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Abstract 

Objectives: 

Amyotrophic lateral sclerosis (ALS) is a progressive, fatal condition in which both upper (UMN) and 

lower motor neurons (LMN) undergo irreversible degeneration. Although the cause remains unknown 

and the disease is phenotypically diverse, certain functions and muscle groups are particularly 

vulnerable to early weakness, including the thenar eminence and foot dorsiflexion. It is also well 

established that disease onset and spread are typically asymmetric. Although this may reflect an 

additional source of vulnerability, the factors underlying this asymmetry are unknown. Furthermore, 

separate analysis of the asymmetry of UMN and LMN signs has not been performed, nor has this 

concept been applied to non-limb features of ALS such as bulbar involvement.  

 

The aim of this project was to identify and characterise novel sources of vulnerability in a large cohort 

of ALS subjects, with particular focus on asymmetry, clinical phenotype and the effect of limb 

dominance on both onset and spread. Multiple modalities were employed, including structured 

questioning, direct clinical examination and scoring, and advanced magnetic resonance imaging 

(MRI) analysis. As a secondary objective, the burden of clinical LMN and UMN involvement was 

also correlated with patient survival across the study period. 

 

Methods: 

161 consecutive subjects with ALS were recruited from two tertiary centres. The effect of limb 

dominance on the onset and spread of weakness was assessed using a standardised structured 

questionnaire, followed by non-parametric statistical analysis. The clinical severity of UMN and 

LMN signs in each limb was then determined using a published scoring system. These scores were 

used to quantify UMN and LMN dysfunction in dominant and non-dominant limbs. The differential 

involvement of dysphagia and dysarthria in bulbar ALS was also investigated in a subgroup (n = 39). 
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To further investigate the laterality of central nervous system (CNS) changes, a novel voxel-based 

morphometry (VBM) MRI protocol was used, previously utilised to define normal cortical gray 

matter (GM) asymmetries in healthy subjects. In the current study, it was applied to a cohort of right-

handed healthy controls (n = 17), and ALS subjects with first weakness in either a right-sided or left-

sided limb (n = 15 each). Between-group voxelwise comparisons of GM density were performed. 

Subsequently, within-group comparisons were performed to assess areas of GM asymmetry between 

the two hemispheres in both healthy controls and ALS subjects. 

 

Finally, the variables affecting survival of the original cohort (n = 161) were investigated, in particular 

the effects of UMN and LMN scores. Subjects were followed to a censorship date, after which 

univariate analysis was performed to screen potential predictor variables of survival to non-invasive 

ventilation (NIV) or death. Potentially useful predictor variables were then used in a Cox regression 

model.  

 

Results: 

Onset of weakness was more likely in the dominant upper limb (p = 0.02), but not in the dominant 

lower limb (p = 0.78). Furthermore, there was a significant effect of limb dominance on spread of 

weakness beyond the initial limb. For example, in subjects with initial weakness in a non-dominant 

limb, spread was more likely to be to the other ipsilateral limb (p = 0.008), suggesting an important 

role for central (UMN) factors in driving disease spread. 

 

Both UMN and LMN scores were maximal in the limb of onset, suggesting focality of onset. UMN 

signs spread to other limbs relatively early. A significant effect of dominance was also identified, 

specifically that the distribution of UMN signs in the upper limbs was affected by whether weakness 
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had first occurred on the dominant or non-dominant side (p = 0.03). There was no significant effect 

of limb dominance on the distribution of LMN signs. 

 

Voxelwise MRI analysis revealed multifocal clusters of reduced GM density in ALS subjects 

compared with controls, incorporating both motor and non-motor areas. Normal regions of cortical 

asymmetry in right-handed healthy controls were also identified, including leftward GM asymmetry 

(p ≤ 0.01) corresponding to the dominant hand representation area in the motor cortex. Right-handed 

subjects with ALS showed complete loss of GM asymmetry in this area, irrespective of whether 

weakness had first occurred in a dominant or non-dominant limb (p < 0.01). However, asymmetric 

atrophy of the left somatosensory cortex and temporal gyri was only observed in ALS subjects with 

right-sided (dominant) onset of weakness. 

 

Predictor variables associated with reduced survival included older age, bulbar and respiratory 

involvement, and shorter diagnostic delay (all p < 0.05). Whole-body LMN scores were strongly 

associated with survival to NIV or death, whereas UMN scores were poorly associated with 

survival. 

 

Conclusions: 

Both the clinical and imaging findings support limb dominance as a significant factor underlying both 

onset and spread of ALS, with central (UMN) processes playing an important role in disease 

asymmetry. This effect of limb dominance on the presentation of ALS may reflect underlying 

developmental CNS vulnerabilities, which become exposed by the disease process. However, 

ultimately LMN factors more closely correlate with survival. 
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3. Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative condition, of which the 

primary cause in the majority of cases remains unknown although both genetic and environmental 

factors likely contribute (1,2). There is typically degeneration of both upper motor neurons (UMN) 

in the brain and spinal cord, and lower motor neurons (LMN) supplying the peripheral skeletal 

musculature. Patients present with weakness and wasting of limb muscles, dysphagia (difficulty 

swallowing), dysarthria (slurring of speech) and ultimately respiratory failure secondary to 

diaphragmatic insufficiency (3). 

 

A key feature of ALS is significant variability in clinical presentation, especially in terms of the 

relative degree of UMN and LMN involvement, the disease duration and the effects of age and 

gender (1-5). However, despite this variability, certain characteristic and intriguing clinical patterns 

have been observed in ALS. For example, certain “clusters” have been described, including younger 

males presenting more often with upper limb onset and older females with bulbar onset (3). Clinical 

patterns have also been noted, including preferential weakness of the thenar eminence (the “split 

hand”) (6) and early loss of ankle dorsiflexion (7). It is important to identify and investigate any 

other patterns within the ALS population, since these provide key clues regarding the 

pathophysiology of the disease. In particular, the existence of these patterns suggests that certain 

components of the nervous system have properties which make them particularly vulnerable to 

degeneration in ALS.  

 

Turner et al (8) first hypothesised a link between limb dominance and self-reported onset of limb 

weakness in ALS. This effect has also been apparent in the datasets of some other previous studies 

(9,10). If so, this may represent another inherent vulnerability within the motor system which 

becomes exposed during the disease process. However, this finding has not been reported or 
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replicated in all large-scale population studies (11,12), and the effect (if any) of limb dominance on 

spread of weakness beyond the limb of onset has not been explored. Furthermore, it is not known 

whether any such effect of limb dominance is mediated through UMN and/or LMN processes (8). If 

limb dominance is shown to affect the presentation of ALS, this may provide important clues 

regarding why particular neuronal pathways are susceptible to the underlying disease process. 

 

The central aim of this current project has been to identify and characterise novel sources of 

vulnerability in ALS, using multiple modalities. Of particular interest has been the relationship 

between limb dominance and the asymmetry of the disease. The initial stage involved assessment of 

a large cohort of subjects from two tertiary referral centres (the Royal Brisbane and Women’s 

Hospital (RBWH) and the Prince of Wales Hospital in Sydney (POWH)). Conducting this study at 

these specialist tertiary sites allowed unique access to a large number of subjects with ALS, which 

has an incidence of 1.5 to 2.5 per 100,000 per year (13). To address the key question of whether 

limb dominance affects the onset and spread of limb weakness, a structured questionnaire was used, 

incorporating as variables the site(s) of onset and spread (upper limb, lower limb, bulbar) and side 

of the body, as well as standard limb dominance assessment tools. Next, to delineate separately the 

effect of limb dominance on objective UMN and LMN dysfunction, the published clinical scoring 

system of Ravits et al (9) was applied to each subject. 

 

Since UMN and cortical factors are thought to play an important role in patterns such as the “split 

hand” (6,14,15), it is also important to specifically investigate the relationship between asymmetry 

of cortical degeneration in ALS and hemispheric motor dominance. Since clinical examination 

assessment of UMN dysfunction is complex (16), and there remains no unifying marker of UMN 

loss in ALS (17), this current project has applied a novel VBM protocol, previously used in healthy 

subjects (18) to visualise cortical gray matter asymmetry in subjects with ALS. The aim of this 
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phase of the project was to determine whether certain cortical areas are more significantly affected 

in the dominant (compared with non-dominant) hemisphere in subjects with ALS, as compared with 

the normal cortical asymmetries present in healthy members of the population (18). 

 

In addition to the significant variability in clinical phenotype of ALS, there is also wide variation in 

survival. For example, subjects with more “pure” UMN and LMN syndromes typically have more 

prolonged survival (5), whereas others undergo a more fulminant rapid disease course (19). 

Variables such as age, gender and body region of onset are known to influence survival (4,5,19). 

Both UMN and LMN factors are also considerations in predicting survival (1,2), however the 

specific relative importance of each has not been previously investigated. Hence, the final phase of 

this project was to determine factors predicting survival of the original cohort, with particular 

interest in the UMN and LMN clinical scores. 
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4. Literature Review 

Although the primary cause of ALS is not known, several large-scale observational studies have 

provided insight into the onset and spread of both UMN and LMN dysfunction in the disease. 

Ravits and colleagues performed a key study of 100 subjects (9) in which they identified that both 

clinical UMN and LMN signs show focal onset in the same body region, and appear to spread from 

that site along anatomical axes. In Ravits’ study, a scoring system was used to retrospectively assess 

the severity of clinical UMN and LMN signs in each limb as documented in clinic notes, from 0 (no 

involvement) to 3 (significant and severe involvement). UMN signs include increased muscle tone, 

hyperreflexia, clonus and an upgoing plantar response and LMN signs include wasting and muscle 

weakness (3,9). Muscle fasciculations are variable in severity and generalisation (3), do not appear 

to correlate with the degree of muscle weakness (20), and may have a central as well as peripheral 

component (21).  

 

Focal onset and contiguous spread of motor neuron degeneration has been proposed to occur along 

somatotopic planes in the nervous system, with UMN pathology initially spreading through the 

ipsilateral motor cortex and LMN pathology crossing early to the contralateral anterior horn (9,22). 

The concept of contiguous spread of LMN pathology is also supported by histological spinal cord 

specimens showing radial degrees of motor neuron loss from the spinal segments of onset (23), and 

other large-scale phenotypic studies, including those of Körner et al (10) and Gargiulo-Monachelli 

et al (12), have supported the finding of initial onset in a single body region. Another common 

observation has been that spread of pathology favours a rostro-caudal rather than caudo-rostral 

direction (9,10,12). 

 

There remain, however, some discrepancies between the results of different studies of UMN and 

LMN signs in ALS. Although some authors have proposed that spread of UMN and LMN 
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pathology becomes independent after initial focal onset (9,24), Körner et al (10) observed at least 

some ongoing correspondence between UMN and LMN signs as the disease progresses. However, 

the same authors also described a greater propensity for UMN signs to be present early in the lower 

limbs, regardless of the site of onset of weakness (10). One potential explanation for this finding is 

that the UMN supplying the lower limbs are more susceptible to ALS pathology due to greater 

axonal length. Several studies have also reported subjects with spread of weakness between 

anatomically disparate regions (10,12), and an electrophysiological study found that 39% of 

examined subjects showed non-contiguous EMG changes suggestive of multifocal onset of LMN 

pathology (25). 

 

Another unknown aspect of ALS is whether the primary onset of disease occurs in the UMN and/or 

LMN neuronal populations. Both “dying back” (26) and “dying forward” (27) hypotheses have 

been proposed for the directionality of ALS spread between neurons, however neither theory has 

been definitively proven (2,9). Assessment of the onset of ALS is also complicated by the fact that 

the disease is likely to have a prolonged pre-clinical asymptomatic phase of uncertain duration, 

most likely masked by compensatory mechanisms (28). Known pre-symptomatic carriers of 

pathogenic familial SOD1 mutations have been shown to have abnormal cortical hyperexcitability 

3-8 months before symptom onset, as measured using transcranial magnetic stimulation (TMS) 

(29). Cortical hyperexcitability is also a known early feature of subjects with symptomatic ALS, 

and it is likely that calcium and glutamate-mediated excitotoxicity plays a role in this pathway (21). 

Loss of GABA-ergic inhibitory drive in the CNS (from interneurons) is also likely to contribute to 

cortical hyperexcitability in ALS (21,30). However, hyperexcitability, in terms of altered sodium 

and potassium conductances, has also been demonstrated in LMN axons in ALS subjects (21), and 

dysfunction of inhibitory interneurons within the spinal cord also may occur (30). 
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ALS also remains a highly heterogeneous disease, both at the patient level and the microscopic 

level. Some authors have even proposed that it is not a single disease entity, but rather a group of 

related disorders (2). Subjects present across a wide spectrum from those with UMN-predominant 

to LMN-predominant signs, although for inclusion in clinical studies they are usually required to 

fulfil the revised El Escorial criteria (31). ‘Flail-arm’ and ‘flail-leg’ variants have also been 

described, which initially present as LMN-predominant disorders of the proximal upper limbs or 

distal lower limbs respectively (32,33). Pure UMN and LMN disorders, termed primary lateral 

sclerosis (PLS) (34) and progressive muscular atrophy (PMA) (35) also exist, and subjects with 

these conditions are usually excluded from ALS studies. At the microscopic level, specimens from 

ALS subjects do not show a common pathological aggregate across the whole population, although 

TDP-43, SOD1, FUS and ubiquilin aggregates have all been described (2). 

