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USF1 deficiency impairs male fertility
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A prerequisite for lifelong sperm production isttepermatogonial stem cells (SSCs) balance
self-renewal and differentiation, yet factors regdifor this balance remain largely
undefined. Using mouse genetics, we now demondtratehe ubiquitously expressed
transcription factor USF1 (Upstream stimulatorytéad) is critical for the maintenance of
SSCs. We show that USF1 is not only detected itolbeells as previously reported, but also
in SSCsUsfl-deficient mice display progressive spermatogerilide as a result of age-
dependent loss of SSCs. According to our dataehe gell defect inUsf1™ mice cannot be
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attributed to impairment of Sertoli cell developrjenaturation or function, but instead is
likely due to an inability of SSCs to maintain degcent state. SSCs 05f1”” mice undergo
continuous proliferation, which provides an explamafor their age-dependent depletion.
The proliferation-coupled exhaustion of SSCs im ti@sults in progressive degeneration of
the seminiferous epithelium, gradual decrease énsgroduction and testicular atrophy. We
conclude that the general transcription factor UBH@dispensable for the proper
maintenance of mammalian spermatogenesis.

SIGNIFICANCE STATEMENT

Upstream stimulatory factor 1 (USF1) is a ubiquiiglexpressed transcription factor which
has been shown to regulate several important bzdbgystems, such as lipid metabolism
and insulin sensitivity. However, the role of USRXhe regulatory pathways involved in
stem cell biology has remained elusive. Udirgf1”” mice, we show that this protein is
indispensable for proper maintenance of the spemgoaial stem cell pool. Our data suggest
that USF1 is essential for the balance betweerreséfiwal and differentiation of
spermatogonial stem cells. In the absence of Uieliferation-coupled exhaustion leads to
the gradual depletion of spermatogonial stem edtls age.

INTRODUCTION

During spermatogenesis, haploid spermatozoa aecatly produced from diploid
spermatogonia through several rounds of mitotictarmdmeiotic divisions. This complex
process initiates from a population of undifferated germ cells, referred to as
spermatogonial stem cells (SSCs). SSCs eitheresedfw or give rise to committed
progenitors that are primed to differentiate urateady state. A balance between SSC self-
renewal and differentiation is critical for propaaintenance of spermatogenesis and for
fertility [1]. Heretofore, mechanisms underlyingG8guiescence, as well as seminiferous
cycle-dependent cell cycle entry and exit remageesally undefined.

Spermatogenic cells are organized in the seminigegpithelium in highly defined cell
associations, or stages. In mouse, there are twédges (I-XI1) that together constitute the
cycle of the seminiferous epithelium. Proliferatmirspermatogonia initiates from a
population of isolated type A-single spermatogdiig. Cell division of A first gives rise to
a 2-cell cystj.e. A-paired (Ay), and then to A-aligned (£} spermatogonia, typically
consisting of 4, 8 or 16 interconnected cells. €xliely these cells are referred to as A-
undifferentiated spermatogonia,#. The Angir SPermatogonia comprise of spermatogonial
stem cells (SSCs) and transit-amplifying progersfmermatogonia that are primed to
differentiate but possess a latent self-renewahciap[2-6]. Aingir Mitoses are not strictly
bound to the progress of the seminiferous epithejiele but they are, however, restricted to
stages X-1l [7 8]. In contrast, their irreversilgemmitment towards meiosis is
spatiotemporally strictly regulated and confinedtages VII-VIII of the seminiferous
epithelial cycle [9]. At this point differentiatingpermatogonia (Al) are formed that then
undergo five additional mitotic divisions (A1-A2-AR4-In-B) before giving rise to
preleptotene spermatocytes that enter meiosis.

Spermatogenesis is for a large part orchestrategkhipli cells that transduce endocrine
signals é.g.follicle-stimulating hormone [FSH] and testostezpand other cellular cues into
paracrine regulation of male germ cell differembiaf10]. Sertoli cells display unparalleled
plasticity in terms of cellular function during tieurse of development and under steady-
state spermatogenesis. Sertoli cell cyclical agtigi a key to successful spermatogenesis; in
addition to nursing up to five generations of diéfietiating germ cells, Sertoli cells also
provide a niche for the f\irr, including SSCs. The SSC niche is defined by mdérc
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criteria. Glial cell line-derived neurotrophic fac{ GDNF) is the most important single
paracrine regulator of SSC fate. WhideInfhaploinsufficiency results in loss of SSCsnd¥
accumulate ifcdnfis overexpressed [11 12]. In the testis, GDNFeiswetd from Sertoli,
peritubular myoid and vascular endothelial celig] &@s secretion is partially under endocrine
regulation [11 13-18]. Besides GDNF, roughly a doather paracrine factors have been
implicated in the regulation of SSC fate decisifin&9].

Transcription factors, expressed by germ cellsnsically and by somatic supporting
cells, have also been implicated in the regulagioth maintenance of spermatogenesis. PLZF
[promyelocytic leukemia zinc finger; 20 21], TAF4BATA-box binding protein associated
factor 4b; 22], SALL4 [Spalt-like transcription fac 4; 23 24] and FOXO1 [Forkhead box
01; 25] are among germ cell intrinsic transcriptiaotors whose function is essential for
life-long spermatogenesis. Here, we dissect theireaent of Upstream stimulatory factor
(USF) 1, a general transcription factor of the dasilix—loop—helix leucine zipper family, for
mouse spermatogenesis. USF proteins are encodabhybiquitously expressed genes,
UsflandUsf2,in mammals [26 27]. USF1-USF2 heterodimers bincettitegancer box (E-
box) in the promoter region of target genes [28 28]Sertoli cells of 5-11 day®ost partum
(dpp) rats, USF proteins bind with increased dffitd Fshr (follicle-stimulating hormone
receptor)Gata4, Nr5al(more commonly known &Sf1, steroidogenic factor-1), arghbg
(sex hormone-binding globulin) promoters, implymgole for USF in spermatogenesis [30].

