
Running head: Individual differences in Intuitive physics  

 

Intuitive physics ability in systemizers relies on differential use of the internalizing system and long-term 

spatial representations 

Tapani Riekki
1*

, Juha Salmi
1,2,3

, Annika M. Svedholm-Häkkinen
1

 & Marjaana Lindeman
1

 

 

 

1Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
 

2
Department of Psychology, Faculty of Arts, Psychology, and Theology, Åbo Akademi University, Turku, 

Finland
 

3
Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University, Espoo, Finland 

*Corresponding author: Department of Psychology, Faculty of Medicine, University of Helsinki, P.O. Box 9, 

00014 University of Helsinki, Finland. Phone number: +358 440424281, E-mail: tjjriekki@gmail.com fax: 

+358  0294129542 

Helsinki. P.O. Box 9, 00014 Finland.  

Acknowledgements  

This study was supported by the Research Funds of the Academy of Finland under Grant No. 265518. 

 

 

 

 

 



Abstract 

According to the Empathizing-Systemizing theory (E-S Theory), individual differences in how people 

understand the physical world (systemizing) and the social world (empathizing), are two continuums in the 

general population with several implications, from vocational interests to skills in the social and physical 

domains. The underlying mechanisms of intuitive physics performance among individuals with a strong 

systemizing and weak empathizing (systemizers) are, however, unknown. Our results affirm higher intuitive 

physics skills in healthy adult systemizers (N=36), and further reveal the brain mechanisms that are 

characteristic for those individuals in carrying out such tasks. When the participants performed intuitive 

physics tasks during functional magnetic resonance imaging, combined higher systemizing and lower 

empathizing was associated with stronger activations in parts of the default mode network (DMN, cuneus 

and posterior cingulate gyrus), middle occipital gyrus, and parahippocampal region. The posterior cingulate 

gyrus and parahippocampal gyrus were specifically associated with systemizing “brain type” even after 

controlling for task performance, while especially in the parietal cortex, the activation changes were simply 

explained by higher task performance. We therefore suggest that utilization of DMN-parahippocampal 

complex, suggested to play a role in internalizing and activating long-term spatial memory representations, 

is the factor that distinguishes systemizers from empathizers with the opposite “brain type” in intuitive 

physics tasks. 
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Introduction 

Human goal-directed behavior is largely based on predictive coding relying on intuitive knowledge of the 

laws of physics (Fischer, Mikhael, Tenenbaum, & Kanwisher, 2016; Hegarty, 2004; M. McCloskey, 

Washburn, & Felch, 1983; Sanborn, Mansinghka, & Griffiths, 2013). However, people’s basic physical 

understanding of mechanics varies even across the adult population. For example, people may incorrectly 

predict the path of a ball released from a curved tube (unlike some presume, it is straight not curved) or fail 

to envision that a ball will follow a path resembling a parabolic arc when it is dropped from the hand of a 

walking person (Kaiser, Jonides, & Alexander, 1986; Michael McCloskey, Caramazza, & Green, 1980; 

McCloskey et al., 1983). Some intuitive understanding of basic principles of physics, such as that physical 

objects are solid, persist over time, and fall to the ground if not physically supported (Bloom, 2009; Spelke, 

1994) emerges already during infancy. However, to many of us explicit learning of Newtonian physics and 

utilizing this knowledge in managing with the real world remains difficult into adulthood (for review see, 

Sanborn et al., 2013). This suggests that our intuitive understanding of physics deviates from Newtonian 

physics, although physics and our intuition of it must still share some similarities, as we can learn to deftly 

interpret the physical world and to use this information in our interaction with it. So far, it has remained 

unclear what drives the individual differences explaining how well people learn to interpret and interact 

with the physical world. According to the empathizing-systemizing theory (E-S theory; (Baron-Cohen, 

Knickmeyer, & Belmonte, 2005; Baron‐Cohen, 2009) one possible candidate for individual differences 

leading to better performance in intuitive physics is systemizing. In this study, we investigate how 

systemizing might lead to better performance in the intuitive physics tasks and which brain mechanisms 

could be involved in the better performance. 

According to the empathizing-systemizing theory (Baron-Cohen et al., 2005; Baron‐Cohen, 2009), 

systemizing and empathizing traits are normally distributed across the population. Strong empathizers are 

people- and social-world orientated individuals, who have the interest and ability to understand the 

thoughts and feelings of others and the ability to respond to these with appropriate emotions. Strong 



systemizers, in turn, have a high interest in physical systems and they understand well how things work 

(Baron-Cohen, 2002; Baron-Cohen et al., 2005; Baron‐Cohen, 2009). Baron-Cohen has suggested that 

strong systemizers perform well in tasks requiring spatial navigation, map reading, and solving physics 

problems, and they often choose occupations such as engineering and computers, which are linked to the 

material world. 