 

Subjects with ALS also show marked variability in survival from onset of symptoms. Those with 

bulbar or respiratory onset of disease have poor mean survival, whereas those with predominant or 

pure UMN or LMN features tend to present with more slowly progressive disease (5). Analysis of a 

cohort from the Australian Motor Neurone Disease Registry (AMNDR), also showed that subjects 

with a “global” phenotype (mixed UMN and LMN signs in at least two body regions at the time of 

presentation) had reduced survival compared with those having only LMN or UMN signs at this 

time (36). Other factors which have been associated with increased survival include greater time to 

spread beyond the limb of onset (37) and contiguous and caudo-rostral spread of weakness (12). In 

order to describe ALS study cohorts, while accounting for this significant phenotypic variability, it 

is important to use an inclusive but easily applicable disease staging system. One such system has 

been proposed by Roche et al (38). This system describes involvement of general body regions 

(upper limb, lower limb, bulbar), with Stage 1 showing involvement of one region, Stage 2A being 

disease diagnosis, Stage 2B showing involvement of two regions, and Stage 3 three regions. 
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Factors such as age and gender have also been shown to affect the phenotype and progression of 

ALS. The overall incidence of ALS is higher in males (3,11), especially among the younger 

spectrum of subjects (4). Males are also more likely to present with limb-onset disease, whereas 

females predominate in bulbar-onset ALS (4), however the reason for this is not known. Although 

there is no definite independent effect of gender itself on survival (4), certain “clusters” have been 

observed in the clinical population which share common survival traits. For example, presentation 

with an isolated bulbar palsy most commonly occurs in older females (39) who tend to show 

prolonged survival.  

 

Despite the significant variability of ALS, several clinical patterns have been observed across a 

wide range of phenotypic groups. One such example is the “split hand” phenomenon, in which there 

is disproportionate wasting and weakness of the thenar/first dorsal interossous (FDI) complex, as 

compared with the hypothenar complex (6). There is evidence that this phenomenon has both 

central (UMN) and peripheral (LMN) components. Weber et al (14) reported that cortical motor 

inputs, as measured by TMS, were disproportionately reduced to the thenar complex as compared 

with the hypothenar complex in ALS subjects. Other studies have also described differences in the 

excitability of peripheral nerves supplying thenar and hypothenar muscles (40,41). However, recent 

evidence has suggested that cortical factors are more likely to be the primary driver of the “split 

hand” phenomenon (15). Disproportionate weakness of dorsiflexion over plantar-flexion has also 

been described (7). In contrast, there is typically preservation of extraocular and sphincter muscles 

throughout the clinical course of ALS (42). 

 

A novel perspective on these patterns has been proposed – that they represent developmental 

vulnerabilities within the nervous system. It has been proposed that certain networks and pathways 

within the nervous system are more vulnerable to the disease process in ALS, due to more recent 
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development in evolution and therefore greater complexity (7,43). For example, the thenar/FDI 

complex has developed a significant function in the human pincer grip and fine manipulative 

movements, and consequently its somatotopic representation has disproportionately increased (7). 

Similarly, dorsiflexion has gained increasing importance as humans developed upright and bipedal 

gait (7). Several authors have proposed that gaining this complexity of function has come at the 

expense of greater vulnerability to accumulation of toxic products or errors, as is likely to occur in 

ALS (7,43).  

 

Whilst most of these theories imply a cortical basis for this effect, there is also evidence that 

peripheral nerve and muscle populations are differently vulnerable in ALS. For example, it has been 

shown that fast-twitch fatigable motor units degenerate earlier in the disease course than slow units, 

including those controlling extraocular and sphincter muscles (42). It is also important to note that 

the neural input to extraocular and sphincter muscles is polysynaptic rather than direct 

(monosynaptic) as occurs with UMN and LMN to limb skeletal muscles (43), which may have 

implications for a “dying forward” or “dying back” hypothesis for disease spread. Although not 

studied to the same degree as the “split hand”, it has also been suggested that since complex 

vocalisation is another recently evolved human function, onset of dysarthria in ALS may also 

represent another developmental vulnerability which becomes exposed by the disease process (7). 

Although several studies have reported the sequence of muscular involvement in bulbar ALS 

(44,45), this has not been examined in the context or developmental theories of the disease, and 

comparisons have not been made between subjects with UMN-predominant, LMN-predominant and 

mixed bulbar clinical signs. Furthermore, since frontotemporal dementia (FTD) has now been 

established as closely linked with ALS (2,46), it has been suggested that human “Theory of Mind” 

represents yet another area of susceptibility in the nervous system which undergoes early 

dysfunction in ALS (7).   
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Unilateral limb dominance is another function which has undergone significant development during 

human evolution. Although other primates and other vertebrates do show some lateralisation of 

limb function, humans are unique in having a strong, consistent species-level bias towards right 

upper limb dominance (47). This increased specialisation of upper limb activities has also been 

facilitated by the concurrent development of bipedal gait (7). The concept of limb dominance has 

been studied in great detail, yet it remains incompletely understood. Several MRI studies have 

demonstrated asymmetry of gray matter (GM) and white matter (WM) in dominant (compared with 

non-dominant) motor areas using voxel-based morphometry (VBM) (48,49). Others have also 

found significant differences in corticomotor white matter (WM) pathways in the dominant and 

non-dominant hemispheres using diffusion-weighted MRI imaging (49-51). However, not all 

studies have demonstrated a significant relationship between limb dominance and asymmetry of 

cortical motor areas and pathways (52,53). It is also important to control for other factors which 

influence cortical asymmetry, including age (50) and gender (52). 

 

A study from the RBWH (18) applied a novel VBM asymmetry analysis protocol to structural MRI 

from healthy right-handed subjects, and was able to define an area of significantly greater GM 

density in the left motor cortex, corresponded to the thenar hand representation area localised by a 

previous population-based TMS study (54). Furthermore, the authors were able to demonstrate 

asymmetry of the cortical WM pathways projecting from this area, some of which correlated with 

handedness measures (18). As well as MRI imaging, other studies have demonstrated increased 

neuropil (55) and horizontal connecting fibres (56) in the dominant motor cortex, as well as 

asymmetric excitability of the dominant and non-dominant hemispheres (57). Despite these 

findings, the concept of dominance has only recently been mentioned in the ALS literature, and has 

not been thoroughly investigated. 
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The results of several recent studies have suggested that limb dominance is of importance in ALS. 

Ravits et al (9) and Körner et al (10) documented that onset of upper limb weakness was more 

likely to occur on the right side. However, this finding was not further explored, and other large-

scale phenotypic studies have either not reported side of weakness (12) or failed to replicate this 

tendency toward upper limb onset (11). Turner et al (8) published a study of 343 subjects who 

completed a short survey via an online support community, in which they were asked to nominate 

the side of onset of limb weakness and whether they were right or left-limb dominant. The authors 

found a significant association between handedness and side of upper limb onset, but no 

relationship between footedness and lower limb onset (8). Potential explanations for this finding 

provided in the paper included asymmetric physical stress of LMN supplying the dominant limb, or 

greater vulnerability of the dominant hemisphere corticomotor networks (8). However, the authors 

acknowledged that it remains unclear whether any effect of limb dominance on onset of weakness is 

mediated via UMN and/or LMN factors (8), and also spread of weakness beyond the initial limb 

was not analysed.  

 

Another shortcoming of this study was the inability to diagnostically screen participants or apply 

standardised limb dominance tools. Several validated dominance tools have been widely used in the 

literature, including the Edinburgh Handedness Inventory (58) which has recently been revised (59) 

and the Waterloo Footedness Questionnaire (60). Although physical measures such as grip strength 

and finger tapping may be more accurate than self-reported questionnaires (18), these are not 

applicable in an ALS population in which muscle weakness may bias the result. 

 

Overall, the current ALS literature supports an asymmetric, focal spreading disorder of both UMN 

and LMN, which is highly heterogeneous yet also presents with characteristic clinical patterns such 

as the “split hand”. There are theories that pre-existing developmental vulnerabilities within the 
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nervous system become exposed during the disease process, yet the effect of limb dominance in 

ALS has not been explored in detail.  
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5. Hypotheses 

The overall aim of this project has been to identify and characterise novel sources of vulnerability in 

a large cohort of ALS subjects, with a particular focus on asymmetry, clinical phenotype and the 

effect of limb dominance. Multiple modalities have been employed in addressing this question, 

including structured questioning, direct clinical examination and scoring, and advanced imaging 

analysis. The major hypotheses are as follows: 

 

1) That the side of onset of limb weakness in ALS is affected by limb dominance. 

 

2) That spread of weakness beyond the initial limb of onset is also affected by dominance. 

 

3) That any effect of limb dominance on onset and spread of weakness is also reflected in the 

asymmetry of carefully scored clinical UMN and/or LMN signs on limb examination. 

 

4) That any significant asymmetry of clinical UMN involvement may be studied in more detail using 

novel MRI imaging approaches, which have been previously used to define normal cortical 

asymmetries in healthy subjects. 

 

5) That the concept of vulnerability can be extended more broadly to other clinical aspects of ALS, 

including bulbar disease, and that the differentiation between clinical UMN and LMN 

involvement is also important in this case. Specifically, it is hypothesised that speech is more 

vulnerable to early dysfunction in ALS, compared with swallowing, due to greater evolutionary 

complexity. 
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6) That by following the original cohort of ALS subjects over time, phenotypic factors affecting 

survival can be assessed. In particular, an association is predicted between limb LMN scores and 

survival to death or non-invasive ventilation (NIV), potentially due to the association with 

diaphragmatic weakness. 
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6. Asymmetry in Onset and Spread of Limb Motor Involvement in ALS 

 

6.1. Preface  

This chapter incorporates the text of two peer-reviewed publications in their entirety:  

(1) Devine MS, Woodhouse H, McCombe PA, Henderson RD. The relationship between limb 

dominance, disease lateralization and spread of weakness in amyotrophic lateral sclerosis 

(ALS). Amyotroph Lateral Scler Frontotemporal Degener 2013;14:150-1. (Section 6.2). (61). 

 

(2) Devine MS, Kiernan MC, Heggie S, McCombe PA, Henderson RD. Study of motor asymmetry 

in ALS indicates an effect of limb dominance on onset and spread of weakness, and an 

important role for upper motor neurons. Amyotroph Lateral Scler Frontotemporal Degener 

2014;15:481-7. (Section 6.3). (62). 

The first paper was a pilot questionnaire-based study of 95 subjects, which identified some initial 

trends (Chapter 6.2). These trends were further investigated and expanded in a larger study of 158 

screened subjects, incorporating both questionnaire-based assessment and direct clinical 

examination and scoring (Chapter 6.3). As detailed subsequently, some trends only became 

statistically significant upon analysis of the larger second cohort of subjects. For example, the 

relationship between handedness and upper limb onset, as well as the effect of dominance on 

disease spread. 

 

As first author of both publications, the author directly contributed to the conception and design of 

the project, data collection, interpretation and statistical analysis of data, and drafting and revising 

both publications. Clinical assessment of subjects’ UMN and LMN scores, as well as professional 

editorial guidance, were contributed to by neurologists A/Prof Henderson and Prof McCombe from 

RBWH in Brisbane, and Prof Kiernan from POWH in Sydney. 



31 
 
6.2. Preliminary Assessment of Limb Dominance and ALS Symptoms 

Amyotrophic lateral sclerosis (ALS) is a heterogeneous disorder, and the mechanisms governing its 

site of onset and spread of weakness remain unknown. Turner et al. (8) proposed that onset of ALS 

in an upper limb is likely to be concordant with handedness. This finding has implications for 

theories regarding ALS pathogenesis. It is important to further explore this, and assess whether limb 

dominance affects spread of disease.  

 

A questionnaire regarding the initial site (and side) of disease onset and the location of subsequent 

weakness, was completed by 95 consecutive patients with ALS. The questionnaire included the 

Edinburgh Handedness Inventory (EHI) (59), with an added question regarding footedness. 

Statistical analysis was performed using SPSS (V.15, SPSS Inc).  

 

The mean age of the patients was 61 years (SD 11 years) and 58% were males. All patients had 

clinically probable or definite ALS according to Airlie House criteria. The majority (91%) had no 

known family history of ALS. Ninety percent of patients were right-handed, and the remainder 

either left- or mixed-handed. The right lower limb (LL) was dominant in 88% of cases, with 12% 

being left- or mixed-footed.  

