphology 

changes after drug loading. Generally, the LCCP NPs showed ~20 nm dark core coated with a 

faint lipid layer, in accordance with the shape of LCP and LCC NPs [26, 27]. The overall size 

of LCCP-α-TOS (NP-TOS) NPs in TEM images was about 30 nm in all cases. These 

observations indicate that α-TOS loading does not affect the basic shape of NP-TOS NPs, 

especially the core size. In Figure 6.1B, NP-TOS0 and NP-TOS15 showed singlet dispersed 

cores in their corresponding TEM images, consistent with their narrow PDI value obtained 

from DLS. In comparison, NP-TOS20 and NP-TOS30 exhibited some agglomeration in the 

TEM images (Figure S6.1). The agglomeration may be caused by the inclusion of α-TOS, 

which destabilize the outer layer in the aqueous phase considering the acetate group grafted on 

α-TOS reduces the amphiphilicity. Some irregular lipid packing was observed in the TEM 

image of NP-TOS30 (arrow indicated in Figure S6.1). Similarly, previous studies on 

phospholipid liposomes indicate that non-liposomal structures could be observed if the 

liposomal formulation containing ≥20 mol% of α-TOS [28]. As shown in Figure 6.1C, α-TOS 

loading led to the surface charge of NP-TOS NPs dropping from -15 mV to around -18 mV. 

The negative charge was attributed to the negatively charged carboxyl group in α-TOS in 

deionised water. 

As shown in Figure 6.1D, the loading efficiency of α-TOS was 60.0±2.0%, 47.4±1.9%, and 

35.0±0.7% in NP-TOS15, NP-TOS20, and NP-TOS30, respectively, corresponding to 

approximately 6.7, 7.0, and 7.6 wt% of the NP-TOS NPs. The α-TOS loading efficiency is 

comparable to that in previous reports [23, 29].  The loading efficiency was decreased with the 

increasing nominal loading, probably due to the short hydrocarbon chain of α-TOS and 

subsequent irregular lipid structure in the outer layer. Reduction of the phospholipid percentage 
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led to weak interactions between these biomolecules, thus losing some α-TOS payload. As NP-

TOS15 exhibited the highest α-TOS loading and a good size distribution with a narrow PDI, 

we chose this composition in the following experiments. NP-TOS15 NPs were also lyophilised 

for storage and further applications, which displayed the similar size and distribution after 

redispersed in deionised water under gentle sonication (Figure 6.1B). 

 

Figure 6.1 Characterisation of LCCP NPs with α-TOS loading (NP-TOS NPs). (A) 

Hydrodynamic size, and (B) morphology from TEM images of NP-TOS0, NP-TOS15 and 

redispersed NP-TOS15; (C) zeta potential of NP-TOS NPs in deionised water; (D) the loading 

efficiency of α-TOS for NP-TOS with different composition.  

 

6.3.2 Enhanced cellular uptake and inhibition of cancer cell growth and migration 

To monitor the particle structure integrity, 0.5 mol% of Liss-Rhod-PE phospholipid (Liss-PE) 

and BSA-FITC were loaded into the lipid layer and the core (NP-TOS15-FI/PE), respectively, 

for dual labelling (Figure 6.2A). As shown in Figure 6.2B, NP-TOS15-FI/PE increased the PE 

positive cell percentage and mean fluorescence intensity (MFI) when compared to free Liss-

PE lipids. Interestingly, the uptake profiles by 4T1 cells were very similar in terms of both PE 

and FITC positive cell percentage (Figure 6.2C). Furthermore, the confocal microscope images 
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(Figure 6.2D) display the overlapping distributions of two fluorescent molecules within cells, 

revealing that the NPs maintain the lipid-coated structural integrity after cellular internalisation. 

 

Figure 6.2 Cellular uptake and intracellular distribution of NP-TOS15-FI/PE. (A) The 

model of dual labelled NP-TOS15-FI/PE NP; Cellular uptake of 4T1 cells incubated with (B) 

free PE lipids or NP-TOS15-FI/PE, and (C) the influence of incubation time on positive cell 

percentage; (D) Intracellular distribution of NP-TOS15-FI/PE after incubating with 4T1 cells 

for 4 h. 

 

As shown in Figure 6.3A, both NP-TOS15 and free α-TOS displayed inhibition effect to 4T1 

cancer cells after 48 h treatment in a dose-dependent manner. The IC50 values for NP-TOS15 

and α-TOS were 5.0 vs. 22.3 µM, indicating the efficacy of NP-TOS15 was 4 times higher 

than that of free α-TOS. Moreover, the combination of α-TOS and IFN-γ treatment enhanced 

the cell apoptosis, as shown in Figure 6.3B. IFN-γ did not exert significant inhibition to 4T1 

cell growth at 5 ng/mL. The limited anticancer effect of IFN-γ in vitro is understood as IFN-γ-

mediated anticancer activity is majorly through activation of immune cells in vivo. However, 
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5 ng/mL of IFN-γ with 20 µM of free α-TOS and 10 µM of α-TOS in NP-TOS15 significantly 

decreased the 4T1viability from 68.0% to 45.1%, and 23.4% to 12.4%. The combination index 

calculated [30] (Figure S6.2) indicates that the combination treatment of IFN-γ and α-TOS in 

both formulations generated an additive to a moderate synergistic effect. 

 

Figure 6.3 The effect of NP-TOS15 and α-TOS combined with IFN-γ on cell growth and 

migration. (A) The inhibition of NP-TOS15 and free α-TOS to cells after 48 h treatment. (B) 

The effect of IFN-γ dose on the cells in 48 h combination. The influence on (C) apoptosis 

induction and (D) cell cycle arrest to 4T1 cells with 5 ng/mL IFN-γ, 20 µM α-TOS, and/or 10 

µM NP-TOS15 for 24 h. Migration distance of 4T1 cells in vitro with (E) 0 ng/mL and (F) 

5ng/mL IFN-γ. 

