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Abstract 

Introduction: A new reassortant avian influenza A (H7N9) virus of low pathogenicity to poultry 

emerged in eastern provinces of China in early 2013. There have been five epidemic waves causing more 

than 1600 human infections in 29 provinces and municipalities in mainland China till May 2018. 

Exposure to H7N9 infected live meat chickens at live bird markets (LBMs) within the affected provinces 

was suggested to be the main risk factor for human infection. Previous studies demonstrated the role of 

poor biosecurity measures at poultry farms and LBMs and the role of live poultry trade in the 

dissemination of avian influenza (AI) virus. However, the continued and increasing number of reported 

human H7N9 cases throughout China indicated that vulnerabilities linked to the live meat chicken market 

chain remain, that need to be elucidated in order to better design surveillance programmes and health 

promotion interventions to prevent poultry and human exposure along the live meat chicken market chain. 

Aims: The overall aim of the research in this thesis is to define the risks of sustained transmission of 

H7N9 virus along the live meat chicken market chain in eastern China. To meet the aim, studies were 

sequentially designed with the following specific objectives: 1) identify the effect of market-level risk 

factors on avian influenza infections in poultry and humans and generate evidence that will inform avian 

influenza prevention and control programs at LBMs; 2) to understand the role of live poultry movement 

and live bird market biosecurity in the epidemiology of H7N9 during the emergency; 3) to understand 

the level of knowledge, attitudes and practices (KAP) on avian influenza of different actors along the 

live meat chicken market chain and the risk factors associated with their KAP levels; 4) to develop a 

spatial risk assessment model of the live chicken market chain within the H7N9 high risk area, to provide 

essential evidence and recommendations for risk-based AI surveillance programs and appropriate 

enhancements to current prevention and control policies for H7N9 in the study area.  

Methods: To address each of the specific objectives four studies have been designed. Firstly, we 

performed a systematic literature review and estimated the pooled odds ratios of biosecurity indicators 

relating to human and poultry AI infections at market level using a quality effects meta-analysis model. 

Secondly, we identified the biosecurity risk factors associated with the H7N9 presence in the surveyed 

LBMs in the affected provinces during the H7N9 emergency response. We also used social network 

analysis and spatial analysis to quantify the connectivity of counties in Eastern china via live poultry 

movements and identify highly connected areas associated with human cases. Then, to quantify 

differences in KAP of AI among different actors (chicken farmers, live chicken vendors and consumers 

at LBMs) along the live chicken market chain operating within the areas in the Eastern provinces (i.e. 
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Shanghai, Jiangsu, and Anhui) identified in the previous study we designed and implemented a cross-

sectional KAP questionnaire survey. Using multivariable generalized least squares random-effects 

regression models we identified predictors of KAP of AI among different actors. Subsequently, to 

evaluate the temporal relationship between the onset of human H7N9 infection and poultry serological 

and virological surveillance results we conducted time-series cross-correlation analysis. Lastly, to predict 

the geographical risk of H7N9 human infection in selected provinces in Southeast China we built a 

Bayesian Conditional Autoregressive Model accounting for the presence of poultry virological positives 

and wholesale LBMs, number of retail markets, network centrality of meat chicken movements, as well 

as human population and chicken density at county level. 

Results: Biosecurity measures effective at reducing AI market contamination and poultry infection at 

LBMs include smaller market size, selling single poultry species and separating different species, 

performing cleaning and disinfection and market closures, ban on overnight storage and sourcing poultry 

from local areas. Our meta-analysis indicated that higher risk of exposure to AI infection occurred in 

workers at retail LBMs, female workers and those who contact ducks, conduct cleaning, slaughtering, 

defeathering or evisceration.  

During the H7N9 emergency, chickens were the predominant poultry species traded by affected LBMs. 

The presence of H7N9 in LBMs was significantly associated with the type of LBMs and with LBMs that 

sold chickens to other markets. The chicken movements were significantly spatially clustered and was 

highest in counties from Jiangsu and Anhui provinces. 

Our results indicate that KAP scores of chicken farmers were generally higher than for chicken vendors. 

However, chicken farmers who had worked for more than 15 years had significantly lower total KAP 

scores than those who had worked for less than six years. In addition, farmers who worked more than 15 

hours in a day had significantly lower attitude scores than those who worked less than six hours. For 

chicken vendors, females and older age groups (>35-year-old) were significantly associated with a lower 

knowledge scores compared to their counterparts. Our results also indicate that practice scores were 

significantly higher in female vendors and those vendors who also conducted slaughter compare to their 

counterparts. Our results for consumers demonstrate that those who bought chicken at least once every 

month had better risk awareness of AI compared with those who bought chicken at least once every week. 

In addition, female chicken consumers had significantly better practice scores than male consumers. 

Our time-series analyses indicate the peak of poultry H7N9 serological positives is followed by the 

human H7N9 infections with a two-month lag, and poultry H7N9 virological positives is followed by the 
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human H7N9 infections with a one-month lag. Our results also indicated that the presence of wholesale 

LBMs, higher retail LBMs density, presence of poultry virological positives, higher degree centrality, 

high chicken density and lower human population density were significantly associated with human 

H7N9 incidence in the county. Lastly, a county level risk map demonstrating the relative risks of human 

H7N9 incidence in Southeast China was produced. 

Conclusion: The results of this thesis demonstrate that failures in LBM biosecurity management and live 

meat chicken movement played an important role in the emergence and spread of H7N9. The most 

effective strategies to reduce AI market contamination identified in this study should be targeted to the 

larger size LBMs that are located at non-central city areas, sell and slaughter multi-species of live poultry. 

LBM workers directly involved in cleaning and poultry processing tasks should participate in 

occupational health and safety programmes. Our results suggest that risk-based health promotion 

interventions should be developed and implemented by both animal health (i.e. targeting farmers and 

vendors) and public health agencies (i.e. targeting consumers) to prevent the continuous incident cases 

of H7N9 human cases along the live chicken market chain in China. Our results indicate that poultry 

movement may be an important driver of the onset of human H7N9 infections, and poultry serological 

positives and virological positives can serve as a predictor for human H7N9 infections. It is 

recommended that regular monitoring of poultry movement and poultry infections at the counties 

identified in this Thesis will provide essential evidence for the early warning of H7N9 infections across 

China. 
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Chapter 1 Introduction 

1.1 Background 

During the last three decades, China’s poultry sector has shifted from a predominantly traditional, 

backyard husbandry system to specialised and commercial intensive systems [1]. There has been an 

enormous growth of poultry production to meet strong and increasing consumer demand [2]. However, 

the fast growing concentration of poultry sector provides increasing opportunities for rapid spread of 

pathogens [3]. One of the major challenges that the poultry sector in China is facing are avian diseases 

especially avian influenza (AI) which can seriously disrupt the order of the industry and pose the threat 

of sporadic spillover to human population. 

Since late 2003, AI has become one of the most publicized emerging infectious diseases. This followed 

the detection of highly pathogenic avian influenza (HPAI) caused by the H5N1 subtype in many countries 

in Asia. These Asian-lineage HPAI viruses produced fatal disease in poultry, wild birds, humans and 

other mammals, with subsequent spread of disease to some 60 countries across three continents. Affected 

countries and the international donor community have mobilized hundreds of millions of dollars to assist 

in controlling this disease, mainly because of concerns about the potential of these viruses to unleash a 

global pandemic of human influenza [4]. 

In early 2013, a new reassortant influenza A (H7N9) virus of low pathogenicity to poultry (LPAI) 

emerged, that caused human infections without preceding or concomitant outbreaks in poultry. There 

were six epidemic waves until September 2018 causing about 1,600 human infections in 29 provinces 

and municipalities in mainland China [5]. H7N9 ranked no. 1 in the Influenza Risk Assessment Tool 

(IRAT) by the CDC Influenza Division in 2017 [6]. 

Generally occupational exposure to infected live poultry and environment is known to be an important 

risk factor for AI human infections and exposure to H7N9 infected poultry at LBMs has been implicated 

as the main risk factor for human infection [7, 8]. Previous studies demonstrated the role of poor 

biosecurity measures at poultry farms and LBMs and the role of live poultry trade in the dissemination 

of avian influenza (AI) virus [9, 10]. However, continued and increasing numbers of reported human 

H7N9 cases throughout China indicated that vulnerabilities linked to the live meat chicken market chain 

remain which need to be elucidated to better design surveillance programmes and health promotion 

interventions to prevent poultry and human exposure along the live meat chicken market chain. 
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Indeed, during late 2016 to early 2017, described in the literature as the fifth epidemic wave, there was a 

sudden increase of human cases and the geographical distribution of cases was more widespread than in 

the previous four waves [11, 12]. In February 2017, the LPAI H7N9 virus mutated to become highly 

pathogenic avian influenza (HPAI) H7N9 virus in poultry and rapidly spread to other provinces of China 

[13]. As a result, in Feb 2017, the Ministry of Agriculture and Rural Affairs of China (MARA of China) 

recognising the importance of the live poultry markets in the exposure and dissemination of the virus, 

established the “1110 policy” on LBMs, i.e. clean once a day, disinfect once a week and close market 

once a month, and zero overnight storage in market. In July 2017, the “National Immunization Program 

for HPAI” in the poultry sector began with the adoption of a H5 and H7 bivalent inactivated vaccine. 

While this vaccine has been effective at controlling the number of H7N9 outbreaks in humans, the virus 

is still present at lower levels, and in the long-run vaccination alone may not help curb the exposure of 

humans to these viruses in the live meat chicken market chain. Therefore, a better understanding of the 

social determinants of exposure is necessary to complement sanitary measures such as vaccination and 

enhanced LBM biosecurity. 

Much has been done in the past to investigate and control the disease in poultry. Most research into H7N9 

in China has focused on the human risk factors and poultry-to-human transmission. However, the risk 

factors causing the bird-human cross-species transmission of influenza A (H7N9) remains unknown. The 

consensus from the literature is that exposure to H7N9 infected poultry at LBMs is the main risk factor 

for human infection and live meat chickens are considered to be the species with an important role in the 

transmission for H7N9 influenza [14-18]. Available evidence indicates that LBMs can serve as potential 

hubs where AI viruses are transmitted and maintained for prolonged periods of time [19-22]. Therefore, 

interventions at this stage are the most effective prevention measures. Surveillance and monitoring 

activities for AI within the poultry market chain (i.e. farms, transport, LBMs and slaughter houses) are 

important tools to generate epidemiological evidence on affected species, geographical sources of 

infection and the role of modifiable risk factors on disease transmission [23]. 

1.2 Research justification 

The ongoing sporadic detection of AI viruses such as HPAI H5N1 and H7N9 in China demonstrate that 

these viruses are now well established within the poultry production and marketing system in specific 

areas across China. Available evidence indicates that these two viruses have very different 

epidemiological characteristics in that a) H5N1 is a highly pathogenic virus to both human and poultry 

[24] whereas H7N9 is of high pathogenicity to humans and low pathogenicity to poultry [16], has recently 
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mutated to be high pathogenicity to humans [25]; b) H5N1 has lower seasonality while H7N9 is more 

highly seasonal [26]; c) H5N1 mainly affects chicken, duck and geese while H7N9 affects mainly chicken 

[27]; d) H5N1 viruses have spread globally while H7N9 have not spread in poultry outside China [28]. 

Despite these key differences available evidence demonstrates that they co-circulate in areas of Eastern 

China where the risk for human infection has been demonstrated to be highest [29]. Controlling the public 

and animal health consequences of the disease associated with these infections requires, firstly, 

understanding of the chicken production systems and how the stakeholders operate and the decisions 

they make within the chicken systems, secondly, the evaluation of disease risks within the poultry 

production systems and of control measures to reduce those risks. The first issue involves what in 

economics is called “value chain analysis”; the second issue entails what in veterinary epidemiology is 

called “risk analysis” [30]. 

Previous studies demonstrated the role of poor biosecurity measures at poultry farms and live bird 

markets [21, 31-38], and the role of live poultry trade in the dissemination of AI viruses [20, 39-42]. 

However, little is known about live chicken market chains, live meat chicken trade or the extent and 

frequencies of live meat chicken movements from the farms to markets in areas where AI viruses 

continue to circulate. 

A recent study in China demonstrated that areas of human H7N9 infection overlap with those that 

reported H5N1 suggesting a common high risk area in an area southeast of Taihu Lake (in the south of 

Jiangsu Province), bordering the provinces of Anhui and Zhejiang [29]. There is a strong need to design 

and conduct empirical studies in high risk areas to collect live meat chicken movement data at different 

points in the poultry marketing chain and integrate that information with data from risk perception and 

attitudes of actors in the live chicken market chain towards biosecurity.  

Besides, to our knowledge there are very few studies that provide a comprehensive account of the 

Chinese poultry production and marketing system and identify how the different components of this 

system are associated with AI prevention and control. Therefore, there is a strong need to understand the 

whole live meat chicken market chain (production, trading, marketing and consumption) and the key 

points in the chain in south of China where have the highest connectivity in terms of poultry movement, 

high yellow chicken production and tradition of consuming this type of chicken. 

There are very few examples in the literature of field epidemiological investigations that involve primary 

data collection at different key points along the chicken market chain in areas where H7N9 viruses 

continue to circulate to answer research questions a) What is the relative importance of biosecurity 
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indicators at market level in China; b) What is role of live poultry movement and live bird market 

biosecurity in the epidemiology of H7N9 during the emergency?; c) What is the knowledge, attitudes 

and practices and biosecurity status of different points in the live meat chicken market chain? d) What is 

the risk distribution of H7N9 infections at county level in the identified high-risk area? These research 

questions are essential for the development of appropriate and targeted recommendations for active 

H7N9 surveillance programs in the future. 

1.3 Research aims and objectives 

The overall aim of the research in this thesis is to identify and quantify the risks of sustained transmission 

of H7N9 viruses along the live meat chicken market chain in eastern China 

To meet the aim, studies were sequentially designed with the following specific objectives:  

1) to identify the effect of market-level risk factors on avian influenza infections in poultry and humans 

and generate evidence that will inform avian influenza prevention and control programs at LBMs;  

2) to understand the role of live poultry movement and live bird market biosecurity in the epidemiology 

of H7N9 during the emergency;  

3) to understand the level of knowledge, attitudes and practices (KAP) on avian influenza of different 

actors along the live meat chicken market chain and the risk factors associated with their KAP levels;  

4) to develop a spatial risk assessment model of the live chicken market chain within the H7N9 high risk 

area, so to provide essential evidence and recommendations for risk-based AI surveillance programs and 

appropriate enhancements to current prevention and control policies for H7N9 in the study area. 

1.4 Significance of the research 

The spatial risk assessment of H7N9 in Southeast China that engages in the understanding of the risk 

factors that modify the risk profile at different stages of live meat market chain will lead to the 

development of more robust policies, better resource allocation decisions, more efficient and cost-

effective disease control and reduced H7N9 transmission and associated morbidity and mortality in 

human and poultry populations. 

This research will be the first of its kind in several ways: it will be the first to systematically examine 

biosecurity risk factors associated with AI infections at LBMs level; it will be the first to conduct a 

comprehensive risk-based survey at all the stages of the live meat chicken market chain in the identified 
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highly connected area of live meat chicken movement in eastern China; and it will be the first time to 

develop a spatial risk assessment model for the control of H7N9 along the live chicken market chain in 

Eastern China. 

The project will be significant in that it will lead to improvements in how policy makers in China guide 

interventions to improve the biosecurity of the market chain for live chickens. This will include improved 

planning of resource allocation in counties that are most at risk of H7N9 infection and efficient evaluation 

of the impact of biosecurity measures on H7N9 infection indicators. 

1.5 Structure of the Thesis 

This Thesis consists of eight Chapters (Figure 1-1). an introductory Chapter (Chapter 1), followed by a 

literature review (Chapter 2), description of data sources and methods (Chapter 3), and four research 

Chapters (Chapter 4, Chapter 5, Chapter 6, and Chapter 7), and a general discussion (Chapter 8). All of 

the eight Chapters of the Thesis start with a brief introduction to the context of the Chapter to explain 

how it fits with the overall structure of the Thesis. References for all Chapters appear at the end of the 

Thesis.  
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Figure 1-1 Thesis structure 

 

Chapter 1 of the Thesis provides a general background on H5N1 and H7N9 in China, the role of 

biosecurity risk factors along the live chicken market chain and current control measures on H7N9 in 

China. This chapter also elaborated the justification of the research on H7N9 and objectives of the 

research. It finishes with the significance of the research. 

Chapter 2 is the literature review. It describes the current knowledge on the epidemiology of AI, 

specifically subtype H7N9 and H5N1, with a focus on the epidemiological risk factors associated with 

AI infections in both poultry and humans. This Chapter also reviews the current approaches to the 

prevention and control of AI infections in both poultry and humans. The literature review is divided into 

three main parts. The first part provides an overview of the Chinese poultry industry, and a review of 

chicken production and live chicken market chain in China. The second part describes the existing 

knowledge on the pathophysiology and epidemiology of AI in China, in specific, H5N1, H7N9 and H9N2 

subtypes in China, with a focus on including disease history and spatial-temporal pattern in China, this 

part also reviews the risk factors impacting on AI and the role of live poultry trade in disease circulation. 
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The third part describes the approaches that have been adopted for the prevention and control of AI in 

poultry and human population globally and in China. 

Chapter 3 describes the data sources and methods used in the research studies. A detailed description of 

H7N9 infection data, live poultry movement data and other risk factor are described in this Chapter. 

Analytical methods and models are also described in detail. 

Chapter 4 presents a systematic review and meta-analysis of the relative importance of market level 

biosecurity risk factors (such as cleaning and disinfection, market closures, manure disposal and 

management practices from different studies) on human (market workers) and poultry AI infection 

(poultry and environment) at LBMs. I first performed a systematic literature review in both English and 

Chinese search engines. Then I estimated the pooled odds ratios of biosecurity indicators relating to AI 

infections at market level using a quality effects (QE) meta-analysis model. I found biosecurity measures 

effective at reducing AI market contamination and poultry infection at LBMs included smaller market 

size, selling single poultry species and separating different species, performing cleaning and disinfection 

and market closures, ban on overnight storage and sourcing poultry from local areas. The findings 

indicated that higher risk of exposure to AI infection occurs in workers at retail LBMs, female workers 

and those who contact ducks, conduct cleaning, slaughtering, defeathering or evisceration. The most 

effective strategies to reduce AI market contamination identified in this study should target larger LBMs 

that are located at non-central city areas, sell and slaughter multi-species of live poultry. This Chapter 

has been published in the Journal of Infectious Diseases as a review paper.  

In Chapter 5, I evaluated the biosecurity risk factors associated with H7N9 infections on LBMs during 

the emergency and identified the role of live poultry movement in the epidemiology of H7N9 human 

infections. I zoomed in to the originally infected area (Shanghai Municipality, Jiangsu, Zhejiang and 

Anhui provinces) and obtained a unique dataset collected during the emergency epidemiological 

investigation on the 24 LBMs within one kilometre of H7N9 human infections and those that marketed 

large quantities of poultry at the time of the outbreak. Then I used univariable analysis to identify the 

biosecurity factors associated with the H7N9 presence in LBMs and social network and spatial analysis 

to quantify the connectivity and geographic variation in the connectivity of poultry movements. This 

research has extended the knowledge of market-level biosecurity risk factors and enabled the 

stratification of the risk of H7N9 infection geographically. This Chapter has been published in The 

Journal of Infection.  
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In Chapter 6, a primary cross-sectional questionnaire survey was designed and conducted in the hotspot 

area identified in Chapter 5, from June to July 2014, after the second wave of H7N9 outbreaks in humans 

in Eastern China. All actors (chicken farmers, vendors and consumers at LBMs) along the live meat 

chicken market chain were targeted to profile their level of knowledge, attitudes and practices (KAP) 

towards avian influenza and the risk factors associated with their KAP levels. Multivariable generalized 

least squares (GLS) random-effects regression models were developed to identify predictors of KAP of 

AI among different actors along the live chicken market chain. I analysed determinants of KAP within 

each actor group. The results of Chapter 6 demonstrated that risk-based health promotion interventions 

should be developed and implemented by both animal health agencies (targeting farmers and vendors) 

and public health agencies (targeting frequent and male consumers) to prevent transmission of H7N9 

along the market chain in China. This Chapter forms a manuscript submitted to the Journal of 

Transboundary and Emerging Diseases. 

In Chapter 7, I assembled the most comprehensive dataset of key risk factors for H7N9 infection in 

humans, e.g. distribution of LBMs, chicken movement data collected from the study in Chapter 6, and 

other risk factors based on existing ecological studies (e.g. human population density, chicken density), 

as well as detailed spatio-temporal data of poultry H7N9 surveillance results. I applied a test of cross-

correlation to quantify the temporal relationship between the onset of human H7N9 infections during 

2013-2017 and poultry serological and virological surveillance results. I also developed a spatial CAR 

model that accounted for spatial clustering of incidence to estimate and map the relative risk of H7N9 

human incidence in counties in Southeast China by assessing the relationship between human infections 

as an outcome and poultry surveillance results, live chicken movements and recognized demographic 

risk factors as predictors. The findings in Chapter 7 revealed the potential for poultry serological and 

virologic surveillance to anticipate human H7N9 infections and uncovered important geographical 

variation in the relative risk of human H7N9 incidence at county level in Southeast China. This Chapter 

is presented as a paper, which has been submitted for publication in Scientific Reports. 

My thesis concludes with a discussion of the key findings, the major public health implications of the 

findings, study limitations and recommendations of possible pathways in future researches. 
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Chapter 2 Literature Review 

2.1 Context 

Prior to commencement of the literature review, a theoretical framework was designed to guide the 

content of the review (Figure 2-1). The specific objectives of this literature review were to a) demonstrate 

available evidence with respect to chicken production and market chains, with particular emphasis on 

the yellow meat chicken (going through LBMs) production which represents 50% of the total meat 

chicken production in China; b) provide a detailed account of the epidemiology and control of AI in 

China with particular emphasis on H7N9 (predominantly a chicken reservoir); c) identify gaps in the 

literature in relation to the role of production and marketing of chicken in the epidemiology of H7N9 in 

China. While focusing on meat chicken production and marketing systems and on the recent H7N9 strain, 

here we also reviewed evidence on other AI viruses (e.g. H9N2 and H5N1) and associated poultry 

marketing systems which also need consideration for a more comprehensive understanding of the 

epidemiology of the AI viruses currently circulating in China. 

 

Figure 2-1 The outline of meat chicken industry and the theoretical framework of literature review 
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The literature review is divided into three main parts. The first part provides an overview of the Chinese 

poultry industry, and a review of chicken production and live chicken market chain in China (see Chapter 

2.3). The second part describes the existing knowledge on the pathophysiology and epidemiology of AI 

in China, specifically H5N1, H7N9 and H9N2 subtypes in China, with a focus on including disease 

history and spatial-temporal pattern in China, this part also reviews the risk factors impacting on AI and 

the role of live poultry trade in disease circulation (see Chapter 2.4, 2.5, 2.6, 2.7). The third part describes 

the approaches that have been adopted for the prevention and control of AI in poultry and human 

populations globally and in China (see Chapter 2.8). 

The literature review was conducted on published English scientific literature including all relevant 

articles that were published up until December 2018, identified from PubMED and Web of Knowledge. 

We supplemented the literature search with Chinese scientific literature using Chinese search engines 

Wanfang Data and CNKI. The search terms included various combinations from the following categories: 

poultry production sector, disease of interest, first, search terms on poultry production sector included 

the following terms: livestock, poultry, meat chicken and industry, production, trade, transport, supply 

chain, value chain, market chain; terms for the disease of interest included: avian influenza, bird flu, 

H5N1, H7N9, H9N2; the terms for risk factors included: risk factor or biosecurity, KAP; the terms for 

disease prevention and control included: prevention and control measures, vaccination, clean and 

disinfection, market closure, quarantine. Additionally, secondary searches were conducted in reference 

lists of peer-reviewed studies. 

2.2 Overview of the Chinese poultry industry 

2.2.1 The general situation of Chinese poultry production 

China’s poultry sector plays an important role in the national economy, nowadays, poultry meat and eggs 

are second largest sources of people’s protein consumption after pork [43]. However, poultry meat and 

eggs were not traditionally an important part of the Chinese diet. They were considered luxury goods for 

consumption on special occasions [2]. Over the past three decades, poultry has been the fastest growing 

protein sector in China since the 1990s, China’s per capita poultry consumption per year has increased 

from barely 1kg in 1978 to over 9kg in 2009 [44, 45]. 

Chinese poultry industry developed since 1980’s and it experienced rapid growth in the 1990’s, till 2000, 

the poultry production was ranked the largest in Asia, and second largest in the world behind the United 

States and in front of Brazil. And China is by far the largest egg producer in the world. In 2012, the 



11 

 

number of world poultry stocks and output were about 24 billion and 64 billion respectively, the poultry 

meat production was 105.6 million metric tons. China had about 5.8 billion poultry in stock and 12 billion 

poultry output, 18.2 million metric tons of poultry meat and 28.6 million metric tons of egg produced by 

the end of 2012. 

The poultry industry is, in some ways, the most vertically integrated and industrialized system of 

livestock production in China. Industrialization of the poultry sector started in 1984 with the introduction 

of foreign capital, technology and management expertise. Since then, there has been a rapid growth and 

concentration of large-scale commercial poultry production operations [1, 2]. In 2012, the output value 

of poultry production was 689.55 billion RMB, accounted for 25.36% of the China animal husbandry, 

and the output value of meat chicken and layer chicken was 408 billion RMB and 277.39 billion RMB 

respectively [46]. 

By the end of 2012, about 37 percent of China’s total poultry population are located in the eastern region 

(Table 2-1), this region accounts for a much lower proportion (15 to 20 percent) of the number of farms 

with poultry, but a much higher proportion (over 60 percent) of poultry output. Measured in relation to 

geographical area, the poultry density in the eastern region is about 30 times as high as that in the western 

region. The central region has a density half as high as that of the eastern region. The top six poultry 

producing provinces are Shandong, Guangdong, Henan, Jiangsu, Guangxi and Liaoning (Figure 2-2), 

accounted for 53 percent of the total poultry production in 2012, while the largest egg producing 

provinces are Henan, Shandong, Hebei, Liaoning, Jiangsu and Sichuan, accounted for 62 percent of the 

total egg production in 2012.  

 

Figure 2-2 Poultry production by province in 2012 
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Table 2-1 Distribution of poultry production in Mainland China in 2012 

Provinces Output 

(million birds) 

Stock 

(million birds) 

Poultry meat 

production 

(million tons) 

Egg production 

(million tons) 

Northern 949.2 (7.9%) 560.4 (9.7%) 1.4 (7.9%) 5.1 (17.7%) 

Beijing 100.9 26.0 0.2 0.2 

Tianjin 80.1 25.4 0.1 0.2 

Hebei 579.4 385.3 0.9 3.4 

Shanxi 70.0 73.0 0.1 0.7 

Inner Mongolia 118.9 50.8 0.2 0.5 

North-eastern 1,381.9 (11.4%) 712.9 (12.3%) 2.4 (12.9%) 4.9 (17.1%) 

Liaoning 766.8 403.5 1.3 2.8 

Jilin 412.3 162.8 0.7 1.0 

Heilongjiang 202.8 146.6 0.3 1.1 

Eastern 4,482 (37.1%) 1,667 (28.7%) 6.8 (37.1%) 8.5 (29.6%) 

Shanghai 36.5 11.8 0.1 0.1 

Jiangsu 885.8 360.2 1.5 2.0 

Zhejiang 251.5 114.5 0.4 0.5 

Anhui 709.3 250.4 1.1 1.2 

Fujian 284.4 91.9 0.4 0.3 

Jiangxi 430.3 200.0 0.6 0.5 

Shandong 1,884.4 638.2 2.8 4.0 

Southern and Central 3,962.4 (32.8%) 2,017.8 (34.8%) 5.6 (30.8%) 7. (24.3%) 

Henan 943.6 682.0 1.2 4.0 

Hubei 498.7 325.2 0.7 1.4 

Hunan 416.5 290.2 0.6 1.0 

Guangdong 1,130.7 356.1 1.5 0.3 

Guangxi 826.3 312.0 1.4 0.2 

Hainan 146.6 52.3 0.3 0.0 

South-western 1,142.6 (9.5%) 693.8 (12%) 1.8 (9.9%) 2.2 (7.8%) 

Chongqing 222.2 125.8 0.3 0.4 

Sichuan 620.0 360.2 0.9 1.5 

Guizhou 96.3 83.6 0.2 0.1 

Yunnan 204.1 124.3 0.4 0.2 

Tibet 1.6 1.4 0.002 0.004 

North-western 158.8 (1.3%) 152.4 (2.6%) 0.3 (1.4%) 1 (3.5%) 

Shaanxi 48.7 67.5 0.08 0.5 

Gansu 35.6 37.9 0.04 0.15 

Qinghai 4.0 2.5 0.01 0.02 

Ningxia 11.4 7.8 0.02 0.06 

Xinjiang 57.6 35.3 0.10 0.3 

Mainland Total 12,077 (100%) 5,804.4 (100%) 18.2 (100%) 28.6 (100%) 

Note: data obtained from 2012 Chinese Animal Husbandry Yearbook 

With many poultry markets closed in the wake of China’s worst-ever bird flu outbreak, local egg 

producers are being forced to shell out to feed and water chickens long after they would normally have 

been killed and sold for meat. 
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One of the major challenges the poultry sector in China facing is avian diseases high-risk epidemics such 

as AI, which can seriously disrupt the order of the industry. According to FAO, the economic loss due 

to HPAI H5N1 during 2003 to 2011 was about 20 billion USD [47]. According to a report from the China 

Animal Agriculture Association in February 2014, the direct economic loss caused by the two major 

waves of the H7N9 infections since 2013 was beyond 13 billion US Dollars and more than 40 million 

farmers were affected. A great number of poultry related companies had to stop business or even broke 

[48]. Understanding production and marketing systems and improving these systems is vital if gains are 

to be made in the control and prevention of H5N1 HPAI in endemically infected countries [49]. 

2.2.2 Main poultry species raised in China 

In China there is an extremely large poultry industry and it contains domestic chicken, waterfowl (ducks, 

geese) and a small proportion of turkey, quail, pigeon and other special species [50]. The stock of the 

poultry birds, especially the chicken, increased dramatically over the last decade (Fig 3) [51]. 

Chicken is the always the predominant poultry species in China, accounting for 80% or more of the total 

poultry stocks, while the proportion of ducks stocks was approximately 14%, geese and others was 

around 6% of the total stocks in 2010 (Data from FAOSTAT ).  

China’s chicken meat production went through an enormous growth during the last three decades (1981-

2012), increased tenfold from 1.2 million metric tons in 1981 to 13.2 million metric tons in 2012. In 

China, chicken meat is the second largest protein sector after pork, which accounted for 16% of the total 

meat production in China in 2011, while the proportion was 9% in 1990 (Pi, Rou et al. 2014). There is a 

very wide range of chicken production in China, mainly raised in eastern, central and northeast of China. 

China’s waterfowl (ducks and geese) production is around 5.5 million metric tons annually during 2000 

to 2010, which accounts for 75% of the world’s production [52]. Duck production grew with an annual 

growth rate of 3% in the past five years (2008–2013), slightly faster than the 2.5% growth of meat 

chicken during the same period [52]. Industrial duck meat costs less than meat chicken, which has driven 

increased consumption in factories and school cafeterias. The Chinese also increasingly perceive duck 

meat as healthier than other meats (with less fat and cholesterol). Duck meat is therefore also 

experiencing rapid industrialization. Ducks are produced in both extensive semi-intensive and indoor 

factory farms and many companies have a production capacity of 5 to 10 million ducks per year. 

Production and processing is rapidly being integrated. Since 2005, the Chinese government has 

particularly encouraged indoor intensive production of ducks because of the belief that this mitigates the 

http://ldvapp07.fao.org:8032/faosyb/rest/get/2013/others/1990-2010/QA.STCK.CHI.HD.NO,QA.STCK.DU.HD.NO,QA.STCK.GGF.HD.NO,QA.STCK.TU.HD.NO
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risk of AI (Pi, Rou et al. 2014). Ducks and geese are mainly raised around the Yangtze River basin and 

provinces at the south of the basin. Domestic duck is considered to have played a key role in the genesis, 

persistence and spread of Asia-lineage HPAI H5N1 viruses. Ducks are relatively high value animals and 

are transported over long distances to markets. For example, in China it is known that they travel more 

than 400 km from inland provinces such as Hunan to coastal markets in Guangdong [53]. 

In 1984, China surpassed the US in the output volume of poultry eggs and became the largest poultry 

egg producer in the world (40 percent of the world’s production). By 2012, the industry is suggested to 

have reached output volume of 28.61 million metric tons, growing at an annual growth rate of 1.77% 

since 1998 [54]. The provinces with the largest poultry egg output are Henan, Shandong, Hebei, Liaoning, 

Jiangsu, Sichuan, Hubei, Anhui, Heilongjiang and Jilin. The majority of the chicken eggs (over 95 

percent) are consumed as table eggs and the remainder are processed [54]. Egg farming is more 

intensified and integrated than meat chickens, with 70 percent of eggs in 2005 coming from the largest 

factory farms which comprise nearly 2 percent of all egg producers (Pi, Rou et al. 2014). 

2.2.3 Overview of poultry value chains in China 

Value chains are groups of people linked by an activity to supply a specific commodity. These chains 

have inputs that are used to produce and transport a commodity towards a consumer, this is the supply 

market chain. [30] Value is added to the commodity through the supply market chain, as money is sent 

from the consumer to the different people in the chains. Value chains also describe the places where each 

process occurs, and the people involved. They can be a kind of flow chart or process map. The term 

“market chain” will be used through this review to represent this kind of supply market chain. 

 

Figure 2-3 A schematic market chain model 

A simplified market chain model is provided in Figure 2-3, it describes the key processes of bringing 

specific products from production, trading, processing and marketing before the commodity reaches the 

end consumer. Figure 2-1 shows a more extended framework of poultry market chain. Most poultry 

networks will contain all or most of these elements. It is very important to note that even within the same 

poultry species there will be many different chains, even for different products.  
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Networks and linkages in market chains that link production systems, markets and consumers constitute 

a “contact network” for contagious diseases and provide opportunities for transmission of disease within 

and between sectors. Therefore, these chains (networks) must be taken into account in planning risk 

management strategies for disease prevention and control [30]. 

2.2.4 General classification of the poultry production system in China  

The Food and Agriculture Organization of the United Nations (FAO) has classified the poultry 

production systems into four sectors (Table 2-2). Sector 1 is described as the poultry production system 

for "industrial and integrated" production system; Sectors 2 and 3 describe "commercial poultry 

production system" with decreasing levels of biosecurity, respectively; and Sector 4 describes "village 

or backyard poultry production". [55] 

Table 2-2 FAO’s classification of Poultry production sectors 

Poultry production system Industrial and 

integrated 

production 

Commercial poultry production Village or backyard 

production 

Sectors Sector 1 Sector 2 Sector 3 Sector 4 

Biosecurity High Mod-High Low Low 

Market outputs Export and urban Urban/rural Live urban/rural Rural/urban 

Dependence on market for inputs High High High Low 

Dependence on goods roads High High High Low 

Location Near capital and 

major cities 

Near capital 

and major 

cities 

Smaller towns and 

rural areas 

Everywhere. 

Dominates in remote 

areas 

Birds kept Indoors Indoors Indoors/Part-time 

outdoors 

Out most of the day 

Shed Closed Closed Closed/Open Open 

Contact with other chicken None None Yes Yes 

Contact with other ducks None None Yes Yes 

Contact with other domestic birds None None Yes Yes 

Contact with other wildlife None None Yes Yes 

Veterinary services Own Veterinarian Pays for 

veterinary 

service 

Pays for veterinary 

service 

Irregular, depends on 

govt vet service 

Source of medicine and vaccine Market Market Market Government and  

market 

Source of technical information Company and 

associates 

Sellers of 

inputs 

Sellers of inputs Government extension 

service 

Breed of poultry Commercial Commercial Commercial Native 

Food security of owner High OK OK From OK to bad 

Source: A Strategic Framework for HPAI Prevention and Control in Southeast Asia, Emergency Centre for Transboundary Animal Diseases 

(ECTAD), FAO, Bangkok, May 2006 

 

Similarly, China poultry production system can be classified into three major categories, namely 

industrial integrated farms, specialized poultry household and unspecialized poultry households [56]. 
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Poultry raised through different production systems are traded differently. The poultry trading can be 

generally summarized into two major models, e.g. “vertical integration” (from production to processing 

to marketing) and open marketing [57, 58], under the two different trading models, the poultry are then 

marketed through different market chains to reach the end customer. (Figure 2-1) 

The Industrial integrated farms are owned and operated by commercial companies (refer to Sector1; 

Table 2). The company, adopting a “vertical integration” - “grow-out” model [52], owns the majority of 

the whole market chain (from production to trade to marketing). The raising scale varies from hundreds 

of thousands to millions of poultry output every year. These farms invest heavily in large scale automated 

and environment controlled standard production facilities for better management, biosecurity and disease 

prevention. Employees on these farms are usually well-trained professionals. These farms have the 

highest level in terms of management, biosecurity, waste disposal and proper construction of supporting 

facilities, clearly defined and implemented standard operating procedures [56]. Therefore, only poultry 

raised from these high standard farms may meet the international market [59]. The governments from 

various levels have put out considerable preferential policies to support this kind of large scale and more 

efficient animal production systems [2]. 

Secondly, specialized poultry households usually operated by families, raising thousands or tens of 

thousands of poultry at one time as their primary business (Sector 2 and Sector 3; Table 2). This type of 

farm usually operates according to two different modes. One is specialized households which have 

contracts with poultry companies or cooperatives who represents farmers, known as “contract farming”, 

also belonging to “vertical integration” model [52] (Sector 2; Table 2). This husbandry system remains 

the most popular business model in China. Under this type of system, companies contract farmers, and 

supply them with day-old poultry, poultry feed, vaccines and veterinary medicines, and usually deliver 

trainings on raising management and disease prevention and control regularly. Farmers are responsible 

for the land, raising facilities and labor. The farmer will be paid based on either the market price or on 

an agreed margin [52]. As members of commercial poultry companies, these farms receive a unified 

approach to vaccination, disease prevention and management. However, the biosecurity levels may vary 

on different farms due to different practices of different farmers. In general, the biosecurity level is 

considered lower than integrated farms. 

Another type of specialized husbandry system are the self-run households (Sector 3; Table 2), these farms 

usually have their own network regarding supplements of day-old poultry and feeds, and veterinary 

services. However, due to the limit of financial resources and knowledge, their vaccination and disease 
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prevention and control procedures are not well managed. These types of farms are considered to have a 

lower biosecurity level compared with those contracting households. [59] 

Thirdly, unspecialized poultry households, mainly traditional backyard farms, are mostly located in the 

rural areas, poultry are raised in small courtyards as a sideline for the family income (Sector 4 in Table 

2). In this type of husbandry system poultry are raised in a few dozens or hundreds of poultry. Their 

raising practices are very flexible in terms of sites, species, feeds, and times of feeding. Labor costs are 

fully supported by the household. Biosecurity measures, vaccination and a hygienic slaughtering process 

cannot be guaranteed at these small-scale farming operations. This type of farms is considered to have 

the lowest biosecurity levels. Poultry raised on these farms are usually consumed locally. These types of 

poultry are becoming more and more popular due to their flavor, and the unit price is much higher 

compared to the poultry raised on commercial farms.  

It is expected that the intensification process will continue. Unspecialized households and small scale 

specialized non-contract farmers will continue their exit from the industry. It is possible that the number 

of poultry farms in China could halve by 2020, particularly for farms in eastern China [2, 59]. 

      

Figure 2-4 Backyard farming  

(Note: Photo taken in a small village in Fujian province in Nov 2014 by Tao Yang from Fujian Animal CDC) 
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Figure 2-5 Commercial specialized farms 

(Note: Photo taken in a farm Anhui province by Xiaoyan Zhou) 

        

Figure 2-6 Industrialized poultry farms  

(Note: Photo taken in a farm in Anhui province by Xiaoyan Zhou) 

2.2.5 Identified gaps in knowledge  

In the past two decades the poultry industry in China has undergone rapid industrialization and 

intensification of production. Because of the rapid industrialization there are some vulnerabilities within 

the three described poultry production systems in China, especially with respect to the biosecurity level 

and disease prevention and control measures. The standards of poultry production and management vary 

by poultry species, poultry type, geography, education level of farmers and the quality of local veterinary 

service. It has been recognized that an understanding of the poultry production systems is vital in the 

control and prevention of AI in endemically infected countries [30]. However, to our knowledge there 

are no studies that provide a comprehensive account of the Chinese poultry production and marketing 

system and identify how the different components of this system are associated with AI prevention and 

control. 
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2.3 Overview of the meat chicken industry in China 

2.3.1 Evolution of China’s meat chicken industry 

China’s meat chicken industry has gone through three development stages [45]. The first stage (1961-

1978) is considered “Slow Growth”. Annual production of meat chicken increased from 0.49 million 

metric tons in 1961 to 1.08 million metric tons in 1978. Backyard farming was the primary production 

system during this period. 

The second stage (1979-1996) is considered “Fast Growth”. The introduction of the household 

responsibility system in 1978 and the liberalization of livestock market in 1985 facilitated rapid growth 

of annual production. During this stage, the China meat chicken sector experienced the fastest 

intensification and phenomenal growth, increasing from 1.08 million metric tons to 4.54 million metric 

tons with an annual growth rate of 10.15% [45, 60].  

The third stage (1997-2009) is considered “Standardization and Scaling-up”. During this period, annual 

production of meat chicken increased by 5.306 million metric tons with an annual growth rate of 4.91%. 

In 2005, the share of medium to large scale meat chicken producers (an annual output of 10,000 birds or 

more) was over 49 percent (Table 2-3) [2]. 

Table 2-3 Structure of meat chicken production in China in 2005 (by size of farms) (Source: China Animal Industry Yearbook) 

Size of farm (annual 

output of birds) 

Number of Farms 

(million) 

Meat chicken production 

(million birds) 

Share of farms 

(%) 

Share of meat chicken 

production (%) 

1-1,999 34.15 1,483 98.6 23.3 

2,000-9,999 0.36 1,751 1 27.5 

10,000-49,999 0.096 1,687 0.28 26.5 

>=50,000 0.008 1,450 0.02 22.7 

Total 34.62 6,371 100 100 

 

Since 2010, the meat chicken industry has entered a fourth stage of “Restructuring and Upgrading.” This 

stage is characterized with a focus on food safety control, the continued push for standardization and 

scaling-up (Pi, Rou et al. 2014). By the end of 2011, the small meat chicken farms with annual output 

less than 10,000 birds only had a 32 percent share of the total production, the producers with an annual 

output of 10,000 birds or more over took up to 68 percent of the total production and the large-scale 

farms with annual output more than 100,000 birds went up to 21.8 percent share of the total. (Table 2-4) 

 



20 

 

Table 2-4 Structure of meat chicken production in China in 2011 (by size of farms) (Source: Chinese Animal Industry Yearbook) 

Size of farm (annual output 

of birds) 

Number of 

farms 

Meat chicken 

production (million 

birds) 

Share of farms (%) Share of meat chicken 

production (%) 

1-1,999 24,834,318 1,368 98.0 14.3 

2,000-9,999 330,819 1,707 1.3 17.8 

10,000-49,999 157,022 3,325 0.6 34.7 

50,000-99,999 17,024 1,096 0.1 11.4 

100,000-499,999 4,843 941 0.02 9.8 

500,000-999,999 499 326 0.002 3.4 

>1,000,000 252 820 0.001 8.6 

Total 25,344,777 9,584 100 100 

 

2.3.2 Main meat chicken species raised in China 

There are several types of meat chicken (also known as broiler) in China which include white-feathered 

chicken (below as white chicken), yellow-feathered chicken (below as yellow chicken), mixed (white 

and yellow) and spent breeding hens. The two major categories are the fast growing white-feathered 

western type chicken and those very diverse, color-feathered local breeds, a better known one is the three 

yellow chicken (yellow feather, yellow beak, and yellow shank) [61]. According to the public data from 

the Poultry Industry Association (Table 2-5), the total annual output of white chicken was approximately 

4.7 billion birds in 2012, accounts for about 59% of the total chicken meat production. The number for 

yellow chicken was about 4.3 billion birds, accounted for 29.5% of the total chicken meat production. 

There are about 1.3 billion heads of spent hens [62].  

Table 2-5 Number of meat chicken output and meat production in China in 2012, source: [62] 

Chicken species Number of output 

(billion birds) 

Meat produced 

(million tons) 

% of total chicken 

meat production 

White chicken 4.7 8 59 

Yellow chicken 4.3 4 29.5 

Spent hens 1.3 1.55 11.4 

 

White chickens are more commonly produced in northern, northeastern and middle provinces (mainly 

produced in provinces of Shandong, Liaoning, Henan, Hebei and Jiangsu) where conditions for their 

production are more favourable and there is greater demand/acceptance for chilled and frozen white 

chicken meat. White chickens are characterized by a uniform pure white color across all feathers, the 

species of Arbor Acres (AA+), Ross 308, Avein, Cobb and Hybro are the main species raised in 

China.[50]. They are noted for having very fast growth rates, a high feed conversion ratio, and low levels 
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of activity. Modern commercial white chicken are bred to reach a slaughter-weight of about 2 kg and 

above in only 35 to 49 days [63].  

Yellow chicken (also known as grass chicken or Chai chicken) are native chickens of China and are 

mainly present in southeastern and southern areas of China (mainly produced in provinces in Guangdong, 

Guangxi, Anhui, Jiangsu, Zhejiang, Hunan). By 2014, there are more than 40 hybrid varieties that have 

been examined and approved by China MARA [64]. There are small variations among yellow chickens 

in color and confirmation in different parts of the country. The yellow chickens are generally slower 

growing than white chicken. Based on the speed of growth, yellow chicken is classified into three types, 

fast growing (45-60 days), medium-speed growing (60-100 days) and slow growing chicken (>100 days) 

[65], which takes 120 days to grow to market weight, and attract higher prices. 

The spent-hens are the layer hens or breeders that have finished their fertility life of producing hatching 

eggs or commercial eggs, their raising period can reach 500 days. They are mainly produced in northern 

and western parts of China. The annual output of spent-hens in 2012 was 1.3 billion birds, accounted for 

about 11.4% of the total chicken meat production. 

Chinese companies that churn out eggs for commercial sale typically sell hens at live poultry markets 

after 400 to 500 days of laying, when they begin to produce less regularly. 

Poultry consumption custom in China is specific to each region. Consumer’s preference for meat chicken 

can be roughly divided between white chicken in north and yellow chicken in the south [52]. Consumers 

in the north have less preference for bird type than people in the south, therefore white chicken have 

become the major sources of poultry consumed in the north. As a traditional consumption habit, 

consumer in the south have a strong preference for high quality yellow chicken, these consumers attach 

more importance on highly flavoured chicken meat than nutrition or hygiene, therefore they are keen to 

observe the chicken that they are buying is active and looks healthy. In order to satisfy this special cultural 

and consumer preferences, the chickens are always freshly slaughtered. In the other hand, driven by the 

rapid growth of fast food restaurants (KFC and McDonald’s are the most famous ones so far in China), 

the lower price and ease of cooking of white chicken compared with yellow chicken, the consumption 

of white chicken will continue to grow. It is estimated over time, the preference for the yellow chicken 

may gradually decline, the yellow chicken will likely become a niche premium product instead of a 

product for the mass market [52]. 
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2.3.3 Meat chicken market chain in China  

As mentioned in the previous content, different species have different chains making use of different 

farming systems and supply different consumers through different markets involving different traders. 

Figure 2-1 can also be used to describe the framework of a meat chicken value chain in China (Black 

arrows indicate flows of live meat chicken among the market chain, gray arrows indicate the flow of 

chicken meat or products). This part mainly describes the two different market chains of white meat 

chicken and yellow meat chicken in China.  

2.3.3.1 White chicken market chain 

The white chickens are generally produced in highly integrated systems and often under the same 

ownership along the pathway of breeding, production, slaughter, distribution and marketing in national 

and international markets. These chickens are rarely seen in live bird markets (usually follow the chain 

in gray arrows in Figure 2-1). The current breeder flocks of white chicken in China completely rely on 

import from foreign countries (mainly from the United States, Germany, Canada, England, France etc.). 

The MARA of China released the plan of the National Poultry Genetic Improvement (2014-2025) 

emphasizing the importance of recommencing the white chicken breeding program to ensure the stable 

development of the industry from the long-term strategic perspective. 