As expected for a ubiquitously expressed transonigactor, USF1 has multifaceted
roles in biological systems. In humattSF1polymorphisms are associated with regulating
arterial blood pressure, synaptic plasticity in ¢katral nervous system and lipid metabolism
[31-34]. Recently, Laurila et. al. demonstrated thsf1’ mice have beneficial lipid profiles,
featuring reduced plasma triglycerides and elevHiiet-cholesterol, and are protected
against diet-induced weight gain [35]. These figdimdicate USF1 as a therapeutic target in
cardio-metabolic diseases in humans. However, ven&iisF1 is dispensable for regulatory
pathways involved in reproductive processes hasireed elusive.

Very limited data exist on USF1 target genes intés#is.In silico predictions (UCSC
genome browser and SABioscience’s DECODE datalbige//www.sabiosciences.com/)
indicate that USF proteins in mammals regulate @sgion of thousands of genes, of which
all USF2 target genes are also USF1 targets buticetversaln other words, there are many
genes which are predicted to be regulated by USSR, which further highlights the
importance of USF1 over USF2 in mammals. Udils§il knock-out (KO) mice [35], we now
show that transcription factor USF1 is indispensdbt proper maintenance of
spermatogenesis, and more specifically, that USKEksential for maintaining a balance
between self-renewal and differentiation of speogatial stem cells.

MATERIALSAND METHODS

Mice:

Knockout construct and generationWsfl”™ mice were as described previoyd$]. Briefly,
embryonic stem cells deficient folsflwere obtained from German Genetrap Consortium
(clone M121B03), in which, vector ROSAbetageo+2 wedrovirally delivered into the
fourth exon ofUsfl gene. The resulting M121B03 cells were injecteéd ©57BL/6J
blastocysts in order to obtaiysfl heterozygous mice. These mice were further crossed
obtainUsfl knockout mice. All experiments in this study weesformed following all
applicable national and institutional guidelinesial Experiment Board in Finland and
Laboratory Animal Centre of the University of Helki, respectively). The number of mice
used in different experiments is detailed in Supyetal Table 1 [36].

Genotyping:
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PCR primers and cycling conditions for genotypiygjl were published previously [35]. See
Supplementary Materials and Methods for details.

Histological analysis.

For basic histology testes were fixed with 4% pamafldehyde (PFA) in 1x PBS for four
hours at room temperature, followed by Bouin’s #olu(Sigma, catalog no. HT10132)
overnight. Testes were then dehydrated in 50% etlianfour hours, 70% ethanol for four
hours, and 70% ethanol for overnight, embeddedraffin, and cut into 5-um thick
sections. Tissue sections were deparaffinized semgdard xylene and alcohol series
(absolute, 95%, 90%, and 70% ethanol), and finatly sterile water. After staining with
Mayer’'s hematoxylin solution (Sigma-Aldrich), sexts were washed, counterstained with
eosin (Sigma-Aldrich) and dehydrated using stangaondedure (once with 70%, 90%, 95%,
and absolute ethanol, and twice with xylene), amdmed using a xylene-based mounting
medium.

Assessment of the sper matogenic defect:

Testes were collected and fixed overnight in 4% FRéildwed by embedding into paraffin.
Five-micrometer thick sections were prepared fetdidgical analysis and stained with DAPI
plus analyzed for integrity of the seminiferoustiegiium. At least 64 cross-sections of
seminiferous tubules per mouse (at the ages dt,80 and 30 weeks; n=2-3 for WT, n=3
for KO) from two non-consecutive histological seas were analyzed for the extent of
spermatogenic defect and classified into threegcaiies (normal, 1-3 layers missing, only
basal layer) based on the presence or absencerafdhical layers of differentiating germ
cells.

I mmunofluor escent labeling on cryosections:

Testes were dissected, fixed overnight in 4% PRIgied by dehydration in 20% sucrose
solution in 1x PBS, and embedding into OCT compo{inssue-Tek). 10-micrometer thick
sections were prepared for immunofluorescent lagellides containing testis cross-
sections were washed briefly in PBS, and boiletlirmM sodium citrate buffer (pH: 6.0) for
15-20 minutes in a microwave oven. Sections wega thashed two times in PBS and
blocked for one hour at room temperature in a biagbkuffer containing 5% BSA and 5%
normal serum (from same species in which secoratatipody was raised) in 0.2% PBST
(0.2% tween-20 in 1x PBS). Primary antibody wastdill in antibody dilution buffer (1%
BSA in 0.2% PBST), incubated overnight in cold roand washed four times with 0.1%
PBST next morning. Secondary antibodies were dilutehe same antibody dilution buffer
as primary antibody and applied on the sectionsti@e were incubated with secondary
antibody solution for one hour at 37 °C, washed fomes with 0.1% PBST, mounted using
Vectashield mounting medium containing DAPI (Vedtaboratories). Sections were imaged
on a Zeiss Axioimager microscope, captured with ZENftware, and further processed with
CorelDraw (version X7) image editing software. Tokowing primary antibodies were used
in this study: AR (RRID:AB_11156085), Claudin1l (RRAB_639330), GATA1l
(RRID:AB_627663), GATA4 (RRID:AB_2108747), KI67 (RB:AB_10854564), SOX9
(RRID:AB_2239761 and RRID:AB_2574463), WT1 (RRID:AR16233), PLZF
(RRID:AB_2304760), USF1 (RRID:AB_2213986), GER(RRID:AB_2110307), Espin
(RRID:AB_399174), and DNMT3A (RRID:AB_1149786) [3®]. Antibody dilutions are
provided at the Supplemental Table 2 [36].

I mmunofluorescent labeling on paraffin-embedded sections:

Immunofluorescent labeling on 4% PFA-fixed paratfimbedded testis sections (see above)
were used to analyze the total and proliferatingniner of Sertoli and Leydig cells at

different timepoints (Supplemental Table 1). Dodlalleeling of cells with proliferation
marker Ki67 antibody and cell type-specific antilesd(SOX9 for Sertoli cells, GATA4 for
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Leydig cells) was done. Briefly, slides were dewhxysing serial incubations in xylene and
ethanol. Permeabilization was carried out in aguescooker in 0.1M citrate buffer (pH:
6.0) and autofluorescence was blocked with 100mM@IHJnspecific binding of the
primary antibody was blocked by incubation in afeutontaining 5% normal serum (from
same species in which secondary antibody was Naiis€d05% TBST (0.05% tween-20 in
1x TBS) for one hour. Primary antibodies were @itlin a blocking solution (5% normal
serum in 0.05% TBST) and incubated overnight inlgobm. Secondary antibodies were
diluted in the same blocking solution and appliadiwe sections for one hour at 37 °C.
DAPI was used as a nucleic counterstain. Finabysibctions were mounted in Prol&ng
Diamond Antifade mountant (Thermo Fisher Scientifi®ections were imaged using The
Pannoramic MIDI FL slidescanner with the 40x/Kor@® Plan Apochromat objective
(Zeiss).