Although systemizing and empathizing can be equally developed, among some individuals systemizing can 

be more developed than empathizing, or empathizing can be more developed than systemizing. In the E-S 

theory, a cognitive profile with poor empathizing and strong systemizing is called a systemizing “brain 

type”, whereas a profile with strong empathizing and poor systemizing is called an empathizing “brain 

type” (Wakabayashi et al., 2006). It should be noted that a “brain type” is not assessed with brain measures 

but with a difference score between self-reported empathizing and systemizing. The “brain type” 

terminology has its roots in the autism research where an extreme systemizing “brain type” (i.e., extreme 

male “brain type”) has been used to characterize the individual differences associated with the autism 

spectrum disorders (ASD) and especially the overrepresentation of ASD among males (Baron-Cohen, 2002). 

Recent research has provided cumulative empirical evidence supporting the E-S theory, indicating that 

empathizing and systemizing have wide-ranging influences on cognition, interests, and hobbies in both the 

physical and social spheres across the typically developing population (Nettle, 2007; Svedholm-Häkkinen & 

Lindeman, 2016; Wright, Eaton, & Skagerberg, 2015; Zeyer et al., 2013). Furthermore, behavioral studies 

have shown associations between intuitive physics abilities and self-reported systemizing in healthy adults 

(Lindeman & Svedholm‐Häkkinen, 2016; Morsanyi, Primi, Handley, Chiesi, & Galli, 2012). Additionally, at 

least with children, Asperger Syndrome, which represents a high-functioning form of the ASD and is 

characterized by high systemizing and low empathizing, is associated with better performance in intuitive 

physics tasks (Baron-Cohen, Wheelwright, Spong, Scahill, & Lawson, 2001; Binnie & Williams, 2003; Muth, 

Hönekopp, & Falter, 2014). These findings suggest that these differences may emerge early. Furthermore, 

there are some brain imagining studies showing that in the healthy population, the systemizing vs. 



empathizing “brain type” manifests as differences in distributed brain networks involved in cognitive 

control and social cognition, for instance, the cingulate gyrus, midline parieto-occipital cortex, dorsolateral 

prefrontal cortex, and medial prefrontal cortex (mPFC; Lai et al., 2012; Sassa et al., 2012; Takeuchi, Taki, 

Nouchi, et al., 2014; Takeuchi, Taki, Hashizume, et al., 2014; Takeuchi, Thyreau, et al., 2013). Hence, these 

are candidate regions, some of which may explain how systemizers perform intuitive physics tasks. 

Intuitive physics expertise can also be approached from neurocognitive functions directly involved in 

physical processing, such as processing of mechanistic movement and making causal inferences about 

moving physical objects. Performance of tasks involving, for example, predicting the direction toward which 

a shaky tower will fall are associated with activation of the frontoparietal network, as well as specific 

temporal cortex areas (Blos, Chatterjee, Kircher, & Straube, 2012; Fischer et al., 2016; Fugelsang, Roser, 

Corballis, Gazzaniga, & Dunbar, 2005; Jack et al., 2013; Wende et al., 2013). However, the frontoparietal 

network is not specific to intuitive physics whatsoever; instead, this domain-independent network is 

required in almost any task (e.g., Duncan, 2010), and its activity is proportional to cognitive load (Owen, 

McMillan, Laird, & Bullmore, 2005). As systemizing is characterized per se by interested in physical world 

(Baron-Cohen, 2002; Baron-Cohen et al., 2005; Baron‐Cohen, 2009) and systemizers are likely to be better 

in these tasks (Lindeman & Svedholm‐Häkkinen, 2016; Morsanyi, Primi, Handley, Chiesi, & Galli, 2012), 

higher systemizing could be associated with faster response times and lesser cognitive effort, reflected in 

activation differences in the frontoparietal network during intuitive physics tasks. Increased activation of 

the frontoparietal network further relates to decreased activation of the opposite network, the so-called 

default-mode network (Raichle et al., 2001; Fox et al., 2005; for a review see Buckner, Andrews-Hanna, & 

Schacter, 2008). That is, higher activity in this network may result in lower activity in the default-mode 

network, and vice versa. 

 



However, mechanical reasoning where one must predict and simulate possible outcomes of objects 

presented in a picture requires also mental simulation or in other words imagining in one’s mind how 

things move (Hegarty, 2004). In line with this argument, there is evidence that high systemizing is 

associated with better performance in classic mental rotation tasks that require simulation of 3D-rotation 

of objects in one’s mind (Brosnan, Daggar, & Collomosse, 2010; Cook & Saucier, 2010; Zheng & Zheng, 

2017). Even though there are no studies connecting mental imagery directly with altered brain functioning 

associated with systemizing, in general the neural mechanisms of mental rotation are well known. 

Especially mental rotation tasks involving non-bodily/non-biological stimuli elicit activity in the middle 

occipital gyrus, cuneus, and superior parietal lobule/precuneus (for a review, see Tomasino & Gremese, 

2016).  