 

If the side of onset of upper limb (UL) ALS is unrelated to handedness, the following null 

hypothesis should hold true: a right-handed individual should have a 50% probability of disease 

occurring in either the right or left UL. A binomial test was performed using data from all right-

handed patients who reported unilateral UL onset (n = 29). Of these, 17 (59%) had onset in the 

RUL, and 12 (41%) in the LUL; p = 0.46. Of the patients who were non-right-handed (i.e. left-
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handed or ambidextrous), UL onset was reported as bilateral or poorly lateralized for three of five 

subjects, whereas this was the case for only seven of 52 right-handed subjects.  

 

The present study confirmed the finding of Turner et al. (8) that there was no concordance between 

footedness and side of ALS onset in the LL. In 13 (46%) of right-footed patients with LL onset, the 

onset was in the RLL, compared with the LLL in 15 cases (54%); p = 0.85.  

 

We also studied the spread of weakness. Of the patients with unilateral UL onset whose weakness 

spread to involve another limb (n = 22), 10 subjects (45%) showed spread to the contralateral UL 

and 10 (45%) showed spread to the ipsilateral LL. A Fisher’s exact test showed that the spread of 

weakness in right-handers was not significantly different for onset on the right (dominant) or left 

(non-dominant) side;  p = 1.0.  

 

The pattern of spread was different for the LL, where the most frequent secondary site for patients 

with unilateral disease onset (n = 25) was the contralateral LL (n = 18, 72%), with the ipsilateral UL 

less likely (n = 5, 20%). This predilection for LL onset ALS to spread to the contralateral LL has 

been previously recognized (37). The progression of LL onset ALS in right-footed patients was not 

significantly affected by whether first onset of symptoms was on the right or left side (Fisher’s exact 

test; p = 0.60). 

  

Irrespective of limb dominance, it was found that spread of weakness differed between UL- and LL 

onset disease. Spread from a UL site of onset was more evenly balanced between the contralateral 

UL and the ipsilateral LL, whereas spread from an LL site of onset was strongly to the contralateral 
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LL (χ2 contingency test; χ 2 (1, n = 43) = 3.76; p = 0.052). Our finding was consistent with the 

notion that ALS spread favours a ‘rostro-caudal’ rather than ‘caudo-rostral’ pattern (12). 

  

There was a novel suggestion that right-dominant individuals with ALS starting in a non-dominant 

limb (i.e. left UL or LL) were more likely to show ipsilateral spread (Table 1, Appendix 2). This 

was non-significant, χ2 (1, n =38) = 0.208; p = 0.65, but based on small patient numbers, and it 

would be useful to explore this in a larger study.  

 

In summary, we found no significant effect of handedness on the onset or subsequent pattern of 

disease spread. We confirmed the results of Turner et al. (8), showing no concordance between 

footedness and side of LL ALS onset. We found that secondary spread of UL-onset ALS was 

evenly balanced between the contralateral UL and ipsilateral LL, but this was not the case with LL- 

onset ALS which strongly showed spread to the contralateral LL. Further investigation could 

include differentiation of upper and lower motor neuron features of ALS, which have focal onset 

and independent spread (22).  
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6.3. Laterality of ALS Symptoms and Clinical Signs in a Larger Cohort 

Abstract 

In amyotrophic lateral sclerosis (ALS), onset and spread of upper motor neuron (UMN) and lower 

motor neuron (LMN) dysfunction is typically asymmetric. Our aim was to investigate the 

relationship between limb dominance and the onset and spread of clinical UMN and LMN 

dysfunction in ALS. We studied 138 ALS subjects with unilateral and concordant limb dominance, 

from two tertiary centres. A questionnaire was used to determine the pattern of disease onset and 

spread. The clinical severity of UMN and LMN signs in each limb was quantified using a validated 

scoring system. Results showed that onset of weakness was more likely to occur in the dominant 

upper limb (p = 0.02). In subjects with initial weakness in a non-dominant limb, spread of weakness 

was more likely to be to the other limb on that side (p = 0.008). The relative distribution of upper 

limb UMN signs was affected by whether weakness first occurred on the dominant or non-dominant 

side (p = 0.03). These findings support limb dominance as a significant factor underlying onset and 

spread of ALS, with UMN processes playing an important role. The effect of limb dominance on 

the presentation of ALS may reflect underlying neuronal vulnerabilities, which become exposed by 

the disease. 

 

Introduction 

Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of upper motor 

neurons (UMN) and lower motor neurons (LMN) (1,2). Previous studies have demonstrated that 

both UMN and LMN degeneration typically show focal onset and subsequent spread along 

anatomical axes (9,10,12). However, there is marked phenotypic variability, including the site of 

onset and the degree of UMN and LMN involvement. 
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A further unexplained feature of ALS is the asymmetric onset of weakness. There is preliminary 

evidence suggesting that limb dominance may influence the side of upper limb onset (8-10); 

however, other large-scale phenotypic studies have reported only slight differences (11) or did not 

specify the side of the body (12). It is also unknown whether such an effect would be mediated 

though UMN or LMN processes (8). Furthermore, the factors underlying the direction of disease 

spread remain poorly understood. Carefully studying the asymmetry of ALS may improve 

understanding of why certain components of the nervous system are particularly vulnerable to the 

degenerative process. 

 

The present study investigated the relationship between limb dominance and the onset and spread of 

limb weakness in 138 subjects with ALS. This study prospectively expanded upon the original 

cohort from our observational pilot study (61), incorporating both questionnaire-based assessment 

and objective scoring of clinical UMN and LMN signs. Our hypothesis was that the asymmetry of 

ALS onset and spread would be associated with limb dominance. 

 

Materials and Methods 

Conduct of this study was approved by the Royal Brisbane and Women’s Hospital Ethics 

Committee and the South Eastern Sydney Local Health District Ethics Committee. All subjects 

provided written informed consent. 

 

We screened 158 consecutive subjects from outpatient ALS clinics at the Royal Brisbane and 

Women’s Hospital and Prince of Wales Hospital, Sydney. One hundred and thirty-eight of these 

subjects were included in the final cohort, based on a history of unilateral dominance for motor 

tasks (prior to onset of ALS), which was concordant for the upper limb (UL) and lower limb (LL). 
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Twenty subjects with discordant UL and LL dominance, or mixed dominance in either region, were 

excluded. Limb dominance was determined using a revised version (59) of the Edinburgh 

Handedness Inventory (58) with an added question regarding footedness for kicking a ball (a 

commonly lateralized LL activity).  

 

All subjects had diagnoses of clinically probable (or probable laboratory-supported) or definite 

ALS, according to the revised El Escorial criteria (31). Some subjects met published definitions of 

flail arm (32) and flail leg ALS (33) at the time of assessment, but fulfilled El Escorial criteria at a 

subsequent visit. Subjects presented across the spectrum from UMN-predominant to LMN-

predominant ALS; however, those with primary lateral sclerosis or progressive muscular atrophy 

were specifically excluded. 

 

Onset and spread of weakness 

Each subject was asked to complete a standard questionnaire, which included demographic 

information (age, gender, family history). Subjects were asked to specify the site and side of onset 

of weakness, by ticking a single box in a table. The available options to tick in the table were: the 

UL (right or left), LL (right or left) or bulbar region. There was also the option to tick a box 

indicating that onset of weakness (in the UL or LL) was difficult to lateralize. Where applicable, 

subjects were also able to specify the order of up to two sites of subsequent disease spread, again by 

ticking a single box in each of two additional tables. In each case, subjects’ written responses 

(regarding the sequence of weakness) were confirmed by careful review of the history documented 

by the treating neurologist. If any discrepancy was found, the relevant subject was questioned to 

clarify the exact sequence of weakness, without using any potentially leading or biased phrases. 
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UMN and LMN scores 

Clinical UMN and LMN involvement were quantified using the scoring system of Ravits et al. (9), 

which assigned a separate UMN and LMN score from 0 (no involvement) to 3 (significant and 

severe involvement) to each limb. This scoring system was applied by an experienced ALS 

clinician (MK, PM, or RH) within 12 months of diagnosis of ALS or the time of first limb 

involvement. For subjects who presented outside this window, chart review was conducted to apply 

the scoring system to an earlier visit, provided a thorough and consistent clinical examination was 

documented by one of the ALS clinicians. Clinical scoring of UMN and LMN signs was able to be 

performed in 130 of the 138 subjects (94%). 

 

Statistics 

Statistical analysis was performed using SPSS (Version 20, SPSS Inc.). To determine the 

relationship between limb dominance and the onset and spread of weakness, non-parametric tests of 

the binomial and χ2 families were used. For all calculations involving disease spread and clinical 

UMN and LMN scores, we defined the first limb affected by weakness (either as the initial site of 

onset or immediately after bulbar onset) as the Index Limb. All other limbs were termed Non-Index 

Limbs. For simplicity in determining the effect of dominance on disease onset and spread, the right- 

and left dominant subjects were combined. 

 

To assess the cohort as a whole, subjects were divided into two groups according to which was the 

Index Limb (UL or LL), irrespective of dominance. Following the approach of Ravits et al. (9), we 

calculated Total UMN and LMN scores for each limb. In order to quantify the relative contribution 

of clinical UMN (compared with LMN) dysfunction, we also calculated UMN% and LMN% scores 

for each limb of each individual subject, using the following formulae: 
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UMN% Score = UMN Score / (UMN Score + LMN Score) x 100 

LMN% Score = LMN Score / (LMN Score + UMN Score) x 100 

 

Individual scores were then used to calculate mean UMN% and LMN% scores (± SE) for the Index 

Limb and each Non-Index Limb. These mean scores were then compared using ANOVA. 

 

To determine whether limb dominance influenced the distribution of UMN and/or LMN 

dysfunction, the cohort was further subdivided into four groups, according to the dominance of the 

Index Limb: dominant UL, non-dominant UL, dominant LL and non-dominant LL. In each 

individual subject, the asymmetry of UMN and LMN signs was quantified using ‘proportional 

scores’. A pair of proportional scores defined a comparison between two limbs (the Index Limb and 

a Non-Index Limb), with both scores adding to give 100%. The following formulae were used: 

 

Proportional Score for Index Limb = (Score in Index Limb/Combined Score for Both Limbs) x 100. 

Proportional Score for Non-Index Limb = (Score in Non-Index Limb/Combined Score for Both 

Limbs) x 100 

 

Proportional scores were calculated separately for UMN and LMN signs. Individual proportional 

scores were used to calculate mean scores, which were compared using Student’s t -tests. 
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Results 

Cohort characteristics 

Of the cohort of 138 subjects, 52% were males and 93% had no known family history of ALS. The 

mean (± SD) age at presentation was 61 (± 11) years (range 29 – 85 years). Disease onset was in the 

UL in 43 subjects (31%), LL in 57 subjects (41%) and bulbar region in 38 subjects (28%). One 

hundred and thirty-four subjects (97%) were right-dominant for both UL and LL, and four subjects 

(3%) were concordantly left-dominant. 

 

Defining the Index Limb 

Across the entire cohort, 115 subjects (83%) were able to lateralize initial weakness to a single 

Index Limb. These subjects either had initial onset in that limb (37 in an UL, 51 in a LL), or had 

bulbar-onset disease that then spread to one limb (20 to an UL, seven to a LL). The remaining 23 

subjects either had symptoms confined to the bulbar region (n = 9) or were unable to lateralize the 

onset of limb weakness (n = 14). The distribution of all 138 subjects, according to site of onset and 

subsequent spread of weakness, is shown in Figure 1 (Appendix 3). 

 

Effect of limb dominance on initial onset of weakness 

In the 37 subjects with initial weakness in one UL, onset was more likely to occur in the dominant 

UL (n = 26, 70%) than in the non-dominant UL (n = 11, 30%) (p = 0.02 using a binomial test). This 

laterality of UL onset was not significantly affected by gender (χ2 (1, n = 37) = 0.11; p = 0.74). In 

the 51 subjects with unilateral LL onset of weakness, there was no tendency toward onset in the 

dominant LL (n = 24, 47%) over the non-dominant LL (n = 27, 53%) (p = 0.78). 
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Effect of limb dominance on spread of weakness 

Of the 115 subjects with a unilateral Index Limb (either as the initial limb of onset or the first limb 

after bulbar onset), 99 reported subsequent spread to a second discrete limb. When considering 

these subjects, we found that spread of weakness was influenced by whether the Index Limb was on 

the dominant or non-dominant side. As shown in Figure 2 (Appendix 3), when the Index Limb was 

dominant, weakness most commonly spread to the contralateral limb. When the Index Limb was on 

the non-dominant side, weakness was more likely to spread ipsilaterally to the other limb on that 

side; (χ2 (1, n = 97) = 7.10; p = 0.008). There was no confounding effect of gender on these patterns 

of spread; p = 0.49 using logistic regression. 