2.3.3.2 Yellow chicken market chain 

The yellow chicken industry sector is less integrated than white chicken production and often uses 

contract growers. The vast majority are transported alive from the chicken farms to wholesalers, to 

retailers and finally to consumers [66]. They are generally sold through live bird markets to satisfy 

cultural and consumer preferences for freshly slaughtered, higher value and more highly-flavored 

chicken meat (usually follow the chain in black arrows in Figure 6). This type of chicken is usually 

slaughtered at the live bird markets or taken home for slaughter when convenient. 

2.3.3.3 Key players along the live chicken market chain in China 

The live poultry movement is deemed to be a very important risk factor for the dissemination of AI 

viruses [39, 67]. Since yellow chicken is the main species that is transported alive and sold alive in the 

LBMs, it is of great importance to understand the full range of stakeholders (e.g. farmers, middlemen, 

traders, wholesalers, and retailers), activities networks and linkages that are required to bring this kind 

of chicken from production to final consumers. 
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Traders and middlemen are playing a very important role on moving birds from one place to another. In 

the vertical integration and contracts systems, the commercial company, acting like a middleman, will 

be responsible for the coordination between farmers and traders. For large commercial companies who 

own trading platform (like a wholesale LBM), live birds will be collected and transported to the platform 

for trade, the transportation of birds may be conducted by either the company or the farmer. In the 

meantime, the traders will pick up the birds for subsequent trade. These traders mainly own business in 

the LBMs (in the form of poultry stores or stalls). For those smaller poultry companies who don’t have 

a specific trading venue, the traders may come directly to the farm to collect the birds once the trade has 

been coordinated by the company. 

In the open marketing model, the coordination between the farmers and traders may be conducted by 

themselves upon an existing network. This network may involve a middleman, a feed provider, a group, 

or other networks. The traders may come to the farm to collect the birds for subsequent trade, or the 

farmers will move the birds to the trader (could be a LBM). 

Live bird markets (LBMs) is a generally a place for poultry marketing, in which birds can be housed 

until they are sold. LBMs are common in Asian countries because of a cultural preference to consume 

freshly slaughtered meat [68]. And the LBMs bring together a mixture of bird species that meet the 

preferences of their customers and that are commonly produced by multiple suppliers. [69] In some 

provinces in China, the waterfowl markets are separated from markets with other species (Chicken, 

pigeon, quail), while in other places multispecies still exist in the same market. 

In China, there are several different types of LBMs categorized by the size and type of business, i.e. 

wholesale LBMs (including trading platforms of commercial poultry companies, or general wholesale 

LBMs), retail LBMs (can be an agricultural product market with live poultry business in urban or a bazar 

in a rural area), mixed wholesale/retail LBMs (with both wholesale and retail business). Most of the 

wholesale markets conduct business from midnight to dawn, some also operate at other times, during 

which the poultry retailers or other wholesalers will purchase poultry and transport the poultry to the 

stalls in their LBMs or other market. During the daytime, the birds in the retail markets will be gradually 

purchased by general consumers or hotel/restaurants. 
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Figure 2-7 Wenshi poultry trading platform in Anhui 

     

Figure 2-8 Wholesale LBMs in Shanghai and Jiangsu 

      

Figure 2-9 Retail LBMs in Anhui 

2.3.3.4 Spent-hens market chain 

Spent-hens are usually to be sent to slaughterhouses for further process, and they can also be moved from 

northern areas during certain seasons as far south as Guangxi province and on to Vietnam to satisfy the 

demand for soup. 
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2.3.4 Identified gaps in knowledge 

There are very few studies that describe the meat chicken production system in China; this is perhaps 

surprising given the important role this species has in the overall poultry market in the country and the 

important role this sector has had in the dissemination of AI. Therefore, there is a strong need to 

understand the whole live meat chicken market chain (production, trading, marketing and consumption) 

and the key points in the chain especially in those areas in Jiangsu and Anhui provinces in south of China 

which have the highest connectivity in terms of poultry movement, high yellow chicken production and 

tradition of consuming this type of chicken. 

2.4 The pathophysiology of AI infection in birds and humans  

2.4.1 General characterization of influenza viruses 

There are three types of influenza viruses in the Influenza genus, e.g. influenza A virus, influenza B virus 

and influenza C virus, they all belong to the Orthomyxoviridae family. The type A viruses are found in 

avian species and are the most virulent human pathogens among the three influenza types and cause the 

most severe disease [70]. Type B viruses are found only in humans, it may cause a less severe reaction 

than type A virus, do not cause pandemics, but occasionally, it can still be extremely harmful. The 

influenza C virus infects humans and pigs and can cause severe illness and local epidemics. However, 

influenza C is less common than the other types and usually seems to cause mild disease in children.[71] 

2.4.1.1 General characterization of influenza A viruses 

The influenza A viruses are categorized by the two proteins on their surface: the haemagglutinin (HA) 

(18 known subtypes) and the neuraminidase (NA) (11 known subtypes) [72]. Of which, 16 HA (H1-H16) 

and nine (N1-N9) NA subtypes have been detected in various combinations in wild birds, and for the 

most part these viruses live harmoniously with their natural hosts, establishing a short-lived subclinical 

enteric infection [73]. Only three HA and two NA subtypes (H1, H2, H3 and N1, N2) are known to have 

been widely circulated in humans. [74]  

The type A influenza viruses can infect a variety of animals, including wild and domestic birds, but also 

humans, pigs, horses and sea mammals [70]. The type A influenza viruses occurring in birds are 

collectively termed avian influenza. 
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The earliest documented AI outbreak was in 1878 also known as “fowl plague” [75]. It's was a severe, 

rapidly spreading disease that produced high mortality in chickens [76]. It was only identified and 

classified as type A influenza virus in 1955 [76, 77]. 

2.4.1.2 General characterization of high and low pathogenic avian influenza viruses 

AI viruses can be classified into low pathogenicity and highly pathogenic forms based on the severity of 

the illness they cause in poultry [78]. 

Occasionally, the AI viruses are responsible for severe and acute disease with high mortality in poultry, 

and are described as highly pathogenic influenza avian influenza (HPAI). To date all isolated HPAI 

viruses in poultry have been known to contain either H5 or H7 subtypes [13]. These can cross from 

waterfowl to poultry or mammals and therefore the H5 and H7 subtypes are of great concern to 

agricultural authorities and international organizations of public health and animal health in the world 

[73]. For that reason, notification of avian outbreaks involving the H5 and H7 viruses is mandatory, 

according to the World Animal Health Organization (OIE) Terrestrial Animal Health Code [79]. 

Besides that, low pathogenic avian influenza (LPAI) viruses can contain any HA and NA types, cause a 

milder disease (primarily respiratory) unless exacerbated [80]. H9, H6 and H3 subtypes that have 

established (e.g. H9N2 LPAI viruses in chickens is endemic in a large number of countries), or in the 

process of establishing permanent lineages in chickens can cause severe respiratory disease in poultry if 

combined with other pathogens [73, 81]. 

The novel H7N9 virus detected in China in early 2013 is an influenza virus generated through the 

reassortment of three LPAI viruses. All of these viruses that donated genetic material to make up this 

novel H7N9 strain are LPAI viruses in birds [82]. This virus caused only mild or no symptoms in birds, 

and as a consequence stayed undetected in poultry for some time. However, in humans this virus caused 

severe pneumonia and acute respiratory distress syndrome in a large number of cases [82]. 

2.4.2 Clinical signs of AI in birds and humans 

2.4.2.1 Clinical Signs of AI in birds 

Both HPAI and LPAI viruses can spread rapidly through flocks of poultry. Poultry does not generally 

maintain LPAI viruses, because the virus is not well adapted to poultry as a host species. Wild birds can 

transmit LPAI viruses to poultry, but the virus usually circulates briefly and dies [83]. Infection of poultry 

with LPAI viruses may be asymptomatic or mild illness such as ruffled feathers and a drop-in egg 
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production. In very few cases LPAI viruses have been noted to cause severe disease and high mortality 

[84, 85].  

Infection of poultry with HPAI viruses results in severe disease with high mortality. For example, 

symptoms of HPAI H5N1 in birds range from asymptomatic, mild disease (anorexia, depression, weight 

loss) to severe neurological symptoms (e.g., tremors, shaking, and lack of coordination, spinning, 

seizures) and sudden death [86]. HPAI strains (always of the H5 or H7 subtypes) replicate rapidly in the 

gastrointestinal tract of birds and can systematically spread and replicate in multiple organs often 

resulting in rapid death [87, 88]. Chickens are more susceptible to influenza A viruses than ducks, geese 

and swans and therefore are more likely to be diseased and die from infection. Chickens and turkeys with 

HPAI are typically found dead with few clinical signs other than depression, recumbence and a comatose 

state [76]. 

Wild birds are often viewed as reservoirs (hosts) for AI viruses [78]. AI viruses have been isolated from 

more than 100 different species of wild birds. Most of these viruses have been LPAI viruses. There are 

two key symptoms noticed, abnormal neurological signs (tremor and opisthotonos) and diarrhea [89]. 

Most wild ducks, domestic ducks and geese infected with HPAI can be asymptomatic, they may act as 

silent vectors for transmission and represent a major challenge in controlling the spread of HPAI [90]. 

2.4.2.2 Clinical Signs of AI in Humans 

AI infections with HPAI and LPAI infections in humans can result in a wide range of symptoms, from 

undetected asymptomatic or sub-clinical to severe disease resulting in death.  

HPAI infections of humans have been associated with a wide range of illness. Illness has ranged from 

conjunctivitis only [91], to influenza-like illness, to severe respiratory illness (e.g. shortness of breath, 

difficulty breathing, pneumonia, acute respiratory distress, viral pneumonia, respiratory failure) with 

multi-organ disease, sometimes accompanied by nausea, abdominal pain, diarrhoea, vomiting and 

sometimes neurologic changes (altered mental status, seizures). Sometimes infection with HPAI leads to 

death, especially with HPAI H5N1 virus [92, 93].  

The incubation period for H5N1 infection may be longer than that for normal seasonal influenza, which 

is around two to three days. Current knowledge for H5N1 infection indicates an incubation period 

ranging from two to eight days and ranging up to 17 days [24, 92]. The first HPAI H5N1 patient in 1997 

in Hong Kong died from influenza pneumonia, acute respiratory distress syndrome (ARDS), Reye’s 

syndrome, multiorgan failure, and disseminated intravascular coagulation [94].  
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The reported signs and symptoms of LPAI virus infections in humans have ranged from conjunctivitis 

to influenza-like illness (e.g., fever, cough, sore throat, muscle aches) to lower respiratory disease 

(pneumonia) requiring hospitalization [95, 96]. There have been occasional reports of H7N7-associated 

conjunctivitis [95-97]. 

Current knowledge for H7N9 human infection indicates an incubation period ranging from two to eight 

days, with an average of five days [98]. Currently WHO recommends that an incubation period of seven 

days to be used for field investigations and the monitoring of patient contacts. H7 viruses occasionally 

infect humans and usually only cause mild, clinical manifestations, mainly conjunctivitis and/or 

influenza-like illness (ILI) [99]. However, the first H7N9 patient developed high fever and influenza 

pneumonia and respiratory failure [100]. Typical symptoms of the H7N9 virus infection in human 

include fever, cough, even severe pneumonia, and multi-organ dysfunction syndrome [101]. Most 

patients were hospitalized with severe lower respiratory tract illness, but mild infections have been 

reported in children and young adults, with an overall case fatality rate of 32% as of 18st Feb, 2014 [102, 

103]. 

2.5 The epidemiology of HPAI H5N1, H7 and LPAI H9N2 outbreaks in birds and 

human worldwide 

2.5.1 Review of HPAI H5N1, H7, and LPAI H9N2 outbreaks in birds 

2.5.1.1 Review of HPAI H5N1 outbreaks in birds 

Outbreaks of HPAI H5N1 date back to 1959 in Scotland  with two flocks of chickens (number not 

reported) affected and in 1991 in England with one house of about 8,000 turkeys affected [76]. However, 

these two outbreaks caused little or no spread from the initially infected farms. In 1997, a highly 

pathogenic strain of H5N1 emerged in Southeast Asia and spread throughout numerous Asian, Middle 

Eastern, African, and European countries [104]. As of 2014, the epidemic of HPAI H5N1 had spread to 

about 66 counties (31 Asian, 23 European and 12 African countries) in the world, causing tens of millions 

of avian death and hundreds of millions more destroyed or slaughtered [105]. Currently, there are at least 

six countries – Bangladesh, China, Egypt, India, Indonesia and Viet Nam – where the virus is entrenched, 

and a number of other countries experiencing sporadic outbreaks [49]. The outbreaks of HPAI H5 in 

poultry since 1959 are listed in Table 2-6 and Table 2-7. 
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Table 2-6 Reported HPAI H5 isolated from primary outbreaks in poultry since 1959 

Year Location Subtype Approximate numbers of poultry affected ** 

1959 Scotland H5N1 1 small farm 

1966 Ontario, Canada H5N9 8,000 

1983 Pennsylvania, USA H5N2 17,000,000 

1983 Ireland H5N8 307,000, mostly ducks 

1991 England H5N1 8,000 

1994 Mexico H5N2 Unknown-? millions 

1997 Hong Kong SAR, China H5N1 3,000,000 

1997 Italy H5N2 8,000 

2003- Eurasia and Africa * H5N1 Unknown-several hundreds of millions 

2004 Texas, USA H5N2 6,600 

2004 S. Africa H5N2 30,000 

Note:  * 35 Asian, 24 European, 17 African and 2 American countries had reported H5N1 outbreaks up to Dec 2018 

** This number includes poultry affected and being slaughtered. 

Source: [80, 104, 105].  

 

Table 2-7 Cumulative number of H5N1 outbreaks in poultry, captives and wild birds, summarized by reporting year, 2004-2018 

Region Total 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Africa 4411 
  

667 663 154 179 443 376 99 93 364 706 458 208 1 

Americas 3 
           

3 
   

Asia 14354 4271 1870 480 506 509 1640 1325 1580 469 396 408 276 313 229 76 

Europe 1165 
 

239 758 100 25 3 4 
   

2 24 8 2 
 

Total 19933 4271 2109 1905 1269 688 1822 1772 1956 568 489 774 1009 779 439 77 

Source: Data extracted from FAO Empres-i website on Feb 17, 2019. Empres-i (Emergency Prevention System Global 

Animal Disease Information System) database consolidates disease information from OIE, WHO and National authorities. 

 

2.5.1.2 Review of HPAI and LPAI H7 outbreaks in birds 

The H7 subtype HA gene has been found in combination with all nine NA subtype genes. Most exhibit 

low pathogenicity and only rarely high pathogenicity in poultry. All H7Nx combinations were reported 

from wild birds, the natural reservoir of the virus. [99] The pathogen, firstly caused fowl plague in 

chicken in Italy in 1902, is was then identified as a HPAI H7N7 in 1955 [91]. Geographically, the most 

prevalent subtype is H7N7, which is endemic in wild birds in Europe and was frequently reported in 

domestic poultry, whereas subtype H7N3 is mostly isolated from the Americas [99]. In recent years, the 

HPAI H7 and LPAI H7 viruses have caused more than 70 million poultry death [91], and the outbreaks 

occurred cross Americas (Canada, Mexico and USA), Australia, Europe (Denmark, Germany, Italy, 

Netherlands, Portugal, Spain, UK and Ireland), Asia (China, DPR Korea, Japan, Macau, Malaysia, 

Republic of Korea and Vietnam) and South Africa (FAO EMPRES-i). (Table 2-8 and Table 2-9) 
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Table 2-8 Reported HPAI H7 from primary outbreaks before 2004 

Year Location Subtype Approximate numbers of poultry involved * 

1902 Brescia, Italy H7N7  

1963 England H7N3 29,000 

1976 Victoria, Australia H7N7 58,000 

1979 Germany H7N7 1 chicken farm, 1 goose farm 

1979 England H7N7 9,000 

1985 Victoria, Australia H7N7 240,000 

1992 Victoria H7N3 18,000 

1994 Queensland, Australia H7N3 22,000 

1994 Pakistan H7N3 >6,000,000 

1997 NSW, Australia H7N4 160,000 

1999 Italy H7N1 14,000,000 

2002 Chile H7N3 ~700,000 

2003 Netherlands H7N7 >25,000,000 

2004 British Columbia, Canada H7N3 16,000,000 

Source: [80, 105]  

Note: * This number includes poultry dying and being slaughtered. 
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Table 2-9 Number of HPAI H7 outbreaks in birds (2004-2018) 

Country 2004 2005 2007 2008 2009 2012 2013 2014 2015 2016 2017 2018 Total 

Algeria 
         

1 
  

1 

Australia 
     

1 2 
     

3 

Canada 1 
 

1 
         

2 

China 
          

32 5 37 

Dem People's Rep of Korea 
 

3 
          

3 

Denmark 
      

1 
     

1 

Germany 
        

1 
   

1 

Italy 
      

6 
  

3 
  

9 

Mexico 
     

46 64 1 3 30 1 4 149 

South Africa 
     

1 
      

1 

Spain 
    

1 
       

1 

U.K. of Great Britain and Northern Ireland 
   

1 
    

1 
   

2 

United States of America 
          

2 
 

2 

Total 1 3 1 1 1 48 73 1 5 34 35 9 212 

Source: Data extracted from FAO Empres-i website on Sep 18, 2019. 
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Since June 2012, two incidents of infections with H7 subtypes were of great concern for animal and 

human global health organizations. The HPAI H7N3 infection in poultry in Mexico which spilled over 

to two humans and the most recent H7N9 outbreak in China in 2013 [99]. 

2.5.1.3 Review of LPAI H9N2 outbreaks in birds 

LPAI H9N2 influenza viruses are panzootic in birds worldwide. It has undergone extensive reassortments 

in different host species, and could lead to the epidemics or pandemics with the potential emergence of 

novel viruses [106]. For example, the H9N2 viruses found in quail were identified as the contributor of 

the internal genes of the H5N1 virus that caused human disease in Hong Kong in 1997 [107]. And recent 

studies found the internal genes of the novel H7N9 and H10N8 human infections are closely related to 

influenza A(H9N2) viruses [16, 108-112]. Therefore, it is suggested urgent attention should be paid to 

the control of H9N2 influenza viruses in animals and to the human’s influenza pandemic preparedness 

[106, 113]. 

Prior to 1990, H9N2 influenza viruses were mainly reported from avian species in North America. H9N2 

virus was first isolated in China in 1994, approximately 74 different genotypes have been observed till 

now and new lineages and genotypes continuously identified throughout China [106]. However, the 

H9N2 viruses from North America differ from those of Asia [114]. 

A study of H9N2 subtype based on NCBI database revealed that approximately 60% of all the H9N2 

viruses were isolated from chickens, with the remainder from wild birds (16.8%), ducks (8.9%), turkeys 

(6.7%), and other domestic avian populations (3.7%). The majority (94.2%) of H9N2 influenza viruses 

were isolated in Asia, with > 65% coming from China (including Hong Kong) [106]. 

By 1997, the H9N2 viruses had been isolated from northern China, Korea, Pakistan, India, Saudi Arabia, 

Germany, Italy, Ireland, and South Africa [107]. More recently, H9N2 infections have been reported in 

the Middle East and Asia causing widespread outbreaks in commercial chickens in Iran, Saudi Arabia, 

Pakistan, China, Korea, UAE, Israel, Jordan, Kuwait, Lebanon, Libya and Iraq [80]. 

2.5.2 The epidemiology of HPAI and LPAI H7 outbreaks in humans 

2.5.2.1 HPAI H5N1 outbreaks in humans 

The isolation of H5NI from a 3-year-old boy in Hong Kong in 1997 was the first known case of H5N1 

infecting humans [94]. As of 27 July, 2014, the HPAI H5N1 virus has infected 667 humans in 16 counties, 

with 393 deaths [115]. Table 2-11 reports the number of cases and fatalities in each country affected by 



33 

 

H5NI in humans. So far, the largest number of human cases has been reported from Indonesia, Egypt 

and Vietnam each having reported 197, 176 and 127 cases, followed by Cambodia (56) and China (47). 

No human cases have yet been reported in Western Europe. And there were no new human cases reported 

in nine countries since 2010, these countries are Thailand, Turkey, Azerbaijan, Iraq, Pakistan, Lao PDR, 

Djibouti, Myanmar and Nigeria. However, in December 2013, Canada notified a human infection of 

H5N1, the case had an onset of disease when travelling back to Canada from a three-week trip from 

China and has died in early January 2014, marking the first human H5N1 case reported in the North 

America [116]. 

Table 2-10 Cumulative number of confirmed human cases for H5N1 reported to WHO (2003-2018) 

Country 
2003-2009 

cases deaths 

2010-2014       

cases deaths 

2015       

cases deaths 

2016           

cases deaths 

2017           

cases deaths 

2018         

cases deaths 

Total           

cases deaths 

Egypt 90 27 120 50 136 39 10 3 3 1 0 0 359 120 

Indonesia 162 134 35 31 2 2 0 0 1 1 0 0 200 168 

Viet Nam 112 57 15 7 0 0 0 0 0 0 0 0 127 64 

Cambodia 9 7 47 30 0 0 0 0 0 0 0 0 56 37 

China 38 25 9 5 6 1 0 0 0 0 0 0 53 31 

Thailand 25 17 0 0 0 0 0 0 0 0 0 0 25 17 

Turkey 12 4 0 0 0 0 0 0 0 0 0 0 12 4 

Azerbaijan 8 5 0 0 0 0 0 0 0 0 0 0 8 5 

Bangladesh 1 0 6 1 1 0 0 0 0 0 0 0 8 1 

Iraq 3 2 0 0 0 0 0 0 0 0 0 0 3 2 

Pakistan 3 1 0 0 0 0 0 0 0 0 0 0 3 1 

Lao People's 

Democratic 

Republic 

2 2 0 0 0 0 0 0 0 0 0 0 2 2 

Djibouti 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

Myanmar 1 0 0 0 0 0 0 0 0 0 0 0 1 0 

Nigeria 1 1 0 0 0 0 0 0 0 0 0 0 1 1 

Canada 0 0 1 1 0 0 0 0 0 0 0 0 1 1 

Total 468 282 233 125 145 42 10 3 4 2 0 0 860 454 

Note: Total number of cases includes number of deaths; WHO reports only laboratory cases; all dates refer to onset of illness. 

Source: WHO/GIP, data in HQ as of 24 June 2019;  

URL: http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/ 

 

2.5.2.2 HPAI/LPAI H7 outbreaks in humans 

Infection of humans with H7 viruses was first recorded for HPAI H7N7 in the USA in 1959, HPAI H7N7 

in Australia in 1977, and LPAIV H7N7 from seals to humans in the USA in 1978–1979. Since the 1990s, 

reports of human infections with H7 viruses have markedly increased [99]. From 2002, H7 subtype AI 

viruses have caused more than 100 human infection cases in the Netherlands, Italy, Canada, the United 

http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/
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States, and the United Kingdom [91]. The HPAI subtype H7N7 virus was found to be able to transmit to 

people directly involved in handling infected poultry, and we noted evidence for person-to-person 

transmission [96, 99]. Since Feburary 2013, the H7N9 viruse was first reported to cause human infection 

in Eastern China. 

Table 2-11 Human cases of subtype H7 influenza A infection 

Year Country Subtype Symptoms Number 

of cases 

Number of 

Death 

1959 USA HPAI H7N7 unknown 1 0 

1977 Australia HPAI H7N7 conjunctivitis 1 0 

1979-1980 USA HPAI H7N7 conjunctivitis 4 0 

1996 USA LPAI H7N7 conjunctivitis 1 0 

2002 USA LPAI H7N2 flu-like symptoms 1 0 

2003 USA LPAI H7N2 respiratory symptom 1 0 

2002-2003 Italy LPAI H7N3 conjunctivitis, 

flu-like symptoms 

7 0 

2003 Holland HPAI H7N7 conjunctivitis, 

flu-like symptoms 

89 1 

2004 Canada HPAI/LPAI 

H7N3 

conjunctivitis, 

flu-like symptoms 

2 0 

2006 England LPAI H7N3 conjunctivitis 1 0 

2007 England LPAI H7N2 conjunctivitis, 

flu-like symptoms 

4 0 

2012 Mexico HPAI H7N3 conjunctivitis 2 0 

2013-2018 China LPAI H7N9 acute pneumonia, acute respiratory 

distress syndrome 

1567 615 

Note: Source: [91], website of WHO (https://www.who.int/csr/don/05-september-2018-ah7n9-china/en/) and other internet 

sources. 

2.5.2.3 LPAI H9N2 outbreaks in humans 

Although influenza A H9N2 subtype are now widespread in poultry in Asia, there are occasional reports 

of human infections H9N2 in Southern China and Hong Kong. Table 2-12 and Table 2-13 show lists of 

human H9N2 infections [112]. 

In 1998, H9N2 influenza viruses were isolated from five humans with influenza in Guangdong Province, 

all the five patients had typical clinical signs of influenza, and all recovered from the disease [117]. In 

1999, two human infections (one 4-year-old girl and one 1-year-old girl) were identified in Hong Kong, 

the illness in both children was mild and self-limited [118]. And another infection in a 5-year-old child 

with an influenza-like illness were reported in Hong Kong in 2003 [119]. In fact, serologic surveillance 

revealed that the number of humans infected by H9N2 virus were much higher than that of the confirmed 

cases. Poultry workers are considered to be at high risk of infection with AI due to their frequent exposure 

to chickens. About 2.3%–4.6% of poultry workers had antibodies against H9 [120, 121]. 
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Table 2-12 H9N2 human cases in China (1998-2013) 

Year Location/Province Patient Clinical signs Exposure to live poultry 

1998 Guangdong 14-year-old male Acute respiratory infection lived with chickens in the 

same house  
75-year-old male Acute respiratory infection farmer's market nearby 

 
4-year-old male Acute respiratory infection unknown 

 
1-year-old female Acute respiratory infection unknown 

 
36-year-old female Acute respiratory infection yes 

1999 Guangdong 22-month-old female Fever, cough no 

1999 Hong Kong SAR 13-month-old female Fever, vomiting, inflamed 

oropharynx 

one was possible exposed 

 
4-year-old female Fever, malaise 

2003 Hong Kong SAR 5-year-old male Mild fever, cough No 

2007 Hong Kong SAR 9-month-old female Mild upper respiratory unknown 

2008 Guangdong  female Cough and vomiting unknown 

2013 Guangdong 86-year-old male Cold and cough no 

2013 Hunan 7-year-old male Fever and rhinorrhoea yes 

Note: Source: [112]. 

 

Table 2-13 H9N2 human cases in China (2014-2018) 

Year Location/Province Number of cases 

2015 Anhui  2 

 Guangdong  1 

 Hunan  3 

 Sichuan 1 

2016 Guangdong 4 

 Henan 1 

 Jiangxi 1 

 Sichuan 1 

 Yunnan 1 

2017 Beijing 1 

 Gansu 1 

 Guangdong 1 

 Henan 1 

2018 Guangdong 2 

 Guangxi 1 

Note: Source: FAO Empres-i website (http://empres-i.fao.org/eipws3g/). 
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2.6 The epidemiology of H5N1 and H7N9 infections in birds and humans in China 

2.6.1 Review of HPAI H5N1 outbreaks in China 

In 1996, a HPAI H5N1 outbreak was observed with highly contagious disease among goose flocks in 

Guangdong, China [122]. Between May and December 1997, in Hong Kong SAR, 18 humans were 

infected and 6 died in the first known case of H5N1 infecting humans [123]. Before that, a H5N1 outbreak 

occurred in chickens in Hong Kong in March and May [124]. About 1.3 million chickens were culled by 

Hong Kong Government in December 1997, its spread was contained in Hong Kong at that point in the 

region. 

In January 2003 the same virus re-emerged for the first time since the first human outbreak in Hong Kong 

in 1997 [125], suggesting it had never been eradicated and spread relentlessly across East Asia, 

decimating the poultry population and inflicting heavy losses on poultry industry. From 2003 onwards, 

infection and disease spread widely to three continents in an unprecedented manner, initially through 

East and Southeast Asia from 2003 to 2004, and then into Southern Russia, Western and Southern Asia, 

the Middle East, Europe, Africa and from 2005 to 2006. In May 2005, an outbreak in migratory wild 

birds in Qinghai Lake, China killed 6000 birds [89, 126]. The virus has since spread across countries in 

Asia, Europe, the Middle East, as well as some African countries through migration of wild birds. It has 

been found in chicken and turkey farms and in some wild birds, mainly swans and geese. 

As of December 2018, China has reported 130 HPAI H5N1 outbreaks in poultry, 17 outbreaks in wild 

birds and 52 human infections, which involved 26 provinces and millions of poultry have been culled to 

control the spread of the disease and caused severe economic damage to the poultry industry in China. 

 

Figure 2-10 China HPAI H5N1 outbreaks in poultry, human, wild birds by year-month since 2004 (As of December 2018) 

Note: Source: MARA of China, FAO Empres-i, NHFPC and provincial authorities. 

http://en.wikipedia.org/wiki/Hong_Kong
http://en.wikipedia.org/wiki/Chickens
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Figure 2-11 China HPAI H5N1 virological surveillance positives by year-month since 2004 (As of December 2015) 

Note: The HPAI H5N1 Virological surveillance positives only available since 2007; Source: Monthly veterinary bulletin from 

MARA website. There were only aggregated reports since 2016 (e.g. 10 positives in first half year of 2016; 1 positive in first 

half of 2017). 

 

Figure 2-12 Spatial and temporal distribution of HPAI H5N1 outbreaks in poultry in Mainland China, 2004-2014 

Source: Data from website of MARA of China and provincial authorities; Poultry density [127] 

2.6.1.1 HPAI H5N1 infections in poultry 

In China, HPAI H5N1 virus was first detected in a goose in Guangdong Province in 1996. Since 1999, 

the virus went through series of evolution and diversification, multiple genotypes of H5N1 viruses have 

been detected from apparently healthy waterfowl, indicating that the virus was still active and widely 
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circulating [122, 128]. Starting from 2003, HPAI H5N1 virus spread across Southeast Asia, causing 

unprecedented epidemics. In China, poultry were massively infected in 2004 and 2005. 

In January 2004, China reported its first HPAI H5N1 outbreak in poultry (i.e. chickens, ducks and geese) 

in Guangxi Zhuang Autonomous Region, in South Central China, followed by 49 outbreaks within the 

next month. These outbreaks involved 16 provinces been infected, multiple species of birds were affected, 

including chickens, ducks, geese, quails, turkeys and a small amount of wild zoo birds in some areas 

[128], 140,000 cases were infected, about 89% were dead, and eight million poultry were depopulated in 

the infection zone to control the endemic of HPAI H5N1 virus. Since June to August 2005, three H5N1 

outbreaks in poultry been reported in one small-scale farm and two backyard farms in Qinghai and 

Xinjiang, about 230,000 birds were depopulated to control the spread of the disease. From October 2005 

to the end of the year, a total of 28 outbreaks were detected in domestic poultry in eleven provinces or 

autonomous regions, successively in Inner Mongolia, Anhui, Hunan, Liaoning, Hubei, Xinjiang, Shanxi, 

Ningxia, Yunnan, Jiangxi and Sichuan. The delayed disease report in Liaoning of Northern China 

resulted in the wide spread of the virus, to again control the spread of the disease, 19,958,500 chickens 

were depopulated. From 2006 until 2014, HPAI H5N1 outbreaks were reported occasionally in Mainland 

China. (Figure 2-10) 

Figure 2-13 shows the geographic distribution of the H5N1 virological surveillance results from the 

national animal disease surveillance system (Refer to Page 55). 

 

Figure 2-13 H5N1 virological surveillance positives during 2007 to Mar 2013 
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2.6.1.2 HPAI H5N1 infections in wild birds 

HPAI H5N1 viruses were first observed in the wild-bird population in Qinghai Lake in Western China 

in May 2005. More than a thousand birds were affected by the end of June. Qinghai Lake is one of the 

most important breeding centers for migrant birds whose flyways extend to Southeast Asia, India, Siberia, 

Australia, and New Zealand [89]. A previous study discovered that H5N1 viruses isolated in Mongolia, 

Russia, Inner Mongolia, and the Liaoning Province of China after August 2005 were genetically closely 

related to one of the genotypes isolated during the Qinghai outbreak in 2005. This finding suggests the 

dominant nature of this genotype, and the possibility that migratory waterfowl may spread these viruses 

over a wide range of territories [129]. This same genotype caused the outbreaks in wild birds in Qinghai 

and Tibet in 2006 and resulted in the deaths of 3461 wild birds. But the origin of the virus responsible 

for the Qinghai Lake outbreak remains unclear. Since then, one wild case was reported in May 2009 in 

Qinghai, 121 birds found dead (107 ruddy shelducks, 3 bar-headed geese and 11 brown-headed gulls) 

and the last outbreak detected in wild birds in China was in Tibet in May 2010, in which about 170 wild 

birds died (141 brown-headed gull, 27 bar-headed goose, 1 chough and 1 widgeon). 

2.6.1.3 HPAI H5N1 infections in humans 

The first human cases were reported in 1997 in Hong Kong SAR, from May to December, 18 humans 

were infected and six died [123]. In mainland China, the first human case of HPAI H5N1 surfaced in 

November 2003, a 24-year-old man died in Beijing, and was initially thought to be a victim of severe 

acute respiratory system (SARS); later the case was retrospectively confirmed by laboratory tests to be 

H5N1. 

In Mainland China, humans were mainly infected in 2005 and 2006, with a slight rise in 2009, and today 

continue to experience sporadic outbreaks across China. As of 2018, Mainland China has reported 52 

HPAI H5N1 human infections, and 23 H5N6 human infection [105], involving 17 provinces or 

autonomous regions, including Anhui, Beijing, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, 

Jiangsu, Jiangxi, Liaoning, Shandong, Shanghai, Sichuan, Xinjiang, Yunnan and Zhejiang [105]. 

Among all the 48 human cases, 42 cases (87.5%) were reported in southern China while only 6 cases 

were reported in northern China. The majority of human H5N1 infections were detected in winter-spring 

period (December to March), although a few sporadic cases were also occasionally detected in summer 

time [93]. Most H5N1 human cases are reported during winter-spring period accompanying the increase 

in poultry outbreaks at that time [130]. 

http://en.wikipedia.org/wiki/Hong_Kong
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2.6.2 Review of H7N9 outbreaks in China 

2.6.2.1 Characteristics of the influenza A (H7N9) virus  

The novel H7N9 virus is a multiple reassortant of earlier H7N9, H7N3, and H9N2 [16, 82, 109, 131, 

132]. Molecular genetics data indicated that the HA gene of the novel H7N9 virus shares 95% identity 

with the HA genes of isolated from LPAI A (H7N3) viruses isolated in 2011 in Zhejiang province [108]. 

Surveillance studies in domestic poultry had shown that LPAI A (H7N3) viruses were present in domestic 

ducks in Zhejiang [133]. Furthermore, the internal genes of the novel H7N9 are closely related to 

influenza A(H9N2) viruses, which recently circulated in poultry in Shanghai, Zhejiang, Jiangsu and 

neighbouring provinces [16, 108, 109]. For example, molecular evidence has shown that the NA gene 

was close to a group of H9N2 viruses circulating in chickens in Jiangsu, whereas the remaining internal 

genes were closely related to those noted in AI viruses isolated from chickens in Shanghai and the 

neighbouring provinces [109]. The genetic diversity of H9N2 viruses in chickens in the eastern provinces 

of China is high and it is postulated that these reassortment events most probably took place in Shanghai 

or the adjacent provinces such as Zhejiang and Anhui [109]. A study comparing the spatiotemporal 

distribution of HPAI H5N1 and H7N9 human cases provided compelling supporting evidence in that it 

demonstrated that H5N1 and H7N9 human cases overlapped in a region bordering the provinces of Anhui 

and Zhejiang [10]. 

Adaptive genetic changes of avian influenza viruses in domestic poultry have been shown to enable 

transmission to humans and in the case of H7N9 there is significant molecular evidence of poultry to 

human transmission [16, 108]. The H7N9 lineage has diversified since its emergence, which emphasizes 

the necessity of extensive surveillance of the virus in humans, poultry and wild birds [109].  

Figure 2-14 shows the reassortment path of the new H7N9 virus. The earlier H7N9 virus in migratory 

birds reassorted with H9N2 virus in northern China, so the reassortant virus retained the NA of H7N9 

virus and obtained five internal gene fragments (PB2, PB1, PA, NP and M) from H9N2. When birds 

migrated to Jiangsu, the reassortant virus HXN9 (x =7/9) reassorted with H9N2 

(A/chicken/Dawang/1/2011-H9N2) again and gained its NS segments. Meanwhile, the 

A/duck/Zhejiang/12/2011-H7N3 virus reassorted with some H9N2 strains in Yangtze River Delta and 

formed H7NX (x = 2/3), which retained H7 of the H7N3 and obtained PB2, PB1, PA, NP and M from 

the H9N2 viruses; at last, HXN9 reassorted with H7NX, consequently generating this new human-

pathogenic H7N9 virus [101]. 
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Figure 2-14 The reassortment path of influenza A (H7N9) virus.  

Note: BJ, Beijing; DW, Dawang; ZJ, Zhejiang; SH, Shanghai; JS, Jiangsu, Source: [101] 

Adaptive genetic changes of AI viruses in domestic poultry have been shown to enable transmission to 

humans and in the case of H7N9 there is significant molecular evidence of poultry to human transmission 

[16, 108]. The H7N9 lineage has diversified since its emergence, which emphasizes the necessity of 

extensive surveillance of the virus in humans, poultry and wild birds [109]. Furthermore, recent 

laboratory and epidemiological evidence indicates limited non-sustained human-to-human transmission 

[25, 102, 134, 135]. 

In February 2017, some strains of the 2013 LPAI H7N9 virus isolated from chickens in Guangdong 

province mutated to become HPAI H7N9 in poultry and rapidly spread to other provinces in China [13, 

136]. The rapid evolution, increased pathogenicity and efficient transmissibility of HPAI H7N9 viruses 

in mammalian models, together with their extended host range, may have increased the threat to public 

health and the poultry industry [137, 138].  

2.6.2.2 H7N9 infections in human 

At the end of March 2013, a new strain of influenza A (H7N9) virus, first identified in a human patient 

in Shanghai, China, has infected 455 people until 19th Oct, 2014, of whom 176 died [28, 139, 140]. In 

the first place, this virus caused only mild or no symptoms in birds, and consequently stayed undetected 

in poultry for some time. However, in humans this virus caused severe pneumonia and acute respiratory 

distress syndrome in a large number of cases [82]. The notification of human cases of influenza A(H7N9) 

in China follow a seasonal pattern peaking in the winter months and a few sporadic cases during the 

summer. 
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There have been six epidemic waves till Sep 2018 causing more than 1600 human infections in 29 

provinces and municipalities in mainland China [5]. The first wave was observed from March to April 

2013, starting from Shanghai, Anhui, Jiangsu and Zhejiang provinces, then mainly extended to adjacent 

provinces around Yangtze River delta: Henan, Shandong, Hunan, Jiangxi and Fujian. 

A recent study in China demonstrated that areas of human H7N9 infection overlap with those that 

reported H5N1 suggesting a common high-risk area in an area southeast of Taihu Lake (south of Jiangsu 

Province), bordering the provinces of Anhui and Zhejiang [29] (Figure 2-15). 

 

Figure 2-15 Spatial overlap between influenza A (H7N9) and influenza A (H5N1) case clusters in an area bordering the provinces of Anhui, 

Jiangsu and Zhejiang. 

 

The second wave was observed from January to April 2014, affecting initially the provinces of Zhejiang 

and Guangdong, then extending to Jiangsu, Anhui, Fujian, Hunan and Guangxi provinces. From May to 

December 2013 (i.e. the period between the two waves), there were sporadic human cases in Shanghai, 

Jiangsu, Zhejiang, Jiangxi and Guangdong. From May to September 2014 (i.e. after the second wave), 

there were occasional reports in Jiangxi, Guangdong, Jilin, Jiangsu, Zhejiang, Hunan and Anhui.  

During the fifth epidemic wave from October 2016, the geographic range of H7N9 human cases 

expanded and more human cases were reported than in any previous wave [12].  

Figure 2-16 shows the epidemic curve of the six waves of human H7N9 infections and Figure 2-17 shows 

the geographic distribution of the six waves of human infections up to May 2018. 
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Figure 2-16 Epidemiological curve of avian influenza A(H7N9) human cases, poultry surveillance positives by month of onset, Mar 2013- 

Feb 2018 
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Figure 2-17 Geography distribution of the six epidemic waves of H7N9 human infections up to May 2018  

Note: Source: WHO and Chinese authorities; Figure A: 1st Wave (Mar 2013 – Sep 2013) : 134 cases, Figure B: 2nd Wave (Oct 2013 – 

Sep 2014): 302 cases, Figure C: 3rd Wave (Oct 2014 – Sep 2015): 224 cases, Figure D: 4th Wave (Oct 2015 – Sep 2016): 119 cases, 
Figure E: 5th Wave (Oct2016 – Sep 2017): 776 cases, Figure F: 6th Wave (Oct2017 – Sep 2018): 4 cases. 

2.6.2.3 H7N9 Virological surveillance positives found in birds 

According to official reports from the MARA of China, as of May 2018, over 3000 virological samples 

from chickens, pigeons, ducks, a tree sparrow and the environment tested H7N9 positive; positives were 

mainly from live bird markets, vendors and farms.  

 

Figure 2-18 Distributions of low and highly pathogenic H7N9 virologically positive samples collected from birds or the environment, by 

sampling location, between October 2016 and 25 July 2018. Samples from the same location and time are grouped. 

 

Figure 2-19 Distributions of low and highly pathogenic H7N9 virologically positive samples collected from birds or the environment, by 

sample origin between October 2016 and 25 July 2018. Samples from the same origin, location and time are grouped. (Source: FAO)  

E F 
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2.6.3 Review of influenza A (H9N2) outbreaks in China 

The influenza A (H9N2) viruses were identified as the contributor of the internal genes of the H5N1 [107] 

and H7N9 in China [109]. In China, the H9N2 virus has been detected in several avian species, including 

chicken, duck, quail, pheasant, partridge, pigeon, silky chicken, chukar, and egret [141, 142]. The first 

outbreak of the H9N2 influenza virus in China occurred in Guangdong province of Southern China 

during November 1992 to May 1994, the outbreak affected, seventeen chicken farms and two rare bird 

farms. After this outbreak, the H9N2 infection sporadically occurred in chickens, ducks, and geese and 

spread to Northern China. The H9N2 influenza virus spread to most provinces of China within two 

months in 1998, and is now the most prevalent subtype of influenza viruses in chickens in China [112]. 

H9N2 infections occur throughout the whole year, with lower morbidity during summer time. The 

isolation rate of H9N2 virus in apparently healthy chickens, ducks, and other minor poultry species in 

LBMs were 2.5%, 0.18%, and 4.7%, respectively between 2000 and 2005 [142]. The H9N2 virus 

isolation rate in poultry in LBMs in Shanghai was 2.6% between 2008 and 2010 [143]. The patterns of 

human infection in China is described in the front text. (Refer to LPAI H9N2 outbreaks in humans) 

2.6.4 Identified gaps in knowledge 

Many studies have been conducted to understand the biological characteristics of HPAI H5N1 and LPAI 

H7N9 viruses and the population health effects of associated outbreaks in China. However, 

epidemiological information on the husbandry conditions associated with the emergence of these viruses 

in China is largely lacking. Evidence suggests that areas where human infection with H5N1 and H7N9 

have been observed overlap in border area of the provinces of Anhui, Jiangsu and Zhejiang. More 

research is necessary to understand the local conditions of the poultry systems in these high-risk areas 

which could account for the exposure of humans to the H7N9 virus. 

2.7 Risk factors for AI infection in poultry and human populations along the 

market chain 

The transmission of H5NI can occur via direct or indirect contact with an infected bird. The major sources 

of risk for HPAI introduction and transmission in poultry are well known – the introduction of infected 

birds into flocks; contact with infected wild birds; movement of contaminated materials particularly 

containers, vehicles and personal clothing. Direct airborne transmission of virus can occur, but generally 

over very short distances. Live bird markets have played a major role in spreading disease from unit to 
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unit because they mix birds from many sources. Trade in poultry and the movement of contaminated 

materials remain key transmission pathways [49]. 

The drivers of AI infections tend to be disparate at different points along the poultry market chain. For 

example, farm’s environmental conditions are important at poultry farms, while human behavioural and 

socioeconomic factors are more important at the poultry trade and transport stage, and cleaning and 

disinfection and manure/waste disposal are more important at LBMs. 

“Biosecurity” has been used widely in the debate on HPAI control. In this manner, biosecurity refers to 

those measures that should be taken to minimise the risk of incursion of HPAI into individual production 

units (bio-exclusion) and the risk of outward transmission (bio-containment) and onward transmission 

through the market chain [144]. 

2.7.1 Farm level biosecurity risk factors for AI in birds and humans 

The use of biosecurity in poultry rearing according to FAO varies from high (closed, controlled heating 

and cooling system), to medium (open system, netting to prevent entrance of outside birds), to low 

(fences around poultry areas, poultry roam free in specified areas) to non-existent (free ranging animals) 

(FAO 2006). In many developing countries or areas where AI is endemic, little or no biosecurity is 

employed in poultry farming.  

2.7.1.1 Risk factors on large-scale industrial integrated farms 

Large-scale industrial integrated farms are physically isolated and can practise effective barrier control. 

However, if not managed appropriately, large production units face a high risk of disease introduction 

and onward transmission. The inward movement of people, poultry [145] and commodities is high in 

large production enterprises with different production components (day-old-chicks, nurseries, pullets, 

broilers, layers), providing many possible sources of disease introduction. When infected, they may run 

a higher risk of virus spread through higher levels of virus shedding and movement (of persons, animals, 

vehicles, equipment, feed, manure, etc.) on and off the production units [144]. 

2.7.1.2 Risk factors on specialized households or small-scale farms  

Lack of bio-exclusion measures is very frequently found in this sector. Introduction of infected birds to 

flocks, contact with wild birds, housing multiple species and fomite transmission are the key risk factors 

[32, 42]. The level of risk in small-scale units may also be increased by sociocultural practices or lack of 

information (for example, the practice of throwing the carcasses of dead birds onto the street for dogs; 
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workers and the owners of poultry farms rearing scavenging birds at home; and the practice of giving 

live birds as gifts to visitors and the obligation for visitors to accept) [144]. 

Study in Bangladesh also found “footbath at entry to farm/shed” are risk factors for H5N1 infection in 

commercial farms (FAO poultry production sector 2 and 3) [32]. Study in Vietnam found the risk of an 

outbreak of HPAI H5N1 was increased in flocks that had received no vaccination or only one vaccination 

of flocks compared to flocks received vaccinations twice a year, and in flocks on farms that had family 

and friends visiting and geese present. And sharing of scavenging areas with flocks from other farms was 

associated with increased risk of an outbreak [34]. Research in Japan identified the introduction of end-

of-lay chickens, sharing of farm equipment among farms, incomplete hygiene measures of farm visitors 

on shoes, clothes and hands and direct distance to the nearest case farm were risk factors associated with 

the introduction of AIV [33]. Study in the U.S. suggests the disposal of dead birds via rendering off-farm 

is an important factor contributing to rapid early spread of AI infection among commercial poultry farms 

[146]. Study in Bangladesh identified that the numbers of staff, frequency of veterinary visits, presence 

of village chickens roaming on the farm and staff trading birds are risk factors of AI infection on 

commercial farms [147]. 

2.7.1.3 Risk factors on backyard farms 

Backyard poultry is characterized by small flock with low biosecurity measures. And backyard poultry 

have also been found to be an important source of spread and persistence of HPAI H5N1 in South East 

Asia [148].  

Offering slaughter remnants of purchased chickens to backyard chickens, having a nearby water body 

and having contact with pigeons are identified as risk factors of AI infections on backyard farms in 

Bangladesh [149]. A study in Netherlands showed that raising of multiple species in backyard poultry 

and living in close proximity to infected commercial farm premises increases the risk of infection [150]. 

Study in south Africa also found out that large population of birds within farm, poor biosecurity and 

presence of outside birds were associated with increasing the risk of infection of ostriches with the H5 

influenza virus[151]. A study in Nigeria indicated that receiving visitors on farm, purchasing live 

poultry/products, and farm workers living outside the premises were identified as risk factors for HPAI 

in poultry farms [152]. A study in Thailand show that farms where owners bought live chickens from 

another backyard farm had a higher risk of HPAI H5N1 infection, while those where owners used a 

disinfectant to clean poultry areas were exposed to lower risk [153]. A study in Vietnam found that 
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increased density of ponds and streams, commonly used for waterfowl production, and greater number 

of duck flocks in the village increased the risk of AI infection [154]. 

