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Abstract 

 

This thesis examines alternative methods for testing the geomechanical behaviour of 

subbituminous coal that is a target for coal seam gas extraction as well as mining in the Surat 

Clarence-Moreton basins in eastern Australia.  Although the coal seams can vary from <1 m and 

>10 m, the coal is thin bedded and interbedded with mudstones and tuffaceous claystones that 

contribute to its strength anisotropy both in compression and tension. Uniaxial Compressive 

Strength tests are commonly conducted on standard size core and scaled to the rock mass for 

predicting borehole stability, whereas indirect tensile strength tests are needed to model response 

to fracture stimulation. For prediction of rock behaviour, the critical parameters for fracture 

initiation and propagation might be hardness or fracture toughness, and these properties are not 

commonly available or are derived from empirical correlation to compressive strength results. 

Because coal is an inherently fractured rock, smaller specimens might be required to test a truly 

intact material.     

The approach of this thesis was to go back to the basics to understand the rock material as an 

intact specimen. This study showed that alternative laboratory tests to derive rock parameters 

such as Uniaxial Compressive Strength on mini-cylinder specimens, fracture toughness and 

tensile strength using Short Impact Load Cell on mini-core specimens and chips/irregular-

particles, and hardness testing using a Shore Scleroscope provide reliable geomechanical 

information obtained at the scale of interest. The experimental work was performed and evaluated 

using a certain number of specimens to obtain statistical sets and/or controlled specimens to draw 

correlations between data available on the literature, when possible. Tests were conducted on 

different coal lithotypes and stone to capture the heterogeneity based on composition. Tests were 

also conducted on fabricated 3D-printed sandstone to investigate the validity of calculations and 

performance of the different shape, size, and fabric orientation free from the natural variability of 

the material. These tests provided a valuable contribution for low rank, sub-bituminous coals; 

moreover, the same approach can be extended to other coal ranks and rock material.  

A relationship between coal specimen size and its uniaxial compressive strength was verified for 

mini-cylinder specimens. The intact coal strength for the mini-cylinder specimens was upscaled to 

larger sizes and to the rock mass, with resulting properties comparable to coal data tested on 

other ranks available in the literature. In each of the short impact load cell tests, size and shape 

was varied and used to inform the upscaling. Despite the short impact load cell results being 

affected by the varying sizes, shapes, and fabric orientation of the specimens, it is a promising 

test to obtain the tensile strength and fracture toughness of shape-controlled specimens, as well 

as to observe their failure characteristics. Specific fracture energy estimated from short impact 

load cell utilizing heterogeneous rock of irregular-particles or shaped specimens can be correlated 
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to fracture toughness, whereas for homogeneous 3D-printed sandstone, the specific fracture 

energy can be widely different for specimens of distinct shape. For the short impact load cell tests, 

ultra-high speed camera was used to capture fracture initiation and propagation. Last, because 

fracture propagation might find a pathway through the matrix and natural fractures of coal, 

microscopical observation was used to understand the brittle-ductile behaviour of sub-bituminous 

coal organic components (macerals and microlithotypes) and inorganic components (in particular 

clay minerals that were often much softer than the coal). 

Overall, the investigations provided confidence in the geomechanical properties derived and 

failure criterion for coal and interbedded rock material utilizing non-conventional experiments and 

provide alternatives that can be used in the coal seam gas and mining industries. For both 

industries, the rock characterisation requires a site-specific investigation to develop a realistic 

representation for numerical modelling simulations. This thesis shows that small scale specimens 

can be used, and tests for deformation in tension, such as SILC, and simple indentation tests can 

capture the brittle and ductile characteristics of sub-bituminous coal for engineering behaviour. 

Together these data can inform future numerical models of rock mass behaviour during drilling 

and reservoir stimulation for gas extraction. 
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1 Chapter 1 :   Introduction 
C h a p t e r  1  

INTRODUCTION 

1.1 COAL SEAM GAS 

Demand for reliable energy resource tends to increase even further with advanced technologies 

and automation in the near future. Globally, Coal Seam Gas (CSG) which is also named Coal Bed 

Methane (CBM) is an extremely large energy resource with substantial economic benefits. The 

natural gas (Liquefied Natural Gas) extracted from CSG is vastly used for cooking and heating 

homes and buildings, as well as in industrial processes with power stations that generates 

electricity. Natural gas is used to make plastic and fabric for clothing; it is a fuel substitute for 

cars, trucks and industrial vehicles; also indispensable for production of industrial and chemical 

fertilizers.   

It is underneath the ground, about 200 to 1000 meters below surface, that CSG may be 

economically explored using available tools and technology. The natural gas is found in coal 

deposits, of which the highly inflammable gas methane (CH₄) is the major component and 

secondarily the carbon dioxide, nitrogen, and trace amounts of higher hydrocarbon gases occur in 

variable proportions (Flores, 2014). Coal deposits are formed slowly from organic matter under 

suitable conditions (heat and pressure) buried at depths, over periods of up to several hundred 

million years. Meanwhile, the gases components formed in a near-liquid state, whether 

thermogenic or biogenic, can mostly be held onto the internal surfaces. These internal surfaces 

include porous systems, small and regularly spaced cleats, and larger-scale joints. In this scenario 

95% of the gas is stored within micro-porous and only 5% within the natural fractures. The variety 

of plant debris and the climatic conditions influence the constituents and the structure of the coal-

forming as well as the gas volumes stored. 
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Drilling wellbores through these complex and highly heterogeneous layers of coal seam allows for 

the natural gas to be explored (Figure 1). Traditionally, the wellbore is drilled vertical and it is 

protected with cement and steel casing. During production, the gas is released from 

unconventional CSG by lowering the pressure (drilling and continuously pumping off water). The 

main pathway for gas to flow out of the coal is through the internal surfaces or natural fractures 

(porous structure, cleats, and joints). In high quality CSG deposits, the natural fractures are 

permeable enough to allow the free gas or the gas saturated with water contained within the seams 

to flow through this fracture system. Except by those areas identified by high natural permeability 

as well as deep underground boreholes, the unconventional gas extraction needs to be artificially 

stimulated in order to successfully achieve a commercial production. For that, a controlled process 

such as hydraulic fracture (also named fracture stimulation or fraccing) is usually applied to 

increase the coalbed permeability. During this process, injection of water (or another fluid) under 

high pressure via wells is utilized to open the existing natural fractures and to create new ones in 

the coal to increase gas production. In order to target prominent coal seams or to work on 

optimization of fraccing design, it is critical to understand the geomechanical behaviour of the 

reservoir and the surrounding rocks at the microscale. 

 

Figure 1  Schematic representation of coal seam gas extraction. 

http://www.aplng.com.au/newsroom/fraccing
http://www.aplng.com.au/newsroom/fraccing
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As a means of highlighting the relevance of the gas industry, it is observed that growth in 

Australia’s natural gas production (LNG and domestic use) increased by 16% in 2018 compared 

with 2017. While production has more than doubled over the last five years (APPEA, 2019). 

Figure 2a provides an overview of CSG reserves and infrastructure in eastern Australia where 

large reserves of CSG occur (Australian government - Department of environment and energy - 

website). In 2018, the production of natural gas from coal seams represented 1,303.0 billion cubic 

feet for Queensland (QLD), against 5.0 billion cubic feet in New South Wales, Australia (source: 

Energyquest). Notice that the CSG production in the Bowen (Permian Coal Measures) and Surat 

(Jurassic Walloon Coal Measures) basins represents more than 90% of the total gas produced in 

the state. Also, data from BP statistical review of world energy has placed Australia between the 

top 10 leading export of LNG in 2017 (APPEA - website) (Figure 2b).  

 
(a) 

 
 

 

(b) 

Figure 2  a) Map of CSG reserves and gas infrastructure in eastern Australia (EDR - 

economic demonstrated resources, PJ - petajoules) (Australian government – Department 

of environment and energy - website), and b) top 10 LNG exporting countries in 2017 

(billion cubic feet) (APPEA - website). 

This study focuses on low rank, sub-bituminous coal from Surat-Clarence-Moreton basins, a 

complex geological and geotechnical environment where the depositional sequence of lithotypes 

and non-coal partings, such as claystones and mudstones, vary in thickness from millimetre to 

metre scale, in eastern Australia. Their distribution also changes vertically and laterally within a 

coal seam. This environment is very different from broad mining extraction on medium rank coal. 
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The thick seams on medium rank coal allow for layers with varying proportions of natural 

fractures, lithotypes, and mineral matter to be disregarded or averaged for the specimen, then large 

excavations and big volumes of rock removal comprise the geomechanical appraisals and guide 

the laboratory tests conducted. 

In another hand, the level of understanding involving rock characterization for the oil and gas 

industries, particularly low rank coal in the Surat Basin, must be thought at the micro-scale. In this 

case, more rational approach to improve gas extraction is an understanding of the rock dominant 

breakage mode and/or the micro-process occurring inside the coal contrasting with the 

interbedded material. For that, a series of relevant and practical laboratory experiments are carried 

out under controlled, reproducible conditions, and utilizing smaller specimens’ size. This provides 

more realistic range of input data for numerical modelling approach to handle the behaviour of 

such a complex and heterogeneous system. 

1.2 RESEARCH CHALLENGE: CSG IN THE SURAT BASIN – LOW RANK COAL  

Almost without exception, understanding, measuring, and representing the reservoir properties are 

the major technical challenge for bringing CSG economically recoverable and feasible to market. 

Associated gaps within the gas industry, when appraising the reservoir properties, includes the 

ability to approach a complex geological and geotechnical environment. Coal geomechanical 

properties such as compressive and tensile strength, and fracture toughness vary with respect to 

the proportion of natural fractures, discontinuities (faults, dykes), and the moisture (rank) as well 

as composition of the intact rock which is encapsulated in the lithotype classification (brightness 

of coal). 

The higher moisture coals of the Surat Basin are also texturally very different, consisting of 

multiple thin packages of <0.5 to 10 meters coal beds, stacked into groups of many metres. The 

coals are jointed and cleats are poorly developed at low rank, except for some incipient cleats in 

the few bright bands. Within each bed, the coals can be sub-divided into even thinner (centimetre 

to decimetre scale) lithotypes that are separated by partings of rock or claystone or mudstone. 

These characteristics show distinct geotechnical and gas flow behaviours, which are yet to be 

clarified. Therefore, general assumption about coal rock mass varying between 6 to 12 MPa is a 

misleading approach for this Basin. For site-dependent properties, the issue to overcome core 
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sample difficulties, including to recover, source, and measure on laboratory, might be to reproduce 

the scale of interest. 

Then questions to be investigated in this thesis are: what is expected when testing intact specimens 

of sub-bituminous coal, where cleats are poorly developed, furthermore, if induced fractures are 

removed to avoid misleading interpretations? How can the interactions and distributions of 

lithotypes and microlithotypes help to better understand this scenario? Last, how to deal with a 

sedimentary environment which is very complex with juxtaposition of strong and weak rock mass 

overprinted by structures such as faults and joint sets? 

1.3 HYPOTHESIS 

The hypothesis to be tested is that coal exhibit both brittle and ductile behaviour, particularly low 

rank coal with abundant claystone partings. The scale of observation to address intact strength of 

coal, is better small, perhaps below the inherent flaw size, to microscopically. Geomechanical 

characterization of coal obtained through those sizes and/or non-traditional experimental methods 

may demonstrate the influence of structural features and composition/lithotypes, or 

microstructural features and microlithotypes on coal behaviour. 

1.4 AIMS AND OBJECTIVES OF THE RESEARCH 

The aim of this research is to investigate the applicability and validity of alternative laboratory 

tests to provide characterization for the sub-bituminous coals of the Surat-Clarence-Moreton 

basins. This thesis addresses the characterization of the mechanical and comminutive properties 

such as strength, fracture energy, elastic modulus, and hardness. The experimental laboratory tests 

are planned to be performed on smaller rock specimens. Influence of shape and size are also for 

consideration, while fracture opening, and propagation are attempted to be observed. Ultimately, 

this research brings together geological, geotechnical and metallurgical knowledge for resources 

matters and develops better alternative to obtain input data for CSG reservoir simulations. 
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1.5 FORMAT OF THE THESIS 

The thesis is made up of one volume; it has seven chapters, and three appendixes. The chapters 

comprise details for the assessment and results, focus on geological, geotechnical, and 

metallurgical characterization of the coals, and the appendices with supporting material and 

methodologies followed. 

 The titles and outline of chapters are arranged in the following sequence: 

Chapter 1 - Introduction: presents the relevance of this study for the CSG, the thesis objectives, 

and address an outline of each chapter. 

Chapter 2 – Back to the basics to understand coal: This chapter summarizes some fundamental 

information for coal reservoir geomechanics. The main characteristics of coal composition and 

structure from grain to macro scale are addressed. It also introduces the laboratory experiments 

performed here. (This chapter contains parts of a peer-review APPEA Journal). 

Chapter 3 – Mini-core specimens scaled: This chapter describes preparation of the mini-core 

specimens and the laboratory experiments of uniaxial compressive strength (UCS) using 

nonstandard size for sub-bituminous coal. The applicability of results is discussed by comparison 

with bituminous coal. (This chapter is a submitted manuscript). 

Chapter 4 – A test of fracture, shape, and size using 3D-printed sandstone: In this chapter 3D-

printed sandstone is utilized to demonstrate the mechanical properties of homogeneous and intact 

material. The known properties were used to test calculations/estimations of material properties 

for specimens of different size, shape and fabric in a Short Impact Load Cell (SILC) test. The 

experimental procedures and results are presented in detail. (This chapter is published at the 

Geotechnical and Geological Engineering). 

Chapter 5 – SILC on coal and mudstone: This chapter contain details of the Short Impact Load 

Cell (SILC) on coal and mudstone. It explores the influence of loading direction, specimen size, 

and shape on estimation of mechanical properties. Comparisons between coal and mudstone are 

presented and discussed. (This chapter is published at the Journal of Natural Gas Science and 

Engineering). 

Chapter 6 – Lithotypes and microlithotypes matter: This chapter highlights the dependence of 

microlithotype and hardness on sub-bituminous coal. Description of the test and results of Shore 
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Scleroscope Rebound Hardness (SSRH/SH) are presented. (This chapter is accepted for 

publication at the International Journal of Coal Geology). 

Chapter 7 – Discussion, conclusions and future work: This chapter summarizes and discusses the 

most significant outcomes of the experimental work conducted in the context of CSG exploring 

low rank coal reservoirs. It also identifies some of the gaps in knowledge and proposes themes for 

further work. 
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2 Error! Not a valid bookmark self-reference. :   Error! Reference source 
not found. 

C h a p t e r  2  

BACK TO THE BASICS TO UNDERSTAND COAL 

2.1 INTRODUCTION  

Coal is a heterogeneous, highly complex sedimentary rock (Koenig and Stubbs, 1986; Wold et al, 

1995), which cannot be characterized by a particular grain size since it contains more macerals 

(fibres) than minerals (grains) (Buzzi et al., 2014). The depositional environment and the burial 

history of the coal are critical to understand the gas composition, gas content, density, diffusivity, 

permeability, and gas storage capacity. The physical, chemical, and hydrological properties of coal 

make it a unique and site-specific rock type. Various features are pertinent to the mechanical 

behaviour of coal seam and rock mass strata including, for instance, the internal surfaces or natural 

fractures (porous and cleats accounting for fluid pressure and impacting the success of fracture 

stimulation techniques); the increase in depth extraction (reflecting on stability of wellbores, 

multilateral wells, etc.); the thickness of the coal (if multiple thin-bedded zones or massive coal); 

the lateral continuity and connectivity of the coal seams and the surrounding strata (variable 

production rate); the pre-existing geological structures (compartmentalising a reservoir vertically 

and horizontally), the in-situ stress conditions/tectonic stress; and the effects on land subsidence. In 

summary, that is how interesting the source rock and the environment for coal seam gas (CSG) 

reservoir can be. 

In this chapter, considerations and knowledge-driven approach to address the coalbed geological 

and geomechanical conditions at the relevant scale, that will influence reservoir performance, are 

described. Basic important concepts of coal rank, lithotype, matrix, porous, and cleats are 

highlighted. Followed by an overview of the geology in the Surat Basin, the environment of this 

study. Then, geomechanics aspects are pointed out, including those involving rock behaviour, 
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composition, and structure, which require further knowledge are presented. Last, a quick overview 

is given of the laboratory experiments utilized for rock characterization in this thesis. 

2.2 COAL CHARACTER 

2.2.1 Uniqueness of coal 

Distinct basins are controlled by the degree of diageneses, the depositional history of the units, and 

the tectonic evolution which contribute to make coal a unique and again, site-specific rock.  At first, 

it is important to classify the coal rank which is similar to a measure of the level of metamorphism 

(degree of diagenesis) that exists in inorganic rocks (Ward, 1984). The coal rank generally increases 

in direct correlation to temperature, depth of burial (pressure), geothermal gradient, and the length 

of time the organic material remains in a given regime (Ward, 1984). The coal macroscopic 

appearance varies from brown to black depending on the rank; specifically, brown coal is of low 

rank (i.e. lignite) and black coal is of higher rank (i.e. from bituminous to anthracite). Sub-

bituminous coal, which is of interest in this thesis, is reported brown (George, 1975) and black 

(Stopes, 1919; Schopf, 1960; Davis, 1978) as it is transitional. The maximum vitrinite reflectance, 

referred to as percentage Rₒ(max), is the most common measured property related to the structure of 

organic combinations in the coal and it is used as rank indicator (Table 1). 

Table 1  Rank class in terms of maximum vitrinite reflectance (Ward, 1984). 

Rank Type %R0max 

Low-rank coal Sub-bituminous < 0.47 

Medium-rank coal 

High volatile bituminous C 0.47-0.57 

High volatile bituminous B 0.57-0.71 

High volatile bituminous A 0.71-1.10 

Medium volatile bituminous  1.10-1.50 

Low volatile bituminous  1.50-2.05 

High-rank coal 
Semi-anthracite 2.05-3.00 (approx.) 

Anthracite > 3.00 

 

The composition and character of a coal seam is determined by the available organic units and 

sediments (inorganic fraction such as mineral matter) which also influence on the continuity and 

spatial variation of the seams. Coal lithotype, a macroscopic visual method, is used for 

characterization of the organic compositional differences within and between coal seams that, along 

with thermal maturity show the chemical and physical properties of the coal (Stopes, 1919). This 

concept was first proposed by Stopes (1919) to include the four “ingredients”, namely, vitrain, 
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clarain, durain, and fusain, the main constituents in hand specimens of banded bituminous coals. 

Then, lithotypes refer to multi-layers recognizable with varying thinner bright (vitreous vitrain 

bands) relative to thicker dull (durain bands) proportions as classified by various authors (Stopes, 

1919; Thiessen and Sprunk, 1935; Cady, 1942; Schopf, 1960; Davis, 1978; Diessel, 1982; Stach et 

al. 1982; Hower et al., 1990; AS2519, Standards Association of Australia, 1993). The alternations 

of lithotype bands produce textures which have distinctive colour, luster, fracture, and thickness 

(Hower et al., 1990). Geological characterization and mapping techniques can be utilized for 

describing the layered and blocky appearance of coal in terms of lithotype. The classification 

schemes and correlation between terms followed by Stopes (1919) and Standards Association of 

Australia (1993) are presented below (Table 2). 

Table 2  Correlation between terms of banded coal (Stopes, 1919 and AS2519-1993).  

Stopes’ 

lithotypes 

Australian standard brightness profiles Proportion of 

bright bands (%) Category Description 

Vitrain C1 (B) Bright > 90% 

Clarain C2 (Bb) Bright banded with minor dull 60% - 90 % 

“Duro-clarain’’ C3 (IB) Inter-banded bright and dull 40% - 60 % 

‘‘Claro-durain” C4 (Db) Dull banded 10% - 40 % 

Durain C5 (Dmb) Dull with minor bright 1% - 10 % 

Durain C6 (D) Dull < 1% 

Fusain (F) Fibrous  - 

 
 

By zooming into the lithotype, one can then describe coal in terms of microlithotypes. The 

microlithotype method of classification is performed under the microscope. It is utilized for 

characterisation of the natural associations of maceral groups (vitrinite, liptinite and inertinite) and 

mineral matter at specific proportions, to name the maceral subgroups that occur within the coalbed. 

Microlithotypes are classified into three groups based on the number of maceral: (i) monomaceral 

consist of one maceral group, for instance the vitrite (>95% vitrinite) or inertite (>95% inertinite); 

(ii) bimaceral consist of two maceral groups, for instance clarite, durite, or vitrinertite; (iii) 

trimaceral consist of three maceral groups, for instance duroclarite, clarodurite or vitrinertoliptite. 

Now that concepts such as rank and maceral groups are remembered, further explanation about the 

microstructural features or structures forming the intact coal rock (Zhao et al., 2014a; Potyondy, 

2015) are presented. It happens that throughout the coalification process the vitrinite group macerals 
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changes from bituminous to anthracite in terms of volatile matter (Stach et al., 1982; Flores, 2014). 

Other geophysical factors such as compaction and water expulsion also change during this process 

of increasing rank. This reduces the porosity in coal and a minimum is reached between medium 

volatile bituminous to low volatile bituminous coal (Taylor et al., 1998; Rodrigues and Lemos de 

Sousa, 2002). The coal porous structure includes micro-porous, mesoporous, and macro-porous 

varying from a few Angstroms to frequently over a micrometer in size. The macro-porous system is 

known as the primary porosity. The secondary porosity develops when the molecular structure 

through coals of a higher rank changes and a meso- and micro-porous system starts to form 

(Rodrigues and Lemos de Sousa, 2002). Micro-porous system is predominant with the main group 

vitrinite which presents the largest potential for methane gas generation. Opposing to that, the 

macro-porous system is predominant with the main group inertinite and has reduced potential for 

gas production (Scott, 2002). Figure 3 shows the structures of coal during various stages of 

coalification, the molecular (upper level) changes and the physical (lower level) changes. 

 

Figure 3  Simplified diagrams showing progressive changes of vitrinite group macerals 

during coalification from bituminous to anthracite (%vol. m.) (Stach et al., 1982). 

Following that, the coalbed structure comprises a matrix of complex heterogeneous porous 

structure, broken up by macroscopic natural fractures at all scales. Then, confined to the dull and 

brighter layers (bands) are well-defined distributed networks of natural fractures known as cleat 

(Ting, 1977a; Dawson and Esterle, 2010). Non to poorly banded coals derived from fine-grained 

macerated plant fragments tend to have fewer, more widely spaced cleats than banded coals that 

contain higher proportions of better-preserved plant matter. Cleats are essentially shrinkage cracks 

formed from the volume loss of moisture during coalification (Ting, 1982) and matrix porosity 

(Gentzis et al, 2006). 
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A cleat set is comprised by face cleats (earliest formed, more prominent set) and orthogonal butt 

cleats, which generally end at the boundaries of face cleats (Dron, 1925; Kulander et al., 1990; 

Laubach and Tremain, 1991; Li et al., 2004). Figure 4 illustrates a schematic representation and 

cross section view of real cleat set (face and butt cleat) for a bright band coal (C1 category, Table 2) 

which is quite evident due mineralisation. 

 
(a) 

 
(b) 

Figure 4  (a) Schematic representation of core specimen, (b) Cross section view of 

bright band with face and butt cleat mineralised (modified Gray 2015 ACARP C23014).  

Overall, the spacing between cleats tends to be quite uniform, from millimetres to centimetres scale 

or even decimetres. The cleat height and spacing varies with the rheology and thickness of the 

different layers or bands within the coal (Gamson et al, 1993). The thicker the bright coal lithotype, 

the lower the cleat frequency in bituminous coal (Tremain et al., 1991; Close, 1993; Law, 1993; 

Laubach et al., 1998; Su et al., 2001). Better estimates of cleat frequency might be calculated if the 

distribution of coal microlithotype layers are known, and the apparent relationship between coal 

height and cleat spacing for specific cleats within a given coal rank are taken into consideration 

(Dawson and Esterle, 2010). The cleat aperture is typically less than 0.1 mm (Kulander et al., 1990; 

Laubach et al., 1998). It is well recognised that cleat spacing decreases from sub-bituminous to 

medium volatile bituminous coal and increases throughout the anthracite coal rank (Ammosov and 

Eremin, 1963; Ting, 1977b). 

Moreover, there is a strong relationship between cleat orientation and regional stresses relative to 

banding. According to Gentzis et al (2006), the orientation of the natural fractures records the in-

situ stress at burial depth. Often face cleats are perpendicular to the least compressive principal 

stress, whereas butt cleats are parallel to the axis of the original local compression, approximately 

(Hancock and Engelder, 1989). The cleat can be overprinted through changes in tectonic stress over 

the geological history of the basin (Pattison et al, 1996). According to Su et al. (2001) different 

development stages of face and butt cleats results in distinct network patterns. 
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2.3 BASIN CHARACTERISTICS 

2.3.1 Geological characterization of Surat Basin 

The Surat Basin is a broad intra-cratonic downwarp that covers an area of about 300,000 km² in 

south-eastern Queensland into north-eastern New South Wales, Australia (Rigby and Kantsler, 

1987). The structural axis of the basin is along the Mimosa Syncline which is an axial trough in the 

centre of the basin that contains the thickest preserved section. The Mimosa Syncline is slightly 

offset from the axis of the underlying Permo-Triassic Taroom trough of the Bowen Basin (Figure 

5).The thick-skinned, meridional Moonie-Goondiwindi and Burunga-Leichhardt thrust fault 

systems, formed by a contractional event called the Goondiwindi Event, comprise a series of 

discrete fault segments with displacement transfer zones in between (Korsch et al., 1998; Hamilton, 

2014). Movement along these fault systems likely impacted on the depositional architecture of units 

underlying the Walloon Subgroup (Sliwa and Esterle, 2008; Hamilton, 2014). 

 

Figure 5  Surat Basin structure, tectonic elements, Walloon coal outcrop/subcrop 

(Hamilton, 2014). 

The basin sequence comprises a non-marine Jurassic succession overlain by a mixed non-marine 

and marine Early Cretaceous succession (Green et al., 1997). Sedimentation within the Surat Basin 

initiated in the Late Triassic to Early Jurassic, after a phase of contractional deformation and 

widespread erosion in the Middle to Late Triassic causing a peneplanation of basins and basement 
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rocks of eastern Australia (Exon, 1976; Fielding et al., 1990; Korsch and Totterdell, 1996; Korsch 

et al, 2009; Hoffman et al., 2009), which also resulted in deposition of the quartzose Precipice 

Sandstone. Throughout the Jurassic and early Cretaceous, several episodes of fluvial-lacustrine-coal 

swamp sedimentation occurred as the basin gently subsided, resulting in the deposition of the 

Evergreen to Bungil Formations. According to Gallagher (1990), subsidence was described as 

generally consistent throughout most of the Jurassic, but slightly increased during the Late Jurassic 

and Early Cretaceous. Exon (1980) recorded a series of six sedimentary cycles, each comprising a 

basal sandy succession that grades into increasingly labile (<50% quartz) units at the top of the 

cycles. In summary, each cycle begins with the deposition of craton-derived quartzose (>50% 

quartz) sandstones deposited in fluvial environments, then continues with deposition of finer-

grained, volcanoclastic-rich sandstones, which are often associated with tuffs, carbonaceous 

mudstones and coals (Veevers, 1984; Hawlader, 1990; Waschbusch et al., 2009). 

It is recognised that the regional variation of the coal strata is mainly controlled by the depositional 

environment. The deposits of the Surat Basin are lateral equivalents to sediments in the Eromanga 

Basin further west. The eastern margin Surat Basin stratigraphic pile is significantly thinner than 

further west, as per interpretations evolved from outcrop and subsurface studies. Thick, north-south 

trending channelised sandstone units (e.g. Precipice Sandstone, Hutton Sandstone) underlie broader, 

sheet and wedge-shaped units containing finer-grained meandering stream and lacustrine deposits 

(e.g. Evergreen Formation, Walloon Subgroup) (Sliwa and Esterle, 2008; Hamilton, 2014). 

Uncertainty surrounds the causal tectonic mechanism(s) (structural settings) driving basin evolution 

and subsidence in the Surat and adjacent Mesozoic basins (Hoffmann et al., 2009) occur, as 

different propositions have been presented by various authors (Russell and Gurnis, 1994; Fielding, 

1996; Yago and Fielding, 1996; Waschbusch et al., 1999, 2009; Korsch and Totterdell, 2009; 

Korsch et al., 2009; Matthews et al., 2011; Smith et al., 2017). Also, the internal architecture of the 

Walloon Subgroup of the Surat Basin is still target for research (Hentschel, 2018). 

Because part of the rock material utilized in this thesis was collected at the Clarence-Moreton 

Basin, it is pertinent to explain that this Basin borders the Surat Basin in the south-east (Figure 3). 

Its Late Triassic to Middle Jurassic sediments are continuous with the Surat Basin across the 

Kumbarilla Ridge (Day et al., 1983; Jell, 2013). Although the adjacent Clarence-Moreton Basin to 

the east was likely a foreland basin associated with a volcanic arc in the Jurassic, the absence of 

volcanic arc related rocks rather supports an extensional depositional setting for the Surat Basin 

(Yago and Fielding, 2015). As proposed by Fielding (1996) and Yago and Fielding (1996), an 
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active intraplate rifting with the onset of rifting of the eastern margin of the Australian plate 

occurred. In this way, the coal measures of the Walloon Subgroup in the Clarence-Moreton and 

Surat Basins are laterally equivalent and have been referred as low rank for this thesis purposes. 

2.4 RESERVOIR  CHARACTERISTICS 

2.4.1 Gas and production in Surat Basin 

The CSG distribution is influenced by the coal rank and structure (Lucia, 1983; Laubach et al., 

1998; Su et al., 2001; Scott, 2002; Dawson and Esterle, 2010). The coals of the Middle Jurassic 

Walloon Subgroup (i.e. the youngest unit) along the north-eastern margin of the Surat Basin, are of 

low rank sub-bituminous, and the vitrinite reflectance range from approximately 0.5-0.4% Ro up 

section (with some values reaching 0.7% Ro) (Scott et al., 2007; Hamilton et al., 2012). Along the 

western margin of the basin the composition and rank still needs to be validated. The coals of the 

Walloon Subgroup are vitrinite-rich (62 to 91 vol. % mmf) with abundant liptinite and high mineral 

matter contents (Scott et al., 2007). On a maceral subgroup level, telovitrinite is the most common 

one. Amongst the liptinite group macerals, suberinite and cutinite are common (Khavari-Khorasani, 

1987; Pacey, 2011; Hentschel, 2013). Higher inertinite content occur within the upper coal 

measures providing evidence of desiccation and oxidation by fires (Leblang et al., 1981; Scott et al., 

2007; Hentschel, 2013). In high vitrinite coals, the micro-porous system and cleat formation are 

both predominate which provides optimal environment for gas generation. 

Gas contents (dry-ash-free; d.a.f.) vary significantly, for instance, in the eastern Surat Basin the gas 

content range from 1-15 m³/tonne d.a.f. and average 5.36 ± 2.5 m³/tonne d.a.f. (Hamilton et al., 

2012). The most prospective area for CSG occur down-dip and adjacent to the Walloon subcrop 

edge, where high permeability exists and it refer to the connectivity of the pore structure as well as 

the passage of a pore fluid through the opening of micro-fractures/cleats inside the rock. These are 

the areas where the compression is offset by tensional forces. However, general observation is that 

CSG in Surat Basin have reduced permeability at a given depth or pressure, where cleats are 

mineralised and became blocked mostly by fine clay minerals infilling the face cleats (Faraj et al., 

1996). Note that increase of the confining pressure reduces both the porosity and the permeability 

due to elastic closure of pre-existing microcracks (Brace et al., 1968; Turner and Secor, 1974; 

Zoback and Byerlee, 1975) in the low-porosity rocks. Though in porous rocks the correlation 
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between porosity and permeability changes is not as well defined. Nevertheless, those areas might 

require some technique such as hydraulic fracture to increase production. 

Overall, the CSG is produced from multiple coal seam groups across the Middle Jurassic Walloon 

Subgroup. Despite a decrease of net coal thickness towards the Roma Shelf and the Nebine Ridge, 

the CSG production has extended westwards (Hentschel, 2018). In producing areas, the Walloon 

Subgroup is typically 350 m thick and contains an average of 30 m of net coal with average coal ply 

thickness about 40-30 cm (widespread coal due deposition in an intra-cratonic setting), that is 

interbedded with a range of clay-rich, and fluvio-lacustrine lithological units. The coals are dull or 

dull banded with bright bands that are commonly only 1 mm in thickness (frequency of 64.6%) 

(Hentschel, 2018). Thicker bright bands are rare and only occur with increase in depth (Afonso, 

2014) in the lower seams of the Lower Taroom Coal Measures and the upper seams of the Lower 

Juandah Coal Measures (Hentschel, 2018). While sub-bituminous coal is considered to show the 

first developments of cleats (Law, 1993), the cleats are poor in this Basin. Moreover, the butt cleat 

spacing does not increase as much as the face cleat spacing with variation on stress conditions 

(Afonso, 2014). 

The Surat Basin CSG reservoir is water saturated meaning the water provides the reservoir pressure 

that holds gas in the adsorbed state (perfect equilibrium system). Then water starts been pumped, 

the reservoir produce only water as a primary mechanism of pressure reduction. During this single-

phase flow (production of water), the gas content of the reservoir is below the sorption isotherm 

curve (i.e. the relationship of pressure and the capacity of a given coal to hold gas at a constant 

temperature). When the reservoir pressure falls and the gas production initiates, there is a two-phase 

flow of gas and water which is controlled by (i) desorption of gas from the coal matrix, (ii) 

diffusion to the cleat system, and (iii) flow through fractures. During production it is important to 

keep the lowest practical pressure in order to maintain the relationship between gas desorption and 

reservoir pressure. 

2.4.2 Coal mining: lessons learned 

For geological and geotechnical characterization of coal and sedimentary rocks comprising the 

reservoir, the mining background is used as reference. Notable the success of mining designs and 

appraisals relay on measurement and quantification of strengths and deformations of rocks done 

through laboratory experiments (e.g. uniaxial compressive strength, triaxial test, tensile strength, 

and Brazilian test) and numerical modelling simulations. Some of the knowledge developed 
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highlights that rank class, lithotype, and cleat frequency influence the coalbed mechanical 

behaviour (Medhurst, 1996; Medhurst and Brown, 1998; Scholtès et al, 2011; Poulsen and 

Adhikary, 2013), and that the greater the density of defects (micro-defects, structural features, and 

fractures) the weaker the rock behaves. Furthermore, natural fractures and bedding planes represent 

the main weak components of anisotropy inherent to duller and brighter layers that influence coal 

strength (Bieniawski, 1968a; Bieniawski and Van Heerden, 1975). At the same time, the natural 

fractures and porous of coal are responsible for effects of fluid pressure and gas content changes 

within those structures. A reason that measurement of coal strength might be affected by the 

confining pressure of the laboratory tests (Medhurst, 1996). Also, it should be mentioned that coal 

is a material that has the ability to sustain some load beyond their peak strength. Nevertheless, more 

than five decades ago, Hobbs (1964) reported the wide variation of measured strength test results on 

coal. 

The coal complexity is illustrated in Figure 6 where a transition from intact to a typical cleated 

seam is presented by Trueman and Medhurst (1994). The combined effect of density and 

distribution of cleats planes in failure per lithotype within a coal seam play a role to understanding 

the scale effects (i.e. influence of size and structure of the tested specimen) on coal when 

investigating the mechanical property estimates of laboratory tests (Medhurst, 1996). For the field-

scale strength, the general knowledge is that it reduces while the deformability increases as a 

function of increase in total defects with increase in specimen volume (Brady and Brown 1985; 

Hoek and Brown, 1980; Brown, 2008). Ideally, experimental laboratory tests should be performed 

on intact specimens (Hoek and Brown, 1982; Bieniawski and Bauer; 1982) while results can be 

useful to describe the rock behaviour. 

 

Figure 6  Idealised diagram showing the appearance of coal at different scales 

(Trueman and Medhurst, 1994). 
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In this attempt to describe the rock behaviour, the relationship between stress and strain in a rock 

material observed in laboratory might be explained using constitutive laws such as: linearly 

elasticity, elastic-plasticity, poroelasticity, or viscoelasticity. The linear elasticity or linear 

deformation, which is based on the Hooke’s law, describes the elongation of the isotropic material 

as linear proportional to the stress, according to the Young’s modulus. The elastic-plastic occurs 

when an axial load is applied to the specimen and the material begins to deform in elastic plastic 

way, until some point when the applied deformation stops, the specimen is unloaded, and the 

material holds a permanent strain. The poroelasticity behaviour is well-understood for soil 

(Terzaghi, 1996) and it can be described as the forces acting on it; for instance, it shows the way in 

which changes in fluid pressure change the dimensions of the material within the confines of elastic 

behaviour. Then, the viscoelasticity which includes a time-dependent effect, refer to the behaviour 

of a rock containing pore fluid. 

2.4.3 Reservoir modelling 

Numerical modelling simulations are mathematical models governed by equations solved 

numerically once the associated boundaries and the initial conditions are informed. The algorithms 

used in numerical modelling can be quite complex, depending on the detail to which one would like 

to simulate. More advanced techniques allow for use of constitutive equations in addition to 

information about discontinuities (e.g. joints), microstructures, and their interactions within a model 

to be replicated, also taking the scale effects in account. Notice that, adjusting smaller-scale 

properties for CSG, which are typically attained through field or laboratory testing, into those of a 

larger scale for modelling can be challenge. An advantage of numerical analysis is to allow an 

understanding of complex rock behaviour by observing the effects of each individual parameter and 

rock structures inputted into the model. 

Reservoir models are mainly used to analyse the following: (i) adsorption/desorption of gas to coal 

surfaces (Langmuir isotherm approach); (ii) dual porosity of coal seams; (iii) diffusion of gas from 

coal matrix to fracture systems (Fick’s Law); (iv) multiphase flow (gas/water) in the fracture system 

(Darcy flow), and (v) shrinkage of the matrix due to gas desorption. Different reservoir models will 

utilized different approaches, e.g. empirical, equilibrium (pressure-dependent), non-equilibrium 

(pressure and time-dependent) models. Examples of software packages for reservoir models 

include: ECLIPSE model; Arenas 2004; FracMan; COMET3 model; Generalized Equation-of-State 

Model (GEM); Tech SIM; SIMEDWin; FLAMED model; PFLOTRAN; Petrel; etc.   
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Following that, the modelling tools can be used to simulate a variety of scenarios. For example, 

simulations can be used to model the well integrity; to estimate gas production; to estimate issues 

associated to changes on design or well installation; to predict permeability; to assess hydraulic 

fracturing on coal seams; to simulate CO2 storage; to simulate water-related impacts from 

production wells; to investigate the connectivity between coal seams; to predict the depressurisation 

of aquifers; to forecast recovery of aquifers when production terminates; to predict changes to 

groundwater quality and/or or connectivity to surface water; to estimate ground subsidence; etc.  