 

Distribution of limb UMN and LMN scores 

One hundred and eight subjects reported weakness in a unilateral Index Limb, and also underwent 

clinical scoring of UMN and LMN signs. These subjects were initially divided into two groups 

according to the Index Limb, irrespective of whether this was on the dominant or non-dominant side 

(55 in an UL, 53 in a LL). As shown in Figure 3 (Appendix 3), when individual subject scores were 

summated together, the Total UMN and Total LMN scores were greatest in the Index Limb, 

suggesting initial focal onset of both UMN and LMN dysfunction. 

 

In the 55 subjects with an Index UL (for which the Total UMN score was 84), the next highest Total 

UMN score (80) was in the ipsilateral LL. In the 53 subjects with an Index LL (for which the total 

UMN score was 105), the next highest Total UMN score (93) was in the contralateral LL and both 

sides of the body demonstrated a rostro-caudal gradient in Total UMN scores. For all subjects, the 

Total LMN score was always second highest in the limb contralateral to the Index Limb, supporting 

radial spread. 
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To quantify the relative contribution of UMN and LMN to the clinical deficit in each limb, we next 

calculated mean UMN% and LMN% scores (± SE) as outlined in the Methods. A key finding from 

our cohort was the presence of greater UMN (relative to LMN) dysfunction in limbs more 

anatomically distant from the Index Limb. Specifically, as shown in Figure 4 (Appendix 3), mean 

UMN% scores were consistently lowest in the Index Limb and highest in the contralateral limb 

most distant from the Index Limb. In our cohort, the clinical evidence for UMN dysfunction in 

these Non-Index limbs was most commonly hyperreflexia. 

 

Effect of limb dominance on UMN and LMN scores 

To delineate the effect of limb dominance on the distribution of clinical UMN and LMN signs, the 

subjects shown in Figure 3 were further subdivided into four groups according to the dominance of 

the Index Limb (35 subjects in the dominant UL, 20 in the non-dominant UL, 25 in the dominant 

LL and 28 in the non-dominant LL). Using mean proportional scores, we found that the relative 

distribution of UMN signs in the UL was affected by limb dominance (Figure 5, Appendix 3). In 

subjects with a dominant Index UL, the proportional UMN scores were well balanced between the 

two upper limbs (51%:49%). In contrast, subjects with a non-dominant Index UL showed more 

asymmetric proportional UMN scores in the upper limb region (59%:41%) (p = 0.03). Practically, 

this suggested that subjects with onset of weakness in the non-dominant UL exhibited more 

pronounced and asymmetric UMN deficits involving that limb. 

 

There were no significant effects of limb dominance on the relative distribution of UMN scores in 

subjects with an Index LL. Limb dominance did not significantly affect the distribution of LMN 

scores following onset of weakness in an Index UL or Index LL. 
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Discussion 

This study investigated the relationship between limb dominance and the onset and spread of motor 

dysfunction in ALS, in a cohort of 138 well characterized subjects. Using a validated clinical 

scoring system and limb dominance tools, we established that limb dominance influences the onset 

and spread of weakness in ALS. We also found that the distribution of UMN signs was affected by 

limb dominance, and showed greater evidence of spread between body regions compared to LMN 

signs. To the authors’ knowledge, this is the first study linking the objective clinical motor neuron 

phenotype with limb dominance, and expands on the work of Ravits et al (9,22) and Turner et al. 

(8). 

 

Rather than onset being entirely random, the present study suggests that it is more likely for 

weakness to begin in the dominant UL, and also supports the previous finding (9,22) that UMN and 

LMN dysfunction appear maximal in the limb of onset. Preferential onset of weakness in the 

dominant UL could reflect greater use-dependent stress of LMNs supplying that limb (2). Another 

possibility is that the cortical networks associated with the dominant UL are particularly vulnerable 

to disease triggers in ALS. 

 

Intriguingly, limb dominance also appears to influence the spread of weakness. This novel finding 

was supported by objective clinical data, showing that limb dominance influenced the asymmetry of 

clinical UMN signs in the upper limbs. In contrast, the distribution of LMN signs was not 

significantly affected by the location and dominance of the Index Limb, with a predictable 

preference for contralateral spread. Such a finding would be consistent with histological evidence 

suggesting a radial pattern of LMN degeneration in the spinal cord (23). Furthermore, clinical 

evidence from the current study demonstrated a higher frequency of UMN involvement in 

anatomically distant limbs. This suggests that spread of dysfunction at the UMN level occurs 
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relatively early (compared to LMN), although another potential explanation for this finding is the 

greater physical distance across which LMN pathology must spread, compared with UMN in the 

motor cortex (22). Overall, the findings from this study are clinically useful in predicting patterns of 

spread of weakness beyond the Index Limb, and suggest that the UMN plays an important role in 

this process. 

 

It has been proposed that certain cortical networks are more vulnerable to early degeneration in 

ALS, due to more recent development in evolution and a disproportionate increase in complexity 

(43). A well-studied example is the ‘split hand’ (6). We hypothesize that the cortical networks 

involved in limb dominance may be similarly vulnerable in ALS. Although primates and other 

vertebrates show some lateralization of limb motor function, humans are unique in having a strong, 

consistent species-level bias towards right UL dominance (47). MRI studies have also shown 

significant leftward asymmetry in cortical hand representation and projecting white matter 

pathways in right-handers (18), and disproportionate evolutionary expansion of these networks 

could make them more vulnerable to stressors in ALS. In contrast, we found no effect of footedness 

on the onset of LL weakness. This may reflect reduced asymmetry of cortical control of the LL 

compared with the UL (66), or may imply lesser overall complexity of cortical representation of the 

lower extremities, irrespective of hemispheric dominance. However, an alternative explanation for 

this finding is that the LMNs supplying the LL are subjected to more symmetrical physical stressors 

during daily activities (such as ambulation).  

 

If the effect of limb dominance on spread of weakness is mediated though cortical (UMN) factors, 

the direction of spread may reflect underlying differences between the two hemispheres and their 

communication. Corpus callosal involvement is an early feature of ALS (67), and inherent 

directionality within this structure (68) may explain why ALS onset in a non-dominant limb is more 
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likely to spread ipsilaterally. Alternatively, the connections between motor areas within the non-

dominant hemisphere may be more vulnerable to contiguous spread of ALS pathology. Pre-existing 

differences in excitability of the dominant and non-dominant hemispheres (57) may also be 

important in ALS, since neuronal hyperexcitability occurs early in the cortical compartment during 

the disease (21). Since the formation and accumulation of aberrant gene products has been 

implicated in the pathogenesis of ALS (2), it is conceivable that the disproportionate complexity of 

the dominant UL representation area makes it more vulnerable to the effects of abnormal gene 

expression, although this requires further study. 

 

In terms of limitations of the current study, although care was taken with administration of the 

questionnaire, collection of subjective information is limited by recall bias. For example, subjects 

may have been more aware of early weakness in a dominant limb. From a clinical perspective, it is 

accepted that both UMNs and LMNs undergo subclinical degeneration of uncertain duration prior 

to clinical signs being apparent (21,28), and that EMG would have been helpful for LMN 

assessment. Assessment of UMN dysfunction via clinical examination may also be complicated by 

concurrent changes in interneurons (30) and other descending pathways (16). There are also 

limitations in grouping right- and left-dominant subjects, since it is known that left-handers do not 

exhibit the same degree of population-wide bias toward dominance of the contralateral hemisphere 

(for both motor and language functions) as that found in right-handers (69). Therefore, we predict 

that the effect of limb dominance in non-right-dominant ALS subjects may be more complex. 

Although subjects with initial bulbar onset of disease were not analysed separately in this study, the 

authors intend to perform a further prospective study of bulbar-onset subjects, expanding upon our 

recent pilot series (61). 
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To further investigate the issues arising from the present study, neuroimaging, electrophysiology 

and assessment of asymmetric frontotemporal deficits will be useful.  
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7. Applying Vulnerability Concepts to Non-Limb Presentations of ALS 

 

7.1. Preface  

This chapter incorporates the text of one peer-reviewed publication in its entirety:  

 

(1) Devine MS, Farrell A, Woodhouse H, McCombe PA, Henderson RD. A developmental 

perspective on bulbar involvement in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 

Frontotemporal Degener 2013;14:638-9. (63). 

 

The two papers in Chapter 6 established a link between limb dominance and asymmetry of both the 

onset and spread of ALS in the limbs (61,62).  These findings were intriguing, especially in the 

context of the broader theory of selective developmental vulnerability in ALS (7). Although these 

studies also included subjects with bulbar-onset ALS with subsequent spread to a limb, they did not 

separately analyse the bulbar subgroup in more detail. The aim of the paper in Chapter 7 was to 

explore the bulbar ALS group in more detail, in particular the differential involvement of speech 

and swallow dysfunction in the context of UMN and LMN degeneration. 

 

As first author of this publication, the author directly contributed to the conception and design of 

the project, collection, interpretation and statistical analysis of data, and drafting and revising the 

paper. Clinical assessment of subjects as well as professional editorial guidance, were contributed to 

by neurologists A/Prof Henderson and Prof McCombe from RBWH. Dr Anna Farrell, speech 

pathologist at RBWH, also assisted with data collection. 
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7.2. Developmental Perspectives on Bulbar ALS 

There has been recent interest in the developmental and evolutionary aspects of amyotrophic lateral 

sclerosis (ALS). The overall theme has been that certain cortical circuits are vulnerable to early 

degeneration because they have developed more recently in human evolution (43). Examples of 

vulnerable circuits include preferential weakness of the thenar/FDI complex important in the pincer 

grip (‘split hand’), and the ankle dorsiflexors that assist in upright gait. Examples of less vulnerable 

functions are the extraocular and sphincter muscles. Although Eisen (43) identified speech as 

another potentially vulnerable function in ALS, due to complexity of cortical representation, this 

has not been quantified in a clinical cohort. 

 

To evaluate whether speech function is vulnerable to early involvement in ALS, the differential 

onset of dysarthria and dysphagia was investigated in a small series of consecutive patients (n = 39) 

from the Royal Brisbane and Women’s Hospital ALS clinic. All patients met El Escorial criteria for 

probable or definite ALS, and all had definite bulbar involvement. Fifty-nine percent were males 

and mean age was 61 years (SD 11 years). In 56%, disease onset was in the bulbar region, and the 

remainder had limb onset with bulbar spread. We included six recently deceased patients with 

clearly documented and verified history and examination. Patients were asked the date (in months) 

when they first noticed speech change (slurring, or altered quality), and swallow change (coughing, 

choking, or dietary change). Verification was also sought from family or accompanying members.  

 

We inquired about motor speech function, rather than language generation and semantics. Patients 

were divided into three groups according to clinical examination of the bulbar region: as upper 

motor neuron (UMN)-predominant, lower motor neuron (LMN)-predominant, or having balanced 

bulbar UMN and LMN signs. This was similar to a classification published by our group (70) but 

applied specifically to the bulbar region, and based on examination of UMN signs (brisk jaw jerk, 
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tongue spasticity, spastic dysarthria) and LMN signs (tongue wasting, fasciculations, flaccid 

dysarthria) at the last clinical encounter. Statistical analysis was performed using SPSS (Version 20, 

SPSS Inc.). 

 

The reported onset of dysarthria occurred before dysphagia in 29 patients (74%), concurrent with 

dysphagia in six patients (16%), and after dysphagia in four patients (10%). Of the 29 patients 

reporting dysarthria first, the mean delay until reported onset of dysphagia was 8.3 months (SD 6.1 

months; range 1 – 24 months), with no significant differences according to gender (p = 0.864), age 

(p= 0.874), or whether the initial onset site was bulbar or limb (p =  0.491). 

 

When considering patients with onset of dysarthria before dysphagia (n = 29), the mean delay 

between the two symptoms appeared to be affected by clinical phenotype. The mean dysarthria-

dysphagia delay in the UMN-predominant patients (n = 11) was 11.8 months (SD 7.8 months), 

whereas for patients with both UMN and LMN signs (n = 16) it was 5.9 months (SD 3.7 months); p 

= 0.035 corrected. However, two patients with LMN-predominant bulbar signs also described 

dysarthria occurring before dysphagia (by six and 10 months). All patients who reported onset of 

dysphagia before dysarthria (n = 4) had evidence of balanced bulbar UMN and LMN signs. 