Retail marketing of live poultry in LBMs was implicated as important source of exposure to infection on 

chicken farms in Hong Kong and the US [145, 155]. 

2.7.2 The role of live poultry trade 

Live birds are presumed to constitute the highest risk because of virus replication, virus shed into the 

environment and movement over long distances [69]. The transport systems that carry birds from farms 

to markets or slaughterhouses presents risks of disease spread. The transportation they use is often dirty 

and not disinfected before entering farms or villages or markets, indeed there may be no facilities 

available for cleaning or instructions that it should be done – and birds are transported in cages or baskets 

that cannot be cleaned easily [144]. 

Understanding poultry movement is essential to develop appropriate and targeted surveillance 

recommendations for active HPAI H5N1 surveillance programs [41]. Traditional wet markets were 

village operations. Now, poultry can move from a mega-farm to a wet market and the cages, trucks and 

humans can return to the mega-farm (with viruses) in sufficient time to ensure occasional transmission 

[73]. Previous studies have shown evidence of the role of live poultry trade, traders, middlemen or 

catching teams in the dissemination of AI virus between farms, between farm and markets, farm to 

slaughterhouse or multiple slaughterhouses, and personnel [20, 41, 42, 156, 157]. 

A study in Vietnam also identified the role of trader’s trading experience, those traders who have a trading 

year less than a year and operating at retail markets are more likely to source poultry from flocks located 

in communes with a past history of HPAI H5N1 than those trading longer than a year and operating at 

wholesale markets [39]. Large-scale movement of poultry is now commonplace and provides increasing 

opportunities for rapid spread of pathogens [3]. Designated vehicle for sending eggs to a vendor or market 

appeared to be a protective factor [32]. Besides, the cross-border trade via traders and middlemen may 

promote transboundary virus circulation [41, 158]. It is true in all situations that the greatest risk of spread 

of disease lies in the movement of live animals and contaminated materials, so biosecurity measures to 

reduce risk are heavily dependent on movement management [144]. 
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2.7.3 Market level biosecurity risk factors for AI in poultry 

LBMs are recognized as a reservoir of AI viruses and a possible source of infection for domestic poultry 

[69, 159-161]. Many markets, whether large or small, urban or roadside, have a low standard of sanitary 

conditions. Most LBMs tend to connect to one another. Markets that operate day in day out pose a higher 

risk than those that have closing days when premises can be disinfected [21, 35, 162, 163]. Those where 

birds of different ages and different species from different locations are mixed at the market, and then 

returned to their farm of origin or sold on to another farm, creating the potential for disease spread over 

a wide area [144]. Continual movement of birds into, though and out of markets provides opportunity 

for the introduction, entrenchment and dissemination of AIVs [164]. 

Previous studies identify the number of times the market was cleaned and disinfected [21], slaughtering 

at LBMs and trash disposal of dead birds [35] are risk factors for AI infection, while clear zoning at 

LBMs, daily removal of waste [36] and cage disinfection are protective factors [31]. 

A more detailed systematic review and meta-analysis was conducted to identify the effect of different 

biosecurity risk factors in the epidemiology of avian influenza at LBMs. This analysis was explored in 

Chapter 4 and has been published in the Journal of Infectious Diseases. 

2.7.4 Risk factors associated with AI infections in humans 

For human H5N1 infections, evidence is consistent with bird-to-human, possibly environment-to-human, 

and limited, non-sustained human-to-human transmission to date [24, 102, 165]. 

Probable risk factors for human infection include direct contact with sick or dead poultry, indirect 

exposure to sick or dead poultry, in the form of handling poultry, slaughtering, de-feathering, butchering, 

close contact with wild birds, visiting a wet poultry market, ingesting undercooked poultry products, 

direct contact with contaminated surfaces, close contact with infected humans [67, 166]. 

A study in China found the genetic sequences of the environmental and corresponding human H5N1 

isolates were highly similar, demonstrating a link between human infection and LBMs [167]. Exposure 

to live poultry (by visiting either a retail poultry stall or a market selling live poultry) in the week before 

illness began was significantly associated with H5N1 disease [168]. 

The age of the patients ranged from 2 to 91 years with an average of 61.5 years. Over 69% of the patients 

were male with regional differences probably due to variable contact with poultry and about 84% were 

urban residents [99].  
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Exposure to market poultry is well acknowledged [169-172], however, exposure to farm poultry is also 

a cause for concern, especially in rural China [15]. As of February 2017, 887 of 1220 (about 73%) of 

human cases of laboratory-confirmed A H7N9 virus infection reported exposure to poultry within the 10 

days before the onset of symptoms [173]. 

Case-control study in Shanghai suggests that chronic disease and frequency of visiting a live poultry 

market (>10 times, or 1-9 times during the 2 weeks before illness onset) were likely to be significantly 

associated with H7N9 infection [174]. Another case-control study in Jiangsu province found that direct 

contact with poultry or birds in the two weeks before illness onset, chronic medical conditions 

(hypertension excluded), and environment-related exposures were significantly associated with A (H7N9) 

infection [175]. A case-control study in Zhejiang province revealed that buying live or freshly 

slaughtered poultry from a market is a risk factor for both urban and rural residents. Tending to home-

raised poultry and existence of a poultry farm in the vicinity of the residence are risk factors unique for 

rural residents [176]. 

A study of H7N9 also suggests that increased risk among older men is not due to greater exposure time 

at live bird markets, other factors may be contributing [177]. Elderly men, especially those with chronic 

diseases were at high risk of human infection with H7N9 [178, 179]. Study in Cambodia shows that 

males had a higher exposure risk potential than females across all age groups, males between the ages of 

26-40 reported practices of contact with poultry that give rise to the highest H5N1 transmission risk 

potential, followed closely by males between the ages of 16-25 [180]. The live poultry purchasing habits, 

poultry handling, and living conditions are also found to be important factors that increase the risk of 

exposure to H7N9 virus contaminated environments in China [181]. 

2.7.5 Knowledge, Attitudes and Practices (KAP) of poultry workers and consumers towards AI 

Existing literature indicates that age, sex/gender, education/knowledge and religion can influence the 

health behaviours, hygiene practices and utilization of advice in humans [182]. Many of these risk factors 

can easily be reduced through simple and inexpensive procedures, however lack of knowledge often 

leads to bad application and unsafe behaviour (for example, working in a dirty area and then moving to 

a clean area rather than the reverse; failure to quarantine new birds; and generally poor hygiene) [144]. 

Previous study found there was a higher level of biosecurity practices adopted in poultry farms compared 

with those adopted in LBM. Most poultry workers who were aware of AI had high knowledge regarding 

measures of prevention, but there was a poor correlation with actual practice [183]. People transporting 
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live birds usually have little or no information on the health status of the birds they are carrying. Bird 

handlers with secondary level of education were more likely to be involved in open site slaughter of 

poultry than their counterparts without formal education. Comparatively, bird handlers in urban area 

were less likely to share poultry equipment than rural resident handlers [182]. 

A KAP study of H7N9 risk among live poultry traders in Guangzhou province of China was carried out 

after the emergency of H7N9 in China, found that only 46.1% of the LPTs recognized risks associated 

with contacts with bird secretions or droppings, and only 22.9% perceived personally “likely/very likely” 

to contract H7N9 infection. Besides, around 60% of the respondents complied with hand-washing and 

wearing gloves, and only 20% reported wearing face masks. Only 16.3% of the respondents agreed on 

introducing central slaughtering of poultry [184]. 

A KAP survey of poultry handling behavior among villagers in rural Cambodia revealed that despite 

high awareness and widespread knowledge about AI and personal protection measures, most rural 

Cambodians still often practice at-risk poultry handling. Intervention programs must include feasible 

options for resource-poor settings that have limited materials for personal protection (water, soap, rubber 

gloves, and masks) and must offer farmers alternative methods to safely work with poultry on a daily 

basis [185, 186]. 

A study of AI risk perception among householders in Hong Kong, which was carried out after the first 

H5N1 epidemic with human deaths, found that 11% of the participants touched live chicken when buying; 

36% perceived this behaviour as risky, 9% estimated the likelihood of resultant sickness is over 50%, 

whereas 46% (43%–49%) said friends worried about such sickness [187]. 

A study of knowledge and risk perception of AI in Taiwan found those more knowledgeable of AI with 

relatively high levels of risk perceptions would be likely to stay away from birds and the crowd. 

Respondents with relatively low levels of AI knowledge were likely to prefer not eating chicken at all 

under a possible threat of AI outbreaks. Respondents with low risk perception levels would be more 

likely to maintain usual chicken consumption than those with high risk perception levels if outbreaks of 

AI occurred [188]. 

Study in Guangdong province of China found generally high support for regular market rest days among 

the general public and live poultry traders (LPTs), but only limited support for permanent central 

slaughtering of poultry. LPTs' support for relevant control measures declined after the citywide wet 

market closure [189]. 
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A study on employees of food production and operation in Guangzhou found about 70% worried about 

being infected with the A/H7N9. Nearly one-third (32.35%) did not believe that the government could 

control the A/H7N9 epidemic. Most participants (80.76%) reported washing hands more frequently than 

before, while over one-third (37.17%) stated no longer buying poultry. A total of 84 % indicated a 

willingness to receive an A/H7N9 vaccine, and the primary reason for not being willing was concern 

about safety (58.19%). A history of influenza vaccination and worry about being infected with the 

A/H7N9 were significantly associated with intention to receive an A/H7N9 vaccine [190]. 

A novel educational program conducted in Vietnam found improved awareness of H5N1 resulted in more 

people seeking early access to healthcare, and also resulted in earlier medical intervention for patients 

with H5N1 infection in Vietnam [191]. The internet (76.92%), television (67.56%), and newspapers 

(56.26%) were the main sources for food company employees obtaining information, and varied by 

demographic variables [190]. Radio, leaflets/booklets, school students and village health volunteers were 

found to be the most effective sources in increasing knowledge of rural dwellers [186]. 

2.7.6 Identified gaps in knowledge 

There are dozens of researches on identifying the risk factors associated with AI infection on poultry 

farm level and LBMs, it is still unclear what role LBM has played in the circulation of AI in many Asian 

countries where LBM are prevalent. And there is already one meta-analysis of the association of 

production, management, environment and biological factors on poultry farm level [9]. However, 

systematic review or meta-analysis at LBMs hasn’t been done so far, it is very necessary to conduct a 

formal systematic review and meta-analysis to quantify the relative importance of market level 

biosecurity risk factors such as cleaning and disinfection, market closures, manure disposal and 

management practices of all-in-all-out from different studies, so to better understand how each risk factor 

influences the AI infection at market level. 

Planning effective changes in health-related behaviour requires a deeper understanding of the perceptions 

of risks, biases, causal attributions, and both the facilitators and barriers to health behaviour change. 

Studies on the knowledge, attitudes and practices of the general public and poultry workers (including 

farmers, sellers and traders) associated with AI have been previously reported. These studies have been 

conducted on discrete groups of different poultry networks which poses a problem of generalizability 

and risk attribution across the whole network. More studies are need that consider the continuous of 

knowledge, attitudes and health beliefs of all actors across the entire poultry system. 
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2.8 Approaches to the prevention and control of AI globally and in China 

2.8.1 Approaches to the prevention and control of AI in poultry globally 

Biosecurity is the first line of defence in the prevention and control of all AI viruses [192]. But when the 

AI viruses have been introduced into poultry populations, control is largely dependent on a range of 

instruments, vaccination, surveillance, stamping out, and quarantine and movement control besides 

biosecurity. To date, control of HPAI H5N1 in endemic countries has basically relied on poultry 

vaccination and massive culling. And none of them can defend against the virus on its own [144, 193]. 

OIE affirms the most effective strategies for dealing directly with AI are early detection and early 

warning, rapid confirmation of suspects, rapid and transparent notification, rapid response (including 

containment, management of poultry movement, zoning and compartmentalization, humane stamping 

out and vaccination where appropriate) [194]. These measures are widely adopted in different countries. 

Enhanced biosecurity by cleaning and disinfecting of infected premises, restricting domestic and wild 

bird mixing, separating poultry areas from other domestic animal areas and separating poultry and human 

areas greatly reduces the likelihood of transmission between animals [96, 148, 155]. Control of AI in 

Hong Kong has been effected through a combination of quarantine, tightening of biosecurity measures, 

and depopulation of infected and contact farms [195]. 

Since the late 1990s, due to the continuing and widespread outbreaks of LPAIV, the use of vaccines for 

the control of H5 and H7 infections has been approved to control the disease in poultry and to prevent 

possible mutations to HPAI viruses [99]. Vaccination against HPAI H5N1 is currently allowed and used 

in some countries, Hong Kong, Vietnam, Indonesia, China, India, Russia, Egypt, and Pakistan [196].  

Measures such as culling, stamping-out plus cleaning and disinfection that have been effective in Europe 

have not been successful in eradicating the disease in Asia [197]. However, massive culling whenever 

HPAI/LPAI H5 or H7 is detected has largely been successful at preventing transmission among poultry 

farms during HPAI outbreaks in Netherlands, Italy, Canada and Hong Kong SAR of China [87, 96, 128, 

148, 155, 156, 198, 199]. Since July 2017, after a sudden increase of human cases and more widespread 

geographical distribution of H7N9 in China as well the mutation of LPAI H7N9 to HPAI H7N9, a H5 

and H7 bivalent inactivated vaccine [138] was adopted by Chinese government in the poultry sector 

through the “National Immunization Program for HPAI”. 

Kingdom of Saudi Arabia (KSA) was declared free of HPAI in April 2008 by the WHO. During the 

H5N1 outbreak from 2007 to 2008, the KSA government made immediate decisions to depopulate all 
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H5N1-affected and non-affected flocks within a 5-km radius area and applied quarantine zones to prevent 

the virus from spreading to other areas. Other control measures, such as closure of live bird markets and 

intensive surveillance tests on all poultry species within quarantine zones, were in place during the 

outbreak [200]. 

Strict quarantine and controls on movement of poultry have been largely used in Europe, Asia and Africa 

after the detection of H5N1 [55, 201]. Quarantine, tracing and screening of suspected flocks are also 

undertaken by endemic countries whenever HPAI/LPAI H5 OR H7 is identified [148, 155, 156]. 

However, there are also some issues raised during the implementation of these measures, for example, 

difficulty in implementing biosecurity measures in settings with backyard farms, as well as vaccination 

and movement restrictions; the massive culling causes huge losses for commercial farmers; the poor 

quality of AI vaccines and the insufficient vaccination coverage could only partially reduce virus 

shedding and the bird or some flock might still spread the virus; the possibility of mutation in the 

circulating virus that AI vaccines may promote may perpetuate the risk of infection in the original species 

or in another; and the major difficulty of differentiation between infected and vaccinated animals [196]. 

Culling without compensation policies as in Southeast Asia can prove counterproductive i.e. economic 

losses that discourage reporting [202]. 

Currently no H5 nor H7 vaccines are currently commercially available for humans. Suspected H5N1 

patients who are confirmed by diagnostic testing usually receive a neuraminidase inhibitor (oseltamivir 

or zanamivir) despite the uncertainty regarding the optimal dose and duration of treatment. For health 

workers and close contacts in a non-pandemic setting, precautions like isolation, high-efficiency masks 

(N-95 masks or multiple surgical masks) and restricted visiting have often been used. For persons who 

have had a possible unprotected exposure to H5N1 virus, chemoprophylaxis with 75 mg of oseltamivir 

once daily for seven to ten days is warranted [24]. In China, for H7N9 confirmed patients, the 

neuraminidase inhibitors (oseltamivir, zanamivir, and peramivir) are used for clinical treatment [101]. 

Measures of publicized preventive knowledge through various kinds of media are also widely adopted. 

Since late 2003 and early 2004, after the intensive report of HPAI H5N1 outbreaks in Southeast Asian 

countries, the international organizations, particularly FAO, OIE, WHO, WB and EC, often actively work 

together to support the affected and at-risk countries. Their continuous assistances cover broad aspects, 

including strengthening capabilities for field surveillance, laboratory, early warning and emergency 

preparedness; coordinating information sharing and networking, researches, provision of experts; and 

support of broad awareness creation and risk communication, analysis of and advice on the social and 
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economic consequences of both the disease and its control, implementing emergency and mid- to long-

term national control strategies and policies. In addition, several networks and platforms are built for 

continuous supportive of disease prevention and control in both animal and human health, including 

Global Early Warning System (GLEWS), OIE-FAO Avian Influenza Network (OFFLU), the Emergency 

Centre for Transboundary Animal Diseases (ECTAD), FAO’s EMPRES Global Animal Disease 

Information System (EMPRES-i), OIE’s WAHID Interface provides access to all data held within OIE's 

new World Animal Health Information System (WAHIS) (former named Handistatus II System). OIE 

and FAO also set up their Reference Centres for different diseases in different countries. 

2.8.2 Approaches to the prevention and control of AI in China 

Control of AI in poultry in China is led by the Veterinary Bureau (VB), a Department/Bureau within the 

MARA of China, which is responsible for livestock health and disease control and prevention in China, 

implemented by provincial and local veterinary service departments and animal health supervision and 

inspection departments. The disease control and prevention in wild life populations fall under the 

responsibility of the State Forestry Administration (SFA, formerly belongs to MARA of China). The 

human infection with AI is the responsibility of the National Health Commission (NHC, former Ministry 

of Health), implemented by provincial and local human health departments. 

2.8.2.1 Overview of poultry AI surveillance system in China 

Every year, a large amount of surveillance testing is being undertaken by national and provincial 

veterinary services. The primary target of national surveillance are chickens, ducks, geese and other 

poultry or wild birds. These are sampled from poultry farms, commercial poultry farms, and backyard 

poultry raising households, poultry trading markets and slaughter houses as well as from main habitats 

of migratory birds for wild birds. The surveillance design and sampling frame follow the national 

guidelines established by the VB of MARA of China. Generally, there are two types of surveillance 

schemes, routine surveillance and centralized surveillance program. 

The routine surveillance program consists of a combination of active surveillance and passive 

surveillance. Passive surveillance targets poultry and wild birds which are found dead of sickness or 

unknown apparent reasons. The active surveillance focuses on establishing fixed sentinels and randomly 

sampling the sentinels to monitor. The active surveillance, consisting of serological and virological 

surveillance, is conducted monthly at provincial level by provincial animal CDC, and the implementation 

may be subject to the actual situation of each province. 
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The centralized surveillance is conducted twice a year, usually during spring and autumn, to complement 

the routine surveillance performed by provincial animal CDCs on a monthly basis. The centralized 

surveillance also consists of serological and virological surveillance. 

The virological surveillance is designed to detect the silent circulation of HPAI, H5N1 virus, the 

emergence of new strains and identify potential vaccination failure. The serological surveillance is 

designed to test the vaccination coverage and proficiency of the vaccines used. 

Since the emergence of H7N9 outbreaks in China, the MARA OF CHINA issued an Emergency 

Surveillance Scheme on H7N9 on 7th August 2013. The surveillance targets were specified chickens 

(especially layer, yellow feather broilers and other breeds which have long raising cycle), waterfowl 

(ducks, geese), domestic pigeons and quail, wild birds and environment in high risk areas. The scope of 

surveillance was specified to be all poultry trading markets in China, stalls selling live poultry in farmers 

markets, poultry with certain size, backyard poultry raising farmers, poultry slaughter houses, and 

habitats of migratory birds [203]. All the results are then compiled at national level by MARA of China 

that publishes the monthly Veterinary Official Bulletin which aggregates all the results of post-

vaccination surveillance, active virological surveillance and outbreak reports for several notifiable 

diseases [204]. Since July 2013 and onwards, the surveillance results of H7N9 are also reported in the 

Veterinary Official Bulletin. 

In February 2014, in order to better respond to H7N9 human infection, MARA of China released the 

National H7N9 Elimination Plan to ensure timely detection and remove of H7N9 influenza virus from 

poultry farming and market circulation and to enhance AI surveillance capacity of veterinary laboratories 

at provincial, prefectural and county levels. The plan aims to ensure proper disposal of confirmed poultry 

cases, and to make efforts to reduce the risk of transmission to human as well as the risk of virus spreading 

from the live bird markets to poultry farms. By these means to ensure the safety of poultry production, 

the quality of poultry products and public health [64]. 

2.8.2.2 Prevention and control of AI in poultry in China 

MARA of China has established regulations of biosecurity management on farms. (E.g. local animal 

health supervision institution shall not issue the Animal Quarantine Certification to farms which failed 

to meet the standards in the censorship; disinfection shall be carried out for vehicles, loading tools and 

relative personnel; prevent the poultry of contacting with wild birds and other wild animals; encourage 

the partition on the farms to improve the biosecurity levels.) Most of the large-scale farms conform to 

the regulations, however, the majority of domestic poultry is bred in small-scale farms and backyard that 



57 

 

lack biosecurity practices. Therefore, in China it is a great challenge to completely control or eradicate 

AI relying on biosecurity measures [128]. 

Beginning from 2004, a culling plus vaccination strategy has been implemented for the control of HPAI 

epidemics. Since then by 2008, over 35 million poultry have been depopulated, and over 55 billion doses 

of the different vaccines have been used to control the outbreaks [128]. After the final confirmation of a 

highly pathogenic H5N1 avian influenza infection, all of the poultry within a 3-kilometre radius should 

be depopulated and compensated with 10 Chinese Yuan for each poultry (subject to the poultry species 

and the ages in days). Disinfection and movement control are implemented for 21 days after the poultry 

depopulation. Any existing live bird market within a 10 kilometre radius will be shut down for at least 

21 days [128, 205]. 

Mass vaccination against HPAI H5N1 has been implemented since November 2005. The vaccination of 

HPAI H5N1 in poultry (mainly chickens, ducks and geese) in China is compulsory. Vaccine is freely 

provided by government, the vaccine coverage of the nominated species is requested to reach 100%, and 

the positive rate of the antibody is supposed to reach 70% [206]. Massive vaccination has been effective 

and played an important role in reducing the incidence of H5N1 infection in poultry and in markedly 

reducing the number of cases of human infection [207]. An inactivated vaccine has been used in chickens 

to control the H9N2 infection since 1998. It is voluntary, some poultry farms may apply, and some may 

not. From July 2017, Chinese government implemented National Vaccination Program for H7N9 in the 

poultry sector through the adoption of a H5 and H7 bivalent inactivated vaccine, currently this vaccine 

seems to be effective at controlling the virus circulation and consequently decreased the number of 

human cases [136, 138, 208].  

However, the vaccination strategy against H5N1and H7N9 still faces different challenges in different 

avian species. The H5 vaccines are relatively easy to apply in chickens on large farms but are difficult to 

administer to chickens raised in backyard and small-scale farms which accounts for over 70% of the total 

birds [207]. The H5 vaccination rates in duck and geese are relatively low and could still serve as a 

reservoir for the virus [207]. The continued circulation of H5N1 viruses in southern China may then be 

a result of the low vaccination coverage [207, 209]. Similarly, although the adoption of vaccination 

against H7N9 seems to be effective, the fact that the virus is still present at low levels in farms and LBMs 

means that there is still a chance of resurgence in future, particularly in areas where vaccination has not 

been used [136]. 



58 

 

The China MARA, MoH (current NHC) and SAIC (current SAMR) jointly issued the ‘Regulations of 

prevention and control of HPAI in LBMs” in 2006 [210]. The regulations emphasized the strict 

implementation of the regular market rest and disinfection day policy. And all live poultry that enter 

wholesale LBM should present the animal quarantine confirmative certificate. Unsold live poultry are 

prohibited from being shipped back to the farm. Once positive results are found, animal husbandry and 

veterinary departments advise the local government to close the LBMs. After thorough cleaning and 

disinfection and 21 days later, after joint analysis and evaluation and approval from the provincial animal 

husbandry and veterinary authorities and relevant departments, then the market can be re-opened. After 

the emergence of H7N9, MARA of China revised the regulations that the retention of live poultry 

overnight in the LBMs (live poultry booth/stall) is not allowed. Sold live birds should be slaughtered 

before they are taken out of the market [64]. Recognizing the importance of the LBM in the exposure 

and dissemination of H7N9 viruses, in Feb 2017, the MARA of China established the “1110 policy” on 

LBMs, i.e. clean once a day, disinfect once a week and close market once a month, and zero overnight 

storage in market.  

The supervision of live poultry movement was enhanced with detailed pre-movement testing 

specifications as a requirement for the issue of the animal quarantine confirmative certificate in the No. 

2516 Announcement of MARA of China released in April 2017 [211]. This announcement specified that 

poultry farms who are going to undertake inter-provincial live poultry transport should take the initiative 

to entrust the local veterinarians to collect serological and virological samples to test for H7N9 virus 

within 21 days before the transport and the samples should be sent to local animal disease prevention and 

control institutions for laboratory testing within 48 hours after sampling. Meanwhile, the sampling should 

cover all the sheds on the farm. The sampling quantity should not be less than 30 feathers per sample and 

records shall be kept for future reference. The animal quarantine confirmative certificate shall not be 

issued if there is any positive detected or the testing report is issued 21 days before the day of sampling. 

Additionally, there are many foreign aid projects in China delivered through the VB of MARA of China, 

the most influential ones are the USAID project on HPAI (CFETPV program, LBM market investigation 

and social economic analysis) and the World Bank project on HPAI (phase 1, 2, 3). 

2.8.2.3 Prevention and control of AI in humans in China 

The Chinese government has been focused on enhancing surveillance and laboratory testing for human 

AI. Besides that, enhanced epidemiology investigation is conducted immediately after report of the 

human infection, observation of all close contacts and health workers related to the human cases. The 
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China CDC also publishes interim guidelines to limit the possibility of human infections during the 

outbreaks of AI in poultry or wild birds [212]. 

In China, all suspected H5N1 cases are reported to the Chinese Centre for Disease Control and Prevention 

(China CDC, Beijing, China) through a national surveillance system, which is based upon two reporting 

mechanisms, one is hospitalized cases of pneumonia of unknown origin, and the other one is enhanced 

1-month surveillance for cases of influenza-like illness at all health-care facilities within a 3-km radius 

after the occurrence of a suspected or confirmed H5N1 poultry outbreak with high bird mortality [213, 

214]. The specimens from the suspected H5N1 human case are initially tested by influenza laboratories 

at provincial level, as part of the nationwide influenza surveillance network. The network consists of 200 

sentinel hospitals and 84 influenza diagnosis laboratories [93].  

After the emergence of H7N9, the NHFPC established the Joint Prevention and Control Mechanism 

(JPCM) to lead the national response to H7N9, issued the first national H7N9 technical guideline, and 

implemented enhanced surveillance for H7N9 virus infection among persons with influenza-like illness 

in the existing sentinel surveillance system. Local JPCM was established in several provinces as well. 

[102]. 

2.8.3 Identified gaps in knowledge 

Many prevention and control measures have been identified to be effective to contain AI infection by 

many countries. Despite existing control programmes there are still infections of AI being reported and 

AI viruses isolated from surveillance programs from time to time. There is a strong need to assess the 

vulnerabilities of the system for effective prevention and control of AI. And there is a need to consider 

the whole poultry market chain system approach to integrate prevention and control practices at all levels, 

i.e. farm level, trader/intermediary, market level and consumer. Only researches into understanding of 

the biosecurity behaviour and risk perceptions of different actors along the poultry market chain can 

provide the necessary evidence to address these control and prevention issues. 
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Chapter 3 Data Sources and Methodology 

This Chapter contains a detailed description of the data sources and methods used in each research 

Chapter. 

3.1 H7N9 infections in human and poultry dataset and risk factors 

The data on the presence of H7N9 in the 24 LBMs (analysed in Chapter 5)was available from the official 

national emergency surveillance activities conducted during 31 March to 19 April 2013; data on H7N9 

infection in poultry and humans used for mapping was up to the end of May 2013, both infection data 

were extracted from the official website of MARA of China [215] and WHO [216], and geocoded based 

on the reported geographical source of infection. 

We obtained all laboratory-confirmed H7N9 human cases reported during 2013-2017 (analysed in 

Chapter 7) from “Situation Updates - Avian Influenza” of WHO [216] and “Avian Influenza Report” 

from Centre for Health Protection of Department of Health of Hong Kong SAR [217]. Case definitions 

and laboratory testing have been described previously [218, 219]. For each human H7N9 case, the 

information of county of residence and date of onset symptoms was extracted. Data on poultry serological 

and virological surveillance were obtained from the monthly official Veterinary Bulletin released by the 

Veterinary Bureau of the MARA of China [204], from which we extracted data on positive identification 

of H7N9 from the national H7N9 surveillance program between 2013 and 2017. All samples were tested 

at provincial level and confirmation of H7N9 virus was based on polymerase chain reaction (PCR). All 

AI positive samples were sent to the Harbin National Veterinary Research Institute for confirmation, 

subtyping and virus isolation. All reported H7N9 human cases and poultry virological surveillance 

positives were then geo-referenced and linked to county level map of China. The georeferencing was 

based on the geographic locations of the H7N9 infections or county centroids when detailed location was 

not available. 
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Figure 3-1 Timeline of the six H7N9 epidemic waves and some implemented control policies, as well as the conducted studies in this Thesis. 

3.2 Epidemiological field surveys 

3.2.1 Epidemiological investigation during the H7N9 emergency response in April 2013 

During the emergency response to influenza A (H7N9) infection in humans, a cross-sectional survey was 

conducted in 24 LBMs (15 wholesale markets and 9 retail markets) in the Shanghai provincial-level 

municipality, Jiangsu, Zhejiang and Anhui provinces from 14 to 19 April 2013. The 24 LBMs included 

in the study were selected purposively based on two criteria: first, we focused on all LBMs within 1 

kilometre in the adjacency of areas with reported H7N9 human infections ( 

-A), and second, we selected all LBMs that marketed more than 20,000 heads of poultry per day at the 

time of the outbreak. Therefore, the LBMs selected best represented existing production and LBM 

marketing systems. 

This investigation included data collection on live poultry movement and market biosecurity. The 

managers of the 24 LBMs were interviewed using a standardized, validated questionnaire to capture 

information relative to trade and general market biosecurity measures. The questionnaires had been used 

in previous studies by our team [31, 40]. About 90% of live poultry are thought to come through 

wholesale markets on the way to retail markets. Some wholesale markets that also sell live poultry 
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directly to the consumer have been defined as mixed markets. Information on poultry movements was 

obtained from poultry movement certificates available at nine of the 24 surveyed markets (four wholesale 

LBMs and five mixed LBMs), and was recorded for up to three months before the reporting of the first 

human case in the province, i.e. Shanghai (1 January to 5 April), Jiangsu (1 January to 4 April), Anhui 

(1 January to 15 April) and Zhejiang (1 January to 11 April). The nine markets were from Shanghai (n=3), 

Nanjing (n=2), Hangzhou (n=1), Huzhou (n=1), Hefei (n=1) and Chuzhou (n=1). The poultry movement 

certificates recorded the name of the county of poultry sources, poultry species (e.g. chickens, pigeons, 

ducks and other types) and the numbers of poultry transported. 

3.2.2 Epidemiological field survey in Anhui, Jiangsu and Shanghai during June - July 2014 

3.2.2.1 Study design 

A cross-sectional questionnaire survey was conducted from June to July in 2014 targeting meat chicken 

farmers, live chicken vendors and chicken consumers in LBMs in six counties located in Jiangsu (Lishui, 

Jintan, Jiangyan) and Anhui (Feixi, Quanjiao and Chaohu) provinces. Selection of counties was based 

on findings from the program of research in Chapter 5 (conducted during the H7N9 emergency response), 

which demonstrated that the chicken movements were highest in those six counties from Jiangsu and 

Anhui provinces [10]. One county in Shanghai municipality (Fengxian) was also included in this survey 

because Shanghai was the origin of the first H7N9 human cases reported in 2013 and it is adjacent to 

Jiangsu province where there was a geographic co-distribution of H7N9 and H5N1 in humans [29]. An 

initial sample size of 10 commercial meat chicken farms, one wholesale LBMs and two to three retail 

LBMs (subject to actual numbers of LBMs) in the seven high risk counties were included. Within each 

LBM 10 chicken vendors and 10 consumers were interviewed. Maps of the study area and the locations 

of participants are presented in Figure 3-2 and Figure 3-3. The surveyed farms are located in rural area 

in each county while the surveyed LBMs are located in urban area. 
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Figure 3-2 Field survey area 

 

Figure 3-3 Map of survey locations, the yellow dots are the surveyed live bird markets, the big ones with a bird inside represent the 

wholesale LBMs, the small ones are retail LBMs, the red dots are chicken farms. 
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3.2.2.2 Knowledge, attitudes and practice data of farmers, traders and consumers 

Face-to-face interviews were used to elicit knowledge, attitudes and practices of chicken farmers, live 

chicken vendors and chicken consumers at LBMs in the target counties associated with avian influenza. 

Structured questionnaires included questions to capture data on characteristics of participants (e.g. gender, 

age, education level, employment status, years of working with chicken, hours of contacting chicken in 

a day), knowledge about AI (e.g. “Is AI an infectious disease?” “what types of animals can be infected 

with AI” etc.), attitudes towards AI (e.g. “Do you think AI is a severe disease for humans?”, “What do 

you think is the likelihood for you to get AI?” etc.), and practices regarding AI prevention (e.g. What do 

you do when you suspect that you have flu symptoms?) (See Appendix C for full set of questions). 

 

Figure 3-4 Field survey plan 

3.2.2.3 Live chicken movement datasets 

Information on live poultry movements was obtained from poultry movement certificates available at 

wholesale LBMs and live poultry trading platforms (similar to a wholesale LBM) in the selected counties. 

All available chicken movement certificates in the trading locations surveyed were recorded from 

January 2014 to July 2014. This dataset records half-year chicken movements covering the time period 
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of Chinese New Year festivals, during which period the temporal variation of live poultry trade in 

Southern China was found to be associated with higher HPAIV H5N1 infection risk in humans and 

poultry [40]. This dataset is representative of the extent of live chicken movement within and beyond 

that region. 

3.2.3 Ecological risk factors 

The analysis in the program of research in Chapter 7 focused on a limited set of risk factors, including 

the density of live-poultry markets, in addition to a set of other factors that have been proven in the past 

to show consistent geographical correlation with avian influenza. The set of risk factors included the 

presence of wholesale LBMs, number of retail LBMs (markets per county), presence of poultry 

virological positives, human population density (people per km2), chicken density (birds per km2) and 

network degree centrality estimated based on the chicken movement data collected in the field survey. 

All risk factors were compiled at county level where the policy is most likely to be made. These risk 

factors are described in Table 7-1. 

3.3 Systematic review and meta-analysis 

3.3.1 Search strategy 

Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

guidelines, we performed a systematic literature search using PubMed, ISI Web of Science and Science 

Direct, CNKI (the China Academic Journals full-text database) and WANFANG database (includes most 

comprehensive online full-text Chinese medical journals) with no starting time limits, up to 10 Jun 2018. 

The search strategy used four PICO (participants, interventions, comparators, and outcomes) components 

(Table A-1). 

3.3.2 Eligibility criteria 

Epidemiological studies were included if they evaluated biosecurity risk factors for AI infection in LBMs 

in poultry, the environment or human populations. Studies were excluded if: 1) they were laboratory 

studies, descriptive studies, case reports, and vaccine efficacy studies; 2) the outcome recorded was not 

AI infections; 3) they were not LBM based studies (i.e. ecological studies, studies at local, regional or 

national levels, studies at farm level); 4) there was no effect size for LBM biosecurity risk factors reported. 
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3.3.3 Data abstraction for market-level biosecurity indicators 

For each of the papers that met the inclusion criteria, we recorded information on subject title, first author, 

year of publication, country, language, subtype of AIV and its pathogenicity, total sample size, number 

of AI positives and negatives, risk factors, infection type, study type and analysis methods. Data on 

biosecurity indicators were extracted by two independent reviewers (XZ, RSM), and a dataset based on 

these characteristics was created in MS Excel. In this study, we analysed biosecurity indicators for 

poultry and market environment infection and market workers’ infection (i.e. non-symptomatic 

seropositive) separately. A total of 34 biosecurity risk factors were explored in our study (Table A-2). 

For market infection, the following groups of biosecurity indicators were considered: A) market 

characteristics: market type, market size, market location (rural or urban area), market location (central 

city or non-central city areas), and presence of multiple species, presence of ducks and presence of 

rabbits ; B) market biosecurity management: conduct cleaning and disinfection, before and after cleaning 

and disinfection, conduct waste disposal, conduct market closure, before and after rest day, ban on 

overnight storage, poultry sources, separate different species and conduct slaughter in market; C) 

seasonality, temperature. For market workers’ infection: D) socio-demographic characteristics: sex, age, 

years working in LBMs, type of market (wholesale or retail), vaccination history and occupation; E) 

activities involving exposure to poultry: conduct cleaning, conduct feeding, contact poultry, conduct 

slaughtering, defeathering and evisceration. 

3.3.4 Study quality and bias assessment 

Two authors (XZ, RJSM) independently reviewed and assessed the quality of each English paper using 

a structured approach. Papers in Chinese were translated by XZ and evaluated by XZ and RJSM. The 

quality of each study was scored on seven quality assessment criteria (Error! Reference source not 

found.Table A-3). Studies that recorded a higher overall score were considered of superior quality. The 

scores from quality assessment were then rescaled into quality ranks between 0 and 1 by making them 

relative to the highest scoring study in the group; then the best study was ranked 1 and those with lower 

scores were ranked lower. These ranks were then utilized by the quality effects model to adjust estimates 

of effect [11].  
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3.3.5 Meta-analysis 

The odds ratio (OR) and 95% confidential interval of each biosecurity factor were extracted from each 

study, or if the odds ratio was not reported, we calculated it using Epi Info TM 7.1.5.2 based on the raw 

data reported. When a factor was tested in both a univariable and multivariable model, the effect size of 

the factor in the multivariable model was used. The odds ratios of each factor was modelled by applying 

a quality effects (QE) meta-analysis model that assumed heterogeneity across the included studies [11]. 

The results of the analyses were statistically significant if the 95% confidence interval did not include 

the value one. 

The QE model redistribution of weights due to the rescaled quality rank (called Qi in the MetaXL 

software described below) helps reduce estimator variance as well as allowing for proper error estimation 

through the confidence interval thus generated. Nevertheless, the random effects results are in Appendix 

Figure A-1, Figure A-2, Figure A-3, Figure A-4 and Figure A-5 for comparison. All results are presented 

as a forest plot that shows individual OR estimates for each group of biosecurity indicators and overall 

for the category. We assessed study heterogeneity by the Cochran Q Chi-square test, and this is also used 

by the I2 index statistic to estimate the proportion of total variation due to heterogeneity. An I2 value of 

<25% indicated low heterogeneity, 25-75% indicated moderate, and a score of >=75% suggested high 

degree of heterogeneity. Publication bias was assessed using Doi and funnel plots. All analyses were 

conducted using MetaXL, version 5, Epigear International, Sunrise Beach, QLD, Australia 

(www.epigear.com).  

3.4 Analysis of spatial autocorrelation 

To assess whether there was spatial autocorrelation in the observed pattern of human H7N9 infections in 

the study area we used the Global Moran's Index (Moran’s I), a measure of spatial autocorrelation for 

spatially aggregated data. We used the incidence rate of human H7N9 infections per 1,000 (i.e. estimated 

by dividing the observed number of human cases by the total human population in the county and 

multiplied by 1,000) for estimation of Moran’s I. Moran's I is positive when nearby areas tend to be 

similar, negative when they tend to be dissimilar, and approximately zero when attribute values are 

arranged randomly and independently in space [220]. The Moran's I value and a Z-score (evaluating the 

significance of the index) were estimated using ArcGIS 10.1. 
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3.5 Social Network Analysis (SNA) 

Social network analysis (SNA) methods are used to characterize the network of live chicken movements 

in the study areas. The networks were illustrated using NetDraw and ArcGIS. ArcGIS will also be used 

to calculate the extent of the network, and geographic distribution of the network over time. 

SNA was used to characterize the network of live poultry movements in the study areas [41]. To describe 

the connectivity pattern within the network dataset consisting of records of paired trading events between 

a particular LBM and the county of origin of the purchased chickens (termed as “chicken source”), SNA 

will be used. A trade event is defined with a threshold of at least one movement between the LBM and 

chicken sources. Network connectivity of all networks examined in the study will be summarised by 

using the number of links (indicating the frequency of movement), movement length (representing the 

catchment area of LBMs), degree centrality, k-core and the components of the network. The degree 

represents the absolute number of unique links of a given node to another one. The k-core represents the 

maximal group of nodes, all of whom are connected to a number (k) of other nodes; it describes the 

connectivity of different groups in a network. These two network indicators are important for describing 

the levels of connectivity and centrality that exist between the different elements of a network and play 

a key role while identifying the most influential spreaders within a network. The components of the 

network include a maximal connected sub-graph where all nodes (i.e. chicken sources) are connected 

through paths. 

3.6 Generalized Linear Square (GLS) regression model 

Questions of knowledge, attitudes and practices were scored individually. Scores of all the KAP 

questions were then summed accordingly to represent the levels of each participant’s overall knowledge, 

overall attitudes and overall practices towards AI. Details of the scoring method is included in Table C-

1. For categorical variables, frequencies for different groups were compared using chi-square tests. To 

identify the predictors of KAP scores of AI among different actors along the live chicken market chain, 

e.g. chicken farmers, vendors and consumers, we built four multivariable generalized linear regression 

models by using the generalized linear square (GLS) random-effects models. In case of chicken farmers, 

we included gender, age, educational level, years of working and hours of contacting. In case of chicken 

vendors, we included gender, age, educational level, type of stalls, type of vendors, years of working 

with chicken and hours of contacting chicken. In case of market consumers, we included gender, age, 

education level, employment status, the frequency of buying chicken, type of chicken bought. Model 1 
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integrates all participants, model 2-4 are built for chicken farmers, chicken vendors and chicken 

consumers respectively. For all the four models, pairwise deletion was employed, thus participants with 

missing values (the missing rate is around 0.56%) were excluded on a test-by-test basis. Two-tailed test 

were utilized with a p-value<0.05 considered statistically significant. Data were analysed with STATA 

(version 12.0; SPSS Inc., Chicago, IL, USA). 

3.7 Bayesian Conditional Autoregressive (CAR) Model 

A Bayesian framework was used to construct a Poisson regression model of the observed incidence data 

of human H7N9 infections in each county using the OpenBUGS software 3.2.3 rev 1012 [221]. The 

model included the explanatory variables and a spatially structured random effect. The mathematical 

notation for the model is provided in Appendix D.2. It assumed that the observed counts of H7N9 human 

infections in the county (from 1 to 1181) followed a Poisson distribution. 

The spatially structured random effect was modelled using a conditional autoregressive (CAR) prior 

structure [222]. This approach uses an adjacency weights matrix to determine spatial relationships 

between counties. If two counties share a border, it was assumed the weight = 1 and if they do not the 

weight = 0. The adjacency matrix was constructed using the “Adjacency for WinBUGS tools” in ArcGIS 

software [221]. A flat prior distribution was specified for the intercept, whereas a normal non-informative 

prior distribution was used for the coefficients (with a mean = 0 and a precision = 0.001). The priors for 

the precision of spatially structured random effects were specified using non-informative gamma 

distributions (0.5, 0.0005). (The OpenBugs code is in Appendix D.3) 

The first 1,000 iterations were run as a burn-in period and discarded. Subsequent sets of 20,000 iterations 

were run and examined for convergence. Convergence was determined by visual inspection of posterior 

density and history plots and by examining autocorrelation plots of model parameters. Convergence 

occurred at approximately 100,000 iterations for each model. Another 20,000 values from the posterior 

distributions of the model parameters were stored and summarized for the analysis. Statistical 

significance was indicated by 95% credible intervals (95% CrI), a variable was considered significant if 

CrI excluded 0. 

Choropleth maps were created using the ArcGIS software to visualize the geographical distribution of 

crude incidence for the 1181 counties in the study area. The posterior means of the CAR random effects 

obtained from the models were also mapped. 
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Chapter 4 Effectiveness of Market-Level Biosecurity at Reducing 

Exposure of Poultry and Humans to Avian Influenza: A 

Systematic Review and Meta-Analysis 

4.1 Context 

The Literature Review in Chapter 2 demonstrated a large number of studies which attempted to identify 

risk factors associated with AI infection at LBMs and that some had identified exposure to H7N9 infected 

poultry or their environment at LBMs as the main risk factor for human infections [21, 69, 159-161, 163, 

223-233]. However, results from those studies were inconsistent and even contradictory and the relative 

efficacy of different LBM biosecurity risk factors at reducing the transmission of AI to both poultry and 

humans in the LBM setting was still unclear. At the time when this Chapter was initiated there was one 

meta-analysis looking at poultry farm level the association of production, management, environment and 

biological factors on [9]. Therefore, there was a need to conduct a systematic review and meta-analysis 

to quantify the relative importance of market level biosecurity risk factors (such as cleaning and 

disinfection, market closures, manure disposal and management practices from different studies) on 

human (market workers) and poultry AI infection at LBMs. 

In Chapter 4, I set out to conduct a systematic review and meta-analysis following the PRISMA 

guidelines and a PICO searching strategy. A total of 79 epidemiological studies were identified by fitting 

the inclusion/exclusion criteria and were ranked based on their research quality. Then, the effect size of 

biosecurity indicators from those included studies were extracted and meta-analysed using a quality 

effects (QE) meta-analysis model using MetaXL software. 

The results from Chapter 4 demonstrated that biosecurity measures effective at reducing AI market 

contamination and poultry infection at LBMs included smaller market size, selling single poultry species 

and separating different species, performing cleaning and disinfection and market closures, ban on 

overnight storage. The results also revealed that markets located at non-central city areas and markets 

that source poultry from other areas, i.e. possible cross-regional and long distant poultry movements, 

were associated with a higher risk of poultry AI infection at LBMs. Our meta-analysis also suggested 

that poultry slaughter operations at LBMs increase the risk of AI transmission within the LBM 

environment. The results of our meta-analysis also suggested that Spring and Winter seasons have posed 

significantly higher risk of AI infection in the LBM environment compared to Summer and Autumn. In 
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addition, our results also demonstrated that human AI infection at LBMs is dependent on important 

demographic and occupational hazards; these include, higher risk of exposure in workers at retail LBMs, 

female workers and those who contact ducks, conduct cleaning, slaughtering, defeathering or 

evisceration. 

The findings in Chapter 4 suggests the most effective strategies to reduce AI market contamination 

identified in this study should target larger LBMs that are located at non-central city areas, sell and 

slaughter multi-species of live poultry. LBM workers directly involved in cleaning and poultry 

processing tasks should participate in occupational health and safety programmes. The finding also has 

important implication for the temporal targeting of surveillance at LBMs in Spring and Winter seasons. 

The findings in Chapter 4 will allow AI prevention and control program officers or market managers to 

make informed decisions on targeted risk-reduction strategies at LBMs and in this way to protect poultry, 

poultry workers and consumers visiting LBMs.  

To the best of my knowledge, the systematic review and meta-analysis presented in Chapter 4 is the first 

of its kind to report on the combined effectiveness of market-level biosecurity indicators for both poultry 

and human AI infections at LBMs.  

This Chapter has been published in the Journal of Infectious Diseases as a review paper, and supporting 

technical information is presented in Appendix A of this Thesis.  
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4.2 Abstract 

In this study, we aimed to identify the effect of market-level risk factors on avian influenza (AI) infection 

in poultry and humans and generate evidence that will inform AI prevention and control programs at live 

bird markets (LBMs). We performed a systematic literature review in both English and Chinese search 

engines. We estimated the pooled odds ratios of biosecurity indicators relating to AI infections at market 

level using a quality effects (QE) meta-analysis model. We found biosecurity measures effective at 

reducing AI market contamination and poultry infection at LBMs included smaller market size, selling 

single poultry species and separating different species, performing cleaning and disinfection and market 

closures, ban on overnight storage and sourcing poultry from local areas. Our meta-analysis indicates 

that higher risk of exposure to AI infection occurs in workers at retail LBMs, female workers and those 

who contact ducks, conduct cleaning, slaughtering, defeathering or evisceration. The most effective 

strategies to reduce AI market contamination identified in this study should target larger LBMs that are 

located at non-central city areas, sell and slaughter multi-species of live poultry. LBM workers directly 

involved in cleaning and poultry processing tasks should participate in occupational health and safety 

programmes. 

Keywords: Avian influenza; biosecurity; live bird markets; meta-analysis; risk factors. 

4.3 Introduction 

In the past ten years, several Asian-lineage HPAI viruses caused fatal disease in poultry, wild birds, 

humans and other mammals, and some have spread across three continents [234]. Affected countries and 

the international community have mobilized funds to assist in the control of the disease because of the 

potential of these viruses to develop into a global influenza pandemic [235, 236]. 