Finally, while the mental simulation skills may contribute to better performance in intuitive physics tasks, 

success in intuitive physics may also require the use of prior knowledge of object movement (Sanborn et 

al., 2013) and spatial memory (Burgess, Maguire, & O'Keefe, 2002) to support visual imagery. Spatial 

memory, prospection, navigation, sense of three-dimensional space, and constructing contextual situation 

models of visual stimuli have been associated with the parahippocampal cortex and retrosplenial cortex 

(Mullally & Maguire, 2011; Ranganath & Ritchey, 2012; Spreng, Mar, & Kim, 2009). The parahippocampal 

system is also functionally and anatomically linked to the mental rotation system, which could explain how 

long-term memory representations can be utilized in performing ongoing tasks (Vincent et al., 2006; see 

Buckner et al. 2008 for a review).  

This study aimed to resolve how systemizers perform intuitive physics tasks to provide evidence of the 

brain systems involved in systemizing. We first wanted to confirm that systemizers (high systemizing and 

low empathizing) indeed performed better in our tasks than empathizers (low systemizing and high 

empathizing). Then, to reveal the neural basis of differential strategies associated with systemizing and not 

the effects of higher task performance per se, we controlled for these performance differences in the 

subsequent analyses.  



Converging evidence from studies focusing on systemizing vs. empathizing (Lai et al., 2012; Sassa et al., 

2012; Takeuchi, Taki, Nouchi, et al., 2014; Takeuchi, Taki, Hashizume, et al., 2014; Takeuchi, Thyreau, et al., 

2013) and those examining intuitive physics tasks in general (Jack et al. 2013, Fischer et al. 2016) suggested 

that we would observe activation changes especially in the frontoparietal network and default mode 

network. As domain-general systems (e.g., Duncan et al. 2010) associated with task performance (e.g., 

Braver et al. 1997, Honey et al. 2000, see also Pessoa et al. 2002, Linden et al. 2003), some of the observed 

activations, especially in the frontoparietal networks, could simply reflect different cognitive demands. 

However, there could be also other brain areas in which activation changes are directly related to 

characteristic way how systemizers perform intuitive physics tasks (Takeuchi, Taki, Nouchi, et al., 2014). 

Due to the important role of the default-mode network in internalizing cognitive functions such as mental 

rotation (Tomasino & Gremese, 2016) as well as internalizing social information processing (Jack et al., 

2013; Lai et al., 2012), we hypothesized that systemizers would rely more on this network during the 

performance of intuitive physics tasks than empathizers. Because activation in this network is negatively 

correlated with activation in the frontoparietal network it could, however, also be that lower activation of 

the default mode network simply reflects higher activation in the frontoparietal network and would thus be 

related to cognitive effort. To distinguish between these two alternatives, we separately analyzed how 

much the “brain type” and task performance explain of the individual variance in the frontoparietal and in 

the default mode network activity during performance of an intuitive physics task. Finally, due to the 

critical role of spatial representations in successful task performance, we expected that the 

parahippocampal areas supporting these functions could play a special role among systemizers (Mullally & 

Maguire, 2011; Spreng et al., 2009; Ranganath & Richey, 2012), especially because this network is 

putatively working together with the mental rotation system (Bucker et al. 2008). 

Materials and methods 

Participants 



We recruited 38 healthy volunteers (mean age 31, range 20–46 years, 50% female) from a larger population 

of participants in an earlier study (Lindeman, Svedholm-Häkkinen, & Lipsanen, 2015). We measured the 

participants’ systemizing score using the 18-item Systemizing Quotient scale (SQ; Ling, Burton, Salt, & 

Muncer, 2009) and empathizing using the 15-item Empathy Quotient scale (EQ; Muncer & Ling, 2006). 

Then, we calculated the difference score by subtracting the SQ scores from the EQ scores and used this 

difference score as a continuous variable in the analysis. This variable is referred to as “brain type” in the 

following sections for simplicity. Recruited volunteers were chosen based on this E-S difference score. We 

recruited participants whose E-S scores were among the upper or lower 25% for their gender (for 

distribution of the brain-type scores and sex, see Figure 1.). Two participants were discarded from the 

analysis due to large head movement (> 3mm) during the imaging, leaving 36 participants (19 = women) in 

the final sample. Men’s average “brain type” was 13.06 (sd = 17.67) and women’s -0.48 (sd = 21.18). 

Stimuli 

We constructed an intuitive physics task with 28 trials and 3 practice trials. Ideas for the tasks were taken 

from the Intuitive Physics Test (Baron-Cohen et al., 2001) together with other sources (Kaiser et al., 1986; 

McCloskey et al., 1980; McCloskey et al, 1983). Every trial had a cue picture and three possible outcome 

pictures. The cue picture presented a situation with different kinds of objects and an arrow marking the 

direction of movement of an object. The outcome pictures presented three different possible outcomes of 

the cue picture after the movement. The task of the participants was to choose the most likely outcome 

from the three possible outcome pictures as to where the objects in the pictures will end up. For example 

trials, see Figure 2.   