I solation of stage-specific segments of seminiferoustubules:

The testes of 8-week oldsfI’” (n=3) and WT control (n=3) mice were dissected and
decapsulated. Using transillumination-assisted adlisisection method seminiferous tubule
segments representing stages II-V, VII-VIII and XKwere dissected and snap-frozen in
liquid nitrogen [50 51].

RNA extraction and RT-gPCR:

RNA was extracted from snap-frozen pieces of telidissue or staged segments of
seminiferous tubule using Macherey-Nagel mini Na&lgin RNA extraction kit (Catalog no.
740955.50) or TRIzol, respectively, (ThermoFis8erentific) following manufacturers’
protocol. 1ug of extracted RNA was reversed transcribed usithgreSuperScript VILO
cDNA Synthesis Kit (ThermoFisher Scientific, Catalw. 11754050) or SuperScript IV
VILO Master Mix cDNA Synthesis kit (ThermoFisheri&atific, Catalog no. 11756050).
RT-gPCR was performed using SsoAdvanced UniversBIRSGreen Supermix (Bio-Rad,
Catalog no. 1725270) and expression data was nizedab housekeeping genes. The list of
primers used in this study is provided in Suppletalgiable 3 [36]. Data was analyzed using
Bio-Rad CFX manager software (Version 3.1).

Seminiferous tubules whole-mount staining:

The preparation of seminiferous tubules for wholaint stainings is described in
Supplementary Materials and Methods. For immunostgj seminiferous tubules were
blocked for an hour using 0.3% PBSX (0.3% Tritori00 in 1x PBS) supplemented with
2% BSA and 10% fetal bovine serum in a 2 ml rounttéon tube on a rotating table at room
temperature. Primary antibodies were diluted inBS4 in 0.3% PBSX and incubated
overnight in cold room with rotation. Seminiferdusules were then washed three times
with 0.3% PBSX, incubated with secondary antiboiliyteld in 1% BSA in 0.3% PBSX for 2
hours on rotating table at room temperature andhegagain three times. Finally,
seminiferous tubules were arranged in linear staps mounted with Vectashield mounting
medium containing DAPI (Vector Laboratories, Bugame, CA). At least three WT and
Usf1” mice were used in the analyses.

Sperm count:

The number of cauda epididymal sperm was counted 8 and 12-week old WT (n=3) and
Usf1’”” (n=3) mice. For each mouse one cauda epididymisdigsected, few slits were made
and placed in 1 mL PBS for approximately 30 minuféee solution was pipetted up and
down few times to homogenize and extract any remgisperm. Sperm in 2d

homogenized PBS mixture of sperm were counted Bbrker chamber (Marienfeld,
Germany), and total sperm from 1 mL solution wdsudated.

Hor mone measur ements:
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For intratesticular hormonal level quantitatiorstie lysates were prepared according to a
protocol described earlier [52]. Briefly, testesrevenechanically homogenized and lysed in
APC buffer (20 mM Tris—HCI, pH 7.7, 100 mM KCI, %M sucrose, 0.1 mM Cag 11 mM
MgCl,) supplemented with protease inhibitor (CocktailldeMerck Millipore, catalog no.
535140) at 1:200 dilution. The APC buffer was seppnted with 0.5% Triton X-100 (final
concentration) prior to lysate preparation. Thetysamples were centrifuged at 14000xg for
10-12 minutes at 4-8°C. Pierce BCA kit (ThermoFisBeientific) was used for measuring
the lysate protein concentration. 20-pg of totak@n was used for each sample, and the
hormone level quantitation was done according taufecturer’s instructions. Hormonal
concentrations obtained from standard curve wdkdunormalized to respective testis
weights. For serum hormonal level quantitation, |28 serum were used for each reaction,
and the concentrations were measured using standare made after manufacturer’s
instructions. Four mice per group were used fariesticular hormonal measurement,
whereas 5 mice per group were used for serum harewel quantitation. The following
ELISA kits were used: FSH ELISA kit (Novus Biologis, catalog number KA2330), LH
ELISA kit (Novus Biologicals, catalog number KA2332nd Testosterone ELISA kit
(Abcam, catalog number ab108666).

Statistics:

Statistical tests were performed using GraphPadiPscftware (Version 6). Unpairédests
were performed to calculagevalues;p values <0.05 were considered statistically sigari.

RESULTS

USF1 expression within the seminifer ous epithelium is detected in Sertoli cellsand

spermatogonia

As a first step towards unraveling USF1'’s rolefs$permatogenesis, we investigated which
cells within the testis express USEIsf1 mRNA was detected at the whole-testis level at all
the studied timepoints (Figure 1A). Moreover, kpmrssion level in adult mice did not
depend on the stage of the seminiferous epithaliee (Figure 1B). In adult wildtype mice,
USF1 was detected in Sertoli cell nuclei by indiieemunofluorescence. In agreement with
MRNA level data, USF1 protein expression was nieicéfd by the stage of the seminiferous
epithelial cycle (Figure 1C). To confirm that th&EL-positive cells are Sertoli cells,
antibodies against two well-known Sertoli cell mends GATAL and WT1, were included in
the staining protocol. USF1-positive seminiferopgreslial cells invariably also expressed
WT1 but were GATAL-positive only in a subset ofssesections (Figure 1C), as expected
[53]. Interstitial cells also stained weakly for X6 Reassuringly)sfl’ testes were negative
for USF1, but exhibited normal expression of GATa&dd WT1 (Figure 1C).