 

Our findings suggest a tendency towards onset of dysarthria occurring before dysphagia in patients 

with ALS. This observation occurred across all clinical phenotypes, but most prominently and 

consistently in patients with UMN-predominant bulbar signs. In general, patients with UMN-

predominant disease have slower progression than those with equal UMN and LMN signs (5). The 

occurrence of dysarthria preceding dysphagia also concurs with previous reports, including a 

population-based study by Traynor et al. (71). 
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However, we also found evidence of wide variability in the dysarthria-dysphagia delay between 

individuals of all phenotypes. The limitations of this study include small patient numbers, potential 

bias towards personal recall of dysarthria (due to easier recognition by patients and families), and 

the lack of formal cognitive assessment. However, our findings appear to support Eisen’s theory 

that the complex neocortical networks involved in the mechanics of human speech are vulnerable to 

earlier degeneration in ALS compared with other functions (43). This is compared with deglutition, 

which has a greater component of subconscious brainstem-mediated reflex activity, and which is 

shared with other animals. However, it is important to consider that peripheral factors could also 

play a role in selective vulnerability of certain functions, including altered nerve excitability, which 

may contribute to the ‘split hand’ (6).  
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8. Imaging Cortical Asymmetry in ALS 

 

8.1. Preface  

This chapter incorporates the text of one peer-reviewed publication in its entirety:  

 

(1) Devine MS, Pannek K, Coulthard A, McCombe PA, Rose SE, Henderson RD. Exposing 

asymmetric gray matter vulnerability in amyotrophic lateral sclerosis. Neuroimage Clin 

2015;7:782-7. (64) 

 

The findings presented in Chapter 6 revealed a link between limb dominance and asymmetry of 

limb onset of ALS, as well as the spread of the disease to other limbs. In particular, the relatively 

early spread of UMN signs beyond the limb of onset (compared with LMN signs), as well as the 

patterns of ipsilateral spread, imply an important role for UMN factors in driving this process. 

Imaging remains a valuable tool in assessing CNS abnormalities in ALS, particularly given the 

complexity of clinical examination (16) and lack of an alternative unifying central biomarker (17). 

The peer-reviewed study presented in Chapter 8 further investigated the asymmetry of cortical gray 

matter in both healthy controls and ALS subjects, including analysis of the effect of limb 

dominance. The 30 ALS subjects included some from the clinically examined cohort, as well as 

others who only participated in the imaging study. 

 

As first author of this publication, the author directly contributed to the conception and design of 

the project, collection, interpretation and statistical analysis of data, and drafting and revising the 

paper. The author personally performed the processing of the raw MRI data and statistical analysis.  

Original design of the MRI protocol and assistance with advanced imaging analysis were also 

contributed by Prof Stephen Rose and Dr Kerstin Pannek. 
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8.2. Assessment of Gray Matter Asymmetry in ALS using Novel MRI Techniques 

Abstract 

Limb weakness in amyotrophic lateral sclerosis (ALS) is typically asymmetric. Previous studies 

have identified an effect of limb dominance on onset and spread of weakness, however relative 

atrophy of dominant and nondominant brain regions has not been investigated. Our objective was to 

use voxel-based morphometry (VBM) to explore gray matter (GM) asymmetry in ALS, in the 

context of limb dominance. 30 ALS subjects were matched with 17 healthy controls. All subjects 

were right-handed. Each underwent a structural MRI sequence, from which GM segmentations 

were generated. Patterns of GM atrophy were assessed in ALS subjects with first weakness in a 

right-sided limb (n = 15) or left-sided limb (n = 15). Within each group, a voxelwise comparison 

was also performed between native and mirror GM images, to identify regions of hemispheric GM 

asymmetry.  

 

Subjects with ALS showed disproportionate atrophy of the dominant (left) motor cortex hand area, 

irrespective of the side of first limb weakness (p < 0.01). Asymmetric atrophy of the left 

somatosensory cortex and temporal gyri was only observed in ALS subjects with right-sided onset 

of limb weakness. Our VBM protocol, contrasting native and mirror images, was able to more 

sensitively detect asymmetric GM pathology in a small cohort, compared with standard methods. 

These findings indicate particular vulnerability of dominant upper limb representation in ALS, 

supporting previous clinical studies, and with implications for cortical organisation and selective 

vulnerability. 

 

  



52 
 
Introduction 

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative condition affecting upper 

(UMN) and lower motor neurons (LMN) (1,2). Understanding the pathophysiology of ALS is 

challenging, due to significant variability of clinical phenotype, patient characteristics and disease 

progression (2,5).  

 

Despite this variability, common patterns have been observed across a wide range of ALS subjects. 

A well-studied example is the “split hand” phenomenon, in which there is disproportionate 

weakness of the thenar/first dorsal interosseous muscle group (6,7). Early weakness of ankle 

dorsiflexors (7) and speech (63) has also been observed. These findings have prompted suggestions 

that functions which humans have evolved more recently, such as the pincer grip and upright 

stance, are more susceptible to ALS (7,43). 

 

Onset of weakness in ALS is also typically asymmetric. However, the factors determining the side 

of onset and direction of spread remain unclear. Since humans have evolved strong population-wide 

upper limb dominance (47), it is important to explore this as another potential source of 

vulnerability in ALS. It has been shown that the dominant upper limb, but not lower limb, is more 

susceptible to onset of weakness (8). We have also described that spread of weakness and UMN 

signs are affected by dominance, suggesting importance of central factors (62). 

 

The aim of this study was to investigate gray matter (GM) asymmetry in ALS, and thus identify 

regions asymmetrically affected by the disease. Applying voxel-based morphometry (VBM) 

analysis of structural MRI, we performed direct comparisons between ALS subjects and controls, as 

well as using a novel asymmetry protocol to assess interhemispheric differences (18). Our 
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hypothesis was that this asymmetry protocol would detect patterns of disproportionate atrophy in 

ALS, which would be affected by whether weakness first occurred in a dominant or non-dominant 

limb. 

 

Materials and Methods 

Subjects and recruitment 

Ethical approval was obtained from the Royal Brisbane and Women’s Hospital (RBWH) Human 

Research Ethics Committee. All subjects provided written informed consent, and all research was 

conducted in accordance with the Declaration of Helsinki. 

 

Thirty right-handed subjects were recruited from ALS outpatient clinics at the RBWH (2008–2013). 

All had diagnoses of clinically probable or definite ALS, according to revised El Escorial criteria 

(31). We chose to study only right-handed subjects due to their predominance in the population 

(72), as well as greater uniformity of motor and language lateralisation (69). Handedness was 

confirmed using the Edinburgh Handedness Inventory (58). Subjects were grouped according to the 

index limb, defined as the first limb affected by weakness (either the limb of onset, or the first limb 

affected after bulbar onset) (62). Fifteen subjects had a right-sided (dominant) index limb and 15 

had a left-sided (non-dominant) index limb. Each subject was administered the ALS Functional 

Rating Scale—Revised (ALSFRS-R) as a measure of disability. To adjust the degree of disability 

for the disease duration, we calculated “disease progression” as: (48 − ALSFRS-R score) / (disease 

duration). Seventeen right-handed healthy controls were closely age and sex-matched with each 

group of 15 ALS subjects. None of the control or ALS subjects had a history of cerebrovascular 

events, intracranial pathology, or other neurological diseases. 
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MRI acquisition 

Each subject underwent an MRI scan acquired with a 3T Siemens TimTrio (Siemens, Erlangen, 

Germany), using sequences from VB17 Neuro applications and a 12-channel head coil. A high-

resolution structural image was acquired for each subject using a 1mm3 isotropic 3D T1 MPRAGE 

(FOV 24 × 25.6 × 17.6 cm, TR/TE/TI 2300/2.26/900 ms, flip angle 9). Slice thickness was 1 mm 

and image acquisition time was 9:14 min. 

 

Image processing 

Structural images were processed according to the protocol previously reported (Rose et al., 2012). 

The software package FSL-VBM (Version 4.1), an optimised VBM protocol (73) carried out with 

FSL tools (74), was used for all image processing and analysis. The brain was extracted using BET 

(75). GM segmentation was performed using FAST (76), with the segmentations then aligned 

toMNI152 standard space using affine registration, FLIRT (77), followed by non-linear registration 

using FNIRT (78). The resulting images were averaged to create a study-specific GM template. 

Each image was non-linearly re-registered to that template, before being modulated by dividing by 

the Jacobian determinant of the warp field and smoothed with an isotropic Gaussian kernel (sigma = 

4mm). Mirror images were then generated for each of the smoothed, modulated GM images in 

standard space, for each of the 47 subjects. 

 

Statistical analysis 

All statistical comparisons were performed using Randomise (79), and adjusted for multiple 

comparisons using threshold-free cluster enhancement (TFCE) (80). 
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ALS and controls 

Firstly, a voxelwise unpaired t-test was performed, comparing the GM density of all ALS subjects 

(n = 30) with all controls (n = 17). ALS subjects were then subdivided into two groups (15 with a 

right-sided index limb, and 15 with a left-sided index limb), and each group was compared with 15 

age and sex-matched controls. Finally, the ALS subjects with a right-sided index limb were 

compared directly with those having a left-sided index limb. For each test, age and disease 

progression were introduced as nuisance covariates. 

 

Asymmetry analysis 

In order to identify areas of hemispheric asymmetry, a voxelwise paired t-test was performed 

between the native and mirror images. This was performed separately for each of the three groups 

of subjects (17 controls, 15 ALS subjects with a right-sided index limb and 15 with a left-sided 

index limb). The limb subscore (questions 4–9) of the ALSFRS-R was introduced as a covariate. 

The anatomical location of each cluster of GM asymmetry was determined using the Talairach 

Daemon. The threshold for statistical significance was set at p ≤ 0.01 (TFCE-corrected). 

 

Results 

ALS and controls 

Specific subject characteristics are presented in Table 2 (Appendix 2). Compared with controls 

(n=17), subjects with ALS (n=30) showed a multifocal cluster of reduced GM density, involving 

the left precentral gyrus and adjacent regions of the left middle frontal gyrus and bilateral medial 

frontal gyri (2087 voxels; centre-of-gravity: −22, −11, 52; p ≤ 0.05). There was a separate cluster of 

reduced GM density involving bilateral anterior cingulate gyri (425 voxels; centre-of-gravity: 1, 39, 

6; p ≤ 0.05). These patterns of atrophy are illustrated in Figure 6A (Appendix 3). 
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Across all 47 subjects, there was a negative correlation (p≤0.05) between age and GM density in 

widespread regions of the frontal, parietal, temporal and occipital lobes, representative of age-

related atrophy. However, there was no confounding effect of age or disease progression on the 

patterns of atrophy in ALS. 

 

ALS (according to index limb) and controls 

As illustrated in Figure 6B (Appendix 3), ALS subjects with a right (dominant) index limb (n = 15) 

showed patchy reductions in GM density affecting the left precentral gyrus, at a threshold of p ≤ 

0.05. These changes were not significant at a higher threshold of p ≤ 0.01. Subjects with a left (non-

dominant) index limb (n = 15) did not demonstrate any significant reductions in GM density at 

either the left or right precentral gyri at a threshold of p ≤ 0.05 (Figure 6C, Appendix 3). 

 

Direct voxelwise comparison between ALS subjects with either a right or left index limb also did 

not reveal any significant differences in GM density. 

 

GM asymmetry in controls 

In the 17 right-handed control subjects, multiple statistical clusters of both rightward and leftward 

asymmetries were identified (Table 3 Appendix 2; Figure 7A Appendix 3). Of particular note was 

an area of leftward asymmetry (p ≤ 0.01) encompassing a dorsolateral region of the precentral and 

postcentral gyri. This area corresponded closely with the centre-of-gravity of the dominant thenar 

representation area, previously defined using transcranial magnetic stimulation (TMS) (54). Control 

subjects also demonstrated significant leftward asymmetry of a region of the superior and transverse 

temporal gyri, adjacent to the Sylvian fissure. There were no significant asymmetries of lower limb 
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or bulbar representation areas, indicating that these regions were of a similar density in the right and 

left hemispheres. 

 

GM asymmetry in ALS 

In the 15 ALS subjects with a right-sided (dominant) index limb, there was complete absence of 

leftward asymmetry at the precentral gyrus hand representation area, at the threshold of p ≤ 0.01 

(Table 3 Appendix 2; Figure 7B Appendix 3). This indicated disproportionate loss of GM supplying 

the dominant hand, relative to the remainder of the bilateral motor strip (including lower limb and 

bulbar representation areas). Leftward asymmetry was also lost at the adjacent region of the 

postcentral gyrus, as well as the superior and transverse temporal gyri and anterior insula.  

 

In contrast, leftward asymmetry of the dorsolateral postcentral gyrus, superior and transverse 

temporal gyri and anterior insula was preserved in the 15 ALS subjects with a left-sided (non-

dominant) index limb (Table 3 Appendix 2; Figure 7C Appendix 3). However, these subjects still 

showed complete absence of leftward asymmetry at the precentral gyrus hand representation area. 

This disproportionate loss of GM density in the left motor cortex occurred despite first weakness 

occurring in a limb controlled by the right hemisphere. These subjects also demonstrated a new 

cluster of leftward asymmetry involving the middle frontal gyrus (MFG), which was not present in 

controls (Table 3). This may indicate either relative gain of GM density at the left MFG or GM loss 

at the right MFG, with the latter favoured. 

 

Other regions of GM asymmetry were preserved across all ALS subjects and controls. These 

included rightward asymmetry of the inferior frontal, rectal and orbital gyri, posterior thalamus, 

posterior cingulate gyrus and cuneus, and leftward asymmetry of the posterolateral cerebellum and 
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occipital lobes. Several of these regions, including rightward asymmetry of the antero-inferior 

frontal lobes and leftward asymmetry of the occipital lobes, have been previously reported in larger 

populations of healthy subjects (53,81). 