Available evidence indicates that live bird markets (LBMs) can serve as potential hubs where AI viruses 

are maintained and transmitted for long periods of time. After the emergence of HPAI H5N1 influenza 

in 2003, several studies have documented that LBMs could be sources of human AI infections [237]. The 

importance of LBMs in the transmission of AI to humans was also highlighted by the emergence of 

influenza A (H7N9) viruses of low pathogenicity to poultry in early 2013, causing human infections 

without preceding or concomitant outbreaks in poultry. Exposure to H7N9 infected poultry at LBMs has 

been implicated as the main risk factor for human infection [7]. During the fifth wave of influenza A 

(H7N9) from October 2016 to April 2017, an increasing proportion of human cases were related to 

poultry exposures in rural farms and backyard flocks [238]. 
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In the context of animal health, biosecurity is the application of management practices that aim to reduce 

the risk of the introduction and spread of disease agents within and between animal populations. At LBMs, 

these practices can include introducing rest days, limiting the number of poultry species sold at a market, 

the use of cleanable cages and the deployment of adequate cleaning and disinfection procedures. While 

some studies have demonstrated that good biosecurity practices at LBM-level are associated with reduced 

risk of AI infection, the relative efficacy of different LBM biosecurity practices at reducing the 

transmission of AI to both humans and poultry in the LBM setting is still unclear. 

The role of farm-level biosecurity indicators, such as production, management, environment and 

biological factors in AI infection in poultry have been quantified in a recent study [239]. A recent 

systematic review and meta-analysis evaluated risk factors for clinical outcomes in H5N1 patients [240]. 

There were also systematic reviews of pathways of AI exposure at the animal-human interface and meta-

analyses estimated the prevalence of AI infection among humans and birds [27]. A previous systematic 

review assessed the impact of different interventions implemented in LBMs to control the infection of 

zoonotic influenza [241]. There is a need for similar studies to quantify the impact of relative efficacy of 

biosecurity measures on human (market workers) and poultry infection at LBMs. This information will 

allow national AI control program managers to make informed decisions on targeted risk-reduction 

strategies at LBMs and in this way to protect poultry, poultry workers and consumers visiting LBMs. 

In this study, we systematically reviewed and meta-analysed the overall effect of different biosecurity 

indicators on AI infection from different studies, to understand more about how each risk factor 

influences AI infection at market level and to generate evidence that will inform AI prevention and 

control programs at LBMs. 

4.4 Methods 

4.4.1 Search strategy 

Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 

guidelines, we performed a systematic literature search using PubMed, ISI Web of Science and Science 

Direct, CNKI (the China Academic Journals full-text database) and WANFANG database (includes most 

comprehensive online full-text Chinese medical journals) with no starting time limits, up to 10 Jun 2018. 

The search strategy used four PICO (participants, interventions, comparators, and outcomes) components 

(Table A-1). 
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4.4.2 Eligibility criteria 

Epidemiological studies were included if they evaluated biosecurity risk factors for AI infection in LBMs 

in poultry, the environment or human populations. Studies were excluded if: 1) they were laboratory 

studies, descriptive studies, case reports, and vaccine efficacy studies; 2) the outcome recorded was not 

AI infections; 3) they were not LBM based studies (i.e. ecological studies, studies at local, regional or 

national levels, studies at farm level); 4) there was no effect size for LBM biosecurity risk factors reported. 

4.4.3 Data abstraction for market-level biosecurity indicators 

For each of the papers that met the inclusion criteria, we recorded information on subject title, first author, 

year of publication, country, language, subtype of AIV and its pathogenicity, total sample size, number 

of AI positives and negatives, risk factors, infection type, study type and analysis methods. Data on 

biosecurity indicators were extracted by two independent reviewers (XZ, RSM), and a dataset based on 

these characteristics was created in MS Excel. In this study, we analysed biosecurity indicators for 

poultry and market environment infection and market workers’ infection (i.e. non-symptomatic 

seropositive) separately. A total of 34 biosecurity risk factors were explored in our study (Table A-2). 

For market infection, the following five groups of biosecurity indicators were considered: A) market 

characteristics: market type, market size, market location (rural or urban area), market location (central 

city or non-central city areas), and presence of multiple species, presence of ducks and presence of 

rabbits ; B) market biosecurity management: conduct cleaning and disinfection, before and after cleaning 

and disinfection, conduct waste disposal, conduct market closure, before and after rest day, ban on 

overnight storage, poultry sources, separate different species and conduct slaughter in market; C) 

seasonality, temperature. For market workers’ infection: D) socio-demographic characteristics: sex, age, 

years working in LBMs, type of market (wholesale or retail), vaccination history and occupation; E) 

activities involving exposure to poultry: conduct cleaning, conduct feeding, contact poultry, conduct 

slaughtering, defeathering and evisceration. 

4.4.4 Study quality and bias assessment 

Two authors (XZ, RJSM) independently reviewed and assessed the quality of each English paper using 

a structured approach. Papers in Chinese were translated by XZ and evaluated by XZ and RJSM. The 

quality of each study was scored on seven quality assessment criteria (Table A-3). Studies that recorded 

a higher overall score were considered to superior quality. The scores from quality assessment were then 
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rescaled into quality ranks between 0 and 1 by making them relative to the highest scoring study in the 

group; then the best study was ranked 1 and those with lower scores were ranked lower. These ranks 

were then utilized by the quality effects model to adjust estimates of effect [242].  

4.4.5 Statistical Analyses 

The odds ratio (OR) and 95% confidential interval of each biosecurity factor were extracted from each 

study, or if the odds ratio was not reported, we calculated it using Epi Info TM 7.1.5.2 based on the raw 

data reported. When a factor was tested in both a univariable and multivariable model, the effect size of 

the factor in the multivariable model was used. The odds ratios of each factor were modelled by applying 

a quality effects (QE) meta-analysis model that assumed heterogeneity across the included studies [242]. 

The results of the analyses were statistically significant if the 95% confidence interval did not include 

the value one. 

The QE model redistribution of weights due to the rescaled quality rank (called Qi in the MetaXL 

software described below) helps reduce estimator variance as well as allowing for proper error estimation 

through the confidence interval thus generated. Nevertheless, the random effects results are in Table A-

5 for comparison. All results are presented as a forest plot that shows individual OR estimates for each 

group of biosecurity indicators and overall for the category. We assessed study heterogeneity by the 

Cochran Q Chi-square test, and this is also used by the I2 index statistic to estimate the proportion of total 

variation due to heterogeneity. An I2 value of <25% indicated low heterogeneity, 25-75% indicated 

moderate, and a score of >=75% suggested high degree of heterogeneity. Publication bias was assessed 

using Doi and funnel plots. All analyses were conducted using MetaXL, version 5, Epigear International, 

Sunrise Beach, QLD, Australia (www.epigear.com).  

4.5 Results 

4.5.1 Search results and study characteristics 

Our literature search strategy yielded a total of 249 citations by searching PubMed, 554 articles from 

Web of Science (Web of ScienceTM Core Collection and MEDLINE) and 111 articles from Science 

Direct; we also found 269 articles from CNKI and 266 articles from the WANFANG database (Figure 

4-1). After removing duplicates, and applying inclusion and exclusion criteria, we finally included 79 

articles for the systematic review and meta-analysis.  

http://www.epigear.com/
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The 79 studies included in the analysis were published between 2003 and 2018. The studies were from 

seven countries or regions including Mainland China (65), Hong Kong SAR China (2), Vietnam (4), 

Bangladesh (4), the USA (3), Egypt (1) and Indonesia (1). Of the included 79 studies, 25 were in English 

and 54 were in Chinese; 69 studies investigated biosecurity indicators associated with market infection, 

12 studies investigated biosecurity indicators associated with market workers’ infection at LBMs, out of 

that, two studies investigated on both poultry and poultry worker infections at LBMs (please see Table 

4-1).  

 

Figure 4-1 Flow diagram of studies selection process. Abbreviation: LBM, live bird market. 

 

4.5.2 Quality and heterogeneity of selected studies 

Quality assessments of studies included in the analysis is in Table A-4 and Table A-5. The quality scores 

of studies related to market infections ranged from 3 to 12 (median is 8, maximum possible is 13), and 

the scores of studies on market workers’ infection ranged from 4 to 12 (median is 8, maximum possible 

is 13). 
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Our results indicate that overall studies within biosecurity Groups A, B, C were highly heterogeneous 

(estimated I2 values of 90%, 89% and 96% respectively) (see Figure 4-2, Figure 4-3 and Figure 4-4). 

Moderate heterogeneity was seen within Group D (I2 values of 73%, see Figure 4-5). Very low 

heterogeneity was seen within Group E (I2 value of 15%) (see Figure 4-6). Of the 79 studies on market 

infections, there were 60 longitudinal studies, 17 cross-sectional studies, and two case-control studies. A 

total of 32 studies investigated general AIV and specific subtypes (i.e. H5 or H7 or H9, or their 

combinations), 23 studies investigated specific AIV subtypes, and 14 studies only studied general AIV. 

Given the heterogeneity of these studies in relation to the viruses being isolated, the focus of the papers 

was to report the effect of market-level of biosecurity on AI infection/recovery generally. Of all the 69 

studies on market infections, 50 studies investigated only environmental samples in LBMs for AI virus, 

and 11 studies collected only poultry samples. Eight studies investigated both poultry and environmental 

samples, and only one study reported the results by sample type. For these reasons, we did not stratify 

our meta-analysis by type of biological sample (see Table 4-1). Among the 69 studies on risk factors of 

AI market infection, 64 studies used RT-PCR to detect the AI virus, only five studies conducted virus 

isolations. 

4.5.3 Meta-analysis of the effect of LBM biosecurity indicators on AI market infection 

Market characteristics (Group A): The overall effect for optimal market characteristics associated with 

market infection was protective and statistically significant (OR=0.65, 95%CI: 0.47-0.89) (Figure 4-2). 

LBMs of smaller size have the significantly lower risk of AI infection compared to those of larger size 

(OR=0.55, 95% CI: 0.34-0.88), and the presence of single poultry species in the LBM have lower risk of 

AI infection compared to LBMs with multiple species (OR=0.29, 95% CI: 0.11-0.76). Presence of rabbits 

and presence of ducks are risk factors of AI infection on LBMs. LBMs that were in central city areas 

have significantly lower risk than markets located in non-central city areas (OR=0.74, 95% CI: 0.56-

0.97).  

Market biosecurity management (Group B): The overall effect of market biosecurity management 

characteristics associated with market infection at LBMs was significantly protective (OR=0.44, 95% CI: 

0.32-0.59) (Figure 4-3). The risk of acquiring AI infection was significantly lower in LBMs that practice 

cleaning and disinfection (OR=0.35, 95% CI: 0.17-0.73) compared to those did not. The risk of AI 

infection after a rest day is significantly lower than infection before the rest day (OR=0.20, 95%CI: 0.11-

0.38). The risk of AI infection is significantly lower in LBMs who ban on overnight storage compared 

to those did not (OR=0.50, 95% CI: 0.29-0.86). The risk of AI infection in LBMs that source poultry 



78 

 

from the local area was significantly lower than LBMs that source poultry from other areas (OR=0.57, 

95%CI: 0.35-0.94). Markets that separate different species have lower risks compare to those who did 

not (OR=0.63, 95%CI: 0.43-0.90). Markets that do not slaughter poultry onsite have lower risk than 

markets that slaughter onsite although it is not statistically significant (OR=0.54, 95% CI: 0.13-2.25). 

Seasonality (Group C): The overall effect of optimal seasonal indicators associated with market 

infection was protective but not statistically significant (OR=0.98, 95% CI: 0.78-1.23) (Figure 4-4). 

Summer and autumn months pose a significant lower risk compared to spring and winter seasons 

(OR=0.65, 95%CI: 0.44-0.96).  

4.5.4 Meta-analysis of the effect of LBM biosecurity indicators on poultry workers’ AI infection  

Socio-demographic characteristics (Group D): The results indicate the human AI infection at LBMs 

was significantly lower in male workers than for female workers (OR=0.68, 95%CI: 0.54-0.87) and 

significantly lower in wholesale markets compared to retail markets (OR=0.38, 95%CI: 0.22-0.65) 

(Figure 4-5). Market workers who did not sell poultry had lower risk of getting AI infection than those 

who sell poultry (OR=0.34, 95% CI: 0.17-0.70).  

Activities involving exposure to poultry (Group E): The overall effect of optimal exposure behaviours 

was significantly protective (OR=0.37, 95%CI: 0.27-0.51) (Figure 4-6). Our results revealed a 

significantly lower risk of AI infection in market workers who did not conduct cleaning of feed trays 

(OR=0.34, 95% CI: 0.13-0.90) and who did not contact ducks (OR=0.28, 95% CI: 0.12-0.64) compare 

with those that did. Market workers who did not slaughter poultry (OR=0.12, 95% CI: 0.03-0.56), did 

not defeather poultry (OR=0.19, 95% CI: 0.07-0.51), and who were not involved in poultry evisceration 

(OR=0.19, 95% CI: 0.07-0.52) had significant lower risk of getting AI infections. 

In addition to the risk factors reported above, there were several other different factors, which were 

assessed only by a single study (Table A-6, Table A-7, Table A-8, Table A-9 and Table A-10). These are 

not discussed due to the difficulty in interpreting the combined effect of these factors based on the small 

number of studies. 
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Figure 4-2 Forest plots of risk estimates of market characteristics (Group A) on avian influenza market infection.  

Note: * The OR values are statistically significant (P<0.05). Abbreviations: OR, odds ratio; CI, confidence interval. 

 

Figure 4-3 Forest plots of risk estimates of market biosecurity management (Group B) on avian influenza market infection.  

Note: * The OR values are statistically significant (P<0.05.) Abbreviations: OR, odds ratio; CI, confidence interval. 
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Figure 4-4 Forest plots of risk estimates of seasonality (Group C) on AI market infection.  

Note: * The OR values are statistically significant (P<0.05). Abbreviations: OR, odds ratio; CI, confidence interval. 
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Figure 4-5 Figure 5 Forest plots of risk estimates of socio-demographic characteristics (Group D) on Human avian influenza infection. 

Note: * The OR values are statistically significant (P<0.05). Abbreviations: OR, odds ratio; CI, confidence interval. 
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Figure 4-6 Forest plots of risk estimates of activities involving exposure to poultry (Group E) on Human avian influenza infection.  

Note: * The OR values are statistically significant (P<0.05). Abbreviations: OR, odds ratio; CI, confidence interval. 
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4.5.5 Publication bias assessment 

The Funnel and Doi plots (see Figure A-6 and Figure A-7) demonstrated major negative asymmetry of 

effects for market characteristics and socio-demographic characteristics only. This is due to the 

heterogeneity of subgroups that belong to these two categories, although a paucity of negative studies 

cannot be excluded thus leading to an exaggerated protective effect for factors in these categories. 

4.6 Discussion 

LBMs are recognized to be reservoirs of AI viruses and a possible source of infection for both domestic 

poultry and humans working in or visiting them [69, 159-161]. To the best of our knowledge, this is the 

first meta-analysis of evidence on the effectiveness of market-level biosecurity in both poultry and human 

AI infections at LBMs. Our analysis of the relevant published English and Chinese research articles 

provided strong evidence in favour of biosecurity operations at LBMs that are protective for AI infections 

on both poultry and human infections at LBMs.  

Our meta-analysis demonstrates that the odds of detecting AI viruses at LBMs is dependent on a select 

group of LBM biosecurity characteristics and management measures. Our finding that the presence of 

multiple poultry species, and presence of rabbits or ducks increased the risk of AI circulation in the LBM, 

compared to those with single species, can partly be explained by unsafe poultry movements by some 

traders. A previous study suggested that live poultry traders who sell more than one species are more 

likely to import birds from multiple sources and may also supply high risk species, e.g. wild animals or 

birds, without inspection or health checks [21]. LBMs that are located in central city areas have lower 

risk than those in non-central city areas, this may due to the enhanced LBM management measures in 

the central city areas (e.g. enhanced clean and disinfection, quarantine etc.) [243] and the massive trade 

and complex poultry source in the non-central city areas [244]. This suggests the risk of AI virus spread 

from the non-central areas to the central areas, therefore, enhanced regulations should be emphasized in 

the non-central city areas. 

Cleaning and disinfection procedures are considered to be an important strategy to reduce disease 

transmission in LBMs, and our meta-analysis of existing evidence supports this view [21, 223]. In 

addition, our results revealed that the detection of AI viruses was always lower right after market rest 

days when infectious load is less [163, 224-229]. Closing LBMs can largely eliminate human infection 

risk [230]. However, studies indicated that recovery of AI viruses can occur shortly after LBMs re-open, 

presumably following the introduction of AI positive birds [245, 246]. Our study indicates that the 
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combined effect of daily cleaning and disinfection and waste removal are effective ways of reducing AI 

transmission at LBMs [36, 223, 247]. We also found that LBMs that trade poultry from local areas have 

lower risk of AI infection compared with those that trade poultry sourced from other areas. Previous 

research indicates that poultry movements facilitate the transmission and spread of AI viruses between 

premises as a result of mixing of poultry from different sources and the increased opportunity for virus 

multiplication during transport [223]. The risk of AI transmission at LBMs posed by cross-regional and 

long-distance poultry movements could be managed by implementing a market-level traceability system 

that includes certification of sources of poultry based on their compliance with biosecurity requirements. 

We found that the risk of AI infection in markets that do not slaughter poultry onsite was lower compared 

to markets that slaughter poultry onsite [36, 248]. This suggests that poultry slaughter operations at LBMs 

increases the risk of AI transmission within the LBM environment presumably because of exposure to 

aerosols arising during the slaughter process where AI virus may be present in large quantities. 

Improvement of slaughtering and poultry processing operations at LBMs should be an area of investment 

from market operators through the implementation of standard operating procedures and good 

manufacturing practices that comply with standard health and safety regulations. 

Our previous studies in southern China demonstrated that temporal variation in the intensity of poultry 

trade and production quantity of live poultry around the Chinese New Year festivities is associated with 

higher HPAIV H5N1 infection risk in humans and poultry. Our meta-analysis suggested that spring and 

winter seasons posed significant higher risk of AI infection in the LBM environment compared to 

summer and autumn [249-255]. This seasonality effect is due, in part, to the fact that lower temperature 

and humidity can increase virus survival in the environment [237]. These findings demonstrate the need 

for heightened seasonal targeted surveillance at LBMs to maximize effectiveness. 

Our results demonstrate that human infection at LBMs is dependent on important demographic and 

occupational hazard. The higher risk of human infection in retail markets compared to wholesale markets 

partly explained by differences in poultry handling operations within the two types of LBMs [256-258]. 

On one hand, wholesale markets are usually hubs in the poultry market chain where live poultry 

consignments from different farms congregate before they are sent to other locations, typically retail 

markets and less frequently slaughterhouses. Poultry handling activities in wholesale markets are limited 

compared to retail markets in that poultry remain in their cages or assigned area until they are loaded 

onto trucks on their way to retail markets. One study had noted that live poultry were slaughtered at retail 

LBMs daily, while many wholesale markets do not slaughter or have separate slaughter areas [259]. On 
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the other hand, retail markets constitute the last step in the LBM chain providing more time for virus to 

spread and multiply.  

Furthermore, our meta-analyses indicate that activities that directly expose LBM workers to AI such as 

slaughtering, defeathering and cleaning significantly increase the risk of workers AI infection [231-233]. 

These results are in line with previous observations that the risk of AI infection is greater in LBM workers 

who clean water containers [226] and those that conduct poultry evisceration with very limited personal 

protection measures [260]. Several studies have demonstrated that most commonly contaminated sites 

were located in the poultry slaughtering zone [36, 225]. There is recent evidence on detection of influenza 

virus in air samples from LBMs, especially with defeathering machines, and risk of airborne transmission 

[261]. These are all poultry handling activities primarily observed in retail markets which further 

highlights the need for workers to wear personal protective equipment within retail LBMs.  

There are important gender disparities between wholesale and retail markets because wholesale markets 

tend to be male dominated as opposed to retail markets where women share the poultry value chain with 

men. Interestingly our results indicate that female workers are at increased risk of AI infection compared 

to male workers [233, 256, 262]. This contrasts with the situation for H7N9 influenza in humans in the 

general population where older males are at greater risk than younger females [256]. These results may 

also reflect gender differentiation in tasks within LBMs, which put female workers at greater risk of AI 

infection compared to males. Future biosecurity strategies should account for gender differences in risk 

identified in our study, which could include raising collective awareness through information platforms 

that target women working at LBMs. 

Interpretation of the findings of our study should be done in consideration with its limitations. Firstly, as 

with all meta-analyses, we were restricted to the data that could be obtained from written reports (all 

studies included in our meta-analyses were observational studies, given that randomized trials were not 

available). Secondly, while we meta-analysed studies from different countries, this may overlook the 

heterogeneity in different study areas, although most of them (almost 95%) were Asian countries. Thirdly, 

we grouped different types of AIV (H5, H7, H9 etc.); we believe that there will be commonality in spread 

and transmission in LBMs while there are differences in the epidemiology among these viruses. Fourthly, 

the estimates presented by the literature reviewed in this study on the effect of sociodemographic analysis 

of human infection in LBMs were often not adjusted and none reported the interaction between variables. 

It is difficult to know how much the measured effect of biosecurity indicators could be due to 

confounding or effect modification; indeed, most effects reported in the studies are unadjusted, and on 
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no occasion did studies explore the presence of effect modification between factors. Finally, we 

conducted the quality assessment including several study characteristics assuming study quality on a 

continuous scale and this may not be necessarily the case, and our list of criteria is somewhat arbitrary 

therefore we also put the results from the random effect model in the Appendix A (Figure A-1 to Figure 

A-5). 

4.7 Conclusion 

In conclusion, to minimise market contamination and poultry infection of AI at LBMs, control measures 

should be targeted to markets that sell and slaughter live poultry and markets with presence of multiple 

species. Strategies that include daily cleaning and disinfection, regular market closure and ban on 

overnight storage as well as an emphasis of inspection on cross-regional poultry movements should be 

put in place. Targeted surveillance programs for AI circulation in LBMs should focus on winter and 

spring months. Finally, LBM workers directly involved in market cleaning and poultry processing should 

be provided with occupational health and safety promotion programmes, with emphasis on female 

workers at retail LBMs.  
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Table 4-1 General characteristics of the included studies regarding biosecurity indicators of avian influenza infections at live bird markets. 

ID Author, Year and 

Country 

Retrospective 

time 

AIV Subtype Type of study Market type Sampling type Analysis Methods 

Studies of biosecurity indicators related to of poultry infection 

1 Bulaga 2003, USA 2001 H7N2 Cross-

sectional 

Retail Poultry and 

environmental  

Multivariate analysis 

2 Kung 2003, Hong Kong 2001 H9N2 Longitudinal Retail Poultry samples Univariate analysis 

3 Gaber 2007, USA 2004-2005 H5 or H7 Case-control Not mentioned Poultry and 

environmental samples 

Multivariate analysis 

4 Trock 2008, USA 2002-2003 H5 or H7 Longitudinal Not mentioned Poultry and 

environmental samples 

Univariate analysis 

5 Indriani 2010, Indonesia 2007-2008 H5N1 Cross-

sectional 

Both wholesale 

and retail 

Environmental samples Multivariate analysis 

6 LiLH 2010, China 2007-2008 AIV Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

7 Martin 2011, China 2009 H5N1 Cross-

sectional 

Both wholesale 

and retail 

Poultry samples Multivariate analysis 

8 Leung 2012, Hong Kong 1999-2011 H9N2 Longitudinal Both wholesale 

and retail 

Poultry samples Multivariate analysis 

9 ZhangRS 2012, China* 2009 H5N1 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

10 BiFY 2013, China 2010-2011 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

11 Phan 2013, Vietnam 2011 H5N1 Cross-

sectional 

Not mentioned Poultry samples Multivariate analysis 

12 ChenZ 2014, China 2013-2014 H7N9 Longitudinal Both wholesale 

and retail 

Poultry and 

environmental samples 

Univariate analysis 

13 LiuH 2014, China 2014 AIV, H5, H7, H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

14 WangDF 2014, China 2011-2013 AIV, H5, H9 Longitudinal Retail Environmental samples Univariate analysis 

15 YuM 2014, China 2010-2013 AIV, H5, H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

16 YuanJ 2014, China 2014 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Poultry and 

environmental samples 

Univariate analysis 

17 ZhuBL 2014, China 2014 H7N9 Longitudinal Not mentioned Environmental samples Univariate analysis 

18 ZhuJL 2014, China 2014 H7N9 Cross-

sectional 

Not mentioned Environmental samples Univariate analysis 

19 CuiXB 2015, China 2013 AIV, H5, H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

20 ElMasry 2015, Egypt 2009-2014 H5N1 Longitudinal Not mentioned Poultry samples Univariate analysis 
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21 HuangFJ 2015, China 2015 H7N9 Cross-

sectional and 

case-control 

Both wholesale 

and retail 

Environmental samples Univariate analysis 

22 KangM 2015, China 2013-2014 H7N9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

23 LiuW 2015, China 2013-2014 AIV, H5, H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

24 WangFY1 2015, China 2011-2013 AIV, H5,H9 Longitudinal Retail Environmental samples Univariate analysis 

25 WangFY2 2015, China 2014 AIV Longitudinal Not mentioned Environmental samples Univariate analysis 

26 WuJ 2015, China 2013-2015 AIV, H7, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

27 XuGF 2015, China 2013-2014 AIV Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

28 YuanJ 2015, China 2014 AIV, H7N9 Longitudinal Retail Environmental samples Multivariate analysis 

29 ZhaoZF 2015, China 2014 AIV, H5,H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

30 CaoL1 2016, China 2015 AIV, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

31 CaoL2 2016, China 2015 AIV, H5, H7, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

32 LiWQ 2016, China 2014-2015 H7N9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

33 LiuFR1 2016, China 2012- 2017 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

34 LiuFR2 2016, China 2015-2016 AIV,H5,H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

35 LiuJW 2016, China 2013-2015 H7N9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

36 MengJH 2016, China 2013-2015 AIV,H5,H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

37 NongXN 2016, China 2011-2015 AIV Longitudinal Not mentioned Environmental samples Univariate analysis 

38 PengC 2016, China 2015 AIV Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

39 WangXX 2016, China 2014-2015 H7 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate and 

multivariate analysis 

40 XieCJ 2016, China 2014-2015 AIV,H5,H7,H9 Longitudinal Retail Environmental samples Univariate analysis 

41 ZengJJ 2016, China 2013-2015 AIV,H5,H7,H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

42 ZengL 2016, China 2015-2016 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

43 Abu Sayeed 2017, 

Bangladesh 

2015 AIV Cross-

sectional 

Both wholesale 

and retail 

Environmental samples Univariate analysis 
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44 ChenC 2017, China 2016 H7N9 Longitudinal Both wholesale 

and retail 

Environmental samples Multivariate analysis 

45 ChenXD 2017, China 2017 AIV, H9 Longitudinal Both wholesale 

and retail 

Poultry and 

environmental samples 

Univariate analysis 

46 Chu 2017, Vietnam 2014 AIV cross-sectional Both wholesale 

and retail 

Poultry samples Univariate analysis 

47 DaiYX 2017, China 2015 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

48 LiH 2017, China 2012-2015 AIV Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

49 LiLZ 2017, China 2014-2017 AIV, H5, H7, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

50 LiuM 2017, China 2015-2016 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

51 LiuRC 2017, China 2009-2014 H5N1 Longitudinal Both wholesale 

and retail 

Environmental samples Multivariate analysis 

52 MaoXX 2017, China 2016 AIV, H9 Longitudinal Both wholesale 

and retail 

Poultry samples Univariate analysis 

53 QianLM 2017, China 2013-2015 AIV, H5, H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

54 TuZJ 2017, China 2015-2016 AIV Longitudinal Retail Environmental samples Univariate analysis 

55 YuXF 2017, China Jul-05 H5,H9 cross-sectional Both wholesale 

and retail 

Environmental samples Univariate analysis 

56 ZhangHB 2017, China 2015-2016 AIV Longitudinal Wholesale Poultry samples Univariate analysis 

57 BaoJ 2018, China 2014-2015 AIV, H5,H9 Longitudinal Both wholesale 

and retail 

Poultry samples Univariate analysis 

58 CaoL3 2018, China 2016 AIV, H5, H7, H9 Longitudinal Both wholesale 

and retail 

Poultry and 

environmental samples 

Univariate analysis 

59 CaoL4 2018, China 2017 AIV, H5 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

60 ChenYH 2018, China 2017 AIV Cross-

sectional 

Wholesale Poultry samples Univariate and 

multivariate analysis 

61 FanSY 2018, China** 2014-2016 H7N9 Longitudinal Not mentioned Environmental samples Univariate analysis 

62 Hassan 2018, Bangladesh 2012-2016 AIV, H5, H9 Longitudinal Both wholesale 

and retail 

Poultry samples Univariate analysis 

63 LiuXQ 2018, China 2015-2016 AIV, H5, H7, H9 Longitudinal Both wholesale 

and retail 

Environmental samples Univariate analysis 

64 WuQ 2018, China 2015-2016 AIV, H9 Longitudinal Not mentioned Environmental samples Univariate analysis 

65 XuJ 2018, China 2015-2017 H5, H7, H9 Longitudinal Retail Environmental samples Univariate analysis 

66 YangJ 2018, China 2014-2015 AIV Longitudinal Both wholesale 

and retail 

Environmental samples Multivariate analysis 
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67 YangY 2018, China 2017 AIV, H5, H9 Cross-

sectional 

Not mentioned Environmental samples Univariate analysis 

68 YaoJX 2018, China 2014-2016 AIV Longitudinal Retail Environmental samples Univariate analysis 

69 ZouLB 2018, China 2012-2017 AIV Longitudinal Wholesale Poultry and 

environmental samples 

Univariate analysis 

Studies of biosecurity indicators related to of poultry worker's infection 

1 LiuY 2009, 2009 2007-2009 H5N1, H9N2 cross-sectional Both wholesale 

and retail 

Market workers Univariate analysis 

2 WangM 2009, 2009 2007-2008 H5, H9 cross-sectional Both wholesale 

and retail 

Market workers Univariate analysis 

3 ZhangRS 2012, 2012* 2009 H5N1 cross-sectional Not mentioned Market workers Univariate analysis 

4 Uyeki 2012, 2012 2001 H9 cross-sectional Not mentioned Market workers Univariate analysis 

5 Nasreen 2013, 2013 2009 H5N1 cross-sectional  Both wholesale 

and retail 

Market workers Univariate analysis 

6 Dung 2014, 2014 2011 H5N1 cross-sectional Not mentioned Market workers Univariate analysis 

7 TangXJ 2014, 2014 2013 H7N9 cross-sectional  retail Market workers Univariate and 

multivariate analysis 

8 WangX 2014, 2014 2013 H7N9 longitudinal Both wholesale 

and retail 

Market workers Univariate and 

multivariate analysis 

9 WangQ 2015, 2015 2008-2010 H9N2 cross-sectional Not mentioned Market workers Univariate analysis 

10 Nasreen 2015, 2015 2009-2010 H5N1 longitudinal Both wholesale 

and retail 

Market workers Univariate analysis 

11 FanSY 2018, 2018** 2014-2016 H7N9 Longitudinal retail Market workers Univariate analysis 

12 WangX 2018,  2015-2016 H7N9 longitudinal Both wholesale 

and retail 

Market workers Univariate and 

multivariate analysis 

* , **Same study 

Note: The detailed references of all the 79 included studies are cited in the Table A-4 and Table A-5 
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Chapter 5 The Role of Live Poultry Movement and Live Bird 

Market Biosecurity in the Epidemiology of Influenza A 

(H7N9): A Cross-sectional Observational Study in Four 

Eastern China Provinces 

5.1 Context 

In Chapter 4, we quantified the effectiveness of market-level biosecurity at reducing exposure of 

poultry and humans to avian influenza. The results of Chapter 4 demonstrated that biosecurity 

measures effective at reducing AI market contamination and poultry infection at LBMs included 

smaller market size, selling single poultry species and separating different species, performing 

cleaning and disinfection and market closures, ban on overnight storage. The results also revealed 

that sourcing poultry from other areas, i.e. possible long distant poultry movement, is associated with 

a higher risk of H7N9 infection at LBMs. The results of Chapter 4 indicated that higher risk of 

exposure to AI infection occurs in workers at retail LBMs, female workers and those who contact 

ducks, conduct cleaning, slaughtering, defeathering or evisceration. 

Despite these key findings from the program of research in Chapter 4, a key limitation was that we 

were not able to stratify the meta-analysis by different AI strains, so we were unclear whether these 

effects were true for H7N9 alone. With that gap in knowledge in mind I then designed the study in 

Chapter 5 which aimed to conduct an empirical investiagtion in the H7N9 affected markets, so to 

evaluate the biosecurity risk factors within those markets associated with H7N9 infections and 

quantified the role of live chicken movement in the epidemiology of H7N9 human infections. 

Therefore, in the program of research in Chapter 5, we zoomed in to the originally infected area 

(Shanghai Municipality, Jiangsu, Zhejiang and Anhui provinces). We obtained a unique dataset 

collected during the emergency epidemiological investigation on the 24 LBMs within one kilometre 

of H7N9 human infections and those that marketed large quantities of poultry at the time of the 

outbreak. The dataset included the status of market biosecurity measures adopted on these markets 

and records of live poultry movements in and out of these markets. 
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In Chapter 5, we evaluated the biosecurity risk factors associated with H7N9 infections on LBMs 

during the emergency and identified the role of live poultry movement in the epidemiology of H7N9 

human infections. Prior to this research, the sources of infection had yet to be fully clarified and a 

major challenge for the investigation of sources of exposure is the fact that poultry did not exhibit 

clinical signs at the time of this study. Epidemiological studies relied on H7N9 infection data from 

humans and LBMs where infections had been detected. Previous studies in Asia have demonstrated 

the role of movement of poultry through live bird markets in the circulation and dissemination of 

HPAI H5N1 virus [41]. This research of the role of LBM and live poultry movement have extended 

the knowledge of market-level biosecurity risk factors and enabled the stratification of the risk of 

H7N9 infection geographically. 

This Chapter has been published on The Journal of Infection and supporting technical information is 

presented in Appendix B of this Thesis. 

5.2 Abstract 

A new reassortant influenza A (H7N9) virus emerged early 2013 in eastern China. Exposure to H7N9 

infected poultry at live bird markets (LBM) was implicated as the main risk factor for human infection. 

We aimed to identify the role of LBM biosecurity indicators and poultry movement in the affected 

areas. A cross-sectional survey was carried out in 24 LBMs at the beginning of H7N9 outbreak in all 

affected provinces. We used univariable analysis to identify the biosecurity factors associated with 

the H7N9 presence in LBMs and social network and spatial analysis to quantify the connectivity and 

geographic variation in the connectivity of poultry movements. Chickens were the predominant 

poultry species traded by affected LBMs. The presence of H7N9 in LBMs was significantly 

associated with the type of LBM and with LBMs that sold chicken to other markets. The chicken 

movements were significantly spatially clustered and were highest in counties from Jiangsu and 

Anhui provinces. LBM biosecurity and chicken movement played an important role in the emergence 

of H7N9. This study identified highly connected areas in eastern China which continue to report 

human infections highlighting candidate areas for more detailed epidemiological investigations. 

Keywords: Influenza A (H7N9), Poultry movement, Live bird markets, Meat Chicken, Social 

network analysis, Biosecurity  
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5.3 Introduction 

The emergence of a new reassortant influenza A(H7N9) causing human infections without preceding 

or concomitant outbreaks in poultry was quite unexpected [263]. The sources of infection have yet to 

be fully clarified and a major challenge for the investigation of sources of exposure is the fact that 

poultry do not exhibit clinical signs. Epidemiological studies rely on infection data from humans and 

live bird markets (LBMs) where infections have been detected. The key public health concerns about 

the novel H7N9 virus are how and where the virus crossed the species barrier and whether it will 

further adapt to enable sustained human-to-human transmission [264]. 

Since the report of the first human H7N9 case in Shanghai in March 2013, there have been three 

major waves of human H7N9 cases in China. The first wave was observed from March to April 2013, 

starting from Shanghai, Anhui, Jiangsu and Zhejiang provinces in eastern China, then mainly 

extended to neighbouring provinces: Henan, Shandong, Hunan, Jiangxi and Fujian. The second wave 

was observed from January to April 2014, affecting initially and primarily the provinces of Zhejiang 

province in eastern China and Guangdong province in southern China, then extending to Jiangsu, 

Anhui, Fujian, Hunan and Guangxi provinces. From May to December 2013 (i.e. the period between 

the two waves), there were sporadic human cases in Shanghai, Jiangsu, Zhejiang, Jiangxi and 

Guangdong, similar situation during the period from May to October 2014. The third wave began in 

late 2014, started from Jiangsu and Xinjiang provinces, then massive affected Zhejiang and Jiangsu 

provinces in eastern China, as well as Fujian and Guangdong provinces in southern China [265, 266].  

Exposure to H7N9 infected poultry at LBMs has been implicated as the main risk factor for human 

infection and chickens are considered to be the species with an important role in the transmission for 

H7N9 influenza [14-18]. During the first wave, 82% of the 131 reported human H7N9 cases had a 

history of exposure to live poultry, particularly chickens [102]. Available evidence indicates that 

LBMs can serve as potential hubs where avian influenza viruses are transmitted and maintained for 

prolonged periods of time [19-22]. Surveillance and monitoring activities for avian influenza within 

the poultry market chain (i.e. farms, transport, LBMs and slaughter houses) are an important tool to 

generate epidemiological evidence on affected species, geographical sources of infection and the role 

of modifiable risk factors on disease transmission [23]. 
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Previous studies in Asia have demonstrated the role of movement of poultry through live bird markets 

in the circulation and dissemination of HPAI H5N1 virus [41]. Social network analysis (SNA) 

techniques can be utilized to build and analyze the network of poultry movements to help identify 

high-risk premises and offer new insights on disease transmission dynamics, making it possible to 

develop more effective strategies for disease control. For poultry market chain analysis, SNA of 

poultry movement is used to quantify the connectivity of sources and markets in the network and 

quantify the risk associated with HPAIV H5N1 infection along the market chain [40]. These empirical 

studies have demonstrated the value of coupling data on the social network of the poultry market 

chain with data on infection along the market chain to develop risk-based, targeted surveillance of 

farms and markets. 

In March 2013, an early emergency investigation was carried out by the MARA of China and this 

was followed by the establishment of a joint investigation into the source of the outbreak. As a result, 

a large-scale, cross-sectional survey was carried out from 14 to 19 April 2013 by the Veterinary 

Bureau of the MARA of China, China Animal Health and Epidemiology Centre (CAHEC) of MARA 

of China, and the Emergency Centre for Transboundary Animal Diseases of the Food and Agriculture 

Organization of the United Nations in China (FAO ECTAD China).  

The study aimed to identify the role of biosecurity indicators and poultry movement through LBMs 

in the presence of influenza A H7N9 within LBMs during the first wave of H7N9 infection and to 

examine the spatial variation in connectivity of counties involved in poultry trade to LBMs in the 

four affected provinces during the first wave of H7N9 infection. 

5.4 Materials and Methods 

5.4.1 Ethics Statement 

The research proposal leading to the study received ethics approval from the CAHEC of MARA of 

China. Ethical approval for the questionnaire survey was obtained from the Division of Epidemiology 

Survey within CAHEC who handles the ethics approval of field studies conducted by their staff in 

China. Participation in the questionnaire survey was voluntary and oral consent was obtained from 

market managers at all intervening LBMs. There were no animal samples taken as part of our study, 
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we used secondary information on market positivity to H7N9 infection derived from the official 

website of MARA of China. 

5.4.2 Data sources 

During the emergency response to influenza A (H7N9) infection in humans, a cross-sectional survey 

was conducted in 24 LBMs (15 wholesale markets and 9 retail markets) in the Shanghai provincial-

level municipality, Jiangsu, Zhejiang and Anhui provinces from 14 to 19 April 2013. The 24 LBMs 

included in the study were selected purposively based on two criteria: first, we focused on all LBMs 

within 1 kilometre in the adjacency of areas with reported H7N9 human infections, and second, we 

selected all LBMs that marketed more than 20,000 heads of poultry per day at the time of the outbreak. 

Therefore, the LBMs selected best represented existing production and LBM marketing systems. 

This investigation included data collection on live poultry movement and market biosecurity. The 

managers of the 24 LBMs were interviewed using a standardized, validated questionnaire to capture 

information relative to trade and general market biosecurity measures. The questionnaires had been 

used in previous studies by our team [31, 40]. About 90% of live poultry are thought to come through 

wholesale markets on the way to retail markets. Some wholesale markets that also sell live poultry 

directly to the consumer have been defined as mixed markets. Information on poultry movements 

was obtained from poultry movement certificates available at nine of the 24 surveyed markets (four 

wholesale LBMs and five mixed LBMs), and was recorded for up to three months before the reporting 

of the first human case in the province, i.e. Shanghai (1 January to 5 April), Jiangsu (1 January to 4 

April), Anhui (1 January to 15 April) and Zhejiang (1 January to 11 April). The nine markets were 

from Shanghai (n=3), Nanjing (n=2), Hangzhou (n=1), Huzhou (n=1), Hefei (n=1) and Chuzhou 

(n=1). The poultry movement certificates recorded the name of the county of poultry sources, poultry 

species (e.g. chickens, pigeons, ducks and other types) and the numbers of poultry transported. 

Data on the presence of H7N9 in the 24 LBMs was available from the official national emergency 

surveillance activities conducted during 31 March to 19 April 2013; data on H7N9 infection in poultry 

and humans used for mapping was up to the end of May 2013, both infection data were extracted 

from the official website of MARA of China (http://www.moa.gov.cn/zwllm/yjgl/yqfb/index_3.htm) 
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and WHO (http://www.who.int/influenza/human_animal_interface/avian_influenza/archive/en/), 

and geo-coded based on the reported geographical source of infection. 

5.4.3 Social network analysis of live chicken movements 

To describe the connectivity pattern within the network dataset consisting of records of paired trading 

events between a particular LBM and the county of origin of the purchased chickens (termed as 

“chicken source”), we used social network analysis (SNA), as described previously [31]. We 

summarised network connectivity using the number of links (indicating the frequency of movement), 

movement length (representing the catchment area of LBMs), degree centrality, k-core and the 

components of the network. The degree represents the absolute number of unique links of a given 

node; for example, a degree of two means that the node (poultry market or source) is connected with 

two other unique markets or sources. The k-core represents the maximal group of nodes, it describes 

the connectivity of different groups in a network; for example, a k-core of two means that the node 

belongs to a subgroup within the network where all nodes are connected to two other nodes. These 

two network indicators are important for describing the levels of connectivity and centrality that exist 

between the different elements of a network and play a key role while identifying the most influential 

spreaders within a network [267]. The components of the network include a maximal connected sub-

graph where all nodes (i.e. chickens’ sources) are connected through paths. 

We built one 2-mode binary network (LBM-source network), linking the nine LBMs and chicken 

sources. The centrality measures at node level (such as the degree and membership of the giant 

component) have been suggested to be of practical use in the development of effective targeted 

disease control strategies. The 2-mode LBM-source network was converted into two separate 1-mode 

binary symmetric networks: one 1-mode binary symmetric network of source nodes linked via a 

common LBM (source–source network) and a 1-mode binary symmetric network of market nodes 

linked via a common county (market–market network). All social network analyses were performed 

using UCINET 6.216 (©Analytic Technologies). All maps were produced using ArcGIS 10.1 

(©ESRI). 
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5.4.4 Analysis of spatial variation in the connectivity of poultry sources 

To assess whether there was spatial correlation in the observed pattern of degree centrality and k-core 

among the live chickens sources (source-source network) in the study area we used the Global 

Moran's Index (Moran’s I), a measure of spatial autocorrelation for spatially aggregated data. Moran's 

I is positive when nearby areas tend to be similar, negative when they tend to be dissimilar, and 

approximately zero when attribute values are arranged randomly and independently in space [220]. 

The estimate of Moran's I value and a Z-score evaluating the significance of the index were estimated 

using ArcGIS 10.1. 

5.4.5 Associations between biosecurity indicators and H7N9 infection status in LBMs 

A full range of biosecurity indicators were examined for all the 24 LBMs (Table B-1). The association 

between LBM biosecurity attributes and infection status (H7N9 presence in the LBM as reported by 

official reports) was examined for the 24 LBMs with biosecurity data. The biosecurity attributes 

included market type (wholesale vs. retail markets), waste disposal, manure processing, market 

disinfection, and market cleaning and trade destination. Firstly, all LBM biosecurity attributes were 

initially screened for association with market node infection status using univariate statistical analysis 

based on P < 0.05 when applying the Fisher’s exact test (Stata/SE 12.0 ©StataCorp). Secondly, the 

association between LBM attributes associated with H7N9 infection status of LBMs and other LBM 

biosecurity practices were examined. 

5.5 Results 

5.5.1 Social network analysis of live chicken movements 

Our results show that live chicken were the main poultry species being traded in the main markets of 

the affected areas. The results indicate that chicken production in Shanghai and Zhejiang could not 

meet their local consumption demand, and Jiangsu and Anhui were their main supplementary chicken 

sources (Table B-2). LBMs in Anhui mainly traded chicken from sources in the same province (55%), 

Shandong (21%) and Jiangsu (20%) provinces. Similarly, LBMs in Jiangsu traded poultry from 

sources in the same province (72%) and Anhui (28%) province.  
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The full extent of the 2-mode network is presented in Figure 5-1. The results of this analysis reveal 

that there was a giant weak component comprising nine LBMs and 102 chicken sources. Our results 

indicate that five (55.6%) LBMs had a degree centrality greater or equal to 10. Among LBMs 

surveyed, we found that eight (89%) had a k-core of 3 and one (11%) had a k-core of 2. The degree 

centrality of wholesale LBMs was significantly higher than mixed LBMs, (diff = 15.5, p=0.037, 95% 

CI =-1.97, 32.97). The catchment area of wholesale LBMs was much larger than mixed LBMs. The 

frequency of poultry movements (as measured by the number of links) to the wholesale LBMs was 

higher than mixed LBMs. Among chicken sources captured in our survey, we found that the majority 

(68.6%; n=70) of chickens’ sources had a degree and k-core of 1. We found that the mean degree 

centrality and k-core estimates of LBMs were larger than for chicken sources.  

5.5.2 Geographical variation in degree centrality and k-core of chicken sources 

This analysis indicated that the counties with the highest degree centrality were located in the 

provinces of Anhui and Jiangsu. The counties with highest degree centrality were Nanling, 

Changfeng, Quanjiao, Chaohu, Guangde counties in Anhui province and Changzhou, Lishuiqu, 

Haian, Jiangyan, Dafeng counties in Jiangsu province (Figure 5-1). 

The counties with highest k-core (=36) were widely distributed across Jiangsu, Anhui, Henan and 

Shandong provinces and were all connected with each other through the LBMs (counties in red group) 

The area with the lowest k-core (dark green group) was located in Shanghai (Figure 5-2). The spatial 

pattern of degree centrality and k-core of live chicken sources indicated significant spatial clustering 

of county-specific degree centrality and k-core in that the Moran’s I value was positive and the Z 

score greater than 1.96, both statistically significant at the 0.05 level (Table B-3). 

5.5.3 Biosecurity of Live Bird Markets and H7N9 positivity 

From all the list of biosecurity indicators (Table B-1), only two factors were found significantly 

associated with the presence of H7N9 in the surveyed markets: type of LBMs (i.e. retail, wholesale 

or mixed) (P=0.046) and whether the LBMs sold poultry or not to other LBMs (P=0.041) (Table 5-1). 

We also found significant variability in biosecurity indicators between different types of LBMs 

(Table 5-2). The market level biosecurity indicators that statistically associated with different types 
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of LBMs were: type of poultry sold (P=0.013), sell live duck (P=0.039), waste hauled in trash 

(P=0.016), market disinfection (P=0.043), market closure (P=0.028), sell poultry to other LBMs 

(P=0.0) and sell poultry directly to consumers (P=0.047). 

Our results indicate that the biosecurity indicators that were statistically associated with selling 

poultry to other LBMs were: type of poultry sold (P=0.001), waste hauled in trash (P=0.019), market 

disinfection (P=0.031) (Table 5-3). 

5.6 Discussion  

This study presents evidence in support of the role that LBM poultry movement and biosecurity have 

played in the seeding of H7N9 infection during the early stages of the first wave of H7N9 infection 

in LBMs of affected areas in eastern China. The findings of this study also extend previous SNA 

studies by specifically investigating the geographical variation of the relative connectivity of chicken 

sources to areas known to have had significant clustering of human infection. 