 

Furthermore, NP-TOS15 treatment resulted in increased early and late apoptosis (Figure 6.3C 

and S6.3A), as reported in the literature [20]. Specifically, this treatment increased the late 

apoptotic cells from 14.4% to 38.7% and the early apoptosis from 6.9 to 15.1%. The large 
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increase of late apoptosis upon NP-TOS15 treatment is mainly attributed to the enhanced 

cellular uptake (Figure 6.2) and subsequent cell death (Figure 6.3A). As expected, IFN-γ 

exhibited limited facilitation to early/late apoptosis when combined with α-TOS and NP-

TOS15 (Figure 6.3C and S6.3). Actually, IFN-γ induced limited cell apoptosis (Figure 6.3C).  

Interestingly, NP-TOS15 caused the significant cell cycle changes of 4T1 cells (Figure 6.3D 

and S6.3B). Compared to the control group, IFN-γ treatment led to no change in  the cell cycle 

composition, while  α-TOS-treated at 20 µM showed 10% increase in G1 phase (52% vs. 42%) 

and a small sub-G1 phase increase (21% vs. 17%) (Figure S6.3B), as  reported in previous 

literature [31]. In sharp contrast, NP-TOS15 treatment led to a significant sub G1 phase 

increase (43% vs. 17%), indicating a strong induction of apoptosis to cells, in consistence with 

our previous observation (Figure 6.3C). The IFN-γ combination treatment increased the sub 

G1 phase to 47%, further suggesting the limited apoptosis induced by IFN-γ. 

The 4T1 cell migration ability was examined in a 700-1000 µm wound model. The data are 

shown in Figure 6.3E and F and S6.4. Generally, free α-TOS or NP-TOS15-treated cells 

migrated at a much shorter distance (50-100 µm) in 24 h, suggesting that α-TOS inhibited 

cancer cell migration [32]. Meanwhile, exposure to IFN-γ (5 ng/mL) led the migration distance 

to be decreased from 184 to 75 µm (Figure 6.3E and F), similarly in previous studies [25]. The 

combination of α-TOS or NP-TOS15 with IFN-γ led to an even shorter migration distance. The 

similar trend was observed in cell migration degree (Figure S6.4). To minimise the wound 

healing mediated by cell proliferation, the above experiment was performed in serum-free 

medium. The serum-free control led to 20-25% decrease of cell migration degree (160-200 µm 

in distance) after 24-48 h. 

 

6.3.3 Suppression of PD-L1 expression upon NP-TOS15 treatment 

The single treatment of free α-TOS did not exert significant influence on pristine PD-L1 

expression in 4T1 (8% pristine PD-L1) and B16 (97% pristine PD-L1) cells, with exceptions 

at extremely high dose (80 µM, Figure S6.5).  In comparison, 5 ng/mL IFN-γ treatment led to 

a tremendous increase (8% to 72%) in PD-L1 expression on the 4T1 cell surface (Figure 6.4A). 

The PD-L1 induction by IFN-γ has been previously reported, and this regulation impairs the 

immunity for cancer therapy [3, 11].  
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Figure 6.4 The influence of α-TOS on IFN-γ induced PD-L1 expression and translocation 

of NF-κB. (A) The PD-L1 regulation effect of α-TOS and IFN-γ after 48 h. (B) The western 

blotting bands for NF-κB p65 protein located in nuclei and cytoplasm after 1 h treatment. (C) 

Immunofluorescent images for visualising the intracellular distribution of p65 subunit in NF-

κB complex. (D) The p65 index obtained from fluorescence located in nuclei area. 

 

Very remarkably, free α-TOS and NP-TOS15 in combination with IFN-γ downregulated IFN-

γ-induced PD-L1 expression in a dose-dependent manner (Figure 6.4A). To modulate PD-L1 

expression in 4T1 to a significantly low level (~20%), the α-TOS concentration was 4 times 

less for NP-TOS15 than for free α-TOS (10 µM v.s. 40 µM). As the blank NPs (e.g. NP-TOS0) 
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could not reverse PD-L1 induction (data not shown), the enhanced reversion efficacy of NP-

TOS15 is due to the enhanced α-TOS delivered by NPs (Figure 6.2). The PD-L1 induction by 

IFN-γ and reversion by α-TOS has been further verified by RT-PCR. As shown in Figure S6.6, 

the β-actin normalised PD-L1 expression suggested a limited influence of free α-TOS (20 µM) 

on pristine PD-L1 expression, but a significant upregulation upon IFN-γ (5 ng/mL) stimulation. 

Combined with 40 µM of α-TOS, the PD-L1 expression dropped to the level similar to that in 

the control group.  

Interestingly, intracellular PD-L1 induction was also reversed by α-TOS (Figure S6.7). 

According to calculated data in Table S6.3, free α-TOS only exerted weak inhibition to 

cytoplasm PD-L1, while this inhibition effect was enhanced in the combination therapy. 

Moreover, the effect that α-TOS reverses PD-L1 induction by IFN-γ was also observed in other 

cell lines such as MCF-7 and B16 (Figure S6.8), suggesting this down-regulation of PD-L1 

induction is not related to a certain specific cell line, but the instinct of α-TOS.  

Previous studies suggest that IFN-γ upregulates PD-L1 expression through regulating the 

translocation of NF-κB complex [11]. Therefore the migration of NF-κB, represented by its 

p65 subunit, was checked by western blot upon treatments (Figure 6.4B and S6.9). Within the 

initial 1 h, the IFN-γ treatment led to a quick accumulation of nuclear p65 protein by 2.4 times 

compared to the control. With α-TOS or NP-TOS15 involved in, the nuclear p65 decreased to 

a certain degree. Increasing the dose of α-TOS from 20 to 40 µM resulted in nuclear p65 

decreasing from 2.1 to 0.7 times of that in the control. Note that 10 µM of α-TOS in NP-TOS15 

treatment resulted in p65 nuclear accumulation (0.8 fold) comparable to that upon 40 µM α-

TOS treatment.  