Based on this localization pattern, testicular Ukgression appeared to be restricted to
testicular somatic cells, and missing from gerntsc&ue to the extensive tissue handling
procedure, it can be challenging to reveal low lle¥grotein expression in paraffin-
embedded tissues sections. Therefore, we perfowhete-mount staining of fixed
seminiferous tubules, which allows three-dimendiemsualization of the tissue and can
provide more sensitive detection of low abundarrogeins. Indeed, this approach confirmed
the expression of USF1 in Sertoli cells, but alsgenled USF1 expression in PLZF-positive
cells,i.e. spermatogonia, on the basement membrane of thaigenous epithelium (Figure
1D-E). PLZF, originally regarded a specific markarundifferentiated stem and progenitor
spermatogonia, has since been shown to be expralssenh early differentiating
spermatogonia [21 54 55].

To further characterize the USF1-positive spernmaicg population we stained for
DNMT3A, a protein whose expression is induced ugifierentiation commitment in the
male germline [56] and maintained in all populasiar differentiating spermatogonia (Al-
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A4, In, B) and preleptotene spermatocytes. Thedsgtevel of USF1 was observed in
PLZF+/DNMT3A- and PLZF+/DNMT3A+ cells,e. undifferentiated (#vqitr) and early
differentiating spermatogonia (Supplementary FidiA&¢ A more detailed analysis of USF1
expression within the differentiating spermatogbp@pulation revealed that USF1 levels
were sharply downregulated in differentiating spatwgonia (Supplementary Figure 1B).
Since Al differentiating spermatogonia are derifreth Ayngirr Spermatogonia without
mitosis in a retinoic acid-dependent transition [J$F1 can be justifiably considered a novel
marker for Angit Spermatogonia.

Aunditt Spermatogonia are considered to consist of twallpdipns of cells: actual stem
cells (SSCs) that undergo self-renewal, and traamjlifying progenitor cells [2-5]. f\giff
expressing GF&L (GDNF family receptor alpha-1), most often represig A and Ay cells,
are more likely to act as stem cells, whereas miffgation-primed SOX3-positive fyit,
typically represent longer cysts [57]. Triple-stamof mouse seminiferous tubules with
antibodies against GFR, USF1 and SOX9 confirmed that a subset of USKItige Aundit
spermatogonia also express the stem cell markewGRiich suggests that USF1 is also
present in SSCs (Supplementary Figure 1B). A summifthe marker expression based on
whole-mount IF stainings is provided in Figure 1F.

Reduced testisweight in Usf1” mice

Body and testis weight ddsf1’~ and control mice were recorded at multiple timeifrom
the first weekpost partunto 20 weeks. Decreased body weight and sitésfi’ mice was
observed at all timepoints (Figure 2A, Supplemegnkagure 2). Similar to body weight,
testis size and weight were also smaller in knotkuige (Figure 2B-C). Further, relative
testis weight was lower idsfI’ mice at all the examined timepoints as comparemtarol
mice, and it was significantly lower after birthdaim adulthood from 12 weeks onward
(Figure 2D). Thus, USF1 deficiency affects bodygieiand testis growth. Despite USF1-
deficient males’ lower testis and body weight, thesce were otherwise healthy and able to
sire offspring.

Usf1” mice display progressive degener ation of the seminiferous epithelium
Testis histology of adultsfI’” and wild-type controlysf1”*) mice was studied at 8, 12, 20
and 30 weeks of age. The spermatogenic defddsfif- mice became obvious in 12-week
old mice. While control mice hosted normal sperrgateesis in nearly all tubules, a
substantial proportion of seminiferous tubules)sfI’ mice had degenerated at that
timepoint (Figure 2E-F). The magnitude of this d@¢facreased with age, and in 30-week old
knockout mice only a minority of tubules hostedrspetogenesis (Figure 2G). Moreover,
seminiferous tubules with ongoing spermatogengpisdlly appeared to contain a lower
number of differentiating cells per cross-sectiana@a and displayed thus lower cellular
density (Figure 2H-J). Closer examination reveded many tubule cross-sections were
devoid of specific types of germ cells.

A vast majority (92%) of seminiferous tubule crasstions in 8-week oldsfL’” mice
still showed normal layering of the seminiferougtlegdium consisting of 3-4 cohorts of
differentiating germ cells. However, in older anlm&ross-sections missing one, two or
three layers of differentiating germ cells or camitag only the basal layer became
significantly more common (Figure 2K-N). The crassstions that lacked one to three layers
of differentiating germ cells typically consistefdtbe basal layer plus elongating spermatids,
potentially suggesting a spermiation defect. Howewsss-sections lacking just one or two
layers of spermatogenic cells were also identiffabplementary Figure 3A-B). In line with
the observations described above, epididymal speunt inUsf1™ mice was only slightly
decreased at 8 weeks of age but severely affetted age of 12 weeks (Supplementary
Figure 3C).
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FSH, LH and testoster onelevels are maintained in Usf1-deficient mice

The testis is an endocrine organ and pituitaryvéeriuteinizing hormone (LH) and follicle
stimulating hormone (FSH) are essential for teficdevelopment and function [58]. While
serum testosterone levellirsfI™ mice was not different from wild-type controlsrise
levels of LH and FSH were S|gn|f|cantly higher (&iig 3A-C). These data indicate that the
spermatogenic phenotype 0§f1 mice is likely not due to insufficient gonadotropi
stimulation. Interestingly, intratesticular testysine (ITT) levels at 12 weeks’ ageUisf1”
mice were significantly higher when compared taiwitpe control mice (Figure 3D). This
indicates that degeneration of seminiferous epitheln Usf1” mice does not result from
lack of androgen stimulation. To investigate whethigh ITT in KO mice is due to Leydig
cell hyperplasia, we quantified Leydig cells afeliént timepoints. However, no significant
differences were observed gFigure 3E). Moreoveydigcell proliferation was not affected,
and Leydig cells of bothsf1™ and wild-type mice entered mitotic quiescence bykeks

of age (Figure 3F). Transcript levelsldfl receptor(Lhcgr) were also unaffected (Figure
3G). High ITT levels can at least in part be expta by the increased proportion of Leydig
cells to other cell types in degeneratitsf1” testes.