 

Discussion 

The objective of this study was to identify ALS-related changes to the normal patterns of GM 

asymmetry, and interpret these in the context of limb dominance. We have established that a VBM 

asymmetry protocol applied to structural T1 MRI (18) is a useful tool for assessing GM changes in 

both healthy and disease states, especially in smaller cohorts in which standard voxelwise 

comparisons are less sensitive. Using this protocol, we found that right-handed ALS subjects with 

dominant limb onset disproportionately lost GM in left hemispheric sensorimotor (upper limb 

representation) and language regions. However, unlike other regions, disproportionate atrophy of 

the left motor cortical hand area occurred independent of whether onset of weakness was in a 

dominant or non-dominant limb. These findings support previous clinical studies of ALS laterality, 

and have implications for cortical organisation, its evolution, and selective vulnerability. 

 

Multiple large studies have demonstrated motor cortical atrophy in ALS, which may initially be 

left-hemisphere predominant (82). Furthermore, motor impairment has been shown to be focal, 

using both clinical examination (9) and neuroimaging (83). However, in the current study, major 

differences between ALS and controls were only apparent when analysing all 30 subjects together, 

and at a more relaxed statistical threshold (p ≤0.05). Comparisons involving 15 ALS subjects only 

detected minor, patchy reductions in motor cortical GM density, and were unable to differentiate 

subjects with right or left-sided disease onset. In contrast, the VBM asymmetry protocol was 

sufficiently powered to identify differences in GM between the two clinical groups of ALS subjects, 
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at a stricter threshold (p ≤ 0.01). Therefore, this method is ideal for exposing subtle asymmetric 

changes in less common diseases such as ALS. 

 

Despite previous authors correlating the size or density of motor areas with handedness (18,48,49), 

some have not demonstrated this (52). In the current study, we defined a significant cluster of 

leftward GM asymmetry in right-handed controls, incorporating the cortical hand representation 

area. This indicates greater size and complexity of this area in the left hemisphere. In contrast, the 

absence of this asymmetry across all right-handed ALS subjects suggests that the left hemisphere 

hand area disproportionately loses GM density relative to the remainder of the bilateral motor 

cortex. Our results also suggest that this region of motor cortex is particularly vulnerable to atrophy, 

regardless of whether the patient or clinician had noticed first weakness in a right or left-sided limb. 

 

Vulnerability of the dominant upper limb in ALS has been previously described using history and 

clinical examination (8,62). Our study provides neuroimaging evidence to support this 

phenomenon, and suggests an important role for central factors in driving this effect. Our findings 

also confirm the lack of preferential involvement of either lower limb, which has been observed 

clinically (8). It has been proposed that certain functions, such as the “split hand”, are more 

vulnerable to the pathology of ALS due to more recent development in human evolution (7). 

Another key feature of human development has been a population-wide bias toward right-

handedness (47), which is likely to have been facilitated by the onset of upright gait (72). The 

current results suggest that the increased complexity of left hemispheric motor networks in right-

handers may lead to greater susceptibility to ALS. The cause of neuronal vulnerability in ALS 

remains unknown, although potential contributory factors include cellular density, excitability, and 

hormonal influences (55,57,84). 
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In our study, subjects with dominant limb onset of weakness also showed disproportionate atrophy 

of areas involved in language and communication (left superior and transverse temporal gyri). It is 

known that 98% of right-handers have left hemispheric language lateralisation (Adamo and Taufiq, 

2011). Although these subjects did not undergo formal cognitive testing, this finding may reflect the 

occurrence of language dysfunction as part of the ALS–FTD spectrum, including milder language 

deficits in subjects without frank dementia (85). Alternatively, some authors have proposed that the 

dominant upper limb and speech form a single network for communication, with gestures and 

vocalisations being linked (72,86). 

 

This study has limitations. Due to the current cohort being restricted to right-handers, we were 

unable to assess changes to GM asymmetry in left-handed or ambidextrous subjects. However, this 

would require recruitment of a larger cohort, since hemispheric lateralisation of motor and language 

is less predictable in non-right-handed individuals (69). The size of our cohort also limited the 

ability to separately analyse smaller subgroups, for example only those subjects with upper limb 

onset of weakness. Formal neuropsychological testing was also not performed, therefore the 

cognitive correlates of some changes (such as those affecting the left frontal and bilateral cingulate 

gyri) remain unclear. Finally, it remains to be seen whether the current results can be translated to 

individual subjects, for example in a diagnostic setting. 

 

Overall, this study provides evidence that certain areas of GM are disproportionately and 

asymmetrically vulnerable to the pathology of ALS, and that these regions can be identified using a 

sensitive VBM protocol. In particular, we have identified the dominant hand area as being 

particularly susceptible to atrophy, supporting previous history and examination-based studies. This 

finding warrants further investigation, including assessment of associated white matter asymmetry 

using diffusion tensor imaging.  
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9. Clinical Phenotype and Survival in ALS 

 

9.1. Preface  

This chapter incorporates the text of one peer-reviewed publication in its entirety:  

 

(1) Devine MS, Ballard E, O’Rourke P, Kiernan MC, McCombe PA, Henderson RD. Targeted 

assessment of lower motor neuron burden is associated with survival in amyotrophic lateral 

sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2016;17:184-90. (65) 

 

The previous chapters have elucidated a connection between limb dominance and asymmetry of 

ALS, using the multiple modalities of structured questioning, clinical assessment of UMN and 

LMN phenotype, and novel MRI imaging techniques. Throughout the duration of these studies, the 

patient cohort was also able to be followed longitudinally for assessment of the factors affecting 

their survival. Of particular interest was the effect of both UMN and LMN clinical burden on 

survival to non-invasive ventilation (NIV) or death. The peer-reviewed study presented in Chapter 9 

analysed the factors determining survival of the entire original cohort of recruited subjects with 

particular reference to clinical phenotype. 

 

As first author of this publication, the author directly contributed to the conception and design of 

the project, collection, interpretation and statistical analysis of data, and drafting and revising both 

publications. Clinical assessment of subjects’ UMN and LMN scores were contributed to by 

neurologists A/Prof Henderson and Prof McCombe from RBWH in Brisbane, and Prof Kiernan 

from POWH in Sydney. Guidance regarding statistical analysis was provided by Prof Peter 

O’Rourke and Dr Emma Ballard (QIMR). 
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9.2. Correlation between LMN Burden and Survival in ALS 

Abstract 

Estimating survival in amyotrophic lateral sclerosis (ALS) is challenging due to heterogeneity in 

clinical features of disease and a lack of suitable markers that predict survival. Our aim was to 

determine whether scoring of upper or lower motor neuron weakness is associated with survival. 

With this objective, 161 ALS subjects were recruited from two tertiary referral centres. Scoring of 

upper (UMN) and lower motor neuron (LMN) signs was performed, in addition to a brief 

questionnaire. Subjects were then followed until the censorship date. Univariate analysis was 

performed to identify variables associated with survival to either non-invasive ventilation (NIV) or 

death, which were then further characterized using Cox regression.  

 

Results showed that factors associated with reduced survival included older age, bulbar and 

respiratory involvement and shorter diagnostic delay (all p < 0.05). Whole body LMN score was 

strongly associated with time to NIV or death (p ≤ 0.001) whereas UMN scores were poorly 

associated with survival. In conclusion, our results suggest that, early in disease assessment and in 

the context of other factors (age, bulbar, respiratory status), the burden of LMN weakness provides 

an accurate estimate of outcome. Such a scoring system could predict prognosis, and thereby aid in 

selection of patients for clinical trials. 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is a heterogeneous disorder with the common underlying 

feature being progressive degeneration of motor neurons in the cortex, the brainstem and the spinal 

cord (1,2). Patients typically exhibit clinical signs indicating dysfunction of upper (UMN) and 

lower motor neurons (LMN). There is also great variability in individual survival times (19). These 

range from fulminant disease with survival less than three years to a ‘tail’ of 10–20% of patients 

with a very slowly progressive or plateau course (19,87,88). Estimating prognosis is of great 

importance to patients, with older age, lower score on the ALSFRS-R, shorter diagnostic delay with 

more rapid progression, bulbar onset, presence of frontotemporal dementia (FTD), smoking and low 

body-mass index all portending a shorter survival (19,89-95). Some factors, such as site of disease 

onset (bulbar versus limb), have a more complex effect on survival that is influenced by age and 

gender (4,5). Survival can be prolonged through initiation of non-invasive ventilation (NIV) (96), 

which is sometimes considered as a secondary endpoint for disease progression. 

 

The relative involvement of UMN and LMN also appears to affect survival (1,2). Typically, 

patients with pure-UMN or pure-LMN forms of ALS have longer average survival, compared with 

patients with disease affecting both UMN and LMN (19,36,97). However, there has not been direct 

comparison between UMN and LMN involvement, in terms of which is more predictive of patient 

survival. In some models, they are assumed to be relatively equal contributors to disease severity 

(95). Although various electrophysiological and imaging parameters show promise as biomarkers of 

severity of UMN and LMN involvement (98), these are not widely established in clinical practice 

and are difficult to administer at the bedside. Clinical assessment remains the primary method of 

quantifying UMN and LMN involvement in large cohorts. While detailed clinical scoring systems 

have been developed and correlate with survival (11,99), these often do not discriminate between 

UMN and LMN signs, and are lengthy and not easily administered during a clinic appointment. A 
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practical prognostic tool should ideally quantify UMN and LMN signs in a short clinical 

examination, in addition to being able to estimate survival based on these scores. With this in mind, 

the aim of the present study was to investigate factors affecting survival in a cohort of ALS subjects 

from two specialized multidisciplinary clinics, focusing on the effects of increasing UMN and LMN 

signs. This cohort had been previously recruited and examined at a single time-point using a concise 

limb UMN and LMN scoring system (9,62). The hypothesis was that this score, able to be 

performed within a standard clinic appointment, would be predictive of survival. We also 

hypothesized that limb LMN scores would show greater association with survival (compared with 

UMN scores), since diaphragmatic weakness, which leads to death in ALS, is probably driven by 

LMN factors (100,101). 

 

Materials and Methods 

Conduct of this study was approved by the Royal Brisbane and Women’s Hospital Ethics 

Committee and the South Eastern Sydney Local Health District Ethics Committee. All subjects 

provided written informed consent. A cohort of 161 consecutive patients, with clinically-definite or 

clinically-probable ALS according to the El Escorial criteria (31), were recruited from the Royal 

Brisbane and Women’s Hospital and the Prince of Wales Hospital, Sydney, over the period 2011–

2014. Clinical assessment and scoring was originally performed for a study of motor asymmetry in 

ALS (62), with this cohort then being followed for analysis of survival. 

 

In the current study, several key time-points were recorded. Onset Date (OD) was defined as the 

time at which ALS symptoms (limb weakness, dysathria or dysphagia) were first recognized. 

Diagnosis Date (DD) was the time at which a diagnosis of ALS was made by the treating 

neurologist. Examination Date (ED) was the point at which the questionnaire and clinical scoring 

were performed, as outlined below. Due to the focal, asymmetric nature of early ALS (9), all 
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subjects were examined and scored within 12 months of the DD. If subjects presented more than 12 

months from the DD, careful retrospective scoring based on examination notes was performed, as 

previously described (62). 

 

On the ED, basic demographic information (age, gender, family history) was collected using a 

standardized questionnaire. Subjects were also asked about the site of disease onset (bulbar, upper 

limb, lower limb). A scoring system based on that of Ravits et al. (9) was applied by the examining 

neurologist (MK, PM or RH). This involved assigning a separate UMN and LMN score to each 

limb, ranging from 0 (no involvement) to 3 (significant, severe involvement) (Table 4). A whole 

body UMN or LMN score was calculated by summating the scores in each limb (giving a maximum 

value of 12). Subjects were also assessed for bulbar involvement (Yes/No), defined as at least one 

symptom (dysphagia, dysarthria) with at least one clinical sign (tongue wasting, fasciculations, 

brisk jaw jerk). Respiratory involvement (Yes/No) was defined as significant dyspnoea or 

orthopnoea, not present prior to ALS. 