Furthermore, the translocation of NF-κB p65 subunit was monitored via the 

immunofluorescence images (Figure 6.4C). The green signal from p65 antibody in the control 

group (first column) presented preferable accumulation in the cytoplasm. With 10 ng/mL IFN-

γ treatment, the p65-related fluorescence was evenly distributed in nuclei and cytoplasm. The 

combination of α-TOS or NP-TOS15 with IFN-γ resulted in the p65 amount in nuclei 

comparable to that of the control group, with little merged p65/green and DAPI/blue area 

around the nuclei. The nuclear p65 index from ImageJ software analysis indicates that the 

treatment influence on the p65 distribution was significant (Figure 6.4D). 
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6.3.4 Inhibition of tumour progression  

To validate the anticancer effect of NP-TOS15 in vivo, different formulations were injected 

intraperitoneally (i.p.) to Balb/c mice bearing 4T1 tumour every other day for 4 times. As 

shown in Figure 6.5A and anatomy images in Figure S6.10, IFN-γ, NP-TOS15, and NP-

TOS15/ IFN-γ formulations showed a significant antitumor ability with the tumour growth rate 

of 63.4±23.0%, 27.0±3.8%, and 20.7±6.8%, respectively. The in vivo inhibition rate thus 

confirmed the anticancer ability of NP-TOS15. The similar trend was also observed for the 

tumour weigh collected at day 10 (Figure 6.5B). The IFN-γ treatment showed a large variation 

in both the tumour size and the tumour weight, reflecting the mouse individual difference. Mice 

treated with NP-TOS15 and NP-TOS15/IFN-γ formulations had a similar tumour inhibition 

rate, indicating IFN-γ did not enhance NP-TOS15 therapy until day 10 post injection. No 

significant changes in the mouse body weight were observed within the treatment (Figure 

S6.11), showing the used NP formulations are in the safe level, together with the H&E images 

presented below (Figure S6.12). 

The 4T1 cells are able to metastasize to lung, causing the tumour recurrence after treatment 

[25]. However, early metastasis could not be observed from the morphology changes of the 

lung due to the limited cell number in this research (Figure S6.10). Therefore, the cancer cells 

from dissociated lungs were cultured to examine the early metastasis. As indicated in Figure 

6.6A, mice treated with placebo exerted the highest metastasis index. In comparison, much less 

metastatic clones and much smaller metastasis index values were found in the lungs from mice 

treated with other three formulations. The metastasis index is in accordance with the migration 

inhibition trend obtained from in vitro assay (Figure 6.3E-F), confirming IFN-γ and/or NP-

TOS15 did not compromise the inhibition of metastasis in vivo. A notable decrease of 

metastasis in the combination group (Figure 6.6B) was found, probably due to the combined 

anti-metastasis ability of both IFN-γ and α-TOS. 
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Figure 6.5 The anticancer effect of NP-TOS15 combined with IFN-γ in vivo. (A) Tumour 

growth curve, and (B) tumour weight in corresponding groups at day 10 post first injection 

were shown. (n = 5). Dosage for each injection: [IFN-γ] = 0.25 mg/kg, and/or [α-TOS] = 5 

mg/kg in NP-TOS15.  

 

To confirm the metastasis analysis, the H&E staining images of representative sections of lungs 

are illustrated in Figure 6.6C. Typical tumour nodules were observed in the saline group, 

visualising the metastasised cancer cells and their localisation as reported previously [33, 34]. 

Smaller and fewer nodules were found in lungs with IFN-γ and NP-TOS15 treatment, 

indicating the lung metastasis was inhibited by IFN-γ and NP-TOS15. After IFN-γ/NP-TOS15 

combination therapy, the mouse lungs presented almost no nodules, suggesting that the 

combination therapy has significantly enhanced the inhibition of metastasis. In addition, no 

obvious pathological lesions in the heart, liver, spleen, and kidney were found in the H&E 

stained tissue images (Figure S6.12), indicating the good biocompatibility of these 

formulations, which can serve as a safe delivery system in vivo. 



Chapter 6 Enhanced Prevention of Breast Tumour Metastasis by Nanoparticle-
delivered Vitamin E in Combination with Interferon-gamma Treatment 

157 
 

 

Figure 6.6 Inhibition of lung metastasis. (A) Images of 4T1 clones in plates, and (B) the 

histogram of metastasis index after selective incubation for 40 days with 60 µM of 6-

thioguanine.; (C) Typical images of lung tissue sections with H&E staining taken with 10× 

lens were shown. Black arrows indicate typical tumour nodules. 

 

6.3.5 Modulation of tumour immune microenvironment 

To assess the modulation of tumour microenvironment, we harvested the tumour and 

dissociated cells for FACS analysis (Figure 6.7). The tumour cell population was sorted as 

CD45 and MHC-II double negative, and gated in the lower panel (black box) in each cell 

distribution (Figure 6.7A). The grey gating (in the 1st and 2nd quadrant) suggests a population 
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of either CD45 or MHC-II positive, predominated by infiltrated leukocytes and antigen 

presenting cells, and the red gating (in the 1st and 4th quadrant) the PD-L1 positive cell 

population. As shown, the tumour cells and infiltrated lymphocytes were separated clearly by 

the gating. 

 

Figure 6.7 Modulation of the immune microenvironment. (A) Cell sorting information to 

obtain cancer cells for PD-L1 analysis. (B) PD-L1 expression in tumour population. Analysis 

of (C) CD4+, (D) CD8+, and (E) PD-1+ TILs in tumour.  

 

The PD-L1 expression in tumour cell population is shown in Figure 6.7B. Generally, IFN-γ 

induced PD-L1 expression, which could be reversed by NP-TOS in the same treatment, similar 

to the in vitro studies (Figure 6.4). IFN-γ treatment increased PD-L1 expression from 18% to 

23%, whereas NP-TOS15 treatment significantly decreased the tumour cell PD-L1 expression 

singly or in combination (Figure 6.7B). Note the endogenous IFN-γ would have some influence 

in all 4 groups, so the expression of PD-L1 could be further stimulated in mice treated with 

exogenous IFN-γ or IFN-γ/NP-TOS15. Therefore, NP-TOS15 treatment led to the lowest PD-

L1 expression in tumour cells and IFN-γ/NP-TOS15 the second lowest, as endogenous IFN-γ 
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was much less than the injected dose [35, 36]. The PD-L1 expression in CD45 and/or MHC-II 

positive population (Figure S6.13) is quite similar to that in the cancer cells but not significantly.  