Testosterone exerts its effect via binding to th@ragen receptor (AR) that is expressed
by Sertoli, Leydig and peritubular myoid cells irettestis. Cell type-specific AR action is
essential for lifelong fertility, whereas global Afeficiency compromises masculinization
[59- 63] Immunofluorescence detection indicated &R expression in the testis between
Usf1’ and WT control mice does not differ (Figure 3HhisTwas further corroborated by
gPCR data showing normAR expression on the whole testis level (Figure 3Hc& correct
stage-dependent gene expression is arguably esdentefficient progression of the
spermatogenic program, we isolated tubules frometipooled epithelial stages (1I-V, VII-
VIII and 1X-XI) for transcriptomic analyses usiniget seminiferous tubule transillumination
method [50 51]JARmMRNA displayed the highest level of expressiopany stages of the
seminiferous epithelial cycle both in the knockoute and WT controls (Figure 3J).

Usf1-deficiency does not substantially affect Sertoli cell maturation and function
Sperm production capacity is determined by the remolb Sertoli cells, as a single Sertoli
cell is able to host a specific number of germsciella species-dependent manner [64 65]. To
address whether the low density of germ cells pessssection of seminiferous epithelium in
Usf1” mice (Figure 2H-J) can be explained by a redudtidBertoli cell number, we
quantified Sertoli cells per tubular cross-sectabdifferent ages. However, no significant
differences between KO and WT control mice werentb(Supplementary Figure 4A).
During the first weeks of postnatal life, Sertails undergo a maturation program that
encompasses a shift in cell transcriptome/protedwss,of mitotic activity and cell
polarization. Because incomplete maturation of@iecells might contribute to the
spermatogenic phenotype observet)&fl’ mice, we investigated various aspects of the
process. However, no significant differences betwésf1” andUsf1"* Sertoli cells were
recorded in mitotic activity (Supplementary Figdi®), in expression of select Sertoli cell
immaturity-related mRNAs [anti-Mullerian hormon&nih, PodoplaninPdpn) and
Cytokeratin-18 Ck18 [66-68]] or in the localization of blood-testianvier (BTB) proteins
Claudin-11 and Espin (Supplementary Flgure 5C-B)leCtively, these data led us to
conclude that Sertoli cell maturationlirsfI’™ mice is not compromised.

Stage-dependent gene expression in Sertoli cellsis somewhat deregulated in Usf1” mice

USF1 is a transcriptional activator and it has begslicated in the regulation of two
important testicular geneBSH receptor (Fshrj69-71] andSteroidogenic factor 1 (Sfir
Nr5al)[30 72].In silico analyses further predict that there are USF1 bigndites upstream
of a number of genes important for Sertoli celldiion, includingGata4[73 74] andSox9
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[75]. RT-gPCR analysis did not reveal any statalycsignificant differences in the
expression of these genes nor in another ess&etiadli cell transcription factor Wilm’s
tumor 1 [Wt1; 76 77] irUsf1” testes (Supplementary Figure 5A-D).

Sertoli cells undergo cyclical changes in theinsaiptome as a result of the
seminiferous epithelial cycle [78], and many geevgsressed by Sertoli cells exhibit a
variable level of expression, as dictated by thgebf the cycle. While all of the studied
genes maintained their typical pattern of expressidifferent stages, elevat&htaland
Sox9mRNA levels, which are potentially biologically portant, were observed at stages
VII-VIII in KO mice (Figure 4).

Depletion of undifferentiated sper matogonia contributesto degeneration of the seminiferous
epithelium in Usf1” mice

In order to elucidate the origin of seminiferoustieglial degeneration itJsf1”” mice, we
guantified the proportion of tubules that host PLaisitive cells. It steadily decreased in
Usf1 KO mice with age (Figure 5A-B), indicating deptetiof undifferentiated
spermatogonia. Thus, the spermatogenic defecesetimice can at least partially be
attributed to an inability of)sf1” testes to maintain undifferentiated spermatogomihe
stem and progenitor cells of the adult male gerenlin

Stem cell nichein Usf1” mice

Stem cells are located in a microenvironment thahtains their self-renewal capacityg.

the stem cell niche. In the mouse testis the niaimmot be defined by anatomical criteria but
rather by molecular cues, and the fate of undiffea¢ed spermatogonia is dictated by the
availability of a selection of paracrine factorsnAmber of factors have been implicated in
the regulation of cell fate decisions within theuse undifferentiated spermatogonia. While
the role ofGdnfamong these factors is best-characterigaat|12[79], Csf1[80], Fgf2 [81],
Nrgl[82] andWnt4[83], Wnt5a[79 84 85] andVnt6[86] are arguably also important
regulators of Angir Spermatogonia, whereBsnp4[87] andScf[88] become critical once the
transition into Al differentiating spermatogonisstaken place. We studied the mRNA
expression of these genes at 1, 4, and 8 weekpitBesnsiderable variation, no statistically
significant changes for any of these genes wermarded, implying that the paracrine milieu
that A,ngit Spermatogonia are exposed to inlti1’” testis is not drastically different from
that in the control testis (Supplementary Figuen 7).

Because of the importance of GDNF and $QFAnqir and differentiating
spermatogonia, respectively, we studied the exjonesd these two genes in staged tubules
isolated from 8-week old mice. This timepoint watested because Wsf1” testis the first
signs of seminiferous epithelial degeneration bexapparent by then, but the cellularity still
remains largely unaffected (Figure 2K). Consisteitlh data above (Figure 4), the stage-
specific expression pattern for bddunfandScfwas maintained iVsf1 KO mice (Figure
5C-D). However, mRNA levels were generally highetsfl” mice, and the differences
reached statistical significance at stages II-V@dnfand stages VII-VIII foiSct These data
indicate that spermatogonia in tiefl’ testis may be exposed to physiologically altered
levels of paracrine growth factors at specific stagf the seminiferous epithelium, despite
the fact that at the whole testis level no chavgar® recorded.