Early emergency investigations and findings from the implementation of the national surveillance 

and investigation plans have shown that LBMs were likely to play an important role in disease 

transmission [15]. Our findings demonstrate that the predominant poultry species being traded in the 

LBMs involved in the first wave of H7N9 infection were live chickens. Prior to mandatory market 

closure, most live chickens were transported to wholesale LBMs and further to retail LBMs to satisfy 

cultural and consumer preferences for live chicken, and slaughter usually occurred at LBMs with 

some being taken for slaughter at home or in restaurants.  

Epidemiological evidence from previous researches indicate the indirect transmission via fomites (i.e. 

equipment, the movement of vehicles during chick delivery) plays an important role in the potential 

transmission and spread of AI viruses between premises [33, 145, 157, 268]. Our previous studies in 

South China demonstrated the utility of collecting poultry movement data to understand the 

epidemiology of avian influenza of the H5N1 subtype in China [31, 40]. Utilizing the materials and 

data collection protocols from our previous network studies in South China, the joint investigation 

teams collected poultry movement data from LBMs in the H7N9 infection areas of the first wave. We 

described the connectivity of poultry trade using the k-core (describes the connectivity of different 
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groups in a network) and the degree centrality (describes the connectivity of individual poultry 

sources).  

These measures can theoretically reflect the spread of an infection through a poultry network; using 

k-core as an example, any poultry moved from an infected source can result in the infection of all 

linked nodes with a maximum k distance [40]. Therefore, it is important to identify the location of 

the subgroup chicken sources with the highest connectivity (k-core and/or degree centrality) in order 

to assist in the selection of areas for a targeted risk-based of surveillance and targeted control. Our 

results indicate that the counties of Nanling, Changfeng, Quanjiao, Chaohu, Guangde in the province 

of Anhui and Changzhou, Lishuiqu, Haian, Jiangyan, Dafeng in the province of Jiangsu are the 

locations with the highest poultry trade connectivity (as measured by the degree centrality and k-

core). Our findings also showed significant spatial clustering in terms of degree centrality and k-core 

of live chicken sources, which suggests these areas are epidemiologically significantly correlated.  

Furthermore, our study demonstrates the presence of a geographic overlap between the locations with 

the highest connectivity of live chickens sources and the primary cluster of H7N9 human infections 

[29]. This geographical overlap occurs in an area straddling the boundaries of the provinces of Anhui 

and Jiangsu. An analysis of the data from the first wave of H7N9 human infections demonstrated that 

the primary cluster of influenza (H7N9) overlapped with previous H5N1 human infections [29]. 

Changes over time in poultry trade and LBM network in terms of extent and volume are likely to 

occur and could lead to this high-risk area to shift geographically [40]. However, since the third wave 

of H7N9 infection, there have been 18 human H7N9 outbreaks in Jiangsu province which are well 

within the highly connected area identified in this study suggesting that our findings are robust to the 

known changes in poultry trade pattern which occur across the year (Data was derived from 

http://www.who.int/influenza/human_animal_interface/avian_influenza/archive/en/). 

Taken together these findings suggest that the areas identified in our study are of high importance in 

terms of the epidemiology of influenza A (H7N9). Therefore, continuous surveillance of poultry trade 

activities should be in place in the areas identified in our study. There is also a need to design and 

conduct more detailed empirical studies in the provinces of Anhui and Jiangsu to understand live 

poultry movement data at different points of the poultry marketing chain and integrate that 

http://www.who.int/influenza/human_animal_interface/avian_influenza/archive/en/
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information with data from risk perception and attitudes towards biosecurity of actors in the poultry 

market chain, particularly poultry farmers, intermediary traders and consumers. 

In our previous studies in South China we reported that LBMs with a poor level of biosecurity could 

play an important role in the dissemination of infected poultry should they be marketed through their 

network [31]. Other studies have shown that the prevalence of particular avian influenza viruses in 

retail LBMs is twice as high as the prevalence in wholesale LBMs [269, 270]. However, our results 

have shown that in the case of H7N9, the market level infection was significantly associated with 

wholesale and mixed LBMs compared to retail markets suggesting that particular biosecurity 

practices within wholesale and mixed LBMs may be a good indicator for H7N9 presence. Initial 

reports had proposed that visits to retail markets during the first wave of H7N9 had posed humans at 

increased risk of H7N9 infection by facilitating the transmission of avian influenza viruses due to 

lower biosecurity levels and increased access by consumers [82]. Our results indicate that retail 

markets were mostly a dead-end for the live chicken trade (i.e. selling poultry directly to the consumer) 

while all the surveyed wholesale markets reported sending poultry to other LBMs. In addition, all 

retail markets reported selling both live and slaughtered poultry while over eighty percent of the 

wholesale markets reported selling live poultry only. Our study also demonstrates the important role 

that poultry trade profile can have on market positivity to H7N9 in that the presence of H7N9 infection 

was associated with LBMs that sell live poultry to other LBMs. The results also indicate that LBMs 

that sell live poultry to other LBMs tended to have insufficient disinfection and cleaning measures 

and no proper market closure practices. 

In our study, eighty-nine percent of the retail markets reported having their waste hauled in the trash 

while two thirds of wholesale and mixed markets reported not having their waste hauled in the trash. 

This corroborates the findings in Indonesia where removal of waste contributed to a reduction of 

HPAI (H5N1) in LBMs [36]. In addition, eighty percent of the wholesale and mixed markets surveyed 

in our study reported infrequent disinfection practices (none or every three or more days), and only 

forty-four percent of the retail markets reported not disinfecting stalls. Previous studies have shown 

that daily cleaning and disinfection are effective at reducing of AI virus in LBMs in southern China 

and New York [31, 246]. Our results also reveal that all the retail markets and two thirds of wholesale 

markets reported that they did not perform market closure, while 56% of mixed markets reported that 
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they performed market closures. Studies have shown that the introduction of rest-day in LBMs led to 

a significant decline in the isolation rate of influenza virus (H9N2) in LBMs [37, 38]. Besides, the 

increase in selling activities itself could be associated with a lapse in the institution of hygienic 

measures or even worse the selling of lower quality poultry material left unsold from previous 

activities [21, 259, 271]. Taken together these results suggest that market biosecurity upgrading, and 

restructuring could have a significant impact on reducing the level of infection and possibly 

interrupting the cycle of infection persistence. Nevertheless, the relationship between live bird market 

biosecurity indicators and the presence of H7N9 is likely to be much more complex and further 

evidence is necessary to profile the risk of LBMs. 

The findings of this study should be interpreted in light of the study limitations. Firstly, this study 

was conducted during an emergency response and the LBMs were selected to be purposively aligned 

with the occurrence of H7N9 human infections. Also, while collecting the live poultry movement 

data, only major LBM’s in the large cities in the four provinces were surveyed which may have 

introduced potential biases. Secondly, data on the presence of H7N9 in LBMs was ascertained by 

available information from the national emergency surveillance activities. Due to mandatory market 

closures in the study area, the H7N9 infection status in several markets was not available. Due to the 

insufficient sample size we were not able to include the biosecurity indicators in a multivariable 

model nor were we able to detect a significant independent effect of neither of these indicators on 

H7N9 virus positivity in the LBMs. Thirdly, while the cross-sectional design of our study allows us 

to identify areas in China involved in poultry trade to LBMs in close proximity to human H7N9 cases, 

it does not allow us to conclusively explain how the virus emerged and spread over time. 

5.7 Conclusion 

This study demonstrates that the connectivity of LBMs to particular counties in the provinces of 

Anhui, Zhejiang and Jiangsu and the level of market biosecurity of LBMs were likely to have played 

a role in the transmission of H7N9 to humans during the first wave of the epidemic in April 2013. 

Recent cases are being reported in the areas identified in our study which emphasizes the need to 

improve our understanding of poultry trading patterns within the counties identified. 
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Figure 5-1 Geographical distribution of LBMs surveyed, H7N9 human infections and poultry H7N9 positives (A), and live chicken 

sources and movement networks included in the study (B). The influenza A (H7N9) human infections (red circle) and poultry positives 

(blue circle) were updated till end of May 2013. The network represents the 2-mode binary network (LBM-source network), with black 

arrows linking the nine LBMs (yellow circle with a bird inside) and live chickens’ sources (sea-blue circle) from which chicken 

originate. 
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Figure 5-2 Geographical distribution of the degree centrality (A) and k-core (B) of live chicken sources (county level), based on a 1-

mode network of chicken sources. 
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Table 5-1 Market level biosecurity indicators associated with “market H7N9 infections”. 

Market level biosecurity indicators Market H7N9 infection status 

No 

N (row%, col%) 

Yes Total Fisher's exact test 

Type of LBMs     

Retail 9 (100, 47.4) 0 (0, 0) 9 (100, 37.5) 
 

Wholesale 3 (50, 15.8) 3 (50, 60) 6 (100, 25) 
 

Mixed 7 (77.8, 36.8) 2 (22.2, 40) 9 (100, 37.5) 
 

Total 19 (79.2, 100) 5 (20.8, 100) 24 (100, 100) 0.046 

Sell poultry to other LBMs     

No 11 (100, 57.9) 0 (0, 0) 11 (100, 45.8) 
 

Yes 8 (61.5, 42.1) 5 (38.5, 100) 13 (100, 54.2) 
 

Total 19 (79.2, 100) 5 (20.8, 100) 24 (100, 100) 0.041 

 

Table 5-2 Market level biosecurity indicators associated with “type of LBMs”. 

Market level 

biosecurity indicators 

Type of LBMs 
 

Retail 

N (row%, col%) 

Wholesale Mixed Total Fisher's 

exact test 

Sell poultry to other 

LBMs 

    0.0* 

No 9 (81.8, 100) 0 (0, 0) 2 (18.2, 22.2) 11 (100, 45.8)  

Yes 0 (0, 0) 6 (46.2, 100) 7 (53.9, 77.8) 13 (100, 54.2)  

Total 9 (37.5, 100) 6 (25, 100) 9 (37.5, 100) 24 (100, 100)  

Type of poultry sold 
    

0.013* 

Live birds only 0 (0, 0) 5 (62.5, 83.3) 3 (37.5, 33.3) 8 (100, 33.3) 
 

Live and slaughtered 

poultry 

9 (56.3, 100) 1 (6.3, 16.7) 6 (37.5, 66.7) 16 (100, 66.7) 
 

Total 9 (37.5, 100) 6 (25, 100) 9 (37.5, 100) 24 (100, 100) 
 

Sell live ducks 
    

0.039* 

No 3 (23.1, 33.3) 2 (15.4, 33.3) 8 (61.5, 88.9) 13 (100, 45.8) 
 

Yes 6 (54.6, 66.7) 4 (36.4, 66.7) 1 (9.1, 11.1) 11 (100, 100) 
 

Total 9 (37.5, 100) 6 (25, 100) 9 (37.5, 100) 24 (100, 100) 
 

Waste hauled in trash 
    

0.016* 

No 1 (9.1, 11.1) 3 (27.3, 50) 7 (63.6, 77.8) 11 (100, 45.8) 
 

Yes 8 (61.5, 88.9) 3 (23.1, 50) 2 (15.4, 22.2) 13 (100, 54.2) 
 

Total 9 (37.5, 100) 6 (25, 100) 9 (37.5, 100) 24 (100, 100) 
 

Market disinfection 
    

0.043* 

No 4 (57.1, 44.4) 1 (14.3, 16.7) 2 (28.6, 22.2) 7 (100, 33.3) 
 

Every 1-2 days 5 (62.5, 55.6) 1 (12.5, 16.7) 2 (25, 22.2) 8 (100, 37.5) 
 

Every 3-14 days 0 (0, 0) 4 (44.4, 66.7) 5 (55.6, 55.6) 9 (100, 100) 
 

Total 9 (37.5, 100) 6 (25, 100) 9 (37.5, 100) 24 (100, 100) 
 

Market closure 
    

0.028* 

No 9 (52.9, 100) 4 (23.5, 66.7) 4 (23.5, 44.4) 17 (100, 70.8) 
 

Yes 0 (0, 0) 2 (28.6, 33.3) 5 (71.4, 55.6) 7 (100, 29.2) 
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Total 9 (37.5, 100) 6 (25, 100) 9 (37.5, 100) 24 (100, 100) 
 

 

Table 5-3 Market level biosecurity indicators associated with “selling poultry to other LBMs”. 

Market level biosecurity 

indicator 

Selling poultry to other LBMs 

No 

N (row%, col%) 

Yes Total Fisher's exact test 

Type of poultry sold 
 

  0.001* 

   Live poultry only 0 (0,0) 8 (100, 61.5) 8(100, 33.3) 
 

   Live and slaughtered poultry 11 (68.8, 100) 5 (41.7, 38.5) 16 (100, 16.7) 
 

   Total 11 (45.8, 100) 13 (54.2,100) 24 (100,100) 
 

Waste hauled in trash 
   

0.019* 

   No 2 (18.2, 18.2) 9 (81.8,69.2) 11 (100,45.8) 
 

   Yes 9 (69.2, 81.8) 4 (30.8, 30.8) 13 (100, 54.2) 
 

   Total 11 (45.8, 100) 13 (54.17, 100) 24 (100, 100) 
 

Market disinfection 
   

0.031* 

   No 5 (71.4, 45.5) 2 (28.6, 15.48) 7 (100, 29.2) 
 

   Every 1-2 days 5 (62.5, 45.5) 3 (37.5, 23.1) 8 (100, 33.3) 
 

   Every 3-14 days 1 (11.1, 9.1) 8 (88.9, 61.5) 9 (100, 37.5) 
 

   Total 11 (45.8, 100) 13 (54.2, 100) 24 (100, 100) 
 

Market closures 
   

0.078 

   No 10 (58.8, 90.9) 7 (41.2, 53.9) 17 (100, 70.8) 
 

   Yes 1 (14.3, 9.1) 6 (85.7, 46.2) 7 (100, 29.2) 
 

   Total 11 (45.8, 100) 13 (54.2, 100) 24 (100, 100) 
 

 

Table 5-4 Chicken movement network estimates, based on a 2-mode network of LBMs and chicken sources. 

Network estimates Live bird markets Chicken sources 

Mean Minimum Maximum Mean Minimum Maximum 

Degree centrality 16.89 3 37 1.49 1 6 

K-core 2.89 2 3 1.42 1 3 

Distance to human H7N9 

cases (in kms) 

13.46 0.39 97.31 73.99 0.32 295.78 
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Chapter 6 Knowledge, Attitudes and Practices Associated with 

Avian Influenza along The Live Chicken Market Chains 

in Eastern China: A Cross-Sectional Survey in Shanghai, 

Anhui and Jiangsu Provinces 

6.1 Context 

The results of Chapter 5 demonstrated that the level of market biosecurity of LBMs initially affected 

by H7N9 in 2013 and the connectivity of these LBMs to particular counties in the provinces of Jiangsu, 

Anhui and Zhejiang provinces were likely to have played a role in the transmission of H7N9 to 

humans during the first wave of the epidemic in early 2013. We had previously demonstrated in 

Chapter 4 that people’s social demographic and behaviour at LBMs are important indicators of risks 

in AI human infections. Therefore, I designed the study reported in Chapter 6 to investigate whether 

these social cognitive indicators are significant in the identified high-risk areas in Southeast China, 

to identify the level of risk perception towards AI among different actors (farmers, traders and 

consumers) at LBMs and the risk factors associated with their risk perception in the identified high-

risk areas where H7N9 first emerged. 

The existing literature indicated that health behaviours and hygiene practices can be influenced by 

age, gender, education, knowledge and religious beliefs [182]. In recent years there had been a 

number of studies reporting poultry related workers’ KAP for AI in Asia, the US, Europe and Africa 

[184, 272-279]. To our knowledge, none of the existing studies was conducted on chicken-specific 

market chains targeting high-risk areas affected by the emergence of the H7N9, and importantly none 

had compared AI knowledge, attitudes and practices (KAP) simultaneously across chicken farmers, 

chicken vendors and consumers in the same market chain [10]. So, there was a need to understand 

the KAP of all actors across the live chicken market chain involved in the H7N9 emergency in China.  

In Chapter 6, a primary cross-sectional questionnaire survey was designed and conducted in the 

hotspot area identified in Chapter 5 during June to July 2014 after the second wave of H7N9 outbreaks 

in humans in Eastern China. All actors (chicken farmer, vendors and consumers at LBMs) along the 
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live meat chicken market chain were targeted to profile their level of knowledge, attitudes and 

practices (KAP) towards avian influenza and the risk factors associated with their KAP levels. 

Multivariable generalized least squares (GLS) random-effects regression models were developed to 

identify predictors of KAP of AI among different actors along the live chicken market chain. 

The study in Chapter 6 analysed determinants of KAP within each actor group. The results of Chapter 

6 suggested that interventions to improve KAP towards AI should be promoted among all 

stakeholders with an emphasis on chicken vendors in LBMs. This further ascertains the findings from 

Chapter 4 and 5 that LBMs may have played an important role in the dissemination of H7N9 virus in 

the high-risk area. The results of Chapter 6 also demonstrated that risk-based health promotion 

interventions should be developed and implemented by both animal health agencies (targeting 

farmers and vendors) and public health agencies (targeting frequent and male consumers) to prevent 

transmission of H7N9 along the market chain in China. 

This Chapter forms a manuscript published by the Journal of Transboundary and Emerging Diseases, 

and supporting technical information is presented in Appendix C in this Thesis. 

6.2 Abstract 

The avian influenza (AI) virus of the H7N9 subtype emerged in China in 2013. Live bird markets 

(LBMs) selling live meat chickens were indicated to present a high risk for virus dissemination. This 

study aimed to quantify the level of knowledge, attitudes and practices (KAP) on AI and to measure 

associated risk factors, among different actors along the live chicken market chain within H7N9-

affected Eastern provinces in China. A cross-sectional survey was conducted in these provinces 

during June - July 2014. Structured questionnaires about KAP for AI were delivered to chicken 

farmers, chicken vendors and consumers in LBMs. Multivariable generalized least squares (GLS) 

regression models were developed to identify predictors of KAP scores among different actors. 

Our results indicate that KAP scores of chicken farmers were generally higher than those of chicken 

vendors. Chicken farmers who worked for more than 15 years had significantly lower total KAP 

scores than those who worked for less than six years. Chicken farmers who worked more than 15 

hours in a day had significantly lower attitude scores than those who worked less than six hours. For 

chicken vendors, females and individuals >35-years-old had significantly lower knowledge scores 
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compared to the reference categories. Practice scores were significantly higher in female vendors and 

those vendors who also conducted slaughter compared to males and vendors who did not conduct 

slaughter. Consumers who bought chicken at least once every month had better risk awareness 

compared to those who bought chicken at least once every week. In addition, female consumers had 

significantly better practice scores than male consumers. 

In conclusion, risk-based health promotion interventions should be developed and implemented by 

animal health agencies (targeting farmers and vendors) and public health agencies (targeting frequent 

and male consumers) to prevent transmission of H7N9 along the market chain in China.  

Keywords: Avian Influenza, KAP, live chicken market chain, chicken farmers, chicken vendors, 

consumer, generalized linear regression model 

6.3 Introduction 

In early 2013, the influenza A (H7N9) virus was first detected in humans in China, and since then six 

epidemic waves of this avian influenza (AI) subtype in humans have been reported with increasing 

magnitude in China [280]. During the first wave of human H7N9 infections, chickens were the 

predominant poultry species traded in affected live bird markets (LBMs) [10]. In a previous study, 

we demonstrated that H7N9 avian influenza infection in humans was associated with the connectivity 

of live bird markets (LBMs) located in six counties in the provinces of Jiangsu and Anhui [10].  

Continued H7N9 human infections reported in these areas emphasizes the need to conduct further 

investigations to understand the live chicken trading patterns within the counties identified. From late 

2016 to early 2017, there was a sudden increase of human cases and the geographical distribution of 

cases was more widespread than in the previous four waves. This event was described in the literature 

as the fifth epidemic wave [11]. As a result, in February 2017, the MARA of China recognising the 

importance of the live poultry markets in the exposure and dissemination of the virus, established the 

“1110 policy” on LBMs, i.e. clean once a day, disinfect once a week, close markets once a month, 

and ensure zero overnight storage in markets. In July 2017, the “National Immunization Program for 

HPAI” in the poultry sector began with the adoption of a H5 and H7 bivalent inactivated vaccine 

[138]. While this vaccine has been effective at controlling the number of H7N9 outbreaks in humans, 

in the long-run vaccination may not help curb the exposure of humans to these viruses in the live 
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meat chicken market chain since these viruses are sporadically detected in poultry [204]. Therefore, 

a better understanding of the social determinants of exposure is necessary to complement sanitary 

measures such as vaccination and enhanced LBM biosecurity. In December 2017, a novel influenza 

subtype A(H7N4) virus emerged and was reported in Changzhou, Jiangsu Province, China [281] 

demonstrating that these highly connected areas in Jiangsu and Anhui require in-depth investigations, 

continuous monitoring and surveillance.  

As of 5 Sep 2018, there was a total of 1,567 confirmed H7N9 human infections (among whom there 

were 615 fatalities). Additionally, around 2,500 virological samples from the environment (LBMs, 

vendors and some commercial or breeding farms), poultry (chickens, pigeons, ducks, turkeys) and 

wild birds tested positive for H7N9 (since April 2013) [5, 282]. This indicates that vulnerabilities to 

H7N9 infections are still present in live chicken market chains. An understanding and careful analysis 

of the views of different actors in the live chicken market chain is necessary to help the design of 

health promotion interventions and to reduce the risk of exposure. It should be understood that 

vulnerabilities may be associated with the level of knowledge, attitudes and practices (KAP) of 

different actors in the live chicken market chain. 

Occupational exposure to infected live poultry and contaminated environments is known to be an 

important risk factor for AI infections in humans [7, 8]. We have recently demonstrated that LBM 

biosecurity procedures such as cleaning and disinfection, regular market closure, bans on overnight 

storage and separation of different species are important protective measures for prevention and 

control of AI [283]. Many interventions are simple and inexpensive, however a lack of knowledge 

often leads to poor application and unsafe behaviour [144]. The existing literature indicates that health 

behaviours and hygiene practices can be influenced by age, gender, education, knowledge and 

religious beliefs [182]. In recent years, there have been a number of studies reporting poultry related 

workers’ KAP for AI in Asia, the US, Europe and Africa [184, 272-279]. To our knowledge, none of 

these studies was conducted on chicken-specific market chains, none of the studies compared across 

chicken farmers, chicken vendors and consumers in the same chain, and none of them was targeted 

on the high-risk areas affected by the emergence of the H7N9 [10]. Therefore, there is a need to 

understand the knowledge, attitudes and practices (KAP) of all actors across the live chicken market 

chain involved in the H7N9 emergency in China. 
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In this study, we aimed to quantify and compare the levels of KAP regarding AI for different actors 

along the live chicken market chain in areas initially affected by the emergence of H7N9. We aimed 

to identify risk factors associated with their KAP levels, so as to generate evidence for the design of 

stakeholder-based AI health promotion interventions in the live chicken market chain in China. 

6.4 Materials and Methods 

A cross-sectional questionnaire survey was conducted from June to July 2014 targeting meat chicken 

farmers, live chicken vendors and chicken consumers in LBMs in six counties located in Jiangsu 

(Lishui, Jintan, Jiangyan) and Anhui (Feixi, Quanjiao and Chaohu) provinces in the east of China. 

Selection of counties was based on findings from a previous study conducted during the H7N9 

emergency response, which demonstrated that chicken movements were highest in those six counties 

from Jiangsu and Anhui provinces [10]. One county in Shanghai municipality (Fengxian) was also 

included in this survey because Shanghai was the origin of the first H7N9 human cases reported in 

2013 and it is adjacent to Jiangsu province where there was a geographic co-distribution of H7N9 

and H5N1 in humans [29]. An initial sample size of 10 commercial meat chicken farms, one 

wholesale LBM and two to three retail LBMs (subject to actual numbers of LBMs) in the seven high 

risk counties were included. Within each LBM, 10 chicken vendors and 10 consumers were 

interviewed. 

6.4.1 Survey instruments and participants 

Face-to-face interviews were used to elicit knowledge, attitudes and practices of chicken farmers, live 

chicken vendors and chicken consumers at LBMs in the target counties associated with avian 

influenza. Structured questionnaires included questions on characteristics of participants (e.g. gender, 

age, education level, employment status, number of years of work, daily number of hours in contact 

with chickens), knowledge about AI (e.g. “Is AI an infectious disease?” “what types of animals can 

be infected with AI” etc.), attitudes towards AI (e.g. “Do you think AI is a severe disease for 

humans?”, “What do you think is the likelihood for you to get AI?” etc.), and practices regarding AI 

prevention (e.g. What do you do when you suspect that you have flu symptoms?) (See Table C-1 for 

the full set of questions). 
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6.4.2 Statistical analysis 

Questions on KAP were scored individually. Scores of all KAP questions were then summed to 

represent the level of each participant’s overall knowledge, overall attitudes and overall practices 

towards AI (See Table C-1 for details of the scoring method used). For categorical variables, chi-

square tests were used to compare frequencies for different groups. To identify predictors of KAP 

scores among different actors along the live chicken market chain (i.e. chicken farmers, vendors and 

consumers) we built four multivariable generalized least squares (GLS) random-effects regression 

models with the KAP scores (overall or individual scores) as the outcome of interest. Due to our study 

design, we have multiple respondents in the same county, and thereby we need to adjust for the 

clustering of respondents at this spatial unit of analysis. Therefore, we added a county-specific 

random effect in our regression model. 

Explanatory variables of the KAP scores were carefully selected for different respondents. First, 

gender and age are important confounders and were included in all the four models. Then, indicated 

by other studies, education level, employment status and year of work are key factors that may affect 

the level of KAP of respondents [187, 273, 279, 284-286]. In the case of chicken farmers, we included 

gender, age, educational level, years of work with chicken and hours of daily chicken contact. In the 

case of chicken vendors, we included gender, age, educational level, type of stalls, type of vendor, 

years working with chickens and hours of daily chicken contact. In the case of market consumers, we 

include gender, age, education level, employment status, the frequency of chicken purchase and type 

of chickens bought. Model 1 integrated all participants and Models 2-4 were specific to each group 

of actors (i.e. chicken farmers, chicken vendors and chicken consumers). A two-tailed test with a p-

value <0.05 was considered statistically significant. The coefficient of determination (R square) and 

the distribution of the residuals were estimated to evaluate the performance of the models. Data were 

analysed using STATA (version 12.0; SPSS Inc., Chicago, IL, USA). 

6.4.3 Ethics statement 

The study received ethics approval from the Behavioural & Social Sciences Ethical Review 

Committee of the University of Queensland (Approval number: 2014001167). 
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6.5 Results 

A total of 296 chicken workers (i.e. farmers and vendors) and consumers participated in the study; a 

total of 274 (92.6%) respondents completed more than 90% of the questionnaire, including 95 chicken 

farmers (mean age 49, male 77.9%), 104 chicken vendors (mean age 46, male 58.7%) and 75 market 

consumers (mean age 44, male 42.7%) (Table 6-1) (See Table C-2 for details of the different types 

of respondents). Most chicken workers (farmers and vendors) have up to secondary (53.5%) or 

primary (23.6%) levels of education respectively. Chicken vendors had worked for a longer duration 

in the live chicken industry compared to farmers (13.2 vs 8 years). Daily contact with chickens was 

longer in chicken farmers than for vendors (11.2 vs. 9.5 hours). The maximum possible score of 

overall KAP was 42, and the average KAP scores of farmers, vendors and consumers were 16, 13.7 

and 15.2 respectively (Table 6-1). The average knowledge, attitudes and practices scores of chicken 

farmers was generally higher than that of chicken vendors. Our results also show a statistically 

significant difference between chicken farmers and vendors in terms of the years of working with 

chickens and hours of contacting chickens per day (p<0.01) (Table 6-1). 

6.5.1 Factors associated with KAP across different actors (Model 1)  

Overall KAP scores of all the three survey groups towards AI were significantly associated with age 

group and type of respondents (Table 6-2). Females had marginally significantly lower overall KAP 

scores than males [Coef. =-1.13, 95%CI (-2.28, 0.02), p=0.054]; this is due to their significantly lower 

knowledge scores compared to males [Coef. =-1.09, 95% CI (-1.82, -0.35), p=0.004]. The oldest age 

group (>55-years-old) had significantly lower overall KAP scores than the youngest group (≤35-year-

old) [Coef. = -2.51, 95% CI (-4.61, -0.4), p=0.02]; this result is due to their attitude scores. Chicken 

vendors had significantly lower overall KAP scores than chicken farmers [Coef. =-2.26, 95%CI (-

3.5, -1.01), p<0.001]; this is due to their knowledge and attitudes scores. We also found that 

consumers had significantly higher practice scores than chicken farmers [Coef. =-0.66, 95%CI (-1.05, 

-0.27), p=0.001]. Respondents with secondary school education had lower attitude scores towards AI 

compared to those with primary school and below education [Coef. = -0.96, 95%CI (-1.67, -0.24), 

p=0.009] (Table 6-2).  
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6.5.2 Factors associated with KAP towards AI within chicken farmers (Model 2) 

Overall KAP score of chicken farmers towards AI was significantly associated with their years of 

working with chickens and daily hours of chicken contact (Table 6-3). Chicken farmers who had 

worked for more than 15 years had significantly lower total KAP scores than those who had worked 

for less than six years [Coef. =-2.49, 95%CI (-4.93, -0.06), p=0.045]; this result is due to their attitude 

scores. Farmers with 11 to 15 years working experience have higher knowledge scores than farmers 

who worked less than 6 years [Coef. =2.32, 95%CI (0~4.65), p=0.050]. Chicken farmers who had 

worked for more than 15 hours per day had significantly lower total KAP scores than those who had 

worked for less than 6 hours per day [Coef. =-3.03, 95%CI (-5.48, -0.59), p=0.015]; this result is due 

to their knowledge scores. Chicken farmers with high school education had lower attitudes scores 

than those who had primary school or below education [Coef. =-1.15, 95%CI (-2.29, -0.01), p=0.047]. 

6.5.3 Factors associated with KAP towards AI within chicken vendors (Model 3) 

Overall KAP scores of chicken vendors were significantly associated with gender and age (Table 

6-4). Female vendors had significantly lower overall KAP scores than male vendors [Coef. =-2.58 (-

4.95, -0.22), p=0.032]; this result is due to their knowledge scores. Female vendors had significantly 

higher practice scores than male vendors [Coef. =0.58,95%CI (0.08, 1.07), p=0.023]. The overall 

KAP scores towards AI of the 36 to 55 age group [Coef. -3.94, 95%CI (-7.74, -0.14), p=0.042] and 

over 55 age group [Coef. =-6.00, 95%CI (-11.21, -0.8), p=0.024] were significantly lower than the 

younger age group (≤35-years-old); this result is due to their knowledge scores. Chicken vendors who 

also conducted slaughter had higher practice scores than those who did not. 

6.5.4 Factors associated with KAP towards AI within market consumers (Model 4) 

We found that the overall KAP scores were significantly associated with the frequency of buying 

chickens (Table 6-5). Consumers who bought chicken at least once every month had better overall 

KAP scores compared with those who bought chicken at least once every week [Coef. =1.96, 95%CI 

(0.14, 3.77), p=0.035]; this result is due to their attitudes scores. Female chicken consumers had 

significantly better practice scores than male consumers [Coef. =0.58, 95%CI (0.12, 1.05), p=0.013]. 
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The coefficient of determination of the four GLS models are summarized in Table C-5. The residuals 

of all models were all normally distributed except for Model 1. (Figure C-1) 

6.5.5 Attitudes towards prevention and control policies on LBMs across chicken farmers, 

chicken vendors and consumers 

Most of the chicken farmers (98%) and vendors (94%) agreed with adopting market rest day and 

cleaning and disinfection on markets. 55% of chicken farmers agreed on the ban on overnight storage 

on markets and slaughter all poultry unsold at the end of the day, however, 76% of the chicken 

vendors did not agree. Despite the fact that 53% of the chicken farmers and 85% of the chicken 

vendors did not agree with the ban on selling live chicken and central slaughtering of poultry, 62% 

of consumers were not willing to buy slaughtered chicken at markets. (Table 6-6) 

 

Table 6-1 Socio-demographics of three types of respondents, chicken famers (N=96), chicken vendors (N=108) and consumers (N=75), 

from the surveyed counties in Jiangsu and Anhui provinces in China. 

Demographics Chicken 

farmers (%) 

Chicken 

vendor (%) 

Consumer  

(%) 

Pearso

n chi2 

P-

value 

Gender Male 74(77.9) 61(58.7) 32(42.7) 22.2  <0.01  
Female 21(22.1) 43(41.3) 43(57.3) 

Age groups Mean [min~max] 49[33~72] 46[22~70] 44[15~78]   

≤ 35 7(7.4) 10(10.1) 21(28.8) 28.9 <0.01  
36~55 61(64.9) 80(80.8) 40(54.8) 

  

 
>55 26(27.7) 9(9.1) 12(16.4) 

  

Education 

level 

Primary School or below 26(27.7) 20(19.8) 8(10.8) 42.6 <0.01  
Secondary school 50(53.2) 55(54.5) 25(33.8) 

  

High School 17(18.1) 23(22.8) 25(33.8)   

University and above 1(1.1) 3(3.0) 16(21.6) 
  

Years working 

with chicken 

Mean [min~max] 8[0.5~35] 13.2[0.5~33] -   

≤ 5 years 54(56.8) 14(14.0) - 41.7 <0.01 

6~10 years 20(21.1) 31(31.0) -   

11~15 years 5(5.3) 19(19.0) -   

>15 years 16(16.8) 36(36.0) -   

Hours of 

contacting 

chicken/day 

Mean [min~max] 11.2[1~24] 9.5[1~24] -   

≤ 5 hours 19(20.4) 11(10.6) - 15.5 <0.01 

6~15 hours 50(53.8) 83(79.8) -   

>15 hours 24(25.8) 10(9.6) -   

Average KAP Scores (max=42) 16 13.7 15.2   

Average Knowledge Scores (max=18) 8.3 7.6 8.3   

Average Attitudes Scores (max=16) 4.5 3.2 4.3   

Average Practices Scores (max=8) 3.2 2.9 2.6   
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Table 6-2 Multivariable GLS model 1 for chicken farmer, vendors and consumers – knowledge, attitudes and practices of avian influenza 

Variables  Total KAP Knowledge Attitudes Practices 

  Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value 

Gender 
        

Male - - - - - - - - 

Female -1.13 (-2.28, 0.02) 0.054 -1.09 (-1.82, -0.35) 0.004 -0.24 (-0.82, 0.34) 0.424 0.19 (-0.11, 0.5) 0.213 

Age group 
        

≤ 35 
        

36~55 -0.57 (-2.21, 1.07) 0.497 0.02 (-1.03, 1.07) 0.966 -0.74 (-1.58, 0.09) 0.079 0.15 (-0.28, 0.59) 0.492 

>55 -2.51 (-4.61, -0.4) 0.020 -1.31 (-2.65, 0.04) 0.058 -1.34 (-2.41, -0.27) 0.014 0.14 (-0.43, 0.7) 0.632 

Education level 
        

Primary School and below 
        

Secondary school -0.79 (-2.19, 0.62) 0.273 0.16 (-0.74, 1.06) 0.730 -0.96 (-1.67, -0.24) 0.009 0.01 (-0.36, 0.39) 0.955 

High School 0.12 (-1.56, 1.8) 0.890 0.71 (-0.37, 1.78) 0.198 -0.50 (-1.35, 0.35) 0.247 -0.09 (-0.53, 0.36) 0.707 

University and above 0.63 (-1.97, 3.23) 0.635 0.78 (-0.89, 2.45) 0.360 -0.39 (-1.71, 0.93) 0.560 0.24 (-0.45, 0.94) 0.492 

Type of respondents 
        

Farmer 
        

Vender -2.26 (-3.5, -1.01) <0.001 -0.87 (-1.66, -0.07) 0.034 -1.15 (-1.78, -0.52) <0.001 -0.24 (-0.58, 0.09) 0.152 

Consumer -0.87 (-2.33, 0.59) 0.243 0.04 (-0.9, 0.98) 0.935 -0.25 (-0.99, 0.49) 0.511 -0.66 (-1.05, -0.27) 0.001 

Intercept 17.69 (15.48, 19.89) <0.001 8.73 (7.31, 10.14) <0.001 5.95 (4.83, 7.06) <0.001 3.01 (2.42, 3.6) <0.001 
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Table 6-3 Multivariable GLS model 2 for chicken farmers – knowledge, attitudes and practices of avian influenza 

Variables  Total KAP Knowledge Attitudes Practices 

  Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value 

Gender 
        

Male - - - - - - - - 

Female -0.79 (-2.87, 1.29) 0.458 -0.75 (-2.11, 0.62) 0.283  0.51 (-0.39, 1.4) 0.270  -0.55 (-1.28, 0.19) 0.143  

Age group 
        

≤ 35 
        

36~55 2.22 (-0.94, 5.39) 0.169 0.76 (-1.31, 2.83) 0.473  0.99 (-0.38, 2.35) 0.156  0.48 (-0.64, 1.59) 0.403  

>55 1.20 (-2.39, 4.8) 0.512 0.42 (-1.93, 2.77) 0.725  0.50 (-1.05, 2.05) 0.525  0.28 (-0.99, 1.55) 0.666  

Education level 
        

Primary School and below 
        

Secondary school 0.10 (-1.89, 2.08) 0.923 0.64 (-0.66, 1.94) 0.337  -0.50 (-1.36, 0.35) 0.249  -0.03 (-0.73, 0.67) 0.924  

High School 0.00 (-2.63, 2.64) 0.998 1.30 (-0.42, 3.03) 0.139  -1.15 (-2.29, -0.01) 0.047  -0.15 (-1.08, 0.78) 0.754  

University and above -2.24 (-10.33, 5.84) 0.586 0.24 (-5.05, 5.53) 0.929  -2.83 (-6.32, 0.65) 0.111  0.35 (-2.5, 3.2) 0.811  

Years working with chicken 
        

≤ 5 years 
        

6~10 years -0.33 (-2.43, 1.78) 0.762 0.56 (-0.82, 1.93) 0.425  -0.62 (-1.53, 0.29) 0.180  -0.27 (-1.01, 0.47) 0.482  

11~15 years 2.10 (-1.45, 5.65) 0.246 2.32 (0, 4.65) 0.050  -0.73 (-2.26, 0.8) 0.353  0.50 (-0.75, 1.75) 0.432  

>15 years -2.49 (-4.93, -0.06) 0.045  -0.42 (-2.02, 1.17) 0.602  -2.12 (-3.17, -1.07) <0.001 0.05 (-0.81, 0.91) 0.909  

Hours of contacting chicken  
        

≤ 5 hours/day 
        

6~15 hours/day -1.46 (-3.72, 0.79) 0.202  -1.05 (-2.52, 0.42) 0.162  -0.08 (-1.05, 0.89) 0.869  -0.33 (-1.13, 0.46) 0.412  

>15 hours/day -3.03 (-5.48, -0.59) 0.015  -2.28 (-3.87, -0.68) 0.005  -0.93 (-1.98, 0.13) 0.085  0.17 (-0.69, 1.03) 0.702  

Intercept 16.52 (12.21, 20.82) <0.001 8.42 (5.6, 11.24) <0.001 4.97 (3.11, 6.82) <0.001 3.13 (1.61, 4.65) <0.001 
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Table 6-4 Multivariable GLS model 3 for chicken vendors – knowledge, attitudes and practices of avian influenza 

Variables Total KAP Knowledge Attitudes Practices 

  Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value 

Gender 
        

Male - - - - - - - - 

Female -2.58 (-4.95, -0.22) 0.032 -2.32 (-3.76, -0.88) 0.002 -0.84 (-2.02, 0.35) 0.167 0.58 (0.08, 1.07) 0.023 

Age group 
        

≤ 35 
        

36~55 -3.94 (-7.74, -0.14) 0.042 -2.51 (-4.82, -0.2) 0.033 -1.41 (-3.31, 0.5) 0.147 -0.02 (-0.82, 0.78) 0.961 

>55 -6.00 (-11.21, -0.8) 0.024 -4.65 (-7.82, -1.48) 0.004 -1.35 (-3.96, 1.26) 0.311 -0.01 (-1.1, 1.08) 0.989 

Education level 
        

Primary School and below 
        

Secondary school -1.42 (-4.37, 1.53) 0.345 -0.18 (-1.98, 1.61) 0.842 -0.99 (-2.47, 0.49) 0.191 -0.25 (-0.87, 0.37) 0.426 

High School -0.60 (-4.12, 2.91) 0.737 -0.12 (-2.26, 2.03) 0.915 -0.09 (-1.86, 1.67) 0.919 -0.40 (-1.13, 0.34) 0.294 

University and above -1.60 (-8.8, 5.59) 0.662 0.21 (-4.17, 4.6) 0.924 -0.82 (-4.43, 2.79) 0.655 -1.00 (-2.51, 0.52) 0.197 

Type of stalls 
        

Wholesaler 
        

Retailer 2.37 (-0.32, 5.07) 0.084 1.49 (-0.15, 3.14) 0.074 1.30 (-0.05, 2.66) 0.058 -0.43 (-0.99, 0.14) 0.140 

Mixed wholesaler and retailer -0.91 (-4.65, 2.82) 0.631 -0.52 (-2.8, 1.75) 0.651 -0.33 (-2.21, 1.54) 0.726 -0.05 (-0.84, 0.73) 0.891 

Type of vendor 
        

Vendor only 
        

Vendor trader 1.14 (-2.24, 4.51) 0.510 0.27 (-1.79, 2.33) 0.800 0.49 (-1.21, 2.18) 0.575 0.38 (-0.33, 1.09) 0.289 

Vendor slaughter -0.02 (-3.25, 3.21) 0.990 0.07 (-1.9, 2.04) 0.944 -0.93 (-2.55, 0.69) 0.261 0.84 (0.16, 1.52) 0.015 

Vendor trader & slaughter -0.26 (-5.99, 5.48) 0.930 -1.28 (-4.77, 2.22) 0.473 -0.64 (-3.51, 2.24) 0.665 1.66 (0.45, 2.86) 0.007 

Years of working with chicken 
        

≤ 5 years 
        

6~10 years 3.27 (-0.64, 7.17) 0.101 1.52 (-0.86, 3.91) 0.209 1.87 (-0.09, 3.83) 0.062 -0.12 (-0.94, 0.7) 0.769 

11~15 years -0.10 (-4.19, 3.99) 0.961 0.11 (-2.38, 2.61) 0.930 0.27 (-1.79, 2.32) 0.800 -0.48 (-1.34, 0.38) 0.274 

>15 years 3.49 (-0.42, 7.4) 0.080 1.74 (-0.65, 4.12) 0.154 1.68 (-0.28, 3.64) 0.093 0.08 (-0.74, 0.9) 0.853 

Hours of contacting chicken 
        

≤ 5 hours/day 
        

6~15 hours/day -0.79 (-4.16, 2.58) 0.646 -0.08 (-2.13, 1.98) 0.941 -0.57 (-2.26, 1.13) 0.512 -0.15 (-0.85, 0.56) 0.686 
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>15 hours/day -1.77 (-6.77, 3.23) 0.489 -0.26 (-3.31, 2.78) 0.865 -2.07 (-4.58, 0.44) 0.105 0.57 (-0.48, 1.62) 0.287 

Intercept 16.68 (9.73, 23.63) <0.001 9.29 (5.06, 13.53) <0.001 4.21 (0.72, 7.7) 0.018 3.18 (1.72, 4.64) <0.001 
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Table 6-5 Multivariable GLS model 4 for chicken consumers – knowledge, attitudes and practices of avian influenza 

Variables  Total KAP Knowledge Attitudes Practices 

  Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value Coef. (95% CI) P-value 

Gender 
        

Male - - - - - - - - 

Female 1.01 (-0.76, 2.79) 0.263 0.40 (-0.88, 1.68) 0.538 0.03 (-1.09, 1.14) 0.963 0.58 (0.12, 1.05) 0.013 

Age group 
        

≤ 35 
        

36~55 0.11 (-2.08, 2.29) 0.924 1.03 (-0.54, 2.61) 0.199 -0.96 (-2.34, 0.42) 0.174 0.03 (-0.54, 0.6) 0.921 

>55 -2.76 (-8.06, 2.54) 0.308 0.57 (-3.26, 4.39) 0.770 -3.00 (-6.34, 0.34) 0.078 -0.33 (-1.71, 1.05) 0.642 

Education level 
        

Primary School and below 
        

Secondary school -0.63 (-4.18, 2.92) 0.728 0.10 (-2.46, 2.66) 0.937 -0.38 (-2.62, 1.86) 0.740 -0.35 (-1.28, 0.57) 0.453 

High School 1.23 (-2.27, 4.74) 0.490 0.94 (-1.59, 3.47) 0.466 0.30 (-1.9, 2.51) 0.787 -0.01 (-0.92, 0.9) 0.983 

University and above 3.40 (-0.51, 7.31) 0.088 1.85 (-0.97, 4.68) 0.198 1.14 (-1.32, 3.61) 0.363 0.40 (-0.62, 1.42) 0.439 

Employment status 
        

Full-time work 
        

Part-time work 0.17 (-8.03, 8.37) 0.968 -4.05 (-9.96, 1.87) 0.180 4.70 (-0.47, 9.87) 0.075 -0.48 (-2.62, 1.65) 0.656 

Unemployed 1.90 (-1.47, 5.26) 0.270 1.69 (-0.74, 4.12) 0.173 -0.60 (-2.72, 1.53) 0.582 0.80 (-0.07, 1.68) 0.072 

Retired 2.05 (-3.18, 7.29) 0.442 -1.24 (-5.02, 2.54) 0.520 2.15 (-1.15, 5.45) 0.201 1.14 (-0.22, 2.5) 0.101 

How often do you buy chicken 
        

≥once per week 
        

≥once per month and <once per 

week 

1.96 (0.14, 3.77) 0.035 0.48 (-0.83, 1.79) 0.470 1.37 (0.23, 2.52) 0.019 0.10 (-0.37, 0.57) 0.671 

<once per month 0.93 (-1.76, 3.63) 0.496 -0.31 (-2.25, 1.63) 0.752 1.18 (-0.52, 2.87) 0.174 0.07 (-0.63, 0.77) 0.842 

Type of Chicken 
        

Lived 
        

Slaughtered 0.57 (-2.32, 3.46) 0.698 -0.41 (-2.5, 1.67) 0.699 1.44 (-0.38, 3.26) 0.121 -0.46 (-1.21, 0.29) 0.231 

Intercept 12.62 (8.33, 16.91) <0.001 6.59 (3.5, 9.69) <0.001 3.90 (1.2, 6.61) 0.005 2.12 (1.01, 3.24) <0.001 
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Table 6-6 Attitudes towards policies from chicken farmers, vendors and consumers 

Questions of the acceptance of 

possible control measures on 

LBMs 

Options Farmers Vendors Consumers 

Number 

of 

responses 

Positive 

responses 

Positive 

responses 

rate 

Number 

of 

responses 

Positive 

responses 

Positive 

responses 

rate 

Number 

of 

responses 

Positive 

responses 

Positive 

responses 

rate 

Regular market rest days and 

cleaning and disinfection on 

markets. 

Agree 82 80 98% 110 103 94% - - - 

Do not 

agree 

 
2 2% 

 
7 6% - - - 

No overnight poultry in the market, 

slaughter all poultry unsold at the 

end of day. 

Agree 78 43 55% 109 26 24% - - - 

Do not 

agree 

 
35 45% 

 
83 76% - - - 

Ban on selling live chickens and 

implement central slaughtering of 

poultry 

Agree 83 39 47% 101 25 25% - - - 

Do not 

agree 

 
44 53% 

 
86 85% - - - 

If selling live bird is forbidden in 

any market, only fresh slaughtered 

chicken is allowed, would you still 

buy? 

Yes - - - - - - 85 32 38% 

No - - - - - - - 53 62% 



123 

 

6.6 Discussion 

This study presents a unique insight into the prevailing behavioural conditions of market chain actors 

of the identified H7N9 high-risk areas in the middle of 2014 after the second wave of H7N9 outbreaks 

in humans in Eastern China. To our knowledge, this is the first study conducted on KAP of three 

main stakeholder groups along the live chicken market chain in relation to AI in a high-risk area for 

both H5N1 and H7N9 infections in Eastern China. 