Next, cells from tumour tissues were assorted by the CD45 expression for analysis of CD4+, 

CD8+, and PD-1+ tumour infiltrated lymphocytes (TILs, Figure S6.14 and S6.15). As shown in 

Figure S6.16, the recruitment of CD45+ cells was enhanced after IFN-γ and/or NP-TOS15 

treatment (32-35% v.s. 20% in the control group), suggesting the infiltration of leukocytes has 

surged. Moreover, the CD4+ and CD8+ TILs increased after IFN-γ/NP-TOS15 combination 

therapy (Figure 6.7D and E), indicating a pro-antitumor modulation in tumour 

microenvironment. In addition, an increase of CD8+ TILs in either IFN-γ or NP-TOS15 

treatment group were also observed compared to the control group (Figure 6.7E), as the 

treatment facilitated anti-tumour immunity. In CD45+ cell cohort, the PD-1 expression 

exhibited a slight increase in mice with IFN-γ and/or NP-TOS15 treatment (Figure 6.7C) [37].  

 

6.4 Discussion 

In this study, we provide a practical regimen to inhibit 4T1 breast cancer growth/metastasis. 

The NP-TOS15 NPs were developed for effective α-TOS drug delivery (Figure 6.1). Based on 

this efficient drug delivery platform, the IFN-γ/NP-TOS15 combination therapy effectively 

prevented cancer growth and metastasis (Figure 6.5 and 6.6). In general, the cancer cells have 

to invade the surrounding environment as the first step, which is then accompanied with the 

local immunosuppression [4, 38]. With the IFN-γ/NP-TOS15 combination therapy, the tumour 

immune microenvironment was modulated to facilitate anti-tumour immunity (Figure 6.7). The 

tumour PD-L1 expression was controlled to a moderate level, and the tumour 

microenvironment was tentatively ameliorated with more leukocyte infiltration, increase of 

CD4+ and CD8+ TILs, and activation of T lymphocytes. Meanwhile, NP-TOS and/or IFN-γ 

exhibited abilities to inhibit cancer cell migration in vitro (Figure 6.3E and F), benefiting the 

metastasis inhibition. As a consequence, our combination regimen has shown much less lung 

metastasis compared to the single IFN-γ or NP-TOS15 treatment. 

Herein, we first reported how α-TOS facilitates immunity by reversing the PD-L1 induction. 

Due to its influence on NF-κB signalling, α-TOS downregulates the PD-L1 expression induced 

by IFN-γ (Figure 6.4), through decreasing the synthesis and transportation of p65 protein from 

the cytoplasm to the cell membrane. These phenomena were further validated in the mouse 
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model (Figure 6.7). Although the existence of endogenous IFN-γ (⁓1 ng/mL [39]) may show 

some influence, more exogenous IFN-γ (0.25 mg/kg) was administrated to mice to strengthen 

its induction of PD-L1 expression. The IFN-γ-induced tumour PD-L1 expression decreased 

tremendously when in combination with NP-TOS15 compared to that with IFN-γ treatment 

only. As a consequence, the immune surveillance in the tumour microenvironment tends to be 

modulated to be anti-tumour active.  

Simultaneously, tumour growth was also efficiently reduced with different treatments. In 

particular, NP-TOS15 formulation was 4 times effective in inducing cell death in vitro (Figure 

6.3), and presented much better tumour growth control in vivo [40] when compared to free α-

TOS. This enhancement in α-TOS anticancer ability is attributed to (1) the enhanced 

accumulation at the tumour site [24], and (2) FA-mediated quick cellular uptake (Figure 6.2). 

In contrast, IFN-γ exhibited limited anticancer effect in vitro (Figure 6.3), and its influence on 

tumour growth was also limited (Figure 6.5). Thus apparently, the anticancer efficacy in mice 

treated with IFN-γ/NP-TOS15 is similar to that with NP-TOS15 (Figure 6.5). Interestingly, 

IFN-γ-defined beneficial outcomes are seldom reported when used alone [6], as IFN-γ 

upregulates PD-L1 expression, causing the adaptive cancer immune resistance although it can 

also activate anticancer immunity. In this study, PD-L1 expression was well controlled by IFN-

γ/NP-TOS15 combination treatment, tumour growth was effectively inhibited, and tumour 

metastasis was magnificently prevented in the short observation period. As further revealed, 

IFN-γ/NP-TOS15 combination treatment significantly promoted the infiltration of T helper 

cells and cytotoxic lymphocytes into the tumour tissue, which are expected to contribute to the 

effective prevention of tumour growth and metastasis. Of course, further studies are necessary 

to confirm the long-term effect of IFN-γ /NP-TOS15 combination therapy. 

As shown in Figure 6.8, the IFN-γ/NP-TOS15 combination therapy provided benefit in both 

tumour site and remote organs (such as the lung). Considering its quick clearance after 

administration (30-270 min, [41, 42]), the IFN-γ affects the cancer therapy majorly by the 

quickly activating lymphocytes and boosting the immunity, improve lymphocyte recruitment, 

[43, 44], and further preventing cancer metastasis (Figure 6.8A). In this study, IFN-γ exerted 

metastasis inhibition (Figure 6.6) even with the lack of sufficient tumour inhibition (Figure 

6.5). Within a short period post-administration, a small portion of IFN-γ may diffuse through 

circulation, and enhance immunity systematically. In contrast, NP-TOS15 NPs exert longer 

circulation time (detectable even after 24 h, [22]), and higher accumulation in tumour site 
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(Figure 6.8B). The NP-TOS15 NPs effectively inhibit tumour growth (Figure 6.5), which 

eliminate the potency of cancer cell migration. Importantly, they reverse the PD-L1induction 

of IFN-γ in tumour cells thus modulate the TME to facilitate lymphocyte infiltration (Figure 

6.7). As a consequence, IFN-γ/NP-TOS15 combination therapy further prevents 4T1 

metastasis (Figure 6.6).   