A-single sper matogonia in Usf1” testes are hyper proliferative

Increased apoptosis and proliferation-coupled stelirexhaustion are amongst the obvious
mechanisms that may contribute to the observedressiye depletion (Figure 5B) of
germline stem cells within thesf1’ testis. To investigate these options we employed
indirect immunofluorescence on segments of senmmife tubule from 8-week old WT and
Usf1” mice. As judged by cleaved caspase-3 stainingnttigence of apoptosis within the
GFRul-expressing Angir Was generally low irrespective of genotype, whih line with
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earlier data [19] (Supplementary Figure 8). Intcast, GFR1-positive Angit
spermatogonia were proliferatively active both i WhdUsf1"™ mice, as judged by
proliferation marker Ki67 staining (Figure 6A-Bpterestingly, as illustrated in Figure 6B
and Supplementary Figure 8, areas where @FHpobsitive cells were present at a very high
density were occasionally encountered inWisél” seminiferous tubules. This prompted us
to study proliferation of GFé&lL-expressing Aand A, spermatogonial cells that are the main
constituents of the stem cell pool under steadiesWhile the majority of GF&L-positive

A cells were Ki67-negative in the WT control testige situation was the opposite in the
Usf1” mice (Figure 6C-D). A similar trend was observediFR1-positive Ay cells but this
difference was not statistically significant. Basetthese data, we conclude that
proliferation-coupled exhaustion contributes todegletion of stem cells in thésf1” testis.

DISCUSSION

This study constitutes the finst vivoassessment of the role of USF1, a ubiquitously
expressed transcription factor, in the maintenafiepermatogenesis. Lossd$fl leads to
age-related decline in sperm production, mostyikiele to depletion of spermatogonial stem
cells. Even though youngsf1™ adult mice still hosted relatively normal spernugoesis,
the spermatogenic defect became obvious by 12 wefedge and continued to exacerbate
thereafter. This is a characteristic of stem celimtenance failure, as has been previously
demonstrateé.g.in Plzf[20 21], Taf4b[22] andErm [89] deficient mice. Typically, some
areas within the seminiferous tubules are ableamtain stem cells for a longer time, but the
number of such areas, or niches that they cordatreases with age, while tubules that
contain only the basal layer of the seminiferoughefium and are devoid of germ cells
become more common. As an intermediate step, tslkiée lack one to three layers of
spermatogenic cells are observed. If stem cellsi@pteted, 35 days are needed by
spermatogenesis to clear the tubule of germ déditably, we also observed tubules which
lacked spermatogenic cell layers at the end oéuwfitiation hierarchyi.e. spermatids) but
retained the meiotic and mitotic populations. Samyl, tubule cross-sections missing any
single layer were occasionally noted. This impthest in theUsf1” testis not every cycle is
able to give rise to differentiating progeny andttthe stem cell compartment first functions
less efficiently before it collapses.

The significance of mitotic quiescence in the ldagn maintenance of stem cells is
widely appreciated. Hence, the continued engagenfe®$Cs in the cell cycle provides an
attractive explanation for the progressive spergenti failure inUsf1”” mice. Normally,
Aundgitt Spermatogonia exit from the cell cycle at epitilediage Il and a subset of them
becomes sensitive to retinoic acid as a resultffgrdntiation-priming activity of Wnt
signaling, and by upregulation of retinoic acidegmr gammaRARg [7 86 90 91].
Expression oRARgand associated genes, including neurogenMe®® andSox3 thus
delineate Angirr into differentiation-primed and stem subsets B7/®0]. Interestingly, the
mechanism(s) responsible for thg.x cell cycle exit are essentially undefined. Notably
however Gdnfis expressed at the lowest level at stages VII;VH. the same stages where
the early phase of differentiation-inducing RA puis recorded [17 91-95]. Similarly /i
spermatogonia re-enter the cell cycle at stage s¢ymthrony with reactivation @dnf
expression and a sharp decline in RA levels [91 A% mitotic activity thus seems to be
intimately coupled with GDNF availability. We spédaie that elevated levels of GDNF at
stages II-VIIl inUsfI’ mice may contribute to prolonged proliferatiorGffRu1-positive
SSCs and to the inability to induce formation & grogenitor subset [96]. This scenario
would result in smaller cohorts of differentiatipgppgeny and ultimately in fewer sperm, as
recently suggested by Sharma and Braun [12]. M@e@rolonged engagement in the cell
cycle may eventually lead to proliferation-coupéedhaustion of GFRL-expressing
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spermatogonia, thus providing an explanation ferdtem cell depletion phenotype (Figure
7).

Gdnfis an FSH-regulated gene [14 16 17 97]. Interghtjrplasma FSH levels idsf1’”
mouse were elevated which may contribute to ine@&sinfexpression in stages 1I-V (lI-
VIII). The significance of this connection, howeyer unclear; the role of FSH (&dnf
regulation under physiological conditions has besently called into question [84]. We
initially speculated that another major endocrinetdr, testosterone, might be more
important for the phenotype. Testosterone is ctdoraspermatogenesis and its levels inside
the testis are around one order of magnitude hitjtzar in plasma. Once deemed
indispensable, recent research has shown thatfiigis not essential for sperm production,
and that spermatogenesis can be initiated and anaéat at a testosterone concentration
similar to what is measured in plasma [98]. Testwste has also recently been implicated in
regulation of the spermatogonial stem cell nicleGDNF and WNT5A [13 84]. It is
therefore possible that the stage II-V specifivaledGdnflevels are due to high ITT
measured itUsfI’ mice. These stages have previously been showisyttad a high
sensitivity to androgen action [99]. WNT5A is a depmental regulator of the
spermatogonial stem cell pool, and its expressaoivnregulated by testosterone [84]. We
did not, however, detect any changeS\int5amRNA levels inUsf1” testis.

In summary, the paracrine milieulifsfl” testes was somewhat altered compared to WT
testes. However, the changes were modest, andnsistent reduction in the expression of
the studied paracrine factor-encoding genes wasredd. Moreover, the levels of endocrine
factors were at a sufficiently high level to maintspermatogenesis in thisfL’ testis.

Sertoli cells in adulUsfI™ mice had matured normally and exhibited all chinstic

aspects of adult-type Sertoli cells. Although weraa rule out a role for a defunct SSC niche
in Usf1” testis, it seems likely that the phenotype is tgasftspermatogonial origin, and that
USF1 is needed for the maintenance of the sperroataigstem cell pool in a cell-
autonomous fashion. We propose that inulsél” testis spermatogonial stem cells become
continually engaged in the cell cycle, resultinghiair depletion with age. This manifest itself
as an accumulation of tubules displaying poor sp&sgenic differentiation, smaller cohorts
of differentiating germ cells, and disrupted lapgrof the seminiferous epithelium,
collectively resulting in age-related reductiorsperm production.