 

Figure 1. Distribution of the E-S “brain type” scores by sex. Participants were recruited from a larger 

participant pool based on their E-S “brain type” score (upper or lower 25% for their gender) that was 

operationalized by subtracting their empathizing score from the systemizing score.  Higher score = higher 

systemizing in contrast to empathizing.  

 

 

 

Figure 2. Example trial. The cue picture (upper row) was first presented alone for 3000ms. After that, the 

response phase started, and three possible outcome pictures were presented below the cue picture and 

the participants’ task was to answer which picture depicted the most likely outcome.  

 

 



Procedure  

Prior to entering the fMRI scanner, participants were briefed about the task and they completed three 

practice trials similar to the trials that were about to follow during scanning. Participants were notified that 

not all the necessary information was presented, such as the weight of the objects or the force of the 

movement and that their task was to deduct the most likely outcome.  Trials were presented in random 

order. Every trial consisted of a fixation cross (1500ms), followed by the cue picture, which was presented 

in the upper part of the screen in the middle (cue phase, 3000ms). After 3000ms presentation of the cue 

picture, a response phase started by presenting the three possible outcome pictures (target pictures) below 

the cue picture, all pictures on the screen at the same time. Immediately after presenting the three 

outcome options, participants were instructed to respond as soon as possible by pressing a response 

button corresponding to the right outcome picture. The maximum response time window after presenting 

the three target pictures was 12 seconds. Trials with no response were coded as incorrect responses. After 

the response, the screen went blank and there was a 6-second break (rest phase) before the next trial. To 

optimize the sampling of the haemodynamic response, scanning was jittered in relation to the trial onsets. 

The number of correct responses and response times were calculated for each participant. 

 

fMRI parameters and analyses 

Magnetic resonance imaging was done with a MAGNETOM Skyra 3.0 T (Siemens, Erlangen) scanner. 

Imaging parameters were: echo time 32ms, repetition time 1.5s, flip angle 75°, 36 slices aligned along the 

anterior and posterior commissures axis, slice thickness 4.0mm and matrix size 64 x 64. Analyses were done 

with SPM12 software (Statistical Parametric Mapping, Wellcome Trust Center for Neuroimaging, London, 

UK). Functional images were realigned to the first volume via linear rotation to correct for movement and 

spatially normalized to Montreal National Institute (MNI) space. Co-registration of the first functional scan 

to the anatomical images was used and the segmentation of the anatomical pictures was done with tissue 



segmentation, bias correction, and spatial normalization (Ashburner & Friston, 2005). Spatial smoothing 

was done with an 8mm full-width at half-maximum Gaussian kernel.   

Functional time series were analyzed using a general linear model. Box-car functions were entered for cue 

picture, response, and rest (including the fixation period). Movement parameters were entered as 

confounding covariates in cases where movements larger than half a voxel occurred during the scanning. 

The fMRI data were fitted to the model and individual contrast images were calculated for group-level 

statistical tests. The following contrasts were calculated: cue picture > rest, response > rest, and cue picture 

> response to study activations during the different phases of the task. We used the difference score of E-S 

(“brain type”), sex, and average response time as regressors in the models to isolate the related effects and 

to control for the potential confounding variables.  

In the group-level analysis, we used FWE corrected threshold p<0.05 (cluster extend 15). For the regression 

analyses, we used a priori defined (Tomasino & Gremese, 2016), anatomical ROIs of middle occipital gyrus, 

cuneus, superior parietal lobule/precuneus, and parahippocampal region that were based on the 

Automated Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002). These ROI analyses were FWE 

corrected with threshold of p < 0.05 at the voxel-wise level to the volume of ROI. Furthermore, we 

extracted average signal change in the three main hubs that are sensitive to general physical information 

processing (Jack et al., 2013) and are part of the frontoparietal network. We extracted the average signal 

changes from 10mm spheres centered at each of the peak coordinates of these three areas: superior 

frontal sulcus, lateral prefrontal cortex, and anterior intraparietal sulcus. The uncorrected average signal 

change of each of these areas were then correlated to the behavioral measurements of “brain type” and 

task performance (response time and number of correct answers). 

Results 

Behavioral results 

To study associations of “brain type”, reaction time, and correct responses, we used partial correlation 

analysis controlling for sex. Although men (M = 18.78, SD = 3.30) had more correct responses than women 



(M = 14.31, SD = 3.70), F(1.35) = 11.01, p = .002, the number of correct responses was strongly associated 

with “brain type” (r = .47, p = .009) also after controlling for sex. Thus, in line with our hypothesis, 

systemizing “brain type” was associated with better performance in the intuitive physics task, even after 

controlling for sex and the average response time. Regarding the response times, there was a trend that 

men (M = 5.0 s, SD = 0.96) responded faster than women (M = 5.48 s, SD = 0.87) F(1.35) = 2.45, p = .126), 

and after controlling for sex, there was a trend for faster response time for the systemizing “brain type” (r = 

-.27, p = .112).  