All models are an attempt to represent the reality, they contain assumptions and/or simplifications 

that influence the level of confidence on the results. Limitations in computational resources may 

also constrain the amount of information that can be included in a numerical model. While the 

errors or uncertainties inherent within modelling results might be estimated, they tend to be 

attributed to field measurements and the complexity of natural systems. Therefore, the importance 

of adequately addressing geological and geomechanical behaviours of the coal and the surrounding 

rock with reference to their natural characteristics and mechanisms provides a better understanding 

of the fundamental mechanics of rock behaviour. Together with information of stress magnitude 

data (tectonic stress) (Cuthbertson, 1990; Hillis et al., 1998, 1999; Hillis and Reynolds, 2000, 2003; 

Reynolds et al., 2002, 2003; Zhao and Muller, 2001; Heidbach et al., 2010; Hamilton, 2014; Ziegler 

and Heidbach, 2017; Rajabi et al., 2017; Heidbach et al., 2018) which is essential for modelling 

calibration. Thus, a reservoir engineer can make an appropriate choice regarding the application of 

numerical methods for planning and design. Moreover, the models should be continuously revised 

and updated as more data become available.  

Particularly for CSG reservoir, it is anticipated that the challenge to numerically simulate the Surat 

Basin is to understand the micro-mechanisms of coal as well as the mechanical characteristics of the 

surround strata. Then detailed coalbeds might be simulated by including the appropriate 

microstructural features of coal, the microstructural interactions within a model, the natural 

fractures, the geological structures, the stratigraphic rock sequence, and the in-situ stress regimes, 

all according the scale of the model.  

2.5 EXPERIMENTAL CHARACTERISATION OF COAL MECHANICAL PROPERTIES 

The response of the coal seam and the interbedded rock to a certain mechanism of breakage need to 

be investigated to derive the geomechanical properties of the materials. The parameters obtained by 
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breakage techniques either using quasi-static or dynamic process can be directly used in reservoir 

modelling simulations. Hence, it is worthwhile to elaborate on alternative methods of rock 

characterization, as an attempt to address the complexity of natural systems which are critical for 

numerical modelling simulations. 

A comprehensive test largely used by the mining industry is the Uniaxial Compressive Strength 

(UCS), but an important issue to address for UCS testing is to obtain representative intact core 

samples. Following the motivation for understanding the compressive strength of the basin 

environment, it is pondered that the most fundamental element of a breakage mechanism, which is 

critical for fracture stimulation, is the breakage of a single particle. The phenomenological 

understanding of breakage of a single particle can be investigated using a metallurgical approach. In 

comminution, the fundamental properties of the fracture process occurring on particles loaded, 

mainly in compression, can be measured. The drop weight (DWT) test principle (Gross, 1938), is to 

establish a relationship between the net breakage energy and the new surface generated. However, 

the energy applied by the DWT is usually higher than the energy required for the first breakage of a 

particle. Over time, a number of variations for the DWT were developed. The Short Impact Load 

Cell (SILC), a further developed version of an instrumented DWT, can provide information for the 

primary breakage with the advantage of estimating tensile strength and fracture force. Another 

consideration is to conduct further interpretation on the continuity of crack propagation through 

distinct microlithotypes of low rank coal, which can be done using the Shore Scleroscope Rebound 

Hardness (SSRH).   

The alternative laboratory experiments utilised in this thesis are the Uniaxial Compressive Strength 

(UCS), the Short Impact Load Cell (SILC), and the Shore Scleroscope Rebound Hardness (SSRH). 

The experimental work is used to measure fundamental properties of brittle and non-brittle 

materials such as strength (both compression and tension), Young’s modulus, hardness, and fracture 

force. The experiments are used to explore the effects of size, shape, and/ or orientation of small 

specimens, while the fields of fracture (brittle) and flow (ductile) behaviour might be observed. 

Additionally, it is anticipated that some insight about porosity, and sensitive to grain size and to the 

presence of clay minerals might be captured for low rank, sub-bituminous coal. However, the tests 

should not fulfil the complexity of CSG production, such as the effects of volumetric change due 

swelling and shrinkage.  
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The following topics do not intended to be a comprehensive review of the alternative laboratory 

experiments utilised in this thesis, the focus is to give an introduction about the methods. Further 

discussion about the apparatus and testing will be given along the thesis.            

2.5.1 Uniaxial Compression Strength 

The uniaxial compressive strength (UCS) is a servo-control test which involves application of 

homogeneous stress, while it allows for measurements of lateral strain. The mechanism of breakage 

is a two-point contact, and the breakage occurs at slower stressing velocity. The UCS test is 

dominated by the elastic properties of the material under compression loading. When the contact 

between compression platens and the rock specimen occur, the force increases linearly with the 

deformation. Then, a progressive development of cracking might be observed during load until the 

fracture takes place, last the force drops rapidly. The time required to cause fracture depends on the 

deformation rate of load and the intrinsic properties of the rock specimen tested. In brittle rocks the 

servo-control tends to be more effective at smaller deformation rates (Peng, 1973; Houpert, 1974), 

and it tends to be abrupt as observed on a macroscopic scale.  

The UCS test is used to determine the strength of the intact rock material and as such governs 

partially the strength of a rock mass. Typically, the UCS test is performed at standard size core, and 

intact rock specimens between discontinuities (means good quality samples) are required. 

Furthermore, the specimen length-to-diameter ratio is important as more uniform stress is expected 

for distances of up to roughly half a diameter from the specimen’ ends when the behaviour is 

substantially elastic. Hawkes and Mellor (1970) showed an analysis of elastic stress distribution in a 

specimen tested for UCS with radial constraint at the ends, and demonstrated the relative intensity 

of stressed regions across the specimen tested (Hawkes and Mellor, 1970). But controversy exist 

about the sensitive to the platen or end effects conditions influencing the specimen to present a 

particular failure mode (e.g. axial splitting). Another general observation when measuring intact 

rock strength is that the tensile strength tend to be of the order of one-tenth of the uniaxial 

compressive strengths. These discussions about the need to test intact material, the specimen length-

to-diameter ratio, failure modes, and compressive/tensile strength correlations, are all of interest 

when characterisation of the material is proposed to be performed for smaller specimens’ sizes.  

2.5.2 Short Impact Load Cell  

The Short Impact Load Cell (SILC) test involves dynamic stress prior to fracture while the 

probability of fracture is based on the Griffith’s theory. Following the Griffith’s theory of fracture, 



 

 
 

44 

the strength of brittle rock material is governed by the initial presence of microcracks (Jaeger and 

Cook, 1979). Then, failure is likely to occur when the interatomic cohesion of the material is 

overcome by an oriented crack-like flaw (such as the natural fractures for coal), which gets 

extended beyond its maximum tensile stress component (Griffith, 1924). Note that, the Griffith’s 

theory does not consider the effects of the closing cracks under load and the frictional effects that 

can arise (e.g. UCS test).  Also, the Griffith’s theory is claimed to refer only to the initiation of the 

failure on the scale of the cracks, not to crack propagation (Brace 1960; Brace and Bombolakis, 

1963; Hoek and Bieniawski, 1965; Bieniawski, 1967a). 

According to Gurney and Rowe (1948a, 1948b), an extension fracture must involve failure of 

bonding grain contact under local tensile stress. The macroscopic deformation is an integrated 

average of the localized deformation at all the grain contacts in elastic contact under normal 

loading. Furthermore, the extension fractures tend to originate in response to local tensile stresses 

around flaws, cleats, or heterogeneities in the coal arising in relation to axial splitting (Scholz et al., 

1986). These natural fractures, flaws or heterogeneities provide a local net of tensile stress 

component through which the crack is propagating, similar to Jaeger and Cook (1979) description. 

Also, it is known that the direction of the natural fractures, flaws or heterogeneities into the 

specimen axis relative to the impact orientation, affect the plane of propagation and the crack 

orientation (Brace and Bombolakis, 1963; Bombolakis, 1964; Hoek and Bieniawski, 1965; 

Gramberg, 1965, 1970; Fairhurst and Cook, 1966; Holzhausen and Johnson, 1979). 

Overall, the SILC test allows to explore of difference about fracture initiation and propagation for 

homogeneous and heterogeneous rock specimens, also influenced by the shape effect (random 

irregular particles and mini-core specimens), and sizes. At the contact between bodies, the shear 

localization involves the coalescence of clusters of such Hertzian contact stress which also depends 

on the interplay of dilatant (increase volume), and compactant (decrease volume) processes. This 

inelastic volume changes reflect changes in the structure (Bridgman, 1949) or microstructure of the 

rock associated with the deformation processes of pores or cracks. For homogeneous material the 

crack propagation is expected to be a single crack across the specimen. But for heterogeneous rock 

such as coal, the final fracture gets the contribution of other local natural fractures and cracks rather 

than the propagation of a single crack across the specimen. Likewise, fracture toughness is an 

important aspect of describing the fracture energy consumption rate required to create new surfaces 

in the comminution process (Bearman et al., 1989; Donovan, 2003). Donovan (2003) showed 

through experimental work for breakage of single particle (using High Energy Crushing Tests) that 
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there is a strong relationship between fracture toughness and specific comminution energy. 

According to Donovan (2003), the specific comminution energy required to reduce a rock particle 

to a given size increases with fracture toughness. 

2.5.3 Shore Scleroscope Rebound Hardness 

The Shore Scleroscope Rebound Hardness (SSRH) test is used for measurement of hardness, quite 

similar to a scratch hardness test, by promoting a local stress concentration at the material. 

Previously used for metals (gold, copper, lead, nickel, steel, etc) the SSRH might be used to test a 

varied of rock types, from brittle to ductile.  Klawitter et al. (2015) showed the hardness of coal 

using the SSRH while the indentation pattern post-testing was observed with a scanning electron 

microscope (SEM). It was demonstrated that combination of both devices (SSRH and SEM) allows 

for observation of fracture propagation on microstructural features including grains, pores and 

microcracks such as cracks, cleats, and other fractures (with varied orientation, population, shape, 

etc.) on microscope scale. Though, it might be difficult to distinguishing between real (pre-existing) 

cracks and those introduced in the specimen preparation. Note that microcracks derive from 

differences in compressibility and thermal expansion of grains and macerals under pressure and 

temperature changes, while also affected by the tectonic stress.  

Aspects of brittle behaviour into the micromechanics is well elaborated by Paterson and Wong 

(2005). The brittle behaviour involves failure following either small or large amounts of inelastic 

strain when compared with the elastic range. Griggs and Handin (1960) described two types of 

brittle failure: shear fracture and extension fracture. While a transition between the two types of 

brittle failure occurs when a gradual change in orientation of the failure surface can be observed 

(Brace, 1964; Hoskins, 1969). In a broad perspective, the micromechanics of brittle fractures can be 

differentiated between strongly and weakly cohesive porous rocks. It refers to an understanding of 

the growing or nucleate of microcracks, when stress concentration located at pore, cleats or 

flaws/cracks are eventually overcome by the applied stresses and result in tensile stress 

concentrations that lead to microcrack initiation. Therefore, a simple investigation using SSRH 

testing can provide significant information for hydraulic fracturing for the CSG, and observation of 

microcrack in the form of damage evolution (nucleation/propagation of cracks).  
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2.6 SUMMARY  

In rock mechanics, the effect of scale and anisotropy of rock specimens has long been recognized, 

but there are various factors that influence coal (fracture, porous, microlithotypes, mineral matter, 

etc.) that are not individually captured. Therefore, it is not surprising that despite largely studied, 

the difficulties in interpreting the results from laboratory to those representatives of the in-situ when 

characterising the coal persist. Apart from different coal scale, the individual lithological layers 

forming the coal seam might vary in lateral persistence, thickness and for coal of different type and 

rank. Geomechanical quantification and characterization cannot be transferred across rank nor 

through boreholes, and measurement of rock properties deserves to be site-specific, as they consist 

critical information for modelling CSG reservoir.  

A rational approach is to go back to the basics to investigate the coal and interbedding using 

alternative laboratory methods to test small specimens (<25 mm in diameter). Then, some important 

characteristics of coal, such as its unique structure and composition, might be accentuate. 

Description of the geological environment for the source rock of interest for gas extraction and the 

interbedded material are brought into context. An increase in exploration and production, also 

increasing depth, require a close looking into the rock itself. The shortcomings with regard to rock 

characterization, including extrapolation of database across basins or even neighbouring wellbores, 

are proved unsustainable. Particularly in the Surat Basin, the scale of interest to investigate 

hydraulic fracturing should consider small volumes of rock for contrasting geomechanical 

behaviours.  
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3 Error! Reference source not found. 
 

C h a p t e r  3  

MINI-CYLINDER SPECIMENS SCALED 

Karina Barbosa (PhD candidate) conducted specimen preparation and testing, interpreted data, prepared 

figures and graphics, and wrote the manuscript.  

Joan Esterle (Principal PhD supervisor) proposed the experiment, reviewed, discussed and edited the 

manuscript.  

Zhongwei Chen (Associate PhD supervisor) provided the laboratory facilities, reviewed, discussed and 

edited the manuscript. 

Summary 

The variation of test results on laboratory measurements of coal strength are widely reported. For 

this unique rock, apart from its natural variability including structural features and bedding planes, 

justification is made that laboratory specimens of coal are not intact at sizes that were normally 

considered intact for other rocks. Supported by those observations, this chapter presents a series of 

test results for the unconfined compressive strength (UCS) test performed on intact mini-core 

specimens of low rank, sub-bituminous coal, across a range of sizes from 9.3 to 22.6 mm, and 

compared to data from larger sizes to investigate scaling approaches. This experimental study is 

designed to address intact properties of coal useful for borehole stability analyses by the coal seam 

gas industry, and to see if smaller, rather than larger core sizes can achieve reliable results. During a 

UCS test, the initial stage is known by closing/ collapse of pre-existing micro-cracks or porosity of 

the specimen, followed by a more or less linearly elastic section where stress and strain are 

proportional to each other. Next, as the stress increases, the rock specimen behaves plastically until 

the stress goes beyond the elastic limit of the rock. Then small cracks start to propagate into the 

specimen, and the deformation mechanisms take place (inelastic behaviour). Finally, the peak force 

is reached beyond which there is a weakening and the specimen fails. These mechanisms occur at 

any scale and are captured by the mini-core specimens tests.  
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Abstract 

This study presents the results of laboratory tests conducted on a series of mini-cylinder specimens 

to measure the uniaxial compressive strength of sub-bituminous coal, which is sparsely recorded in 

the public domain. The measurements were made on mini-cylinder specimens (non-standard) sized 

from 9.3 to 22.6 mm in diameter, sourced from the Surat-Clarence-Moreton Basin in Australia, an 

important region for coal mining and coal seam gas extraction. The tested specimens presented 

poorly developed cleats and were texturally classified as non to poorly banded, although the 

composition is rich in vitrinite group macerals. The inherent variability of experimental coal 

strength results was found to be related to the degree of fracturing of the mini-cylinder specimens of 

coal, either pre-existing or induced from specimen preparation, to fabric and texture. In contrast to 

expectations, the specimens analysed for petrographic showed minor dependence on coal lithotype. 

The results from the mini-cylinder specimens could be scaled to predict the behaviour of larger core 

sizes commonly used for testing mechanical variability and for estimating full seam rock mass 

strength.  
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3.1 INTRODUCTION 

Coal is an anisotropic and heterogeneous material. Testing and modelling coal is challenging 

because its strength varies as a function of material properties such as:  

 Rank or thermal maturity, grade or distribution and occurrence of mineral inclusions (Zhao et 

al., 2014a, 2014b; Gao et al., 2014);  

 Lithotype or maceral composition (Ting, 1977; Rusnak, 2018);  

 Texture and fabric that is manifested by the band and phyteral thickness, and the distribution 

and the volume variation of microstructures influenced by loading direction (Jaeger, 1971; 

Scholtès et al., 2011; Song et al., 2018); 

 Organic molecules and the polycyclic aromatic hydrocarbon re-arrangements (Pan et al., 2013);   

 Intensity of fracturing at different scales (Medhurst, 1996; Medhurst and Brown, 1998; Pan et 

al., 2013; Poulsen and Adhikary, 2013); and 

 Rate of loading of testing device, specimen size and shape (Bieniawski, 1968a; 1968; Wagner, 

1974; Bieniawski and Van Heerden, 1975).  

The intensity of fracturing, or cleat, increases rapidly with coal rank from lignite to the sub-

bituminous/high volatile bituminous threshold, but then stabilizes somewhat in the high volatile 

through low volatile bituminous rank (Law, 1993). For a given rank, increased cleating can also be 

associated with increased banding or occurrence of bright vitrain in coal lithotypes (Ting, 1977; 

Dawson and Esterle, 2010). Notice that, lithotypes allow for a description of coal types with the 

naked eye based simply on observation of the proportion of vitrain (Stopes, 1919; Taylor et al., 

1998) and these will also correspond to variation in the maceral group percentages (Teichmüller, 

1989) and their precursory plant tissues in the peat phase (e.g. Hower and Wagner, 2012). As a 

result, the higher the rank and the megascopic vitrain content, the more intense is the cleating for 

the boundaries described, and the weaker is the coal (Ting, 1977). The total coal porosity also tends 

to decrease with increasing coal maturity (Gurdal and Yalcın, 2001), at least up to low volatile 

bituminous rank (Rodrigues and Lemos de Sousa, 2002), and this affects the mechanical properties. 

Different coal lithotypes, that have different banding and natural fracture intensities, exhibit 
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different strengths, and this information can guide pillar design (Rusnak, 2018). In the absence of 

direct strength measurements other proxies of coal material behaviour, such as grindability, can be 

used to estimate coal strength (Colwell and Mark, 2005). 

Core specimens are commonly used to test for coal mechanical strength, but they can be difficult as 

well as expensive to source and measure, in particular large diameter cores (Bieniawski, 1968; 

Medhurst, 1996; Hoek and Brown, 1997; Medhurst and Brown, 1998). Measurement of different 

core sizes allows one to scale upwards with the objective to emulate the rock mass that can contain 

more fractures than does intact rock used for testing. A common guide to scale test data to 

engineering design is the well-known normalised relationship proposed by Hoek and Brown (1980) 

where the rock mass is equal to 0.58 σci for a 50 mm diameter core (σci is the strength of the intact 

rock tested at standard size). The Hoek and Brown (1980) approximate relationship is based on 

reviewed data from the literature including UCS measurements on specimens from 10 to 200 mm 

diameter, mostly hard and unjointed intact rock (isotropic) only (Figure 7). Thus, Hoek and Brown 

(1997) attributed the reduction in strength with increased specimen size to failure through and 

around grains of the intact rock. For jointed rock mass when discontinuities are close to each other, 

the Generalized Hoek-Brown failure criterion is commonly applied. According to Laubscher and 

Jakubec (2001), the strength of heterogeneous rock depends on the rock block with micro-defects 

and defects, where the rock mass ranges from 0.65 to 0.32 σci; however, no reference to coal was 

made.  

 

Figure 7  Influence of specimen size on the strength of intact rock (after Hoek-Brown, 1980). 
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Two recognized studies particularly conducted on scaling coal properties by increasing the 

specimen size while maintaining the specimen shape where conducted by Bieniawski (1968a) 

(bituminous coal from Witbank Colliery in South Africa) and Medhurst (1996) (medium rank, 

bituminous high volatile A from Moura Colliery in Australia with maximum vitrinite reflectance of 

0.88% by Esterle, 1994). Medhurst explored the influence of different lithotypes, and illustrated the 

decrease in strength with increased vitrain banding. Overall, testing suites of small, standard and 

large-scale size specimens were conducted to measure the peak strength, mainly in bituminous rank 

coals (Bieniawski, 1968; Wagner, 1974; Bieniawski and Van Heerden, 1975; Medhurst, 1996; 

Medhurst and Brown, 1998; Song et al., 2018). However, strength data on lower rank sub-

bituminous coal, which is rarely mined underground, is still sparse in the public domain. 

The emergence of coal seam gas (CSG) exploration and exploitation in the sub-bituminous coals of 

the Jurassic age Walloon Coal Measures in the Surat-Clarence Moreton basin necessitated a study 

of coal strength for borehole stability and potential for fracture stimulation. The seams exhibit a 

variable contrast between thinly-bedded coal (<0.5 to 2 m, average thickness of 0.4 m), interbedded 

with carbonaceous tuff or claystone (Figure 8). The coals in this basin are jointed but cleats are 

poorly developed, except for some incipient cleats in the few bright bands or weakness planes 

created by the banding texture. There are multiple seams, better described as seam groups, 

distributed through the ~350 m thickness of the coal measures (stratigraphic framework in Figure 

9). Therefore, the coal seams might be compared to multiple robust pillars (i.e., short in height with 

‘infinite’ thickness) intercalated between softer (or less hard) material. However, the first issue was 

to obtain measurements of coal strength.  

 

Figure 8  Illustration of Walloon Coal Measures showing variation in lithological units, 

and typical interbedded and banded nature of the plies (ruler stick is 50 cm long) (highwall 

photo courtesy of New Hope Mine). 
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Figure 9  Stratigraphic column for the Surat Basin (McKellar, 1998), and the Walloon 

Subgroup (Hamilton et al., 2012). 

As exploration core was unavailable, the objective of this study was to obtain geomechanical 

properties for the sub-bituminous Walloon coals using mini-cylinder specimens. In heterogeneous, 

fractured rock such as coal, smaller, rather than larger core specimens may be a better option to 

reflect the intact rock behaviour (Hoek, 1983). Logistically, smaller cores can also give flexibility 

for multiple specimens when exploration core is sparse, or specimens need collecting from outcrop 

or open cut coal mines. If the smaller cores can be scaled to the rock mass properties, then more 

specimens might be obtained to characterise the variability in the coal lithotypes through the 

measures. Although, it is also unknown whether coal lithotype (Stopes, 1919; Hower et al., 1990) 

has a strong influence on coal strength at lower ranks. 

Laboratory unconfined compressive strength (UCS) testing was conducted on mini-cylinder 

specimens ranging from 9.3 to 22.6 mm diameter, fashioned from distinct lithotypes of the same 

low rank coal within a seam ply. The coal was difficult to core at the specimen test size, so 

cylinders were fashioned as described in the methods section. We explored the use of these mini-

cylinder specimens to (i) more truly reflect intact rock on physical properties results (UCS and 

elastic modulus); (ii) improve the logistics of sampling for differences (or not) in behaviour 

between different lithotypes, that could later be assigned back to the full seam; (iii) scale the results 

to standard core sizes (50±10 mm diameter, ASTM D4543) and the rock mass; and (iv) verify the 

influence of maceral subgroup and mineral matter composition on strength in low rank coals. 
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3.2 BACKGROUND  

Lithotypes refer to a classification of coal banding texture and organic composition at millimetre to 

centimetre scale (Stopes, 1919; Hower et al., 1990). According to Hower and Wagner (2012), it is 

not uncommon that the depositional sequence or arrangement and the thickness of lithotypes are 

highly variable. The coal organic composition and texture was inherited during peat deposition and 

reflects the starting size of the plant tissues and their degree of degradation in the peat stage. In coal 

petrography, the following maceral groups of vitrinite, liptinite and inertinite are analysed to 

capture the variation in organic composition (Teichmüller, 1989). Texture is captured at the maceral 

subgroup level, especially among the vitrinites for structured (telovitrinite) and unstructured 

(detrovitrinite and gelovitrinite) components (ICCP System 1994).  

In rock mechanics, UCS is a key parameter to derive other fundamental geomechanical properties, 

such as friction angle, cohesion and tensile strength.  However, it is recognised that the effect of 

scale (Bieniawski and Van Heerden, 1975) and strength anisotropy is influenced by the presence of 

cracks and fissures, bedding and lamination, pore pressure, environment, rate of loading, time 

effects, specimen size and shape (Bieniawski, 1967b, 1968a, 1968b). Indeed, the compressive 

strength of coal is one of the most difficult properties to establish experimentally (Bieniawski, 

1968a) as it is organic in origin and has unique and variable constituents and properties (Hoek and 

Brown, 1997). Also, coal is site specific, and it is one of the few rock materials for which both 

laboratory and in-situ testing of small, standard, and large-scale size specimens were conducted to 

measure the peak strength (Bieniawski, 1968a; Wagner, 1974; Bieniawski and Van Heerden, 1975; 

Medhurst, 1996; Medhurst and Brown, 1998; Song et al., 2018).  

For the rock mass scale in coal, Bieniawski (1968a) reported the estimates of unconfined 

compressive strength for coal pillars of various dimensions, based on extensive in-situ underground 

measurements. The cubic coal specimens of thirteen distinct sizes, ranging from small specimens to 

full pillars (19 to 2000 mm). Medhurst (1996) and Medhurst and Brown (1998) reported the results 

for a series of true triaxial compressive tests conducted in the laboratory. The cylindrical coal 

specimens of four distinct sizes (61, 101, 143, and 300 mm in diameter) with heights approximately 

twice the diameter size, and variable peak confining stresses. For those publications, the testing of 

large-scale specimens of coal result in strengths that are highly variable (i.e., exhibit a large amount 

of scatter). However, the peak strength remains constant for certain specimen sizes, i.e., 
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independent of the specimen size if greater than 1.5 m (testing cubic shape 2:1 ratio) (Bieniawski, 

1967b) and 1.0 m (testing cylindrical shape 2:1 ratio) (Medhurst, 1996).   

Recently, Song et al. (2018) explored the microstructure-related effects of loading direction (i.e. 

varied dip of the bedding from 0° to 90°) from smaller to standard core specimens (25 to 75 mm in 

diameter) on strength of coal. The U-shape form of the relationship between UCS and anisotropy 

(Jaeger, 1971) showed that the contribution of microstructures on uniaxial compressive strength 

differs for different orientations of loading relative to anisotropy (Song et al., 2018). Song et al., 

(2018) attributed the decrease of coal strength with increasing specimen size to the enhanced 

microstructural volume of a larger specimen. It is supposed that the Wudong coal tested by Song et 

al. (2018) is either low volatile to anthracite coal which is considered hard coal, based on the 

moisture content ~1.8% reported.   

If tested for small or standard size specimens then the laboratory results need to be adjusted or 

scaled to reproduce the field-scale strength of the rocks. It is well understood that rock mass input 

parameters used for design cannot be directly assigned from laboratory properties. Some popular 

means for scaling rock properties derived from testing intact rock to in-situ rock mass in a mining 

environment are done through visual observations such as the GSI (Geological Strength Index), and 

the MRMR (Mining Rock Mass Rating) systems. Unfortunately, the broadly applied GSI system is 

not applicable for quantification of the coal rock mass strength due to the coal heterogeneity 

bounded by blocks forming open joints, nor for borehole stability assessment due to scale effect 

(Medhurst and Brown, 1998; Kaiser et al., 2015). The last update of MRMR (Laubscher and 

Jakubec, 2001) showed interesting modifications when it abandoned the Rock Quality Designation 

(RQD) as an input parameter and included the concept of rock block strength, which accounts for 

the effect of cemented joints and veins.  

3.3 RESEARCH METHODOLOGY  

3.3.1 Sample collection 

Samples targeted different coal lithotypes within seams exposed at an open cut mine extracting the 

Walloon Coal Measures. The coal is relatively blocky, allowing small to large samples (about 

555 to 303030 cm) to be collected from different plies with different lithotype composition. 

The coal at the sampling location is low rank, sub-bituminous with maximum vitrinite reflectance 
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of 0.56%. A total of three distinct plies were classified, sampled, and tested for this study, namely 

(i) C8 ply-banded (PC8-B), (ii) C8 ply “white marks” banded (PC8-WB), and (iii) C6 ply dull 

(PC6-D). The white marks are small lenses of clay distributed in the matrix of the coal. All three 

distinct plies were collected from the same pit location, while PC8-B and PC6-D were in the same 

bench. The density of the coal varies between ~1.3 and 1.5 g/cm³. Maceral analyses were used to 

confirm the sample composition. 

3.3.2 Specimen preparation 

Representative mini-cylinder specimens were fashioned from rectangular blocks using manual 

artisanal preparation (Figure 10). Attempts to drill/core different size specimens were unsuccessful 

with available tools. To overcome the technical limitation and minimize the damage to coal 

specimens, small intact pieces of coal were carefully cut into rectangular shapes/blocks. Then a 

rotating polishing plate (grinding surface) was used to completely smooth the edges of the 

rectangular piece until it was converted into mini-cylinder specimens. The mini-cylinder specimen 

length was cautiously established by trimming the excesses with a mini-saw machine, and the ends 

were again ground on a rotating polishing plate.  

 

Figure 10  Preparation steps to achieve the mini-cylinder specimen shape and size.  

All the specimens’ dimensions were checked with a vernier caliper to ensure the cylindrical profile 

of lateral wall (Figure 11) and parallelism of the ends (base/top), which are crucial for such 

specimen size. The accuracy of each mini-cylinder was aimed at the second decimal place followed 

by constant check during the preparation. Each mini-cylinder specimen was then individually 

wrapped with wrap/film-plastic to avoid further moisture disturbance and oxidation.  
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Figure 11  Example of one mini-cylinder being verified for the cylindrical profile of 

lateral walls.  

During this unconventional preparation, each mini-cylinder specimen was also verified to avoid 

imperfections on end- and wall-faces, which are crucial for such specimen size. Despite all the 

effort in specimen preparation, the nature of coal showed some defects (imperfections on ends/wall-

faces) when grinding/polishing either through pre-existing or induced fractures. Therefore, not all 

mini-cylinder specimens of coal were considered pure ‘intact’ with no defects. Some mini-cylinder 

specimens contained single or multiple minor cracks and superficial damage, i.e., visible fractures 

particularly located at the end-faces, named minor defect. Other mini-cylinder specimens presented 

more prominent or notable damage, i.e., visible fractures located at wall-faces and/or end-faces, 

named pervasive or long defect. Even with sub-bituminous coal, the banded coal (PC8-B’s, Figure 

12) tends to present more prominent defect or damage during specimen preparation. Approximately 

65% of mini-cylinder specimens prepared from the PC8-B presented more prominent defect or 

damage, at both wall-faces and end-faces. Information about mini-cylinder specimens’ appearance 

were compiled (Table 3). This information was relevant and given the limited number of mini-

cylinder specimens available for this study, it was decided to test all mini-cylinder specimens 

including those with pervasive and long defects (i.e., called ‘non-intact’ specimens). Last, it is 

acknowledged that sample bias has occurred by testing mini-cylinder specimens that survived the 

manual preparation process.  
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Figure 12  Examples of mini-cylinder specimens (not on scale) derived from PC8-B 

and classified by visual appearance (a) no defect, (b) minor defect, (c) pervasive defect, 

(d) long defect. 
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A total of 35 mini-cylinder specimens were prepared and they represent 17 at PC8-B, 5 at PC8-WB, 

and 13 at PC6-D. The diameter, length, and mass of each specimen was recorded and listed in Table 

3. The mini-cylinder specimens were prepared with diameters ranging from 9.3 to 22.6 mm. 

However, the majority of the specimens’ range between 9.3 and 16.5 mm since those with larger 

diameter (around 17 to 23 mm) were more likely to fail in preparation due to increased population 

of pre-existing fractures/ defects (Hoek and Brown, 1997). The mini-cylinder specimens presented a 

slenderness ratio (length-to-diameter ratio or L/D) of 2.3:1 in average (ranging from 1.9 to 2.7) 

following the standards (ASTM D7012-13). The slenderness ratio is significant to minimize the 

effect of frictional constraints at end-faces of mini-cylinder specimens i.e., by reducing the non-

uniformity of the stress state in mini-cylinder specimens’ centre part. The minimum number of 

specimens tested for each size was not pre-imposed, however it was attempted to have at least two 

mini-cylinder specimens for each size diameter. Overall, the mini-cylinder specimens were 

completed according to the ASTM (D2938-86/95; D4543-85; D7012-13), and ISRM (1999, 2007) 

guidelines and standards, except for the minimum diameter recommendation (47 or 54 mm 

according to ASTM or ISRM, respectively).  

3.3.3 Uniaxial compression test equipment 

All mini-cylinder specimens were loaded in uniaxial compression (axial load) using a fully 

automated digital machine. The machine is supplied with a load cell capacity ranging from 0 to 200 

kN, digital display, user defined digital controls, software package, and real time graphic on screen 

(Figure 13). The mini-cylinder specimens were loaded in the direction perpendicular to the bedding 

planes (i.e., the angle between the loading direction and the orientation of the bedding plane was 

β≈90°) to obtain the maximum strength values (Ramamurthy, 1993 and Song et al., 2018). 

Irregularities on both the platen and specimen end-faces that could potentially lead to local stress 

concentrations were checked prior to test commencement. The bearing faces of the upper and lower 

platens of the UCS testing machine were cleaned before placing the mini-cylinder specimen 

properly aligned on the lower platen.  

The vertical displacement was measured from the lower platen by means of a 5 mm range linear 

variable differential transformer (or LVDT) mounted outside the cell. Axial load was continuously 

applied to produce a stress rate as constant as feasible throughout the test. The load cell was 

adjusted with ~100 kN to simulate quasi-static loading during each test. The stress rate selected was 

adhered to for all tests and the produced failure occurred in 1.5 to 4 minutes time-interval. 

Recording data started just before the mini-cylinder specimen was seated in the bearing parts of the 
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apparatus. The loading data/output, displacement, and time were directly recorded with a computer-

based data acquisition system and analysed with an Excel spreadsheet. The laboratory experimental 

tests were undertaken in accordance with the ISRM guidelines (ISRM, 1979). It must be 

acknowledged that estimated values of UCS and Young’s modulus reported elsewhere for coal or 

other rock material are all subjected to some influence explained through the difference in testing 

equipment and loading rates. 

 

Figure 13 Photograph of the UCS testing machine used for mini-cylinder specimens. 

3.3.4 Coal characterisation  

The different lithotypes in this study were corroborated by petrographic characterisation of 

representative mini-cylinder specimens recovered after UCS testing was performed. A total of 11 

mini-cylinder specimens that showed an axial splitting failure mode during the UCS test were 

prepared for petrographic analysis. Each of those specimens retained the full length of the original 

mini-cylinder specimen tested, whereas others had lost broken pieces and were incomplete for 

analysis. The 11 mini-cylinder specimens were confined into epoxy blocks sized 5030×12 mm and 

polished for analysis (Figure 14). The petrographic analysis was performed at the University of 

Queensland, on a Leica DM 6000M microscope using the Hilgers’ Diskus Fossil computer program 

by an accredited coal petrologist. The maceral subgroup level and reflectance analysis were 

performed in accordance with the ICCP System, 1994.   

PC6-D #10 

 

PC6-D #8 

 

PC6-D #5 

 

Figure 14 Examples of mini-cylinder specimens previously tested for UCS and 

prepared for prepared for petrographic analysis (blocks sized 50x30x12 mm). 
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3.4 EXPERIMENTAL RESULTS AND DISCUSSION 

3.4.1 Failure mode 

The observed failure mode on mini-cylinder specimens of coal was either powerful/violent, 

comparable to an abrupt burst with fragmentation into very small pieces, or less violent (similar to 

Bieniawski, 1968a description) with some warnings involving noise and crack burst that resulted in 

spalling of the specimen face. The fracture patterns observed from mini-cylinder specimens’ post-

UCS test were categorised into two, possibly three varieties: axial splitting (i.e., spalling from one 

face); double shear (i.e., at least one pyramid/cone type recovered); and multiple fracturing. The 

distinction between double shear and multiple fracturing is not very clear since not all fragments 

were recovered post-test. For those mini-cylinder specimens showing abrupt burst, it was inferred 

that double shear or multiple fracturing occurred, as most leftover fragments became unrecoverable. 

It was observed that about 32% of the coal mini-cylinder specimens could be categorized as axial 

splitting under uniaxial compression while others resulted in double shear or multiple fracturing. 

Each failure mode was presented schematically and photographically in Figure 15. 

 

Figure 15 Schematic and photographic fracture patterns for failure modes observed 

on coal mini-cylinder specimens under uniaxial compression.  

3.4.2 Results of strength and Young’s modulus by ply 

Individual information for mini-cylinder specimens of coal tested for UCS are summarised in Table 

3. This table shows the three distinct plies (PC6-D in light blue, PC8-B in orange, and PC8-WB in 

light grey colour) where samples were collected, followed by information of mini-cylinder 

specimens that were prepared and tested. This information includes the specimen attributed number; 

mass; dimensions (diameter and length); slenderness ratio; compressive strength results; maximum 

strain results; estimated Young’s Modulus; and visual appearance/quality (none, minor, pervasive, 

or long defect).   
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Table 3 Summary of mini-cylinder specimens tested and their mechanical properties.  

Mini-cylinder appearance classified as (a) no defect, (b) minor defect, (c) pervasive defect, (d) long defect; 

and failure energy classified as (AB) abrupt burst, and (LV) less violent. 

Figure 16  shows examples of typical stress-strain curve obtained from a UCS test conducted on a 

mini-cylinder specimen of sub-bituminous coal. No significant difference was observed for failure 

energy classified as abrupt burst or less violent. This example is referred to PC6-D #11, #12, and 

#13 (i.e., specimen location and specimen number), which were of similar dimensions (~10.8 mm 

diameter and ~24.5 mm length). The UCS result was ~94 MPa and Young’s modulus was ~3.3 GPa 

(calculated as the average slope of the linear pre-peak portion of the stress-strain curve) (Figure 16).  