 

Figure 6.8 Schematically illustration of the effect of IFN-γ/NP-TOS15 treatment in 

different organs. (A) In the lung, IFN-γ boosts the immunity and prevents metastasis, while 

NP-TOS15 NPs may lack accumulation due to the integrity of vessels. (B) In the tumour site, 

IFN-γ treatment results in high PD-L1 expression and failure of tumour inhibition, while IFN-

γ/NP-TOS15 combination treatment effectively controlled tumour progression, with a reverse 

of PD-L1 overexpression on tumour cells. 

 



Chapter 6 Enhanced Prevention of Breast Tumour Metastasis by Nanoparticle-
delivered Vitamin E in Combination with Interferon-gamma Treatment 

162 
 

6.5 Conclusions  

To conclude, we successfully fabricated FA-targeted NPs to deliver α-TOS for enhanced 

cancer therapy in combination with IFN-γ. The optimised NP-TOS15 NPs exhibited high α-

TOS payload and efficacious cellular uptake. Compared to free α-TOS, NP-TOS15 NPs were 

more efficient in inhibition of breast cancer cell growth and migration with/without IFN-γ 

presence. Significantly, IFN-γ induced PD-L1 expression was effectively downregulated by 

NP-TOS15 via weakening NF-κB signalling. Therefore, the IFN-γ/NP-TOS combination 

therapy significantly inhibited tumour growth and prevented tumour metastasis to lung, with 

the immune system well activated via the good control of PD-L1 expression on the cancer cell 

surface. This research may inspire further work on the delivery of α-TOS for cancer 

immunotherapy for potential clinical application. 
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6.7 Supporting information 

 

 

Figure S6.1 Characterization of LCCP NPs with α-TOS loading. (A) Hydrodynamic size and 

(B) corresponding morphology from TEM images. Black arrow in (B) indicating the abnormal 

structures (non-LCCP shaped structures). Scale bar: 50 nm. 
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Figure S6.2 The combined inhibition of IFN-γ with (A) α-TOS or (B) NP-TOS15 for 48 h. 

The combination index (CI*) values for (C) α-TOS and (D) NP-TOS15. 

* CI = [TOS+IFN]/([TOS]*[IFN]) 

Where [TOS] is the viability of cells with α-TOS or NP-TOS15, [IFN] the viability with IFN-

γ, and [TOS+IFN] the viability with combination therapy.  
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Figure S6.3 The influence on (A) apoptosis induction and (B) cell cycle arrest to 4T1 cells 

with 5 ng/mL IFN-γ, 20 µM α-TOS, and/or 10 µM NP-TOS15 for 24 h. Colors indicating 

different phases in cell cycle. Grey, sub-G1; red, G1; green, S; and blue, G2/M.  

 

Figure S6.4 (A) and (B) Images of cells with different treatment, with dashed red line 

schematically shown the wound distance. (C) and (D) Statistical data. 
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Figure S6.5 (A) The cell viability of 4T1 and B16 to α-TOS at different concentrations for 48 

h. (B) Surface expression of PD-L1 in 4T1 cells with 48 h treatment of α-TOS. (C) Surface 

expression of PD-L1 in B16 cells with 48 h treatment of α-TOS. The number (upper right 

corner) in (B) and (C) indicated the PD-L1 positive percentage. 
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Figure S6.6 Quantification of the PD-L1 mRNA expression after 24 h treatment 

 

.  

Figure S6.7 Intracellular PD-L1 expression with IFN-γ and/or α-TOS for 48 h. After co-

culturing upon IFN-γ/α-TOS, the cells with different treatments were represented as following: 

Ab+Sap, PD-L1 antibody staining, followed by saponin treatment; Ab+Sap+Ab, PD-L1 

antibody staining, saponin treatment, followed by a second time PD-L1 antibody staining; 
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Sap+Ab, isotype antibody staining, saponin treatment, followed by PD-L1 antibody staining. 

Ddetailed data and calculation refer to Table S6.3.  

 

  

Figure S6.8 The inhibition of IFN-γ induced PD-L1 expression by free α-TOS after 48 h 

treatment. 

 

 

Figure S6.9 Densitometry of western blot bands for (A) Nuclei and (B) cytoplasm. 
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Figure S6.10 (A) Tumor images and (B) a representative organ image in each group. 

 

 

Figure S6.11 Body weight of mice with different treatment. 
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Figure S6.12 Histological images of major organs with hematoxylin & eosin staining. 

 

 

Figure S6.13 PD-L1 positive percentage in the CD45/MHC-II (+) population. 
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Figure S6.14 FACS images indicating the gating of cells to analyze (A) CD4+ and (B) CD8+ 

lymphocytes.  
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Figure S6.15 The gating information of PD-1 expression in tumor cite.  

 

 

Figure S6.16 CD45 positive population percentage in different groups. 
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Table S6.1 Detailed information of antibodies  

Name Supplier Catalogue 
Number 

Purified anti-mouse CD274 (B7-H1, PD-L1) Antibody BioLegend 124301 

Cy3 Goat anti-rat IgG (minimal x-reactivity) Antibody BioLegend 405408 

Purified anti-mouse CD8a Antibody BioLegend 100801 

Purified anti-mouse CD279 (PD-1) Antibody BioLegend 114101 

FITC anti-mouse CD4 Antibody BioLegend 100405 

Purified anti-mouse/human Ki-67 Antibody BioLegend 151202 

APC anti-mouse CD45 Antibody BioLegend 147707 

APC anti-mouse I-A/I-E Antibody BioLegend 107613 

 

Table S6.2 Molar percentage of each composition in second layer lipid of NP-TOS. 

NP code  DOPC % Cholesterol % DSPE-PEG DSPE-
PEG-FA 

α-TOS 

NP-TOS0 40 50 5 5 0 
NP-TOS15 32.5 42.5 5 5 15 
NP-TOS20 30 40 5 5 20 
NP-TOS30 25 35 5 5 30 
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Table S6.3 The positive cell percentage data obtained/calculated from Figure S6.5. 