There are numerous different mechanisms how lo&kS&f1 may contribute to the loss of
spermatogonial stem cells in a cell-autonomousidasiNamely, among its many functions,
USF1 has been implicated in the control of cellplaniferation. Not only have several tumor
suppressor genes been recognized as direct USIEIS4PTEN, APC, p53, e.g.; 100 101-
103] but USF1 also stabilizes p53 [104], opposesatttion of Myc at the transcriptional
level [105] and may contribute to cellular immoitiaby maintaining TERT (telomerase
reverse transcriptase) expression [106]. Henceffeet of USF1 on cellular proliferation is
considered growth-inhibitory. Although USF1 hastbebkown to fulfill many aspects of a
classical tumor suppressor protein, a connectionden USF1 deficiency and increased
proliferation or tumor formation has not been destmted. To our knowledge, this is the
first direct demonstration that loss of USF1 resurthigher cellular proliferatiom vivo.
Paradoxically, however, increased stem cell pnaifen does not result in tissue growth but
rather in hypoplasia due to a stem cell maintenaeéect. It remains to be thoroughly
investigated if (partial) depletion of stem celtributes to tissue growth defects in other
tissues, besides the testislisfl” mice.

Deficiency of USF1 or USF2 can typically be comged for by the formation of USF2
or USF1 homodimers, respectively [29 107]Usf1” testes, USF2 homodimers are expected
to compensate for lack of USF1 at most USF-depdrgkare promoters, as demonstrated by
Hermann and co-workers for thshr gene in Sertoli cells [71]. In agreement with thiisdy,
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we also found thashr expression was unaffected in the absence of USkthermore, loss
of USF1 activity neither affected expression ofgemvolved in Sertoli cell maturation or
function, nor had an overt impact on the stemmiete. Thus, USF2 is likely sufficient to
compensate for USF1 loss in paracrine and autocem@ation by Sertoli cells. This,
however, is likely not the case for the testicgkam cell pool. We speculate that there are
USF1-regulated gene(s) in undifferentiated spergat@ whose transcription cannot be
maintained by USF2 homodimers, and that lack af #ression results in the gradual
depletion of stem cells in a cell-autonomous fashio

USF1 deficiency in mouse and redu¢¢gF1expression in humans has been shown to
help maintain a beneficial lipid profile €. higher high-density lipoprotein and lower
triglycerides), insulin-sensitivity and to protegainst hardening of the arteries. Therefore,
targeting USF1 has excellent clinical potentiathia treatment of obesity, diabetes, and
cardiovascular diseases [35]. Here we have shoatidbs of USF1 also has adverse effects
on reproductive function, a finding that might iiteely raise doubts about appropriateness
of USF1 as a drug target. Howevesfl heterozygous mice, that also displayed reduced
weight gain and more beneficial lipid profiles [38]d not show spermatogenic defects.
Thus, while complete absence of USF1 leads to inadapermatogenesis, partial loss
(Usf1"" mice) does not appear to have these effects. Buugqresent findings are still
compatible with our previous proposal [35] of tleential of USF1 modulation as a
therapeutic treatment strategy for cardiometaltbiease. We have uncovered a significant
novel role for USF1 as a factor required for speaganesis, highlighting the varied
physiological roles of this transcription factor.

SUPPLEMENTAL INFORMATION:
Supplementary materials and methods, tables antefchave been provided in an online
repository, which is available at https://dx.daojdi0.6084/m9.figshare.7670807 [36]
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Figure 1: USF1 expression islimited to testicular somatic cellsand a subset of
spermatogonia. A-B) RT-gPCR analysis dfisflexpression from whole testis RNA of
wildtype control mice at the indicated timepoimg and from total RNA of indicated pooled
seminiferous tubule epithelial stages (B¥f1lexpression levels were normalized to
respectivexr-tubulin levels in A. Data in B were normalized agaWt1, which is uniformly
expressed by Sertoli cells independent of epithslege. Bars represent meants.d. gand
values are from unpairdeests. Asterisks: * $£<0.05, ** =p<0.01 and *** =p<0.001. C)
Testis cross-sections of the indicated genotypes st@ined with DAPI and antibodies
against USF1, GATA1 and WT1. GATAL1 displayed a stdgpendent pattern of expression
in Sertoli cells, and therefore GATAL expressiomjke WT1, was limited to Sertoli cells of
certain seminiferous tubules. Immunofluoresceptdrstaining confirmed abundant
expression of USF1 in Sertoli cells. A low leveldbF1 was also detected in the testicular
interstitium. USF1 expression was undetectabléenkihockout testes. D-E) Representative
whole-mount immunofluorescence stainings of WT ademiniferous tubules by antibodies
against PLZF and USF1. USF1 was detected in PLZfathe Sertoli cells plus in PLZF-
positive undifferentiated A A, and Ay (cysts of 4, 8 and 16 cells) spermatogonia. See
Supplementary Figure 1 for more detailed charazdéan of the USF1-positive
spermatogonial subpopulation. Scale bars iiin C and 5Qum in D-E. F) Summary of the
whole-mount IF staining included in this study. USE ubiquitously expressed by Sertoli
cells. USF1 expression in spermatogonia is resttith Angir Spermatogonia and to early (up
to A4) differentiating spermatogonia. Spermatogbeigression of USF1 closely follows
that of PLZF. Solid line indicates ubiquitous rdpdietectable expression, whereas
downregulation of protein expression is marked wlibtted line. For GF&L, the dotted line
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is used throughout to illustrate that GHRs limited to the SSC subset of#. As
suggested by IF datblsf1 does not display a seminiferous epithelial stagpHated pattern
of expression (B).