Sample 

location 

Number  

# 

Mass  Diameter  Length  L/D Strength Normalised 

Strength 

(MPa) 

Axial 

Strain 

(%) 

Young's 

Modulus 

(GPa) 

Appearance 
Failure 

energy (g) (mm)  (mm) ratio (MPa) 

P
C

6
-D

 

4 23.9 23.7 43.8 1.9 48.08 59.84 2.04 2.59 (a) (AB) 

5 13.8 17.8 42.3 2.4 54.61 52.85 2.02 2.71 (no 

photo) 

(LV) 

8 6.4 13.5 31.9 2.4 70.98 69.09 2.57 3.02 (b) (LV) 

2 3.3 11.9 24.0 2.0 72.20 82.34 2.76 3.09 (b) (AB) 

7 6.7 14.1 32.1 2.3 72.88 73.63 2.80 3.04 (b) (AB) 

3 3.8 12.7 23.6 1.9 74.76 92.53 3.08 2.96 (no 

photo) 

(AB) 

9 6.0 13.8 32 2.3 78.96 78.32 3.15 2.95 (b) (LV) 

6 6.0 13.6 32.3 2.4 84.33 81.67 3.00 3.21 (b) (AB) 

12 2.8 10.7 24.2 2.3 90.86 92.40 3.37 3.37 (b) (LV) 

13 3.0 10.8 24.5 2.3 93.88 95.18 3.29 3.04 (a) (AB) 

11 2.8 10.8 24.8 2.3 94.31 94.46 3.24 3.02 (a) (AB) 

10 3.1 11 25.5 2.3 101.23 100.44 3.72 3.04 (a) (LV) 

1 4.1 13.0 24.3 1.9 104.72 128.85 4.08 3.19 (a) (AB) 

P
C

8
-B

 

1 27.6 22.6 52.9 2.3 25.35 24.91 1.37 2.22 (c) (AB) 

3 15.5 19.1 40.9 2.1 29.00 31.15 1.47 2.29 (c) (LV) 

5 9.6 16.1 38.6 2.4 46.71 44.81 2.37 2.82 (d) (AB) 

11 3.4 11.2 26.6 2.4 51.87 50.23 2.37 2.88 (d) (LV) 

15 2.4 9.5 24.4 2.6 55.73 49.91 2.41 2.65 (d) (AB) 

17 2.5 9.9 25.0 2.5 55.86 50.88 2.82 3.20 (d) (LV) 

7 6.5 14.10 34.2 2.4 59.43 56.35 2.24 3.03 (d) (AB) 

12 3.1 10.4 27.1 2.6 60.98 53.82 2.37 3.37 (d) (AB) 

2 21.8 21.3 41.4 1.9 61.10 72.30 2.37 2.83 (b) (LV) 

14 2.9 10.9 25.5 2.3 69.77 68.59 2.84 2.62 (d) (AB) 

13 3.0 10.6 26.2 2.5 64.14 59.68 2.42 2.99 (d) (AB) 

6 8.2 16.1 36.3 2.3 67.15 68.50 2.57 3.08 (a) (AB) 

18 1.9 9.3 22.0 2.4 75.23 73.14 2.51 4.13 (d) (AB) 

9 5.2 12.8 32.2 2.5 80.12 73.25 3.11 2.82 (a) (AB) 

8 6.7 13.2 34.7 2.6 86.30 75.51 3.60 3.19 (b) (AB) 

16 2.3 9.4 25.5 2.7 105.05 89.07 4.08 2.87 (a) (AB) 

10 4.5 12.3 27.5 2.2 110.50 113.67 6.89 3.21 (b) (LV) 

P
C

8
-W

B
  6 2.3 9.9 23.1 2.3 49.89 49.18 1.59 3.06 (b) (AB) 

1 10.9 17.0 38.8 2.3 60.97 61.44 2.07 3.39 (a) (LV) 

2 9.4 16.1 37.1 2.3 85.42 85.26 3.21 3.00 (a) (AB) 

3 3.9 11.9 27.6 2.3 96.21 95.41 4.57 2.94 (a) (AB) 

5 2.9 10.5 24.1 2.3 118.03 118.27 6.15 3.34 (a) (AB) 
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Figure 16 Example of the stress-strain monitoring result for mini-cylinder specimen 

PC6-D #11, #12, and #13, where (AB) is abrupt burst and (LV) is less violent. 

Figure 17 illustrates quite good correlation involving all results for UCS versus maximum axial 

strain for the mini-cylinder specimens from three distinct plies. The trend appeared to be a linear 

increase in relation to each ply. Note that PC6-D and PC8-B seemed to be parallel trend lines except 

for a single point outside the curve (for PC8-B). 

 

Figure 17 UCS results versus maximum strain using mini-cylinder specimens of all 

sizes for distinct plies of sub-bituminous coal. 

Significant variation in UCS values was observed for mini-cylinder specimens with different size 

derived from three distinct plies. It was statistically confirmed that the variation in the slenderness 

ratio (L/D between 1.9:1 to 2.7:1) still resulted in accurate results. However, in order to manage 

precision the UCS values were ‘normalised’ with respect to a ratio of 2.3 (length-to-diameter) 

strength for standardization and comparison. The proposed normalised UCS data was calculated 
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using the measured UCS data from an actual slenderness ratio then converted into the 2.3 

slenderness ratio as follows:  

        (1) 

where the σci parameter is the normalised UCS [MPa], σc is the strength from the UCS test [MPa], 

is the specimen ratio tested, 2.3 is the ratio of interest for comparison purpose. 

Figure 18 shows the correlation between the normalised UCS and the mini-cylinder specimen size 

from the three distinct plies. The size dependency or scale effect observed by many authors is also 

dominant in these data. The UCS values generally decrease with increasing specimen size/diameter. 

Variability in the UCS results was also observed for mini-cylinder specimens of similar size. More 

significant dispersion was observed for specimens from PC8-B where reduction of the UCS might 

be attributed to the presence of pre-existing cracks/fractures. Overall, by looking at the population 

tested for each distinct ply, PC8-WB is the stronger one followed by PC6-D, and then PC8-B the 

weakest of the three plies (when majority of the tested specimens are taken into consideration). 

 

Figure 18 The relationship between normalised UCS and mini-cylinder specimen 

size for distinct plies of sub-bituminous coal.  

For each mini-cylinder specimen, the vertical deformation was recorded to incorporate the Young’s 

modulus (Ei) for laboratory tests carried out for sub-bituminous coal. Figure 19 illustrates a smooth 

trend of decreasing elastic modulus with increasing size/diameter of mini-cylinder specimen for 

PC6-D and PC8-B, however limited data was available to confirm similar behaviour for PC8-WB. 

The measurements indicated that the trend becomes constant at an approximated value of 2.6 GPa 

for PC6-D and PC8-B, and 3.0 GPa on average by taking the three plies into consideration. Both 

values were in agreement with laboratory tests reported for the same basin by Parotidis et al. (2016) 
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where Ei ranges from 2.0 to 3.2 GPa for varied depth (2.7 GPa in average). But the values were 

higher than elastic modulus estimation for medium rank (bituminous high volatile A) reported as 

approximately between 1.5 and 2.0 GPa by Medhurst and Brown (1998). Note that the Young’s 

modulus is a critical property for numerical modelling influencing the CSG reservoir fracture 

simulation. 

 

Figure 19 Effect of mini-cylinder specimen size on measurements of elastic modulus 

for distinct plies of sub-bituminous coal. 

3.4.3 Mini-cylinder specimen strength by quality 

The mini-cylinder specimens could be visually separated by quality/appearance, and because 

majority of them (about 85-90%) behaved in a similar way not strictly dependent on the ply 

(lithotype), they were grouped as either ‘intact’ or ‘non-intact’. The ‘intact’ group referred to pure 

intact (no defect) or minor defect constrained at the bases (end-faces) meaning the centre part of the 

cylinder remained intact; ‘non-intact’ referred to long or more pervasive defects crossing the 

sidewalls (wall-faces) and/or the bases (end-faces).  

Figure 20 shows the relationship between normalised UCS versus size of mini-cylinder specimens 

for distinct quality/appearance. For convenience of the reader, the two groups were denoted with x’s 

(x) for ‘intact’ and triangles (∆) for ‘non-intact’ mini-cylinder specimens. By plotting the results, a 

distinction was observed between both groups. Then, the data were analysed using the method of 

least squares regression. Fitting approximation was best achieved using the power regression. The 

fitting curves, which are not confidence intervals, were used to determine intervals for ‘intact’ or 

‘non-intact’ mini-cylinder specimens for sub-bituminous coal. The data was confined by the upper 

and lower limit of UCS for ‘intact’, and ‘non-intact’ mini-cylinder specimens. The justification to 
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assume those limits is that the constants for the regression coefficients are significantly different. 

The equations correlating normalised UCS and mini-cylinder specimen size for ‘intact’ and ‘non-

intact’ mini-cylinder specimens were as follows:  

                  upper limit ‘intact’                     (2) 

 transition limit between ‘intact’ and ‘non-intact’      (3) 

 lower limit ‘non-intact’              (4) 

where the σci parameter is the normalised UCS (MPa), and d is the specimen diameter (mm).  

Figure 20 indicates the variability in UCS for laboratory tests conducted with ‘intact’ and ‘non-

intact’ mini-cylinder specimens of sub-bituminous coal. For instance, using the above equations (2) 

to (4), normalised UCS might vary from 144 to 91 MPa for ‘intact’, and 91 to 54 MPa for ‘non-

intact’ mini-cylinder specimens with 9.5 mm diameter; and from 69 to 47 MPa for ‘intact’, and 47 

to 27 MPa for ‘non-intact’ mini-cylinder specimens with 21.5 mm diameter. If the UCS results were 

extrapolated to a standard core size of 50 mm diameter, then the expected variation would be 

approximately from 32 to 23 MPa for ‘intact’ coal and 23 to 14 MPa for ‘non-intact’ coal. It was 

observed that the spread in UCS results tended to decrease with increasing specimen size (scale 

effect). Although there is uncertainty in extrapolating the trend associated with a small population 

of data points, the minor variability on results allows for the data to be constrained by strength.  

 

Figure 20 The relationship between normalised UCS and mini-cylinder specimen 

size when separated by quality/appearance for sub-bituminous coal. 
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Figure 21 illustrates each mini-cylinder specimen denoted ‘non-intact’ (which comprises 12 

specimens) with their size/diameter, so one can refer back to Figure 20 for verification of the 

fracture pattern versus the upper or lower limits of ‘non-intact’. 

PC8-B#1 

 
ф22.6 - 24.9MPa 

PC8-B#7 

 
Ф14.1 - 56.4MPa 

PC8-B#13 

 
Ф10.6 - 59.7MPa 

PC8-WB#6 

 
ф9.9 - 49.2MPa 

PC8-B#3 

 
ф19.1 - 31.1MPa 

PC8-B#11 

 
Ф11.2 - 50.2MPa 

PC8-B#12 

 
Ф10.4 - 53.8MPa 

PC8-B#15 

 
ф9.5 - 49.9MPa 

PC8-B#5 

 
Ф16.1 - 44.8MPa 

PC8-B#14 

 
Ф10.9 - 68.6MPa 

PC8-B#17 

 
ф9.9 - 50.9MPa 

PC8-B#18 

 
ф9.3 - 73.1MPa 

Figure 21 Photos of ‘non-intact’ mini-cylinder specimens showing quality and 

size/diameter for sub-bituminous coal. 

3.4.4 Coal mass strength from mini-cylinder specimen 

The proposition that coal strength decreases with increased specimen size until it reaches a constant 

value (Hoek and Brown, 1997; Medhurst, 1996), leads to a commonly accepted rock mass strength 

to range between 5.4 and 7.4 MPa (Mark and Barton, 1996) i.e., based on their mining database for 

coal pillars, most likely to be medium rank coal. However, when trying to understand the 

geomechanical behaviour in lower rank sub-bituminous coal like the Walloon Coal Measures, a less 

generalised approach should be considered. For coal seam gas extraction, it is anticipated that the 

rock mass behaves like squat (short height and long thickness) coal ‘pillars’ instead of slender (long 

height and short thickness) ‘pillars’, therefore the coal deformation and the strength of the 

surrounding strata play an important role (Medhurst, 1996; Wagner and Madden, 1984). The 

strength of coal seam must be conditional to size. A thin seam is stronger and possibly more so than 

the carbonaceous mudstone or tuffaceous claystone in the strata. 

First, the influence of specimen size on the strength of mini-cylinder specimens was demonstrated 

for the sub-bituminous coal. Then, the profile for mini-cylinder specimens is extrapolated to the 

rock mass using UCS measurements exclusively on ‘intact’ specimens (Figure 20 denoted with x’s 

which comprise 23 specimens). The results were extrapolated using a power function to show the 
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scale effect on mini-cylinder specimens. An asymptotic strength value for coal can be assumed 

equal to 1000 mm in height or 435 mm diameter (2.3:1 slenderness ratio). Similar to the Hoek and 

Brown (1980) approach, the data set of ‘intact’ mini-cylinder specimens calculated as normalised 

strength was reduced to dimensionless form by dividing individual strength values by the strength 

of a specimen 50 mm diameter. This process allowed for comparison with other experimental 

results in literature.  

Figure 22 shows the influence of specimen size for low rank, sub-bituminous coal compared with 

proposed scaling curves from higher rank coals from the following authors: Hoek and Brown 

(1980), Laubscher and Jakubec (2001), Medhurst and Brown (1998) published by Poulsen and 

Adhikary (2013), and Song et al. (2018). Coal specimens from Poulsen and Adhikary (2013), Song 

et al. (2018), and mini-cylinder specimens were extrapolated using a power function. The Hoek and 

Brown (1980) approximate relationship was compiled with UCS data from the literature on 

competent rocks. Laubscher and Jakubec’s (2001) approach fit between the limits for sedimentary 

rock. Poulsen and Adhikary (2013) summarised the inferred UCS from triaxial tests conducted by 

Medhurst and Brown (1998) on medium rank bituminous coal. Last, the measurements from Song 

et al. (2018) were plotted here for UCS results of coal specimens with different sizes and 90° dip of 

the bedding relative to loading direction only (whereas tested for varied bedding).  

Figure 22 shows that if one extrapolates the medium rank, bituminous high volatile A coal from 

Medhurst and Brown (1998) published by Poulsen and Adhikary (2013) back to an ‘intact’ mini-

cylinder scale, they tend to behave parallel to the lower rank, sub-bituminous coals tested in this 

study. And when mini-cylinder specimens are scaled to the rock mass, the low rank coals appear 

slightly more competent (stronger) than medium rank coal (tested by Medhurst and Brown, 1998) 

(Figure 22). It is interesting to observe that, the strength of Chinese coals tested by Song et al. 

(2018) tend to follow the Hoek and Brown (1980) trend for rock rather than coal. In fact, it is 

assumed that Song et al. (2018) tested high rank coals; if so, the coals have less microporous 

structure which would justify the higher UCS. Being more or less competent would reflect the coal 

grindability and population of distinct banding and cleating. It is also noted that large-scale 

specimens should not be referred to as ‘intact’ because of coal specimen size and quality (flaws, 

defects, micro-cracks, discontinuities, and cleats, in significant proportion).  

Based on the experimental results for low rank, the following equation can be used to calculate 

strength scaling to the rock mass ( ) of sub-bituminous coal. The fitted calculation provided a 

straight forward guide for low rank coal rock mass. It does not substitute for laboratory tests and 
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equally important is to consider the surrounding conditions influencing the coal rock mass and the 

evolution of rock characteristics during the water and gas extraction in a coal or CSG environment.  

         low rank coal                       (5) 

where  is the strength of the ‘intact’ rock specimen tested in laboratory, is the diameter 

(mm) of the tested specimens, and is the coal rock mass dimension. It is assumed a constant 

peak strength value for coal is reached for rock mass ~435 mm in diameter i.e., <435 mm. 

 

Figure 22 Influence of specimen size for sub-bituminous coal compared with other 

scaling curves in the literature. 
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Generally, the uniaxial compressive strength values indicate that the mechanical properties differ in 

various rock type and size (Figure 22). Particularly for coal, Figure 23 shows the rank effect 

observed from sub-bituminous to anthracite. Two graphics are plotted together using the mini-

cylinder specimens tested here and data in the literature from Poulsen and Adhikary (2013), Song et 

al. (2013), and Pan et al. (2013), where the specimen size was extrapolated to 50 mm and 300 mm 

diameter. For specimens equivalent to 50 mm diameter, the coal strength increases from sub-

bituminous to medium rank (bituminous high volatile), then there is a decrease towards bituminous 

medium, and after that an increase to high rank coal (anthracite) (Figure 23 see the top curve). 

However, if the coal specimen is about 300 mm diameter, then continuous increase in strength is 

expected with increasing rank (Figure 23 see the bottom curve). Note that interpretation is strongly 

influenced by limited data from Song et al. (2013). During gas production, if an analogy can be 

made that alteration in microporous, and molecular structure and/or orientation occurs over time of 

extraction, changing the coal across ranks, then it promotes change in the strength path. Because the 

Walloon Coal Measures in the Surat-Clarence Moreton basin are thinly bedded (i.e. not massive 

seam) an increase and decrease in coal strength is more likely to occur (Figure 23 the top curve).  

 

Figure 23 Influence of rank and UCS using distinct types of coal with size 

extrapolated to 50 mm specimen at the top curve, and 300 mm specimen at the bottom 

curve. Results are from this study (pink circles) and literature reported values (as noted 

in the legend). 
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3.4.5 Mini-cylinder specimen UCS values by maceral subgroup 

According to Medhurst et al. (1995) considerations of 'brightness' allow one to differentiate 

between the mechanical characteristics of different coals. Petrographic analysis showing the stacked 

percentage distribution of maceral subgroups and mineral matter for 11 samples (i.e., mini-cylinder 

specimens of sub-bituminous coal classified as ‘intact’ and ‘non-intact’ when tested for UCS) are 

presented in Figure 24. Information about textural and compositional controls on coal or the lack of 

it were used to assist in the interpretation of UCS results. Data was organized by ply (PC6-D, PC8-

WB, and PC8-B) followed by the attributed mini-cylinder specimen number (e.g. PC6-D #8). All 

lithotypes are dominated by high percentages of vitrinite group macerals (i.e., telinite, collotelinite, 

vitrodetrinite and gelinite), but the duller ply (PC6-D) contains a slightly lower proportion in 

exchange for a higher proportion of the liptinite group macerals (i.e., cutinite, sporinite, and 

suberinite). There is also a shift of more cutinite and sporinite (mean macerals associated with 

organic material originating from leaves) for samples from duller ply, than suberinite (i.e., organic 

material originating from waxy cells, structured tissue or bark originating from roots or stems in the 

peat phase) which accentuates structures in the banded coal (PC8-B) lithotypes.  

 

Figure 24 Petrographic analysis shown the stacked percentage distribution of 

macerals subgroup levels and mineral matter for each epoxy sample. 

Overall, the macroscopic classification of duller and brighter coal was confirmed grossly by 

differences in the vitrinite and liptinite maceral type and proportion. For the samples analysed, 

duller presented ~60-70% vitrinite and ~20-30% liptinite, while brighter (i.e. banded) showed ~70-

85% vitrinite and ~5-20% liptinite. The inertinite subgroup macerals were uncommon for these 

I

n

t

a

c

t 

 

N

o

n

-

i

n

t

a

c

t 



 

 
 

70 

coals. Because identification of desmocollinite (broken down/mushy plant material) was not 

evident, the subgroup level detrovitrinite was used. Mineral matter occurs in variable percentages 

across all the samples analysed. 

Figure 25 shows representative photomicrographs (using a 10x objective in air, ~50x magnification) 

of macerals composing the different coal lithotypes and the banding structure arising from the 

presence of cutinite and suberinite mixed with structure vitrinite group macerals. Within the darker 

texture, very fine-grained mineral (clay) was observed infilling the cell spaces (Figure 25). The clay 

minerals occurred during the peat phase when the plants were still soft, so the peats were compacted 

around the minerals. Except for the image on the top right, obtained under blue light excitation, all 

images are taken in reflected white light. The images intended to illustrate the maceral subtypes; 

remember that all mini-cylinder specimens were loaded in the direction perpendicular to the 

bedding planes.  

 
(a)         (b)          (c) 

 
(d)         (e)           (f) 

T: telinite, CT: collotelinite, Ge: gelinite, Sub: suberinite, Mi: mineral, Cu: cutinite, Sp: sporinite, VD: detrovitrinite  

Figure 25 Representative photomicrographs (10x objective in air, ~50x 

magnification; all white light except c) of macerals composing the different coal 

lithotypes and the banding structure. 

Next, the normalised UCS for these 11 samples (see location and attributed number highlighted in 

Figure 26) were extrapolated to an equivalent 50 mm diameter specimen in order to verify possible 

correlations by maceral subgroup level. The results of normalised UCS for ‘intact’ specimens 
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presented some strength variability where the two ‘intact’ mini-cylinder specimens of banded plies 

were 34.5±0.5 MPa and the six ‘intact’ ones of dull ply exhibited 25.5±2.5 MPa (Table 4). Because 

three samples prepared for PC8-B (#3, #11, and #17) included ‘non-intact’ specimens, it is 

anticipated that the cylinder quality together with other factors (flaws, mini-cracks, etc.) resulted in 

underestimated strength and consideration is made to avoid misrepresentation.  

 

Figure 26 The samples utilised for petrographic analysis are highlighted in the graphic 

showing the relationship between normalised UCS and mini-cylinder specimen diameter. 

Table 4 Normalized UCS extrapolated to equivalent 50 mm diameter core. 

 

‘intact’ ‘non-intact’ 

PC8-

B #2 

PC8-

B #10 

PC6 -D 

#10 

PC6-D 

#9 

PC6-D 

#12 

PC8-WB 

#1 

PC6-D 

#8 

PC6-D 

#5 

PC8-

B #11 

PC8 -

B #3 

PC8-B 

#17 

50mm UCS(MPa)  35.2 34.0 27.7 27.3 25.7 24.8 24.4 22.6 14.0 14.0 12.5 

 

Cross plots of the normalised UCS versus the subgroup maceral distribution (for instance, strength 

versus suberinite percentage, and strength versus telinite plus collotelinite) were attempted for 

available samples (Figure 27). The cross plots were highlighted as ‘intact’ with x’s (x) and ‘non-

intact’ with triangles (∆) in order to assist the interpretation. First it was not expected that the 

banded ply was more competent than the duller ply. However, it is emphasized that the eight 

‘intact’ samples observed for petrographic analysis do not comprise the entire population of ‘intact’ 

mini-cylinder specimens, but the ones that had enough retrievable portions of coal to make a 

representative polished block (Figure 14). Notice that other ‘intact’ mini-cylinder specimens of 
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banded ply (Figure 19) which were not analysed for petrography (i.e. unable to be assembled into 

an block) presented UCS values within the duller ply limits or slightly weaker.  

In terms of the cross plots for available samples, it is suggested that tested low rank coal behaved 

similarly in terms of strength independent of lithotype (Figure 27). For instance, an increase of 

suberinite, which reflects increased micro banding, would promote a slight reduction in UCS. But 

this expected correspondence to suberinite content was not evident (Figure 27a). Also, observation 

of the structured maceral subgroup telovitrinite (telinite plus collotelinite) gives an expectation that 

samples with higher percentage are the weaker ones since they incorporate more incipient cleats. 

However, there is not a strong trend to conclude (Figure 27b). Neither was an increase in mineral 

matter potentially allowing for further uniaxial compression of the specimen evident. It seems that 

coal mechanical properties are more likely related to fabric and texture rather than the content of a 

particular maceral for these sub-bituminous samples. More so, the presence of fractures, natural or 

induced, were responsible for the lower strength values.  

 
(a) 

 
(b) 

Figure 27 (a) strength vs suberinite percentage; (b) strength vs telinite plus 

collotelinite percentage for sub-bituminous coal. Note that results were represented for 

the three distinct plies (PC6-D in light blue, PC8-B in orange, and PC8-WB in light 

grey colour) tested as either ‘intact’(x) or ‘non-intact’ (∆) mini-cylinder specimens. 

Also, it is quite perplexing that both ‘intact’ PC8-B samples present the highest strength 

measurements. A schematic representation of PC8-B #2 is illustrated below (Figure 28). The 

photomicrographs are used to give some perception of representative texture comprising the mini-

cylinder specimen. It seems that PC8-B #2 presents a diffuse texture, but more interesting is that the 

mini-cylinder specimens’ centre part is quite laminated which might contribute to improving its 

ability to be compressed. 
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Figure 28 Sample PC8-B #2 zoom in and schematic texture appearance. The block is 

50x30x12 mm. The zoom in is from a stitched photomosaic collected at 50x 

magnification.  

3.5 CONCLUSIONS AND RECOMMENDATIONS 

This study investigated the strength and elastic modulus properties using UCS laboratory testing on 

mini-cylinder specimens of sub-bituminous coal in the Walloon Coal Measures. It is promoted that 

for natural fractured rock such as coal the ‘intact’ rock tested needs to be of smaller size (from 

within an intact region of the coal) and without visible fractures (induced or pre-existing) rather 

than standard or larger core specimens, which encompass more natural structural discontinuities. 

Also, scaling using mini-cylinder provides an alternative approach to testing large cores if they are 

difficult to obtain. Where coring is unachievable, the fashioned mini-cylinder can be used. Coal 

visual appearance/quality and maceral composition were investigated to assist laboratory test data 

interpretation.  

 The results for the UCS testing carried out for mini-cylinder specimens sized from 9.3 to 22.6 

mm diameter (2.3:1 slenderness ratio) of low rank, sub-bituminous coal are more competent 

than bituminous coal.  

 Failure mode for mini-cylinder specimens was axial split, double shear, or multiple fracture.   
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 The mini-cylinder specimens of sub-bituminous coal was quite sensitive to fracture intensity.  

 A cylinder size equivalent 50 mm diameter gives an estimated 27.5±4.5 MPa for ‘intact’ coal 

and 18.5±4.5 MPa for ‘non-intact’. The well-known behaviour that laboratory scale unconfined 

strength reduces with increasing specimen size for non-homogeneous rock material such as 

coal is observed for mini-cylinder specimens. Coal scaling to the rock mass shows the 

dependence on rank.  

 Measurements of the elastic modulus property showed a gentle trend of decreasing elastic 

modulus with increasing size/diameter of mini-cylinder specimen. The elastic modulus showed 

an approximated value of 2.6 GPa for sub-bituminous coal, which is consistent with laboratory 

tests reported in literature for standard size core.  

 The coal maceral group composition showed similarities between the dull and banded plies, 

except for variation among the liptinite macerals. Because cross plots for sub-bituminous coal 

strength versus maceral subgroup distribution were inconclusive. It is assumed that the 

mechanical properties were more likely related to fabric and texture rather than the presence or 

absence of particular maceral subgroup. It is projected that sub-bituminous coal shows an 

elastic behaviour relative to more brittle and higher rank coals, e.g. Permian coals 

For the CSG reservoir, it is suggested that coal strength behaviour might need to be observed in 

terms of the seam thickness and the contrast between layers for better comprehension, rather than a 

single scaling approach.  

It is recommended further laboratory investigation of UCS using standard to large size specimens to 

compare to the scaling trend of mini-cylinder specimens for low rank. Also, further investigation is 

recommended to improve the confidence in the results using mini-cylinder specimens on different 

coal ranks, and rock types.  
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4 Chapter 4:   3d-printed sandstone 
C h a p t e r  4  

A TEST OF FRACTURE, SHAPE, AND SIZE USING 

3D-PRINTED SANDSTONE  

Karina Barbosa (PhD candidate) designed shape and size of specimens, conducted SILC and UCS tests, 

interpreted data, prepared figures and graphics, and wrote the manuscript.  

Joan Esterle (Principal PhD supervisor) reviewed, discussed and edited the manuscript.  

Zhongwei Chen (Associate PhD supervisor) reviewed, discussed and edited the manuscript. 

Rick Chalaturnyk proposed the experiment, supplied the specimens, reviewed, and edited the manuscript. 

Benjamin Bonfils escorted the experimental work, reviewed, discussed and edited the manuscript. 

Summary 

The Short Impact Load Cell (SILC) experiments are used in comminution to characterize the 

deformation, fracture initiation and fragmentation behaviour of irregular-single particles and shaped 

specimens subjected to impact loading. This Chapter utilizes the 3D-printed sandstone, a fabricated 

relatively homogeneous material to test assumptions and calculations used in the test, as well as 

differences in SILC results based on specimen size, shape, and fabric orientation.  An advantage of 

testing distinct sizes is that results can be upscaled to the size of interest. Ultrahigh-speed digital 

camera captured the test and was compared to the force-time profile to assist in interpretation of the 

SILC results. The expected failure mode of homogeneous, brittle material start with a shear 

fracture, in which the relative displacement is parallel to the fracture surface and progress with a 

displacement normal to the fracture surface, resulting in a well-defined planar feature when testing 

cylinder-shaped specimens. The perfect split not always occurred for sphere type shaped specimens 

which might fragment into three portions. SILC is pointed out as an alternative for the Brazilian 

tensile strength, where better approximations can be reached with cylinder-shaped specimens. 

However, the specific fracture energy required to reduce a homogeneous specimen to a given size 

can be widely different for specimens of distinct shape. A full description of the specimens tested, 

observations, and results are detailed below.   
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Abstract 

Short impact load cell (SILC) tests provide insight on the dynamic breakage behaviour of rocks. 

The measured impact force to first fracture of a rock specimen is used to calculate properties such 

as fracture toughness, tensile strength, and elastic modulus. To explore the repeatability and 

performance of the SILC test and verify the underlying assumptions for interpreting the test 

measurements, a comprehensive SILC testing program was conducted using additively 

manufactured (3D-printed) sandstone. 3D-printed sandstone specimens with known mechanical 

properties were used to indirectly determine the mechanical properties of specimens from SILC test 

measurements with respect to different sizes (from 5 to 12 mm diameter), shapes (sphere, flattened 

sphere, ellipsoid, and cylinder) and fabric orientations (i.e. angle variation of microstructures 

relative to the impact or loading direction). Unconfined compressive strength tests were also 

conducted on twin sets of various sized cylinder-shaped specimens to verify the estimation of 

compressive strength from the SILC test. Confidence in interpretation of SILC testing results is 

obtained by excluding the intrinsic material variability. Ultrahigh-speed digital camera was used to 

observe the fracture mechanism and to verify the force–time profiles against specimen physical 

response. Well-defined shaped specimens instead of irregular single-particles showed clear peaks 

corresponding to the force to first fracture on the force–time profiles. The study found that the 

minimum energy required to fracture the specimen, therefore the specimen strength, was strongly 

influenced by the shape effect. 

Keywords: 3D-printed sandstone; impact breakage; geomechanical properties; scale effects 
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4.1 INTRODUCTION 

Geomechanical strength and elastic modulus data necessary for numerical modelling simulations 

should be based on site specific investigations such as triaxial or uniaxial strength tests on intact 

core specimens. In many cases, obtaining intact core specimens is very challenging resulting 

significant uncertainty in the properties of a rock mass. Additional rock mass properties such as 

fracture toughness and tensile strength, which are required for hydraulic fracturing models in 

naturally fractured materials, e.g. coal, are also difficult to determine due to sampling challenges. 

Consequently, this study was motivated by a need to identify and validate alternative laboratory 

testing techniques to obtain reliable geomechanical data for natural rock systems. 

In the mineral processing industry, an impact load cell (ILC) test method was developed for single-

particle breakage studies of irregular and sphere-shaped specimens to reproduce comminution 

conditions existing in some full-scale milling operations. Data from the ILC has been used to 

calculate a number of parameters, such as the minimum energy required to fracture a particle, the 

strength and elastic modulus of particles, the net energy absorbed by the particle during the entire 

breakage event (Tavares, 1997), and fracture toughness (Bearman et al., 1989; Donovan, 2003). 

Factors affecting breakage include the particle size (Schonert et al., 1962; Schonert, 1986; Yashima 

et al., 1987; Tavares, 1997; Tavares and King, 1998a), as well as deformation rate and stressing 

velocity, stressing mechanism (abrasion, compression and one-point impact), and the ball/striker 

characteristics (Tavares, 1997). The ILC has also been used across a wide range of natural materials 

including minerals, metal ores and rocks (Tavares, 1997; Tavares and King, 1998a) and 

manufactured materials such as glass spheres (Baumgardt et al., 1975) (Figure 29). Recently, 

Bonfils (2017) introduced cylinder-shaped specimens to verify the shape variability and the intrinsic 

material variability against crushed single-particles of basalt, showing that the variance of the 

cumulative distribution of estimated properties was significantly reduced for cylinder-shaped 

specimens when compared with single-particles. Despite no previous use as a tool for 

geomechanical appraisals, the current study was undertaken to assess whether a modified ILC test, a 

short version of the impact load cell called the short impact load cell (SILC) could provide an 

alternative test method to capture geomechanical properties on drilling particles (or chips) and 

cylinder-shaped specimens, which could alleviate some sampling and testing issues requiring fully 

intact specimens. 
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This study explores the use of intact, quasi-identical, non-standard size and shaped sandstone 

specimens produced using novel 3D-printed (3DP) technology that uses sand as the print material. 

The mechanical properties of these specimens are determined from the short impact load cell 

(SILC) test. Additionally, the study provides a comparison between SILC values and the 

unconfined compressive strength (UCS) using twin sets of 3DP cylinder-shaped specimens, to test 

the correlation between these different methods of testing. The results from UCS are also compared 

with experimental results of Hawkins (1998), also followed by Masoumi et al. (2016) and Roshan et 

al. (2017). Furthermore, the 3DP specimens will improve understanding of the influence of shape, 

size and fabric relative to the impact (i.e., loading direction) when estimating mechanical properties, 

by taking away the intrinsic material variability. As an alternative to natural material for testing, the 

mechanical variation between printed specimens are expected to be minimized. It is the first stage to 

improved confidence in interpretation of results for geomechanical derived properties. Also, an 

ultrahigh-speed digital camera was used to verify the material response to impact interpreted by the 

force–time profiles. 

 
Figure 29 Relationship between mean particle fracture energy and mean particle 

tensile strength of 2.0-2.8 mm particles of various materials (from Tavares, 1997). 
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4.2 BACKGROUND 

The effect of size on impact load test results has been reported for measurement of the particle 

strength and the energy at fracture of materials over a wide range of sizes (Schonert et al., 1962; 

Schonert, 1986; Yashima et al., 1987; Tavares, 1997; Tavares and King, 1998a). In brittle materials, 

it is observed that as particle size decreases, the particles usually become stronger (Tavares, 1997).  

This effect is explained by the probability of fracture based on Griffith’s theory, which states that 

the probability of cracks being present in a solid decrease with a reduction in specimen size. 

However, the study from Hawkins (1998) on isotropic sandstone demonstrated that up to 54 mm in 

diameter, the inverse relationship is true and thereafter (from 54 to ~155 mm) the results of strength 

measurements decrease with increase of specimen size. Hawkins (1998) tested seven sedimentary 

rocks, cylinder-shaped, eight different diameters for each type of rock, 2:1 length-to-diameter ratio 

for uniaxial compressive strength (UCS), and all the results were reduced to dimensionless form 

relative to the strength of the 54mm diameter specimen. Masoumi et al (2016) and Roshan et al. 

(2017) also compared specimen-size dependence against Hawkins (1998) and similar results (i.e. 

ascending and descending trends) were found.  

Unresolved fundamental issues on standard core are affected by several factors such as 

heterogeneity of the rock material that form a mechanical stratigraphy, bedding orientation, grain 

contact, moisture content, coring procedures introducing fractures, and others. Therefore, improved 

understanding of the influence of shape and size, by taking away the intrinsic material variability is 

the first stage to demonstrate the repeatability and performance of the Impact Load Cell test and this 

contributes to improved confidence in interpretation of results.  

4.3 3D-PRINTED SANDSTONE SPECIMENS 

The 3D-printed (3DP) sandstone specimens were additively manufactured using an M-Flex sand 

printer in the GeoPRINT laboratory at the University of Alberta, Canada. The 3DP specimens are 

fabricated using silica sand and binder jetting technology which allows control over grain size, 

packing, mineralogy, cementing type and content, bedding orientation, and discontinuities. Hodder 

(2017) describes the 3DP process in detail and demonstrates that the geomechanical behaviour of 

these 3DP sandstones is dependent on three key aspects: silica sand, binder liquid (composed 

mostly of furfuryl alcohol), and activator (p-toluene sulphonic acid). For the current study, all 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR22
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specimens were fabricated with 20% binder saturation (8 vol%) and post-cured at 80 °C for 24 h 

(Hodder, 2017; Primkulov et al., 2017). Every layer of sand grains applied in the printing 

was ≈ 250 µm thick, slightly greater than the typical ≈ 150 µm diameter of the sand grains. Each 

fabricated specimen is an assemblage of sand/grains located with a certain size distribution where 

they form bridges (connections) with the neighbouring grains. For specimens fabricated with these 

specifications, the UCS of cylinder-shaped 3DP specimens with 25.4 mm in height and 12.7 mm 

diameter was reported as 23.0 ± 2.5 MPa and Young’s modulus ≈ 1.3 GPa (Hodder, 2017) and ≈ 1.9 

GPa (Primkulov et al., 2017). The difference in the Young’s modulus results may be due to the 

different testing equipment and loading rates used in the two experiments (Hodder, 2017). These 

properties are used as reference for the current study. 

3DP allows a variety of shapes (cylinders, spheres, flattened spheres and ellipsoids) of varying sizes 

to be printed. These specimen configurations are initially designed using AutoCAD and this file is 

converted to STL format which is sent to the M-Flex printer. Figure 30 illustrates the AutoCAD 

design and one of each 3DP specimen considering shape, size and printing orientation. Each shape 

was tested at four distinct sizes with average diameters of 5.2 mm, 7.3 mm, 10.1 mm, and 12.2 mm. 

A total of 550 specimens comprising 330 cylinder-shaped specimens (printed in vertical and 

horizontal orientations) and 220 specimens between sphere, flattened sphere, and ellipsoid-shaped 

were successfully tested following the SILC test methodology. The mass, length and diameter of 

each specimen was measured individually and recorded prior to testing. 

 
(a) 
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(b) 

Figure 30 3DP specimens fabricated to be tested: a) AutoCAD design, and b) shape, 

size and orientation of each specimen as printed. 

4.4 SPECIFICATION OF SILC TESTING SPECIMENS 

Relative to the silica sand grains of the specimens and the post-cured binder, it is anticipated that 

the binder/grain interface will provide a weaker zone for dynamic fracture during a SILC test. 

Consequently, fracture of the specimens is likely to consist of rupture and sliding along grain–grain 

interfaces. Based on the study by Hodder (2017), it is assumed no pre-existing cracks are present in 

the 3DP specimens that will contribute to the failure during the SILC test.  

During the 3DP process, the print head dispenses binder on the sand bed in parallel layers from 

bottom to top and so understanding the influence of fabric or bedding orientation was important 

(Figure 31a). The fabric effect refers to the angle variation of microstructures relative to the impact 

or loading direction, and to produce this effect, cylinder-shaped specimens were printed in a vertical 

direction relative to parallel sand layers while others were printed in the horizontal direction. All 

cylinder-shaped specimens were diametrically loaded/impacted to failure during the test. Therefore, 

a cylinder-shaped specimen printed in the vertical direction would have a well-controlled bedding 

orientation of 0° when the specimen is impacted (Figure 31b). While the cylinder-shaped specimen 

printed in horizontal direction had a non-controlled (or unknown) bedding orientation which can 

vary from 0° to 90° when the specimen is impacted, as the first printed layers cannot be identified 

or tracked during the test (Figure 31c). The sphere-shaped specimen also presented a non-controlled 

bedding orientation which can vary from 0° to 180° when the specimen is impacted (Figure 31d). 

The flattened sphere-shaped specimen was an attempt to slightly flatten the sphere at base and top 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR22
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surfaces to potentially track the bedding layers and promote control of fabric or bedding orientation 

to be 90° when the flattened sphere-shaped specimen was impacted (Figure 31e). Identification of 

this only slightly flattened surface was difficult on 3DP specimens and alternate methods should be 

investigated in future studies. Elliptical-shaped specimens, where no attempt was made to flatten 

parts of the surface, also had a non-controlled bedding orientation, which can vary from 0° to 90°, 

relative to the impact direction (Figure 31f). 