 

All subjects were followed until December 2014. By this date, subjects had either had an ‘Event’, or 

were ‘Censored’. Subjects were assigned the outcome of ‘Censor’ if they were alive at the end of 

December 2014, or had died from a cause unrelated to ALS. An ‘Event’ was defined as either Death 

(from ALS) or initiation of non-invasive ventilation (NIV), whichever occurred first. For the 

purposes of this study, NIV was defined as initiation of regular (either nocturnal or intermittent) 

bilevel positive airway pressure ventilation due to ALS related respiratory failure under the 

guidance of a respiratory physician. Subjects who commenced NIV, and subsequently died before 

December 2014, were therefore considered to have had an ‘Event’ at the initiation of NIV but were 

still followed until the date of death. For each subject, use of riluzole (Yes/No) was also recorded, 

which was defined as taking the drug regularly for at least six months. 
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Statistical analysis was performed using SPSS (Version 22, SPSS Inc.). The four outcomes of 

interest were ‘Onset to Event’ (OD to Event), ‘Exam to Event’ (ED to Event), ‘Onset to Death’ (OD 

to Death) and ‘Exam to Death’ (ED to Death). Univariate analysis was completed using Kaplan- 

Meier estimates with the log-rank test used to identify useful predictors for both Event and Death 

outcomes. Potential predictor variables included age, gender, family history, site of onset, bulbar 

involvement, respiratory involvement, diagnostic delay and UMN and LMN scores. Whole body 

UMN and LMN scores were subdivided according to severity (0–2, 3–6 and 7–12). UMN and LMN 

scores were also analysed separately for the upper limb and lower limb regions. Variables were 

screened as being potentially useful predictors of survival, during univariate analysis, using a 

significant log-rank test p-value (< 0.05) for both Event and Death outcomes. These variables of 

interest were then used in a Cox regression model for each outcome (Event or Death). Estimated 

hazards ratios and 95% confidence intervals were reported. 

 

Results 

Of the 161 subjects, 56% were males and 93% had no family history of ALS. Mean age at ED was 

61 years (SD, 11 years). Disease onset was in the upper limb in 54 subjects (33%), lower limb in 64 

subjects (40%) and bulbar region in 43 subjects (27%). At the censorship date, 59% had died due to 

ALS, while 66% had undergone an Event (NIV or death due to ALS, whichever occurred first). 

Univariate analysis was performed to identify which variables were potential predictors of death or 

an Event (Tables 5 and 6). Gender, family history, site of onset and riluzole use were screened out 

as not being associated with survival. Increasing age and shorter delay between onset and diagnosis 

were both strongly associated with shorter time to NIV or death (Table 5). 

 

Subjects with evidence of either bulbar or respiratory involvement were more likely to progress to 

NIV or death from that point in time (Exam to Event), as well as showing reduced survival overall 
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(Onset to Event) (p < 0.01). Increasing the LMN score, in the upper limbs, lower limbs or whole 

body, was associated with reduced time to NIV or death (p ≤ 0.001 for whole body score). In 

contrast, increasing UMN scores were not significantly associated with survival (Table 6). 

 

Variables identified as significant using univariate analysis (age, bulbar involvement, diagnostic 

delay and LMN score) were further assessed using a Cox regression model. The covariate for 

respiratory involvement had a singularity with time to Event, and therefore was not considered 

further for Cox regression. LMN upper limb and lower limb scores were both colinear with the 

whole body LMN score, and therefore were also not included separately for Cox regression. 

 

Older age, bulbar involvement and shorter diagnostic delay were all associated with reduced 

covariate-adjusted survival (from onset or exam, to either NIV or death; Table 7). For example, a 

patient 65 years of age or older has approximately twice the risk of death or NIV compared with a 

patient younger than 55 years of age. A patient with bulbar involvement at the time of clinical 

examination has a two- to three-fold increase in risk of death or NIV, compared with a patient in 

whom bulbar function is preserved. For all variables except diagnostic delay, hazard ratios were 

similar across all of the four endpoints (Onset to Event, Onset to Death, Exam to Event and Exam to 

Death). With diagnostic delay, hazard ratios were higher when survival was measured from an 

earlier time-point (Onset vs. Exam), probably related to the longer observation period. 

 

Using Cox regression, it was confirmed that higher whole body LMN score is strongly associated 

with survival. A subject with a whole body LMN score of 7–12 has four- to six-fold increased risk 

of death or NIV, compared to subjects with mild LMN involvement (Table 7, Figure 8). At 18 

months from examination, the duration of a typical ALS clinical trial (102), 73% of subjects with an 
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LMN score of 7–12 were deceased, whereas only 26% of those with an LMN score of 3–6 were 

deceased. 

 

Discussion 

A key challenge facing ALS clinicians is the ability to provide patients and carers with accurate 

prognostic information. This is especially challenging given the significant heterogeneity of ALS, 

including diverse combinations of UMN and LMN clinical signs (1,2). Furthermore, many 

assessment tools and prospective biomarkers are either too time-consuming or experimental to be 

applied in a busy clinical setting (2,98). In this study, using a simple bedside scoring system at a 

single time-point, we have demonstrated that a higher burden of LMN signs is strongly associated 

with lower survival from the time of examination to an event (either NIV or death). In contrast, the 

severity of UMN signs was not associated with patient outcome. 

 

Although there has been recent interest in ALS staging systems from the perspective of clinical 

trials (103,104), these population-based scores typically do not differentiate UMN and LMN 

features of the disease. Earlier scoring systems (11,99), while very comprehensive, are also time-

consuming and difficult to adopt in a clinical setting. Other studies (9,10,12), while quantifying 

UMN and LMN burden using similar scoring systems, were targeted toward patterns of spread 

rather than effects on survival. The scoring system used in the current study, modified from that of 

Ravits et al. (9), is based around a standard neurological examination and therefore is practical to 

perform within a clinic appointment. While UMN factors appear important in the onset and spread 

of ALS (2,62), our results emphasise the importance of LMN in driving survival, in both upper and 

lower limb regions as well as the body as a whole. From a practical viewpoint, LMN signs 

(weakness in combination with wasting) are readily apparent on examination and easily graded. 



69 
 
We found close association between total LMN burden and time to NIV or death, thus allowing 

better identification of patients more likely to die within 12–18 months. Such subjects are likely to 

be informative in a clinical trial compared to more slowly progressive, atypical patients, which may 

skew the dataset and mask the true beneficial effect of a therapy within the trial period (102,105). 

 

Our study also confirmed the known detrimental effects of increasing age and bulbar involvement 

on survival (19,36,87,89). Poorer prognosis in subjects with a shorter diagnostic delay has also been 

reported (106) and probably reflects overall more fulminant disease that comes to medical attention 

more rapidly. We observed no association between severity of UMN signs and survival, suggesting 

that these have minimal utility as a predictor of outcome. UMN signs also generalize early (62,104) 

and may be more difficult to interpret on examination (16). Furthermore, UMN-predominant forms 

of ALS often have a favourable prognosis, forming a relatively large proportion of the long-

surviving ‘tail’ (19,36,87,97). The lack of association between riluzole usage and survival in our 

study probably reflects the smaller numbers in this cohort. 

 

A key mechanism underlying the effect of LMN burden on survival (to NIV or death) is probably 

diaphragmatic weakness. In our cohort, respiratory involvement at the time of examination was a 

strong predictor of poor survival. While use of NIV may prolong survival (5,96), it does not alter 

the underlying neurodegenerative process. Adoption of NIV is also influenced by local practices – 

for example, use of NIV in our cohort was relatively modest (22%). Diaphragmatic involvement in 

ALS is thought to be driven by loss of anterior horn cells (LMN) in the cervical cord, adjacent to 

the LMN supplying paraspinal muscles (100,101). Cervical-level LMN signs are associated with 

reduced survival in ALS (107), probably related to contiguous spread of LMN degeneration at the 

cord level (11). In contrast, UMN involvement in diaphragmatic control is complex (108) but does 

not appear to have the same effect on dysfunction as LMN. 
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In terms of study limitations, it is accepted that although our scoring system specifies that LMN 

weakness should be in a typical muscle distribution and accompanied by wasting, it remains 

difficult to completely delineate this from UMN weakness on examination (16). For example, 

clinical detection of UMN signs is more difficult in a limb with significant LMN involvement, and 

it is acknowledged that precise grading of UMN severity (e.g. tone) on clinical examination is 

difficult even for experienced neurologists. This highlights the ongoing need for an objective UMN 

biomarker (98). EMG would also have been helpful to corroborate the clinical assessment of LMN 

burden. Finally, the absence of formal cognitive assessment is also a limitation of the current study. 

Although there was no association between UMN signs and survival, FTD as another marker of 

central involvement is linked with poorer prognosis. This effect is incompletely understood; 

however, the presence of FTD may reflect more widespread multisystem dysfunction (95). 

 

Overall, our results indicate that a short, targeted bedside assessment of total limb LMN burden, 

combined with other concomitant features (age, bulbar and respiratory involvement) is strongly 

associated with ALS survival. While this requires validation, such a tool would be useful in clinical 

prognostication as well as appropriate recruitment for ALS clinical trials. Our findings could also be 

further explored using a larger model, incorporating numerical measures such as ALSFRS-R, forced 

vital capacity and formal cognitive scoring. 
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10. Conclusion 

Amyotrophic lateral sclerosis remains an incompletely understood entity, with likely complex 

interplay between genetic and environmental factors (109-112). A complete understanding of the 

pathogenesis and pathophysiology of ALS is further hampered by the wide variability in multiple 

facets of the disease, including the relative presentation of clinical UMN and LMN phenotypes and 

the broad range of clinical trajectories ranging from fulminant rapidly progressive disease to 

atypical slowly progressive forms (19,87,88). It is therefore important that when certain recurring 

patterns or “clusters” are observed within the ALS population that these are studied closely. 

Understanding why these patterns occur will likely provide more broad insight into why the disease 

occurs in certain individuals, why certain muscle groups and functions are particularly susceptible, 

and how the disease spreads and progresses over time. 

 

Evolutionary perspectives on ALS have become increasingly topical (7,43,112) and offer an 

intriguing theory as to why such phenotypic patterns occur. ALS only occurs in humans (112). 

During their evolution, humans have developed and refined multiple unique functions, including 

complex hand manipulation and thumb opposability, upright gait navigating complex landscapes, 

speech, social interactions and executive functioning. Whilst these functions have 

disproportionately gained complexity, and therefore increased cortical representation, during 

evolution, this is “mirrored” by their disproportionately early loss of function in ALS (112). This 

gives rise to distinctive patterns such as the “split hand” and “split foot” (weakness in dorsiflexion), 

which are often observed in ALS subjects. Indeed, a “split elbow” has been more recently described 

in the literature, comprising disproportionate weakness of the biceps brachii muscle relative to 

triceps (113), and furthermore the finger extensors are typically weaker than the finger flexors in 

ALS (114). Impairment in social interactions and executive function manifests as frontotemporal 

dementia spectrum disorders. Furthermore, one of the publications in the current thesis has revealed 
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disproportionate impairment of speech compared with swallow function in bulbar ALS (63). The 

nature of these patterns implies that CNS factors play an important role in ALS onset and spread. 

Concordant with this theory, the white matter pathways which have developed to sustain these 

complex functions have been shown to undergo widespread breakdown during the disease process, 

with involvement of both motor and extramotor areas (115). 

 

The core objective of the current project has been to identify and characterise novel sources of 

vulnerability in ALS in a large cohort of subjects, with a particular focus on limb dominance and 

clinical phenotype. Humans are unique in developing a consistent, population-wide laterality of 

upper limb function with predominance of right-handedness (47,112). This has presumably 

necessitated development of more complex “wiring” in the dominant hemisphere, both within the 

primary motor pathways and their communications with other brain regions. In turn, we predicted 

that this introduces another source of vulnerability of the nervous system to ALS, which would 

manifest as asymmetry in both disease onset in the limbs and subsequent direction of disease spread 

through the neuraxis. 

 

The finding that onset of weakness is more likely in the dominant upper limb is concordant with 

several earlier studies (8-10), however interestingly only became statistically significant upon 

analysis of a larger patient cohort (62). The symptomatic weakness, clinical UMN and LMN signs 

were all maximal in the Index Limb which also confirmed the well-described focality of onset of 

ALS (9). Whilst the current findings also support the previously described phenomena of 

contiguous disease spread beyond the Index Limb and tendency to rostro-caudal spread (9,10,12), 

the novel finding was that the direction of spread of limb weakness is also affected by limb 

dominance. In particular, there was a tendency for weakness in a non-dominant limb to spread to 

the other ipsilateral limb, which anatomically suggests an important role for UMN factors. Clinical 
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UMN signs were also found on average to spread to other limbs earlier than LMN signs, again 

reinforcing their importance in the process of disease spread (62). A strength of the current study 

was also the integrated assessment of both symptomatic weakness, as reported by the subjects on 

structured questionnaires, and objective clinical assessment of UMN and LMN dysfunction. 

 

The asymmetry of both ALS onset and spread, as revealed by both structured questioning and 

clinical examination, suggests importance of central (UMN) factors in these processes. 

Unfortunately, there remains no widely available and accepted biomarker for UMN dysfunction in 

ALS although advanced imaging is likely to play a key role (98,116,117). This is compounded by 

significant variability between the published imaging studies. Whilst many authors have 

demonstrated cortical atrophy of the precentral gyrus in ALS compared with healthy controls (116, 

118), not all studies have replicated this finding (119). Of the studies that did show atrophy of the 

precentral gyrus, many revealed this to be predominantly unilateral (82,118,120-125) however some 

authors reported bilateral atrophy without significant asymmetry (126) or bilateral but asymmetric 

atrophy (127). Furthermore, of the studies that showed unilateral atrophy, some demonstrated 

predominant involvement of the right precentral gyrus (118,120-122) whilst in contrast others 

showed predominantly left-sided precentral gyrus atrophy (82,123-125). Some, but not all, of these 

studies were controlled for patient handedness. 