IFN-γ 
5 ng/mL 

α-TOS 
20 µM 

PD-L1 (s) 
surface 
Ab+Sap 

PD-L1 (s+c) 
surface+cytoplasm 
Ab+Sap+Ab 

PD-L1 (c) 
cytoplasm* 

 

- - 23.0 34.5 11.5  
- + 27.1 31.3 4.2  
+ - 67.1 77.3 10.2  
+ + 53.0 66.7 13.7  

* The values of PD-L1 (s) and PD-L1 (s+c) were obtained from the average positive cell % of 

Ab+Sap, and Ab+Sap+Ab from Figure S6.5, respectively. The values of PD-L1 (c) were 

calculated by [PD-L1 (s+c)] – [PD-L1 (s)].  

The staining method Ab+Sap resulted in the staining of surface PD-L1, with a portion of 

disruption due to Sap treatment. The staining method Ab+Sap+Ab resulted in further 

intracellular staining compensation. The staining method Sap+Ab resulted in the surface and 

cytoplasm PD-L1 staining together to the Sap disrupted cells. Theoretically, the results from 

Sap+Ab should be equal to that from corresponding Ab+Sap+Ab. 

The PD-L1 (c) percentage exerted a 7% decrease in cytoplasm PD-L1 with 20 µM of α-TOS, 

and no significant changes in those cells with 5 ng/mL IFN-γ. However, the results of the 

combination showed a 2% increase in cytoplasm PD-L1. All the intracellular changes were not 

statistically significant, as the Sap treatment enlarged the variation of data. 
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Chapter 7 
 

Chapter 7Discussion, Conclusion and Future 

Directions 
 

 

7.1 General discussion 

Calcium based nanoparticles (NPs) have great potentials in biomedical applications. In this 

thesis, we developed lipid-coated calcium carbonate/phosphate (LCCP) NPs to deliver various 

therapeutics to enhance cancer treatment efficacy. Here, the breakthrough in NP platforms and 

the demonstration in cancer therapy are discussed.  

7.1.1 Breakthrough in NP development and payload strategy 

Firstly, a novel NP was developed. As reviewed in Chapter 2, the calcium phosphate (CaP) and 

calcium carbonate (CaC) hybrid NPs maintain the characters from both materials, and exhibit 

some new merits. However, the stability and dispersity of these NPs limit their applications. 

To solve these issues, we considered employing lipid-like biomolecules to coat the NPs. 

Inspired by the synthesis techniques to prepare lipid-coated CaP (LCP) and CaC (LCC) NPs 

[1, 2], the LCCP NPs were designed and synthesised. As shown in Chapter 4, the obtained 

LCCP NPs were around 40 nm in size, much smaller than bare CaP/CaC hybrid NPs [3] and 

that with polymer coating [4]. Moreover, the LCCP NPs performed much better in colloidal 

stability, uniform dispersity, and gene transfection compared to that without lipid coating. In 

specific, the release pH of LCCP NPs is adjustable by changing the phosphate/carbonate ratio. 

The responsive pH of LCCP NPs locates between those of LCP and LCC NPs, and can be 

precisely controlled to the early/late endosomal pH. This property has accelerated the cargo 

release in cytosol after NP endocytosis. 
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Moreover, a new drug payload strategy was proposed to make lipid-coated calcium-based NPs 

in this study. Current payload method relies on co-precipitation of the therapeutics with 

calcium-based cores. This strategy endows the high payload of LCP/LCC to selected 

therapeutics (such as siRNA and phosphorylated peptides) [1, 2], as the phosphate groups from 

these molecules exhibit high affinity to calcium and easily form precipitates when they are 

mixed in the aqueous phase. However, for hydrophobic drug molecules without phosphate 

groups, this method seems not applicable. Inspired by the payload strategy of bilayer liposomes 

[5], we proposed to load a vitamin E (VE) derivative model drug, α-tocopheryl succinate (α-

TOS), to the LCCP NPs by replacing the outer layer lipid. As demonstrated in Chapter 5 and 

6, the LCCP NPs can entrap α-TOS in the outer layer without affecting the physical stability 

by replacing up to 15% of the outer layer lipids. The α-TOS loading in this specific structure 

is limited to the irregular lipid packing in the outer layer when some phospholipids are replaced 

by α-TOS. However, this payload is high enough and comparable to that in liposomes [6]. A 

previous study suggests the chromanol head of VE analogue can anchor to liposome by 

interacting with nearby phospholipids [5]. To extend, this strategy can be used in other lipid-

coated NPs, including LCP and LCC, as well as many other hydrophobic drugs. 

7.1.2 Demonstration in cancer therapy 

Generally, the siRNAs can downregulate their target gene expression. In some cases, a specific 

siRNA treatment can be lethal to cancer cells, while the lethal gene and siRNA dosage to 

different cells may be different. To ensure efficient cancer cell killing, a commercialized cell 

death siRNA (CD siRNA) was used to demonstrate the gene delivery performance of 

developed LCCP NPs in Chapter 5. The definite target for CD siRNA is confidential, while 

previous studies indicate CD siRNA can induce cell apoptosis [7]. In this study, we confirmed 

the apoptosis induction effect, and illustrated that this effect was enhanced when combined 

with α-TOS in the same NPs. These observations demonstrate that our developed LCCP NPs 

are able to co-deliver two therapeutics into cancer cells efficiently to induce cell death. 

Moreover, a cytokine interferon-gamma (IFN-γ) was strategically selected in this study 

(Chapter 6). As reviewed in Chapter 2, the main approach for IFN-γ to participate cancer 

inhibition is through the recruitment and maturation of immunogenic cells, although a direct 

pro-apoptotic behaviour to cancer cells via JAK-STAT pathway is observed [8, 9]. Therefore, 

we administered free IFN-γ molecules instead of using NP delivery method to induce the 

relevant immune responses in Chapter 6, as the NP delivery may facilitate IFN-γ internalisation 
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that is not required. Of note, related studies on IFN-γ delivered by NPs can also achieve a good 

anticancer effect in vivo, with moderate immune responses [10]. 