 
(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 31 3DP specimens schematic illustration of shapes: a) when manufactured 

into the printing job box; and potential bedding orientation when specimen is impacted: 

b) cylinder printed vertically: 0°, c) cylinder printed horizontally: 0°–90°, d) sphere: 0°–

180°, e) flattened sphere: 90°, and f) ellipsoid: 0°–90°. 

This study also assessed the impact of slenderness ratio [i.e., length-to-diameter ratio (L/D)] on 

cylinder-shaped specimen properties determined using SILC test. The SILC testing 

recommendation is that cylinder specimens should be prepared at a 1:1 ratio. Since 3DP sandstone 

specimens can be printed at distinct ratios, cylinder-shaped specimens were fabricated for vertical 

and horizontal orientations having slenderness ratios of 0.9/1, 1/1, and 1.1/1. Table 5 presents a 

summary of the range of specimens of given shapes and sizes (ratio was included when applicable), 

and the impact conditions investigated, to validate geomechanical properties of 3DP sandstone 

specimens from the SILC test. Note that 3DP sphere, flattened sphere, and ellipsoid-shaped 

specimens are named ‘group A’, and 3DP cylinder-shaped specimens are named ‘group B’ (Table 

5). 



 

 
 

83 

Table 5  Summary of the 3DP specimens’ shape, dimensions and impact conditions tested. 

Shape Cylinder-shaped specimens printed vertically (Group B) 
Diameter (mm) 5.31 5.32 7.38 7.38 10.18 10.22 12.35 12.36 12.4 
Ratio (length/diameter) 1:0.98 1:1.07 1:0.98 1:1.04 1:0.98 1:1.07 1:0.88 1:0.99 1:1.07 
N (number of tests) 21 25 25 26 26 26 16 16 16 
Striker Mass (g) 535.25 535.25 535.25 535.25 
Drop Height (mm) 25.07 63.33 100 125.11 

Photo 

 
 

Shape Cylinder-shaped specimens printed horizontally (Group B) 
Diameter (mm) - - 7.2 7.19 9.98 10.01 12.21 12.15 12.1 
Ratio (length/diameter) - - 1:1.01 1:1.12 1:1.02 1:1.11 1:0.92 1:1.02 1:1.12 
N (number of tests) - - 19 19 19 19 19 19 19 

Striker Mass (g) - - 535.25 535.25 535.25 

Drop Height (mm) - - 63.33 100 125.11 

Photo - - 

 
 

Shape Sphere-shaped specimens (Group A) 
Diameter (mm) 5.1 7.2 10.0 12.2 

N (number of tests) 20 20 20 17 

Striker Mass (g) 535.25 535.25 535.25 1399.8 

Drop Height (mm) 25.07 63.33 100 100 

Photos 

 
 

Shape Flattened sphere-shaped specimens (Group A) 
Diameter (mm) 5.2 7.4 10.2 12.1 

N (number of tests) 18 20 20 18 

Striker Mass (g) 535.25 535.25 535.25 1399.8 

Drop Height (mm) 25.07 63.33 100 100 

Photos 

   
 

Shape Ellipsoid-shaped specimens (Group A) 
Diameter (mm) 5.3 7.4 10.1 12.4 
Ratio (length/ diameter) 1:1.17 1:1.20 1:1.22 1:1.24 
N (number tested) 18 18 18 13 
Striker Mass (g) 535.25 535.25 535.25 1399.8 
Drop Height (mm) 25.07 63.33 100 100 
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4.5 SHORT IMPACT LOAD CELL APPARATUS AND TESTING 

The SILC test apparatus used in this study, as shown in Figure 32, is located at the Julius 

Kruttschnitt Mineral Research Centre (JKMRC), Australia. The apparatus has a cold-rolled rod 

composed of 2 pieces: the main rod with strain gauges attached, and a small anvil. The four 

semiconductor 540 Ω strain gauges (Micron Instruments SS-080-050-500P-S4) are installed on the 

rod (119.3 ± 0.01 mm below the top) in a standard Wheatstone bridge configuration. Small changes 

in resistance of the strain gauges are converted into a voltage (Bourgeois and Banini, 2002) and the 

output voltage is amplified (HBM ML10B module), then used for signal conditioning, and bridge 

balancing. The precision of the force measurement obtained with the calibration depends on the 

resolution of the data acquisition system (PCI data card with 14-bits resolution and sampling rate of 

2.5 MB/s was used). Detailed description for this SILC apparatus was published by Bourgeois and 

Banini (2002). 

 
                            

 
 

 

Figure 32 Setup of the SILC testing system. 
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Stainless steel balls of different sizes were available as the strikers. Details of the striker mass and 

drop height, which define the loading rate or impact conditions, utilized to carry out the tests are 

shown in Table 5. The impact energy level was determined by selecting combinations of striker 

mass and drop height and subjecting each specimen to impact breakage. Typically, the radius of 

curvature of the striker is considerably larger than that of the tested specimen. If couple specimens 

remaining unbroken after being subjected to impact, the impact energy level needs to be increased 

in order to fracture the specimens without inducing significant over-breakage. Because incremental 

damage during impact loading is irreversible, specimens that did not fracture by impact were 

rejected from the analyses. As noted in Table 5, large specimens (12.2 mm diameter) shaped sphere, 

flattened sphere, and ellipsoids required a striker mass of 1399.8 g and a 100 mm drop height to 

induce failure. While large cylinder shaped specimens (12.2 mm diameter) required a striker mass 

of 535.25 g and a 125.11 mm drop height. According to Saeidi (2016), the primary breakage 

function is material dependent, therefore it do not vary if particles are fractured by distinct impact 

conditions. 

The force to voltage ratio is calibrated with dropping a striker (1 in. or 25.4 ± 0.05 mm diameter and 

100 mm drop height) directly on the steel rod (see Table 6 for further detail about rod and striker). 

Calibration is required before the SILC test starts. Then, testing can be performed using a selected 

striker which is released from a known drop height onto one specimen sitting on top of the SILC 

anvil/rod. During the test, the compressive strain wave resulting from the impact travels down the 

rod and strains the solid-state gauges producing a change in resistance. The voltage output is 

directly proportional to the force applied on the rod, which is then recorded as a function of time. 

An ultrahigh-speed digital camera (Phantom v2011) was used to record of extremely short-duration 

(microseconds) of failure events taking place during the SILC tests. Still-images from these videos 

are provided in this study. 

Table 6 Summary of the rod and striker parameters. 

Stainless steel Rod Striker (ball calibration) 

Diameter  19.99±0.01 mm 25.4±0.05 mm 

Length  1500.00±0.05 mm - 

density 7805.51±39.57 kg/m³ 7.783 g/cm³ 

Young’s modulus 211.34±0.22 GPa 203.49 GPa 

Poisson ratio 0.29 0.29 

Young’s modulus  

(elastic modulus) 
230 GPa 230 GPa 
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In terms of testing and data analysis, the SILC test can be used for measuring the (Bourgeois and 

Banini, 2002): 

(1) specimen compression under dynamic conditions; 

(2)  compressive force acting on the specimen at the instant of the fracture which allows for: 

measure of tensile strength and estimation of the yield strength; and  

(3) energy absorbed by the specimen as a function of time by combining the dynamic 

measurements of force and specimen compression, which allows for the determination of: 

 energy-at-first-fracture (or fracture energy) which is the minimal strain energy 

absorbed/stored by the specimen subjected to impact load prior to fracture and  

 energy absorption during fragmentation which is the total energy absorbed by the specimen 

and the generated fragments during a single-impact event. 

For further details of the SILC device construction, calibration and calculations can be found in 

King and Bourgeois (1993), Tavares (1997), Tavares and King (1998b, 2004), Bourgeois and 

Banini (2002), and Bonfils (2017). 

Breakage events taking place during the SILC test are extremely fast (microseconds), so it was of 

interest to visually monitor the experiments. An ultrahigh-speed digital camera was utilised to 

capture fracture propagation in 3D-printed sandstone specimens during the SILC test. The 

equipment utilized was the Phantom v2011, the monochrome device in Figure 33. The videos were 

recorded at 33.3 µs intervals with resolution acquisition of 768 x 768, while the play speed could be 

adjusted from 0.1 to 100 fps for detailed visualisation.    

 

Figure 33 A photograph of the ultrahigh-speed digital camera phantom v2011. 
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4.6 SILC CALCULATION METHODOLOGY 

It is known that the maximum contact pressure between two surfaces (striker and specimen or 

specimen and anvil/rod) depends on: type of curvature between contact surfaces, radius of 

curvature, magnitude of contact force, and elastic modulus and Poisson’s ratio of contact surfaces. 

The SILC calculation methodology is a function of the specimen shape and the contact geometry. 

Figure 35 illustrates the typical interactions that occur between the striker, the sphere-shaped 

specimen, and the anvil/rod for a test where the specimen does not fracture. Figure 35a shows the 

approach of the striker towards a sphere-shaped specimen resting on the anvil. At impact, the 

specimen compresses and the anvil displaces downward (Figure 35b, c). Following this downward 

movement, rebound of the entire set (striker, specimen, and anvil) occurs, as shown in Figure 35d. 

Impact signatures at the contact surfaces at the top (striker-specimen) and base (specimen-anvil) of 

a specimen occur highlighting plastic deformation and geometry changes at the contact surfaces 

(Figure 35e, f). After the first impact, the sphere-shaped specimen underwent rotation in the air 

(Figure 35g), relative to its initial position, to finally be impacted by the striker again (Fig. 4h). For 

this test, no visible fracture or chipping occurred. 

        

(a) (b) (c) (d) (e) (f) (g) (h) 

Figure 34 Illustration of dynamic interaction of the striker and the sphere-shaped 

specimen showing no fracture during a SILC test. 

4.6.1 Determination of cross-sectional areas at contact bodies 

3DP specimens that did not fail during the impact testing had engraved (indented) marks in the 

vicinity of the contact bodies, which gives clear evidence of the Hertzian contact mechanics 

(Goldsmith, 1960; Hertz, 1881). Figure 35 and Figure 36 shows a cross sectional view for the 

Hertzian hypothesis applied for spheres as observed at 3DP ‘group A’ (sphere, flattened sphere, and 

ellipsoid-shaped specimens), and for cylinders as observed at 3DP ‘group B’ (cylinder-shaped 

specimens printed vertically and horizontally).  

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#Fig4
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‘Group A’ was represented by a sphere, flattened sphere, and ellipsoid-shaped specimens. The 

hypothesis applied for ‘group A’ was that a circular contact was formed between all bodies, i.e. the 

striker against the ‘group A’ specimen, as well as the ‘group A’ specimen against the rod (Figure 

35). For calculation purposes, the rod is considered a sphere with an infinitely large radius. 

Calculation of the cross-sectional circular contact area between the specimen and the rod is 

presented in Equation (6). And calculation of the cross-sectional circular contact area between the 

striker (dropped stainless steel ball) and the specimen also utilized Equation (6), except that the 

effective ratios R is defined as per Equation (7).  

 

(6) 

 

 

(7) 

 

Where r is the radius of the specimen, r1 is the radius of the striker, d is the depth of the indentation, 

Fc is the fracture force, E* is the elastic modulus of the bodies in contact (E1, E2 are the elastic 

moduli and υ1, υ2 the Poisson’s ratios associated with each body).  

 
(a) 

 
(b) 

 

 
(d) 

 
(c) 

Figure 35 Illustration of the bodies in contact for ‘Group A’: a) striker, ‘group A’ 

specimen, and rod during breakage in the SILC test, b) evidence for striker against the 

‘group A’ specimen, c) the ‘group A’ specimen against the rod, and d) the force-time 

profile of a sphere-shaped specimen that did not failure. 

2mm 

2mm 
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‘Group B’ was represented by cylinder-shaped specimens. The hypothesis applied for ‘group B’ 

was that two distinct contacts were formed. Notice that all cylinder-shaped specimens were 

diametrically loaded/compressed to failure during the test. An elliptical contact occurred between 

the striker against the ‘group B’ specimen; in addition to that, a rectangular contact was formed at 

the ‘group B’ specimens against the anvil/rod (Figure 36). Calculation of the cross-sectional 

elliptical contact area and the cross-sectional rectangular contact area are presented in Equations (8) 

and (9), respectively. Bonfils’ (2017) calculation accounted for the dimensions of the striker (i.e. D1 

is the steel ball diameter) and the cylinder-shaped specimen tested (i.e. D2 is the specimen diameter) 

to provide the three constants: e is the ellipse eccentricity, K and E are the complete elliptic 

integrals of first and second class, respectively. The elliptical integrals are computed in MatLab for 

all cylinder-shaped size and ball size combinations. For the cross-sectional rectangular contact area, 

the rod is considered a cylinder with an infinitely large radius.  

 
 

(8) 

 

 

(9) 

where Fc is the fracture force, dp is the geometrical mean size (diameter/height), L is the specimen 

length, π is the number PI, and ke is the local deformation coefficient. 

 
(a) 

 
 (b) 

 

 
(d) 

 
(c) 

Figure 36 Illustration of the bodies in contact for ‘Group B’: a) striker, ‘group B’ 

specimen, and rod during breakage in the SILC test (Bonfils, 2017), b) evidence for 

striker against the ‘group B’ specimen, c) the ‘group B’ specimen against the rod and d) 

the force-time profile of a cylinder-shaped specimen that did not failure. 
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2mm 



 

 
 

90 

4.6.2 Determination of fracture force 

A summary of calculations is presented in section 4.6.3. Data processing consisted of analyses of 

the force-time results from the SILC system, together with information about rod, striker (mass, 

diameter, and drop height), specimen (diameter, length, and mass), and calibration measurements, 

all loaded into an Excel spreadsheet. The deconvolution of a typical force-time profile provides 

information about the fracture force (or force at first fracture, Fc) of each specimen (Tavares, 1997); 

the fracture event is obtained by direct reading of the peak force on the graphic. It is crucial that 

results are interpreted by selecting the point on the force–time profile that corresponds to the 

occurrence of the bulk fracture of the specimen, since it effects further data calculated using the 

SILC test. 

The relationship between the load–displacement profiles can be described using the following 

regions (Tavares, 1997): 

 Region (I): all bodies are in contact, initiation of specimen compression results in relocation 

of the specimen on the anvil and/or smoothing of asperities on the surface; 

 Region (II): deformation stage where specimen behaviour is predominantly elastic, therefore 

it can provide an estimation of the elastic modulus for the specimen; 

 Region (III): damage accumulation and development of a macrocrack in a specimen; and 

 Region (IV): rapid reduction of the load with an increase in displacement, growth of a 

macrocrack through the specimen which leads to failure (breakage). 

To illustrate these regions, a typical force-time profile recorded when breaking well-defined sphere-

shaped specimen with 10 mm diameter specimen is shown in Figure 37. More intense vibrations on 

the force-time profile occur for ’group A’ specimens whereas ‘group B’ specimens have less spikey 

profiles. Unfortunately, none of the recorded videos were able to capture the differences between 

region II (for this example, t ≈ 350 µs assuming deformation and elastic behaviour) and III 

(t ≈ 700 µs for accumulation damage), except for the amount of grains being spread, so these limits 

are speculations based on time. Figure 37 also illustrates the dynamic nature of the loading where 

the fracture forces is only observable for less than a microsecond before damage to the specimen 

becomes evident. The peak corresponding to the fracture force is followed by a steep drop in the 

force as confirmed on the ultrahigh-speed videos recorded for the specimens tested (Figure 37).  

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR47
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t=933µs  

post-damage or failure 

 
t=0µs 

contact and smooth of asperities  

 
t=399.85µs  

deformation and elastic behaviour 

 
t=699.75µs  

accumulation damage 

Figure 37 Example of force-time profile of 3DP sphere-shaped specimen with 10 

mm in diameter (striker of 2 inches in diameter, 535.25 g) and recorded impact at time 

equal to 0, 399, 699 and 933µs. Regions I to IV are described in the text. 

4.6.3 Determination of fracture energy for different settings/conditions 

The fracture energy (E’) for shaped specimens corresponds to the elastic energy stored within the 

specimen until the occurrence of fracture and it corresponds to the area below the force-deformation 

curve (Equation (10)) (Tavares and King, 1998b; Bonfils, 2017):  

 

(10) 

where α is the deformation (or strain) applied on the specimen, αc is the deformation at fracture, and 

F is the force-deformation (applied load or stress).  

Notice that measurement of force occur at the strain gauge which is attached to the surface of the 

steel rod and gets trigger on the contact area between bodies. The force can be calculated based on 

Fracture 
force 

20mm 
I                II                      III              IV 

20mm 20mm 20mm 
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the propagation of compressive strain waves through a homogeneous rod (i.e., the longitudinal 

wave propagation theory) and the Hooke’s Law (detailed calculation is presented at Tavares, 1997 

and Saeidi, 2016). 

Fracture energy calculations for ‘group A’ specimens 

The force-deformation of ‘group A’ specimens (i.e. circular contact area) is given by Equation (11) 

(Tavares and King, 1998b). Both the energy absorbed by the specimen, and the energy absorbed by 

the rod are measured during the breakage test with SILC: 

 

(11) 

where Ke is the local deformation coefficient (or critical load) of the Hertzian contact theory 

(Goldsmith, 1960), dp is the distance between loading points (specimen height or diameter), and α is 

the deformation obtained on the impact load cell by accounting for the displacements of the top of 

the anvil/rod and the deformation of the impacted specimen (Bourgeois and Banini, 2002). 

The local deformation coefficient (Ke) is calculated for ‘group A’ specimens as follow (Equation 

(12)) (Tavares and King, 1998b): 

                                                             
(12) 

where Fc is the force at first fracture, Ec is the energy absorbed by specimens at fracture, and dp is 

the distance between loading points (specimen height or diameter). 

Fracture energy calculations for ‘group B’ specimens  

The deformation (or strain) applied to cylinder-shaped specimens needs to be estimated before 

calculating the fracture energy (E’). For that, the calculation methodology uses the Hertzian theory 

of contact for cylinder-shaped specimens which takes into account the bodies in contact. The first 

contact involves the striker impacting the cylinder-shaped specimen which represents an elliptical 

contact area (Figure 35) and the deformation for this contact is given by Equation (13) (Bonfils, 

2017).  

     
(13) 

where α is the cylinder-shaped specimen deformation (or strain) against the striker, C is a constant 

for a given cylinder and striker (ball) diameter, D1 is the striker diameter, π is the number PI, Fc is 
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the force at first fracture, and ke1 is the local deformation coefficient is calculated using the Hertzian 

theory for the contact between the striker and the cylinder-shaped specimen (Equation (14)) 

(Bonfils, 2017).  

 
(14) 

where k1 is the Young’s modulus of the striker, and k2 is the Young’s modulus of cylinder-shaped 

specimen.  

The ‘apparent’ stiffness or stiffness, as defined in the SILC, is also called bulk elastic modulus and 

is given by (Equation (15)). Notice that bulk modulus is defined for a uniform compression where 

the pressure is applied from all directions uniformly. And the Young’s modulus is defined only for 

one axis of the material. Therefore, the term Young modulus is assumed along this thesis.   

 
 (15) 

where Y is the Young’s Modulus and µ Poisson’s ratio. 

The other side of the contact involves the cylinder-shaped specimen impacting with the planar 

surface of the rod which represents a rectangular contact area (Figure 36). The deformation of the 

contact between the cylinder-shaped specimen and the rod (Puttock and Thwaite, 1969) is given by 

(Equation (16)): 

                                                             
(16) 

where α is the deformation against the planar surface of the rod, Fc is the force at first fracture, L is 

the length of the cylinder, D1 is the cylinder-shaped specimen diameter, π is the number PI, ke2 is 

the local deformation coefficient of the Hertzian theory for the contact between the planar surface 

(rod) and the cylinder-shaped specimen (Equation (17)) (Bonfils, 2017).  

 
(17) 

where k1 is the Young’s modulus of the rod, and k2 is the Young’s modulus of the cylinder-shaped 

specimen.  

Once the deformations associated with the contact areas of each side of the cylinder-shaped 

specimen are estimated, the fracture energy for the contact bodies can be calculated. The total 

fracture energy (E’) is a sum of total deformation in the vicinity of the contact (the deformation at 

the elliptical contact area and the deformation at the rectangular contact area) (Equation (13); (16)). 
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4.6.4 Estimation of specific fracture energy 

The specific fracture energy (Em) for ‘group A’ and ‘group B’ specimens were simply obtained by 

dividing the fracture energy (E’) by the respective specimen mass (m) given by Equation (18). 

                                                          
(18) 

In order to account for the indentation of the striker and the rod in contact with ‘group A’ and 

‘group B’ specimens (Tavares and King, 1998; Bonfils, 2017), the corrected specific fracture 

energy (E”) is shown in Equation (19).  

 

(19) 

where Kp is the specimen Young’s modulus and Kb,r is the Young’s modulus of the stainless steel 

(ball and rod). 

4.6.5 Estimation of ‘apparent’ stiffness or Young’s modulus 

The ‘apparent’ stiffness (SILC literature) or Young’s modulus in this work, is a property of a 

structure or component of a structure resisting deformation; hence it is influenced by the geometry 

of the specimen. The ‘apparent’ stiffness or Young’s modulus (Kp) of ‘group A’, and ‘group B’ 

specimens were calculated by solving the Equation (20) (Tavares and King, 1998b). 

where Kp is the specimen Young’s modulus,  Ke is the local deformation coefficient, and Kb,r is the 

Young’s modulus of the stainless steel (ball or rod). 

4.6.6 Estimation of the tensile strength 

Tensile strength calculation for ‘group A’ specimens 

The tensile strength of sphere and flattened sphere-shaped specimens subject to impact was 

estimated using the Equation (21) (Tavares and King, 1998a): 

                                                             (21) 

For ellipsoid-shaped specimen better estimation was obtained taken the length of the specimen into 

consideration (Equation (22)).  

                                                          

(20) 
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                                                             (22) 

where σₜ is the tensile strength, Fc  is the force at first fracture, π is the number PI, dp  is the distance 

between loading points (specimen height or diameter), and L is the length of the ellipse-shaped 

specimen. Formerly, dp is estimated as the geometric mean of the consecutive sieves which bound 

the size interval for irregular single-particles (Tavares, 1997). 

Tensile strength calculation for ‘group B’ specimens  

The tensile strength of cylinders-shaped specimens when subject to impact is based on the Brazilian 

Tensile Strength estimation which is an indirect testing method governed by the ISRM (1978) and 

ASTM (2008) standards (Equation (23)). Based on this assumption the fracture or failure occurs at 

the point of maximum tensile stress, i.e. at the center of the cylinder-shaped specimen.  

                                                            (23) 

where σₜ is the tensile strength, Fc is the force at first fracture, π is the number PI, D is the diameter 

of the cylinder, and L is the length of the cylinder. 

4.6.7 Estimation of the compressive strength 

The unconfined compressive strength (UCS) is a measure of a material strength which is not 

necessarily of main interest in the comminution process, but it is an important geomechanical 

property. According to Pejchal et al. (2017) there is no well-established method to measure the 

strength of individual specimens. However, authors such as Altindag and Guney (2010), and Nazir 

et al. (2013) support that there is a relationship between tensile and compressive strength.  

In the present work, UCS (σcUCS) values of cylinder-shaped specimens are measured using a typical 

servo-controlled machine. Then, these values are observed against the relationship proposed by 

Hawkins (1998). Later in this study, the σcUCS values are compared with tensile strength calculated 

on SILC, which is measured under dynamic loading conditions. The possibility to estimate UCS 

from SILC (σcSILC) is explored using the load and the cross-sectional areas which are dependent 

upon specimen shape following the contact geometry (Figure 35 and Figure 36). It is emphasized 

that this correlation will likely be applicable for similar fabricated material, since it will be 

dependent of the rock/material tested (e.g. surface flaws, bedding, plastic deformation).  

Finally, the validity of predicted UCS calculations from the SILC test (σcSILC) is verified against 

actual UCS test (σcUCS). Note that, the calculation of σcSILC for each shaped specimen tested used the 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR20
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Hertz law of contact (Goldsmith, 1960; Hertz, 1881) for ‘group A’ and ‘group B’, as it has the 

potential to predict correctly the contact phenomena occurring experimentally on 3DP specimens. 

For Hertzian computations, a value of 0.32 has been assumed for Poisson’s ratio of the 3DP 

specimens. After the σcSILC is estimated, a correction factor is computed to provide a correlation 

between distinct tests and shapes on 3DP specimens, similar to approaches proposed by Franklin 

(1985) and Masoumi et al. (2016). The σcSILC is calculated as: 

Compressive strength calculation  

 (24) 

where Atop is the cross-sectional contact area between the striker and the specimen and the Abase is 

the cross-sectional contact area between the specimen and the rod. Note that, for ellipsoid-shaped 

specimens, it is assumed that the average of the semi-minor axis and the semi-major axis gives a 

practical estimation for the specimen radius. 

4.7 UCS APPARATUS AND TESTING 

The testing apparatus utilized for UCS testing was an INSTRON 4505 load system and 

measurements were recorded digitally to obtain stress and strain data (Figure 38). The 3DP 

cylinder-shaped specimens were tested at room temperature and compressed at a rate of 

0.25 mm/min until failure. All specimens underwent an initial load cycle of 0.2 kN to establish 

close contact between the specimen and INSTRON frame platens prior to loading. 

All cylindrical 3DP specimens fabricated for UCS testing were printed in a vertical direction with 

diameters of 7.3 mm, 10.1 mm, 12.3 mm, 16.5 mm, and 21.6 mm. Overall, the specimen fabrication 

followed recommendations and guidelines ASTM (1991; 2000; 2013) or ISRM (1979; 1999; 2007) 

despite the specimen sizes. The compliance for the slenderness ratio (L/D) about 2.3:1 on average 

also follows the standards (ASTM, 2013). The minimum number of specimens tested for each size 

was eight. Measurements of Young’s modulus using axial extensometers occurred, except for the 

two smaller sizes tested (i.e., 7.3 mm and 10.1 mm diameter). The tangent Young’s modulus was 

calculated following ASTM, passing the initial portion of the stress-strain curve, where the middle 

(50% or average slope) of the linear pre-peak portion of the stress-strain curve and the end of the 

stress-strain curve immediately before maximum stress were taken. Table 7 presents a summary for 

the specimens tested. 
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Figure 38 The INSTRON 4505 load system.  

Table 7 Summary of UCS tests of the 3DP specimens. 

 Cylinder-shaped specimens printed vertically 

Size (diameter in mm) 7.3 10.1 12.3 16.5 21.6 

Ratio (length/ diameter) 2.2:1 2.2:1 2.2:1 2.2:1 2.2:1 

N (number tested) 8 10 10 10 10 

Extensometer used no no yes yes yes 

 
 

4.8 RESULTS OF UCS TESTING  

In comparison to UCS tests on rocks reported by several authors (Bieniawski, 1984; Santarelli and 

Brown, 1989; Basu et al., 2013), 3DP sandstones demonstrated consistent failure modes across 

specimen sizes with a small variability between smaller and larger diameter specimens. Different 

mechanical behaviour between the fabricated 3DP sandstone and the steel platens of the testing 

machine resulted in radial shear stresses at their interfaces. For larger diameter specimens (16.5 mm 

and 21.6 mm), a typical “end cone” failure mode (Figure 39a) resulting from platen end effects 

(Kwasniewski et al., 2012; Hodder, 2017) was evident and for smaller diameter specimens (7.3 mm, 

10.1 mm, and 12.3 mm), the “end cone” failure zone was more rounded (Figure 39b). Because there 

is no variation on the bedding orientation with respect to loading direction of mini-cylinder 

specimens tested for UCS, the distinction on failure mode is attributed to a specimen size. For all 
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diameter specimens, axial cracking occurred along the direction of loading (Hodder, 2017). As 

shown in Figure 39c, the stress-strain response of the 3DP sandstone specimens did not exhibit a 

brittle post-peak response. Figure 39c refers to the specimen with 21.6 mm in diameter and 48.7 

mm in length, UCS is 35.2 MPa, and estimated Young modulus is 1.9 GPa. The mean time taken to 

reach a peak stress was 1.3 min and 3.7 min for the smaller and larger diameter specimens, 

respectively. 

 
(a) 

 

 
(b) 

 
(c) 

Figure 39 Failure modes observed on 3DP specimens under uniaxial compression   

a) 21.6 mm specimens, b) 12.3 mm specimens (zoom in photography), and c) example 

of the axial stress-strain curve for 3DP sandstone (21.6 mm diameter).  

Figure 40 illustrates the variation of UCS with the average diameter of the tested specimens clearly 

showing the expected trend of increasing UCS with the increase in specimen diameter. 3DP 

specimens demonstrated that the larger the surface area of the specimen in contact with the platens, 

the better was the weight distributed so the pressure exerted needs to increase to compress the 

specimen.  

 

Figure 40 UCS test results for 3DP sandstone specimens of different diameter. 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR22


 

 
 

99 

The mechanical properties, including σcUCS, maximum axial strain (εA), and Young’s modulus (E), 

are summarized in Table 8. Overall, all results are quite consistent with data reported in the 

literature (Hodder, 2017; Primkulov et al., 2017), considering that the testing machines were not the 

same and aspect ratios were slightly different. 

Table 8 Mechanical properties of 3DP sandstone obtained from UCS tests. 

Specimen diameter (mm) 7.3  10.1  12.3 16.5 21.6 

UCS (MPa) 20.1 ± 1.7 24.5 ± 2.0 27.9 ± 2.6 32.5 ± 1.8 34.7 ± 2.2 

εA (%) 2.2 ± 0.4 2.0 ± 0.2 1.9 ± 0.2 1.8 ± 0.2 1.9 ± 0.2 

E (GPa) 1.3 ± 0.1 1.8 ± 0.2 2.0 ± 0.3 1.9 ± 0.1 1.9 ± 0.2 

N (number tested) 8 10 10 10 10 

 

The suitability of the 3DP sandstone specimens to represent natural sedimentary sandstone was 

assessed by comparing the UCS measured on the 3DP specimens to UCS measured on natural 

sandstones by Hawkins (1998). Hawkins tested seven sedimentary rocks at eight different 

diameters, all with a 2:1 length-to-diameter ratio and presented the results reduced to dimensionless 

form relative to the strength of the 54 mm diameter specimen (Hawkins’ sandstone data is presented 

below). Here, UCS data was normalized to the UCS measured on 25 mm diameter specimens. A 

modest extrapolation, as shown in Figure 40, was completed for the 3DP results because the largest 

3DP sandstone tested was 21.6 mm. Consequently, the σcUCS of a 25 mm diameter 3DP specimen 

was assumed to be equal to 35.2 MPa. Figure 41 shows excellent correspondence in UCS results 

between the sedimentary sandstone rocks tested by Hawkins (1998) and the 3DP sandstone 

specimens. While no large diameter 3DP specimens were tested in this study, it is expected that the 

3DP specimens would follow the same strength variation determined from Hawkins (1998). 

Notice that the results for smaller 3DP specimens and natural sandstone (up to 54 mm) showed 

comparable ascendant strength which do not support the curved “best fit” line and well-known 

formulation produced by Hoek and Brown (1980). Hoek and Brown (1980) showed that specimen 

strength increases progressively as the specimen diameter decreases, but this was for specimens 

containing flaws and fracture which can be observed on larger size specimens (from 54 to 155 mm 

in diameter) from Hawkins (1998) (Figure 41).  
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Figure 41 UCS strengths of three sedimentary sandstone rocks (Hawkins, 1998) 

versus 3DP sandstone. 

4.9 RESULTS OF SILC TESTING 

4.9.1 Fracture mechanism  

In a SILC test, impact from the striker (steel ball) compresses (deforms) the specimen vertically 

which will induce horizontal deformations and result in horizontal tensile stresses within the 

specimen (Figure 42a). Vertically oriented fractures are created when this horizontal tensile stress 

exceeds the specimen tensile strength. This process is very similar to the processing occurring in a 

Brazilian indirect tensile test. Recorded videos show that the crack initiation position for 3DP 

specimens definitively starts at the contact surface with the striker (Figure 42b). The first crack 

propagates perpendicular to the direction of principal tensile stress (Figure 42c). Despite the SILC 

test being a case of tensile strength dominated failure where specimen shape plays an important 

role, there is a transition between shear and tensile failure mode. This interpretation is supported by 

observation of an edge fragment (Figure 42d) systematically formed at the loading contacts, which 

indicate stress concentration near the loading (striker-specimen contact and rod-specimen contact) 

that leads to an early shear failure fracture in that localised section of the specimen. The stress 

concentration induces the propagation of tensile failure zone along the vertical loading diameter.  
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

Figure 42 a) Transition between shear and tensile failure modes in 3DP sandstone, 

modified from the illustration by Li and Wong (2013), b) crack propagation on cylinder-

shape specimen diametrically loaded, c) specimen splitting, d) edges from shear failure. 

The recording with the monochrome device was set to start when the striker departed its initial 

position (i.e. free fall) until it touched the rod. Then, the frames of interest would be observed for a 

shorter interval, e.g. contact striker/specimen and crack propagation which takes up to 1200 µs. 

Figure 43 (ultrahigh-speed photography images) illustrates the sequence of fracture generation and 

propagation as well as the failure pattern for distinct shapes and sizes tested with SILC.  

Figure 43a shows a cylinder-shaped specimen with 12.2 mm diameter. The cracks are firstly 

initiated by the striker at the top loading point, then propagate along the loading plane, and finally 

split the specimen into two (quasi symmetric) halves. Almost all cylinder-shaped specimens 

(independent of size and ratio) have a very clear crack initiation and propagation. It may occur that 

the striker bounced up and down on both halves or on one half before the fragments leave the anvil, 

particularly for smaller size specimens (≈ 5.2 mm and 7.2 mm diameter). But fragments were 

completely separated at that instant. Only three cylinder-shaped specimens printed in vertical 

direction experienced fracture propagation through the banding (i.e., direction of printed layers) 

resulting in surface chipping or multiple fragments. This is an indication that the fragmentation of 

cylinder-shaped specimens is influenced by the fabric orientation (Jaeger, 1960; Attewell and 

Sandsford, 1974; Brown et al., 1977; Al Jassar and Hawkins, 1977, 1979). The anisotropy in 

properties of the specimens should reflect the bedding structure produced in the 3DP process. 

Figure 43b illustrates a sphere-shaped specimen with 5.2 mm diameter where the residual kinetic 

energy of the striker allowed further breakage of the resulting fragments from the first fracture. It 
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was observed that smaller specimens (≈ 5.2 mm and 7.2 mm diameter for ‘group A’) might 

experience some indentation with very small fragments (i.e., grain sized) being generated. For those 

cases, multiple fragments seemed to be crushed and trapped between the striker and the anvil/rod, 

even though the test might be compared to an indirect tensile strength test. Overall, a clear crack 

propagation is not always evident for these smaller sized specimens. Similar observation is reported 

by Huang et al. (2014) when testing glass spheres of 4.39 mm diameter where slight shape 

destruction was attributed to Hertzian ring cracks splitting off a shallow slice before the release of 

the disintegrating cracks. 

Figure 43c shows the ellipsoid-shaped specimen with 12.4 mm diameter. The cracks developed by 

the striker also started at the top loading point, then propagated along the loading plane, and the 

specimen split into three fragments, about 120° apart. Overall, the fracture seemed to be more 

evident on larger specimens (≈ 10.1 mm and 12.2 mm diameter for ‘group A’), which behaved more 

consistently either with a clear split of the specimen (two halves) or three portions/fragments, 

except for couple specimens experiencing surface chipping. 

Figure 43d illustrates the failure pattern of a flattened sphere-shaped specimen with 10.2 mm 

diameter where splitting into two halves occurred approximately 180° apart. In this case the striker 

bounced on top of one half while the other half left the anvil. 

Figure 43e shows an example of surface chipping on a 10.0 mm diameter sphere-shaped specimen. 

It is interesting to mention that 5 out of 8 (62.5%) of all those 3DP specimens (from 5.2 mm to 

12.2 mm diameter of ‘group A’ and ‘group B’) that chipped on the surface presented the fracture 

force quite close or within a range to those specimens as bulk fracture. Therefore, each specimen 

experiencing chipping had the results verified before the decision to reject or keep the test result. 

According Tavares (1997) a specimen is considered broken if it loses at least 10% of its original 

weight during impact. 

Figure 44 presents a summary of fragmentation characteristics for different specimen shapes and 

sizes tested with SILC. More frequently, the specimen would separate into two halves and/or three 

portions but, multiple fragments or one single chip was also observed. For the smaller diameters 

(5.2 mm and 7.2 mm) of ‘group A’, the number of fragments might be speculative since some of 

them experience indentation followed by shape destruction. It was observed that ‘group A’ (sphere, 

flattened sphere, and ellipsoid-shaped) specimens tend to generate more fragments of grain sizes 

than ‘group B’ (cylinder-shaped) specimens. 
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(e) 

Figure 43 Fracturing process and failure pattern: a) cylinder-shaped specimen 

(12.2 mm) split into two halves; b) sphere-shaped specimen (5.2 mm) indented and 

compressed; c) ellipsoid-shaped specimen (12.4 mm) split into three fragments; d) 

flattened sphere-shaped specimen (10.2 mm) split into two halves, and e) sphere-shaped 

specimen (10.2 mm) show surface chipping. Selected frames from ultrahigh-speed 

camera phantom v2011. 
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Figure 44 Summary of fragmentation characteristics generated by 3DP specimens tested 

with SILC. 

Overall, the final fracture surface is not perfectly flat even when the striker seems to precisely 

contact the specimen. Major 3DP fragments from the specimens tested were collected in a plastic 

bag for each lot (similar shape and size). Two photographs show the pattern fracture for major 

fragments of cylinder-shaped specimens printed horizontal and sphere-shaped specimens, all with 

≈ 12.2 mm diameter (Figure 45).  

 
(a) 

 
(b) 

Figure 45 Pattern fracture for major fragments of 3DP with ≈ 12.2 mm diameter:     

a) cylinder-shaped specimens printed horizontal and b) sphere-shaped specimens. 