Poultry workers at farms and LBMs have been identified as the weakest link in AI prevention and 

control [183]. Our results indicate that chicken farmers operating in the initial high-risk areas [10, 29] 

for H7N9 have significantly higher knowledge and attitude scores for AI compared to chicken 

vendors, and the overall KAP score of consumers is lower than that of chicken farmers but higher 

than that of chicken vendors. These findings are consistent with a KAP study of H7N9 in Zhejiang 

province and a qualitative study of H5N1 in Hong Kong indicating that knowledge of AIVs was 

reasonably high among chicken farmers, but lower among retailers [279, 284]. We also found that 

chicken farmers have significantly higher practice scores than consumers. An explanation for this is 

that farmers are more likely to comply with practices that help to protect their flocks and address their 

financial interests [287]. Our results suggest that interventions to improve KAP towards AI should be 

promoted among all the stakeholders along the live chicken market chain, with an emphasis on 

chicken vendors in LBMs. 

While these findings provide a good general picture of the level of KAP across all actors in the live 

chicken market chain, an in-depth analysis into the determinants of KAP within each of the actors is 

necessary. We therefore analysed determinants of KAP within each actor group and our results for 

chicken farmers suggests that those who had 11 to 15 years farming experience have higher 

knowledge scores than those worked less than 6 years. This is consistent with findings from a KAP 

study of farmers in Italy, which suggested that greater knowledge was found in farmers who worked 

for a longer time [272]. We also found farmers who had longer farming experience (>15 years) had 

poorer attitudes towards AI risk compared to those with less experience (<6 years). This finding 

suggests that knowledge is not a mediator of behaviour in longer practicing farmers. Indeed this is 

consistent with previous reports indicating that having a better knowledge of AI may lead to a lower 

perceived risk of infection from poultry among poultry workers [184, 284]. Programmes to increase 

the awareness of AIVs for chicken famers should not overlook those who have worked for many 

years in the chicken industry. Our results also indicate that chicken farmers who had longer daily 

hours of exposure to chickens had significantly lower knowledge scores. It is possible that those 

farmers who are exposed to poultry for longer periods of time are economically disadvantaged and/or 
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live in more remote areas; in turn, socioeconomic disadvantage and remoteness from urban centres 

may lead to a lower access to information. Overall, our finding suggests that enhancing their 

preventive practices are of great importance for chicken farmers.  

Our recent meta-analysis [283] of market-level biosecurity risk factors of AI human infections 

revealed that female workers at LBMs are at significantly higher risk of AI infection compared to 

male workers. Our analysis for chicken vendors demonstrates that females have significantly lower 

knowledge scores compared to their counterparts which could explain their higher risk of AI infection 

reported in our metanalysis [283]. However, the results of the present study also indicate that female 

chicken vendors had significantly higher practice scores than their counterparts. This finding is 

consistent with a previous KAP study of H7N9 targeting an unstratified sample of the population that 

revealed females are more likely to comply with preventive practices than males [288]. A possible 

explanation for the discrepancy between this study and the results of our metanalysis can be reporting 

bias of practices highlighting the need for further observational studies on behaviour. In addition, our 

results reveal that chicken vendors who slaughter poultry at LBMs had significantly higher practice 

scores than their counterparts. Poultry slaughter operations at LBMs increases the risk of AI 

transmission within the LBM environment [283]. A possible explanation for our finding is that 

chicken vendors who conduct slaughter at LBMs are aware of the risk and are thus more likely to 

wear protective equipment compared to vendors who do not slaughter poultry. This hypothesis 

requires further empirical observation. Finally, our results suggest that older chicken vendors (>35-

years) have lower knowledge of AI compared with younger vendors (≤35-years), which may be 

attributed to the level of education of older vendors compared to younger vendors. This finding 

suggests a higher risk of exposure of older vendors as documented by our recent metanalysis [283]. 

Taken together, our findings highlight the demand for educational interventions about knowledge of 

AI for female vendors and the less educated and older vendors. There is also a need for male vendors, 

and those who only sell poultry, but do not conduct slaughter, to wear personal protective equipment 

within LBMs. 

For consumers purchasing chickens in the surveyed markets our results indicate that female 

consumers had significantly higher practice scores when compared to male consumers, which is in 

line with our findings for chicken vendors. This is because women are more likely to be responsible 

for food shopping and cooking for their family, which in turn can lead to better practices. Consumers 

who bought chicken at least once a month had a higher risk perception of AI than those who buy 

chicken at least once every week. Interestingly, a study in Taiwan found that consumers with 

relatively low levels of AI knowledge were likely to prefer not eating chicken at all under a possible 

threat of AI infection and those with low risk perception levels would be more likely to maintain 
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usual chicken consumption than those with high risk perception levels if outbreaks of AI occurred 

[188]. This suggests that government administration and industry managers can design effective 

information communication for educational purposes to prevent a drop-in revenue due to the reduced 

demand and informing consumers about the safety of chicken products and proper cooking practices. 

Despite the high response rate in our study, there are some limitations. Firstly, while this survey 

occurred after the second wave (2014) in the provinces firstly affected by H7N9 outbreaks in humans, 

it may not necessarily be generalizable to the conditions in subsequent years. Secondly, we cannot 

ignore the presence of reporting bias in our sample since responses to the questionnaire were self-

reported. In addition, we used close-ended questionnaires which may give limited flexibility in 

participants’ answers. It may miss some specific or relevant local knowledge or preventive practices 

which may not be included in the questionnaire. Thirdly, some confounding factors (e.g. personal 

income, place of residence) were not able to be captured in our KAP instrument, and this may have 

contributed to the differences in KAP towards AI observed among difference groups.  

6.7 Conclusion 

In conclusion, KAP scores in relation to avian influenza were generally low for all actors in the live 

chicken market chain at high-risk areas for H7N9 emergence. Risk based interventions should be 

developed and implemented by both animal health and public health agencies to prevent the spread 

of AI along the live chicken market chain. Interventions to increase knowledge of AI should be 

targeted to high-risk chicken vendors in LBMs, with an emphasis on female vendors and older 

vendors (>35-years-old). Measures for improvement of AI prevention practices should be targeted at 

male chicken vendors and those who are not engaged in chicken slaughter at LBMs. Programmes to 

increase the awareness of AI for chicken farmers should not be overlooked and should include those 

who have worked for many years in the chicken industry. Interventions to improve the knowledge 

and awareness of AI should be targeting those farmers who work more than 15 hours per day with 

poultry. There should also be a higher priority on delivering educational programmes about AI to 

male consumers and those who buy chickens more frequently. 
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Chapter 7 Geographical variation in the risk of H7N9 human 

infections in China: implications for risk-based 

surveillance 

7.1 Context 

Since 2013, a total of five epidemic waves have affected the country which resulted in the widespread 

dissemination of H7N9 virus across China. In February 2017, some strains of the 2013 LPAI H7N9 

virus mutated to become highly pathogenic in poultry and rapidly spread to other provinces of China 

[13, 136]. The studies in Chapter 4 and 5 identified the role of LBMs and live poultry movement in 

the exposure and dissemination of H7N9 viruses during the H7N9 emergency. The study in Chapter 

6 demonstrated a better understanding of the social determinants of exposure along the live chicken 

market chain. However, effective prevention and control of human H7N9 infections relies on 

identifying spatiotemporal indicators that can anticipate the spatiotemporal variation in infection 

incidence so to provide essential evidence and recommendations for risk-based AI surveillance 

programs and appropriate enhancements to current prevention and control policies for H7N9. While 

several ecological spatial studies aiming at identifying risk factors of H7N9 human cases had been 

undertaken in China [12, 26, 219, 289-291], none of these studies looked at the effect of more 

proximal factors such as poultry surveillance results and live chicken movement in affected areas at 

explaining the geographical variation of human H7N9 infections.  

Therefore, in Chapter 7, we assembled the most comprehensive dataset of key risk factors for H7N9 

infection in humans, e.g. distribution of LBMs, chicken movement data collected from the study in 

Chapter 6, and other risk factors based on existing ecological studies (e.g. human population density, 

chicken density), as well as detailed spatiotemporal data of poultry H7N9 surveillance results. We 

applied a test of cross-correlation to quantify the temporal relationship between the onset of human 

H7N9 infections during 2013-2017 and poultry serological and virological surveillance results. We 

also developed a spatial CAR model that accounted for spatial clustering of incidence to estimate and 

map the relative risk of H7N9 human incidence in counties in Southeast China by assessing the 

relationship between human infections as an outcome and poultry surveillance results, live chicken 

movements and recognized demographic risk factors as predictors. 

The findings in Chapter 7 revealed the potential for poultry serological and virologic surveillance to 

anticipate human H7N9 infections and uncovered important geographical variation in the relative risk 

of human H7N9 incidence at county level in Southeast China. Specifically, the results indicated that 

the peak of poultry H7N9 serological positives is followed by human H7N9 infections with a two-
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month lag, and that poultry H7N9 virological positives is followed by the human H7N9 infections 

with a one-month lag. The results of the spatial CAR model indicate that human H7N9 incidence at 

county-level is positively and significantly associated with the presence of wholesale LBMs, higher 

density of retail LBMs, presence of poultry virological positives, higher poultry movement network 

connectivity, as well as lower chicken population density and higher human population density.  

The map of relative risks of human H7N9 incidence generated in this Chapter indicated that high risk 

areas of human H7N9 infections were spatially clustered in Southeast China, extending from the 

Yangtze River delta near Shanghai to the Pearl River delta near Guangzhou and covering most areas 

of Jiangsu, Zhejiang, Shanghai, Anhui, Fujian, Guangdong and Hunan provinces. Additional “hot 

spots” for human H7N9 infections were found in the northern region of Guangxi, eastern region of 

Hubei province, northern and southern region of Jiangxi, northern region of Beijing, and the northern 

region of Hebei province. 

The results of the program of research presented in Chapter 7 is novel in that the geographical model 

of human H7N9 incorporated key risk factors including poultry virological surveillance results, live 

chicken movement coming out from the originally H7N9 affected area in Southeast China provinces, 

and spatial autocorrelation. By doing this, this model provided an approach to identify areas where 

the likelihood of H7N9 human infections is at its highest, and where spatially targeted control 

interventions are most needed. 

This Chapter is presented as a paper, which has been submitted for publication in Scientific Reports, 

and supporting technical information is presented in Appendix D in this Thesis. 

7.2 Abstract 

The influenza A (H7N9) subtype remains a public health problem in China affecting individuals in 

contact with live poultry, particularly at live bird markets. Despite enhanced surveillance and 

biosecurity at LBMs H7N9 viruses are now more widespread in China. This study aims to quantify 

the temporal relationship between poultry surveillance results and the onset of human H7N9 

infections from 2013 to 2017 and to estimate risk factors associated with geographical risk of H7N9 

human infections in counties in Southeast China. Our results suggest that poultry surveillance data 

can potentially be used as early warning indicators for human H7N9 notifications. Furthermore, we 

found that human H7N9 incidence at county-level was significantly associated with the presence of 

wholesale LBMs, the density of retail LBMs, the presence of poultry virological positives, poultry 

movements from high-risk areas, as well as chicken population density and human population density. 

The results of this study can influence the current AI H7N9 control program by supporting the 

integration of poultry surveillance data with human H7N9 notifications as an early warning of the 
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timing and areas at risk for human infection. The findings also highlight areas in China where 

monitoring of poultry movement and poultry infections could be prioritized.  

7.3 Introduction 

Since the emergence in early 2013 of a low pathogenic avian influenza (LPAI) H7N9 virus [263], 

there have been six epidemic waves causing about 1,600 human infections in 29 provinces and 

municipalities in mainland China [5, 292]. During the fifth epidemic wave starting in October 2016, 

the geographic range of H7N9 human cases expanded and more human cases were reported than any 

previous wave [12]. In February 2017, strains of the 2013 LPAI H7N9 virus isolated from chickens 

in Guangdong province mutated to become highly pathogenic avian influenza (HPAI) H7N9 in 

poultry and rapidly spread to other provinces of China [13, 136]. The rapid evolution, increased 

pathogenicity and efficient transmissibility of HPAI H7N9 viruses in mammalian models, together 

with their extended host range, may have increased the threat to public health and the poultry industry 

[137, 138].  

Live bird markets (LBMs) remain the main source of H7N9 virus spreading among poultry, and from 

poultry to humans [10]. Recognizing the role of LBMs in the exposure and dissemination of H7N9 

viruses, in Feb 2017, the MARA of China established the “1110 policy”, which includes mandatory 

daily market cleaning activities, disinfection, market closure once a month, and no overnight market 

poultry storage. This policy was followed in July 2017, by the implementation of the National 

Vaccination Program in the poultry sector through the adoption of a bivalent H5/H7 inactivated 

vaccine. While this vaccine has largely been effective at controlling H7N9 virus circulation among 

both chicken and humans [136, 138, 208], the virus is still being occasionally detected by the national 

animal disease surveillance system [204]. Therefore, a better understanding of the determinants of 

exposure is necessary to complement sanitary measures such as vaccination and enhanced LBM 

biosecurity. 

The available literature indicates that the primary risk factor for human H7N9 infection in China is 

exposure to LBMs, and that intervention at this stage of the live poultry market chain is the most 

effective prevention measure [7, 8, 14-18]. Poultry-to-human transmission is intensified at LBMs, 

hence as a short term response, LBM closure should be rapidly implemented to substantially reduce 

the contact of infected poultry with the general population, in areas where the virus is identified in 

either poultry or humans [293, 294]. However, this may not be favorable to poultry enterprises or 

individual households due to the associated financial costs. Reactive closure of LBMs may facilitate 

further dissemination through the opening of unregistered LBMs or illegal poultry movements [295]. 
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Surveillance and monitoring of avian influenza within the poultry market chain (i.e. farms, live bird 

markets and slaughter houses) generates epidemiological evidence on affected species, geographical 

sources of infection and the role of modifiable risk factors on disease transmission [23]. Animal health 

authorities in China have been prompt at identifying the presence of the H7N9 virus within the live 

poultry market chain and controlling infection transmission at the source since the emergency. The 

control of H7N9 in chickens through vaccination explains the sudden decrease in the number of 

human H7N9 infections since October 2017 [138, 208]. Little is known about the relative timing of 

infections in people and poultry but should peaks in transmission in poultry precede human cases, 

poultry surveillance results could provide an early warning for the likely timing and location of human 

H7N9 infections and this requires further evaluation. Furthermore, the role of poultry movements 

from the originally affected area in Eastern China in disseminating H7N9 infection throughout the 

country is yet to be quantified. 

Several ecological spatial studies aiming at identifying risk factors of H7N9 human cases have been 

undertaken in China [12, 26, 219, 289-291], and distribution of H7N9 risks were mapped in these 

studies. Of these, two studies by Fuller et al. and Gilbert et al. attempted to map the suitability for 

H7N9 human infections in Asian regions. LBM density was demonstrated to be significantly 

associated with the presence of human H7N9 infections [12, 289, 291]. Human population density 

and density of both intensively and extensively raised chickens were also found to be predictors of 

H7N9 presence [291]. A previous study also found there was a major shift of risk factors from 

anthropological (i.e. LBM and human population density) towards poultry related variables (i.e. 

poultry density and chicken-to-duck ratio) linked to human H7N9 cases over time [12]. Other studies 

also evaluated the role of pig density, distance to freeway, distance to national highway, landcover, 

temperature and relative humidity, etc. [26, 219]. However, none of these studies looked at the effect 

of more proximal factors such as poultry surveillance results and live chicken movement in explaining 

the geographical variation of human H7N9 infections.  

This study aims to quantify the temporal relationship between the onset of human H7N9 infections 

during 2013-2017 and poultry serological and virological surveillance results, and to estimate the 

relative risk of H7N9 human incidence in counties in Southeast China by assessing the relationship 

between human infections as the outcome and poultry surveillance results, live chicken movements 

and recognized demographic risk factors as explanatory variables. 
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7.4 Data sources and methods 

7.4.1 Ethics statement 

The research proposal leading to the study received ethical approval from the China Animal Health 

and Epidemiology Centre (CAHEC) of MARA of China. The research proposal leading to the 

primary data collection of chicken movements received ethics approval from the Behavioral & Social 

Sciences Ethical Review Committee of the University of Queensland (Approval number: 

2014001167). There were no samples from humans or animals taken as part of our study, we used 

secondary information on human infections and market positivity to H7N9 infection derived from 

open access websites. 

7.4.2 H7N9 human infection data and poultry surveillance data 

We obtained all laboratory-confirmed H7N9 human cases reported during 2013-2017, from 

“Situation Updates - Avian Influenza” of the World Health Organization (WHO) [216] and “Avian 

Influenza Report” from the Centre for Health Protection of the Department of Health of the Hong 

Kong Special Administrative Region (SAR) [217]. Case definitions and laboratory testing have been 

described previously [218, 219]. For each human H7N9 case, information on county of residence and 

date of onset of symptoms was extracted. Poultry serological and virological surveillance results were 

obtained from the monthly official Veterinary Bulletin released by the Veterinary Bureau of the 

MARA of China [204], from which we extracted data on positive identification of H7N9 from the 

national H7N9 surveillance program between 2013 and 2017. The national H7N9 surveillance 

program took samples from LBMs, poultry slaughter houses, poultry farms and wild bird habitat, as 

well as pig farms and slaughter houses. All samples were tested in provincial Centers for Animal 

Disease Control and Prevention (CADCs) and confirmation of H7N9 virus was based on polymerase 

chain reaction (PCR). All AI positive samples were sent to the Harbin National Veterinary Research 

Institute for confirmation, subtyping and virus isolation. All reported H7N9 human cases and poultry 

virological surveillance positives were then geo-referenced and linked to a county level map of China.  

7.4.3 Data on live chicken movement 

A cross-sectional survey was conducted from June to July in 2014 targeting the live meat chicken 

trade in six counties located in Jiangsu (Lishui, Jintan, Jiangyan) and Anhui (Feixi, Quanjiao and 

Chaohu) provinces. These counties were selected based on the findings from a previous study [10] 

conducted during the H7N9 emergency response, which demonstrated that connectivity of chicken 

sources was highest in these six counties. In addition, one county in Shanghai municipality (Fengxian) 
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was added, which was the location of the first H7N9 human case reported in 2013. Shanghai 

municipality is also adjacent to Jiangsu province where human H7N9 and H5N1 infections were 

demonstrated to be co-distributed [29]. An initial sample size of one or two wholesale LBMs (subject 

to actual numbers of LBMs in a county) in the seven high-risk counties were included; typically, there 

are a total of 1 to 2 wholesale LBMs in each county. Information on live poultry movements was 

obtained from poultry movement certificates available at wholesale LBMs and live poultry trading 

platforms (similar to a wholesale LBM) in the selected counties. All available chicken movement 

certificates in the trading locations surveyed were recorded from January 2014 to July 2014. This 

dataset records half-year chicken movements and is representative of the extent of live chicken 

movement within and beyond that region.  

7.4.4 Sociodemographic factors 

A set of sociodemographic risk factors was considered in the analysis including the presence of 

wholesale LBMs in each county (a binary variable representing presence/absence), and the density 

of retail LBMs (markets/100km2), human population density (people/km2) and chicken density 

(birds/km2). All factors were compiled at the county level. All data sources are summarized in Table 

7-1; the source of LBMs is described in the Appendix D.1. 

Table 7-1 Risk factor variables used in the analysis. 

Variables at county level Sources 

Presence of wholesale LBMs China Animal Health and Epidemiology Centre (see Appendix D.1) 

Number of retail LBMs China Animal Health and Epidemiology Centre (see Appendix D.1) 

Poultry virological positives MARA monthly veterinary bulletin 

Network centrality Primary investigation in Jun-Jul 2014 

Human population density 2010 Census 

Chicken density Robinson et al. 2007 

7.4.5 Social network analysis 

To describe the connectivity pattern within the chicken movement dataset consisting of records of 

paired trading events between a particular LBM and the county they trade with (termed as “trade 

county”), we used social network analysis (SNA), as described previously [31]. We summarized 

network connectivity using degree centrality of the 2-mode binary network (LBM nodes vs trade 

county nodes). The degree represents the absolute number of unique links of a given node and it is 

important for describing the levels of connectivity between different actors within a network, thereby 

allowing identification of the most influential spreaders within a network [267].  
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7.4.6 Cross correlation analysis 

To assess the temporal relationship between the onset of human H7N9 infections and poultry 

serological and virological surveillance results, we used a time-series cross-correlation analysis to 

calculate the temporal lags in months between the outcome (human infections) and the surveillance 

indicator (prevalence of poultry surveillance positives). The dataset was structured by month because 

the reports of surveillance results were aggregated by month [204]. In order to mitigate potential 

missing detection and report in early 2013 and potential reporting bias in late 2017 after the adoption 

of H7 vaccination since July 2017, we only used H7N9 infection data from July 2013 to June 2017. 

From each time-lagged correlation, only the lag with the highest correlation value was selected for 

the analysis. Usually, a correlation is significant when the absolute value is greater than 2/sqrt(n-|k|), 

where n is the number of observations and k is the lag. 

7.4.7 Analysis of spatial variation in human H7N9 infections at county level 

To assess whether there was spatial autocorrelation in the observed pattern of human H7N9 infections 

in the study area we used the Global Moran's Index (Moran’s I), a measure of spatial autocorrelation 

for spatially aggregated data. We used the incidence rate of human H7N9 infections per 1,000 (i.e. 

estimated by dividing the observed number of human cases by the total human population in the 

county and multiplied by 1,000) for estimation of Moran’s I. Moran's I is positive when nearby areas 

tend to be similar, negative when they tend to be dissimilar, and approximately zero when attribute 

values are arranged randomly in space [220]. The Moran's I value and a Z-score (evaluating the 

significance of the index) were estimated using ArcGIS 10.1. 

7.4.8 Bayesian spatial conditional autoregressive model (CAR) 

A Bayesian framework was used to construct a Poisson regression model of the observed incidence 

of human H7N9 infections in each county using the OpenBUGS software 3.2.3 rev 1012 [221]. The 

model included all of the explanatory variables described above and a spatially structured random 

effect. The mathematical notation for the model is provided in the Appendix D.2. It assumed that the 

observed counts of H7N9 human infections in the county (from 1 to 1181) from 2013 to 2017 

followed a Poisson distribution. 

The spatially structured random effect was modelled using a conditional autoregressive (CAR) prior 

structure [222]. This approach uses an adjacency weights matrix to determine spatial relationships 

between counties. If two counties share a border, it was assumed the weight = 1 and if they do not the 

weight = 0. The adjacency matrix was constructed using the “Adjacency for WinBUGS tools” in 

ArcGIS software [221]. A flat prior distribution was specified for the intercept, whereas a normal 
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non-informative prior distribution was used for the coefficients (with a mean = 0 and a precision = 

0.001). The priors for the precision of spatially structured random effects were specified using non-

informative gamma distributions (0.5, 0.0005). The OpenBugs code is in Appendix D.3. 

The first 1,000 iterations were run as a burn-in period and discarded. Subsequent sets of 20,000 

iterations were run and examined for convergence. Convergence was determined by visual inspection 

of posterior density and history plots and by examining autocorrelation plots of model parameters. 

Convergence occurred at approximately 100,000 iterations for each model. Another 20,000 values 

from the posterior distributions of the model parameters were stored and summarized for the analysis. 

Statistical significance was indicated by 95% credible intervals (95% CrI), a variable was considered 

significant if CrI excluded 0. 

Choropleth maps were created using the ArcGIS software to visualize the geographical distribution 

of crude incidence for the 1181 counties in the study area. The posterior means of the CAR random 

effects obtained from the models were also mapped. 

7.5 Results 

The distribution of human H7N9 notifications and poultry surveillance positives from 2013 to 2017 

is shown in Figure 7-1. A total of 1,516 human H7N9 infections and 332 poultry virological positives 

were geocoded at least to county level. The majority of the H7N9 virological positive samples (88.3%, 

293 out of 332) were collected from LBMs. A total of 1,181 counties from 14 provinces and 

municipalities in southeast China were included in this study; about 93.4% of reported human H7N9 

infections and 89.5% of reported H7N9 virological positive samples were in these counties. 
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Figure 7-1 Spatial distribution of human H7N9 infections (red dots) and poultry virological surveillance positives (grey dots) from 

2013 to 2017. Dots represent either geographic locations of the H7N9 human infections or county centroids when the detailed location 

is not available. 

7.5.1 Social network analysis of chicken movements 

In total, we analysed live chicken movement data from four wholesale LBMs and four live poultry 

trading platforms from Jiangsu, Anhui and Shanghai from January to July 2014 (Table D-1). Chicken 

movements from live poultry trading platforms tend to involve long-distance and inter-provincial 

transportation of chickens, while chicken movements from wholesale LBMs are mostly confined to 

local areas or neighbouring provinces (Figure D-1). The full extent of the 2-mode network (LBMs 

and chicken source/destination counties) is presented in Figure D-2. The results of this analysis 

revealed that there was a giant weakly connected component comprising eight wholesale LBMs and 

249 chicken source/destination counties. These 249 counties were located mainly in Jiangsu, Anhui 

and Shanghai, extending to neighbouring provinces Henan, Hubei and Shandong, and further to the 

south, including Guangdong. The degree centralities of all the county nodes ranged from one to six 

and the geographic distribution of degree centrality is demonstrated in Figure D-3. The counties with 

the highest degree centrality were Jintan, Changzhou, Yangzhou in Jiangsu province (degree = 6); 

and Jiangyan, Lishui, Taixin, Shuyang, Zhenjiang and Nanjing from Jiangsu province, and Huzhou 

from Zhejiang province and Wuhu from Anhui province (degree = 5). 
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7.5.2 Temporal associations between human H7N9 notifications and poultry H7N9 

surveillance data  

Figure 2-16 presents the epidemiological curve of H7N9 human cases, poultry surveillance results by 

month of onset. We analysed data from July 2013 to June 2017. Results from the time-series analysis 

indicate that there is a significant temporal relationship between human H7N9 notifications and 

poultry surveillance results. Our results indicate that the peak of poultry H7N9 serological positives 

is followed by human H7N9 infections with a two-month lag, poultry H7N9 virological positives are 

followed by human H7N9 infections with a one-month lag (Figure 7-2). In addition, poultry 

serological H7N9 positives are followed by poultry H7N9 virological positives with a one-month lag 

(Figure 7-2). 

  
A B 

 

 

C  

Figure 7-2 A: Positive lags refer to human H7N9 infections leading by H7N9 sero-prevalence. B: Positive lags refer to human H7N9 

infections leading by H7N9 viro-prevalence. C: Positive lags refer to H7N9 viro-prevalence leading by H7N9 sero-prevalence. The 

correlation of sero-prevalence at Lag -2 is approximately 0.49, and the correlation of viro-prevalence at Lag -1 is approximately 0.37. 

The correlations are significant because the values are greater than [2/ (Sqrt (n-|lag|))), n=48]. 

7.5.3 Spatial autocorrelation (Moran’s I) 

Incidence of human H7N9 infections was significantly spatially clustered, as indicated by a positive 

Moran’s I value (0.152) that was statistically significant at the 0.05 level (Table D-2). 
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7.5.4 Bayesian spatial conditional autoregressive model of human H7N9 infections 

The presence of wholesale LBMs (Coef. = 0.33, 95% CrI: 0.09~0.56) in the county and the density 

of retail markets (Coef. = 0.88, 95% CrI: 0.52~1.23) were positively and significantly associated with 

the human H7N9 incidence (Table 7-2). Human H7N9 incidence was positively associated with the 

presence of poultry virological positives (Coef. = 0.59, 95% CrI: 0.32~0.85) and the connectivity of 

counties with respect to poultry movements (Coef. = 0.83, 95% CrI: 0.47~1.19; Coef. = 0.89, 95% 

CrI: 0.28~1.53). While human H7N9 incidence was positively associated with increasing chicken 

population density (Coef. = 0.34, 95% CrI: 0.02~0.66; Coef. = 0.95, 95% CrI: 0.48~1.4), human 

H7N9 incidence was inversely proportional to human population density (Coef. = -0.69, 95% CrI: -

0.99~-0.38; Coef. = -1.13, 95% CrI: -1.51~-0.72). 

A map of adjusted relative risks (RRs) of human H7N9 incidence by county (Figure 7-3) shows that 

high risk areas of human H7N9 infection were spatially clustered in southeastern China, extending 

from the Yangtze River delta near Shanghai to the Pearl River delta near Guangzhou and covering 

most areas of Jiangsu, Zhejiang, Shanghai, Anhui, Fujian, Guangdong and Hunan provinces. 

Additional hot spots for human H7N9 infections were found in the northern region of Guangxi, 

eastern region of Hubei province, northern and southern region of Jiangxi, northern region of Beijing, 

and the northern region of Hebei province (Figure 7-3). The map of the spatially structured random 

effects demonstrates evidence of clustering around the Yangtze River delta area (Figure D-4). 

Table 7-2 Results of spatial conditional autoregressive model of human H7N9 human incidence during 2013-2017. (CrI Credible 

Interval, a variable was considered significant if CrI excluded 0) 

Variables Category 
Coefficient, posterior mean 

(95%CrI) 

Present of wholesale LBMs  no Ref. 

  yes 0.33 (0.09~0.56) 

Retail LBMs density (markets/100km2) Low density (< 1) Ref. 

  Medium density (1-3) 0.14 (-0.15~0.42) 

  High density (>3) 0.88 (0.52~1.23) 

Present of poultry virological positive no Ref. 

  yes 0.59 (0.32~0.85) 

Population density (people/km2) 0-200 Ref. 

  201-600 -0.69 (-0.99~-0.38) 

  >600 -1.13 (-1.51~-0.72) 

Chicken density (birds/km2) <500 Ref. 

  500-3000 0.34 (0.02~0.66) 

  >3000 0.95 (0.48~1.42) 

Network estimate (degree centrality) 0 Ref. 

  1~3 0.83 (0.47~1.19) 

  4~6 0.89 (0.28~1.53) 

Intercept  -1.49 (-1.82~-1.17) 

Precision of spatial random effect  0.22 (0.17~0.27) 
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Figure 7-3 Spatial distribution of the relative risks for human H7N9 incidence in counties in southeast provinces. Red and bright colour 

indicating a higher risk, blue and darker colour indicating a lower risk. The maps were created in ArcGIS 10.1 software (ESRI Inc., 

Redlands, CA, USA) (http://www.esri.com/). 

7.6 Discussion 

This study extends current knowledge [12, 26, 219, 289-291] about the spatiotemporal epidemiology 

of human H7N9 infections in a number of ways. Firstly, using the most complete data on human 

H7N9 infections and poultry LBM surveillance from 2013-2017, our spatial analyses mapped the 

spatial distribution of human H7N9 infections and its relationship with poultry serological and 

virological surveillance results. Second, our human H7N9 relative risk map displayed the distribution 

of high-risk areas associated with poultry infection status in the county, presence of wholesale LBMs, 

density of retail LBMs, human population density, chicken density and poultry movement network 

in the county.  

Our analysis identified temporal lags between human H7N9 notifications and poultry surveillance 

recorded during 2013 to 2017. From examining the temporal relationship between human H7N9 

infections and poultry H7N9 surveillance results, we detected a one/two-month temporal lag between 

the onset of human H7N9 infections and poultry virological/serological surveillance results. These 

temporal lags may be explained by, firstly, the sensitivity of serological surveillance for H7N9 in 
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poultry is much higher than virological surveillance, and LPAI virus or its genome can be detected 

in an individual bird for only a few days due to the short period of virus shedding, whereas antibodies 

elicited by LPAI virus are often present for the entire production life of the infected poultry [296, 

297]. Meanwhile, due to low sensitivity, virological positives will be more likely to be detected when 

the concentration of virus has built up to a more detectable level most likely through the live poultry 

market chain, i.e. from farms then going through traders, wholesale markets and retail markets. 

Besides, our results demonstrated that most of the H7N9 virological positive samples were collected 

in LBMs [204], which is consistent with the consensus that the primary risk factor for human H7N9 

infections in China is exposure to LBMs [7, 8, 14-18]. These findings are also consistent with those 

from our spatial models of human H7N9 incidence, suggesting that the county-level incidence of 

human H7N9 infections is positively associated with the presence of poultry virological positives in 

the county. Together these findings have important operational implications for anticipating human 

H7N9 infections based on current routine LBM H7N9 surveillance in poultry. 

Previous studies indicated that LBM density and the number of LBMs were important factors for 

explaining the risk of H7N9 human infections [12, 16, 26, 219, 289, 291, 298]. In our analysis, both 

the presence of wholesale LBMs and density of retail LBMs were positively associated with higher 

relative risk of human H7N9 infections. Wholesale LBMs bring together live birds from large 

catchment areas and birds are commonly traded to retail LBMs [159, 223]; this results in market 

networks with numerous trade connections. Higher densities of markets may exacerbate that risk and 

explain the strong spatial correlation with suitability for H7N9 infection [291]. Closing LBMs appears 

to be an effective approach for eradicating or reducing H7N9 infections in humans [214]. However, 

a recent study presented evidence that the closure of LBMs in early waves of H7N9 influenza had 

resulted in expansion of H7N9 infection to uninfected areas [295]. This implies closing LBMs is a 

long-term strategy that needs to be further evaluated. Our recent meta-analysis identified biosecurity 

measures that have been effective for controlling AI viruses at LBMs include smaller market size, 

selling single poultry species and separating different species, mandatory monthly rest days and bans 

on keeping live birds overnight, and sourcing poultry from local areas [283]. These identified 

characteristics of LBMs allow us to better target control efforts. 

Furthermore, in our model we included estimates of live chicken movement from areas originally 

affected by H7N9 in Southeast China, which allowed us to evaluate the effect of live chicken 

movement from the primary high-risk area on the overall distribution of human H7N9 infections from 

2013 to 2017. Our results indicate a positive relationship between human H7N9 incidence and poultry 

movement estimates (degree centrality) from our CAR model. A previous study of poultry market 

chains in South China also reported that LBMs where HPAIV H5N1 was isolated were associated 
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with higher degree centrality [31]. Poultry network studies in Vietnam and South China revealed that 

live poultry traders tend to link poultry sources of similar infection status [31, 39]. These findings 

suggest that poultry movements from the originally affected area in east China provinces may 

continue to play a role in disseminating H7N9 virus throughout China. This further demonstrates the 

importance of evaluating live poultry movement and trading practices to develop appropriate and 

targeted surveillance recommendations for active H7N9 surveillance program. 

After adjusting for poultry marketing system variables (presence of wholesale LBMs and density of 

retail LBMs) and spatial autocorrelation, our results indicated that human population density was 

negatively associated with the human H7N9 incidence while chicken density was positively 

associated with human H7N9 incidence. This can partly be explained by the known epidemiology of 

H7N9 in humans in that most human cases are a result of animal-to-human transmission, rather than 

human-to-human transmission. Since most H7N9 cases have been reported in large cities where 

human population density is very high, it may partially be due to the surveillance effort to detect 

H7N9 human cases being greater in areas with high population density and better medical facilities 

[219, 289]. Moreover, higher human population density is usually related to higher biosecurity levels 

in the LBMs in highly dense urbanized areas. Furthermore, existing evidence indicates that H7N9 is 

more prevalent in chickens than in other poultry species [10, 12, 102]. Also, while H7N9 can affect 

other species it is mainly limited to chickens due the characteristics of the industry and the marketing 

system [10]. Higher chicken density is usually related to high chicken production, chicken trading 

and transportation which may promote transmission of the pathogen among poultry and increase the 

chance of humans acquiring H7N9 infection. Our findings suggest that highly connected areas with 

high chicken density and low human population should be targeted in case the virus continues to 

evolve or the efficacy of the vaccine is reduced, or even for the emergence of similar viruses in the 

future. 

Moreover, the results of our study demonstrated significant spatial clustering of human H7N9 

incidence in the study area, which required the development of a geographical model that 

incorporated spatial autocorrelation in order to generate a robust risk map of human H7N9 infection 

across China. Our human H7N9 relative risk map suggests that although H7N9 vaccine for poultry is 

currently available, continued active surveillance still needs to be strengthened for high-risk areas in 

China. Our results support strengthening LBM and human surveillance in Southeast area of China 

(involving Jiangsu, Zhejiang, Anhui provinces and Shanghai Municipality), coastal areas in Fujian 

and Guangdong provinces, and some inland areas in Hubei, Hunan and Guangxi provinces, as well 

as Beijing Municipality and the Northern area in Hebei province. According to the National 

Guidelines on the Prevention and Control of H7N9 influenza in Poultry in China (2018-2020) [299], 
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the current control of H7N9 infections in poultry in China has relied heavily on wide-scale 

compulsory preventive vaccination combined with biosecurity enhancement in both poultry farms 

and LBMs, regular surveillance programs, as well as live poultry movement control, quarantine and 

stamping out. The introduction of live poultry from high-risk areas and sites is strictly restricted [299], 

however, the delimitation of high risk-areas is unclear. This study attempted a new risk assessment 

approach and the results provided recommendations to a more targeted risk-based surveillance 

program, as well as new insights into the role of LBMs and poultry movement in China. However, 

the map of the spatially structured random effects demonstrates evidence of clustering around the 

Yangtze River delta area, suggesting that there are other risk factors not included in our spatial models, 

such as people’s behaviour, or indeed other environmental factors that could account for the residual 

spatial distribution. 

The results of this study should be interpreted in light of some limitations. Our analyses were based 

on laboratory-confirmed cases of human H7N9 infections and reported poultry H7N9 virological 

surveillance results, and are therefore subject to reporting bias, especially in areas of China with poor 

surveillance system coverage. In addition, our data for the distribution of LBMs were obtained from 

local veterinary departments except Shandong and Zhejiang provinces, data for these two provinces 

were replaced by another dataset clarified in the Appendix D.1, which may bring some reporting bias 

and uncertainty to the model. Furthermore, our live chicken movement data were collected in selected 

high-risk areas in Southeast provinces in 2014, representing the live chicken movements coming from 

and to the originally affected provinces, which may not reflect the current poultry movement situation 

across the region.  

In conclusion, contamination of LBMs with H7N9 is an important determinant of the risk of human 

H7N9 incidence in China. Moreover, poultry movement from the original areas of H7N9 emergence 

may be an important driver of the dissemination of H7N9 infections across China, and poultry 

serological positives and virological positives can serve as a predictor for human H7N9 infections as 

well as being a guide for the timing of risk management interventions. Highly connected areas with 

high chicken density and low human population density should be targeted. It is recommended that 

regular monitoring of poultry movement and poultry infections at the high-risk counties identified in 

this study will provide essential evidence for the early warning of H7N9 infections across China. 
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Chapter 8 Discussion and Conclusions 

8.1 Introduction 

A new reassortant influenza A (H7N9) virus of low pathogenicity (LP) to poultry emerged in eastern 

provinces of China in early 2013 [263]. In February 2017, some LPAI H7N9 virus mutated to become 

a highly pathogenic virus (HPAI H7N9) in poultry and rapidly spread to other provinces of China 

[13]. The rapid evolution, increased pathogenicity and efficient transmissibility of HPAI H7N9 

viruses in mammalian models, together with their extended host range, have heightened their 

pandemic potential, posing an imminent threat to public health and the poultry industry [137]. In 

addition to its shift in pathogenicity, from 2013 until 2017 there was an increasing number of reported 

human H7N9 cases throughout China suggesting that vulnerabilities linked to the live meat chicken 

market chain still remained at that time. In order to better design surveillance programmes and health 

promotion interventions to prevent poultry and human exposure to HPAI H7N9 virus along the live 

chicken market chain, the epidemiological determinants for transmission and spread of this virus 

needed to be better elucidated. The program of research that makes part of this Thesis aimed to 

address this challenge directly and its findings provide the most comprehensive set of evidence of the 

epidemiology and control of H7N9 infections along the live chicken market chain in China. 

Before the development of the program of research reported in this Thesis there were a number of 

important knowledge gaps in the epidemiology and control of H7N9 virus infections in live meat 

chicken market in China. First, the consensus from the literature was that the main risk factors for 

human infection with H7N9 influenza were exposure to H7N9 infected live meat chickens and 

exposure to contaminated environments at LBMs [7, 8, 14-18]. Previous studies demonstrated the 

role of poor biosecurity measures at poultry farms and LBMs and the role of live poultry trade in the 

dissemination of AI virus [9, 10]. However, the relative efficacy of different biosecurity measures at 

reducing the transmission of AI to human and poultry at LBMs was uncertain. Furthermore, there 

was a poor understanding of risk factors associated with human H7N9 infections at LBMs during the 

H7N9 emergency in early 2013 as well as the role of live meat chicken movement in the epidemiology 

of H7N9 human infections. Second, a study in China demonstrated that areas of human H7N9 

infection overlapped with those that reported H5N1 in an area southeast of Taihu Lake (south of 

Jiangsu Province), bordering the provinces of Anhui and Zhejiang [29]. This evidence suggested a 

common high-risk area for novel AI strains which indicated a strong need to design and conduct 

empirical studies in the identified high-risk areas. Therefore, a better understanding of the social 

determinants of exposure (including live meat chicken movement data at different points in the 

poultry marketing chain and data from risk perception and biosecurity practices of actors in the live 
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chicken market chain) was necessary to complement control measures such as vaccination and 

enhanced LBM biosecurity. Third, while several medical geography studies aiming at identifying 

H7N9 human risk factors had been undertaken in China [12, 26, 219, 289-291], none had looked at 

the effect of poultry infection surveillance results and live chicken movement from the initial high-

risk areas for H7N9 on the spatiotemporal distribution of human H7N9 incidence across China. In 

addition, little was known about the potential for poultry surveillance results to provide an early 

warning for the likely timing and location of human H7N9 infections. The program of research in 

this Thesis was developed to uncover these identified knowledge gaps.  

The overall research aim of this Thesis was therefore to identify and quantify the risks of sustained 

transmission of H7N9 virus along the live meat chicken market chain in eastern China. To meet the 

aim, studies were sequentially designed with the following specific objectives: 1) identify the effect 

of market-level risk factors on AI infections in poultry and humans and generate evidence that will 

inform AI prevention and control programs at LBMs; 2) to understand the role of market-level live 

poultry movement and live bird market biosecurity in the epidemiology of H7N9 during the 

emergency response to the initial outbreaks; 3) to understand the level of knowledge, attitudes and 

practices (KAP) on avian influenza of different actors along the live meat chicken market chain in 

the high-risk area for H7N9 emergence and the risk factors associated with their KAP levels; and 4) 

to quantify the temporal relationship between poultry serological and virological surveillance results 

and the onset of human H7N9 infections during 2013-2017, and to estimate the relative risk of H7N9 

human incidence in counties in Southeast China accounting for poultry surveillance results, live 

chicken movements and recognized demographic risk factors. The program of research reported in 

this Thesis is the first of its kind in several ways: it is the first to systematically examine biosecurity 

risk factors associated with AI infections at LBM level; it is the first to conduct a comprehensive risk-

based survey at all the stages of the live meat chicken market chain in the identified highly connected 

area of live meat chicken movement in eastern China; and it is the first to develop a spatial risk 

assessment model for the control and early warning of H7N9 in along the live chicken market chain 

in Eastern China. 

The findings of the research studies reported in this Thesis are likely to influence current AI disease 

control and surveillance interventions within the market chain for live meat chickens in China. This 

will include evidence for expanding current control policy at LBMs and a spatial-decision support 

model for targeted planning of resource allocation in counties most at risk of H7N9 infection. 
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8.2 Key Research findings 

The body of this Thesis constitutes the most comprehensive set of evidence on the epidemiology and 

control of H7N9 infections in the live meat chicken market chain in China. This Thesis has generated 

important evidence on the effectiveness of market-level biosecurity measures at reducing both poultry 

and human AI infections. Employing a value chain approach, we identified key geographical areas 

in China connected via live meat chicken movements originating from the initially affected areas 

during and after the H7N9 emergency. Within the highly connected areas for live meat chicken 

movements from the initially affected H7N9 areas we surveyed different stakeholders along the live 

meat chicken market chain and uncovered important indicators of knowledge, attitudes and practices 

on AI control that can allow for targeted health promotion programs. We also demonstrated the 

feasibility of using live chicken movement and poultry surveillance as early warning indicators of 

H7N9 human infections and identified geographical areas in China more likely for human outbreaks 

which can be used as candidate areas for enhanced surveillance and control. 

To the best of my knowledge, the systematic review and meta-analysis presented in Chapter 4 is the 

first of its kind to report the combined effectiveness of market-level biosecurity indicators for both 

poultry and human AI infections at LBMs. The meta-analysis of relevant published English and 

Chinese research articles provided strong evidence in favour of biosecurity operations at LBMs that 

are protective for AI infections on both poultry and human infections at LBMs. Before this research, 

a number of studies attempted to identify biosecurity risk factors associated with AI infection at 

LBMs [21, 69, 159-161, 163, 223-233]. While some studies had generally demonstrated that 

biosecurity practices at LBM-level were associated with reduced risk of AI infection, the results from 

those studies were inconsistent or even contradictory and the relative efficacy of different LBM 

biosecurity practices at reducing the transmission of AI to both humans and poultry in the LBM 

setting was still unclear. 

The results from Chapter 4 demonstrated that biosecurity measures effective at reducing AI market 

contamination and poultry infection at LBMs included smaller market size, selling single poultry 

species and separating different species, performing cleaning and disinfection and market closures, 

and a ban on overnight storage. These findings are in accordance with the current “1110” system for 

AI control at LBMs established by the China MARA in Feb 2017, i.e. cleaning once a day, thorough 

disinfection once a week, one-day market closure once a month and no live poultry remaining at 

LBMs over night or at closure. Currently there are a number of challenges with the implementation 

of the “1110” system. For example a recent investigation on the implementation of the “1110” system 

on LBMs in Guangdong Province [300] revealed that, while all surveyed markets implemented daily 
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cleaning, weekly disinfection, and monthly market closures, only 9.6% of the all stalls surveyed 

managed to sell all poultry; among the 90.4% that did not sell all poultry during the day, 40% kept 

unsold live poultry in the LBM overnight and 50.4% carried the unsold poultry out of the market for 

temporary storage. Several studies in Hong Kong [38, 163, 237] evaluated the effect of rest days and 

ban on overnight live poultry storage on reducing H9N2 virus isolation in the LBMs, they found that 

implementation of a ban on overnight storage of live poultry had an even greater effect on reducing 

viral load in LBM than the intervention of 1 or 2 rest days per month. These findings demonstrated 

the difficulty as well as the importance of the implementation of overnight ban of storage of live 

poultry at LBMs. 

Previous research indicated that poultry movements facilitate the transmission and spread of AI 

viruses between premises as a result of mixing of poultry from different sources and the increased 

opportunity for virus multiplication during transport [223, 299]. The results from Chapter 4 also 

revealed that markets located at non-central city areas and markets that source poultry from multiple 

counties, i.e. those engaging possibly in cross-regional and long distant poultry movements, are 

associated with a higher risk of AI infection in poultry at LBMs. This highlighted the importance and 

need for automated systematic monitoring of live poultry movement within LBMs for the prevention 

and control of transmission of AI.  

Our meta-analysis also suggested that poultry slaughter operations at LBMs increase the risk of AI 

transmission within the LBM environment, presumably because of exposure to aerosols arising 

during the slaughter process where AI virus may be present in large quantities [283]. Several studies 

have also demonstrated that most commonly contaminated sites were located in the poultry 

slaughtering zone [36, 225]. This is consistent with the current control measure of promoting the 

industry upgrade to a new production and consumption model (i.e. scale farming, centralized 

slaughtering, cold-chain transportation, fresh chilled product in the market) [248, 299]. The results 

of our meta-analysis also suggested that spring and winter seasons posed significant higher risk of AI 

infection in the LBM environment compared to summer and autumn [249-255]. This seasonality 

effect is due, in part, to the fact that lower temperature and humidity can increase virus survival in 

the environment [237]. 

In addition, our results demonstrate that human infection at LBMs is dependent on important 

demographic and occupational hazards. Our results indicate that female workers and retail LBM 

workers are at increased risk of AI infection compared to male workers and wholesale LBM workers 

[233, 256-258, 262]. Activities that directly expose LBM workers to AI such as slaughtering, 

defeathering and cleaning significantly increase the risk of AI infection in market workers [231-233]. 

These results may reflect gender differentiation in tasks within different LBMs, because wholesale 
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markets tend to be male dominated as opposed to retail markets where women share the poultry value 

chain with men, plus live poultry were slaughtered at retail LBMs on a daily basis, while many 

wholesale markets do not slaughter or have separate slaughter areas [259], which might place female 

workers at greater risk of AI infection compared to males. These high-risk poultry handling activities 

primarily observed in retail markets which further highlights the need for workers to wear personal 

protective equipment within retail LBMs, and future biosecurity strategies should account for gender 

differences in risk identified in our study, which could include raising collective awareness through 

information sharing and educational training program that target women working at LBMs.  