 

fMRI results 

Neural basis of intuitive physics task: cue phase > rest and response phase > rest comparisons 

To test the activation differences during different phases of the task, we compared the three conditions: (i) 

the cue phase, where only the cue picture showing the starting situation and direction of movement was 

presented, (ii) the response phase, when response options were presented together with the cue picture 

and participants gave answers, and (iii) the rest phase that followed each experimental trial. In the cue 

phase of the task (cue picture > rest) activity was enhanced in the frontoparietal network, and in the visual 

areas, thalamus, left insula, and hippocampus (Table 1, Figure 3). The inverse comparison (rest > cue 

picture, Supplementary Table 1), showed activity in the mPFC, PCC, and bilateral angular gyri, indicating 

that the activity in these areas was increased during the rest. Similarly to the cue phase, during the 

response phase (response > rest), we observed large activation clusters in the frontoparietal network 

together with large bilateral activation clusters in the visual areas and cerebellum (Table 1, Figure 3). The 

inverse contrast (rest > response) did not reveal any activations. 

 



 

 

Figure 3. Upper row: A and B = cue picture > rest comparison, C and D = response phase > rest comparison. 

Both the cue picture > rest and response phase > rest comparisons activated large-scale frontoparietal 

networks and areas in the occipital/temporal cortex. In the rest > cue picture (pictures A and B) the rest 

phase showed stronger activations in PCC, mPFC, and bilateral angular gyri (p = 0.001 unc. for visualization). 

Lower row:  The cue picture > response phase comparison (red) showed activations in the visual areas, 

superior parietal gyrus, middle frontal gyrus, and in the left precentral gyrus bilaterally. In the response 

phase, in contrast to cue picture (blue), there were activations in the PCC, mPFC, and bilateral angular gyri 

(p = 0.001 unc. for visualization). 

 

Neural basis of intuitive physics task: cue picture > response phase comparison  

Comparison between cue picture > response phase showed that cues elicited stronger activations in the 

middle and inferior occipital gyri, lingual, fusiform gyrus, superior parietal gyrus, middle frontal gyrus, and 

precentral gyrus. In the response phase (response phase > cue picture) we observed activations spreading 

from the PCC in posterior axis to the cuneus and precuneus, and anterior axis to the middle cingulum, ACC 

and to mPFC. There were also activations in the right middle frontal gyrus, thalamus, and superior temporal 

gyrus (Table 1, Figure 3). 

 

Regression analysis with systemizing “brain type” as a covariate (controlling for response time and sex)  

During the cue picture (cue picture > rest) a higher systemizing “brain type” was associated with higher 

activation of the left parahippocampal region / lingual gyrus spreading towards the hippocampus, posterior 



cingulate / precuneus, and cuneus (Table 2, Figure 4). When the cue picture and response phase were 

compared (cue picture > response phase), a higher systemizing “brain type” was associated with stronger 

activations in the bilateral cuneus, right middle occipital gyrus, and left parahippocampal region spreading 

towards the lingual gyrus and hippocampus (Table 2). There was also a non-significant trend activation in 

the right parahippocampal region (p = .067), and precuneus (p = .076) that did not survive FWE corrections 

(Figure 4). In the response phase > rest comparison lower systemizing was associated with higher activation 

in the left inferior parietal lobule and left middle frontal gyrus. 

To further examine the associations of the observed activations and task performance, we extracted the 

average activations of the peak voxels of these clusters (no FWE-correction, controlling for sex). Then, we 

studied the associations between the systemizing “brain type”, the peak voxel activations and two aspects 

of the task performance (the number of correct answers and response time) with partial correlations. 

Comparison of the cue picture > rest showed that activations of PCC (r = .44, p = .009), parahippocampal 

region (r = .34 p = .049), and cuneus (r = .39, p = .023) were associated with the higher systemizing even 

after controlling for both, response time and the number of correct answers. In contrast, when “brain type” 

was controlled, there was no association between the number of correct answers nor the response time 

with the peak voxel activations in these areas. Similarly, in the cue > response comparison, the activations 

of PCC (r = .44, p = .009), parahippocampal region (r = .34 p = .047), middle occipital gyrus (r = .38, p = .026), 

and cuneus (r = .43, p = .011) were associated with the systemizing “brain type” after controlling for 

response time and number of correct answers. In contrast, when “brain type” was controlled, there was 

only one significant association between brain activity and task performance: higher activation in the 

middle occipital gyrus was associated with faster response time (r = .-34, p = .048). In the response phase > 

rest comparison, after controlling for response time and number of correct answers, lower systemizing was 

associated with both, activation of the left middle frontal gyrus (r = .-63 p < .001) and activation of the left 

inferior parietal lobule (r = .-57 p < .001). Neither reaction times nor numbers of correct answers were 

associated with these activations when “brain type” was controlled. 