4.9.2 Typical force-time profile  

Two examples of force-time profiles for 3DP sandstone specimens broken under the same impact 

conditions (striker size equal to 50.8 mm diameter and drop height of 100 mm) are shown in Figure 
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46. Figure 46a refers to a cylinder-shaped specimen printed in horizontal direction (10.1 mm 

diameter, 10.1 mm length and weight of 1.1323 g), and shows that the force at first fracture (i.e., 

fracture force) is equal to 1139.6 N at 383 µs. The energy absorbed by the rod and the energy 

absorbed by the specimen until fracture (i.e., fracture energy) were calculated as 9.5 mJ and 

185.8 mJ, respectively. Figure 46b shows the test results for a flattened sphere-shaped specimen 

(10.0 mm diameter and weight of 0.818 g) and yields a force at first fracture equal to 990.4 N at 

868 µs. The energy absorbed by the rod and the energy stored by the specimen until fracture were 

calculated as 21.3 mJ and 366.9 mJ, respectively. In general, test results show that although the 

mass of the cylinder-shaped specimen was about 28% larger than the flattened sphere-shaped 

specimen, it took about half of the time to fracture the cylinder-shaped specimen when the same 

energy was applied. This implies that the time interval from the crack initiation to the fragmentation 

is longer for ‘group A’ shapes. It may be related to the integrity of the specimen’s overall strength 

and contact areas. Cylinder-shaped specimens are easier to lose integrity once it splits, where the 

sphere-shaped specimens may be likely to fail at the top, but the overall strength can still remain 

until the middle part breaks. The fracturing process and failure pattern of ‘group A, and ‘group B’ 

have a shape dependency as observed in Figure 46. 

  

 
t≈433µs fracture force 

 
t≈899µs fragments 

 
t≈433µs deformation 

 
t≈899µs fracture force 

(a) (b) 

Figure 46 Example of force-time curve of 3DP sandstone with ≈ 10 mm diameter 

and fractured under same impact conditions: a) cylinder-shaped specimen printed 

horizontal, and b) flattened sphere-shaped specimen.  
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4.9.3 Analysis of SILC results  

The results for distinct sets of specimens presented in terms of shape, size, and orientation were 

initially analysed for inherent scatter or variability of specific parameters of interest (fracture force, 

specific fracture energy, Young’s modulus, and tensile strength) by plotting cumulative probability 

distributions (Equation (25)). This method consists of ranking the test results in ascending order and 

then assigning i=1, 2, 3, …, N to the ranked observations. N is the total number of tests performed 

per series of experiments.  

                                                        
(25) 

Subsequently, the resulting pairs, i.e., specific fracture energy vs cumulative probability 

can be plotted with specific fracture energy presented in a logarithmic scale. 

Different material can be effectively described fitting a log-normal distribution to the test data 

(Baumgardt et al., 1975; Dan and Schubert, 1990; King and Bourgeois, 1993; Tavares, 2007; 

Bonfils, 2017)) given by (Equation (26). Appendix II shows a comprehensive catalogue of SILC 

data. 

 
(26) 

where  is the median specific fracture energy,  is the geometric variance of the distribution. 

For example, Figure 47a shows the cumulative probability for the measured fracture force of 

sphere-shaped specimens per size (i.e., diameter), where the log-normal curve fits are shown for 

each dataset. These cumulative probability plots also highlight the effect of specimen size on SILC 

test measurements but to provide a single statistic for exploring these relationships over the entire 

series of experiments, the corresponding median or P50 value for each dataset has been chosen from 

the curve fits (Figure 47a). Symbols are individual specimens and lines are log-normal distribution 

curve fits. The pink rectangles indicate specimens that were chipped.  

Overall, the cumulative probability plots for all shaped specimens (sphere, flattened sphere, 

ellipsoid, cylinder printed vertically, and cylinder printed horizontally) showed good reproducibility 

for tests conducted on 3DP specimens with a defined geometry (Figure 47). All cylinder-shaped 

specimens were tested for some small variation on the length-to-diameter ratio (1:1 and 1.1:1, while 

specimens with 12.2 mm diameter were also tested for 0.9:1), and the ratio variation was captured 

on SILC tests (Figure 47d, e).  
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(a) 

 
(b) 

 
(d) 

 
(c) 

 
(e) 

Figure 47 Cumulative distributions of force at first fracture of: a) sphere-shaped,     

b) flattened sphere, c) ellipsoid, d) cylinder printed vertical, and e) cylinder printed 

horizontal. 
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To better understand the fracture behaviour of 3DP specimens under SILC test conditions, a 

comparison of cumulative distributions between natural rocks tested by Bonfils (2017) and the 

fabricated 3DP specimens was conducted (Figure 48). Despite the resolution of the strain gauge and 

digitalisation equipment utilized, the scattered data observed from SILC tests is attributed to both 

the shape and the intrinsic material variability of tested specimens (Bonfils, 2017). Figure 48a 

shows the log-normal distributions for specific fracture energy (or corrected specific fracture 

energy) comparing results of irregular crushed particles and cylinders-shaped for basaltic rock 

plotted by Bonfils (2017). It demonstrates that a defined shape certainly contributes to reduce the 

scatter. Figure 48b illustrates that cylinder-shaped specimens of basaltic rock (Bonfils, 2017) and 

3DP specimens showed quite similar scatter. Typical basalt rocks have a fine-grained mineral 

texture, which may contribute to the consistency of the two sets of results. 

 
(a) 

 
(b)  

Figure 48 Cumulative distribution of the specific fracture energies: a) irregular 

crushed particles versus cylinder-shaped specimens of basaltic rock (Bonfils, 2017), b) 

cylinder-shaped specimens of basaltic rock versus cylinder-shaped specimens of 3DP. 
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Figure 49 shows the median results of fracture force for all shapes and sizes tested. The fracture 

force increases with increasing specimen size, with cylindrical specimens (‘group B’) following a 

slightly different trend than the non-cylindrical specimens (‘group A’). An interesting result was 

that trend for ellipsoid-shape specimens are positioned between cylinder shape-specimens and 

sphere-shaped specimens. Also, the influence of fabric orientation relative to impact direction 

influenced the breakage properties. For instance, the median fracture force for flattened sphere-

shaped specimens (marked as triangles) is larger than sphere-shaped specimens (marked as squares) 

(Figure 49). When referring to cylinder-shaped specimen printed vertical (marked as dots) and 

horizontal (marked as diamonds), the larger specimens (≈ 12.2 mm diameter) tend to present more 

variability in the median fracture force. The observations for cylinder-shaped specimens should take 

the information of aspect ratio into consideration. It was observed that each small increment 

(≈ 0.1 increment) on the aspect ratio resulted in an increase of median force at first fracture for 

cylinders printed with the same fabric. 

 

Figure 49 Variation of median force at first fracture with specimen size for 3DP 

specimens. 

Figure 50 shows that, when cylinder-shaped specimens (≈ 12.2 mm diameter) are compared for 

same aspect ratio (for instance 1:1), then the SILC test measurements show the influence of fabric 

orientation (i.e., variation of bedding direction) relative to impact on 3DP sandstone. Although 

distinction about the fabric was not visible on the 3DP specimens, cylinder-shaped specimens 

printed vertical or horizontal were not mixed when tested. The results showed, for the same aspect 

ratio (1:1), that cylinder-shaped specimens printed horizontal (striker impacting layers/bedding 

varying from 0° to 90°) present slightly larger fracture force than those printed vertical (striker 
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impacting layers/bedding at 90°). On the other hand, the median results for smaller sizes (≈ 7.3 mm 

and 10.1 mm diameter) are not always behaving as expected (Figure 50). The recommended aspect 

ratio (1:1) when testing cylinder-shaped specimens on SILC should be perceived as small variations 

will reflect on the results. However, it seems to be acceptable to utilize cylinder-shaped specimens 

with ratio varying from 0.9:1 to 1.1:1. For further ratio variation it is suggested that the results be 

factored to suit the actual recommended ratio. 

 

Figure 50 Impact of fabric orientation on the fracture force for cylinder-shaped 

specimens. 

4.9.4 Interpretation of mechanical properties from SILC tests 

The mechanical properties of a specimen are uniquely related, given the Young’s modulus of the 

striker and the rod are known (Tavares, 1997). Figure 51 shows the median results of fracture 

energy for 3DP sandstone with distinct shapes and sizes. The stored fracture energy was 

demonstrated to be slightly larger for ‘group A’ subjected to impact load prior to fracture when 

compared with ‘group B’ (both printed vertical and horizontal) of similar diameter. 
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Figure 51 Variation of median fracture energy with specimen size for 3DP 

sandstone. 

Figure 52 shows the median results of corrected specific fracture energy for 3DP sandstone with 

distinct shapes and sizes. When the specimen mass is taken out of consideration, the minimum 

energy required to fracture ‘group A’ was about double the energy for ‘group B’ of similar sizes. 

Note that the fracture energy corresponds to the minimum energy required to fracture a brittle 

specimen (Baumgardt et al., 1975) and corresponds to the area below the force-deformation curve. 

The force-time profile (previously illustrated in Figure 46) has similar plotting characteristics to the 

force-deformation curve. As observed before, the force-time profile for ‘group B’ specimens 

yielded a reduced area when compared to ‘group A’ specimens. Thus, the size and most importantly 

the shape of the specimens tested with SILC have a strong influence on the results of corrected 

specific fracture energy regardless of the impact conditions (ball size and drop height). Overall, 

differences between shape and size of the tested specimen are very influential for the determination 

of geomechanical parameters; therefore, they cannot be ignored. 

Figure 53 demonstrates the size dependence of an equivalent ‘Young’s modulus’ (stiffness or 

‘apparent’ stiffness in previous publications) for SILC test. There is an increase in the Young’s 

modulus with increasing specimen size. In terms of shape variation for 3DP specimens, the 

estimated values of ‘Young’s modulus’ for cylinders and ellipsoids are greater than for sphere and 

flattened sphere-shaped specimens. Moreover, looking at the fabric orientation relative to impact 

direction, it was observed that the ‘Young’s modulus’ estimated for large cylinder-shaped 

specimens (10.1 mm and 12.2 mm diameter) printed vertically was smaller than that one printed 

horizontally. It is consistent with the effect of bedding orientation (Attewell and Sandsford, 1974; 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR10
https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR8
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Brown et al., 1977; Al Jassar and Hawkins, 1977, 1979). But better similarity for the equivalent 

‘Young’s modulus’ between ‘group A’ and ‘group B’ was expected. Upcoming publication from 

Lois-Morales et al. (2019) is addressing issues in the calculations proposed for cylinder-shaped 

specimens. 

 

Figure 52 Variation of median corrected specific fracture energy with specimen size 

for 3DP sandstone. 

 

Figure 53 Variation of median ‘Young’s Modulus’ with specimen size for 3DP 

sandstone. 

 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR15
https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR1
https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR2
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Figure 54 illustrates the median values of tensile strength distributions for 3DP sandstone with 

distinct shapes and sizes. Again, size dependent results were demonstrated as the tensile strength 

increased with increased 3DP specimen. It was observed that the median values for tensile strength 

between shapes varied up to 26%. It is supposed that ‘group A’ with 5.2 mm diameter might be 

influenced by a grain size issue causing offset of the results. Recommended diameter for core 

specimens (prepared for standard triaxial or uniaxial tests) is to be at least six to ten times that of the 

largest fragment/grain within the rock (ASTM and ISRM). Recorded videos of SILC test showed 

that sphere and flattened sphere-shaped specimens with 5.2 mm diameter tend to be indented 

resulting into several small fragments/grains. 

 

Figure 54 Variation of median tensile strength with specimen size for 3DP 

sandstone. 

It is known that the ratio of UCS to tensile strength typically varies between 8:1 and 15:1 for most 

of the rock materials (Perras and Diederichs, 2014; Komurlu et al., 2017; Konietzky and Ismael, 

2017). Figure 55 shows the experimental results of average UCS estimated from the conventional 

UCS test and average tensile strength estimated from the SILC tests. The average ratio of UCS to 

tensile strength ( ) is around 2:1 to 4:1 as the specimen size increases. Therefore, if a 

typical 61 mm diameter specimen was tested, it is anticipated, by extrapolation of , 

to vary between 9:1 and 11:1 conditional to shape. 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR39
https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR31
https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR32
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Figure 55 Variation of average uniaxial compressive strength and average tensile 

strength ratio with specimen size for 3DP sandstone. 

4.9.5 Assessment of compressive strength from SILC tests 

Direct measurements of UCS values sometime can be difficult due to the limited samples available 

and costs to core representative specimens. For this reason, preliminary attempt will be sought next 

to estimate UCS values from SILC data. Uncertainties for this task are related to (i) utilisation of a 

tensile dominant failure mode test, (ii) the experimental investigation be conducted on distinct 

shape (cylindrical and non-cylindrical specimens), and (iii) combined with its nonlinearity, the 

Hertz relation does not account for energy dissipation during the impact process. Nonetheless, for 

estimation of the compressive strength on SILC test (σcSILC), the contact areas related to bodies 

interaction are needed. The median results of the calculated contact area (top and bottom contacts) 

for each lot following the contacting bodies are presented for ‘group A’ and ‘group B’ in Figure 56. 

Note that quantification of contact areas for shaped specimens differ mostly for ‘group B’. 

Next, using the applied load and the estimated contact areas, the possibility to estimate the UCS 

value for each shaped specimen is verified. The compressive strength (σcSILC) of median values for 

distinct specimen sizes and shape (‘group A’ and ‘group B’) is shown in Figure 57. 
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(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 56 Median results for 3DP of ‘group A’ and ‘group B’ specimens: a) circular 

contact area for striker versus specimen, b) circular contact area for specimen versus 

rod, c) elliptical contact area for striker versus specimen, and d) rectangular contact area 

for specimen versus rod. 

 

Figure 57 Variation of median compressive strength for ‘group A’ and ‘group B’ of 

3DP sandstone. 
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Because the UCS results shown in Figure 41 confirmed the similarity between 3DP sandstone and 

real sandstone rock (Hawkins 1998). Also, the average ratio between compressive strength, again 

from conventional UCS test, and tensile strength from SILC ( ) seemed to be 

consistent. Confidence of UCS for 3DP sandstone specimens determined directly from UCS tests 

(σcUCS) at distinct size (Figure 40) allows for verification of correlation to UCS values from SILC 

tests (σcSILC), if any.  

It was found that estimation of σcSILC does not reflect a straight forward prediction of σcUCS. The 

simple solution, which can contribute for this approach, is to introduce a correction factor. It is 

anticipated that the correction factor must vary as function of the specimen shape and type of 

material tested. Figure 58 shows a proposed correlation factor valid for 3DP specimens, indicating 

the size has little effect but the shape is quite strong by comparison. The median ratio for cylinder-

shaped specimens is 3.9, which is the lowest among the four shapes. Flattened sphere and ellipsoid-

shaped specimens have the highest ratio of 6.8, followed by sphere-shaped specimens with ratio of 

5.8 (median values). 

 

Figure 58 Comparison of the strength ratios between SILC method (σcSILC) and 

standard UCS method (σcUCS) for ‘group A’ and ‘group B’ of 3DP sandstone. 

4.10 CONCLUSIONS AND RECOMMENDATIONS 

This study details an experimental method using the SILC test to investigate the mechanical and 

fracture properties of fabricated 3DP sandstone. The tested specimen is a brittle, intact and 

homogeneous rock-like with defined size, shape, and fabric orientation. Typical force-time profiles 

https://link.springer.com/article/10.1007/s10706-019-01073-y?wt_mc=Internal.Event.1.SEM.ArticleAuthorOnlineFirst&utm_source=ArticleAuthorOnlineFirst&utm_medium=email&utm_content=AA_en_06082018&ArticleAuthorOnlineFirst_20191013#CR20
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recorded when breaking well-defined shaped specimens have the advantage of evident peak 

corresponding to the fracture force which is critical for the data generated. This is an important 

outcome of this study as it not only reviews the mathematical assumptions, which were unchanged, 

but the basic criteria of measurement which could change the absolute values measured for irregular 

shaped materials. Furthermore, it gives confidence to the geomechanical properties to be estimated. 

During the SILC test, the fracture initiated, in shear at the top loading of the specimens and grows 

in tension, so the propagated crack within the 3DP moves towards the anvil/rod vertically. There is 

a strong influence of shape effect on the fragmentation. A global knowledge and understanding of 

fracture mechanics, shape, size, fabric orientation, and ratio dependence on SILC test using 3DP 

sandstone is critical to demonstrate the experimental contributions and limitations. 

SILC tests conducted under controlled conditions (preferential cylinder-shaped specimens of 

specific aspect ratio, which can be checked against some conventional experiments) do appear to 

provide quite reasonable estimates of rock properties. It is emphasized the valuable contribution of 

SILC test for measuring tensile strength and specific fracture energy (related to fracture toughness) 

and offering promise as a relatively quick and inexpensive alternative to the Brazilian test. 

Estimated rock properties can be used for practical applications at the mining and the oil and gas 

industries, such as prediction of blast fragmentation, fraccing, and numerical modelling simulations. 

The variability on the compressive strength results occurred for both SILC and UCS tests on 3DP 

specimens, while the repeatability still seems to be good when specimens are tested under different 

conditions. Then, comparison of UCS values shows that σcSILC regression is much higher than that 

from conventional σcUCS measurements on 3DP sandstone. The ratio between the methods is almost 

constant independent of specimen size, but the ratio shows strong dependence of shape. 

It is suggestive that a standard procedure for using the SILC might need to be developed to specify 

the dimensions of specimens tested as well as the impact conditions to be employed. Then databases 

for shaped-specimens of varied rocks can be tested and compared. 
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5 Chapter 5 :   Silc on coal and mudsto 
C h a p t e r  5  

SILC ON COAL AND MUDSTONE 

Karina Barbosa (PhD candidate) conducted specimen preparation and testing, interpreted data, prepared 

figures and graphics, and wrote the manuscript.  

Benjamin Bonfils escorted the experimental work, reviewed, discussed and edited the manuscript. 

Joan Esterle (Principal PhD supervisor) proposed the experiment, reviewed, discussed and edited the 

manuscript.  

Zhongwei Chen (Associate PhD supervisor) reviewed, discussed, and edited the manuscript. 

 

Summary 

Rock specimens of coal lithotypes and mudstone were selected and prepared based on availability 

of material, to perform the laboratory SILC tests. SILC was selected as an alternative to other 

geomechanical tests as it captures fracture energy and toughness, which are important inputs to 

hydrofracturing simulations.  If successful, the small specimens are easy to prepare and there is a 

potential to use rotary drilled chip specimens. Low energy impact or breakage tests were utilised not 

only to test smaller specimens, but for investigation of sub-bituminous coal tensile strength, specific 

fracture energy, and Young’s modulus that could also be compared to a previous database across a 

range of coal ranks and lithotypes. Although cleats are poorly developed in low rank coal, the 

presence of microfractures, microlithotype fabrics, and mineral matter, played a role in coal 

deformation response to impact energy. It is anticipated that rather than a well-defined planar 

fracture feature (as observed on 3D-printed sandstone cylinder-shaped specimens) promoting the 

specimen separation, SILC tests on coal should be able to capture the micromechanics of brittle 

fractures on coal. The investigation involved testing a range of shapes and sizes. For cylinder-

shaped specimens (i.e. same size and lithotype) small variation for the impact conditions affect the 

results of Young’s modulus. It is suggested that available database for distinct rock material cannot 

be compared in terms of Young’s modulus since the specimens are most likely to be fractured by 

varied range of drop height and striker mass combinations.    

https://search.library.uq.edu.au/primo-explore/fulldisplay?docid=TN_springer_s3-540-26339-X_7574_Chap6&context=PC&vid=61UQ&lang=en_US&search_scope=61UQ_All&adaptor=primo_central_multiple_fe&tab=61uq_all&query=any,contains,Paterson%20and%20Wong%20rock&offset=0
https://search.library.uq.edu.au/primo-explore/fulldisplay?docid=TN_springer_s3-540-26339-X_7574_Chap6&context=PC&vid=61UQ&lang=en_US&search_scope=61UQ_All&adaptor=primo_central_multiple_fe&tab=61uq_all&query=any,contains,Paterson%20and%20Wong%20rock&offset=0
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Abstract 

This study estimates the geomechanical properties of coal of varied ply lithotypes and mudstone by 

using the experimental Short Impact Load Cell (SILC) test. SILC is an alternative laboratory test for 

measuring tensile strength, Young’s modulus, and specific fracture energy (fracture toughness). 

Available coal data is rare for low rank sub-bituminous coals that are the target for coal seam gas 

stimulation and extraction in the Surat Basin, Australia. Tested specimens include mini-core (11.7 

mm in diameter) and irregular particles (3.35 - 9.5 mm in diameter). The results demonstrate 

geomechanical properties can be derived and used in the reservoir numerical modelling 

investigation. 

 

Keywords: impact breakage; lithotypes; tensile strength; specific fracture energy 
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5.1 INTRODUCTION  

In coal seam gas (CSG) reservoirs, gas is mainly contained under pressure in isolated 

submicroscopic pores and released by reservoir pressure depletion (i.e. unloading or dewatering of 

the coal seam). Following desorption and diffusion, this causes an oriented system of natural 

fractures to form an interconnected system of flow paths allowing for gas extraction. It is 

anticipated that coal undergoes tensile failure to promote the flow of desorbed gas through an 

interconnected system of natural fractures, whereas the stability of a borehole is controlled by shear 

and compression. It is important to know coal strength (i.e. both tensile and compression) and 

fracture toughness to predict coal reservoir behaviour, especially if fractures are stimulated. 

Incorrect estimation of coal strength could lead to formation damage from drilling fluid invasion or 

complete wellbore collapse (Deisman et al., 2008). 

The coal strength is conditioned by a combination of lithotypes and microlithotypes with variable 

natural fractures, cleat spacing, and bedding thickness as per rank class. Strength and fracture 

toughness increase with decreasing coal rank (thermal maturity) and banding. The influence of coal 

strength by rank (thermal maturity) is shown in Figure 59 (Palmer et al, 2005 cited in Deisman, 

2016). This can be observed on the boundary from low to medium volatile bituminous up until the 

high volatile bituminous (Stach et al., 1982; Medhurst and Brown, 1998; Palmer et al., 2005; 

Esterle, 2008; Deisman, 2016), which is evident in tests such as Hardgrove grindability index and 

hardness (Ting, 1977; Stach et al., 1982; Hower et al., 1987; Hower and Wild, 1988; Narayanan et 

al., 1988; Van Krevelen, 1993; Conroy, 1994; Barton et al., 1994; Klawitter et al., 2015). 

Furthermore, strength also varies with confining stress or depth (Bieniawski, 1968b; Wagner, 1974; 

Bieniawski and Van Heerden, 1975; Trueman and Medhurst, 1994; Medhurst, 1996; Medhurst and 

Brown, 1998; Scholtès et al., 2011; Poulsen and Adhikary, 2013). The specific fracture energy is an 

important aspect of describing the fracture energy consumption rate required to create new surfaces 

in the comminution process. Donovan (2003) showed that there is a strong relationship between 

fracture toughness and specific fracture energy. 

Because coal banding is complex, the number of specimens required at laboratory tests to estimate 

the range in values across the lithotypes may be prohibitive. Also, it could be argued that coal core 

specimens are not intact (see Gonzalez-Garcia, 2012 definition for intact). The interbedded and 

banded nature of coal plies make upscaling from laboratory tests to the coal mass a more 

challenging task. Other aspects influencing the strength values for laboratory test, include rock or 

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib14
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coal type, specimen shape, aspect ratio (length-to-diameter), orientation of the test loading to the 

specimen fabric or structure, and moisture content (Al Jassar and Hawkins, 1977, 1979; Norbury, 

1986; Forster, 1983). The general prediction of the geomechanical behaviour of coal seams and 

rock strata is a function of the intact rock strength and the fracture density. This discounts the 

strength when being upscaled (i.e. downgrading properties values) to the rock mass. Thus, strength 

values increase as specimen size decrease (Hoek and Brown, 1980). Moreover, it is difficult to 

conduct direct tensile strength experiments, and the Brazilian test (an indirect testing method) is 

utilised. However, most strength studies have been conducted on bituminous coals, at least in 

Australia. There have been a small number conducted on sub-bituminous coals in which cleats are 

poorly developed, but larger scale joints are prevalent. 

 

Figure 59 Variation in coal strength relative to rank as estimated by carbon content. 

From Palmer et al, 2005 cited in Deisman, 2016. 

Looking for alternative laboratory experiments, the Short Impact Load Cell (SILC) test provides a 

measurement of force and energy (King and Bourgeois, 1993; Tavares and King, 1998, 2004; 

Bourgeois and Banini, 2002; and Bonfils, 2017). Along with other impact breakage techniques, it is 

commonly used in mineral processing. SILC can be used to analyse a range of specimen sizes and 

shapes (mini-cylinders and particles/chip specimens from rotary drilling recovery) and may be 

advantageous when standard to large intact core specimens are difficult to obtain and measure. 

Although distinct applied strain rates (static, quasi-static, and dynamic) can be associated with 

different types of loading and equipment. The effect of applied strain rate appears to be insignificant 

for brittle material (Antonyuk et al., 2005; Schönert, 1988; Tavares, 2007; Yashima et al., 1979). 

While the effect of applied strain rate appears to be significant when the material under 

investigation exhibits inelastic behaviour (e.g. marble, limestone). Saeidi et al. (2017) compared the 

rate of breakage between slow compression and SILC (impact mechanism) for brittle material. 
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According to Saeidi et al. (2017) the primary breakage characteristics can be employed to represent 

the material properties. The primary breakage characteristics are nearly identical for both 

compression and impact mechanisms, as they are function of the material properties rather than the 

stressing conditions (Saeidi et al., 2017). Therefore, the information derived from breakage testing 

using SILC devices have the potential to estimate other mechanical properties (Bonfils, 2017; 

Saeidi et al., 2017) such as coal strength and, in particular, fracture strength, fracture energy, 

specific fracture energy, and Young’s modulus. 

While the SILC test is meant to be used for brittle material, the Basin of interest comprises 

extremely heterogeneous rock contrast between coal and mudstone (brittleness/ductility) varying 

from meter to centimetre scale. Mudstones and shales are both made of clay and silt, and the 

strength properties of the rocks are dependent on the water content, perhaps making it more or less 

ductile. Therefore, whether the SILC test could be used to characterise geomechanical properties of 

mudstone is questionable, but an observation of any contrast coal/mudstone could be useful. 

In this study, the sampling approach tested impact breakage signatures for different lithotypes and 

mudstone partings in sub-bituminous coal from the Surat-Clarence-Moreton Basin in Australia. As 

target seams for CSG become deeper, hydraulic stimulation may be required. The primary aim of 

the laboratory testing is to demonstrate the feasibility and applicability of the SILC test (Bourgeois 

and Banini, 2002) on particles and cylinder-shaped of mudstone and sub-bituminous coal. 

Moreover, the cylinder-shaped specimens (Bonfils, 2017) are a relatively inexpensive, reliable and 

practical shape to gather requisite geomechanical properties to provide more accurate input data for 

the numerical modelling investigation of CSG reservoirs. 

5.2 SHORT IMPACT LOAD CELL TEST SETTINGS AND OUTPUT 

The impact load cell device is based on a hybrid concept between Hopkinson (1914) bar and drop 

weight tester. A smaller version known as the Short Impact Load Cell (SILC) was designed by 

Bourgeois and Banini (2002). It is located at The University of Queensland Julius Kruttschnitt 

Mineral Research Centre (UQ JKMRC), Australia, where all tests for this work were performed. 

Main components of this instrumented machine include the rod/anvil (cold-rolled stainless steel), 

stainless steel balls (strikers), load cell, strain gauges, pneumatic clamps, voltage amplifier, and data 

acquisition system (previously presented in Figure 32). The Young’s modulus for both the stainless-

steel strikers and rod utilised, which is required for the calculations, is 230 GPa. Before the SILC 
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tests start, the rod was calibrated. Measurements of the bridge factor (i.e. the change in resistance, 

that in turn results in a voltage change in the Wheatstone bridge, is outputted as an amplified 

voltage) (Bourgeois and Banini, 2002) were recorded during calibration to be imputed in the 

calculation. The striker drop height is utilised to obtain the impact velocity of a body at free-fall 

conditions (Tavares, 1997). When utilizing the SILC, the impact conditions (striker’s diameter, 

weight, and drop height) should be enough to promote the breakage of the material without over 

breaking the specimen or failing to fracture it. The details about the impact load cell device and 

calculations methodology can be referred to King and Bourgeois (1993), Tavares and King (1998, 

2004), Bourgeois and Banini (2002), and Bonfils (2017). 

5.3 SAMPLING  

5.3.1 Sample collection 

The coal samples were collected from freshly-exposed blocks in a mine from the Surat-Clarence-

Moreton Basin in Australia. Reported rank of the coal at the sample location is sub-bituminous 

(maximum vitrinite reflectance, Rvmax = 0.50%) and have a high overall vitrinite content (i.e. >60% 

vitrinite content). In this Basin coal seams are jointed; they show multiple thin beds (about 0.4 m 

average thickness), contain abundant thin partings, and are interbedded with variable soft strata 

such as bands of carbonaceous mudstone, tuffaceous claystone or siltstone (Figure 8). The samples 

originated from small to large blocks (5 × 5 × 5 to 30 × 30 × 30 cm) of different end-member (bright 

to dull) coal lithotypes were representative of four plies within a seam. The four coal plies were 

named (i) C8 ply banded (PC8-B), (ii) C8 ply banded with white marks comprising clay lenses 

(PC8-WB), (iii) C6 ply dull (PC6-D), and (iv) D8 ply banded low ash (PD8-BLA). Mudstone 

blocks were also collected in the same location, but the intercalated tuffaceous claystones were too 

thin for collection. All block samples collected were wrapped in plastic, sealed in boxes and 

transported to UQ JKMRC for preparation and testing. 

5.3.2 Specimen preparation  

In this study, the specimen preparation for SILC takes into consideration mini-core specimens and 

irregular single-particles described as follows: 

a) Mini-core specimens 

https://www.sciencedirect.com/science/article/pii/S1875510019302707#bib11
https://www.sciencedirect.com/science/article/pii/S1875510019302707#bib40
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For a regular cylinder-shape or mini-core specimens (Bonfils, 2017), large hand-picked blocks were 

selected and cut into brick size blocks (about 12 × 7 × 5 cm) (Figure 60a). Then, mini-core 

specimens were drilled using diamond drill bits (Figure 60b). Both the top and base of the mini-core 

specimens were also prepared to obtain the parallelism of faces (i.e. parallel specimens' ends). The 

final diameter of the mini-core specimens is about 11.7 mm with lengths varying between 10 and 

14.5 mm. The length-to-diameter ratio or aspect ratio is 0.8:1 to 1.2:1 (note that suggested ratio for 

SILC test is 1:1). Mini-core specimens with visual cracks or flaws were excluded from testing. 

Preparation of mini-core specimens also takes into consideration the orientation of banding relative 

to impact loading energy, therefore specimens were drilled perpendicular and parallel to bands 

(Figure 60c). Because specimen preparation involves water during the drilling operation, drilling on 

mudstone was not attempted and the mechanical interaction of coal with water cannot be quantified. 

 
(a) 

 
(c) 

(b) 

Figure 60 Illustration of samples shape preparation into mini-core specimens of coal 

tested on SILC. 

b) Irregular-particle specimens 

For irregular single-particles, specimens with a shape that best approximates a spherical geometry 

were selected. For that, small to large blocks from the same rock type (or ply if coal) were reduced 

into smaller irregular-particles using the DWT (JK Drop Weight Test) and then sieved using round-

mesh precision. Classified irregular-particles were packed by size, type/ply, and initial size and drop 
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energy used into the DWT. Figure 61 shows the DWT equipment utilized and the fragmentation 

characteristics of tested irregular-particles. For instance, 63 × 53_E = 0.25, indicate the origin size 

(63 × 53mm) prior to DWT reduction/fragmentation, and the drop energy (0.25  kWh/t). It is 

supposed that the irregular-particles should respond differently based on their size and energy 

applied on the DWT, which influence the presence of more or less flaws (cracks). Thus, the results 

would provide some indication of cumulative damage. The DWT was performed on two distinct 

coal plies, PC6-D and PD8-BLA, and the mudstone specimens. The selected size fractions of 

irregular-particles tested on SILC were 3.35, 4.75, 6.7, and 9.5 mm (mesh size based on dimensions 

of mesh size opening, following the ASTM E11 standard) (Figure 61). 

DWT SILC 

 

Size distribution (mm) Energy (kWh/t) 
 

63.0 x 53.0 

 

0.4 
 

0.25 
 

0.1 
 

45.0 x 37.5 

 

1.0 
 

0.25 
 

0.1 
 

31.5 x 26.5 

 

1.0 
 

0.25 
 

22.4 x 19.0 

 

2.5 
 

1.0 
 

0.25 
 

 

Figure 61 Illustration of the DWT used for fragmentation of distinct size distribution 

and varied energy in preparation for the irregular-particle specimens of coal tested on 

SILC. 

Zoom in 
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Same procedure was applied to coal and mudstone. It is relevant to highlight that there is no current 

technique to determine the comminution characteristics of mudstone (e.g. crushing, grinding). This 

is essentially due to the ductile characteristic of this material, as observed during the attempt to 

fragment mudstone using the DWT. Commonly, mudstone bends or flows in response to energy 

applied (Figure 62).  

 
(a)  

 
(b) 

Figure 62 Evidence of ductile deformation for mudstone during fragmentation. a) 

before DWT test, b) after DWT test.  

Therefore, only fragments sustained some ‘round’ shape (i.e. non-squashed/non-flat) after 

fragmentation and sieving were selected as irregular-particles for the SILC test (Figure 63 show an 

example for the 9.5 mm mesh size). 

 

Figure 63 Illustration of irregular single-particles of mudstone tested on SILC. 

A total of 142 drilled mini-core specimens of coal belonging to PC6-D, PC8-B, and PC8-WB were 

tested on SILC. Additionally, 1250 irregular-particles of coal belonging to PC6-D and PD8-BLA, 
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and 580 irregular-particles of mudstone were also tested on SILC. A summary of the size, shape, 

breakage direction and lithology tested during this study is shown in Table 9. Despite careful 

preparation and selection of mini-core and irregular-particle specimens, some of the results showed 

invalid force-time profiles, which were excluded in the statistical analysis and Table 9. Notice that, 

SILC can demonstrate the influence of a specimen's size and shape, allowing for a direct 

quantitative measure of properties for the material being tested. Overall, SILC is relatively simple 

and easy to conduct, but it can be time consuming due specimen preparation and data processing.  

Table 9 Number of specimens used to conduct SILC tests following the rock material 

and specimen features. 

 Shape Mini-core specimens Irregular-particle specimens 

Breakage direction 
Perpendicular      

to band 

Parallel to     

band  
Indistinct/ unknown  

height or diameter (mm) 11.7 11.7 3.35 4.75 6.70 9.50 

R
o
ck

 m
at

er
ia

l 

South 

pit 

Coal PD8-BLA (Low ash 

banded)  
- - 118 152 195 200 

North 

pit 

Coal PC6-D (Dull)  14 - 146 231 - 208 

Coal PC8-B (Banded)  91 13 - - - - 

Coal PC8-WB (Banded with 

white marks /clay lenses) 
- 24 - - - - 

West 

pit 
Mudstone - - 30 79 227 244 

5.4 SILC FAILURE MODE 

The description reported for failure are based on observations during test and/or similarities with 

other material recorded with a camera. Unfortunately, an ultra-high-speed video camera was not 

available during this study of coal and mudstone with SILC. Also, it is cogitated that the description 

of failure, together with a representation of the force-time profile and the characteristic of fragments 

can assist in analysis of the results.  

5.4.1 Coal 

Ideally, SILC testing should be performed on brittle materials which deform elastically until failure. 

During breakage of brittle material, such as coal, it is anticipated that the crack initiation and 

propagation occurs as follows: a) the crack generated by the striker starts at the top loading point 

(upon contact between striker and specimen); b) then the crack rapidly grows and tends to 

propagate along a vertical plane towards the centre of the specimen; c) until it encounters natural 
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fractures (cleats, discontinuities) or a contrast between weaker and stronger materials including 

mineral grains, perhaps change on microlithotype/band which might change the fracture path; and 

d) then the specimen splits into various fragments. There is a mechanism of shear along the plane 

formed by jointing the loadings (striker and rod) followed by tensile failure.  

Figure 64 shows the force-time profile of two specimen drilled perpendicular to band with a 1:1 

ratio where the first fracture was identified. The tortuosity observed on the fracture surface of 

fragments from mini-core specimens photographed before and after test (Figure 64) indicates 

microscopic deviation of the crack from its intended/initial path, and coal fragments may be ejected 

far from the testing machine. At least four large fragments or multiple smaller ones were observed 

for sub-bituminous coal. The photos highlight the natural variability of coal demonstrated by the 

amount and the size of fragments generated as well as the value of the fracture force itself.  

 
 
 
 

 
 

      

Figure 64 The force-time profile for mini-core specimens drilled perpendicular to 

band and their conditions before (cylinder-shape) and after (fragments) the SILC test. 

The crack initiation and propagation on irregular single-particles of sub-bituminous coal should 

occur as described for mini-core specimens, but it can be expected that the irregular surface of the 

particle might cause further deviation of the crack propagation path. The irregular-particles of sub-

bituminous coal tested showed a more abrupt and powerful energy release, including few re-

breakages, and splitting into more fragments compared with mini-core specimens. Where fragments 

may be ejected far from the testing machine. According to Tavares (2007), the irregular-particle 

fracture process does not terminate after first failure at a flaw because kinetic energy may still be 

available either from the tools that apply the stresses or from the flying fragments of the particles. 

This remaining energy must be dissipated during the second stage of the process, which results in 
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secondary fracture of the initial progeny and possibly several further stages of sequential fracture as 

well (Tavares, 2007). Figure 65 shows two examples of the force-time profile where the first 

fracture was pointed for irregular-particles of sub-bituminous coal, and supplementary peaks are 

attributed to secondary fracture.  

  

Figure 65 Impact signal showing the force-time profile for irregular-particles of sub-

bituminous coal with 9.5 mm in height on SILC test.  

5.4.2 Mudstone 

Due to the fine-grained characteristics of the mudstone tested (comprising of clays or muds), it is 

assumed that the crack initiation and propagation on irregular single-particles also started at the top 

loading point, and the crack propagated within the particle towards the anvil/rod vertically growing 

in tension. The particles of mudstone allowed for some ductile deformation to occur during the 

breakage process. For ductile material, energy associated with plastic deformation needs to be taken 

into consideration. The ductile behaviour of mudstone did not seem to invalidate the results for the 

particles tested on SILC. Perhaps, the fine layers of clay present in the particle surface are 

permanently deformed to assume a flattened format, where fragments tend either to break gently 

into pieces or to stick together rather than ejected. It could be assumed that the kinetic energy from 

the striker (applied stress) is completely absorbed by single-particles of mudstone.  

Figure 66 shows two examples of the force-time profile where the first fracture was selected for 

irregular single-particles of mudstone. It is interesting that the force-time profiles shows a clear 

peak (Figure 66). Few secondary fractures occur associated with cracks or fissures on mudstone. 

Despite having some ductile behaviour, the SILC test gave consistent results for the mudstone. 
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Figure 66 Impact signal of two irregular-particles of mudstone with 9.5 mm in height 

showing the force-time profile from SILC test.  