A limitation from the program of research in Chapter 4 was that we were not able to stratify the meta-

analysis by different AI strains, so we were unclear whether the identified effects were true for the 

H7N9 virus alone. With that gap in knowledge in mind we designed the study in Chapter 5 which 

aimed to conduct an empirical investigation in H7N9-affected LBMs. Therefore, in the program of 

research in Chapter 5, we focussed our investigation into the originally H7N9-infected area (i.e. 

Shanghai Municipality, Jiangsu, Zhejiang and Anhui provinces) [102]. We obtained a unique dataset 

collected during the emergency epidemiological investigation from 24 LBMs within a one-kilometre 

buffer area from H7N9 human infections and those that marketed large quantities of poultry at the 

time of the outbreak. We then evaluated biosecurity risk factors within those markets associated with 

H7N9 infections and quantified the role of live chicken movement in the epidemiology of H7N9 

human infections. Prior to this research, the sources of H7N9 infection had yet to be fully clarified 

and a major challenge for the investigation of source attribution was that poultry did not exhibit 

clinical signs. Epidemiological studies at the time relied on H7N9 infection data from humans and 

LBMs where infections have been detected. Previous studies in Asia had demonstrated the role of 

movement of poultry through live bird markets in the circulation and dissemination of HPAI H5N1 

virus [41]. The research in Chapter 5 investigating the role of live poultry movement of affected 

LBMs extended evidence on the role of market-level biosecurity risk factors and enabled the 

stratification of the risk of H7N9 infection geographically. The results in Chapter 5 demonstrated that 

chickens were the predominant poultry species traded by affected LBMs. The presence of H7N9 in 

LBMs was significantly associated with the type of LBMs and with LBMs that sold chicken to other 

markets. The results also showed significant spatial clustering in terms of the connectivity of live 

chicken sources (degree centrality and k-core), of affected LBMs. These findings suggested that the 

connectivity of LBMs to particular counties in the provinces of Anhui, Zhejiang and Jiangsu and the 

level of market biosecurity of LBMs in these areas were likely to have played a role in the 

transmission of H7N9 to humans during the first wave of the epidemic in April 2013. Furthermore, 

an analysis of the data from the first wave of H7N9 human infections demonstrated that the primary 
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cluster of influenza (H7N9) overlapped with previous H5N1 human infections [29]. This 

geographical overlap occurs in an area straddling the boundaries of the provinces of Anhui and 

Jiangsu [29]. The identified highly connected areas in eastern China highlighted candidate areas for 

more detailed epidemiological investigations. Importantly, as seen in Chapter 7, the geographical 

areas identified in Chapter 5 continued to report human H7N9 infections in subsequent infection 

waves observed between 2013 and 2017.  

We had previously demonstrated in Chapter 4, that people’s social demographic and behaviour at 

LBMs are important indicators of risks in AI human infections. Therefore, we designed the study 

reported in Chapter 6 to investigate heterogeneity in and risk factors for risk perception towards AI 

of different actors in the poultry value chain in the high-risk areas where H7N9 first emerged. Existing 

literature indicated that health behaviours and hygiene practices can be influenced by age, gender, 

education, knowledge and religious beliefs [182]. There were a number of studies reporting poultry 

related workers’ KAP for AI in Asia, the US, Europe and Africa in recent years [184, 272-279]. To 

our knowledge, none of these studies were conducted on chicken-specific market chains, none of the 

studies compared KAP indicators across chicken farmers, chicken vendors and consumers in the same 

value chain, and none of them targeted the high-risk areas affected by the emergence of the H7N9 

[10]. Therefore, in Chapter 6 we report the results of a cross-sectional questionnaire survey conducted 

in the hotspot area identified in Chapter 5 during June to July 2014 after the second wave of H7N9 

outbreaks in humans in Eastern China. All stakeholders along the live meat chicken market chain (i.e. 

chicken farmers, vendors and consumers at LBMs) were targeted to profile their level of knowledge, 

attitudes and practices (KAP) towards avian influenza and the risk factors associated with their KAP 

levels. Multivariable generalized least squares (GLS) random-effects regression models were 

developed to identify predictors of KAP of AI among different actors along the live chicken market 

chain. The results of Chapter 6 indicate that chicken vendors at LBMs generally had lower KAP 

scores than chicken farmers. This finding suggested that interventions to improve KAP towards AI 

should be promoted among all stakeholders with an emphasis on chicken vendors in LBMs. This 

further ascertains the findings from Chapter 4 and 5 that LBMs may have played an important role in 

the dissemination of H7N9 virus in the high-risk area. The study in Chapter 6 analysed determinants 

of KAP within each actor group; results for chicken farmers demonstrated those who had 11 to 15 

years farming experience had significantly higher knowledge scores than those worked for less than 

six years, and farmers who had longer farming experience (>15 years) had poorer attitudes towards 

AI risk compared to those with less experience (<6 years). This finding suggests that knowledge is not 

a mediator of behaviour in longer practicing farmers. Indeed, previous studies also suggested that 

better knowledge was found in farmers who worked for a longer time [272], but better knowledge of 
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AI may also lead to a lower perceived risk of infection [184, 284]. The results of Chapter 6 also indicate 

that farmers who had longer daily hours of exposure to chickens had significantly lower knowledge 

scores. It is possible that those farmers who are exposed to poultry for longer periods of time are 

economically disadvantaged and/or live in more remote areas; in turn, socioeconomic disadvantage 

and remoteness from urban centres may lead to a lower access to information. Overall, our findings 

suggest that reducing the period of daily contact with chickens and enhancing preventive practices 

are of great importance for chicken farmers. The results of Chapter 6 also indicated that female 

chicken vendors had significantly lower knowledge scores compared to male vendors, which could 

partly explain the findings of our meta-analysis in Chapter 4 of a higher risk of AI infection in female 

workers in LBMs compared to male workers. However, practice scores were significantly higher in 

female vendors and those vendors who also conducted slaughter compared to males and vendors who 

did not conduct slaughter. This conflicts with the findings from Chapter 4 that market workers who 

slaughter poultry had significant lower risk of getting AI infections. The discrepancy between this 

study and the results of Chapter 4 can be partly be explained by reporting biases of practices of 

chicken vendors highlighting the need for further observational studies on vendor behaviour. It is 

possible that chicken vendors who conduct slaughter at LBMs are more risk aware and are thus more 

likely to wear personal protective equipment compared to vendors who do not slaughter poultry. This 

hypothesis requires further empirical observation. The results of Chapter 6 also suggest that older 

chicken vendors (>35-years-old) had significantly lower knowledge scores compared to younger 

vendors (≤35-year-old), which may be attributed to the level of education of older vendors compared 

to younger vendors. This finding suggests a higher risk of exposure of older vendors as documented 

by Chapter 4. The results of Chapter 6 also indicated that female consumers had significantly better 

practice scores than male consumers. This may be because women are more likely to be responsible 

for food shopping and cooking for their family, which in turn can lead to better practices. Consumers 

who bought chicken less frequent (monthly) had better risk awareness compared to those who bought 

chicken frequently (weekly). This is consistent with finding of a previous study from Taiwan where 

consumers with low risk perception levels were reported to be more likely to maintain usual chicken 

consumption than those with high risk perception levels if outbreaks of AI occurred [188]. This 

suggests that government administration and industry managers can design effective health 

promotion packages to prevent a drop-in revenue due to the reduced demand and informing 

consumers about the safety of chicken products and proper cooking practices. 

As mentioned before the effectiveness and practicality of LBM closures and overnight ban on poultry 

has been disputed [301]. Indeed the results of our study in Chapter 6 also revealed that while most of 

chicken farmers (98%) and vendors (94%) agreed with adopting regular market closures and cleaning 
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and disinfection on markets, 85% vendors and 53% farmers did not agree with the permanent ban on 

selling live chicken and central slaughtering of poultry; 62% consumers also reported not being 

willing to buy slaughtered chicken. The findings in Chapter 4 revealed that the detection of AI viruses 

was always reduced right after market rest days when infectious load is lower [163, 224-229] and 

closing LBMs can largely eliminate human infection risk [230]. However, previous studies also 

indicated that recovery of AI viruses can occur shortly after LBMs re-open, presumably following 

the introduction of AI positive birds [245, 246], suggesting that the underlying epidemiological and 

socioeconomic factors of the effect of market closure are complex [171, 301, 302]. Currently, there 

are four different methods of LBM closures in use by different provinces in China. The first one 

involves monthly mandatory market closure across all provinces of China. The second one involves 

emergency market closures during H7N9 outbreaks, which has been adopted by many areas in China, 

i.e. Zhejiang, Guangdong, Jiangsu, Hunan, Jiangxi provinces. The third one involves seasonal market 

closure which has been adopted by the Commerce Commission of Shanghai Municipality. This 

includes suspension of live poultry trading in designated wholesale LBMs and retail LBMs sites from 

the first day of lunar new year to the end of April. The last method involves permanent LBM closure, 

which has been adopted in central city areas of Hangzhou city in Zhejiang province. While our 

findings in Chapter 6 suggest that the current control policy of regular market closure and cleaning 

and disinfection are acceptable to both farmers and vendors, a policy that aims to permanently shut 

down LBMs is likely not to find support amongst vendors, farmers and consumers. Key public policy 

questions that remain unanswered are on what can be done to mitigate the socioeconomic impact of 

LBM closures and when and where market closure and other market-level interventions should be 

targeted. 

Since 2013 to date, there have been six epidemic waves of H7N9 infection in China which resulted 

in the widespread dissemination of H7N9 virus across the country. In February 2017, some strains of 

the 2013 LPAI H7N9 virus mutated to become highly pathogenic in poultry and rapidly spread to 

other provinces of China [13, 136]. The studies in Chapter 4 and 5 identified the role of LBMs and 

live poultry movement in the exposure and dissemination of H7N9 viruses during the H7N9 

emergency. The study in Chapter 6 demonstrated a better understanding of the social determinants of 

exposure along the live chicken market chain. However, effective prevention and control of human 

H7N9 infections relies on identifying indicators that can anticipate the spatiotemporal variation in 

infection incidence so to provide essential evidence and recommendations for risk-based AI 

surveillance programs and appropriate enhancements to current prevention and control policies for 

H7N9. While several ecological spatial studies aiming at identifying risk factors of H7N9 human 

cases have been undertaken in China [12, 26, 219, 289-291], none of these studies looked at the effect 
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of more proximal factors such as poultry surveillance results and live chicken movement in affected 

areas at explaining the geographical variation of human H7N9 infections. Therefore, in Chapter 7, 

we assembled a dataset of important risk factors for H7N9 infection, e.g. distribution of LBMs, 

chicken movement data collected from the study in Chapter 6, and other risk factors based on existing 

ecological studies (e.g. human population density, chicken density), as well as poultry surveillance 

results. In Chapter 6 we aimed to quantify the temporal relationship between the onset of human 

H7N9 infections during 2013-2017 and poultry serological and virological surveillance results, and 

to estimate the relative risk of H7N9 human incidence in counties in Southeast China by assessing 

the relationship between human infections as outcome and poultry surveillance results, live chicken 

movements and recognized demographic risk factors. The results in Chapter 7 revealed the temporal 

association between human H7N9 infections and poultry serological and virologic surveillance. 

Specifically, the results indicated that the peak of poultry H7N9 serological positives is followed by 

human H7N9 infections with a two-month lag, and that poultry H7N9 virological positives is 

followed by the human H7N9 infections with a one-month lag.  

To map the relative risks of human H7N9 incidence in southeast China, in Chapter 7 we developed a 

geographical model that accounted for spatial clustering of incidence. The results of our spatial CAR 

model indicated that human H7N9 incidence at county-level is positively significantly associated 

with the presence of wholesale LBMs, higher density of retail LBMs, presence of poultry virological 

positives, higher poultry movement network connectivity, as well as lower chicken population 

density and higher human population density. This model is novel in that it incorporated poultry 

virological surveillance results which has never been evaluated as a risk factor in H7N9 risk mapping 

studies, and the model included estimates of live chicken movement coming out from the originally 

H7N9 affected area in Southeast China provinces, which evaluated the effect of live chicken 

movement from the high-risk area on the overall H7N9 infections. By doing so, this model provided 

an approach to identify areas where the likelihood of H7N9 human infections is at its highest, and 

where spatially targeted control interventions are most needed. The predictive map of relative risks 

of human H7N9 incidence generated in Chapter 7 indicated that high risk areas of human H7N9 

infections were spatially clustered in Southeast China, extending from the Yangtze River delta near 

Shanghai to the Pearl River delta near Guangzhou and covering most areas of Jiangsu, Zhejiang, 

Shanghai, Anhui, Fujian, Guangdong and Hunan provinces. Additional hot spots for human H7N9 

infections were found in the northern region of Guangxi, eastern region of Hubei province, northern 

and southern region of Jiangxi, northern region of Beijing, and the northern region of Hebei province. 
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8.3 Public health implications of the findings 

The major practical contribution of the research program of this Thesis is that it provides much needed 

empirical evidence on the role of LBMs and live chicken movement in the epidemiology of H7N9 

infections and enabled the identification of high-risk areas where health promotion intervention 

programs and strengthened surveillance for H7N9 are most needed. The results of the research 

detailed in this Thesis have important operational public health implications in the following ways. 

8.3.1 Expansion of market level biosecurity control measures 

The findings from the systematic review and meta-analysis in Chapter 4 suggested that AI control 

measures should be targeted to markets that slaughter live poultry and markets which sell multiple 

species. Strategies that include daily cleaning and disinfection, separation of different poultry species, 

regular market closure and ban on overnight storage should be emphasised and strengthened. These 

findings are important in that they reflect the ongoing “1110” LBM control policy for H7N9 

prevention and control established by the Chinese MARA in February 2017 [299]. However, the 

findings of Chapter 4 also indicated the need for this policy to be expanded to consider the effect of 

poultry slaughtering in LBMs; our findings demonstrate that workers’ involvement in poultry 

handling activities increases the risk of AI infections at LBMs. Our results indicate that improvement 

of slaughtering and poultry processing operations at LBMs should be an area of investment from 

market operators through the implementation of standard operating procedures and good 

manufacturing practices that comply with standard health and safety regulations. Current regulations 

indicate that wholesale LBMs and urban agricultural markets require that live poultry slaughter areas 

should be enclosed and areas where poultry selling, slaughtering and processing occur should be 

segregated from consumers [210]; this regulation, however, does not apply to markets situated in 

rural areas. Considering the high risk of slaughtering at LBMs, we suggest that the current “1110” 

system should be expanded with another “1”, i.e. to include the construction of enclosed areas where 

poultry slaughter can happen in the LBM providing enhanced sewage and waste management as well 

as PPE (personnel protective equipment) for those who conduct slaughtering or handling of poultry 

in the separated slaughter area. Overtime, this “1” needs to migrate to a “0” (i.e. no slaughter at 

markets), this process will allow sufficient time for people’s acceptance of consuming slaughtered 

poultry (chilled poultry) from markets. 

The findings of Chapter 4 confirmed the risk of AI transmission at LBMs posed by cross-regional 

and long-distance poultry movements. In addition, the findings of Chapter 5 and Chapter 7 reinforced 

the importance of live poultry movement in the emergence of H7N9 and the positive correlation 

between live chicken movement from the original area of emergence in Eastern China and the current 
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geographical distribution of H7N9 human notifications. The “Regulations of prevention and control 

of HPAI in LBMs” jointly released in 2006 by MARA, NHC and SAIC stipulated that wholesale 

LBM should check the quarantine certificates of poultry entering the LBM. However, this regulation 

does not apply to retail LBMs. Besides, it is market vendor’s responsibility to demonstrate the 

quarantine certificate at the stall for publicity and the quarantine certificate should be kept for more 

than six months [210]. Furthermore, the animal health supervision agencies are responsible for the 

quarantine supervision over live poultry that are transported out of the LBM. Together our findings 

and current policy challenges indicate that the current “1110” system can also be expanded with 

another “0”, i.e. no entry of poultry at LBMs without an animal quarantine confirmative certificate. 

The proposition of an enhanced LBM control policy from the current “1110” to a “4-2” policy (i.e. 

1111 and 00) is indeed necessary to help mitigate the residual risk of poultry and human H7N9 

exposure and dissemination at LBMs. 

8.3.2 One health interventions for health promotion and surveillance 

The analysis outlined in Chapter 6 suggested that health interventions should be promoted among all 

stakeholders along the live chicken market chain, with an emphasis on chicken vendors operating at 

LBMs. Efforts for interventions in chicken farmers should be focused on reducing the period of daily 

contact with chickens and enhancing their preventive practices, as well as improving the awareness 

of AI for chicken farmers who have worked for many years in the chicken industry. The findings of 

Chapter 6 also highlighted the demand for health educational interventions about knowledge of AI 

for the less educated and older vendors. The findings of Chapter 6 revealed that consumers who 

bought chicken more frequently had lower risk awareness scores compared to those who bought 

chicken less frequently, suggesting that public health administration and industry managers can 

design effective health promotion programmes to inform consumers about the safety of chicken 

products and proper cooking practices. The findings on gender disparities in the epidemiology of AI 

in Chapter 4 and 6 suggested that future biosecurity strategies should account for gender differences 

in risk identified in our study, which could include raising collective awareness through information 

platforms that target women working at LBMs. Together these findings indicate the need for a One 

health approach to health promotion at LBMs. It is the responsibility of veterinary administration 

departments for the supervision and administration of animal health in LBMs, and the public health 

administration departments are responsible for the population health in LBMs. Therefore, a one-

health approach to health promotion is needed so efforts can be articulated along the same market 

chain that has actors that are under different jurisdictions. 
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In Chapter 7, the identified temporal relationship between human H7N9 infections and poultry H7N9 

surveillance also demonstrates the need for a One Health approach to the data flow between MARA 

and NHC. To allow the development of an operational model for the anticipation of human H7N9 

infections based on current routine LBM H7N9 surveillance in poultry we suggest that poultry H7N9 

surveillance and notification system to be linked to human H7N9 notification system in order to allow 

the early warning of human infections moving forward. The predictiveness of the poultry surveillance 

to the incidence of H7N9 human infection will rely on the sensitivity and specificity of the 

surveillance system, as well as the traceability of the poultry market chain for precautions to the 

prevention of H7N9 transmitted to humans. Collaboration on risk communication and establishment 

of disease notification data sharing mechanisms between animal and human health administration 

departments are paramount to understand the risk of transmission between poultry and humans and 

to develop effective programs to control and prevent the spread of H7N9 within poultry populations 

and onwards to humans.  

8.3.3 Targeted risk-based surveillance 

In Chapters 4, 5 and 7 we demonstrated the importance of seasonality of infection, that high risk areas 

for poultry movement were found to be associated with the emergence of H7N9 infections and that 

live poultry movement is indeed an important driver of the spatiotemporal dissemination of H7N9 

human infections. To target temporally and geographically the current H7N9 surveillance resources 

we suggest that live poultry movement data be embedded into a day-to-day centralized information 

system established and managed by the animal health departments. The system will allow disease 

control managers to estimate the connectivity of different poultry locations (can be at “county” level, 

or individual poultry farms and LBMs) and so to identify high-risk areas for H7N9 infections in terms 

of poultry movement. Meanwhile, this system can also be a poultry traceability system that includes 

certification of sources of each batch of poultry. Once a H7N9 positive has been identified or an 

outbreak notified, this system will allow tracing back to the poultry source location and generation of 

a list of areas with high-risk for immediate actions and targeted risk-based surveillance. In addition, 

the spatial model of H7N9 presented in Chapter 7 extends existing approaches to risk mapping and 

has important public health implications for the planning, design and implementation of 

geographically targeted interventions. The present model or a more advanced version thereof could 

be used to guide decision making processes for mass vaccination and surveillance strategies in 

combination with local knowledge and programme needs. Based on the key findings and 

methodology developed in Chapter 7, we suggest that animal health departments build up a H7N9 

Spatial Risk Assessment System that integrates data on poultry surveillance results, live poultry 

movements and local socio-demographic data (distribution of LBMs, poultry density, human 
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population) into a comprehensive spatial decision support system. This system will allow disease 

control program managers to produce operational maps that can assist decisions on how to best 

allocate their limited resources to implement spatially targeted H7N9 programs within the regions of 

high relative risk of human infections.  

8.4 Limitations 

The findings reported in each of the research Chapters in this Thesis must be considered 

within the context of potential limitations of the data and the methodological assumptions of the data 

analysis techniques used in each Chapter. Each key limitation is listed and discussed below. 

8.4.1 Reporting bias 

In the meta-analysis presented in Chapter 4, all included studies were restricted to those that could be 

obtained from published literature in English and Chinese. A common limitation is that only studies 

with significant results are published which may introduced publication biases to the results presented 

in Chapter 4. 

In Chapter 5, our epidemiological investigation was conducted during the H7N9 emergency response, 

therefore, LBMs were selected purposively and aligned with the occurrence of H7N9 human 

infections. Due to mandatory market closure in the study area, the infection status of several LBMs 

was not available. I would have been able to quantify more accurately risk factors associated with the 

presence of H7N9 in LBMs, if more LBMs in the affected area had been investigated during the 

emergency response. In spite of these limitations, I am confident that the dataset I obtained was the 

most up-to-date, extensive and representative dataset to allow the research question to be addressed. 

Likewise, live poultry movements were only collected from large LBMs, which may have introduced 

potential biases to the findings in Chapter 5, it may also influence KAP study in Chapter 6, and may 

propagate bias to the study in Chapter 7. 

In the KAP study in Chapter 6, I used a close-ended questionnaire which may have given limited 

flexibility to participants’ answers. It may have missed some contextual/specific or relevant local 

knowledge on additional preventive practices.  

In Chapter 7, data on the distribution of LBMs were obtained from local veterinary departments 

except for two provinces (Shandong and Zhejiang), data for these two provinces were replaced by 

another database clarified in Appendix D.1, which may bring some reporting bias and uncertainty to 

the model. The study in Chapter 7 used notifications of H7N9 human cases that required clinical care 

collected through a passive surveillance system. Therefore, it has the potential to underestimate the 
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actual incidence rate of H7N9 exposure as the system only captures individuals who seek medical 

treatment. The study in Chapter 7 used poultry serological and virological surveillance results from 

the regular national poultry surveillance system, however, there was missing information in terms of 

geographic location of some of the positives. This could lead to misrepresentation of the extent of the 

disease. 

8.4.2 Diagnostic uncertainty 

In Chapter 4, among eligible studies included in the meta-analysis, most of the studies used RT-PCR 

for detecting H7N9 virus, and some studies adopted PCR or virus isolation. Due to the adoption of 

different diagnostic methods, diagnostic uncertainty may have been introduced to the results. As 

mentioned above, in Chapter 7, the presence of H7N9 infections in human was obtained through a 

passive surveillance system, therefore, the results reported in the study may have underestimated the 

incidence of H7N9 infections in humans, in an area where the capacity for diagnosis among 

physicians and hospitals is relatively low. Meanwhile, the study in Chapter 7 used poultry serological 

and virological surveillance results from the regular national poultry surveillance system. Due to the 

initial low pathogenicity of H7N9 in poultry, and variance in the awareness and diagnostic capacity 

among veterinary departments over time and geographically, this could lead to misrepresentation of 

the extent of the disease. 

8.4.3 Confounding factors 

The effects reported in these studies were adjusted for important confounding factors, but they do not 

represent the complete multifactorial nature of infections. This limitation exists in Chapter 6 and 

Chapter 7. In the research in Chapter 6, I accounted for the most important characteristics of study 

participants, however, some other confounding factors (e.g. personal income [303, 304], place of 

residence [182, 305]) were not captured which may also have contributed to differences in KAP 

towards AI observed among difference groups. In the research in Chapter 7, I controlled for poultry 

surveillance data, live chicken movements and sociodemographic factors that are related to H7N9 

human infections. Other possible contributors not included in the model, included people’s behaviour 

[288], some environmental factors and ecoclimatic factors [306]. In the researches in Chapter 5 and 

Chapter 7, I used degree centrality and k-core as indicators of network connectivity for chicken 

movement, however, the trading volume of chicken movement was not factored, which may overlook 

the effect of trading volume in the risk of H7N9. This can be improved in the future researches. 
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8.4.4 Modelling limitation 

Another limitation of the studies in this Thesis is the use of ecological designs that do not measure 

individual exposure. The study in Chapter 7 used an ecological approach, using secondary data on 

predictors of outcome variables such as human population density and chicken density. Some of these 

proxies are imprecise measurements of exposure, resulting in regression dilution bias leading to 

underestimation of the observed effects [307, 308]. Future interactions of spatial models should 

observe the impact of individual-level modelling approaches at reducing the effect of regression 

dilution bias compared to that of the ecological approach. 

8.5 Recommendations and future pathways  

There are considerable opportunities for future research in the epidemiology of H7N9 infections. 

Considering the findings of this Thesis and above limitations, we propose the following directions to 

be incorporated in future research. 

First, there remains considerable scope for underreporting of human and poultry H7N9 infections and 

therefore data is still lacking on the risk factors for human H7N9 infection. It would be constructive 

to conduct a large-scale seroprevalence study of poultry related workers who are in regular contact 

with poultry. Based on the findings from Chapter 4 this seroprevalence study should target larger 

LBMs that are located at non-central city areas, and include poultry workers, especially individuals 

that are responsible for selling and processing poultry at the LBMs (i.e., market sellers that slaughter, 

defeather, handle internal organs etc.,) in China. This study could evaluate the risk factors identified 

or discussed by studies in Chapter 4, Chapter 5 and Chapter 6 in this Thesis. Careful attention to 

sample size should be considered when designing such a study to adequately evaluate risk factors for 

infection. 

The relationship between LBM biosecurity indicators and the presence of H7N9 is likely to be much 

more complex and further evidence is necessary to profile the risk for LBMs. The effects of control 

measures at LBMs (e.g., improving bio-security measures, stamping out, restricting movement, 

educational promotions), which have been implemented in some areas of China to control the spread 

of H7N9, were not well understood as there are very few peer-reviewed and published reports that 

have evaluated such control programs. The meta-analysis of the effectiveness of market-level 

biosecurity in Chapter 4 also demonstrated that most of the included studies were observational 

studies given that data from randomized trials were not available. A future study could be designed 

as a randomised controlled intervention trial (RCTs) whereby a group of markets would be 

randomised to the intervention group while another group of markets which would not be given the 
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intervention would serve as a control group. This approach allows disentangling the effect of potential 

confounders while estimating the causal relationship between infection and the risk factor being 

manipulated. Several biosecurity measures that can be selected for intervention include the ban on 

overnight storage of live poultry at LBMs, upgrading and segregation of the slaughter area at LBMs, 

or no entry of live poultry without animal quarantine confirmative certificate. RCTs are very popular 

in human epidemiology and often underutilised in veterinary epidemiology. Another major advantage 

of RCT’s over traditional longitudinal follow-up studies is that these studies can be coupled with 

economic models to quantify the cost-effectiveness of the interventions under study. Therefore, 

designing RCTs would constitute a way forward for conducting translational research with direct 

relevance to policy formulation for avian influenza disease control.  

In Chapter 7, the predictive map of the relative risks of H7N9 human infections in Southeast China 

could be utilised as a spatial decision support tool to guide the local integrated H7N9 prevention and 

control programs and to help conduct individual-level studies within the predicted high-risk areas in 

Southeast China. Besides, the map of spatially structured random effect demonstrates evidence of 

clustering around the Yangtze River Delta area, suggesting that there are other risk factors not 

included in this spatial CAR model. In addition to the identified strongly correlated variables (live 

chicken movements, poultry surveillance data and sociodemographic factors), other factors such as 

environmental factors (the role of temperature, water, transportation) could be also evaluated in 

further researches. 

Future research is recommended to integrate the H7N9 poultry surveillance results from national 

human surveillance systems and national poultry surveillance programs in China to evaluate the 

predictiveness of surveillance in poultry for the early warning of AI infections in humans. Advanced 

analytical approaches applied in this Thesis such as SNA and spatial CAR modelling could also be 

applied to controlling and reducing other AI virus subtypes, such as H5, H9 and other H7 subtypes. 
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8.6 Conclusions 

The results of this Thesis demonstrate that deficiency in LBM biosecurity management and live meat 

chicken movement played an important role in the emergence and spread of H7N9. This Thesis 

presents comprehensive evidence of biosecurity measures on reducing both poultry and human AI 

infections on LBMs. This Thesis also identified highly connected areas in eastern China in terms of 

live poultry movements during the H7N9 emergency highlighting candidate areas for more detailed 

epidemiological investigations. 

It also provided recommendations on risk targeted intervention programs for improving the 

knowledge, attitudes and practices of AI of different stakeholders along the live meat chicken market 

chain in Southeast China. The findings suggested that risk-based health promotion interventions 

should be developed and implemented by both animal health (i.e. targeting farmers and vendors) and 

public health agencies (i.e. targeting consumers) to prevent further human cases of H7N9 along the 

live chicken market chain in China. 

Furthermore, the study in Chapter 7 attempted a new risk assessment approach and generated a 

predictive map of the relative risks of H7N9 human infections in Southeast China. The results from 

Chapter 7 provided recommendations to a more targeted risk-based surveillance program, as well as 

new insights into the role of LBM biosecurity and poultry movement in China. It revealed the 

feasibility of employing poultry serological and virological surveillance results in the early warning 

and timing of prevention and control interventions of H7N9 human infections in China. It also 

highlighted that those highly connected areas with high chicken density and low human population 

should be targeted. The risk map indicated that high risk areas of human H7N9 infections were 

spatially clustered in Southeast China, which highlighted regular monitoring of poultry movement 

and poultry infections at these identified high-risk areas will provide essential evidence for the early 

warning of H7N9 infections across China. 
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Appendix A Chapter 4 Supplementary Information 

A.1 Tables 

Table A-1 PICO/PEO method to define key search terms 

PICO Contents 

Population Poultry/environment, poultry workers at LBM 

Exposure Biosecurity indicators 

Comparator Not Applicable 

Outcomes Evidence of Avian influenza exposure in poultry and in workers at LBM. 

For market infection: virologically positive poultry or environmental 

samples. For market worker’s infection: seropositive or seroconversion. 

Notes: We used the following terms together and in various combinations: “avian influenza”, “risk factors” and “market”. 

For “avian influenza”, we selected “flu or influenza” associated with any of the following susceptible population: “avian”, 

“bird”, “poultry”, “workers”, “consumers” etc. For “risk factors”, we searched with the following terms: “biosecurity”, 

“risk factors”, “Knowledge”, “Attitude” or “Practice”, we expected that “Knowledge, Attitude and Practice” (KAP) 

studies describe biosecurity practices of poultry workers or poultry consumers at LBMs. Secondly, we also translated the 

same set of keywords into Chinese language and applied the search in CNKI (the China Academic Journals full-text 

database) and WANFANG database (includes most comprehensive online full-text Chinese medical journals). 

 

Here is our search strategy: 

Market* AND (flu OR influenza) AND (avian OR bird* OR poultry OR duck* OR chicken OR quail OR pigeon OR 

geese OR goose OR consumer* OR worker* OR trader OR vendor OR intermediary OR seller) AND (risk OR risks OR 

factor* OR reduce* OR effect OR role OR influence OR associat* OR impact OR evaluat*) AND (biosecurit* OR bio-

securit* OR clean* OR disinfect* OR "market closure" OR "rest day" OR rest-day OR dispos* OR slaughter* OR 

intervention* OR protective OR age OR gender OR sex OR education OR occupation* OR knowledge OR attitude* OR 

practice OR behavio* OR perception OR surplus OR overnight OR transport) 

CNKI: SU=('家禽'+'活禽'+'禽类'+'涉禽'+'禽交易') * ('市场'+'集市') * ('禽流感'+'甲型流感'+'A 型流感') * ('风险'+'因

子'+'影响'+'因素'+'生物安全'+'监测') 

Wanfang: 主题:((家禽 + 活禽 + 禽类 +涉禽 + 禽交易) * (市场 + 集市) * (禽流感 + 甲型流感 + A 型流感) * (风险 + 

因子 + 影响 + 因素 + 生物安全 + 监测)) 
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Table A-2 Summary of the biosecurity indicators categories that were considered. 

Group of biosecurity indicators Subgroup 

Group A: Market Characteristics Market type  

Market size  

Market location (Rural or urban) 

Market location (Central city or non-central city area) 

Presence of other species  

Presence of ducks  

Presence of rabbits 

Group B: Market Biosecurity Management 

  

  

  

  

  

Conduct cleaning and disinfection (C/D) 

Before and after C/D 

Conduct waste disposal 

Conduct market closure 

Before and after market closure 

Ban on overnight storage 

Poultry import from local area 

Separate different species 

Conduct slaughter in market 

Group C: Seasonality Seasonality 

 Temperature 

Group D: Socio-demographic Characteristics Sex 

Age group 

Years of working in LBMs 

Type of market 

Vaccination history 

Occupation 

Group E: Exposure to Poultry 

  

  

  

  

Clean feeding tray 

Clean water tray 

Clean feces 

Feed poultry 

Contact duck 

Contact goose 

Contact pigeon 

Conduct slaughtering 

Conduct defeathering 

Conduct eviscerating 
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Table A-3 Criteria used in quality assessment and allocated scoring system 

No Criteria Options Score 

C1 Type of study Case-control 0 

Cross-sectional 1 

Longitudinal 2 

C2 Type of analysis Univariable analysis 0 

(Univariable or Multivariable models) Multivariable analysis 1 

C3 Timing of study* not cover peak season of AI 0 

(Whether it covers high risk season for AI) close to peak season of AI 1 

(Peak season is defined from Nov to Feb.) cover peak season of AI 2 

C4 Type of markets studied Retail only 0 

(Wholesale, Retail or Both) Wholesale only 1 

  Both 2 

C5 Number of counties surveyed 1 0 

(Geographical extent of study) 2~5 1 
 

>5 2 

C6 Number of LBMs sampled <=5 0 

6~10 1 

>10 2 

C7 Biological samples analyzed poultry only 0 

(Environmental samples or poultry samples 

within LBMs) 

environment only 1 

  both poultry and environment 2 

C8 Number of workers sampled <=100 0 
 

100~300 1 

  >300 2 

 

Note: The criteria were derived based on three aspects, 1) Study design: a longitudinal study is more powerful than a 

cross-sectional study or a case-control study. 2) Study size: the more counties/markets/poultry or environmental 

samples/market workers were sampled, the more power the study will be. 3) Study representativeness: studies that 

involved both wholesale and retail LBMs, collected both poultry and environmental samples, covered the peak season of 

AI infections are more representative than those who didn’t. Studies that recorded a higher score were considered higher 

quality.  

*Peak season was defined as November, December, January and February. If a study covers all these months, it covers 

peak seasons of AI, if a study covers one or two of these months, it is close to peak season of AI, if a study doesn’t cover 

any of these months, it doesn’t cover peak seasons of AI. 
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Table A-4 Quality assessment for studies reporting effect of biosecurity indicators on poultry/environmental infection at LBMs 

ID Study 

Name 

C1: Study 

type 

C1: 

Score 

C2: Type of 

analysis 

C2: 

Score 

 C3: 

Timing 

of 

study 

C3: 

Score 

C4: 

Market 

type 

C4: 

Score 

C5: 

Number of 

counties 

C5: 

Score 

C6: 

Number 

of 

LBMs 

C6: 

Score 

C7: Sample 

type 

C7: 

Score 

Total 

Score 

1 Bulaga 

2003[21] 

Cross-

sectional 

1 Multivariate 1 no 0 Retail 0 >5 2 109 2 Both 2 8 

2 Kung 

2003[163] 

Longitudinal 2 Univariate 0 no 0 Retail 0 N/A, HK 1 8 1 Poultry 0 4 

3 Gaber 

2007[247] 

Case-control 0 Multivariate 1 yes 2 N/A, 

both 

1 7 area 2 78 2 Both 2 10 

4 Trock 

2008[246] 

Longitudinal 2 Univariate 0 close to 1 N/A, 

both 

1 N/A, NY 

city area, 4 

1 70 2 Both 2 9 

5 Indriani 

2010[36] 

Cross-

sectional 

1 Multivariate 1 yes 2 Both 2 16 2 83 2 Environme

ntal 

1 11 

6 LiLH 

2010[309] 

Longitudinal 2 Univariate 0 yes 2 Both 2 7 2 42 2 Environme

ntal 

1 11 

7 Martin 

2011[223] 

Cross-

sectional 

1 Multivariate 1 no 0 Both 2 > 5 2 30 2 Poultry 0 8 

8 Leung 

2012[237] 

Longitudinal 2 Multivariate 1 yes 2 Both 2 3 1 8 1 Poultry 0 9 

9 ZhangRS 

2012[310] 

Longitudinal 2 Univariate 0 close to 1 Both 2 2 1 4 0 Environme

ntal 

1 7 

10 BiFY 

2013[311] 

Longitudinal 2 Univariate 0 yes 2 Both 2 14+ 2 14+ 2 Environme

ntal 

1 11 

11 Phan 

2013[312] 

Cross-

sectional 

1 Multivariate 1 close to 1 N/A, 

both 

1 39 2 78 2 Poultry 0 8 

12 ChenZ 

2014[259] 

Longitudinal 2 Univariate 0 yes 2 Both 2 12 2 24 2 Both 2 12 

13 LiuH 

2014[225] 

Longitudinal 2 Univariate 0 close to 1 N/A, 

both 

1 3 1 5 0 Environme

ntal 

1 6 

14 WangDF 

2014[313] 

Longitudinal 2 Univariate 0 yes 2 Retail 0 1 0 4 0 Environme

ntal 

1 5 

15 YuM 

2014[252] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

both 

1 10 2 30 2 Environme

ntal 

1 10 

16 YuanJ 

2014[245] 

Longitudinal 2 Univariate 0 no 0 Both 2 >5 2 144 2 Both 2 10 

17 ZhuBL 

2014[227] 

Longitudinal 2 Univariate 0 no 0 N/A, 

retail 

0 1 0 10 1 Environme

ntal 

1 4 
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18 ZhuJL 

2014[314] 

cross-

sectional 

1 Univariate 0 close to 1 N/A, 

retail 

0 9 2 49 2 Environme

ntal 

1 7 

19 CuiXB 

2015[260] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

retail 

0 1 0 N/A, <5 0 Environme

ntal 

1 5 

20 ElMasry 

2015[249] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

retail 

0 24 2 257 2 Poultry 0 8 

21 HuangFJ 

2015[315] 

case-control 1 Univariate 0 no 0 Both 2 1 0 1 0 Environme

ntal 

1 4 

22 KangM 

2015[224] 

Longitudinal 2 Univariate 0 yes 2 Both 2 4 

prefectures 

1 31 2 Environme

ntal 

1 10 

23 LiuW 

2015[316] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

retail 

0 6 2 6 1 Environme

ntal 

1 8 

24 WangFY1 

2015[317] 

Longitudinal 2 Univariate 0 yes 2 Retail 0 9 2 21 2 Environme

ntal 

1 9 

25 WangFY2 

2015[318] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

retail 

0 10 2 109 2 Environme

ntal 

1 9 

26 WuJ 

2015[319] 

Longitudinal 2 Univariate 0 yes 2 Both 2 21 2 369 2 Environme

ntal 

1 11 

27 XuGF 

2015[320] 

Longitudinal 2 Univariate 0 yes 2 Both 2 1 0 2 0 Environme

ntal 

1 7 

28 YuanJ 

2015[226] 

Longitudinal 2 Multivariate 1 close to 1 Retail 0 1 0 4 0 Environme

ntal 

1 5 

29 ZhaoZF 

2015[321] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

retail 

0 1 0 N/A, <5 0 Environme

ntal 

1 5 

30 CaoL1 

2016[254] 

Longitudinal 2 Univariate 0 yes 2 Both 2 12 2 >22 2 Environme

ntal 

1 11 

31 CaoL2 

2016[322] 

Longitudinal 2 Univariate 0 yes 2 Both 2 12 2 20+ 2 Environme

ntal 

1 11 

32 LiWQ 

2016[323] 

Longitudinal 2 Univariate 0 yes 2 Both 2 1 0 22 2 Environme

ntal 

1 9 

33 LiuFR1 

2016[324] 

Longitudinal 2 Univariate 0 yes 2 Both 2 1 0 16 2 Environme

ntal 

1 9 

34 LiuFR2 

2016[325] 

Longitudinal 2 Univariate 0 yes 2 Both 2 1 0 37 2 Environme

ntal 

1 9 

35 LiuJW 

2016[326] 

Longitudinal 2 Univariate 0 yes 2 Both 2 12 2 >=319 2 Environme

ntal 

1 11 

36 MengJH 

2016[327] 

Longitudinal 2 Univariate 0 yes 2 Both 2 4 1 10 1 Environme

ntal 

1 9 

37 NongXN 

2016[328] 

Longitudinal 2 Univariate 0 yes 2 N/A 0 N/A 0 N/A 0 Environme

ntal 

1 5 
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38 PengC 

2016[329] 

Longitudinal 2 Univariate 0 No 0 Both 2 1 0 3 0 Environme

ntal 

1 5 

39 WangXX 

2016[330] 

Longitudinal 2 Multivariate 1 close to 1 Both 2 11 

prefectures 

2 237 2 Environme

ntal 

1 11 

40 XieCJ 

2016[248] 

Longitudinal 2 Univariate 0 yes 2 Retail 0 4 districts 1 40 2 Environme

ntal 

1 8 

41 ZengJJ 

2016[331] 

Longitudinal 2 Univariate 0 yes 2 Both 2 7 2 N/A 0 Environme

ntal 

1 9 

42 ZengL 

2016[243] 

Longitudinal 2 Univariate 0 yes 2 Both 2 10 2 31 2 Environme

ntal 

1 11 

43 Abu 

Sayeed 

2017[332] 

Cross-

sectional 

1 Univariate 0 no 0 Both 2 1 0 40 2 Environme

ntal 

1 6 

44 ChenC 

2017[333] 

Longitudinal 2 Multivariate 1 yes 2 Both 2 12 2 5~6 1 Environme

ntal 

1 11 

45 ChenXD 

2017[229] 

Longitudinal 2 Univariate 0 close to 1 Both 2 1 0 3 0 Both 2 7 

46 Chu 

2017[334] 

cross-

sectional 

1 Univariate 0 close to 1 Both 2 4 1 7 1 Poultry 0 6 

47 DaiYX 

2017[335] 

Longitudinal 2 Univariate 0 close to 1 Both 2 5 1 30 2 Environme

ntal 

1 9 

48 LiH 

2017[336] 

Longitudinal 2 Univariate 0 yes 2 Both 2 N/A, 2+ 1 5 0 Environme

ntal 

1 8 

49 LiLZ 

2017[337] 

Longitudinal 2 Univariate 0 yes 2 Both 2 9 2 10+ 2 Environme

ntal 

1 11 

50 LiuM 

2017[338] 

Longitudinal 2 Univariate 0 yes 2 Both 2 15 2 15+ 2 Environme

ntal 

1 11 

51 LiuRC 

2017[339] 

Longitudinal 2 Multivariate 1 yes 2 Both 2 9 2 64 2 Environme

ntal 

1 12 

52 MaoXX 

2017[340] 

Longitudinal 2 Univariate 0 close to 1 Both 2 4 1 4 0 Poultry 0 6 

53 QianLM 

2017[341] 

Longitudinal 2 Univariate 0 yes 2 N/A 0 1 0 N/A 
 

Environme

ntal 

1 5 

54 TuZJ 

2017[342] 

Longitudinal 2 Univariate 0 close to 
 

Retail 0 1 0 6 1 Environme

ntal 

1 4 

55 YuXF 

2017[343] 

cross-

sectional 

1 Univariate 0 close to 1 Both 2 13 2 >13 2 Environme

ntal 

1 9 

56 ZhangHB 

2017[344] 

Longitudinal 2 Univariate 0 yes 2 wholesal

e 

1 1 0 2 0 Poultry 0 5 
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57 BaoJ 

2018[345] 

Longitudinal 2 Univariate 0 yes 2 Both 2 N/A 2+ 1 N/A 0 Poultry 0 7 

58 CaoL3 

2018[346] 

Longitudinal 2 Univariate 0 yes 2 Both 2 11 2 11+ 2 Both 2 12 

59 CaoL4 

2018[244] 

Longitudinal 2 Univariate 0 close to 1 Both 2 6 2 18 2 Environme

ntal 

1 10 

60 ChenYH 

2018[347] 

Cross-

sectional 

1 Multivariate 1 no 0 wholesal

e 

1 1 0 2 0 Poultry 0 3 

61 FanSY 

2018[348] 

Longitudinal 2 Univariate 0 yes 2 N/A, 

retail 

0 1 0 16 2 Environme

ntal 

1 7 

62 Hassan 

2018[349] 

Longitudinal 2 Univariate 0 yes 2 Both 2 N/A 2+ 1 10 1 Poultry 0 8 

63 LiuXQ 

2018[350] 

Longitudinal 2 Univariate 0 yes 2 Both 2 15 2 15 2 Environme

ntal 

1 11 

64 WuQ 

2018[351] 

Longitudinal 2 Univariate 0 yes 2 N/A 0 N/A 1  0 11 2 Environme

ntal 

1 7 

65 XuJ 

2018[352] 

Longitudinal 2 Univariate 0 yes 2 Retail 0 1 0 31 2 Environme

ntal 

1 7 

66 YangJ 

2018[353] 

Longitudinal 2 Multivariate 1 yes 2 Both 2 7 2 N/A 
 

Environme

ntal 

1 10 

67 YangY 

2018[354] 

Cross-

sectional 

1 Univariate 0 no 0 N/A, 

wholesal

e 

0 5 1 105 2 Environme

ntal 

1 5 

68 YaoJX 

2018[355] 

Longitudinal 2 Univariate 0 yes 2 Retail 0 1 0 1 0 Environme

ntal 

1 5 

69 ZouLB 

2018[356] 

Longitudinal 2 Univariate 0 yes 2 wholesal

e 

1 9 2 10 1 Both 2 10 
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Table A-5 Quality assessment for studies reporting effect of biosecurity indicators on human infection 

ID Study 

Name 

C1: Study 

type 

C1: 

Score 

C2: Type of 

analysis 

C2: 

Score 

 C3: 

Timing 

of 

study 

C3: 

Score 

C4: 

Market 

type 

C4: 

Score 

C5: 

Number 

of 

counties 

C5: 

Score 

C6: 

Number 

of 

LBMs 

C6: 

Score 

C8: 

Number 

of 

workers 

C8: 

Score 

Total Score 

1 LiuY 

2009[257] 

cross-

sectional 

1 Univariate 

analysis 

0 yes 2 both 2 12 2 59 2 702 2 11 

2 WangM 

2009[258] 

cross-

sectional 

1 Univariate 

analysis 

0 yes 2 both 2 11 2 61 2 496 2 11 

3 ZhangRS 

2012[310] 

cross-

sectional 

1 Univariate 

analysis 

0 close to 1 NA, 

both 

1 2 1 4 0 102 1 5 

4 Uyeki 

2012[357] 

cross-

sectional 

1 Univariate 

analysis 

0 no 0 NA, 

both 

1 1 

province 

0 11 2 200 1 5 

5 Nasreen 

2013[232] 

cross-

sectional  

1 Univariate 

analysis 

0 yes 2 both 2 1 0 3 0 210 1 6 

6 Dung 

2014[262] 

cross-

sectional 

1 Univariate 

analysis 

0 no 0 NA 0 3 

provinces 

1 5 0 607 2 4 

7 TangXJ 

2014[358] 

cross-

sectional  

1 Univariate 

and 

multivariate 

1 close to 1 retail 0 10 2 10+ 2 250 1 8 

8 WangX 

2014[256] 

longitudinal 2 Univariate 

analysis 

0 close to 1 both 2 10 2 24 2 96 0 9 

9 WangQ 

2015[359] 

cross-

sectional 

1 Univariate 

analysis 

0 yes 2 NA 0 2 1 137 2 826 2 8 

10 Nasreen 

2015[231] 

longitudinal 2 Univariate 

analysis 

0 yes 2 both 2 4 1 12 2 290 1 10 

11 FanSY 

2018[348] 

Longitudinal 2 Univariate 

analysis 

0 yes 2 retail 0 1 0 16 2 290 1 7 

12 WangX 

2018[360] 

longitudinal 2 Univariate 

and 

multivariate  

1 close to 1 both 2 10 2 13+ 2 366 2 12 
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Table A-6 Effect size of biosecurity factors in Group A: Market Characteristics on Market Infection 

Study ID Category Group Factor ID Factor Name ES Lo 95% CI Hi 95% CI Qi 

6 A Market type (Wholesale vs 

Retail) 