   

 

Figure 4. Brain activity resulting from regression analysis with the “brain type” as a covariate. In the cue 

picture > rest comparison (red) higher systemizing “brain type” was associated with higher activation of the 

cuneus/precuneus, and left parahippocampal region. The latter activation cluster was spread from lingual 

gyrus and parahippocampal region to hippocampus. In the cue picture > response phase comparison 

(yellow) higher systemizing “brain type” was associated with higher activations in the cuneus, middle 

occipital gyrus, and left lingual/parahippocampal area spreading to hippocampus. (p = 0.005 unc. for 

visualization). The mPFC activations did not survive FWE-corrections. 

 

Correlations between the average signal changes in the areas involved in physical processing, the 

systemizing “brain type”, and task performance 

During the cue phase (cue picture > rest), there was an association between slower response time and 

higher activation of the intraparietal sulcus (r -.41 p = .008, controlling for “brain type”). No association 

between the “brain type” and activations of the frontoparietal network were found in this comparison 

when we controlled the task performance (response time and number of correct answers).  

During the response phase (response phase > rest) the higher average signal change in the intraparietal 

sulcus was associated with lower systemizing (r = -.46, p = .006), and there was a negative trend between 

this activation and the number of correct answers (r = -.33, p = .051). When task performance (response 

time and number of correct answers) was controlled, the association between “brain type” and 

intraparietal sulcus activation was no longer quite significant (r = -.32, p = .064). However, also the trend 

between the number of correct answers and activation of intraparietal sulcus dropped to non-significant 

when “brain type” was controlled (p = .776).  



In the comparison between the cue picture and response phase (cue picture > response phase) controlling 

for the “brain type”, higher activation of the intraparietal sulcus was associated with slower response time 

(r = -.44, p = .008). When response time and number of right answers were controlled for, “brain type” had 

no significant associations. However, lower systemizing was associated with higher activation in the 

intraparietal sulcus when controlling only for response time (r = -.42, p = .011).  

Finally, we examined the associations between the found peak activations of the PCC, parahippocampal 

region, middle occipital gyrus, and cuneus and the average activations of the frontoparietal ROIs to clarify 

the potential anti-correlations of the activations related to the DMN-network and the frontoparietal 

network. In the cue picture > rest comparison only one positive association was found between the lateral 

prefrontal activation and the parahippocampal region activation (r = .44, p = .007). Similarly, in the 

response phase > rest comparison, the only found association was between the lateral prefrontal cortex 

activation and the activation of the parahippocampal region (r = .42, p = .010). 

Regression analysis with sex and response time as covariates 

 In addition to analyses controlling for sex and response time, we performed separate analyses where we 

isolated the effects of sex and response time by controlling for the systemizing “brain type” and the other 

measure (either response time or sex, respectively). These results can be found in Table 2. 

 

 

 

 

 

 

 



Table 1. Activations during the cue phase and response phase contrasted with each other or with the rest 
condition 

 

 

Anatomical region x y z t-value 

n of 

voxels p-value 

Cue picture >rest  

Lingual gyrus (left) -8 -82 -10 18.01 32548 >.0001 

Inferior temporal 

gyrus (left) -42 -70 -4 17.00 * >.0001 

Inferior parietal Lobule 

(right) 34 -46 54 16.91 * >.0001 

Putamen (right) 28 20 4 12.30 186 >.0001 

Superior frontal gyrus 

(left) -36 52 18 11.20 51 >.0001 

Thalamus / 

hippocampus (left) -22 -30 0 10.53 150 >.0001 

Posterior cingulate 

(left) -12 -22 8 9.01 * >.0001 

Thalamus (right) 10 -16 4 10.05 120 >.0001 

Thalamus (right) 16 -28 0 9.73 * >.0001 

Middle frontal gyrus 

(right) 48 36 24 9.84 249 >.0001 

Middle frontal gyrus 
36 26 32 8.31 * >.0001 



(right) 