 

Many factors likely account for this variability in study findings, including differences in subject 

selection, sample sizes, timing of imaging, and the specific choice of imaging and analysis 

protocols (116). Imaging too late in the disease course risks obscuring asymmetric changes within 

the more diffuse advanced atrophy. Furthermore, several studies have also revealed that gray matter 

and white matter changes in ALS are not always concordant (116,128), and that longitudinally the 

gray matter changes become more severe whereas white matter changes may not progress to the 
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same extent (82,129). The degree of gray matter atrophy in ALS does appear to correlate with the 

extent of clinical UMN involvement phenotypically (116,130) and therefore assessment of gray 

matter may serve as a more useful future biomarker. 

 

The key advantage of the novel imaging protocol employed in the current study (64) was the 

comparison of gray matter density between the two hemispheres in both ALS subjects and healthy 

controls, rather than just comparing the two groups of subjects with each other. This allowed subtle 

areas of cortical asymmetry to be accentuated in a relatively modest sample size, controlled for 

handedness (all subjects right-handed) and with many subjects at a relatively early disease stage. 

There was disproportionate atrophy of the left precentral gyrus hand representation area, regardless 

of whether onset had occurred in a right or left-sided limb. This suggests that this area of cortex is 

particularly vulnerable to the pathology of ALS, again with implications for the evolutionary 

theories of ALS and handedness (112) and supporting the findings of the earlier clinical scoring 

assessment which was also performed at a relatively early disease stage (62).  

 

The phenomenon of differential ALS spread depending on the dominance of the limb of onset is 

also intriguing. The inherent directionality of the corpus callosum is likely an important factor 

(112), in particular the interhemispheric fibres connecting the primary motor cortices which have 

been shown to be the most severely affected callosal pathways in both imaging and pathological 

studies of ALS subjects (131,132). The relative degree of cortical excitability is also likely relevant.  

Normal healthy right-handed subjects have been shown to have asymmetry in the balance between 

excitation and inhibition when comparing the two motor cortices (133), with left-handed subjects 

likely more complex (69,112,133). Healthy individuals also appear to have topographical 

differences in excitability within the motor cortex itself (134). Abnormal cortical excitability and 

dysfunction of inhibitory interneurons are thought to play an important role in ALS pathogenesis 
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(21,30,111,135), therefore the inherent physiological asymmetry in excitability may account for 

some of the findings in the current studies. 

 

It is also likely that the central nervous system attempts to compensate for the deficits caused by 

ALS, ultimately without success. For example, one combined VBM and functional MRI (fMRI) 

study found that in right-handed ALS subjects there was asymmetric hyper-activation of fronto-

parietal pathways in the left hemisphere regardless of which hand the motor task was performed 

with (127). This contrasted with the abnormal hypo-activation in the primary motor area. The 

authors hypothesised that this activation represented compensatory changes within the dominant 

hemisphere. Another more recent study found increased gray matter volume in both cerebellar 

hemispheres of ALS subjects (123), also potentially reflecting secondary compensatory change. 

Therefore, the robustness of this compensation may influence the asymmetry of disease onset and 

spread in ALS subjects, but requires further investigation.  

 

Whilst asymmetric changes in ALS have been assessed using quantitative measures of both gray 

matter and white matter, other more novel imaging techniques may also prove valuable in future 

studies. For example, cortical iron deposition has been described in ALS including in the precentral 

gyrus (136,137). A recent study using susceptibility-weighted imaging (SWI) in right-handed 

subjects with ALS found greater degree of hypointensity in the left hemisphere cortical hand 

representation area, thought to reflect iron deposition (138). This finding provides further support 

for the vulnerability of this area to the ALS disease process. Iron accumulation has been 

demonstrated histologically within the microglia and macrophages (138) and although its role in 

disease is not fully understood it likely occurs as part of an oxidative stress process (139). MR 

spectroscopy may be another useful tool for detecting asymmetric abnormalities in ALS. For 

example, in a recent study it was found that the precentral gyrus contralateral to the most clinically 
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affected limb(s) showed asymmetrically reduced NAA/Cr ratio compared with the contralateral 

precentral gyrus (140). Subtle early changes in gray and white matter are also detectable with ultra-

high field strength magnets, however only applicable to animal models such as mice at this stage 

(141). Integration of multiple different imaging modalities is likely to prove useful in future studies 

of brain asymmetry in ALS. 

 

Whilst central nervous system and UMN factors appear to play a key role in the onset and spread of 

ALS, the findings of the current study suggest that ultimately LMN factors correlate more closely 

with patient survival (65). This is of importance in selecting appropriate subjects to participate in 

clinical trials (102,105), and helpful given that LMN signs are typically more readily assessed and 

scored at the bedside. Subsequent authors have also found that the number of body regions with 

clinical LMN involvement shows significant negative correlation with survival; p < 0.0001 (142). 

Given the importance of LMN involvement in influencing survival, it is imperative to develop a 

reliable, readily measurable quantitative LMN biomarker, for both clinical prognostication and 

recruitment of clinical trials. Methods of assessing motor unit numbers such as MUNIX may show 

promise in this regard (143), particularly given the limitations of patient-reported assessments such 

as the ALSFRS-R. For example, it has been found that the ALSFRS-R can underestimate the true 

extent of deficit in right-handed subjects with onset of weakness in the left upper limb (144), a 

problem which would be avoided with the use of an objective quantitative biomarker.  

 

Another difficulty in validating a potential biomarker in ALS is determining whether it is causative 

or a consequence of the disease process (109). For example, whilst hypermetabolism has been well 

described in ALS patients, it is unclear whether this is related to the underlying cause of the disease 

or secondary consequence for example due to denervation (145). Study of large patient populations 

is likely required, due to the significant disease heterogeneity as previously described (109). 
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Finally, the concept of limb dominance and asymmetric vulnerability in ALS may possibly be 

extrapolated to other neurodegenerative diseases. In particular, recent studies of Parkinson’s disease 

have shown some intriguing findings, including some similarities with the current ALS studies. 

Between 50 and > 80 percent of Parkinson’s disease patients show asymmetry of motor features in 

published series, with some studies showing a correlation between handedness and the earliest and 

most severely affected side of the body (146). Uitti et al (147) described an overall population trend 

toward greater deficit in the right-sided limbs in Parkinson’s disease, likely due to the 

predominance of right-handedness in general. However, they also found that left-handed patients 

had more severe symptoms in the left side of the body. Furthermore, similar to the findings in ALS, 

the degree of asymmetry in Parkinson’s disease is more pronounced in the earlier stages of the 

disease suggesting initial focality (147,148). Claassen et al (148) also found disproportionate left 

frontal lobe and insular cortical gray matter thinning in Parkinson’s disease, irrespective of 

handedness or the side of the body with greatest clinical motor deficit. This is finding is intriguing, 

as it appears analogous to the disproportionate atrophy of the left hand motor cortex area in ALS, 

regardless of the side of onset of weakness (64). It is possible that a number of neurodegenerative 

diseases, which share asymmetry as a clinical feature, may manifest similar sources of vulnerability 

as seen in ALS (148) however this hypothesis requires further study. 

 

In conclusion, the current studies have identified and characterised novel sources of vulnerability in 

a large cohort of ALS subjects, addressing the core hypotheses via multiple modalities including 

structured questioning, direct clinical examination and scoring and advanced neuroimaging. In 

particular, a link has been established between limb dominance and asymmetry of both onset and 

spread of disease. The importance of cortical factors in driving asymmetric patterns of disease onset 

and spread, having been initially identified in the clinical studies of both limb and bulbar ALS 

(61,62,63), was further confirmed with novel MR imaging techniques (64). These findings have 

implications for the “dying forward” and broader evolutionary theories regarding ALS. However, it 
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seems that ultimately it is LMN factors which correlate with patient survival (65). It will be 

important to extend these findings in future studies, in particular with specific evaluation of left-

handed subjects and incorporation of cognitive assessment.  
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Appendix 2 (Tables) 

Table 1: Spread of ALS in right-dominant patients following unilateral limb onset 
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Table 2: Demographics and clinical features of ALS subjects and controls 
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Table 3: Statistical clusters of GM asymmetry in controls and ALS subjects 
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Table 4: Scoring system used to quantify clinical UMN and LMN involvement in each limb 
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Table 5: Utility of demographic covariates in predicting survival to an event or death 
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Table 6: Utility of phenotypic covariates in predicting survival to an event or death 
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Table 7: Cox regression analysis of variables affecting survival in ALS 
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Appendix 3 (Figures) 

Figure 1: Onset and spread of weakness in all ALS subjects 
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Figure 2: The effect of limb dominance on spread of weakness  

 

 

This diagram illustrates the spread of limb weakness, according to whether the Index Limb was on 

the dominant or non-dominant side. Subjects included in this diagram reported onset of weakness in 

a unilateral Index Limb, and then reported spread of weakness to another discrete limb (n = 99 in 

total). Spread of weakness from a non-dominant Index Limb was more likely to be in an ipsilateral 

direction (p = 0.008). Two subjects (one of 25 subjects with a dominant Index LL, and one of 26 

subjects with a non-dominant Index LL) reported spread of weakness to the contralateral UL. These 

two subjects are not included in the spread patterns shown in this diagram.  
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Figure 3: Total UMN and LMN scores for each limb 

 

 

This diagram shows the distribution of Total UMN scores (black bars) and Total LMN scores 

(white bars) relative to the Index Limb. Subjects are grouped according to whether the Index Limb 

was an UL (n = 55) or a LL (n = 53), irrespective of limb dominance. In both groups, the Total 

scores were highest in the Index Limb (which is indicated with an arrow). 
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Figure 4: Mean UMN% and LMN% scores for each limb (± SE) 

 

 

These scores represent the proportion of the total clinical deficit in each limb attributable to UMN 

and LMN dysfunction (with both scores adding to give 100%). Subjects are grouped according to 

whether the Index Limb was an UL (n = 55) or a LL (n = 53), irrespective of limb dominance. 

Mean UMN% scores were greatest in the limb most anatomically distant from the Index Limb. 

Significant differences (p < 0.01) between the UMN% score in the Index Limb and each Non-Index 

Limb, using ANOVA with post hoc comparisons (Bonferroni), are indicated by an asterisk (*). 
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Figure 5: Mean proportional UMN scores for the upper limbs 

 

 

 

This diagram compares the mean proportional UMN scores in subjects with an Index upper limb on 

either the dominant side or non-dominant side. Proportional scores represent a comparison between 

the Index Limb (coloured in black) and a Non-Index Limb (coloured in white), and each pair of 

scores add to give 100%. A Student’s t-test was used to compare mean proportional UMN scores 

with a dominant versus non-dominant Index upper limb. This comparison was significant (p = 

0.03), suggesting greater asymmetry of UMN signs in the upper limbs, when the Index Limb was 

on the non-dominant side. 
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Figure 6: Gray matter atrophy in ALS versus controls 

 

 

Selected axial plane reconstructions showing regions of reduced GM density in subjects with ALS, 

compared with controls. Regions of significantly reduced density (p≤0.05, TFCE-corrected) are 

coloured in orange-yellow. Row A shows a comparison between all ALS subjects (n=30) and 

controls (n=17). Rows B and C show the patterns of atrophy in ALS subjects with a right-sided or 

left-sided index limb, respectively (n = 15 in each group). 
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Figure 7: Patterns of gray matter asymmetry in ALS and control subjects 

 

Selected axial plane reconstructions from 17 right-handed controls (Row A), 15 ALS subjects with 

a right-sided index limb (Row B), and 15 ALS subjects with a left-sided index limb (Row C). 

Significant regions of GM asymmetry (p ≤ 0.01, TFCE-corrected) are shown. Regions coloured in 

orange-yellow represent leftward asymmetry (i.e. higher GM density in the left hemisphere), 

whereas blue clusters signify rightward asymmetry. In control subjects, there is a cluster of leftward 

GM asymmetry which incorporates the centre-of-gravity of the dominant thenar representation area 

(shown by the intersection of the two red lines). PreCG=precentral gyrus; PostCG=postcentral 

gyrus; PCG=posterior cingulate gyrus; STG=superior temporal gyrus; TTG=transverse temporal 

gyrus; IFG=inferior frontal gyrus; OG=orbital gyrus; RG=rectal gyrus; Thal=thalamus. 
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Figure 8: Covariate-adjusted survival function for each category of LMN score (whole body) 

 

Covariate- adjusted survival function for each category of LMN score (whole body), for each of the 

four outcomes: (1) Onset to Event; (2) Exam to Event; (3) Onset to Death; and (4) Exam to Death. 

 

 