Figure2: USF1lisrequired for normal testis growth. A) One-week old male pups of the
indicated genotypes. These three males were frersame litter. B) Representative testes of
indicated genotypes from eight-week old males. €3tiE weight of control andsf1’” mice

at indicated ages. D) Relative testis weight ofsamce represented in C. In both C and D, a
minimum of three animals per group were includedtipeepoint, bars represent meanzs.d.
andp values are from unpairaeests. E-N) Progressive degeneration of the séenos
epithelium in the absence O&fL E-J) Representative testis cross-sections ahtlieated
genotypes. E-G) Testis sections from 12-week axuitrols (E) and fronusfL™ mice at 12

(F) and 30 weeks of age (G) stained with hematoxaid eosin to show morphology of
seminiferous tubules. Already at 12 weeks a subatgroportion of seminiferous tubules of
Usfl” mice had degenerated and hosted only the basal laylacked one or more of the
hierarchical layers of differentiating germ cel9.(Tubule degeneration became more
prevalent with age (G). H-J) Cross-sections ofvittlial seminiferous tubules representing
normal spermatogenesis at stage VII-VIII of the sefierous epithelial cycle. Compared to
seminiferous tubules in controls (H), reduced datity is observed in otherwise normal-
looking seminiferous tubules bfsfI’ mice (I-J). Scale bars: 5¢@n (E-G), 50um (H-J). K-

N) Evaluation of spermatogenic defect from testiss-sections. Error bars represent
meanzs.d. ang values are from unpairedests. Asterisks: * $<0.05, ** =p<0.01 and ***

= p<0.001. See also Supplementary Figure 3 for scaniibgria.

Figure 3: Endocrine regulation of the Usf1” testis. A-C) Serum hormonal levels in mice of
the indicated genotypes. Although serum levelstdf(R) and FSH (B) were higher idsf1”
mice, there was no difference in serum testostefGhéevels. D) Intratesticular levels of
testosterone were significantly elevated intis61’" testes when compared to wildtype
control mice. All the hormonal levels in A-D are aseired from minimum 4 animals per
genotype and at 12 weeks age. E) Quantitation ydigecells at different timepoints. F)
Quantitation of proliferative Leydig cells at thedicated timepoints by an antibody against
Ki67. G) LH receptorl(hcgr) expression by RT-qgPCR analysistubulin was used as a
normalization control. H-I) Assessment of androgeseptor (AR) expression by
immunohistochemistry (H) and RT-gPCR (1). AR waarid normally expressed within the
different testicular somatic cell types. Insets it+4H) show comparable AR expression in
Sertoli/myoid cells (insets 1 and 3) and Leydig/mycells (insets 2 and 4) between WT
control andJsfL”” mice. J)AR expression at the indicated seminiferous tubuithelfal
stages as normalizedWét1, which is uniformly expressed by Sertoli cellsepéndent of the
epithelial stage. Error bars represent meantadip &alues are from unpairddests.
Asterisks: * =p<0.05, ** =p<0.01 and *** =p<0.001. Scale bars: 1Q0n (H) and 5Qum
[insets in (H)].

Figure 4: Seminiferous epithelial stage-specific gene expression patter ns are maintained
in the absence of Usf1. A-D) Expression of select mRNAs: &shr, B) Gatal, C) Sox9 and
D) Stra8was assessed by RT-gPCR. To control for the obdeiWterences in cellularity
betweerlUsfI and WT mice, data were normalized agaivst that is uniformly expressed
by Sertoli cells independent of the epithelial stageminiferous tubule segments
representing stages II-V, VII-VIII and IX-XI wersolated by transillumination-assisted
microdissection from 8-week old mice. Generallypmssion of studied genes were
maintained in a stage-wise manner betwdsfi’ and WT mice. However, for individual
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genes enhanced expression was observed at stadies in the knockout tubules. Three
animals per group were used in all experimeéstsa8was included in the experiment as an
internal control since it is known to display alfligstage-dependent pattern of expression at
stages VII-VIII of the seminiferous epithelial cgdil7 108]. Error bars represent meants.d
andp values are from unpairddests. Asterisks: * $<0.05, ** =p<0.01 and *** =

p<0.001.

Figure5: PLZF-positive cells are depleted with age in the Usf1™ testes. A) Testis cross-
sections, shown here from 12- and 25-week old mvese stained with an antibody against
PLZF at different timepoints. B) Quantitation obtues hosting PLZF-positive cells in
control andUsf1’” testes at the indicated ages. A minimum of twanais per timepoint were
analyzed. Scale bars: pth. C-D) GdnfandScfexpression levels at the indicated stages of
the seminiferous epithelial cycle. Transcript lswskre normalized t@/tl, which is

uniformly expressed by Sertoli cells independerthefepithelial stage. A minimum of three
animals per group was used in all experiments.ribracs present meants.d. gndalues are
from unpaired-tests. Asterisks: * $<0.05, ** =p<0.01 and *** =p<0.001.

Figure 6: Spermatogonial stem cellsare hyperproliferative in the absence of Usf1. A-B)
Representative whole-mount IF staining of 8-weekts (A) andUsf1’” (B) seminiferous
tubules showing areas where GHRpositive cells were found accumulated. Only asstilof
GFRu1-positive also stain for Ki67. GFR-negative cells are differentiating spermatogonia
that are continuously engaged in the cell cyclethnd positive for Ki67. C) Assessment of
proliferation within the GFR1-positive undifferentiated spermatogonia. Blu@arpoints at
a Ki67-positive (proliferatively active) GFR-positive A spermatogonium and yellow
arrows indicate Ki67-negative (non-proliferativelf @ 1-positive A spermatogonia.
GFRu1-positive/Ki67-positive 4 spermatogonia are indicated by the white arrow. D)
Quantitation of Ki67-GFR1 double-positive Aand Ay spermatogonia in mice of the
indicated genotypes. Error bars represent meanasdp values are from unpairdeests. **
=p<0.01. Scale bars 50n.

Figure 7: Proposed model for USF1-dependent, proliferation-coupled stem cell

exhaustion. In the WT testis, stem cells continually exit (&tge II) and re-enter (at stage X)
cell cycle as a result of the progress of the sdenous epithelial cycle. Spermatogenesis is
initiated (.e. transition from Anqirr to type Al differentiating spermatogonia) oncergve
epithelial cycle at stages VII-VIIl. A delicate balce between self-renewal vs. differentiation
prevails and the stem cell population is maintawéde a sufficient but not excessive
number of differentiating progeny is simultaneoysigduced during every epithelial cycle,
enabling lifelong sperm production from the SStheidn theUsf1” testis stem cells
become continually engaged in the cell cycle, tesyin their proliferation-coupled
exhaustion and inability to maintain the stem pelbl. Once the niche is depleted of stem
cells, germ cells are lost from the locale layetdyer as a result of seminiferous epithelial
cycle progression and the spermatogenic programb8lg used to indicate different germ
cell types are described in Figure 1F.
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