Middle frontal gyrus 

(left) -40 50 2 9.79 46 >.0001 

Insula (left) -30 20 2 9.45 124 >.0001 

Putamen (left) -14 2 10 9.16 36 >.0001 

Putamen (right) 14 2 8 8.71 33 >.0001 

Response phase > rest 

Cuneus (right) 10 -86 8 10.49 8641 >.0001 

Cuneus (right) 4 -98 -2 10.46 * >.0001 

Cerebellum (right) 8 -70 -12 10.04 * >.0001 

Inferior Parietal Lobule 

(right) 50 -48 46 9.20 3645 >.0001 

Postcentral gyrus 

(right) 50 -32 56 8.97 * >.0001 

Angular gyrus (right) 40 -68 32 7.20 * >.0001 

Insula (right) 38 20 -12 8.97 679 >.0001 

Inferior frontal 

operculum (right) 56 14 2 7.02 * >.0001 

Insula (right) 46 10 2 6.14 * >.0001 

Inferior temporal 

gyrus (right) 52 -54 -16 8.19 618 >.0001 



Posterior Cingulate 

(right) 28 -68 8 8.03 * >.0001 

Superior temporal 

gyrus (right) 56 -50 -10 7.18 * .0011 

Postcentral gyrus (left) -38 -40 58 7.94 2440 >.0001 

Inferior parietal lobule 

(left) -46 -48 52 7.94 * >.0001 

Superior parietal 

lobule (left) -32 -50 62 7.18 * .0011 

Middle frontal gyrus 

(right) 44 32 32 7.88 840 >.0001 

Middle frontal gyrus 

(right) 40 54 2 7.60 * >.0001 

Middle frontal gyrus 

(right) 46 42 26 7.05 * .0011 

Post central gyrus 

(left) -50 -20 18 7.71 419 >.0001 

Post central gyrus 

(left) -62 -20 22 7.44 * >.0001 

Middle occipital gyris 

(left) -28 -68 12 7.47 295 >.0001 

Middle occipital gyris 

(left) -34 -54 2 7.11 * .0011 



Fusiform gyrus (left) -38 -42 -10 5.90 * .0111 

Middle frontal gyrus 

(left) -44 42 16 7.42 215 >.0001 

Middle frontal gyrus 

(left) -34 54 16 6.65 * .0021 

Middle frontal gyrus 

(left) -36 50 -4 6.25 * .0051 

Middle frontal gyrus 

(left) -44 32 30 6.77 215 >.0001 

Middle frontal gyrus 

(left) -34 54 16 6.65 * .0021 

Middle frontal gyrus 

(left) -36 50 -4 6.25 * .0051 

Middle frontal gyrus 

(left) -44 32 30 6.77 199 .0011 

Middle frontal gyrus 

(left) -44 26 38 6.49 * .0031 

Cingulate gyrus  2 -10 50 6.48 133 .0031 

Insula (left) -34 20 -6 6.27 172 .0051 

Insula (left) -44 14 -4 5.98 * .0091 

Insula (left) -32 12 4 5.75 * .0161 

Paracentral lobule 
2 -26 78 5.94 39 .0101 



(right) 

Superior medial 

frontal gyrus (right) 2 26 40 5.61 40 .0231 

Cingulate gyrus (right) 6 18 34 5.36 * .0411 

Cue picture > response phase 

Lingual gyrus (left) -8 -82 -8 18.38 46378 >.0001 

Superior occipital 

gyrus (left) / cuneus -14 -88 10 16.28 * >.0001 

Inferior temporal 

gyrus (left) -42 -68 -4 15.86 * >.0001 

Insula (right) 30 20 4 8.66 146 >.0001 

Thalamus (right) 16 -28 4 8.57 132 >.0001 

Thalamus (right) 10 -16 4 6.38 * .0051 

Thalamus (right) 14 -20 10 5.89 * .0171 

Thalamus (left) -22 -30 0 8.44 174 >.0001 

Thalamus (left) -14 -24 6 6.43 * .0051 

Thalamus (left) -12 -14 8 6.13 * .0101 

Middle frontal gyrus 

(left) -40 50 2 5.80 150 >.0001 

Middle frontal gyrus 

(left) -34 52 16 7.43 * >.0001 



Inferior frontal gyrus 

(left) -46 40 12 6.28 22 .0071 

Response phase > cue picture 

Cerebellum (left) -36 -56 -30 15.16 47040 >.0001 

Fusiform gyrus (left) -46 -50 -20 15.14 * >.0001 

Lingual gyrus (right) 6 -68 -10 15.08 * >.0001 

Cuneus (left) -14 -10 10 9.17 142 >.0001 

Thalamus (left) -20 -24 0 8.79 75 >.0001 

Middle frontal gyrus 

(right) 26 44 -10 8.45 18 >.0001 

Caudate nucleus 

(right) 12 -6 16 7.90 39 >.0001 

Thalamus (right) 16 -6 6 7.47 * >.0001 

Superior temporal 

gyrus (right) 44 -22 10 7.82 34 >.0001 

* Peak activation voxel part of the above cluster; 1  FWE-corrected to the whole brain volume (p=0.05) 

 

 

 

 

 

 

 

 

 



 

Table 2. Results of the regression analysis when systemizing “brain type” was used as a covariate 

(controlling for sex and response time) and regression analysis with sex and response time controlling for 

each other and the systemizing “brain type”.  