Particularly, some natural products, or derivatives, such as α-TOS, provide selective toxicity 

to malignant cells, which is related to the mitochondrial signalling regulation [11]. Meanwhile, 

the relative high lethal dosage of α-TOS limits its anticancer application. We have shown that 

the NP delivery enhanced α-TOS inhibition effect to cancer cells in Chapter 5, and firstly 

reported how α-TOS facilitated the immunity in cancer therapy in Chapter 6. The IFN-γ 

induced programme death ligand 1 (PD-L1) expression was downregulated by α-TOS loaded 

NPs via weakening NF-κB signalling. Further studies demonstrated that this regulation is 

applicable in other cell lines. Therefore, our studies inspire the practical idea that α-TOS can 

benefit anti-PD-L1 treatment universally.  

7.1.3 Clinical translation and bottlenecks 

The novel LCCP-based NPs have potential clinical translation outcomes. Herein, the possible 

applications and their prospective bottlenecks are discussed.  

Firstly, an LCCP-based formula can be developed as a commercialised vector for gene therapy 

in clinic. This novel vector could overcome the drawbacks of viral vectors (such as 

immunogenicity and cytotoxicity) [12], and the bottlenecks of traditional CaP materials (such 

as size and surface charge) [13]. Moreover, the LCCP NPs are even more efficacious in siRNA-

based gene therapy than the commercialised product (Oligofectamine®), as demonstrated in 

Chapter 4. This result would be strongly associated with the precisely controlled gene release 

within the endosomal pH range. However, there are still some bottlenecks for this clinical 

translation. A series of standard operation procedures (SOPs) and quality controls (QCs) should 

be determined to commercially manufacture LCCP NP products. Meanwhile, although lipids 

and CaP are biosafety materials, LCCP NPs should undergo long term observation after 

administration for investigating the chronic adverse effect and systematic influence. Moreover, 

the application in gene therapy also relies on the development of proper gene products (such 

as safe and efficient siRNAs that are approved for clinical use), and some of the ethical debate 

may lie in this aspect [14].  

Secondly, we well documented the CD/TOS/FA NPs and their anticancer ability in multiple 

cancers in Chapter 5, and these results may inspire cancer combination therapy using siRNA 

and α-TOS. This therapy regimen illustrated synergetic/additive anticancer effect with the 
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possible mechanism demonstrated, and was tested in both melanoma and breast cancer cells. 

The major bottleneck lies in the application of CD siRNA. This commercialised product, with 

the confidential sequence, induces cancer cell apoptosis with unclarified mechanism, but need 

the official approval to be used in clinic. 

Thirdly, the study of IFN-γ/NP-TOS15 combination therapy in Chapter 6 may inspire the 

current IFN-γ treatment in cancer. Current recombinant IFN-γ products failed in Phase II/III 

trials in melanoma patients due to low response rate and significant adverse effects [15, 16]. 

Recent studies implied PD-L1 induction may be the most important barrier in the cancer 

treatment application of IFN-γ [16]. On this foci, we demonstrated α-TOS could effectively 

reverse this PD-L1 induction and provided an efficient formula (NP-TOS15 NPs) for cancer 

therapy. The combination therapy is designed for obtaining a higher response rate. However, 

the NP-TOS15 NPs would not relieve the adverse effects introduced by the recombinant IFN-

γ products (such as fever, injection site reactions, and flu-like symptoms), as the adverse effects 

are related to the hyperactivation of immune system. Moreover, the NP-TOS15 NPs may only 

benefit in selected cancer types. These NPs may be limited in improving the therapeutic effect 

in those patients with high constitutive PD-L1 expression, such as patients with melanoma and 

colon cancers. 

 

7.2 Conclusions 

In summary, we designed and synthesised LCCP nanoparticles (NPs) as potential drug/gene 

delivery platforms for combination cancer therapy. The controlled release of payloads from 

LCCP NPs was firstly adjusted for targeted endosomal pH release. With further folic acid (FA) 

modification, the targeted LCCP NPs were then employed for enhanced co-delivery of α-TOS 

and CD siRNA to kill cancer cells. At last, the optimised LCCP NPs were used for α-TOS 

delivery to enhance cancer immunotherapy in combination with IFN-γ. 

To achieve precise release at the endosomal pH, the LCCP NPs were prepared by partially 

substituting phosphate with carbonate, and further employed for efficient gene transfection to 

B16F10 cells (Chapter 4). The obtained LCCP NPs were comparable with LCP NPs in colloidal 

stability, gene loading capacity, and cellular uptake efficacy. Moreover, LCCP NPs have higher 

sensitivity and quicker release under mild acidic pH conditions (6.0-5.5) than LCP NPs. This 

tendency endows faster siRNA release during/after the endocytosis and subsequently quicker 

gene down-regulation. However, the release profile divergence between LCCP and LCP NPs 
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did not affect their long term gene silencing efficacy. Therefore, this research suggests that the 

novel LCCP NPs were successfully developed, and the obtained NPs hold the potential as a 

promising quicker gene delivery vehicle with the precise release property at the endosomal pH. 

After the establishment of the pristine LCCP NP platform, the LCCP NPs were further 

modified with FA for targeted co-delivery of α-TOS and CD siRNA to treat cancer in vitro and 

in vivo (Chapter 5). More specifically, the hydrophobic drug α-TOS was firstly loaded into the 

lipid bilayer by replacing some lipid molecules and the hydrohphilic drug siRNA in the core. 

The obtained NPs, with the similar physical structure and physicochemical properties to 

pristine LCCP NPs, were taken up more effectively by B16F0 cells via the FA-mediated 

pathway in a dose-dependent manner. In particular, the combination of CD siRNA and α-TOS 

in LCCP NPs more effectively inhibited cell growth in an additive/synergic manner. The 

mechanism may be involved in an enhanced apoptotic induction through interactions between 

ROS generation and Bcl-2 downregulation, and the cell cycle arrest in G1 phase. The in vivo 

study demonstrated that the obtained NPs loaded with two therapeutics led to more significant 

4T1 tumour shrink than that with only single therapeutic agent. Moreover, the combination of 

CD siRNA and α-TOS induced remarkable decrease in both metastatic cancer clones and the 

lesion area in lung and liver. Thus, this research (Chapter 5) suggests that the FAR-targeted 

NPs are able to co-deliver hydrophilic (CD siRNA) and hydrophobic drugs (α-TOS), which 

provides a promising approach for targeted combination cancer therapy.  