5.5 DATA PROCESSING METHODS 

Fundamentally, SILC measures fracture force and gives information about actual fracture energy 

consumed by each specimen during breakage and estimates the deformation of fracture. The 

fracture force (force required to generate the first fracture) of each specimen being impacted is 

estimated from the force-time profile of the fracture event by a direct reading of the peak force on 

the graphic. Comparison of the force-time profile of an impact directly on the anvil is predicted 

under Hertzian impact (Goldsmith, 1960). Whilst the hypothesis for the contact geometry between 

the bodies (striker-specimen as well as specimen-rod) is applied, it is conditional to the specimen 

shape. Valid contact geometry resulting for mini-core specimens is an elliptical and rectangular 

contact area; while irregular-particles specimens result in circular contact areas (Tavares, 2007; 

Bonfils, 2017). Also, the extent of the deformation depends on the mechanical properties of the 

bodies in contact. Therefore, the calculation methodology and interpretation of results must take 

those into account. 

Data processing consists of the analyses of the signal results from SILC test, in addition to recorded 

information from impact energy (mass, diameter, and drop height of the striker) together with the 

specimen geometrical mean size (i.e. mass, diameter, and length of the specimen). Figure 67 

illustrates a typical valid force-time profile with an estimation of first fracture for sub-bituminous 

coal: mini-core specimen (Figure 67a) and irregular-particle specimen (Figure 67b). Note that 

controlled shapes (e.g. mini-core specimen) tend to generate more uniform curves which improve 

the confidence of identification of the first fracture. It occurred that, irregular-particle specimen 

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib19
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib43
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib10
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with 9.5 mm in diameter (or height) required the impact conditions to be superior than that needed 

to fracture mini-core specimen with 11.7 mm in diameter. Furthermore, the time to fracture a mini-

core specimen tend to be shorter than for an irregular-particle specimen. 

 
(a) 

 
 

 
 

 
(b) 

Figure 67 Example of impact signal showing the force-time profile where the first 

fracture was selected for sub-bituminous coal: (a) mini-core specimen with 11.7 mm in 

diameter, (b) irregular-particle with 9.5 mm in diameter. 

SILC results are strongly dependent on shape, size, ratio, fabric orientation relative to loading 

direction, and impact energy. Table 10 shows a list of parameters estimated for specimens tested on 

SILC (see King and Bourgeois, 1993; Tavares and King, 1998, 2004; Bourgeois and Banini, 2002; 

and Bonfils, 2017 for detailed calculations). The table shows the mini-core specimen and the 

irregular-particle of coal plotted for the force-time profiles in Figure 67. This study is focused to 

present results for specific fracture energy (an indication of toughness), tensile strength, and Young's 

modulus (‘apparent’ stiffness as per SILC literature). 

The statistical analyses adopted in this study are the same described in Chapter 4 (section 4.6). Once 

each specimen of a selected series of experiments is evaluated separately, then it is included in the 

statistical analysis. Subsequently, the data can be effectively described using the log-normal 

distribution (Baumgardt et al., 1975; Dan and Schubert, 1990; King and Bourgeois, 1993; Bonfils, 

2017). The method based on order statistics and the cumulative probability distribution for the 

measured variable is described in section 4.9.3. Note that, very steeper curves for cumulative 

probability demonstrate a tendency of less heterogeneous specimens and/or better shape control of 

the specimens.  

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib25
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib41
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib42
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib11
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib10
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib6
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Lastly, two lots might be compared and interpreted on a statistical basis to decide whether the 

independent distributions are equal or not following Milin and King (1994). Milin and King (1994) 

statistics are based on three tests: the ‘median’ test; the ‘number of runs’ test and the ‘Mann-

Whitney-Wilcoxon’ test. The T-test for the difference of means gives the value of T from the data, 

and the critical value of T for 95% of confidence to draw a decision about equality of the means for 

two distributions measured with SILC. 

Table 10 List of parameters obtained using SILC, the example illustrates experiments on 

sub-bituminous coal. 

Terminology symbol unit 
a) mini-core 

specimen 

b) single-

particle 

Fracture force (first fracture) Fc N 985.8 613.9 

Fracture energy  E’ mJ 84.30 381.96 

Specific fracture energy Em kWh/t 0.0121 0.0861 

Tensile strength σₜ MPa 3.8 6.6 

Local deformation coefficient  Ke GPa 3.92 0.31 

Total energy E mJ 160.78 458.05 

% energy used - % 90.62 95.99 

Energy absorbed by rod up to fracture - mJ 6.705 13.065 

Total energy absorbed by rod - mJ 18.66 24.54 

Young's modulus  Kp GPa 3.99 0.32 

Corrected specific fracture energy E'' kWh/t 0.0120 0.0859 

a) mini-core specimen (11.7 mm diameter), and b) single-particle (9.5 mm height). 

5.6 SILC RESULTS ON MINI-CORE SPECIMENS OF COAL 

Next in this study, each series of test results on mini-core specimens was organised and analysed 

based on the influence of the drop mass/height combinations; the aspect ratio of specimens; the 

lithotype; and the orientation of banding relative to impact loading energy affecting the mechanical 

properties of interest. In the graphics, the legend displays the lithotype, followed by the specimen 

orientation, and aspect ratio (e.g. PC8-B perp 0.9:1). Symbols denote individual mini-core 

specimens tested i.e., data points and solid lines denote the fitted experimental log-normal 

distribution. 

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib29
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5.6.1 Influence of drop mass and height combinations on mini-core specimens of coal  

The selected impact conditions should be enough to promote the breakage of the material without 

over breaking or failing to fracture it. The influence of drop mass and height combinations was 

observed for 49 mini-core specimens of PC8-B (banded), drilled perpendicular to the band, aspect 

ratio 1:1 (average), and tested on SILC. The mini-core specimens were sourced from two single 

blocks, which provided multiple specimens of very similar characteristics. Results are plotted to 

compare 22 data points from block 1, where specimens were fractured by a 535.25 g striker released 

from 45.5 mm height, against 27 data points from block 2 using the same striker but released from 

63.1 mm height. 

Figure 68 shows the cumulative distributions of Young's modulus for mini-core specimens 

fractured with distinct impact velocities. Because PC8-B is a similar material with equivalent 

characteristics, it is observed that the Young’s modulus is influenced by the impact conditions on 

SILC. Figure 68 shows that an increase in the drop height of the striker (represented by circle 

symbols on the left) shows less resistance to the deformation (i.e. amount of compression hold by 

the specimen at fracture). By looking at the fitted median values (i.e. corresponding Young's 

modulus value for P50), the difference between the Young’s modulus values is about 37%, which 

appears to be significant. The statistical basis showed the distributions as being distinctly different. 

The fitted median values are 2.38 GPa if the striker is dropped from 63.1 mm in height, and 4.0 GPa 

if the striker is dropped from 45.5 mm in height. It highlights concerns on the calculation of 

Young’s modulus for mini-core specimens tested on SILC.  

 

Figure 68 Cumulative distributions of Young's modulus for PC8-B mini-core specimens 

drilled perpendicular to band and compared for impact velocity variation on SILC test. 
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Besides, comparison was made with laboratory tests using UCS on the same onshore eastern 

Australian basin, where the Young's modulus of coal (unknown lithotype) range from 2.0 to 

3.2 GPa for varies of depths (2.7 GPa in average) (Parotidis et al., 2016). It is reasonable to suggest 

that mini-core specimens of PC8-B coal with 11.7 mm in diameter provides a better estimation of 

Young's moduli on average, when a striker with 535.25 g is released from 63.1 mm rather than 

45.5 mm in height. Therefore, all the following analysis for mini-core specimens presented in this 

study refer to a drop height of 63.1 mm. The calculations for Young’s modulus (or ‘apparent 

stiffness) requires further investigation (Lois-Morales et al., 2019) to provide measurements that are 

comparable to standard triaxial or uniaxial tests. 

However, other parameters such as the fracture force, the fracture energy, the tensile strength, and 

the corrected specific fracture energy were not affected by an increase or decrease in the drop height 

of the striker when performing the SILC test. Figure 69 shows the cumulative distributions of 

tensile strength for mini-core specimens fractured with distinct impact velocities. Using the 

statistical basis from Milin and King (1994), the test did not reject the null hypotheses, given the 

distributions are identical. Also, the test did not reject the hypothesis that the means are equal. The 

tensile strength is about 4.2 MPa for sub-bituminous coal PC8-B with 11.7 mm in diameter. 

 

Figure 69 Cumulative distributions of tensile strength for PC8-B mini-core specimens 

drilled perpendicular to band and compared for impact velocity variation on SILC test.  

5.6.2 Aspect ratio effect on mini-core specimens of coal 

The mini-core specimens tested on SILC are 11.7 mm in diameter and their length-to-diameter ratio 

varies between 0.8 and 1.2, as observed for 135 mini-core specimens of PC8-B (banded). Each was 

drilled perpendicular to the band before being tested on the SILC. The mini-core specimens were 

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib33
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib49
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grouped based on the aspect ratio of PC8-B. Therefore, results are plotted for 17 data points of 

0.8:1; 24 data points of 0.9:1; 38 data points of 1:1; 29 data points of 1.1:1; and 27 data points of 

1.2:1, reflecting similar bedding orientation. The mini-core specimens were then observed 

independent of the drop mass and height combination utilised. It was anticipated that the influence 

of drop mass and height combinations would present a minor impact, as the majority of the mini-

core specimens (83% of the population) was fractured under similar impact conditions.  

Figure 70 shows cumulative distributions of corrected specific fracture energy for mini-core 

specimens with aspect ratios varying from 0.8:1 to 1.2:1. Note that, the fracture energy represents 

the minimum energy required to fracture a brittle specimen, while the specific fracture energy is 

obtained by dividing the fracture energy by the respective specimen mass. Thus, a corrected specific 

fracture energy is calculated to account for the indentation of the striker and the rod in contact with 

specimens (Tavares and King, 1998; Bonfils, 2017). The corrected specific fracture energy is 

influenced by the ratio where slender specimens (1.2:1 ratio) require less energy to fracture while 

the robust specimens (0.8:1 ratio) need more energy.  

 

Figure 70 Cumulative distributions of correct specific fracture energy for PC8-B 

mini-core specimens drilled perpendicular to band and sorted by ratio on SILC test. 

During the analysis for corrected specific fracture energy, it was observed that the difference of 

fitted median is considered significant when the specimens with 0.8:1 and 1.2:1 ratios were 

compared. However, if the aspect ratio is narrowed down, and the cumulative distributions for the 

aspect ratios of 0.9:1 and 1.1:1 are compared instead, then the hypothesis that the distributions are 
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identical cannot be rejected. Also, it does not reject the hypothesis that the means are equal. Those 

interpretations were supported by statistics (Milin and King, 1994).  

Similar observations were found by analysing cumulative distributions and fitted median values for 

other properties. Figure 71 shows cumulative distributions of Young’s modulus for mini-core 

specimens of PC8-B with aspect ratios varying from 0.8:1 to 1.2:1. Again, the statistical basis 

demonstrates equal distributions for specimens of aspect ratio varying from 0.9:1 to 1.1:1 (total of 

91 data points). Therefore, the limits of 0.9:1 to 1.1:1 aspect ratio are suggested as cut off ratios 

when testing SILC on mini-core specimens. Furthermore, it is assumed that results for this aspect 

ratio range (0.9:1 to 1.1:1) might be grouped together in order to refine the interpretation for a 

median (or P50 value) value. 

 

 

Figure 71 Cumulative distributions of Young's modulus for PC8-B mini-core 

specimens drilled perpendicular to band and sorted by ratio on SILC test. 

5.6.3  Lithotype effect on mini-core specimens of coal 

The influence of lithotype was observed on SILC testing of mini-core specimens of PC8-B (banded) 

and PC6-D (dull), all of which were drilled perpendicular to banding. In order to compare groups of 

similar number of data points, PC8-B with aspect ratio of 0.9:1 (24 data points) and PC6-D (dull) 

with aspect ratio of 0.9:1 to 1.1:1 (14 data points) were used. Note that, less specimens from dull 

(PC6-D) were prepared since the variability for dull band was expected to be smaller if compared to 

banded (PC8-B). However, because a population of 14 specimens (dull) should not be compared to 

a population of 91 specimens (banded), then specimens with a ratio 0.9:1 were selected (recall from 

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib29
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the previous section that this aspect ratio provides a good representation for banded as well as 1:1 or 

1.1.1). A 535.25 g striker was dropped from a height of 63.1 mm when testing mini-core specimens 

of PC8-B and PC6-D.  

Figure 72 presents the cumulative distributions of corrected specific fracture energy for PC8-B 

(banded) and PC6-D (dull). The statistical basis supported that the distributions are marginally 

equal for the corrected specific fracture energy. The mini-core specimens of PC8-B (banded) 

require less energy (0.018  kWh/t) to fracture while PC6-D (dull) need slightly more energy (0.0194 

 kWh/t). This outcome is advantageous and followed expectations. SILC was able to capture that a 

banded coal should be more brittle (require less energy to fracture) than a dull coal, even though 

cleats are reported as very poor in banded sub-bituminous coal. 

 

Figure 72 Cumulative distributions of correct specific fracture energy for PC8-B 

with aspect ratio of 0.9:1 and PC6-D with aspect ratio from 0.9:1 to 1.1:1, all mini-core 

specimens drilled perpendicular to band. 

The experimental cumulative distribution of tensile strength is also observed. Figure 73 shows that 

the fitted median values were 4.5 MPa for PC8-B and 5.1 MPa for PC6-D, using mini-core 

specimens 11.7 mm in diameter drilled perpendicular to the band. The hypothesis that the means are 

statistically equal was not rejected. While the test did not reject the null hypothesis of two 

distributions being identical for tensile strength, it did reject the null hypothesis that the means are 

equal for the fracture force (0.89 kN for PC8-B versus 1.19 kN for PC6-D). This indicates that coal 

lithotype matters, even though not all parameters are statistically distinct.   
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Figure 73 Cumulative distributions of tensile strength PC8-B with aspect ratio of 

0.9:1 and PC6-D with aspect ratio from 0.9:1 to 1.1:1, all mini-core specimens drilled 

perpendicular to band. 

Next, the influence of lithotype was then observed during SILC testing of mini-core specimens for 

PC8-B (banded) and PC8-WB (banded with white marks/clay lenses), all of which were drilled 

parallel to banding. The lithotype effect was demonstrated with 13 data points of PC8-B and 24 data 

points of PC8-WB, both with an aspect ratio from 0.9:1 to 1.1:1. While one or two tests rejected the 

null hypothesis showing the distributions are marginally equal, it is quite clear from the overall 

results that the means are different. Figure 74 shows the cumulative distributions of corrected 

specific fracture energy where PC8-B, which is richer in vitrain (more brittle), required much less 

energy to fracture than PC8-WB. 

 

Figure 74 Cumulative distributions of correct specific fracture energy for PC8-B and 

PC8-WB both with an aspect ratio from 0.9:1 to 1.1:1, all mini-core specimens drilled 

parallel to band. 
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Then, Figure 75 illustrates the experimental cumulative distribution of tensile strength for PC8-B 

and PC8-WB. The fitted median values for tensile strength are 2.9 MPa for PC8-B and 4.7 MPa for 

PC8-WB, using mini-core specimens of 11.7 mm in diameter drilled parallel to band.  

 

Figure 75 Cumulative distributions of tensile strength for PC8-B and PC8-WB both 

with an aspect ratio from 0.9:1 to 1.1:1, all mini-core specimens drilled parallel to band. 

5.6.4  Orientation of bands relative to impact loading on mini-core specimens of coal 

The fabric orientation relative to impact loading during SILC testing was investigated for mini-core 

specimens of PC8-B (banded) drilled perpendicular and parallel to bands. The influence of fabric 

orientation was demonstrated for 24 data points with aspect ratio of 0.9:1 drilled perpendicular to 

band and 13 data points with an aspect ratio from 0.9:1 to 1.1:1 drilled parallel to the band. 

Figure 76 presents the cumulative distributions of corrected specific fracture energy for PC8-B 

(banded), where less energy to fracture is required for mini-core specimens drilled parallel to bands 

than those drilled perpendicular to bands. Again, using the statistical bases, the two distributions 

plotted are marginally different, but the means are not equal for the same lithotype when tested at 

distinct directions. In this context, the amount of energy required to fracture a coal seam is strongly 

dependent of the fabric orientation when referring to the same lithotype (0.0194 kWh/t for PC8-B 

drilled perpendicular versus 0.0074 kWh/t for PC8-B drilled parallel). 
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Figure 76 Cumulative distributions of correct specific fracture energy for PC8-B 

with aspect ratio of 0.9:1 drilled perpendicular to band and PC8-B with aspect ratio 

from 0.9:1 to 1.1:1 drilled parallel to band. 

Figure 77 shows the cumulative distributions of tensile strength for lithotype PC8-B, where mini-

core specimens drilled parallel to banding are weaker (or fail more easily) than those mini-core 

specimens drilled perpendicular to banding. The fitted median values for tensile strength are 

2.9 MPa for specimens drilled parallel to bands and 4.5 MPa for those drilled perpendicular to 

bands (i.e. a 35% difference based on the coal banding orientation) when comparing mini-core 

specimens of 11.7 mm in diameter. The low values of the tensile strength for specimens drilled 

parallel to bands may be due to the low cohesion existing between the coal bands and/or and the 

generation of micro-cracks aligned parallel to the preferential failure plan when the tensile failure 

mode dominates. 

 

Figure 77 Cumulative distributions of tensile strength for PC8-B with aspect ratio of 

0.9:1 drilled perpendicular to band and PC8-B with aspect ratio from 0.9:1 to 1.1:1 

drilled parallel to band. 
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5.7 SILC RESULTS ON IRREGULAR-PARTICLES OF COAL AND MUDSTONE 

The irregular single-particles tested on the SILC were made up of the specimens retained at mesh 

sized 3.35, 4.75, 6.7 and 9.5 mm (Table 9). It was observed that when sub-bituminous coal is 

reduced into those size fractions, the irregular-particles tend to be an angular product with 

prominent corners and edges (Figure 61) while the SILC calculations assume a sphere-shape. It 

should be questioned how much effect a variation in specimen shape might have on SILC test 

results when using irregular-particles of coal. Note that, when mudstone is reduced into those size 

fractions, the irregular-particles appeared slightly more uniform (or round) than coal particles.  

The breakage of irregular-particles was performed using a striker of 66.78 g or 535.25 g in weight 

and released from a varied height (45.5 mm - 125 mm) depending on the particle size. Detailed 

impact conditions for each set of particles tested are presented in the Appendix II. The irregular 

single-particles were positioned on its most stable surface on top of the anvil (i.e. attempting to 

avoid particles moving or rolling over) during the SILC test. The unknown orientation of the fabric 

relative to impact load tends to increase the variability of the test results for irregular-particles when 

compared with mini-core specimens. Testing a large number of irregular-particles is a method to 

minimise the test variability. 

Initially each series of test results on irregular-particles was organised following the lithotype, mesh 

size, and energy distribution/size combination from the DWT (e.g. PD8-BLA 

9.5 mm_63 × 53_E = 0.25). However, it was not possible to distinguish between the presence of 

flaws in the irregular-particles or cumulative damage arising from the DWT, as the variability 

associate to particles randomly oriented during testing cannot be isolated. This was concluded after 

the results for each series were processed, and no relationship about the potential of existing flaws 

were explicitly observed. Therefore, it is assumed irrelevant to plot the original names (i.e. energy 

distribution/size combination from the DWT) into the graphic analysis below, although each data 

point can be back correlated/verified in the Appendix II. In the graphics, the symbols correspond to 

the fitted median value from the log-normal distribution for each series tested. The results were 

represented by lithology/lithotype name (e.g. PD8-BLA) for analysis and display as per the chart 

legend. The graphics show the irregular-particles analysed to test the influence of size and 

lithology/lithotype. The work with irregular single-particles of coal and mudstone focused on 

fracture force, fracture energy, and tensile strength. 
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5.7.1 Size and lithology/lithotype effect on irregular-particles of coal and mudstone 

The influence of size and lithology/lithotype was observed on SILC test of irregular-particles for 

PC6-D (dull coal), PD8-BLA (low ash banded coal) and mudstone. Each lithology/lithotype 

belonged to a distinct pit location (Table 9) while represented by: PC6-D (585 irregular-particles, 

averaging 37 particles per symbol), PD8-BLA (665 irregular-particles, averaging 35 particles per 

symbol), and mudstone (580 irregular-particles, averaging 41 particles per symbol). However, PC6-

D is not available at the 6.7 mm mesh size; and smaller irregular-particles (mesh sized 3.35 mm) for 

coal and mudstone might present issues associated with the particle size/grain diameter. In the 

future, it may be considered that the SILC test be expanded to include larger irregular-particle sizes 

(e.g. 16 mm and 22.4 mm sieve mesh size), which could contribute to establishing a better 

correlation between particle size (scale effect) and the parameters of interest.  

Figure 78 shows the fitted median from log-normal distribution of force at first fracture for 

irregular-particles of PC6-D, PD8-BLA, and mudstone. Median fracture force represents the force 

required to create the first fracture on coal plies and mudstone. The fracture force increased with 

increasing particle sizes. More significant variability is observed for larger particles (9.5 mm in 

diameter) of PC6-D, while all series of mudstone of larger size particles showed some discrepancy 

on fracture force. The force required to fracture the mudstone is higher than for coal but, it seems to 

lean towards convergence for particles of increasing size. Perhaps the ductile behaviour is less 

prominent on large particles of mudstone. Also, it is speculated that the increase in the coal particle 

size tended to increase the differences in the aspect ratio (length-to-diameter) as well as shape of the 

particle, exacerbating the variability in the fracture force for the largest size series tested.  

 

Figure 78 Variation of median fracture force against specimen diameter for 

irregular-particles of coal plies PC6-D, PD8-BLA and mudstone. 



 

 
 

143 

Next, the contrast between distinct rock and size is described for the tensile strength of irregular-

particles. Coal's innate tendency to reduce in strength (compressive or tensile) with increased 

specimen size is well known (Bieniawski, 1968a; Medhurst, 1996; and Song et al., 2018). This is 

also the case for other rock types (Hoek and Brown, 1980). This behaviour was confirmed with the 

irregular-particles tested on the SILC. Figure 79 presents the fitted median from log-normal 

distribution of tensile strength for PC6-D, PD8-BLA, and mudstone. The median tensile strength of 

coal plies (PC6-D and PD8-BLA) and mudstone follow trends. Here the data was analysed using 

the method of least squares regression. The best approximation equation with the highest correlation 

coefficient was achieved using the power regression. The equation's correlating tensile strength and 

irregular-particle size might be used to quantify the observations. The tensile strength of coal plies 

PC6-D and PD8-BLA was weaker than mudstone for the tested fractions but could potentially be 

more similar for particles of increasing size (above 8 mm in diameter). 

 

Figure 79 Variation of median tensile strength for irregular-particles of coal plies 

PC6-D, PD8-BLA and mudstone by size. 

Last, the fracture energy, which is also size dependent (King and Bourgeois, 1993; Tavares and 

King, 1998), was plotted for irregular-particles of coal and mudstone (Figure 80). Parallel trends 

were observed for all particles tested. Between the coal plies, irregular-particles of PC6-D were able 

to store less elastic energy until the occurrence of the fracture, when compared with the PD8-BLA 

specimens. Again, the data was analysed using the method of least squares regression, and best 

approximation was achieved using the power regression. The equation's correlating fracture energy 

https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib7
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib27
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib38
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib21
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib25
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib41
https://www.sciencedirect.com/science/article/pii/S1875510019302707?dgcid=author#bib41
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for irregular-particle size for coal and mudstone are presented. Overall, as coal and mudstone 

specimen size increases, higher fracture energy is required for crack extension and propagation. The 

mudstone shows an accentuated increase of fracture energy for larger dimensions (>8 mm in 

diameter) when compared with coal. Figure 80 shows that anisotropic behaviour between plies and 

different lithology of distinct thickness can be interpreted for a variety of scenarios applied to 

reservoir geomechanics. For example, using this data set, it can be interpreted that the fracture 

energy utilised to fracture 9–10 mm (in diameter) of coal PC6-D might also extend up to 5 mm of 

mudstone, causing some over breaking/fracture, if it is the interbedding. It must be noted that the 

mudstone would have a mechanical-chemical interaction with the water in the reservoir (i.e. it could 

slake), but this study focussed on the mechanical aspects only. 

 

Figure 80 Variation of median fracture energy for irregular-particles of coal plies 

PC6-D, PD8-BLA and mudstone by size. 

5.8 COMPARISON OF IRREGULAR PARTICLES AND MINI-CORE SPECIMENS ON COAL  

The influence on the shape-dependent properties was observed for irregular-particles and mini-core 

specimens. This time, in order to reduce the variability of distinct series of irregular-particles tested, 

each specimen result was grouped by size (i.e. disregarding the initial series) but considering the 

lithotype. The fitted median value from log-normal distribution was then obtained for each size 

tested, which became hundreds of particles instead of groups of 35 particles on average.  
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For example, irregular-particles with 3.35 mm mesh size where grouped, then PC6-D includes 146 

data points and PD8-BLA comprise 118 data points as illustrated in Figure 81. After getting the 

fitted median values per size (P50 value about 10.9 mJ and 20.4 mJ for PC6-D and PD8-BLA, 

respectively) the size sequence was correlated using the method of least squares regression and a 

trend line was assigned for irregular-particles belonging to a ply.  

 

Figure 81 Median values of cumulative distributions of fracture energy for PC6-D 

and PD8-BLA for lots of irregular particles retained at 3.35 mm mesh size.  

Figure 82 shows that the tensile strength estimated on SILC test might be considered independent of 

the specimen shape as well as the loading condition. The lithology/lithotype allowing for this 

observation is PC6-D which was the only one tested for both shapes (mini-core specimens and 

irregular-particles). Therefore, PC6-D is used to guide the observations here. The fitted median 

values of tensile strength for PC6-D, irregular-particles and mini-core specimens, are found to be 

generally similar, as they follow the same trend. The tensile strength for coal particles of PC6-D 

was about 5.1 MPa for specimens 10 mm in diameter or by extrapolation using the power law 

regression curve, 1.9 and 1.7 MPa for specimens with 50 and 61 mm in diameter, respectively. Note 

that, PC6-D mini-core specimen (see symbol ◊ in Figure 82) induces a slight ramp up in the curve 

for specimens of increasing size. Therefore, if another trend for the power law regression curve is 

calculated to include the irregular-particles and the mini-core specimen for coal PC6-D, then the 

tensile strength is expected to be 2.2 and 2.0 MPa for specimens with 50 and 61 mm in diameter, 

respectively. On the other hand, the PD8-BLA is stronger than PC6-D when smaller particles 

(<7 mm in diameter) are compared. It then starts behaving weaker as the size increases. The tensile 

strength for coal PD8-BLA is expected to be 0.8 and 0.6 MPa for specimens with 50 and 61 mm in 

diameter respectively, again by extrapolation using the power law regression curve. 
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Figure 82 Variation of median tensile strength for sub-bituminous coal on SILC 

influenced by shape. 

Figure 83 shows that the highest fracture force is required for mini-core specimens. This is close to 

71% larger in magnitude than the fitted median value of force at fracture required to break irregular-

particles of PC6-D of a similar size (1189.4 N versus 694.1 N for 11.7 mm in diameter). There is a 

strong shape dependence influencing results of fracture force on SILC.  

 

 

Figure 83 Variation of median fracture force for sub-bituminous coal on SILC 

influenced by shape. 
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In brittle material such as coal, the fracture energy is expected to be low. Figure 84 shows that the 

trend in coal has an upward slope with increasing specimen size, but the upward trend for irregular-

particles of PC6-D did not deviate significantly from mini-core specimens of PC6-D (148.9 mJ 

versus 124.4 mJ for 11.7 mm in diameter). 

 

Figure 84 Variation of median fracture energy for sub-bituminous coal on SILC 

influenced by shape. 

Figure 85 shows similar observations about trend for specific fracture energy of coal when 

irregular-particles and mini-core specimens are compared. Thus, the specific fracture energy still 

can be used as an indication for toughness, independent of the shape tested for heterogeneous rock 

material on SILC. 

 

Figure 85 Variation of median corrected specific fracture energy for sub-bituminous 

coal on SILC influenced by shape. 
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5.9 CONCLUSIONS AND RECOMMENDATIONS 

Based on SILC testing of mineral ores, the geomechanical properties of rocks can be influenced by 

the specimen shape, size, impact orientation, type of material, and impact conditions, which 

contributes to highlight similarities with standard geotechnical tests (e.g. Brazilian tensile strength). 

This work focused on testing and analysing data for irregular single-particles of mudstone and both 

mini-core specimens and irregular single-particles of sub-bituminous coal. The inherent material 

contrast between brittle coal containing natural defects including differences for plies and ductile 

mudstone rock was demonstrated when specimens collected from the Surat-Clarence-Moreton 

Basin in Australia, were tested using the SILC. The key findings are listed: 

1. Measurements of Young's modulus  (or ‘apparent’ stiffness as called for publication on SILC), 

deformation, and contact areas post-impact are conditioned by the SILC test impact conditions 

while fracture force, tensile strength, and specific fracture energy appeared not to be influenced. 

Caution is required when interpreting results from different impact combinations and/or 

incorporating data from other studies. Moreover, further investigation about the ‘apparent’ 

stiffness calculation for mini-core specimens is required. 

2. The coal anisotropy was observed for mini-core specimens (11.7 mm in diameter), where 

specimens drilled parallel to bands require considerably lower fracture energy (at least 44% less) 

than those drilled perpendicular to the band for the same coal lithotype. For geomechanical 

purposes, the controlled specimen shape (cylinder/mini-core specimens) show an advantage 

associated to more uniform force-time profiles, and less variability of the data, in contrast to 

irregular-particles, while the P50 values might be equivalent. The results of tensile strength and 

specific fracture energy for mini-core specimens followed the trends of irregular-particles. Then, 

it is expected that for heterogeneous brittle material, the specific fracture energy is independent 

of the shape tested (which might not be the case for homogeneous specimens too). A strong 

correlation between fracture toughness and specific fracture energy is reported in the literature, 

which is of interest for the CSG. 

3. The scale effect on strength and specific fracture energy was explored by observing specimens of 

distinct sizes (from 3.35 to 11.7 mm in diameter both irregular-particles and mini-core 

specimens) and both producing consistent results when testing coal on the SILC. Therefore, 

difficult associated to test standard core specimens, particularly for measurement of tensile 

strength can be overcame. 
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For future studies related to CSG, although specimen collection as well as preparation can be a 

challenge, it is suggested that SILC experiments be performed using specimens of composite 

lithology, i.e. specimens formed by half coal and half mudstone.  
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6 Chapter 6:   lithotypes and microlithotypes 
matter 

C h a p t e r  6  

LITHOTYPES AND MICROLITHOTYPES MATTER 

Karina Barbosa (PhD candidate) conducted specimen preparation and testing, interpreted data, prepared 

figures and graphics, and wrote the manuscript.  

Joan Esterle (Principal PhD supervisor) proposed the experiment, assisted on microlithotype classification, 

reviewed, discussed and edited the manuscript.  

Zhongwei Chen (Associate PhD supervisor) reviewed, discussed, and edited the manuscript.  

 

Summary 

Coal cannot be assumed a single rock type in the rock mechanics context, since the lithotypes 

(biochemical composition) matter when observing the geomechanical behaviour of bituminous coal. 

In other to test for lithotypes and microlithotypes at low rank, sub-bituminous coal, this chapter 

presents a series of Shore Scleroscope Rebound Hardness test results performed on polished surface 

of coal lithotype specimens. The experimental study is designed to address hardness properties that 

can demonstrate the brittle and ductile behaviour of coal on microscopic scale. It investigates 

whether or not a microlithotype is capable to undergo substantial permanent damage without 

presenting a microscopic fracture; and if the microstructural physics and interactions can be 

simplified in terms of hardness. This study is useful for fracture stimulation by the coal seam gas 

industry, while it also might bring interest of the mining industry when studying coal bursts.   
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Abstract  

This study presents the results of the surface hardness of coal, estimated with the Shore Scleroscope 

Rebound Hardness tester. The Shore hardness can be related to fracture toughness and tensile 

strength, which are important input parameters for fracture stimulation design of coal seam gas 

reservoirs. The Shore hardness experiments were performed on low rank coal specimens from an 

open cut mine from the Surat-Clarence-Moreton Basin, and a borehole from the Surat Basin, 

Australia. All measurements were conducted on polished coal surface confined within epoxy blocks 

following similar preparation required for coal petrographic analyses. The resulting indentations 

and microlithotypes were analysed under the microscope, then associated to the Shore hardness 

number. Three common microlithotypes were identified for the sub-bituminous specimens tested: 

vitrite, clarite and carbominerite. Results indicate the hardest microlithotype is clarite, followed by 

vitrite, and then carbominerite. Quantification of the micromechanical properties is possible using 

simple Shore hardness tests, and opportunities to improve fracture propagation may be further 

explored from this work.  

 

Keywords: scleroscope; coal microlithotype; mechanical properties; fracture propagation. 
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6.1 INTRODUCTION 

Coal is a complex heterogeneous material with distinct characteristics reflecting hardness, tenacity, 

and fracture which are influenced by rank (thermal maturity), lithotype (biochemical composition), 

and grade (amount and type of minerals) (Hower et al., 1987; Hower and Wild, 1988; Barton et al., 

1994; Bailey and Hodson, 1994; Conroy, 1994; Rubiera et al., 1999). Hardness is a function of the 

elastic resistance of a surface to the local penetration of another body, and can be measured by 

different tests using scratch, rebound, impact or indentation (Taylor et al., 1998; Altindag and 

Güney, 2006). Micro-indentation, e.g. Vickers microhardness, is often used to illustrate the changes 

in surface hardness related to coal rank, maceral or microlithotype distribution, and mineral 

composition (e.g. Hower et al., 2008; Kozusnikova, 2009; Borodich et al., 2015;and references 

therein). The organic components, or macerals, and minerals occurring in association as 

microlithotypes are commonly layered at the millimetre scale and reflect the original plant matter 

and its degree of decay. The individual macerals are non-uniform in structure, can contain inorganic 

inclusions, internal cracks and micro-pores which contributes to their gross mechanical properties 

(Macmillan and Rickerby, 1979; Epshtein et al, 2015). Moreover, the porosity of the coal decreases 

with rank advance as moisture decreases, resulting in hardness differences between lithotypes and 

microlithotypes. Whether these differences are significant at lower sub-bituminous ranks is 

examined in this study using an indenter test, the Shore Scleroscope Rebound Hardness (SSRH or 

SH as referred to in this study). Note that sub-bituminous coals in Australia are not commonly 

tested for hardness or other geomechanical properties. The SH is a simple test that has been used 

previously (e.g. Klawitter et al., 2015 and references therein) to illustrate differences in hardness 

between lithotypes and their maceral components (Figure 86). However, the results of this hardness 

test are influenced by sample preparation, creating a level surface through polishing, and a degree 

of confinement imposed by epoxy binding (Klawitter et al., 2015).  

In this study, SH is used to test the variability in hardness relative to maceral and microlithotype in 

the different lithotypes occurring in the sub-bituminous coals of the Walloon Coal Measures. The 

Walloon coal measures in the Surat Basin are currently produced for gas, and as target depth 

increases they may require fracture stimulation. Knowing the variation in hardness (Das, 1972; 

Mukherjee et al., 1989; Hower et al., 2008; Kozusnikova, 2009; Epshtein et al, 2015; Manjunath 

and Nair, 2015; Klawitter et al, 2015; Shi et al., 2017; Kossovich et al., 2019) as a function of 

microlithotype can contribute to understanding the mechanical behaviour of coal seam gas 

reservoirs, and assist in designing stimulations. Information about hardness may also be utilised for 
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the prediction of outburst, breakage and grindability (Peters et al., 1962; Hower and Lineberry, 

1988) that contributes to the mining operation and coal product preparation. 

 

Figure 86 SSRH versus VR (%) on confined (epoxy block) specimens, separated by 

coal maceral (CM) where MCM stands for Moranbah Coal Measures; FCCM for Fort 

Cooper Coal Measures, and RCM for Rangal Coal Measures (Klawitter et al., 2015). 

6.2 RESEARCH METHODOLOGY  

6.2.1 Hardness testing 

The surface hardness or the material response to the indentation was obtained using the Shore 

Scleroscope Rebound Hardness. The SH tester is a non-destructive index test, convenient technique, 

and low budget method which provides a straight forward estimation of hardness (Altindag and 

Güney, 2006). The SH tester involves dropping a diamond-tipped metallic hammer made of pure 

hardened high-carbon steel onto the polished specimen surface. The spherical diamond-tipped 

hammer falls under the force of its own weight from a fixed height and rebounds, imprinting an 

indentation on the specimen surface. The instrument setup consists of adjustment of the level vial, 

to guarantee a free vertical drop of the hammer. The rebound height is measured on the dial gauge 

(a graduated scale) on the scleroscope. The scale of the rebound consists of Shore units, divided into 

140 parts. The Shore (dynamic) Hardness (denoted SH) is a measure of the elasticity of the 

material; the harder (more competent) the material, the higher the rebound and its measurement 

number (Honda and Sanada, 1956; Hucka, 1991). In this study, the SH test was performed at The 

University of Queensland using the IMAI SIKENKI Co. equipment (Tokyo – Nov. 1970, No 

700756) (Figure 87), which produces a spherical indenter (i.e. circular shape imprinted). 
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Figure 87  Shore scleroscope rebound hardness made by IMAI SIKENKI Co. 

A conversion table is supplied with this equipment, correlating the graduated scale for SH with an 

equivalent estimation of Vickers scale (which uses a square-base diamond pyramid indenter) as 

well as tensile strength (σₜ). For example, an average SH of 80, is approximately 680 Vickers, or 

= 232 10³ psi (1.6 GPa) (values corresponding to 10³ psi as per Arbtin and Murphy, 1953). 

While a hardness number can be converted to other hardness numbers or to some mechanical 

property if appropriate charts or equations are known, Arbtin and Murphy (1953) also showed that 

an exclusive hardness conversion chart should not be used for different materials. Thus, the 

information on the conversion table is for guidance only. The provided conversion table only 

includes SH < 80, therefore an extrapolation curve was used to extend the Shore values up to 100 

(see Figure 88), which was required in this study.  

 

Figure 88  SH conversion table - IMAI SIKENKI Co. equipment, in red values from 

the original conversion table, and in green values extrapolated for SH > 80. 

6.2.2 Sample collection 

The low rank, sub-bituminous coal samples were collected from two locations:  
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 The first, an open cut mine in the Surat-Clarence-Moreton Basin with a maximum vitrinite 

reflectance of 0.50 %. The following plies were collected: C8 ply banded (PC8-B), C8 ply white 

marks banded (PC8-WB), and C6 ply dull (PC6-D). All three plies belong to the same pit (north 

pit) with minimal depth variation. Note that the “white marks” are clay blebs. 