Market type 1 LiLH 2010-Markettype 0.47  0.38  0.59  0.92  

12 A   Market type 2 ChenZ 2014-Markettype 0.35  0.19  0.63  1.00  

16 A   Market type 3 YuanJ 2014-Markettype 0.51  0.31  0.85  0.83  

26 A   Market type 4 WuJ 2015-Markettype 0.76  0.70  0.83  0.92  

27 A   Market type 5 XuGF 2015-Markettype 0.12  0.06  0.21  0.58  

32 A   Market type 6 LiWQ 2016-Markettype 0.27  0.13  0.55  0.75  

33 A   Market type 7 LiuFR1 2016-Markettype 0.59  0.27  1.29  0.75  

34 A   Market type 8 LiuFR2 2016-Markettype 0.63  0.34  1.78  0.75  

35 A   Market type 9 LiuJW 2016-Markettype 0.36  0.23  0.57  0.92  

41 A   Market type 10 ZengJJ 2016-Markettype 0.98  0.70  1.39  0.75  

47 A   Market type 11 DaiYX 2017-Markettype 1.11  0.52  2.39  0.75  

48 A   Market type 12 LiH 2017-Markettype 0.01  0.00  0.08  0.67  

50 A   Market type 13 LiuM 2017-Markettype 3.62  2.27  5.79  0.92  

51 A   Market type 14 LiuRC 2017-Markettype 0.58  0.43  0.79  1.00  

52 A   Market type 15 MaoXX 2017-Markettype 0.44  0.34  0.56  0.50  

57 A   Market type 16 BaoJ 2018-Markettype 1.94  1.45  2.58  0.58  

66 A   Market type 17 YangJ 2018-Markettype 0.83  0.60  1.14  0.83  

1 A Market size (Smaller vs Bigger) Market size 1 Bulaga 2003-market size 0.47  0.20  1.10  0.67  

5 A   Market size 2 Indriani 2010-market size 0.15  0.02  0.85  0.92  

24 A   Market size 3 WangFY1 2015-market size 0.47  0.30  0.76  0.75  

39 A   Market size 4 WangXX 2016-market size 0.85  0.49  1.45  0.92  

9 A Market location (Rural vs Urban) Location rural vs urban 1 ZhangRS 2012-market location 1.82  0.92  3.60  0.58  

17 A   Location rural vs urban 2 ZhuBL 2014-market location 0.09  0.04  0.20  0.33  

18 A   Location rural vs urban 3 ZhuJL 2014-market location 1.45  0.44  4.76  0.58  

19 A   Location rural vs urban 4 CuiXB 2015-market location 1.24  0.57  2.71  0.42  
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20 A   Location rural vs urban 5 ElMasry 2015-market location 0.53  0.38  0.74  0.67  

24 A   Location rural vs urban 6 WangFY1 2015-market 

location 

0.57  0.34  0.96  0.75  

25 A   Location rural vs urban 7 WangFY2 2015-market 

location 

1.03  0.80  1.32  0.75  

39 A   Location rural vs urban 8 WangXX 2016-market location 1.45  0.79  2.66  0.92  

55 A   Location rural vs urban 9 YuXF 2017-market location 0.19  0.08  0.49  0.75  

67 A   Location rural vs urban 11 YangY 2018-market location 0.16  0.10  0.26  0.42  

31 A Market location (central or non-

centra cityl area) 

Market in central city 1 CaoL2 2016-market location 0.94  0.77  1.16  0.92  

42 A   Market in central city 2 ZengL 2016-market location 0.13  0.07  0.24  0.92  

49 A 
 

Market in central city 3 LiLZ 20170-market location 0.70  0.58  0.86  0.92  

58 A 
 

Market in central city 4 CaoL3 2018-market location 0.85  0.72  1.00  1.00  

59 A   Market in central city 5 CaoL4 2018-market location 0.66  0.56  0.79 0.83  

65 A 
 

Market in central city 6 XuJ 2018-market location 0.79  0.59  1.07 0.58  

13 A Presence of other species (No vs 

Yes) 

Other species 1 LiuH 2014-other species 0.06  0.00  0.83 0.50  

39 A 
 

Other species 2 WangXX 2016-other species 0.22  0.08  0.61 0.92  

43 A 
 

Other species 3 Abu Sayeed 2017-other species 0.53  0.30  0.96 0.50  

5 A Presence of duck (No vs Yes) Duck present 1 Indriani 2010-duck present 0.33  0.13  0.82 0.92  

43 A 
 

Duck present 2 Abu Sayeed 2017-duck present 0.40  0.24  0.67 0.50  

1 A Presence of rabits (No vs Yes) Presence of rabbits 1 Bulaga 2003-rabits present 0.24  0.10  0.63 0.67  

3 A 
 

Presence of rabbits 2 Gaber 2007-rabits present 0.31  0.26  0.38 0.83  

39 A Other Structure 1 WangXX 2016-market 

structure 

0.64  0.3674 1.1 0.92  

39 A 
 

Tradestructure 1 WangXX 2016-poultry trading 

area-closed 

0.71  0.4027 1.26 0.92  

39 A 
 

Tradestructure 2 WangXX 2016-poultry trading 

area close to other products 

1.28  0.7123 2.3 0.92  
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Table A-7 Effect size of biosecurity factors in Group B: Market Biosecurity Management on Market Infection 

Study ID Category Group Factor ID Factor Name ES Lo 95% CI Hi 95% CI Qi 

1 B Conduct clean and disinfection 

(C/D) 

C/D 1 Bulaga 2003-C/D 0.39  0.16  0.95  0.73  

3 B 
 

C/D 2 Gaber 2007-C/D 0.30  0.26  0.36  0.91  

7 B 
 

C/D 3 Martin 2011-C/D 0.11  0.01  1.02  0.73  

24 B 
 

C/D 4 WangFY1 2015-C/D 0.58  0.37  0.92  0.82  

39 B 
 

C/D 5 WangXX 2016-C/D 0.37  0.10  1.33  1.00  

33 B 
 

C/D 6 LiuFR1 2016-C/D 0.60  0.24  1.48  0.82  

60 B 
 

C/D 7 ChenYH 2018-C/D 0.86  0.61  1.23  0.27  

4 B Before and after C/D B&A C/D 1 Trock 2008-B&A C/D 0.17  0.12  0.23  0.82  

16 B 
 

B&A C/D 2 YuanJ 2014-B&A C/D 0.76  0.57  1.02  0.91  

3 B Waste disposal Waste disposal 1 Gaber 2007-Wastedisposal 0.42  0.29  0.56  0.91  

5 B 
 

Waste disposal 2 Indriani 2010-Wastedisposal 0.20  0.06  0.69  1.00  

7 B 
 

Waste disposal 3 Martin 2011-Wastedisposal 0.05  0.01  0.32  0.73  

1 B Conduct market closure Market closure 1 Bulaga 2003-Market closure 0.29  0.12  0.70  0.73  

3 B 
 

Market closure 2 Gaber 2007-Market closure 0.48  0.56  0.39  0.91  

8 B 
 

Market closure 3 Leung 2012-Market closure 0.59  0.32  1.10  0.82  

39 B 
 

Market closure 4 WangXX 2016-Market closure 0.43  0.14  1.39  1.00  

6 B 
 

Market closure 5 LiLH 2010-Market closure 0.85  0.69  1.05  1.00  

53 B 
 

Market closure 6 QianLM 2017-Market closure 0.08  0.04  0.18  0.45  

2 B Before and after market closure B&A Closure 1 Kung 2003-B&A Closure 0.07  0.03  0.19  0.36  

13 B 
 

B&A Closure 2 LiuH 2014-B&A Closure 0.31  0.15  0.66  0.55  

17 B 
 

B&A Closure 3 ZhuBL 2014-B&A Closure 0.02  0.01  0.08  0.36  

22 B 
 

B&A Closure 4 KangM 2015-B&A Closure 0.10  0.04  0.24  0.91  

28 B 
 

B&A Closure 5 YuanJ 2015-B&A Closure 0.25  0.16  0.39  0.45  

38 B 
 

B&A Closure 6 PengC 2016-B&A Closure 0.25  0.21  0.30  0.45  

45 B 
 

B&A Closure 7 ChenXD 2017-B&A Closure 0.76  0.32  1.77  0.64  
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8 B Ban on overnight storage Overnight storage 1 Leung 2012-Storage 0.16  0.04  0.60  0.82  

13 B 
 

Overnight storage 2 LiuH 2014-Storage 0.05  0.00  0.67  0.55  

39 B 
 

Overnight storage 3 WangXX 2016-Storage 0.75  0.42  1.33  1.00  

46 B 
 

Overnight storage 4 Chu 2017-Storage 0.72  0.49  1.07  0.55  

33 B 
 

Overnight storage 5 LiuFR1 2016-Storage 0.42  0.20  0.88  0.82  

39 B Import poultry from local or other 

area 

Poultrysource 1 WangXX 2016-Poultrysource  0.46  0.20  1.04  1.00  

46 B 
 

Poultrysource 2 Chu 2017-Poultrysource  0.36  0.25  0.53  0.55  

47 B 
 

Poultrysource 3 DaiYX 2017-Poultrysource  0.45  0.25  0.79  0.82  

56 B 
 

Poultrysource 4 ZhangHB 2017-Poultrysource  0.93  0.70  1.22  0.45  

60 B 
 

Poultrysource 5 ChenYH 2018-Poultrysource  1.08  0.73  1.59  0.27  

5 B Separate different species Mixspecies 1 Indriani 2010-Mixspecies 0.34  0.11  1.02  1.00  

6 B 
 

Mixspecies 2 LiLH 2010-Mixspecies 0.63  0.54  0.74  1.00  

5 B Conduct slaughter in market (No vs 

Yes) 

SlaughterInMarket 1 Indriani 2010-Slaughter in market 0.16  0.02  0.99  1.00  

40 B 
 

SlaughterInMarket 2 XieCJ 2016-Slaughter in market 0.70  0.56  0.89  0.73  

46 B Others Washhands Chu 2017 1.73  1.18  2.54  0.50  

21 B 
 

Wearmask 1 HuangFJ 2015 0.69  0.10  4.72  0.33  

46 B 
 

Weargloves 1 Chu 2017 0.70  0.45  1.06  0.50  

24 B 
 

Quarantine 1 WangFY1 2015 0.91  0.59  1.39  0.75  

11 B 
 

Multisource 1 Phan 2013 0.41  0.22  0.75  0.67  

20 B 
 

Poultryorigin 1 ElMasry 2015 0.58  0.36  0.94  0.67  

60 B 
 

Poultryorigin 2 ChenYH 2018 0.59  0.41  0.85  0.25  

39 B 
 

Tradehour 1 WangXX 2016 0.72  0.38  1.37  0.92  

5 B 
 

Clearzone 1 Indriani 2010 0.16  0.03  0.86  0.92  

47 B 
 

Disposal DaiYX 2017 0.94  0.54  1.65  0.75  

5 B 
 

Table 1 Indriani 2010 0.26  0.10  0.65  0.92  

43 B 
 

Bird hodling area Abu Sayeed 2017 0.53  0.29  0.91  0.50  

5 B 
 

Stackcages 1 Indriani 2010 0.38  0.13  1.10  0.92  
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1 B 
 

Mixnewbird 1 Bulaga 2003 0.43  0.16  1.19  0.67  

43 B 
 

Seperation sick Abu Sayeed 2017 0.59  0.25  1.39  0.50  

5 B 
 

Pigeon present Indriani 2010 0.33  0.10  1.04  0.92  

43 B 
 

Access of wild birds Abu Sayeed 2017 0.18  0.09  0.37  0.50  

11 B 
 

Duckage 1 Phan 2013 0.20  0.08  0.51  0.67  

11 B 
 

Sellpublic 1 Phan 2013 0.53  0.29  0.97  0.67  

43 B 
 

Hygien of stalls Abu Sayeed 2017 0.32  0.18  0.59  0.50  

46 B 
 

Sex Chu 2017 0.57  0.27  1.22  0.50  

46 B 
 

Workyear Chu 2017 1.09  0.70  1.70  0.50  

46 B 
 

Education Chu 2017 2.62  1.33  5.13  0.50  

8 B 
 

Ventilation 1 Leung 2012 0.71  0.42  1.22  0.75  

33 B 
 

Ventilation 2 LiuFR1 2016 0.51  0.24  1.08  0.75  

  



171 

 

Table A-8 Effect size of biosecurity factors in Group C: Seasonality 

Study ID Category Group Factor ID Factor ES Lo 95% CI Hi 95% CI Qi 

10 C Season (Sumr&Atmn vs Sprg&Witr) Season 1 BiFY 2013 0.90  0.75  1.07  1.00  

14 C 
 

Season 2 WangDF 2014 1.35  0.72  2.53  0.45  

15 C 
 

Season 3 YuM 2014 0.32  0.26  0.40  0.91  

20 C 
 

Season 4 ElMasry 2015 1.15  0.83  1.59  0.73  

23 C 
 

Season 5 LiuW 2015 0.30  0.15  0.61  0.73  

24 C 
 

Season 6 WangFY1 2015 0.31  0.16  0.59  0.82  

25 C 
 

Season 7 WangFY2 2015 0.40  0.30  0.52  0.82  

29 C 
 

Season 8 ZhaoZF 2015 0.79  0.44  1.43  0.45  

30 C 
 

Season 9 CaoL1 2016 0.09  0.04  0.20  1.00  

36 C 
 

Season 10 MengJH 2016 0.33  0.21  0.53  0.82  

37 C 
 

Season 11 NongXN 2016 0.81  0.48  1.38  0.45  

49 C 
 

Season 12 LiLZ 2017 1.06  0.86  1.30  1.00  

54 C   Season 13 TuZJ 2017 0.36  0.14  0.93  0.36  

61 C 
 

Season 14 FanSY 2018 1.48  0.94  2.33  0.64  

62 C 
 

Season 15 Hassan 2018 0.29  0.25  0.34  0.73  

63 C 
 

Season 16 LiuXQ 2018 0.78  0.68  0.90  1.00  

64 C 
 

Season 17 WuQ 2018 0.47  0.27  0.83  0.64  

65 C 
 

Season 18 XuJ 2018 0.84  0.63  1.14  0.64  

68 C 
 

Season 19 YaoJX 2018 0.28  0.19  0.39  0.45  

69 C 
 

Season 20 ZouLB 2018 0.81  0.74  0.89  0.91  

8 C Temperature Temperature 1 Leung 2012 0.98  0.99  1.02  0.82  

44 C 
 

Temperature 2 ChenC 2017 0.99  0.99  1.00  1.00  
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Table A-9 Effect size of biosecurity factors in Group D: Socio-demographic Characteristics on Human Infection 

Study ID Category Group Factor ID Factor ES Lo 95% CI Hi 95% CI Qi 

7 D Sex (Male vs Female) Sex 1 TangXJ 2014-Sex 0.74 0.37 1.47 0.8 

6 D 
 

Sex 2 Dung 2014-Sex 0.99 0.50 2.00 0.4 

8 D 
 

Sex 3 WangX 2014-Sex 0.73 0.56 0.95 0.8 

12 D 
 

Sex 4 WangX 2018-Sex 0.40 0.17 0.91 1 

6 D Age group (>=40 vs <40) Age 1 Dung 2014-Age 0.70 0.34 1.42 0.4 

4 D 
 

Age 2 Uyeki 2012-Age 0.53 0.10 2.97 0.3 

8 D 
 

Age 3 WangX 2014-Age 1.51 1.15 1.97 0.8 

7 D 
 

Age 4 TangXJ 2014-Age 0.97 0.49 1.94 0.8 

9 D 
 

Age 5 WangQ 2015-Age 0.83 0.55 1.27 0.6 

7 D Years of working in LBMs (<10y vs >=10 y) Workyear 1 TangXJ 2014-Workyear 0.74 0.36 1.55 0.8 

8 D 
 

Workyear 2 WangX 2014-Workyear 0.36 0.17 0.76 0.8 

1 D Type of market (Wholesale vs Retail) Markettype 1 LiuY 2009-Markettype 0.44 0.26 0.76 0.8 

8 D 
 

Markettype 2 WangX 2014-Markettype 0.15 0.06 0.40 0.8 

2 D 
 

Markettype 3 WangM 2009-Markettype 0.43 0.24 0.76 0.8 

7 D Flu vaccination history (Yes vs No) Vaccination 1 TangXJ 2014-Vaccination 0.80 0.39 1.66 0.8 

8 D 
 

Vaccination 2 WangX 2014-Vaccination 0.17 0.06 0.48 0.8 

12 D 
 

Vaccination 3 WangX 2018-Vaccination 1.16 0.44 3.04 1 

6 D Occupation (not seller vs seller) Occupation 1 Dung 2014-Occupation 0.31 0.13 0.74 0.4 

12 D 
 

Occupation 2 WangX 2018-Occupation 0.36 0.14 0.94 1 

7 D Others Other occupation TangXJ 2014-Occupation 0.42 0.17 1.06 0.67 

6 D 
 

Education 1 Dung 2014-Education 1.68 0.39 7.20 0.33 

3 D 
 

Marketlocation 1 ZhangRS 2012-Marketlocation 0.25 0.09 0.74 0.42 

6 D 
 

Medicalhistory 1 Dung 2014-Medicalhistory 0.76 0.31 1.88 0.33 

11 D 
 

Infection status of markets FanSY 2018-Marketinfection 0.47 0.29 0.76 0.58 

10 D 
 

Smoke 1 Nasreen 2015-Smoke 2.21 0.83 5.88 0.83 
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Table A-10 Effect size of biosecurity factors in Group E: Exposure to Poultry on Human Infection 

Study ID Category Group Factor ID Factor  ES Lo 95% CI Hi 95% CI Qi 

5 E Clean feeding tray Clean feeding tray 1 Nasreen 2013-Cleanfeedtray 0.53  0.12  2.29  0.60  

10 E   Clean feeding tray 2 Nasreen 2015-Cleanfeedtray 0.27  0.08  0.95  0.90  

5 E Clean water tray Clean water tray 1 Nasreen 2013-Cleanwatertray 0.60  0.14  2.58  0.60  

10 E   Clean water tray 2 Nasreen 2015-Cleanwatertray 0.17  0.04  0.73  0.90  

10 E Clean feces Clean feces 1 Nasreen 2015-Cleanfeces 0.24  0.08  0.76  0.90  

5 E   Clean feces 2 Nasreen 2013-Cleanfeces 1.01  0.23  4.33  0.60  

5 E Feed poultry Feed poultry 1 Nasreen 2013-Feedpoultry 0.68  0.16  2.90  0.60  

10 E   Feed poultry 2 Nasreen 2015-Feedpoultry 0.15  0.02  1.16  0.90  

7 E Contact duck Contact duck 1 TangXJ 2014-Contactduck 0.26  0.10  0.69  0.80  

12 E   Contact duck 2 WangX 2018-Contactduck 0.31  0.07  1.36  1.00  

7 E Contact goose Contact goose 1 TangXJ 2014-Contactgoose 1.10  0.39  3.13  0.80  

12 E   Contact goose 2 WangX 2018-Contactgoose 0.43  0.16  1.11  1.00  

7 E Contact pigeon Contact pigeon 1 TangXJ 2014-Contactpigeon 0.68  0.26  1.79  0.80  

12 E   Contact pigeon 2 WangX 2018-Contactpigeon 0.81  0.35  1.90  1.00  

5 E Conduct slaughtering Slaughter 1 Nasreen 2013-Slaughter 0.08  0.01  0.70  0.60  

10 E   Slaughter 2 Nasreen 2015-Slaughter 0.16  0.02  1.20  0.90  

5 E Conduct defeathering Defeathering 1 Nasreen 2013-Defeather 0.13  0.03  0.65  0.60  

10 E   Defeathering 2 Nasreen 2015-Defeather 0.22  0.06  0.77  0.90  

5 E Conduct eviscerating Evisceration 1 Nasreen 2013-Evisceration 0.13  0.03  0.68  0.60  

10 E   Evisceration 2 Nasreen 2015-Evisceration 0.22  0.06  0.78  0.90  

10 E Others Contactfeces Nasreen 2015-Contactfeces 4.11  0.54  31.61  0.83  

5 E   Contactdead Nasreen 2013-Contactdead 3.58  0.81  15.79  0.50  

10 E   Stuff poultry into bag Nasreen 2015-Stuffpoultry 0.20  0.07  0.63  0.83  

7 E   Contact chicken TangXJ 2014-Contactchicken 0.41  0.05  3.26  0.67  

7 E   Contact wildbird TangXJ 2014-Contactwildbird 1.70  0.49  5.92  0.67  
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10 E   Medicate poultry Nasreen 2015-Medicatepoultry 0.47  0.10  2.22  0.83  

10 E   Isolate sick Nasreen 2015-Isolatesick 0.73  0.28  1.91  0.83  

10 E   Wash hand 1 Nasreen 2015-Washhand 0.77  0.29  2.00  0.83  

12 E   Wash hand 2 WangX 2018-Washhand 1.03  0.44  2.42  1.00  

10 E   Eat raw poultry or egg Nasreen 2015-Eatrawpoultry 1.22  0.44  3.35  0.83  

12 E   Disinfection frequency WangX 2018-Disinfection 0.25  0.10  0.61  1.00  
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A.2 Figures 

 

Figure A-1 Forest plots of risk estimates of market characteristics (Group A) on AI market infection using Random Effect Model. 
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Figure A-2 Forest plots of risk estimates of market biosecurity management (Group B) on AI Market Infection using Random Effect 

Model. 

 

ln OR
0-1.3-2.6-3.9-5.2

Study or Subgroup 

ZhuBL 2014-B&A Closure 

LiuH 2014-Storage 

Martin 2011-Wastedisposal 

Kung 2003-B&A Closure 

QianLM 2017-Market closure 

KangM 2015-B&A Closure 

Martin 2011-C/D 

Indriani 2010-Slaughter in market 

Leung 2012-Storage 

Trock 2008-B&A C/D 

Before and after market closure subgroup 

Indriani 2010-Wastedisposal 

Conduct waste disposal subgroup 

YuanJ 2015-B&A Closure 
PengC 2016-B&A Closure 

Bulaga 2003-Market closure 

Gaber 2007-C/D 

LiuH 2014-B&A Closure 

Indriani 2010-Mixspecies 

Before and after C/D subgroup 

Chu 2017-Poultrysource  

WangXX 2016-C/D 

Conduct clean and disinfection (C/D) 

Q=33.41, p=0.00, I2=82%

Before and after C/D 

Q=47.60, p=0.00, I2=98%

Conduct waste disposal 

Q=5.71, p=0.06, I2=65%

Conduct market closure 

Q=43.09, p=0.00, I2=88%

Before and after market closure 

Q=32.19, p=0.00, I2=81%

Ban on overnight storage 

Q=9.58, p=0.05, I2=58%

Poultry import from local area 

Q=24.10, p=0.00, I2=83%

Separate different species 

Q=1.19, p=0.28, I2=16%

Conduct slaughter in market (No vs Yes) 

Q=2.51, p=0.11, I2=60%

Overall 
Q=339.27, p=0.00, I2=89%

Bulaga 2003-C/D 

Conduct market closure subgroup 

Gaber 2007-Wastedisposal 

LiuFR1 2016-Storage 

WangXX 2016-Market closure 

Conduct slaughter in market (No vs Yes) subgroup 

DaiYX 2017-Poultrysource  

WangXX 2016-Poultrysource  

Conduct clean and disinfection (C/D) subgroup 

Gaber 2007-Market closure 

Ban on overnight storage subgroup 

WangFY1 2015-C/D 

Leung 2012-Market closure 

Separate different species subgroup 

LiuFR1 2016-C/D 

Poultry import from local area subgroup 

LiLH 2010-Mixspecies 

XieCJ 2016-Slaughter in market 

Chu 2017-Storage 
WangXX 2016-Storage 

ChenXD 2017-B&A Closure 

YuanJ 2014-B&A C/D 

LiLH 2010-Market closure 

ChenYH 2018-C/D 

ZhangHB 2017-Poultrysource  
ChenYH 2018-Poultrysource  

    OR (95% CI)

   0.02  (  0.01,  0.08)

   0.05  (  0.00,  0.67)

   0.05  (  0.01,  0.32)

   0.07  (  0.03,  0.19)

   0.08  (  0.04,  0.18)

   0.10  (  0.04,  0.24)

   0.11  (  0.01,  1.02)

   0.16  (  0.02,  0.99)

   0.16  (  0.04,  0.60)

   0.17  (  0.12,  0.23)

   0.18  (  0.10,  0.31)

   0.20  (  0.06,  0.69)

   0.22  (  0.08,  0.63)

   0.25  (  0.16,  0.39)
   0.25  (  0.21,  0.30)

   0.29  (  0.12,  0.70)

   0.30  (  0.26,  0.36)

   0.31  (  0.15,  0.66)

   0.34  (  0.11,  1.02)

   0.36  (  0.08,  1.59)

   0.36  (  0.25,  0.53)

   0.37  (  0.10,  1.33)

   0.38  (  0.31,  0.47)

   0.39  (  0.16,  0.95)

   0.40  (  0.24,  0.67)

   0.42  (  0.29,  0.56)

   0.42  (  0.20,  0.88)

   0.43  (  0.14,  1.39)

   0.44  (  0.11,  1.73)

   0.45  (  0.25,  0.79)

   0.46  (  0.20,  1.04)

   0.47  (  0.28,  0.76)

   0.48  (  0.56,  0.39)

   0.49  (  0.28,  0.84)

   0.58  (  0.37,  0.92)

   0.59  (  0.32,  1.10)

   0.60  (  0.42,  0.85)

   0.60  (  0.24,  1.48)

   0.61  (  0.38,  0.99)

   0.63  (  0.54,  0.74)

   0.70  (  0.56,  0.89)

   0.72  (  0.49,  1.07)
   0.75  (  0.42,  1.33)

   0.76  (  0.32,  1.77)

   0.76  (  0.57,  1.02)

   0.85  (  0.69,  1.05)

   0.86  (  0.61,  1.23)

   0.93  (  0.70,  1.22)
   1.08  (  0.73,  1.59)



177 

 

 

Figure A-3 Forest plots of risk estimates of seasonality (Group C) on AI market infection using Random Effect Model. 
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Figure A-4 Forest plots of risk estimates of socio-demographic characteristics (Group D) on Human AI infection using Random Effect 

Model. 
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Figure A-5 Forest plots of risk estimates of activities involving exposure to poultry (Group E) on Human AI infection using Random 

Effect Model. 
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Figure A-6 Doi plots of the five biosecurity groups  

 

A: Market Characteristics on Market Infection by Group A

LFK index: -2.57 (Major asymmetry)
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Figure A-7 Funnel plots of the five biosecurity groups 
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Appendix B Chapter 5 Supplementary Information 

B.1 Tables 

Table B-1 A full list of the biosecurity indicators included in the univariate analysis. 

Market level biosecurity indicators Category 

Type of LBMs Retail 

Wholesale 

Mixed 

Type of poultry sold Sell live birds directly 

Sell live birds and slaughter 

Sell multiple species Yes/No 

Volume of yellow fat chicken Numerical 

Sell spent hens Yes/No 

Sell ducks Yes/No 

Sell geese Yes/No 

Sell pigeons Yes/No 

Sell quail Yes/No 

Market structure Outdoor market 

Indoor market 

Wastes collected by specially-assigned person, and then 

process 

Yes/No 

Wastes handled by themselves Yes/No 

Wastes hauled in trash Yes/No 

Wastes burned on site Yes/No 

Waste water of market dumped in sewer Yes/No 

Waste water of market dumped everywhere Yes/No 

Waste water from processing birds dumped in sewer Yes/No 

Waste water from processing birds dumped everywhere Yes/No 

Drainage system is covered Yes/No 

Drainage system is flooded with water Yes/No 

Cleaning times per week Frequency 

Disinfection times per week Frequency 

Market closure Yes/No 

Quarantine again before into the market Yes/No 

Sampling regularly Yes/No 

Live birds move to retail markets Yes/No 

Live birds move to other wholesale markets Yes/No 

Sell to consumers directly Yes/No 
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Table B-2 Number of chicken source counties and volume of chicken that transported to the surveyed LBMs by provinces. 

LBMs in the 

province of 

Market Name Import chicken from 

the province 

Number of 

source counties 

Volume of 

chicken moved 

Shanghai Sanguantang Jiangsu 4 1,022,583 

Shanghai 7 130,950 

Zhejiang 1 72,068 

Nongchanpin Jiangsu 4 513,037 

Shanghai 3 184,600 

Zhejiang 2 133,510 

Huhuai Jiangsu 1 66,537 

Zhejiang 1 50,816 

Shanghai 1 25,800 

Zhejiang Chengbei Zhejiang 17 1,199,820 

Jiangsu 10 583,850 

Anhui 3 30,500 

Shandong 1 12,000 

Jiangxi 1 3,000 

Zhebei Zhejiang 2 122,910 

Jiangsu 1 33,300 

Anhui 1 20,500 

Anhui Huishangcheng Anhui 15 409,570 

Shandong 8 272,700 

Jiangsu 10 157,500 

Henan 4 49,400 

Fenghuang Anhui 10 281,170 

Jiangsu 11 93,000 

Jiangsu Zijinshan Anhui 13 314,700 

Jiangsu 8 214,817 

Shandong 1 20,780 

Hebei 1 16,340 

Henan 6 12,400 

Tianyinshan Jiangsu 3 86,640 

Anhui 2 33,900 

 

  



184 

 

Table B-3 Summary of Moran’s I index of degree centrality and k-core of chicken sources. 

  Degree of source Counties k-core of source Counties 

Moran's Index:  0.118 0.189 

Expected Index:  -0.009 -0.009 

Variance:  0.0005 0.0005 

z-score:  5.711 8.841 

p-value:  0.000 0.000 
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Appendix C Chapter 6 Supplementary Information 

C.1 Tables 

Table C-1 Scoring method of questions about knowledge, attitudes and practices in relation to avian influenza among all participants. 

Question ID Type of question Question contents Scoring method Score range 

Knowledge Q1 Binary K1. Have you heard about AI infection in animals? 'yes' 1 point, 'no' 0 point 0-1 

Knowledge Q2 Categorical K2. Is AI an infectious disease? 'yes' 1 point, 'no' 0 point 0-1 

Knowledge Q3 Categorical K3. What season do you think AI is most likely to occur? winter 2 points, spring +1, autumn +1, summer 0 0-4 

Knowledge Q4 Open answer K4. What types of animals can be infected with AI? mention any poultry 2 points, mention birds +1, mention any 

other mammals only +1 

0-4 

Knowledge Q5 Categorical K5. Do you think that people can be infected with AI? 'yes' 1 point, 'no' or 'don't know' 0 point 0-1 

Knowledge Q6 Open answer K6. How can people get AI? contact with poultry or market +2 points, answer eating +1, 

answer virus +1, answer air transmitted +1, answer low 

immunity and others 0 

0-4 

Knowledge Q7 Categorical K7. Can AI be transmitted from one person to the other? 'yes' 0 point, 'not sure' or 'don't know' 1 point, 'no' 2 points  0-2 

Knowledge Q8 Open answer K8. What do you think are the symptoms of people 

infected with AI? 

mention any of the symptoms' 1 point, 'no' or 'don't know' 0 

point 

0-1 

Attitudes Q1 Categorical A1. Do you think AI is a severe disease for humans? 'yes' 1 point, 'no' 0 point 0-1 

Attitudes Q2 Categorical A2. Do you think people who are infected with AI can be 

cured? 

'yes' 0 point, 'not sure' or 'don't know' 1 point, 'no' 2 points  0-2 

Attitudes Q3 Categorical A3. What do you think is the likelihood for you to get AI?  'No risk' 0, 'Low risk' 1, 'Moderate risk' 2, ‘High risk' 3 0-3 

Attitudes Q4 Categorical A4. In your opinion, which of the following is the riskiest 

place for poultry to get AI 

add 1 point for each checked option 0-5 

Attitudes Q5 Categorical A5. In your opinion, which of the following is the riskiest 

place for humans to get AI 

add 1 point for each checked option 0-5 

Practices Q1 Categorical What do you do when you suspect that you have flu 

symptoms? 

Do nothing' 0 point, 'take medicine at home' +2, 'rural health 

clinic' +1, 'county level hospital' +1 

0-3 

Practices Q2 Categorical Before contacting live birds, do you usually take any 

protection measures? 

'Do nothing' 0, 'wear gloves'+1, 'wear masks' +1, 'wear 

protective clothes'+1, 'wash hands' +1, 'wash hands with 

soap' +1 

0-5 
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Table C-2 Summary of the 15 KAP questions for three types of respondents. 

Variable Score Chicken farmers (N=95) Chicken vendors (N=104) Consumers (N=75) All respondents (N=274) 

n % n % n % n % 

K1. Have you heard about AI infection in 

animals? 

0 0 0.0  1 1.0  7 9.3  8 2.9  

1 95 100.0  103 99.0  68 90.7  266 97.1  

K2. Is AI an infectious disease? 0 10 10.5  47 45.2  15 20.0  72 26.3  

1 85 89.5  57 54.8  60 80.0  202 73.7  

K3. What season do you think AI is most likely to 

occur? 

0 8 8.4  11 10.6  11 14.7  30 10.9  

1 24 25.3  40 38.5  46 61.3  110 40.1  

2 35 36.8  32 30.8  13 17.3  80 29.2  

3 25 26.3  17 16.3  4 5.3  46 16.8  

4 3 3.2  4 3.8  1 1.3  8 2.9  

K4. What types of animals can be infected with 

AI? 

0 14 14.7  37 35.6  5 6.7  56 20.4  

1 8 8.4  9 8.7  3 4.0  20 7.3  

2 36 37.9  23 22.1  26 34.7  85 31.0  

3 31 32.6  33 31.7  34 45.3  98 35.8  

4 2 2.1  0 0.0  3 4.0  5 1.8  

K5. Do you think that people can be infected with 

AI? 

0 30 31.6  51 49.0  13 17.3  94 34.3  

1 65 68.4  53 51.0  57 76.0  175 63.9  

K6. How can people get AI? 0 64 67.4  62 59.6  25 33.3  151 55.1  

1 6 6.3  4 3.8  11 14.7  21 7.7  

2 19 20.0  17 16.3  25 33.3  61 22.3  

3 3 3.2  8 7.7  4 5.3  15 5.5  

4 0 0.0  1 1.0  0 0.0  1 0.4  

K7. Can AI be transmitted from one person to the 

other? 

0 28 29.5  15 14.4  36 48.0  79 28.8  

1 45 47.4  32 30.8  22 29.3  99 36.1  

2 19 20.0  47 45.2  16 21.3  82 29.9  

K8. What do you think are the symptoms of 

people infected with AI? 

0 40 42.1  34 32.7  17 22.7  91 33.2  

1 48 50.5  57 54.8  54 72.0  159 58.0  

A1. Do you think AI is a severe disease for 

humans? 

0 54 56.8  81 77.9  33 44.0  168 61.3  

1 40 42.1  20 19.2  42 56.0  102 37.2  

A2. Do you think people who are infected with AI 

can be cured? 

0 24 25.3  53 51.0  49 65.3  126 46.0  

1 61 64.2  34 32.7  18 24.0  113 41.2  

2 4 4.2  5 4.8  5 6.7  14 5.1  

A3. What do you think is the likelihood for you to 

get AI? 

0 27 28.4  41 39.4  15 20.0  83 30.3  

1 28 29.5  38 36.5  28 37.3  94 34.3  

2 29 30.5  11 10.6  27 36.0  67 24.5  

3 8 8.4  11 10.6  5 6.7  24 8.8  

0 12 12.6  29 27.9  55 73.3  96 35.0  
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A4. In your opinion, which of the following is the 

riskiest place for poultry to get AI? 

1 69 72.6  66 63.5  15 20.0  150 54.7  

2 12 12.6  7 6.7  2 2.7  21 7.7  

3 2 2.1  0 0.0  2 2.7  4 1.5  

4 0 0.0  2 1.9  0 0.0  2 0.7  

5 0 0.0  0 0.0  1 1.3  1 0.4  

A5. In your opinion, which of the following is the 

riskiest place for humans to get AI? 

0 10 10.5  41 39.4  4 5.3  55 20.1  

1 68 71.6  51 49.0  37 49.3  156 56.9  

2 14 14.7  4 3.8  20 26.7  38 13.9  

3 3 3.2  2 1.9  6 8.0  11 4.0  

4 0 0.0  3 2.9  7 9.3  10 3.6  

5 0 0.0  3 2.9  1 1.3  4 1.5  

P1. What do you do when you suspect that you 

have flu symptoms? 

0 3 3.2  11 10.6  8 10.7  22 8.0  

1 74 77.9  66 63.5  42 56.0  182 66.4  

2 18 18.9  27 26.0  22 29.3  67 24.5  

3 0 0.0  0 0.0  3 4.0  3 1.1  

P2. Before contacting live birds, do you usually 

take any protection measures? 

0 0 0.0  0 0.0  2 2.7  2 0.7  

1 52 54.7  59 56.7  51 68.0  162 59.1  

2 12 12.6  19 18.3  18 24.0  49 17.9  

3 12 12.6  21 20.2  4 5.3  37 13.5  

4 15 15.8  5 4.8  0 0.0  20 7.3  

5 4 4.2  0 0.0  0 0.0  4 1.5  
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Table C-3 Demography characteristics of different type of chicken vendors from the surveyed counties in Jiangsu and Anhui provinces in China. 

Characteristics Vender only 

(n=64) 

Vender trader 

(n=22) 

Vender slaughter 

(n=14) 

Vendor trader and slaughter 

(n=4) 

Chi-square P-value 

Male (%) 28 (43.8) 20 (90.9) 10 (71.4) 3 (75) 16.68 0.001 

Female (%) 36 (56.2) 2 (9.1) 4 (28.6) 1 (25)   

Age <=35 7 3 0 0 10.28 0.113 

 36~55 51 15 10 4   

 >55 3 2 4 0   

Education level Primary School or below 13 4 3 0 16.29 0.061 

 Secondary school 29 15 8 3   

 High School 19 1 3 0   

 University and above 2 0 0 1   

Average KAP Scores 13.3  14.5  14.4  14.0    

Average Knowledge Scores 7.3  8.2  7.9  7.0    

Average Attitudes Scores 3.2  3.4  3.2  2.8    

Average Practices Scores 2.7  3.0  3.3  4.3    

 

Table C-4 Correlation matrix of all KAP variables 

Corr. scorek1 scorek2 scorek3 scorek4 scorek5 scorek6 scorek7 scorek8 scorea1 scorea2 scorea3 scorea4 scorea5 scorep1 scorep2 

scorek1 1.00  
              

scorek2 0.03  1.00  
             

scorek3 0.15  0.15  1.00  
            

scorek4 0.05  0.35  0.07  1.00  
           

scorek5 0.00  0.41  0.01  0.22  1.00  
          

scorek6 0.01  0.22  0.03  0.27  0.31  1.00  
         

scorek7 0.06  -0.28  0.04  -0.07  -0.41  -0.29  1.00  
        

scorek8 0.03  0.23  0.05  0.34  0.33  0.35  -0.04  1.00  
       

scorea1 -0.06  0.12  -0.19  0.10  0.25  0.06  -0.34  0.00  1.00  
      

scorea2 0.09  0.06  0.05  -0.13  0.14  -0.12  -0.13  -0.12  0.16  1.00  
     

scorea3 -0.05  0.12  0.02  0.12  0.29  0.10  -0.24  0.02  0.36  0.11  1.00  
    

scorea4 0.13  0.19  0.27  0.14  0.09  0.17  -0.03  0.03  -0.04  0.03  0.16  1.00  
   

scorea5 -0.10  0.15  -0.02  0.26  0.25  0.32  -0.10  0.22  0.10  0.07  0.15  0.22  1.00  
  

scorep1 0.01  0.07  0.00  0.02  0.03  -0.11  -0.07  -0.01  0.06  -0.06  -0.04  -0.11  -0.05  1.00  
 

scorep2 0.02  0.01  0.16  0.09  0.00  0.26  -0.05  0.10  -0.07  -0.10  0.06  0.25  0.06  -0.11  1.00  
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Table C-5 The coefficient of determination (R-squared) of the four GLS regression models. 

R-squared Mode 1: All respondents Model 2: Farmers Model 3: Vendors Model 4: Consumers 

within 0.08 0.14 0.15 0.21 

between 0.31 0.24 0.66 0.65 

overall 0.10 0.17 0.24 0.31 

 

Note: The between R2 is "How much of the variance between separate counties does my model account for", the within 

R2 is "How much of the variance within the county does my model account for", and the overall R2 is a weighted average 

of these two. 

C.2 Figures 

  
A: Histogram of residuals from Model 1 - All 

respondents 

Not normally distributed 

B: Histogram of residuals from Model 1 – Farmers 

Normally distributed 

  
C: Histogram of residuals from Model 1 – Vendors 

Normally distributed 

D: Histogram of residuals from Model 1 – Consumers 

Normally distributed 

Figure C-1 Distribution of the residuals from four GLS regression models 
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Appendix D Chapter 7 Supplementary Information 

D.1 Data source of wholesale LBMs and retail LBMs 

The presence of wholesale LBMs and number of retail LBMs were obtained from China Animal Health and Epidemiology Centre (CAHEC). The 

provincial Center of Animal Diseases Control and Prevention (CADC) were approached by CAHEC to provide with number of wholesale and retail 

LBMs in each county in the province. However, LBMs data in Zhejiang and Shandong provinces is missing. Therefore, we used the Points of Interest 

(POI) data from year 2012 for these two provinces as a database, and we searched with different combinations of terms, i.e., live bird markets, famers’ 

markets, agricultural products markets and wet markets. We then carefully screened each market name and make sure all included markets are agriculture 

product related markets. We use this dataset as a substitute to live bird markets in the two provinces. 

D.2 Mathematical notation for the Bayesian spatial CAR model 

It assumed that the observed counts of the H7N9 human infection, for the ith county (i = 1 to 1181) followed a Poisson distribution with mean (μi), that 

is, 

Yi ∼ Poisson(μi) 

log(μi) = log (Expi) + θi 

θi = α + x * γ + ∑βz * λzi + si 

where Exp i is the expected number of human H7N9 cases in county i (acting as an offset to control for population size) and θ i is the mean log relative 

risk (RR); α is the intercept, γ is the coefficient for temporal trend, β is a vector of z coefficients, λ is a matrix of z environmental covariates, and si is 

the spatially structured random effect with mean zero and variance σs
2. Standardization of environmental variables was used to allow comparability of 

the effects and provide a more meaningful interpretation on the results.  
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D.3 OpenBUGS code  

The OpenBUGS code used to develop the Bayesian spatial model for H7N9 human infections from 2013 to 2017. 

model { 

 

#CAR prior distribution for spatial random effects: 

s[1:1181] ~ car.normal(adj[], weights[], num[], tau.s) 

for(k in 1:sumNumNeigh) { 

weights[k] <- 1 

} 

 

for (i in 1:1181) { 

O[i] ~ dpois(mu[i]) 

log(mu[i]) <- log(E[i]) + log.RR[i] 

log.RR[i] <- alpha + U[i] + s[i] 

U[i] <- beta1 * WsM[i] + beta2 * ReMDen1[i] + beta3 * ReMDen2[i] + beta4 * VPos[i] + beta5 * Pop1[i] + beta6* Pop2[i] + beta7 * Ck1[i] + beta8 * Ck2[i] + beta9 * Deg1[i] + 

beta10 * Deg2[i] 

RR[i] <- exp(log.RR[i]) 

} 

 

#Other priors 

tau.s ~ dgamma(0.5, 0.0005) 

alpha ~ dflat() 

beta1 ~ dnorm(0,0.00001) 

beta2 ~ dnorm(0,0.00001) 

beta3 ~ dnorm(0,0.00001) 

beta4 ~ dnorm(0,0.00001) 

beta5 ~ dnorm(0,0.00001) 

beta6 ~ dnorm(0,0.00001) 

beta7 ~ dnorm(0,0.00001) 

beta8 ~ dnorm(0,0.00001) 

beta9 ~ dnorm(0,0.00001) 

beta10 ~ dnorm(0,0.00001) 

} 

 

#Initial values 

list(alpha = 0, beta1 = 0, beta2 = 0, beta3 = 0, beta4 = 0, beta5 = 0, beta6 = 0, beta7 = 0, beta8 = 0, beta9 = 0, beta10 = 0, tau.s=0.5) 
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D.4 Tables 

Table D-1 List of surveyed sites of chicken movements. 

No. Province Records From NameEN Start Date End Date Incoming 

records 

Outgoing 

records 

Degree 

1 Shanghai Wholesale LBM Shanghai Nongpi 1/01/2014 16/07/2014 1247 6061 23 

2 Jiangsu Wholesale LBM Changzhou Lingjiatang 1/01/2014 24/07/2014 2540 * 43 

3 Jiangsu Wholesale LBM Zhenjiang Nongfuchanpin 9/01/2014 24/07/2014 1674 * 42 

4 Jiangsu Wholesale LBM Lishui Wenshi 1/01/2014 22/07/2014 715 * 24 

5 Jiangsu Trading platform Changzhou Tianmu Lihua 1/1/2014 30/06/2014 * 8693 124 

6 Jiangsu Trading platform Jiangyan Heyin 2/02/2014 25/07/2014 * 703 46 

7 Anhui Trading platform Chaohu Zhengkang 1/01/2014 16/06/2014 * 323 33 

8 Anhui Trading platform Feixi Wenshi 1/01/2014 20/06/2014 * 1383 105 
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Table D-2 Summary of Moran’s I index of incidence rate of human H7N9 infections. 

  Number of observed human H7N9 infections 

Moran's Index:  0.1525 

Expected Index:  -0.00085 

Variance:  0.00018 

z-score:  11.3533 

p-value:  0.0000 

 

Table D-3 Results of multivariable logistic model applied to H7N9 Human infections in each epidemic wave during 2013-2017. 

Variables in each county Category Coef. [95% Conf. P>z 

Epidemic wave of human H7N9 infections Wave 1 Ref   

  Wave 2 1.03 (0.72~1.34) 0 

  Wave 3 0.72 (0.41~1.04) 0 

  Wave 4 0.31 (-0.02~0.63) 0.062 

  Wave 5 2.09 (1.8~2.39) 0 

Present of wholesale LBMs  no Ref   

  yes 0.65 (0.39~0.9) 0 

Retail LBMs density (100km2) Low density (< 1) Ref   

  Medium density (1-3) 0.38 (0.07~0.68) 0.015 

  High density (>3) 0.93 (0.57~1.29) 0 

Present of poultry virological positive no Ref   

  yes 1.94 (1.49~2.38) 0 

Network estimate (Degree centrality) 0 Ref   

  1~3 0.76 (0.47~1.04) 0 

  4~6 1.51 (0.88~2.15) 0 

Human population density (km2) 0~200 Ref   

  201~600 0.19 (-0.16~0.54) 0.295 

  >601 0.41 (-0.01~0.82) 0.054 

Chicken density (km2) 0~500 Ref   

  500~3000 0.14 (-0.18~0.46) 0.399 

  >3000 -0.57 (-0.99~-0.15) 0.008 

Constant  -3.94 (-4.3~-3.59) 0 

Notes: The presence of wholesale LBMs, higher retail LBMs density, presence of poultry virological positives, higher 

network centrality, as well as higher human population density were significantly associated with the presence of human 

H7N9 infections. Specifically, our result indicated the presence of wholesale LBM in the county increased 65% of the 

probability of human H7N9 infections in the county (Coef. = 0.65, 95% CI: 0.39-0.9). Counties with higher density of 

retail LBMs had more chance to observe human infections compared to counties with no retail LBMs. The presence of 

poultry virological positives almost tripled the probability of human H7N9 infections in the county (Coef. = 1.94, 95% 

CI: 1.49-2.38). Counties with a degree centrality of 1 to 3 had 76% more probability of having human infections than 

counties with 0-degree centrality, and counties with a degree centrality of 4 to 6 had 151% more probability of having 

human infections than counties with 0-degree centrality. Counties with more than 3,000 chicken/km2 had 60% less 

probabilities of having human infections in the county compared to counties with less than 1,000 chicken/km2 (Coef. = 

0.57, 95% CI: -0.99--0.15).  
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D.5 Figures  

  

Figure D-1 Geographic distribution of live chicken movements from wholesale LBMs (left) and live poultry trading platforms (right). 

 

 

Figure D-2 2-mode Network between surveyed LBMs/poultry trading platforms and counties of live chicken sources/destinations. 
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Figure D-3 Geographical distribution of the degree centrality of live chicken sources/destinations (county level), based on a 2-mode 

network of live chicken movements. 

 

 

Figure D-4 Spatial distribution of spatially structured random effects of the CAR model for human H7N9 infections. The maps were 

created in ArcGIS 10.1 software (ESRI Inc., Redlands, CA, USA) (http://www.esri.com/). 
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