To be applied for a practical cancer therapy, the developed LCCP NPs (Chapter 4) and the new 

α-TOS loading strategy (Chapter 5) were combined with IFN-γ to develop cancer 

immunotherapy (Chapter 6). Compared to free α-TOS, the NP-TOS NPs were more efficient 

in inhibition of breast cancer cell growth and migration, no matter whether IFN-γ was present 

or not, presumably due to the efficacious cellular uptake. Importantly, the IFN-γ-induced PD-

L1 expression was downregulated by α-TOS loaded NPs via weakening NF-κB signalling. The 

combination of NPs-loaded α-TOS and free IFN-γ relieved the tumour growth and metastasis, 

with the immune system efficiently activated due to downregulation of PD-L1 on cancer cells 

and increasing T helper cells. Therefore, this research may inspire further research on delivery 

of α-TOS for practical cancer immunotherapy. 

Taken all together, the novel LCCP NPs with adjustable release property are promising nano-

platforms for efficient delivery of various therapeutics to treat cancers. The development of 

LCCP NPs is highly significant for improving the current cancer treatment strategy by 
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providing (1) a novel nano-platform for efficient payload and controllable release at the precise 

endosomal pH; (2) the methodology for co-loading hydrophobic/hydrophilic drugs by LCCP 

NPs; and (3) practical regimens for efficacious drug/gene or drug/cytokine based combination 

cancer therapy. 

 

7.3 Future directions 

The novel LCCP NPs exhibit good biocompatibility and biodegradability, with almost no 

obvious toxicity found in the in vivo studies. Therefore, these NPs hold a great potential to act 

as a platform for other biomedical applications, and some potential examples are proposed 

below.  

7.3.1 Mechanism study 

Previous studies on LCP NPs reveal how cells overcome calcium toxicity introduced by the 

internalisation and dissolution of these NPs [17]. Therefore, we postulate that the LCCP NPs 

undergo a similar process to efflux exceed calcium ions, and the calcium, phosphate, and lipids 

released from this NP would not cause any toxicity to cells, however, the detailed mechanism 

is not clear.  

Considering that LCCP NPs can also generate gas (CO2), we face a new issue that how the 

calcium carbonate and the generated CO2 affect the cells. In general, the carbonate could affect 

the intracellular/extracellular pH due to the following reactions: 

CO3
2-+H2O ↔ HCO3- + OH- 

HCO3-+H2O ↔ H2CO3 + OH- 

H2CO3 ↔ CO2(g) + H2O 

Therefore, some mechanism studies are necessary to reveal whether and how the extracellular 

and intracellular pHs are maintained before, during and after LCCP endocytosis. The release 

study in Chapter 4 suggests a small portion of genes loaded in LCCP cores could be leaked at 

pH 7.4-6.5. This result may suggest some extracellular dissolution of LCCP NPs, especially 

the calcium carbonate precipitate in cores. So a proper method may be applied to investigate 

whether the calcium carbonate would dissolve, or partially dissolve before, during and after 

endocytosis. In addition, it remains unknown whether the generated CO2 can induce some 
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stress to cancer cells. These studies can lead to a better understanding on the cellular effects of 

LCCP NPs, and may enlighten the application designs. 

7.3.2 Modification of cholesterol in outer layer lipids 

In this thesis, modification of LCCP NPs, including PEGylation and FA ligand conjugation, 

was achieved by replacing the phospholipid in the outer lipid layer (Chapter 5 and 6). 

Meanwhile, more than 30 mol% cholesterol is maintained in this layer. Further studies can 

focus on utilising these cholesterol molecules for NP modification. Some pioneering work on 

cholesterol conjugation chemistry may provide some practical methods for this modification 

[18-20]. Completing this study will result in modified LCCP NPs with more pristine 

phospholipid molecules in their outer layers, which may stabilise the NPs with more α-TOS 

loading.   

7.3.3 Cancer immunotherapy  

In this thesis, we used LCCP NPs to (1) deliver PD-L1 siRNA to knockdown constitutive PD-

L1 expression (Chapter 4), and (2) deliver a drug to downregulate inducible PD-L1 expression 

(Chapter 6). These researches provide approaches for potential cancer immunotherapy. These 

LCCP-based PD-L1 suppression processes would be further applied for cancer vaccine 

development. As reviewed in Chapter 2, recent studies provide some examples of regimen 

designs of NP based cancer vaccine and their administration [21, 22]. Inspired by these pioneer 

outcomes, the LCCP NPs can be used to deliver some therapeutics to induce immunogenic cell 

death (ICD) for tumour-associated antigen release, followed by LCCP-based PD-L1 

knockdown process. The outcome of this cancer vaccination development would lead to 

generate systemic immunological responses, eliminate the remaining tumour, and prevent 

tumour recurrence and metastasis. 

7.3.4 Multi-functional LCCP NPs for diagnosis 

In this thesis, we utilised LCCP NPs to deliver therapeutics for cancer therapy. Considering the 

NPs may generate gas (CO2), the LCCP NPs may be applied to enhance ultrasound imaging 

signals at the same time. As is well known, the calcium carbonate particles are able to generate 

CO2 gas molecules in neutral and slightly acidic conditions (such as tumour microenvironment 

pH). Current studies indicate the gas-generation NPs can be used as the contrast agent to 

improve the quality of ultrasound imaging. As introduced in Chapter 2, there is a successful 
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paradigm of calcium carbonate (CaC) NPs used as the ultrasound contrast agent [23]  Similarly, 

the LCCP NPs may be used in ultrasound image-guided drug delivery in vivo. By adjusting the 

carbonate composition in LCCP NPs, the LCCP NPs may be optimised in aspects such as the 

gas generation rate and responsive pH. This design of diagnostic NP platforms thus takes 

advantage of by-products of the NP biodegradation for multifunctional applications in 

biomedicine. 
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