 In addition to the open cut mine specimens, samples were collected from a borehole named 

Guluguba-2 in the Surat Basin, with a maximum vitrinite reflectance of 0.43-0.47 %. The 

specimens were collected at different depths within the Walloon Coal Measures. The specimens 

were called GG- followed by a specimen number e.g. GG-4 and had been previously studied for 

petrology by Hentschel et al. (2016).  

6.2.3 Specimen preparation 

During the SH test, the rebound of the hammer is affected by the smoothness of the material 

surface. Therefore, all specimens were prepared as ground and polished coal surface at epoxy-set 

blocks. According to Klawitter et al. (2015), the epoxy confinement in blocks of similar dimensions 

contributes to improved reproducibility of SH tests, although it is acknowledged that increasing 

confinement pressure reduces dilatant fracture propagation and therefore increases the strength of 

the coal under test (Hobbs, 1964). Therefore, this study examines relative rather than absolute 

differences in hardness for the different lithotypes and their components. The polished epoxy was 

also indented for comparison to the coal, and the samples were observed in white and blue light 

excitation to demonstrate that the indenter was indeed measuring the coal surface without visible 

impregnation by the epoxy as might expected with lower rank porous lignites. The epoxy has a 

bright green fluorescence as compared to the orange to yellow colours of liptinite group macerals in 

these coals. The vitrinite group macerals showed no excitation in blue light. An added advantage to 

the epoxy-set blocks is that the specimen preparation follows the same procedure used for 

petrographic analyses. The specimens were placed into moulds exposing the coal layering, 

embedded in epoxy, and dried for 24 hours. Specimens were then ground and polished to 0.04 μm 

grit, exhibiting a clean, flat polished coal surface (Taylor et al., 1998). The coal specimens were 

prepared to fit regular blocks sized 503010-12 mm. A total of 43 confined coal block specimens 

were tested.  

6.2.4 Hardness testing procedure  

To perform the SH test, each sample was positioned manually on the flat base of the instrument. 

The resulting distance of the rebound for each indentation should be recorded, then later averaged. 
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Procedures for classic analysis suggest collecting and averaging 20 randomly placed measurements 

on a homogeneous rock, to account for any variation, following calibration on the quenched and 

tempered steel standard which measures 81.4 ± 2.5 (ISRM, 1978; Rabia and Brook, 1979; Altindag 

and Güney 2006; Yarali, and Soyer, 2011; Klawitter et al., 2015). As an additional calibration, 20 

indentations were measured on the polished epoxy only, which showed an average of 60.8 ± 4. 

As coal is a heterogeneous rock, this study followed a different procedure for data collection. The 

SH values were recorded in transects to encapsulate changes in microlithotype within a block 

(Figure 89a), or as a random 20 indentations within a given microlithotype on selective areas 

(Figure 89b), and the results are compared to understand the range of hardness variability in sub-

bituminous rank coals. The transects compromised 16 to 30 measurements depending on the 

specimen size. A summary of testing conditions and number of specimens is shown in Table 11. 

 
(a) 

 
(b) 

Figure 89 Photographs of polished coal blocks illustrating a) transect, and b) selected 

lithotype within a block. 

Table 11 Number of specimens and testing conditions per location. 

Location Coal measures Ply/ seam 
Number of specimens 

Transects Selected lithotypes 

Open cut mine 
Acland seams 

(~Taroom)  

PC8-B 7 - 

PC8-WB 1 - 

PC6-D 5 - 
     

Borehole Guluguba-2 

Juandah  various - 17 

Taroom various 1 4 

unknown various 1 7 
 

6.2.5 Microscopic analysis 

Following SH testing, the specimens were examined under a reflected-light microscope (Leica DM 

6000M) equipped with the Hilgers’ Diskus Fossil computer program for image capture. The 

microlithotype was identified for each SH test point to determine a relationship to surface hardness 

values. By definition, microlithotypes are assemblages of macerals occurring within a 50 μm area or 

layer (Falcon and Snyman, 1986); in this study the area of indentation (~600 μm) was classified to a 

microlithotype as follows: 
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 Vitrite (monomacerite vitrinite, commonly telovitrinite >95%); 

 Clarite (bimacerite vitrinite plus liptinite >95%); 

 Carbominerite (vitrite or clarite comprising 20-60% of minerals). 

Photomicrographs were taken using a 5 objective in air, resulting in ~50 magnification. 

Microlithotype/ lithotype bands in these coals are of variable thickness, between 50-600 μm; though 

thicker bright bands do occur, they are rare (Afonso, 2014; Hentschel, 2018). The approach for 

measurement along transects, gave a precise SH value for each indentation, allowing for a match 

between the SH number and microlithotype. The histograms for transect investigations presented 

uni, bi, or trimodal distribution, for each clustered average in SH. Measurements identified on 

epoxy were removed from the analysis, as well as any overlapping indentations. Comparison of SH 

values mode, mean, and range utilising box-and-whisker plots was conducted for the different 

populations.  

6.3 RESULTS AND DISCUSSION 

SH values ranged from 39 to 94 across all specimens tested, with a gross average value of 75 ± 6 

for the open cut mine specimens, and 68 ± 6 for the borehole specimens. A summary of the SH 

results for each microlithotype, at each sample location is summarised in Table 12. The variation in 

SH values between different microlithotypes appears to be consistent despite a slight variation in 

rank between the open cut mine and borehole sub-bituminous coal specimens.   

Table 12 Summary of SH values measured conditional to microlithotype. 

 Outcrop data (open cut mine)  Borehole data (Guluguba-2) 

Min Max 
SH avg 
(StDev) 

tensile strength 
(GPa)* 

Min Max 
SH avg 
(StDev) 

tensile strength 
(GPa)* 

carbominerite 51 78 70.2 (6.8) 1.28  39 58 47.7 (4.5) 0.78 

vitrite 56 82 71.3 (6.9) 1.30  52 83 68.8 (6.8) 1.23 

clarite 74 94 84.0 (3.6) 1.72  73 94 84.5 (4.6) 1.73 

clarite increase 

mineral matter 
- - - -  60 85 74.8 (5.0) 1.45 

clarite increase 

cracks/fractures 
- - - -  44 82.5 65.1 (8.2) 1.14 

*approximated tensile strength based on average SH values. 

6.3.1 Correlation between hardness and microlithotype for specimens from the open cut mine 

The SH trend for each observed lithotype (from least to most hard) is: carbominerite (70.2 ± 6.8), 

vitrite (71.3 ± 6.9), clarite (84.0 ± 3.6). Each of these microlithotypes exhibited some variation in 
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SH dependent on their maceral composition. The variability of coal microlithotypes and their 

associated SH value was observed for three distinct plies (PC8-B, PC8-WB, and PC6-D).   

Figure 90 shows specimen PC6-D #M5 composed of clarite and carbominerite, with a minor 

proportion of vitrite. The vitrite in this specimen was thin and not indented during SH testing. The 

majority of the indentations (76 %) were performed on clarite, and the remainder on carbominerite 

for this specimen. The SH for carbominerite ranged from 64 to 78, with an average of 74.4 ± 4.9.  

SH for clarite ranged from 82 to 92, with an average of 86.9 ± 2.7. As clarite accounted for the 

larger population of measurement in the specimen, the distribution observed on the histogram is 

negatively skewed, showing a mode of 90. 

 

 

                       

                                    

                                                         (a)            

 
(b) 

 
 

 
 
 

(c)  
 

(d) 

Figure 90 Ply PC6-D, specimen M5 tested for SH in a transect. a) photomicrographs 

1, 2, 3, and 4 representing the sections across the whole specimen as per photo of 

polished coal surface (c); b) graphic sequence of indentations in terms of Shore 

hardness (SH); and d) SH values plotted on a histogram. Note that carbominerite areas 

highlighted on photomicrographs 1, 2, and 3 correspond to drop on SH values as 

observed in the graphic sequence of indentations.  
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Figure 91 shows specimen PC8-WB #M1, predominately comprised of clarite, with minor 

carbominerite. The distribution for PC8-WB #M1 is unimodal showing broadly symmetrical 

clustering. The data distribution for the sequence of indentations, indicates consistent SH along the 

specimen, due to clarite-dominant microlithotypes. SH values ranging from 74 to 88, with an 

average of 82.6 ± 3.4.  

 

 

 
(a) 

 
(b) 

 

 

(c) 
 

(d) 

Figure 91  Ply PC8-WB, specimen M1 tested for SH in a transect. a) 

photomicrographs 1 and 2 representing the sections across the whole specimen as per 

photo of polished coal surface (c); b) graphic sequence of indentations in terms of SH; 

and d) SH values plotted on a histogram.  

Figure 92 shows PC8-B #M2 comprised of carbominerite (43 %) and clarite (57 %). SH for clarite 

ranged from 76 to 89, with an average of 81.9 ± 3.7. SH for carbominerite ranged from 51 to 71, 

average 63.9 ± 6.2. The variation of SH for carbominerite is attributed to clay rich intervals 

(confirmed using Scanning Electron Microscope, SEM). Isolated mineral grains or cracks/fractures 

may have also contributed to lower SH values, as observed under the microscope. A bimodal 

distribution for PC8-B #M2 is observed in the histogram, reflecting the two dominant 

microlithotypes.   

Overall, the results of transects illustrate a strong correlation between hardness and microlithotype 

(Figure 93).  
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(a) 

 
(b) 

 

 (c)  
(d) 

Figure 92  Ply PC8-B, specimen M2 tested for SH in a transect. a) photomicrographs 

1, 2, and 3 representing the sections across the whole specimen as per photo of polished 

coal surface (c); b) graphic sequence of indentations in terms of SH; and d) SH values 

plotted on a histogram.  

 

 

Figure 93 Shore hardness limits for clarite and carbominerite in fine controlled 

specimens from open cut mine. 
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6.3.2  SH behaviour of vitrite for specimens from the open cut mine 

There is a lack of representative data for vitrite in the above specimens. According to Macmillan 

and Rickerby (1979), one reason coal hardness is difficult to determine, particularly when the 

individual coal macerals are very brittle, is because vitrite is very prone to form cracking and 

chipping around the indentations, and in cases of extensive elastic and/or inelastic recovery during 

unloading can produce a misleading result.  

In the specimens PC6-D #M9 and PC8-B#M3, some thin vitrite bands were observed and indented. 

Because vitrite bands tend to present cracks, it is difficult to affirm if cracks/fractures occurred pre- 

or post-indentation. Nonetheless, vitrite observed in specimens PC6-D #M9 and PC8-B#M3, 

indicate that cracks and chips are exacerbated by multiple surrounding cracks and/or thick 

cracks/fractures, in addition to a slight overlapping indentation. The SH reached values of 71 and 77 

on the vitrite for PC8-B#M3 and PC6-D #M9, respectively (Figure 94a, b). Overall, it seems that 

vitrite is more likely to propagate a crack than carbominerite or clarite.   

PC8-B #6a shows a distinct vitrain band (approx. 4 mm thick), the specimen was tested and 

analysed for indentations performed inside this band only (i.e. selective indentation on vitrite). A 

population of eleven (n = 11) SH indentations were recorded and observed with photomicrographs. 

SH values of 56 and 58 were measured when the indenter reached a pre-existing crack which may 

have contributed to chipping observed on the specimen surface (Figure 94c). SH values of 74 and 

82 showed spread/propagation of the cracking, and no chipping, as no fractures were observed 

proximal to the indented marks (Figure 94e). Other values of SH measured (n = 7) range from 61 to 

71, where the majority of the indented marks were surrounding pre-existing fractures, some of them 

fairly opened. The cracks generated by the indentation appeared to propagate from the indentation, 

showing scattered breakage and crack growth (Figure 94d).  

Overall, higher vitrinite (corresponding to vitrite microlithotype) content in coal, results in higher 

HGI (Hardgrove Grindability Index) (i.e. measurement of resistance to grinding coal, where the 

higher the HGI value, less elastic-plastic the coal bands behave and are easier to grind,  as it cracks 

and fractures), consistent with the observations of this study. About 15 % of the indentations on 

vitrite showed a propagation of fractures, resulting in a higher SH (the higher the rebound) than for 

clarite-dominated specimens.  
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 clarite SH=74, vitrite SH=71, clarite SH=69 

  
(a) 

vitrite     SH=77 

  
(b) 

 

 
(c) 

 
(d) 

 
(e) 

Figure 94 Representative photomicrographs of SH indentation on vitrite for the 

following specimens: a) PC8-B#M3; b) PC6-D #M9; c) PC8-B #6a, lower SH value; d) 

PC8-B #6a, medium SH value; and e) PC8-B #6a, higher SH value.  

6.3.3 Correlation between hardness and microlithotype for specimens from borehole 

Sub-bituminous coals samples with slightly lower reflectance were tested from exploration 

borehole, Guluguba-2, from 138 m to 486 m depth. The interpretation includes 30 specimens in 

total, where 2 specimens were tested using transects (GG-16 and GG-27), while the other 28 

specimens were indented selectively by microlithotype.  

For specimen GG-16, the microlithotype variability was observed using three transects parallel to 

each other, to ensure repeatability of results. The indentations represented a population of 59 SH 

values measured. Figure 95a shows the SH data for all three transects are quite similar, and present 

a bimodal distribution with modes at 60 and 90 (Figure 95b). As with open cut mine specimens, the 

SH data from these specimens indicate carbominerite showed lower SH values, 43 to 66 with 

average of 56.7 ± 5.9, than the vitrite, 69 to 79 with average of 74.3 ± 3.8 and clarite, 80 to 93 with 

an average of 87.6 ± 3.3 (Figure 95c). Note the vitrite occurred in thin bands (<5 mm), and 

variability was sometimes caused by pre-existing fractures being indented (see small interval 

between two areas delineated in Figure 95d). 
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(a) (b) 

 
carbominerite 

 
vitrite 

 
clarite 

 
(d) (c) 

Figure 95 Guluguba-2, specimen GG-16, Taroom Coal Measures, 415.5m depth. a) 

graphic sequence of indentations in terms of SH for the transects; b) SH values plotted 

on a histogram; c) representative photomicrographs for visualization of microlithotype 

as it occurred along the transects; and d) the polished coal surface showing location of 

transects as well as distinct lithotypes delineated. Note that the blue transect follows 

along the specimens’ central axis, then an orange one offsets the central axil towards the 

left side, while the light grey one offsets the central axil towards the right side. 

The entire specimen GG-27 is a vitrain band with small cracks/fractures distributed across the 

polished surface. For GG-27, the coal variability was observed using four transects, three of them 

parallel to each other and one perpendicular, where the vitrite microlithotype could be tested. The 

indentations represented a population of 69 measurements. Results for this specimen are consistent 

with previous observations, but exhibit higher variation when indentations punch pre-existing 

cracks/fractures (Figure 96a, b). SH ranged from 29 to 75; average of 55.7 ± 10.7. It was observed 

that the lower range values for SH (<50) correspond to indentations reaching large or open cracks/ 

fractures (Figure 96c).   
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(a) 

 
 

(b) 

 

 
vitrite SH≈60 

 
vitrite SH<50   

 (c) (d)  

Figure 96 Guluguba-2, specimen GG-27 (unknown depth). a) graphic sequence of 

indentations in terms of SH for the transects; b) SH values plotted on a histogram; c) 

representative photomicrographs for visualization of microlithotype as it occurred along 

the transects; and d) the polished coal surface showing location of transects.  

For Guluguba-2, a total of 24 specimens, from distinct depths, were tested for the clarite lithotype 

within a block (similar to Figure 89b). Figure 97 shows a box-and-whisker plot which summarizes 

the results observed for all SH values across specimens reaching the clarite.  A gradual decrease of 

average SH values across indentations observed on clarite is attributed to distinct texture (mostly 

mineral matter) and/or integrity (cracks and fractures) which are not related to a distinct depth or 

stratigraphic interval. 

For Guluguba-2, the SH values on clarite can be grouped as consistently hard (higher rebound, SH 

values >80) across 13 specimens. The SH ranged from 73 to 94, average of 84.5 ± 4.6 see Figure 97 

for results from GG-18 until GG-21. The remaining specimens show an increase in the estimated 

mineral mater percentage and/or presence of cracks/fractures surrounding the indentations on 

clarite. Then, for those specimens the percentage estimation for mineral matter is based on visual 

observation using a comparison chart (Folk, 1951). SH ranged from 60 to 85, average of 74.8 ± 5.0. 

The influence of mineral matter and fractures dropped the SH values by approx. 10, for results from 

GG-5 until GG-20 (Figure 1 as highlighted). Next, GG-24 shows an isolated case where various 

600µm 600µm 
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thin vitrain bands are intersected with small cleats surrounding the indentations resulting in a 

relatively lower SH value. The results for GG-24 which correspond to an SH value of 69.7 on 

average and standard deviation of 3.7. Though Afonso (2014) observed that cleats appear to 

increase with depth for the sub-bituminous coal, no relationship of SH with depth can be expressed. 

Then, the final 4 specimens exhibit lower SH values for clarite ranged from 44 to 82.5, average of 

65.1 ± 4.7). These values are attributed to increasing occurrence of cracks/fractures (last section 

highlighted in Figure 97). 

 

Figure 97 Shore hardness limits for clarite in selected lithotypes of specimens from 

borehole Guluguba-2. Cross symbols represent the average. 

For Gulugula-2, only 3 specimens are used for the selected indentations on vitrite. The SH ranged 

from 52 to 83, average of 68.8 ± 6.8 on vitrite for tested specimens. Again, it is observed that the 

cracks influence the SH values measured (i.e. specimens with more cracks surrounded or reached 

by the indenter showed large variability). 

SH values measured on Guluguba-2 carbominerite microlithotype indicate values ranging from 39 

to 58, average of 47.7 ± 4.5 (again, SH measured for 3 specimens only). Note that SH values are 

much lower than observed for the open cut mine (average of 70.2 ± 6.8).  

6.3.4 Comparison of SH values across specimens  

From observing the summarised data for both open cut and borehole specimens, there is a clear, and 

consistent relationship between SH and microlithotype. The series of indentations made on the three 

microlithotypes (clarite, carbominerite, and vitrite) exhibit different values of yield 

strength/Young's modulus, therefore growth of fracture patterns is expected upon fracture 
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stimulation or loading. Table 12 indicates that there is a significant difference between the hardness 

of the different microlithotypes, particularly for specimens tested from the borehole than the open 

cut mine specimens, also indicating large variation within clarite-dominated microlithotypes. 

Therefore, it can be concluded that hardness is influenced by the composition that is inherited from 

the biochemical precursors (i.e. vegetation) and mineralogy of existing mineral matter of each 

microlithotypes. 

Clarite can be really hard, like pure hardened high-carbon steel (SH equal to 82.3 ± 3.0). Clarite is 

the most heterogeneous microlithotype observed in this study, therefore its hardness must be the 

higher. The energy applied by the Shore scleroscope dissipates through the microlithotype 

heterogeneity and prevents fractures and cracks from propagating through the coal. In another 

microlithotype, the occurrence of clay minerals in the carbominerite absorbs the energy applied by 

the Shore scleroscope. While it might exhibit some indentation mark, evidence of fracture and crack 

propagation/ growth through the coal is less common. Last, the vitrite is the homogeneous 

microlithotype, and the applied energy cannot dissipate without changing the material 

characteristics. Chips surrounding the indentation and fracture propagation showing the crack 

growth onto vitrite are quite common. Also, because cleat systems can be developed on brighter 

vitrite, they might assist to create a pathway for fracture propagation, reducing the Shore hardness 

values.  

The specimens from the open cut mine correspond to a reflectance of 0.5 % while those prepared 

from Guluguba-2 showed a reflectance range of 0.43-0.47 %. While photomicrographs displayed 

the differences in texture between both specimens’ locations, the difference in rank (thermal 

maturity) which is still sub-bituminous (roughly for purpose of comparison) does not seem to be an 

issue. It is suggested that the SH values for vitrite and clarite microlithotypes at these locations are 

statistically the same, though Guluguba-2 is affected by clay rich (mineral matter) and fractures 

(natural and/or pre-existing). The carbominerite is slightly softer in Guluguba-2 which again 

seemed be an influence of clay rich minerals where Guluguba-2 tends to comprise the highest end 

(percentage) of mineral matter. 

Figure 98 shows the SH for all the specimens tested in this study against the plot from Klawitter et 

al. (2015) (both performed on polished coal surface confined into epoxy blocks, using same SSRH 

equipment). Note this plot consider the average SH by microlithotype rather than an average of 

random SH measurements (Klawitter et al., 2015). The overall range confirms an increase of SH for 

low rank coals, but also shows them to be very hard and highly variable. This is also visible in the 
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indentations left from the test. The tables summarizing the SH for all specimens observed including 

the depth sequence if applicable; photos of the polished coal surface showing the selective areas 

delineated; and photomicrographs of representative microlithotypes can be found in the Appendix 

III. 

 

Figure 98 Shore hardness for specimens tested in this study compared with Klawitter 

et al. (2015) database. 

6.4 CONCLUSIONS AND RECOMENDATIONS 

This work addressed the hardness response of the microlithotype in sub-bituminous collected from 

two locations (open cut mine and borehole) for low rank sub-bituminous coal. Three 

microlithotypes were identified for the sub-bituminous specimens tested: vitrite, clarite and 

carbominerite. Quantification of the micromechanical properties is possible using such a simple 

test, and opportunities to improve fracture propagation can be further explored. 

Results suggested that a strong correlation exists between microlithotype and hardness when 

interpreting thin weak and bedding plane surface of sub-bituminous coal. Specifically,  

1. The microstructural heterogeneity and anisotropy of the coal can be captured by the variation in 

hardness when transects or selective measurements are performed.  
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2. The variation in Shore Hardness (SH) is a function of the presence of cleats, cracks/fractures, 

different textures and mineral matter.  

3. The harder microlithotype is clarite, followed by vitrite, and then carbominerite. The Shore 

hardness values decrease from clarite with an increase in mineral matter towards carbominerite. 

However, measurements of Shore hardness by itself give no evidence about micro-brittle 

(vitrite) or micro-ductile (carbominerite) behaviour of coal.  It happens that vitrite displays 

purely brittle behaviour, while carbominerite has a ductile component. 

4. The differences between microlithotypes are not small enough to be ignored in numerical 

modelling simulations, as the variation occur at centimetre to millimetre scale it has 

implications for fracture propagation across bands in a coal seam. 

Further studies are required to determine how these properties can be better represented and 

upscaled from the microstructural observations to the rock mass depending on the numerical 

modelling approach and aim. Lastly, the band thickness distributions were not accounted for in this 

study and could be the subject of further work. Also, a comparison between similar microlithotype 

for other ranks would be of interest to describe the hardness behaviour by microlithotype across 

rank. 
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7 Chapter 7 :   synthesis, conclusions and future 
work 

C h a p t e r  7  

SYNTHESIS, CONCLUSIONS AND FUTURE WORK 

7.1 SUMMARY AND SIGNIFICANCE 

A number of non-conventional experimental laboratory tests were performed, to attend the need of 

the coal seam gas (CSG) industry, to test small size specimens as plugs from core or as 

chips/particles from exploration drilling. The tests selected from mineral processing and rock 

mechanics disciplines, allow for estimation of hardness, fracture energy, toughness, and strength, 

which were thought applicable to fracture stimulation of CSG reservoirs. Output from the tests were 

validated and compared to mechanical properties available in literature datasets, and the successes 

and pitfalls of each test were pointed out.  

It is relevant that numerical modelling to predict the geomechanical behaviour of coal during gas 

extraction or mining design and stability, can only be achieved by understanding the mechanical 

properties of the coal at different scales. Whereas a well-known approach is to treat the rock mass 

as a large volume of indistinct rock, this thesis explored the anisotropic behaviour of coal strength 

as a function of its different lithotypes, microlithotypes, and inter-bandings of stone. Laboratory 

testing of individual lithotypes, regardless of the test, resulted in significant differences in strength 

and hardness, but when looking at the additivity or upscaling of the results to larger rock masses, 

these differences tend to decline. In other words, the rock mass concept is a fair reliable approach 

for some situations where the coal behaves “en masse”. Therefore, testing large coal specimens 

must lead to a better understand whether pillars or boreholes continue to deform and take load 

without reaching a defined peak strength. When looking at the phenomenon of pillars and/or thin 

coal seams with very large width-to-height ratios, these rocks (pillars or seams) are virtually 

‘indestructible’ and the stability of the support structure (roof, coal pillar, and floor) is governed by 

the pillar deformation and the strength of the surrounding strata (Wagner and Madden, 1984). In 
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this context, one should take advantage of testing smaller specimens of coal as well as the 

surrounding rock which is often missed. Then, scaling from the laboratory, considering that a 

sequence of increasing size is established, to any other scale including the rock mass can be 

successful. Justification for any concern about not strictly following the standards of specimens’ 

preparation related to rock ‘grain size’ rely on the fact that coal has more fibre then grains, and 

about the specimen mass of rock tested, clarification is made that the recommended aspect ratio 

applies. However, where specific layers are targeted for fracture stimulation, the rock mass 

approach is insufficient to predict induced fracture propagation.  

In the gas fields of low rank, sub-bituminous coal in the Surat-Clarence-Moreton Basin, Australia, 

the seams and plies are considered as ‘indestructible’ thin pillars with poor cleats developed, and 

pervasive, wide joints (as observed at mine exposures). The coal seams in this Basin are comprised 

of multiple thin layers that vary from millimetres to decimetres over some metres or tens of metres. 

The seams show both brittle and ductile contrasting behaviours interbedded by distinct combination 

of coal lithologies and rocks including sandstone, mudstone, and claystone. In this scenario, the 

mechanical properties need to be characterized by different methods to capture the heterogeneity of 

the seams at the relevant scale of interest. In addition to logistical problems of getting intact coal 

core specimens or cutting disks in an inherently fractured material, the number of tests and the 

range of coal lithotypes that comprise a seam at a given rank is onerous and potentially not feasible. 

While the common test for rock is the Uniaxial Compressive Strength (UCS), for some applications, 

understanding the tensile behaviour with SILC (Short Impact Load Cell) and hardness with SSRH 

(Shore Scleroscope Rebound Hardness) are very important.   

In this thesis, the information from UCS to derive the intact strength of coal and fabricated material 

was investigated, also the correlations between tensile and compressive strength were observed. The 

amount of energy required to induce fracture in coal can be found, while fracture in the vicinity of 

sandstone and mudstone can be evaluated for extension damage. Textural properties manifested in 

the microlithotypes might control fracture distributions and patterns resulting in a diverse fracture 

network propagation within the formation. It is anticipated that the fracturing propagation relative to 

the stimulation should be controlled by the rock strength, the amount of energy injected, the 

presence of microlithotypes, the natural fractures and other geological discontinuities. The results of 

this thesis are promising for future applications, and might be utilized in simulation models, 

providing more reliable estimates of hydraulic fracture and borehole stability in CSG reservoirs. 
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7.2 MAIN FINDINGS FROM THIS RESEARCH 

Chapter 3: Mini-cylinder specimens scaled 

The validity of testing mini-cylinder specimens, the Young’s modulus, the effect of fractures on 

strength results, and the scaling properties of coal were all successfully demonstrated in this thesis. 

Mini-cylinder specimens of coal from increasing, non-standard sizes (between 9.3 and 22.6 mm in 

diameter) were tested for UCS, where the resistance of a material to breaking under compression 

showed the fracture propagation during loading. While the aim was to test mini-cylinder specimens 

to be intact, the non-intact (visible fractures) could not be avoided, and they also retain useful 

information.  

The specimens with pre-existing fractures are the weaker, while the ones classified as ‘intact’ (but 

having flaws and cleats), still present some variation in the results which is expected. Despite the 

strong correlation with size, for both the sub-bituminous coal of mini-cylinder specimens and the 

medium-rank coal from standard to large specimens, when scaled to the rock mass the differences 

attributable to type and to rank might reduce; hence averaged “coal values” may suffice. It triggers 

that upscaling by itself does not allow for characterisation of the seams in the Surat Basin, albeit not 

all tens of metres were captured in the testing. The size effect for specimen strength is significant 

and different strength should be assigned based not so much on lithotype, but on the thickness of the 

coal and rock layers. Whether the assignment of different strengths by coal and rock layers would 

result in diminished returns for effort was not tested, and this is recommended for future work, 

probably via numerical modelling. Furthermore, the observation of failure mode with specimens 

failing in a dynamic brittle fashion while others did not show such explosive/abrupt behaviour, still 

deserves further attention in modelling. Unfortunately, the relationship between strength and 

maceral subgroup distribution showed inconclusive results for UCS, as the presence of fractures 

was more important to failure. To extract gas, the rock should fail in tension (not in compression), 

and a relationship between tensile and compression strength for low rank coal needed to be 

established, therefore the interest at using the impact load cell for further characterisation. 

Chapter 4: A test of fracture, shape, and size using 3D-printed sandstone  

3D-printed sandstone (3DP), a fabricated homogeneous rock was chosen to test the repeatability 

and performance of the SILC test, and to verify assumptions and pre-stablished calculations for 

sphere and cylinder-shaped specimens without the influence of flaws. The methodology and 
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calculations for the SILC test (Tavares, 1997; Bonfils, 2017) are based on specimen shape contact, 

the Hertzian impact was confirmed on specimens that did not fail. The SILC test can estimate 

tensile strength and fracture energy by a dynamic impact against small single particles and/or 

shaped specimens. By removing the intrinsic material variability, the influence of specimen size, 

shape, and fabric orientation relative to the impact was investigated. The impact conditions were the 

same for all specimens except for larger diameter of sphere-type specimens that required an 

increased stress.  

Fundamentally, the fracture initiated, in shear, in the top loading of the specimens and grows in 

tension, while the fragmentation is influenced by the specimen shape. Different shaped specimens 

lead for some variation in the results which is independent of the rock material, also differences 

seemed to increase with an increase of the specimen size. When specific fracture energy is 

estimated from SILC there is a significant difference in the property attributed to shape, perhaps due 

to a dependence on grain size. The use of shaped specimens highlights the need to develop 

standards for SILC in order to guarantee a single outcome that can be comparable. For instance, it is 

suggested that the ratio variation 0.9:1 to 1.1:1 should be adopted as limits for mini-core specimens 

tested on SILC, as part of the standard procedures. The 3DP was also tested for UCS, then 

compared to data from literature (Hodder, 2017) and real sandstone (Hawkins, 1998). This outcome 

also confirmed that UCS can be successfully estimated using mini-core specimens. The 3DP 

increases in strength for all sizes tested. Following that, the relationship between the average 

ultimate tensile and the compressive strengths of 3DP derived from UCS and SILC test, seems 

concordant with the literature. This confirmation lends confidence to the use of SILC tests on 

natural rocks to capture geomechanical properties.   

Chapter 5: SILC on coal and mudstone 

Coal (complex heterogeneous rock of brittle behaviour) and mudstone (ductile behaviour rock) 

were tested on SILC, to answer questions about fracture propagation across seams, tensile strength 

as well as specific fracture energy. Capturing the differences between lithotypes and lithology of 

distinct thickness revealed the contrasts of materials behaviour, assigned by size and recorded for 

sub-bituminous coals from the Surat Basin. The coal breakage is influenced by the specimen shape, 

besides the presence of fractures, mineral grains, and lithotype bands, all together induce some 

microscopic deviation of the crack path. Overall, sub-bituminous coal specimens tested on SILC 

exhibited a deformation mechanism type cataclasis which is abrupt, powerful energy release with 

many fragments of very irregular surface being generated. The properties of Young’s modulus 
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(‘apparent’ stiffness) were shown to be influenced by the impact conditions on SILC which was not 

expected, therefore calculations for cylinder-shaped specimens need to be corrected. The validity of 

fracture force, specific fracture energy, and tensile strength is indifferent (or independent) to the test 

impact conditions. It was also observed that specific fracture energy from SILC, which can be 

correlated to fracture toughness, did not show significant variation or dependence by shape when 

testing heterogeneous rock. The coal plies were tested for UCS and SILC (Chapter 1 & 5), both 

tests showed that PC8WB > PC6-D > PC8-B in terms of strength, and this is interpreted to arise 

from their composition and texture. It is also thought that the presence of clays in the PC8-WB 

allows more compression than does the dull and bright lithotypes. Although the differences of 

strength values between all three plies are not very expressive, the SILC test seemed to capture it 

effectively. Also, SILC captured well the influence of coal bedding orientation relative to impact 

conditions (or fracture stimulation). The relationship between the average ultimate tensile and the 

compressive strengths of low rank can be derived. Another valuable outcome from SILC was the 

graphic representation of fracture energy plotted for increasing specimen size, as it provides 

interpretation for varied seam thickness. Overall, the energy required to fracture the coal is much 

lower than that necessary to fracture a sandstone or a mudstone specimen of similar thickness. For 

seams comprising multiple thinner beds and layers, by reducing the scale of observation allows for 

better interpretation.  

Chapter 6: Lithotypes and microlithotypes matter 

Because the coal’s surface varies with different bands, the texture and composition of these as 

microlithotypes was explored. To measure and observe any physical change at this scale, an 

assessment for individual values of coal hardness was conducted with the Shore Scleroscope 

Rebound Hardness (SSRH or SH). It turned out quite evident that both brittle and ductile 

behaviours observed on sub-bituminous coal are conditioned by microlithotypes, and these 

ultimately manifest at larger scales into lithotypes. Also, the hardness is also sensible to the 

presence of natural and induced fractures. The three microlithotypes identified for the sub-

bituminous lithotype specimens were: (i) Vitrite (pure vitrain) was the less frequent microlithotype 

in the specimens tested, but of dominant brittle behaviour as large tension cracks tend to develop on 

the surface indented (i.e., irradiate, spread out and get connected), while fragments might move 

apart. The deformation mechanism of vitrite was the cataclasis, a kind of explosive/abrupt fracture 

which is very sensitive to pressure. (ii) Carbominerite (vitrite plus mineral matter) was the 

moderately frequent microlithotype in the specimens tested, and tend to behave like a ductile 
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material where the indenter could be pushed inside the specimen for longer; the indentation seemed 

to respond as a plastic flow deformation. After indented, perhaps due to a redistribution of grain 

minerals, a dark indentation mark became imprinted (i.e. no cracks or chips tend to develop), which 

was more evident when the percentage of mineral matter was at the lower limits (≈20%). The 

minerals were most likely to be clay, as observed with the scanning electron microscope (SEM). 

(iii) Clarite (vitrinite plus liptinite >95%) was the most frequent microlithotype, it is the hardest 

between those tested. It was observed that an indentation on clarite surrounded by very thin vitrite 

bands containing non-persistent cleats, showed a drop in the SH measurements (i.e., influence on 

hardness). Notice that, the microlithotypes carbominerite and clarite can both be deformed, while 

the vitrite is simple brittle. Moreover, the complexity of sub-bituminous coal was also attributed to 

the fact that neighbours microlithotypes maybe of comparable hardness (e.g. clarite and vitrite) but 

completely opposite fracture mode that occur in centimetre to millimetre scale. 

7.3 CONCLUDING REMARKS 

The key points arising from this thesis are:   

 Pre-existing fractures, either natural or induced by specimen preparation, influence the 

properties results as observed on the experimental studies for compressive strength.   

 The mini-cylinder specimens of coal tested at UCS showed high strength which decreases as 

the specimens’ size increases. It is expected that same dimensions will be even strong under 

confining stresses.  

 The mini-cylinder specimens are able to emulate/ scale to standard or large cores following a 

power regression.  

 The macroscopic failure mode of coal might be influenced by the microscopic behaviour, 

banding texture and/or pattern locations (high stress regions versus low strain in the centre) of 

the specimens. Following on that, the combination of microlithotypes in those locations of 

mini-cylinder specimens should be the one accounting for variation on strength results.   

 3D-printed sandstone (3DP) behaved similar to smaller specimens of real sandstone rock, 

following literature database in terms of compressive uniaxial strength.  

 Proposed calculations for SILC test are unchanged, but Young’s modulus (‘apparent’ stiffness) 

for cylinder-shaped specimens needs further consideration as observed on 3DP.   
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 The specimen shape influences the material properties results on SILC, as demonstrated with 

3DP, which produced slightly distinct results, moreover when specimens increase in size.  

 SILC captures the effects of material microstructure. Breakage of 3DP showed a brittle fracture 

controlled by the crack initiation and propagation, resulting in less fragmentation when 

compared with coal which has much complex microstructure and natural fractures.   

 Fracture energy obtained on SILC is relevant for the CSG while the crack propagation on coal 

appears to be strongly conditioned by microlithotype.    

 When testing irregular single-particles, it is recommended that measurements of height and 

length dimensions be taken into consideration for calculations on SILC tests.     

 The coal anisotropic behaviour is observed on laboratory experiment with SILC when testing 

specimens with distinct orientation of bedding planes and cleats. A significant variation on 

behaviour occurred which have implications for hydraulic fracturing stimulation.  

 3DP specimens tested on SILC showed a shape dependency when specific fracture energy is 

estimated, whereas for heterogeneous specimens no significant shape dependency is observed 

which may be due the grain size.    

 Though coal contains more macerals (fibres) than minerals (grains), the Surat Basin coals 

showed quite good representation of grains in the form of mineral matter which changes the 

coal behaviour when compared to other basins and rank.  

 The coal behaviour is influenced by changes on centimetre to millimetre basis, as observed on 

distinct microlithotypes. The hardness measurements might be of similar magnitude but 

different strain response to indentation. Therefore, brittleness and ductility occur together at 

low rank and are inherent of rheological characteristics of coal in the Surat Basin.   

 Hardness by microlithotype might be a more appropriate measurement to understand coal 

rather than elastic deformation.    

 It is difficult to precisely work out the additivity of microlithotypes and their degree of 

heterogeneous deformation to produce a single strength value in a UCS tests.   

 Distinct failure mode, hardness, strength, and fracture energy of coal are conditioned by the 

wide spectrum of maceral and subgroup maceral inside the specimens observed, in addition to 

the amount of natural or induced fractures on specimens of low rank sub-bituminous coal.   
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7.4 RECOMMENDATIONS FOR FUTURE WORK 

This research showed experimental observations for small specimens where the low rank coal 

behaviour is still complex in the Surat Clarence-Moreton basins. The mechanical properties of the 

formation are very critical for fracture stimulation, also influenced by the contrast of soft and 

competent materials at thin intervals. Despite the experimental work does not consider the effect of 

confining stress and the pore-pressure changes within the seams (i.e. sorption-induced coal matrix 

swelling/shrinkage), it is relevant to understand the coal brittle and ductile behaviour when fracture 

arise. Some technical challenges remain unresolved particularly in the area of coal rock behaviour 

in laboratory and require further investigation, some of which are listed below:  

 A study to consider the impact of scale on coal mechanical properties and how to better 

represent the scale impact when inputting parameters values into numerical models.  

 While advanced numerical modelling might be available, development of robust models that 

can deal with the complexity of coal and the interbedded rock for gas simulation, including 

more realistic constitutive models might be required for optimization of fracture stimulation.  

 Application of the experimental procedures (UCS, SILC, and SSRH) is recommended for other 

ranks, in order to improve understanding on coal heterogeneity at similar scale.   

 It might be suggested that small portions of vitrite (>10% of the specimen) can contribute to 

trigger a deformation mechanism type cataclasis as observed in all tests (UCS, SILC, and 

SSRH), but further investigation is still needed.   

 It is suggested that macroscopic failure mode and strength of coal might be influenced by the 

location/concentration of specific microlithotypes in mini-cylinders. Therefore, an investigation 

to map the microlithotypes of each specimen before conducting a UCS test might help to draw 

some conclusions.  

 Variation in deformation of thin coal seams can be attributed to the interbedded material. 

Further studies for characterization of interbedded material utilizing UCS, SILC, and SSRH, 

wherever applicable for the rock type, is recommended.   

 There are more to be explored utilizing the microlithotypes.  Because the vitrite tend to be more 

intensely fractured, it would be of interest an observation of the fracture propagation displaced 

along the bedding planes of mudstone and sandstone layers. Further studies considering the 
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rock-type assemblage (e.g. soft/hard or soft/ soft) and the fracture growth are strongly 

suggested. 

 It is recommended that the rebound location on the coal specimen be further investigated using 

calibrations of ultrasonic wave speeds to verify the influence of different microlithotypes on 

varied of coal specimens. 
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9 Appendix     
A p p e n d i x  I  

 3D-PRINTED SANDSTONE PROPERTIES 

Table 13 Summary of UCS measurements on 3D-printed sandstone from UCS test. 

 

Diameter 

(mm) 

Height 

(mm) 

Maximum 

load (kN) 

Time at 

maximum comp. 

load (min) 

Extension at 

maximum comp. 

load (mm) 

Compressive 

strength 

(MPa) 

Extensometer 

(yes/ no) 

  

 
21.53 48.62 12.80 3.39 0.92 35.16 Yes -25mm 

 
21.65 48.72 12.61 3.53 0.88 34.26 Yes -25mm 

 
21.61 48.78 13.02 3.96 0.99 35.5 Yes -25mm 

 
21.62 48.73 12.92 3.57 0.89 35.19 Yes -25mm 

 
21.54 48.77 12.94 3.59 0.83 35.52 Yes -25mm 

 
21.54 48.77 12.94 3.42 0.86 35.51 Yes -25mm 

 
21.59 48.74 11.89 3.54 0.88 32.49 no 

 
21.55 48.78 13.48 3.86 0.97 36.94 no 

 
21.54 48.65 13.18 3.97 0.99 36.16 no 

 
21.66 48.71 13.12 4.04 1.01 35.6 no 

avg 21.6         35.2 ± 1.2   

 
16.57 37.27 7.34 2.82 0.70 34.05 Yes - 12.5mm 

 
16.53 37.18 7.26 2.74 0.69 33.84 Yes - 12.5mm 

 
16.53 37.23 7.22 2.73 0.68 33.64 Yes - 12.5mm 

 
16.54 37.2 6.98 2.56 0.64 32.5 Yes - 12.5mm 

 
16.56 37.21 6.72 2.70 0.68 31.2 Yes - 12.5mm 

 
16.53 37.21 7.27 2.83 0.71 33.88 Yes - 12.5mm 

 
16.58 37.21 6.62 2.77 0.69 30.67 no 

 
16.38 37.18 7.23 2.93 0.73 34.31 no 

 
16.54 37.21 6.84 2.95 0.74 31.83 no 

 
16.43 37.2 6.55 2.49 0.62 30.91 no 

avg 16.5         32.7 ± 1.4   

 
12.38 27.48 3.10 2.75 2.51 25.74 Yes  

 
12.35 27.58 3.04 1.88 0.57 25.35 Yes  

 
12.37 27.46 3.42 1.97 0.54 28.43 Yes  

 
12.35 27.52 3.28 2.20 0.55 27.38 Yes  

 
12.32 27.48 3.64 2.20 0.55 30.51 Yes  

 
12.33 27.48 3.51 2.18 0.55 29.41 Yes  

 
12.35 27.52 3.19 2.12 0.53 26.66 no 

 
12.29 27.51 3.25 1.96 0.49 27.39 no 

 
12.32 27.46 3.41 1.92 0.48 28.57 no 

 
12.29 27.4 3.09 2.28 0.57 26 no 

avg 12.3         27.5 ± 1.7   
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Diameter 

(mm) 

Height 

(mm) 

Maximum 

load (kN) 

Time at 

maximum 

comp. load 

(min) 

Extension at 

maximum comp. 

load (mm) 

Compressive 

strength 

(MPa) 

Extensometer 

(yes/ no) 

 
10.07 22.15 1.97 1.67 0.42 24.72 no 

 
10.17 22.26 1.99 1.99 0.50 24.47 no 

 
10.02 22.27 2.06 1.66 0.42 26.07 no 

 
10.05 22.22 2.03 1.71 0.43 25.63 no 

 
10.06 22.28 2.11 1.83 1.28 26.56 no 

 
10.12 22.29 2.01 1.62 0.40 25.01 no 

 
10.07 22.23 1.79 1.62 0.41 22.46 no 

 
10.08 22.22 1.99 1.78 0.44 24.98 no 

 
10.09 22.21 2.06 1.62 0.41 25.77 no 

 
10.14 22.25 1.98 1.75 0.44 24.53 no 

avg 10.1         25.0 ± 1.1   

 
7.34 16.04 0.89 1.68 0.42 20.99 no 

 
7.44 16.03 0.90 1.28 0.32 20.62 no 

 
7.4 16.09 0.84 1.58 0.40 19.62 no 

 
7.27 15.89 0.91 1.29 0.32 21.84 no 

 
7.3 15.89 0.77 1.30 0.33 18.43 no 

 
7.32 15.95 0.84 1.04 0.28 19.9 no 

 
7.4 15.96 0.80 1.14 0.28 18.56 no 

 
7.26 15.9 0.81 1.25 0.31 19.62 no 

avg 7.3         19.9 ± 1.2   
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Table 14 Summary for SILC test results on 3D-printed sandstone. 

Specimen 

Impact conditions Specimen dimension: (average) 
Impact 

velocity 

(m/s) 

Number of 

specimens 

tested 

 Ball mass 

(g) 

Drop 

height 

(mm) 

Mass (g) 
Height/ 

diameter (mm) 

 Length 

(mm) 

Cylinder-

shaped 

printed 

vertical  

535.25 25.07 0.149 5.31 5.19 0.70 21 VC (Ф5.3 mm 1:1) 

535.25 25.07 0.166 5.32 5.70 0.70 25 VC (Ф5.32 mm 1.1:1) 

535.25 63.33 0.421 7.38 7.23 1.11 25 VC (Ф7.38 mm 1:1) 

535.25 63.33 0.448 7.38 7.69 1.11 26 VC (Ф7.38 mm 1.1:1) 

535.25 100 1.144 10.18 9.94 1.40 26 VC (Ф10.18 mm 1:1) 

535.25 100 1.273 10.22 10.97 1.40 26 VC (Ф10.22 mm 1.1:1) 

535.25 125.11 1.904 12.35 10.92 1.57 16 VC (Ф12.35 mm 0.9:1) 

535.25 125.11 2.131 12.36 12.17 1.57 16 VC (Ф12.36 mm 1:1) 

535.25 125.11 2.319 12.40 13.18 1.57 16 VC (Ф12.4 mm 1.1:1) 
                  

Cylinder-

shaped 

printed 

horizontal  

535.25 63.33 0.398 7.20 7.27 1.11 19 HC (Ф7.2 mm 1:1) 

535.25 63.33 0.446 7.19 8.03 1.11 19 HC (Ф7.19 mm 1.1:1) 

535.25 100 1.133 9.98 10.13 1.40 19 HC (Ф9.98 mm 1:1) 

535.25 100 1.244 10.01 11.08 1.40 19 HC (Ф10.01 mm 1.1:1) 

535.25 125.11 1.923 12.21 11.24 1.57 19 HC (Ф12.21 mm 0.9:1) 

535.25 125.11 2.111 12.15 12.38 1.57 19 HC (Ф12.15 mm 1:1) 

535.25 125.11 2.291 12.10 13.53 1.57 19 HC (Ф12.1 mm 1.1:1) 
                  

Sphere-

shaped 

535.25 25.07 0.100 5.12 - 0.70 20 Sp (Ф5.1 mm) 

535.25 63.33 0.274 7.15 - 1.11 20 Sp (Ф7.2 mm) 

535.25 100 0.767 9.95 - 1.40 20 Sp (Ф10.0 mm) 

1399.8 100 1.414 12.17 - 1.40 17 Sp (Ф12.2 mm) 
                  

Flattened 

Sphere-

shaped 

535.25 25.07 0.110 5.26 - 0.70 18 SpF (Ф5.2 mm) 

535.25 63.33 0.297 7.35 - 1.11 20 SpF (Ф7.4 mm) 

535.25 100 0.815 10.18 - 1.40 20 SpF (Ф10.2 mm) 

1399.8 100 1.533 12.08 - 1.40 18 SpF (Ф12.1 mm) 
                  

**Ellipsoid-

shaped 

average 

535.25 25.07 0.134 5.77 - 0.70 18 Ell (Ф5.3 mm) 

535.25 63.33 0.363 8.10 - 1.11 18 Ell (Ф7.4 mm) 

535.25 100 0.976 11.20 - 1.40 18 Ell (Ф10.1 mm) 

1399.8 100 1.862 13.88 - 1.40 13 Ell (Ф12.4 mm) 
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Specimen 
Specimen fracture force (N) 

Specimen fracture energy 

(mJ) 

Specimen tensile strength 

(MPa) 

Specimen compression strength 

(MPa) 

Specimen Young’s 

modulus (GPa)  
 

 
 

            

Cylinder-

shaped 

printed 

vertical  

250.23 247.98 0.014 28.22 28.29 0.036 5.79 5.74 0.014 73.4 66.4 0.017 1.06 1.05 0.033 VC  

300.02 299.56 0.012 35.67 36.40 0.025 6.30 6.28 0.013 69.2 68.9 0.012 1.04 1.01 0.017 VC 

540.83 541.84 0.026 82.13 80.65 0.050 6.45 6.48 0.026 70.8 70.9 0.019 1.01 1.01 0.019 VC  

564.55 566.79 0.010 85.97 84.29 0.024 6.33 6.35 0.012 72.1 72.0 0.016 1.04 1.02 0.024 VC  

1079.10 1084.29 0.021 204.13 198.41 0.059 6.79 6.81 0.021 90.5 90.6 0.014 1.39 1.38 0.020 VC 

1198.12 1201.39 0.010 236.73 236.99 0.021 6.80 6.82 0.011 94.5 94.1 0.015 1.47 1.45 0.023 VC  

1483.13 1473.96 0.013 306.38 295.61 0.024 7.00 6.96 0.013 105.2 104.9 0.007 1.74 1.74 0.005 VC  

1598.98 1620.68 0.007 352.36 353.98 0.034 6.77 6.86 0.007 103.9 103.9 0.008 1.70 1.69 0.013 VC  

1832.99 1847.43 0.006 415.83 417.23 0.021 7.14 7.22 0.005 111.3 111.7 0.007 1.81 1.81 0.009 VC  
    

      

  

              

Cylinder-

shaped 

printed 

horizontal  

483.59 482.81 0.021 69.16 67.77 0.041 5.88 5.89 0.020 66.8 67.3 0.016 0.97 0.97 0.021 HC  

557.64 557.64 0.015 79.89 78.53 0.046 6.15 6.15 0.014 75.1 75.4 0.010 1.13 1.12 0.026 HC  

1124.84 1124.62 0.012 196.92 191.24 0.033 7.08 7.08 0.012 98.6 98.7 0.010 1.56 1.55 0.021 HC  

1094.27 1101.10 0.019 187.05 190.53 0.029 6.28 6.30 0.018 94.6 95.9 0.007 1.56 1.58 0.013 HC  

1547.38 1547.70 0.012 303.98 304.59 0.025 7.18 7.17 0.013 110.9 110.0 0.013 1.86 1.84 0.011 HC  

1770.72 1765.35 0.018 355.87 356.28 0.033 7.50 7.48 0.018 122.5 122.5 0.016 2.10 2.11 0.014 HC  

1914.40 1907.89 0.006 405.12 403.36 0.021 7.44 7.42 0.006 122.3 122.5 0.005 2.07 2.07 0.009 HC 
    

      
  

              

Sphere-

shaped 

209.63 208.85 0.012 45.41 43.72 0.074 7.12 7.08 0.012 107.4 107.2 0.038 0.75 0.74 0.069 Sp  

397.55 397.31 0.007 114.46 109.64 0.077 6.93 6.92 0.009 115.7 117.3 0.036 0.80 0.80 0.095 Sp  

822.10 819.44 0.009 280.63 269.05 0.080 7.40 7.39 0.010 144.5 143.2 0.018 1.05 1.04 0.054 Sp  

1230.56 1226.49 0.006 471.95 455.62 0.034 7.41 7.39 0.007 154.0 151.5 0.005 1.16 1.14 0.013 Sp  
  

                                

Flattened 

Sphere-

shaped 

233.54 235.88 0.011 45.01 46.41 0.034 7.53 7.62 0.008 134.2 128.0 0.028 0.97 0.91 0.062 SpF  

441.17 444.35 0.003 118.41 116.19 0.021 7.28 7.35 0.003 130.1 128.9 0.012 0.92 0.90 0.022 SpF  

861.93 863.83 0.008 271.99 269.06 0.031 7.41 7.40 0.008 158.3 155.8 0.029 1.20 1.16 0.052 SpF  

1410.49 1407.11 0.010 498.09 496.75 0.033 8.62 8.61 0.011 193.2 194.8 0.012 1.52 1.51 0.024 SpF 
                                  

**Ellipsoid-

shaped 

average 

267.91 267.52 0.002 57.95 56.47 0.011 7.18 7.14 0.002 125.0 126.5 0.012 0.89 0.89 0.023 Ell  

529.46 530.18 0.004 138.27 138.32 0.014 7.20 7.19 0.005 145.1 144.2 0.012 1.08 1.07 0.022 Ell 

1025.18 1034.28 0.004 310.09 307.78 0.017 7.28 7.36 0.003 179.1 173.6 0.013 1.44 1.37 0.018 Ell  

1556.43 1562.72 0.002 530.40 522.59 0.028 7.20 7.23 0.002 193.7 192.2 0.024 1.65 1.63 0.051 Ell  
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10 Appendix  
A p p e n d i x  I I  

SILC ON COAL AND MUDSTONE 

Table 15 Summary of fracture characteristics for mini-cylinder specimens (11.7 mm in 

diameter, aspect ratio varying from 0.9:1 to 1.1:1) of coal on SILC. Impact conditions 

utilising a 535.25 g strike dropped from 63.1 mm in height. 

Drilled 

direction 
Ply Data points  

Mean 

fracture 

force (N) 

Mean 

fracture 

energy (mJ) 

Mean corrected 

spec. fract. 

energy (kWh/t) 

Mean tensile 

strength 

(MPa) 

Perpendicular 

to band 

PC6-D 14 1189.4 124.4 0.0194 5.06 

PC8-B 91 945.05 101.65 0.0173 4.32  

      

Parallel to 

band 

PC8-B 13 656.8 45.4 0.0074 2.87 

PC8-WB 24 1020.5 98.5 0.0162 4.67 
 
 

Table 16 Summary of fracture characteristics for irregular-particles (retained at 3.35, 

4.75, 6.7, and 9.5 mm mesh sized) of coal plies PC6-D, PD8-BLA and mudstone on SILC. 

Ply 

Impact conditions Number of 

particles  

tested  

Particle 

height 

(avg) 

(mm) 

Mean  

fracture  

force (N) 

Mean corrected 

spec. fract. 

energy (kWh/t) 

Mean 

 fracture 

energy (mJ) 

Mean  

tensile 

strength 

(MPa) 

Ball mass 

(g) 

Drop height 

(mm) 

PC6-D 

66.78 100 146 3.30 125.1 0.0495 11.0 10.1 

66.78 125 231 4.86 195.2 0.0318 22.5 7.5 

535.25 80 208 9.04 495.6 0.0194 88.7 5.5 
         

PD8-

BLA 

66.78 125 118 3.16 164.1 0.1027 20.5 14.7 

535.25 45.5 152 4.97 231.7 0.0608 39.4 8.6 

535.25 80 195 7.03 310.5 0.0446 77.2 5.8 

535.25 100 200 9.18 450.2 0.0343 140.5 4.9 
         

Mudstone  

66.78 100 30 3.64 207.7 0.1157 44.0 14.1 

535.25 45.5 79 5.54 343.4 0.0873 106.1 10.0 

535.25 80 227 6.85 506.4 0.0751 228.7 9.8 

535.25 100 244 9.22 553.2 0.0437 290.6 5.9 
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Figure 99 Variation of mean fracture energy for irregular-particles of coal plies PC6-D, 

PD8-BLA, 3D-printed sphere-shaped specimens, and mudstone by size, all tested on SILC. 

 

Detailed results for each series of sub-bituminous coal and mudstone are presented below. The 

tables present:  average fracture force; Fc,50 mean fracture force; σ²Fc variance of the log-normal 

distribution of fracture force (-);   fracture energy; E’50  mean fracture energy; σ²E’ variance of the 

log-normal distribution of fracture energy (-);    tensile strength (MPa); σp,50 mean tensile strength 

(MPa); σ²σp variance of the log-normal distribution of tensile strength(-);  Young’s modulus 

(GPa); kp,50 mean Young’s modulus (GPa); σ²k variance of the log-normal distribution of Young’s 

modulus (-). 
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Table 17 Fracture characteristics for irregular-particles of sub-bituminous coal PC6-D on SILC. 

 

 

Irregular single-particles of sub-bituminous coal PC6-D 

Specimen fracture 
force (N) 

Specimen fracture 
energy (mJ) 

Specimen tensile 
strength (MPa) 

Specimen  Young’s 
modulus  (GPa) 

Impact 
conditions  

Specimen 
dimension: 

(avg) 
Impact 
velocity 

(m/s) 

Number 
of spec. 
tested 

DWT size/ energy 
combinations 

            

Ball 
mass 

(g) 

Drop 
height 
(mm) 

Mass 
(g) 

Height
/ diam 
(mm) 

135.56 124.74 0.235 12.24 10.27 0.490 12.8 10.6 0.291 2.68 2.35 0.338 66.78 100 0.061 3.22 1.40 43 PC6-D_63x53_E 0.1 

127.95 121.52 0.169 14.10 10.90 0.564 10.4 9.8 0.103 2.14 1.92 0.387 66.78 100 0.064 3.35 1.40 42 PC6-D_63x53_E 0.4 

137.88 128.18 0.227 15.51 11.77 0.774 11.2 10.3 0.114 2.32 1.94 0.453 66.78 100 0.062 3.33 1.40 61 PC6-D_22.4x19_E 1.0 
                   

134.3 125.1 0.211 14.1 11.0 0.620 11.4 10.1 0.145 2.4 2.1 0.397    3.30  146 PC6-D 3.35mm 
                   

                   

223.41 213.92 0.138 25.22 21.95 0.335 9.0 8.5 0.130 2.42 2.34 0.165 66.78 100 0.201 4.76 1.40 39 PC6-D_65x53_E 0.4 

227.32 218.40 0.151 29.62 26.83 0.267 8.1 7.4 0.136 2.14 1.76 0.655 66.78 125 0.241 5.11 1.57 35 PC6-D_65x53_E 0.25 

216.76 205.65 0.131 28.58 23.58 0.494 7.7 7.3 0.149 2.05 1.81 0.333 66.78 125 0.208 5.06 1.57 30 PC6-D_65x53_E 0.1 

204.61 192.65 0.107 27.76 24.55 0.293 7.3 6.8 0.272 1.78 1.48 0.418 66.78 125 0.207 5.15 1.57 31 PC6-D_45x37.5_E 0.25 

171.86 166.55 0.128 21.19 17.74 0.598 6.5 6.4 0.115 1.97 1.72 0.415 66.78 125 0.200 4.88 1.57 33 PC6-D_45x37.5_E 1.0 

236.26 218.18 0.159 27.07 25.73 0.215 9.1 8.3 0.252 2.49 1.92 0.295 66.78 125 0.205 4.93 1.57 35 PC6-D_31.5x26.5_E 0.25 

164.58 154.25 0.115 18.05 16.41 0.419 9.1 8.0 0.209 2.25 1.84 0.593 66.78 125 0.146 4.11 1.57 28 PC6-D_22.4x19_E 1.0 
                   

208.1 195.2 0.148 25.5 22.5 0.360 8.1 7.5 0.171 2.2 1.9 0.417    4.86  231 PC6-D 4.75mm 
                   

                   

558.33 541.10 0.099 113.43 110.51 0.170 6.1 5.3 0.346 1.89 1.57 0.302 535.25 80 1.348 9.50 1.25 34 PC6-D_63x53_E 0.10 

602.06 580.07 0.148 122.66 108.30 0.390 7.2 6.6 0.992 2.08 1.79 0.365 535.25 80 1.351 8.75 1.25 34 PC6-D_63x53_E 0.40 

560.21 529.74 0.166 116.92 103.41 0.496 5.0 4.8 0.179 1.85 1.55 0.253 535.25 80 1.475 10.14 1.25 40 PC6-D_63x53_E 0.25 

437.63 394.99 0.190 77.24 64.64 0.362 5.8 5.6 0.119 1.92 1.63 0.330 535.25 80 1.125 8.22 1.25 30 PC6-D_45x37.5_E 0.1 

571.39 531.99 0.219 122.33 101.95 0.586 6.1 5.6 0.188 1.86 1.60 0.535 535.25 80 1.493 9.28 1.25 37 PC6-D_45x37.5_E 0.25 

414.88 396.06 0.183 66.50 55.59 0.460 5.5 5.1 0.233 2.20 1.96 0.279 535.25 80 1.041 8.37 1.25 33 PC6-D_31.5x26.5_E 0.25 
                   

528.0 495.6 0.182 104.5 88.7 0.515 5.9 5.5 0.205 2.0 1.7 0.350    9.04  208 PC6-D 9.5mm 
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Table 18 Fracture characteristics for irregular-particles of sub-bituminous coal PD8-BLA on SILC. 

Irregular single-particles of sub-bituminous coal PD8-BLA 

Specimen fracture force 
(N) 

Specimen fracture energy 
(mJ) 

Specimen tensile 
strength (MPa) 

Specimen Young’s modulus 
(GPa) 

Impact conditions  Specimen 
dimension: (avg)  Impact 

velocity 
(m/s) 

Number 
of spec. 
tested 

DWT size/ energy 
combinations 

            

Ball 
mass 

(g) 

Drop 
height 
(mm) 

Mass 
(g) 

Height/ 
diam 
(mm) 

163.65 159.19 0.107 33.77 25.25 0.963 20.55 18.37 0.311 2.26 1.15 2.018 66.78 125 0.045 2.80 1.57 24 3.35mm_22.4x19_E=2.5 

185.47 181.19 0.141 30.15 22.70 0.986 21.09 19.94 0.270 2.86 2.06 1.099 66.78 125 0.048 2.90 1.57 24 3.35mm_22.4x19_E 1.0 

155.98 152.37 0.058 22.07 17.71 0.811 12.53 11.74 0.140 2.80 1.74 1.260 66.78 125 0.062 3.39 1.57 26 3.35mm_22.4x19_E 0.25 

174.49 167.46 0.131 23.79 18.86 0.646 15.34 13.50 0.274 2.66 1.69 0.932 66.78 125 0.066 3.34 1.57 28 3.35mm_45x37.5_E 0.25 

167.46 168.84 0.092 24.82 19.26 0.952 13.84 12.60 0.154 2.26 1.79 0.469 66.78 125 0.062 3.39 1.57 16 3.35mm_45x37.5_E 0.1 
                   

169.5 164.1 0.114 26.9 20.5 0.829 16.7 14.7 0.294 2.60 1.69 1.153    3.16  118 3.35mm 
                   

250.05 241.55 0.062 55.61 39.78 0.573 10.23 8.73 0.269 1.74 1.27 1.019 535.25 45.5 0.201 5.01 0.94 36  4.75mm_63x53_E 0.25 

221.95 218.67 0.076 48.09 39.49 0.740 9.61 9.34 0.226 1.73 1.17 1.127 535.25 45.5 0.159 4.70 0.94 37 4.75mm_45x37.5_E 1.0 

242.83 233.06 0.088 58.65 41.25 0.939 8.55 7.72 0.185 1.73 1.05 1.572 535.25 45.5 0.203 5.22 0.94 39  4.75mm_45x37.5_E 0.25 

250.08 238.30 0.055 53.05 40.10 0.658 9.44 9.05 0.094 1.75 1.25 0.745 535.25 45.5 0.183 4.95 0.94 40  4.75mm_45x37.5_E 0.1 
                   

241.4 231.7 0.068 53.9 39.4 0.693 9.4 8.6 0.182 1.74 1.16 1.052    4.97  152 4.75mm 
                   

325.35 315.03 0.083 97.94 77.98 0.608 6.02 5.75 0.106 1.17 0.76 1.218 535.25 80 0.505 7.04 1.25 40  6.7mm_63x53_E 0.4 

362.42 354.06 0.102 112.35 85.72 0.643 6.19 5.95 0.164 1.22 0.84 1.052 535.25 80 0.517 7.37 1.25 38  6.7mm_63x53_E 0.25 

304.43 297.40 0.066 83.03 62.45 0.591 5.88 5.72 0.128 1.26 0.91 0.894 535.25 80 0.503 6.94 1.25 40  6.7mm_63x53_E 0.1 

319.81 304.42 0.114 102.21 78.87 0.635 5.88 5.58 0.179 1.03 0.69 1.162 535.25 80 0.476 7.11 1.25 36  6.7mm_45x37.5_E 0.25 

298.66 290.68 0.099 103.32 84.06 0.602 6.16 5.96 0.114 0.84 0.55 1.170 535.25 80 0.453 6.71 1.25 41  6.7mm_45x37.5_E 0.1 
                   

321.6 310.5 0.094 99.6 77.2 0.620 6.0 5.8 0.135 1.10 0.74 1.154    7.03  195 6.7mm 
                   

438.45 413.06 0.126 172.76 124.92 0.913 5.39 4.53 0.222 1.10 0.65 1.439 535.25 100 1.099 9.02 1.40 41  9.5mm_45x37.5_E 0.25 

450.91 440.71 0.064 160.04 122.90 0.700 4.80 4.49 0.141 1.25 0.73 1.633 535.25 100 1.252 9.39 1.40 37  9.5mm_45x37.5_E 0.1 

493.48 481.13 0.057 175.99 151.12 0.446 5.93 5.87 0.123 0.99 0.71 0.832 535.25 100 1.060 8.82 1.40 42  9.5mm_63x53_E 0.4 

470.25 462.54 0.071 208.72 179.62 0.439 5.13 4.97 0.137 0.74 0.44 1.359 535.25 100 1.122 9.27 1.40 42  9.5mm_63x53_E 0.25 

468.68 447.83 0.119 153.62 120.70 0.684 4.88 4.56 0.110 1.23 0.76 0.982 535.25 100 1.308 9.40 1.40 38  9.5mm_63x53_E 0.1 
                   

464.7 450.2 0.087 175.0 140.5 0.635 5.2 4.9 0.167 1.05 0.65 1.267    9.18  200 9.5mm 
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Table 19 Fracture characteristics for irregular-particles of mudstone on SILC. 

. 

Irregular single-particles of mudstone 

Specimen fracture 
force (N) 

Specimen fracture 
energy (mJ) 

Specimen tensile 
strength (MPa) 

Specimen  Young’s 
modulus (GPa) 

Impact 
conditions  

Specimen 
dimension: 
(average) 

Impact 
velocity 

(m/s) 

Number 
of spec. 
tested 

DWT size/ energy 
combinations 

            

Ball mass 
(g) 

Drop 
height 
(mm) 

Mass 
(g) 

Height
/ diam 
(mm) 

   

213.77 207.68 0.039 43.09 44.03 0.080 15.8 14.1 0.165 1.13 1.00 0.413 66.78 100 0.105 3.64 1.40 30 Mudstone 45x37.5_E=0.25 
                   

                   

274.36 263.24 0.093 53.35 53.12 0.081 9.1 8.5 0.198 1.37 1.03 0.768 66.78 125 0.285 5.30 1.57 46 Mudstone 31.5x26.5_E 1.0 

347.69 320.60 0.182 104.18 95.50 0.328 10.8 9.6 0.277 1.12 0.62 0.859 535.25 45.5 0.324 5.46 0.94 40 Mudstone 63x53_E 0.1 

377.89 364.03 0.099 122.84 117.12 0.231 11.3 10.4 0.182 1.00 0.66 0.643 535.25 45.5 0.348 5.63 0.94 39 Mudstone 45x37.5_E=1.0 
                   

362.6 343.4 0.139 113.4 106.1 0.280 11.0 10.0 0.231 1.06 0.64 0.749    5.54  79 Mudstone 4.75mm 

                   

584.70 554.29 0.174 233.08 235.78 0.152 12.7 11.2 0.488 1.17 0.73 1.673 535.25 80 0.824 6.76 1.25 45 Mudstone 45x37.5_E=1.0 

513.07 485.15 0.081 221.86 217.05 0.208 10.3 9.2 0.166 0.87 0.53 0.939 535.25 80 0.864 6.92 1.25 52 Mudstone 45x37.5_E=0.25 

552.15 493.02 0.145 238.25 230.37 0.139 10.6 9.1 0.254 0.94 0.48 1.532 535.25 80 0.887 7.10 1.25 46 Mudstone 31.5x26.5_E=0.25 

492.43 484.21 0.086 220.38 215.92 0.232 11.6 10.2 0.239 0.85 0.51 0.934 535.25 80 0.760 6.47 1.25 40 Mudstone 31.5x26.5_E=1.0 

542.87 532.70 0.087 244.45 245.30 0.162 10.7 10.1 0.211 0.79 0.54 0.596 535.25 80 0.904 7.00 1.25 44 Mudstone 63x53_E=0.1 
                   

537.3 506.4 0.114 231.5 228.7 0.177 11.1 9.8 0.266 0.92 0.55 1.135    6.85  227 Mudstone 6.7mm 

                   

629.62 595.72 0.080 308.52 305.02 0.103 6.8 6.4 0.211 0.61 0.44 0.614 535.25 100 1.833 9.36 1.40 41 Mudstone 63x53_E=0.1 

580.17 547.16 0.153 281.36 273.77 0.189 6.3 5.6 0.213 0.64 0.41 0.822 535.25 100 1.940 9.38 1.40 42 Mudstone 31.5x26.5_E=0.25 

580.08 536.15 0.190 302.52 318.40 0.098 7.3 6.3 0.199 0.61 0.41 1.374 535.25 100 1.724 8.67 1.40 40 Mudstone 22.4x19.0_E=0.25 

581.03 570.12 0.055 290.51 290.94 0.121 6.2 5.8 0.129 0.58 0.43 0.530 535.25 100 2.086 9.46 1.40 45 Mudstone 45x37.5_E=0.25 

548.30 506.94 0.166 292.43 286.23 0.134 6.0 5.5 0.200 0.54 0.32 1.255 535.25 100 1.720 9.25 1.40 39 Mudstone 45x37.5_E=0.1 

592.70 550.33 0.160 280.67 274.18 0.181 7.0 6.0 0.340 0.70 0.44 1.366 535.25 100 1.788 9.20 1.40 37 Mudstone 45x37.5_E=1.0 
                   

585.4 553.2 0.126 292.7 290.6 0.143 6.6 5.9 0.204 0.61 0.41 0.939    9.22  244 Mudstone 9.5mm 
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A p p e n d i x  I I I  

MICROLITHOTYPE MATTER 

 

Table 20 Summary of specimens from open cut mine tested for SH hardness in a transect 

line. 

Walloon Coal 

Measures 

Data 

points 

Carbominerite  Vitrite  Clarite  

SH avg 

(StDev) 
(%) 

SH avg 

(StDev) 
(%) 

SH avg 

(StDev) 
(%) 

PC6-D #M5 29 74.4 (4.9) 24 - - 86.9 (2.7) 76 

PC6-D #M8 25 66.4 (7.1) 40 - - 84.1 (3.2) 60 

PC6-D #M12 22 - - - - 86.6 (2.7) 100 

PC6-D #M9 26 - - 77 4 86.2 (2.7) 96 

PC6-D #M10 23 76.3 (2.1) 13 - - 83.7 (3.7) 87 

PC8-WB #M1 25 70 4 - - 82.6 (3.4) 96 

PC8-B #M2 30 63.9 (6.2) 43 - - 81.9 (3.7) 57 

PC8-B #M10 21 72.1 (3.3) 38 - - 81.8 (2.7) 62 

PC8-B #M11 23 73.5 (5.7) 57 - - 80.6 (1.5) 43 

PC8-B #M3 33 70.2 (7.4) 52 71.3 (2.5) 9 82.8 (2.5) 39 

PC8-B #M1 22 - - - - 84.5 (3.5) 100 

PC8-B #M17 22 71.7 (4.3) 55 - - 80.7 (1.9) 45 

 

 

Table 21 Summary of specimens from borehole Gulugula-2 tested for SH in a transect 

line. 

 depth (m) 
Data 

points 

Carbominerite  Vitrite  Clarite  

SH avg 

(StDev) 
(%) 

SH avg 

(StDev) 
(%) 

SH avg 

(StDev) 
(%) 

GG #16 415.5 59 56.7 (5.9) 49 74.3 (3.8) 7 87.6 (3.3) 44 

GG #27 unknown 69 - - 55.7 (10.7) 100 - - 
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Table 22 Summary of specimens from borehole Gulugula-2 tested for SH on selected 

lithotype. 

 
depth (m) 

Carbominerite  Vitrite  Clarite  

SH avg (StDev) SH avg (StDev) SH avg (StDev) 

Juandah 

Coal 

Measures 

GG #2  138.38   69.3 (7.8) 

GG #4  155.26   72.8 (5.1) 

GG #21  156.67   80.8 (4.4) 

GG #20  157.49   72.6 (5.3) 

GG #22  158.86   76.8 (4.9) 

GG #23  162.60 49.2 (5.1)   

GG #24  163.53   69.7 (3.5) 

GG #26  165.38   58.8 (7.8) 

GG #5  168.15   77.6 (5.2) 

GG #8  178.82   63.9 (7.2) 

GG #9  207.32 46.1 (3.8)   

GG #11  226.08  68.2 (5.7)  

GG #34  280.02   84.6 (2.8) 

GG #12  297.06   68.4 (5.9) 

GG #13 318.60  69.8 (7.3) 75.3 (3.0) 

GG #14 337.42   83.8 (3.3) 

GG #15  351.43   85.2 (3.3) 

Taroom 

Coal 

Measures 

GG #36 404.07   87.7 (4.7) 

GG #18  432.66   91.1 (1.4) 

GG #38  449.33   81.9 (4.3) 

GG #39  486.37   81.9 (5.4) 

Unknown    

depth 

GG #3  - 48.0 (4.0) 68.4 (7.5)  

GG #30 -   82.5 (3.4) 

GG #25 -   74.5 (4.8) 

GG #29  -   84.3 (4.3) 

GG #33   -   85.3 (4.0) 

GG #35  -   83.3 (3.6) 

GG #37  -   85.6 (4.6) 
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Figure 100 shows a series of photomicrographs of clarite and carbominerite, and their 

corresponding SH values recorded for other specimens from the open cut mine.  

 
clarite SH=88          SH=85 

 
clarite SH=84         SH=84       clarite SH=87 carbominerite SH=78 

Carbominerite SH=71    SH=64  
  

Carbominerite SH=75      SH=53  
 

carbominerite SH=58  

Figure 100 Representative photomicrographs of SH indentation on clarite and 

carbominerite showing the banding structure for specimens of open cut mine. 

Figure 101 shows a series of photomicrographs of vitrite and carbominerite, and their corresponding 

SH values recorded for other specimens from Guluguba-2.  

 
SH=68.2 (5.7) (GG-11 226.08m) 

 
SH=68.4 (7.5) (GG-3 missing 

depth) 

 
SH=49.2 (5.1) (GG-23 162.60m) 

 
SH=46.1 (3.8) (GG-9 207.32m) 

Figure 101 Representative photomicrographs of SH indentation on vitrite and 

carbominerite showing the banding structure for specimens of Guluguba-2. 

 600µm  600µm 

 600µm  600µm 

 600µm  600µm  600µm 

 600µm  600µm  600µm 
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Figure 102 shows representative photomicrographs for visualization of clarite with distinct SH 

values. These results represented a sequence of observations compiled in Figure 97. 

   
SH = 91.1 (1.4) (GG-18    432.6m) 

(a) 
SH = 87.7 (4.7) (GG-36   404.07m) 

(b) 

SH = 85.2 (3.3) (GG-15   351.43m) 

(c) 

   
SH= 84.6 (2.8) (GG-34   280.02m) 

(d) 

SH= 81.9 (5.5) (GG-39   486.37m) 

(e) 

SH= 80.8 (4.4) (GG-21 156.67m) 

(f) 

   
SH= 76.8 (4.9) (GG-22 158.86m) 

(g) 

SH=74.5 (4.8) (GG-25) 

(h) 
SH= 69.7 (3.5) (GG-24 163.53m) 

(i) 

   
SH= 69.3 (7.8) (GG-2 138.38m) 

(j) 

SH= 68.4 (3.3) (GG-12   297.06m) 

(k) 

SH= 63.8 (7.2) (GG-8 178.82m) 

(l) 

Figure 102 Representative photomicrographs of SH indentation for clarite (average/ 

standard deviation) at Guluguba-2. 

 

 600µm  600µm  600µm 

 600µm  600µm  600µm 

 600µm  600µm  600µm 

 600µm  600µm  600µm 
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138.38m  155.26m 156.67m 157.49m 

    
 

158.86m 162.60m 163.53m 165.38m 

    
 

168.15m 178.82m 207.32m 226.08m 

    
 

280.02m 297.06m 318.60m 337.42m 

    
 

351.43m (GG-15)    

 

   

Figure 103 Guluguba-2, Juandah Coal Measures, specimens tested for Shore 

hardness. 

 

 

404.07m 432.66m (GG-18) 449.33m 486.37m 

    
 

Figure 104 Guluguba-2, Taroom Coal Measures, specimens tested for Shore hardness. 
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  (GG-30)  

    
 

  (GG-33)  

   

 

Figure 105 Guluguba-2, unknown depth, coal specimens tested for Shore hardness.  

 

 
 