 

Anatomical region x y z t-value 

n of 

voxels p-value 

Systemizing brain type as a covariate: cue picture > rest 

Higher activations associated with higher systemizing brain type 

Cuneus (left) -6 -80 22 4.10 154 .0172 

Parahippocampal 

region (left) -18 -40 -8 4.88 206 .0052 

Lingual guris (left) -14 -44 -10 4.64 * .0102 

Posterior cingulate 

(left) -4 -52 12 4.35 151 .0372 

Precuneus (right) 12 -50 14 4.25 88 .0472 

Systemizing brain type as a covariate: cue picture > response phase 

Higher activations associated with higher systemizing brain type 

Cuneus (right) 16 -84 18 4.03 346 .0332 

Cuneus (left) -6 -80 22 3.96 * .0382 

Middle occipital gyrus 

(right) 20 -82 18 3.88 37 .0432 

Parahippocampal 

gyrus (left) -18 -48 -10 5.10 511 .0022 



Systemizing brain type as a covariate: response phase > rest.  

Higher activations associated with lower systemizing brain type 

Middle frontal gyrus 

(left) -46 12 46 5.68 354 .0011 

Supramarginal gyrus 

(left) -40 -48 34 5.63 1209 .0211 

Inferior parietal lobule 

(left) -44 -54 56 5.43 * .0351 

Sex as a covariate (higher activation for women): Cue picture > response phase 

Superior parietal 

lobule (right) 32 -50 60 5.98 687 .0091 

Sex as a covariate (higher activation for men): Cue picture > response phase 

Cuneus (left) -16 -82 38 4.04 22 .0322 

Sex as a covariate (higher activation for men): Cue picture > rest 

Cuneus (left) -14 -80 38 5.02 73 .0042 

Precuneus (left) -10 -76 40 4.28 21 .0442 

Response time as a covariate (higher activation for faster response) 

 Cue picture > rest 

Supplementary motor 

area (left) -8 8 58 6.46 2684 .0041 

Inferior frontal gyrus 

(right) 46 16 4 5.63 570 .0291 



Response time as a covariate (higher activation for faster response): Cue 

picture > response phase 

Supplementary motor 

area (left) -12 4 62 6.64 2043 .0021 

Middle frontal gyrus 

(left) -32 -4 44 5.86 * .0121 

Inferior parietal lobule 

(right) 32 -48 54 5.52 549 .0282 

Cuneus (left) -24 -90 28 3.86 41 .0452 

Cuneus (right) 22 -92 24 3.83 157 .0482 

Precuneus -16 -48 58 4.13 130 .0492 

* Peak activation voxel part of the above cluster; 1 FWE-corrected to the whole brain volume (p=0.05); 

 2 FWE-corrected to the volume of ROI (p=0.05)  

 

Discussion 

In the current study, we investigated how individual differences in systemizing and empathizing “brain 

types” reflect on brain activity during the performance of intuitive physics tasks. The intuitive physics task, 

dealing with various objects and different kinds of movement, activated the frontoparietal network, which 

has also previously been linked to the processing of physical information (Fischer et al., 2016; Fugelsang et 

al., 2015; Jack et al., 2013). However, the activation changes in these circuitries during task performance 

were not specifically associated with systemizing. Instead, the higher activation of the frontoparietal 

network was associated mostly with task performance and to some extent with lower systemizing. This 

suggests that for higher systemizers, the task may have required less cognitive effort than for lower 

systemizers. We also found that systemizing was associated with higher activation in the areas related to 



default mode network (PCC, cuneus) and in the parahippocampal region. Even though the task 

performance may have explained some of the variance of these activations, these associations were 

statistically non-significant. Thus, these areas were clearly more strongly related to higher systemizing 

“brain type” than mere task performance. This was also supported by the finding showing no negative 

associations between DMN-regions and the activations in the frontoparietal network. This indicates that 

systemizers not only performed better, but also used a characteristic way of performing the intuitive 

physics task. Both the nature of our tasks, as well as extensive evidence on the functional roles of the 

regions specifically associated with systemizing “brain type” support that this distinguishing feature could 

be related to utilizing mental imagery as well as long-term spatial representations during the task. In 

addition, the results hint how systemizers may use these different cognitive brain functions at different 

stages of the task, suggesting possible mechanisms of why systemizers are able to perform so well in 

intuitive physics tasks and how they perform the tasks.  

Altered function of the internalizing system during intuitive physics task and cognitive effort 

Higher systemizing was associated with higher task-related brain activity in the cuneus, middle occipital 

gyrus and precuneus/PCC. As these regions partly belong to the DMN (Buckner, et al., 2008) and their 

activations could simply reflect lower effort related to task performance, we separately analyzed 

activations in these regions in relation to systemizing “brain type” by controlling for task performance. Our 

results clearly showed that in each of these regions, brain activation during the task was associated with 

systemizing when task performance differences were accounted for. To be more precise, in the 

precuneus/PCC, systemizing explained about four times more of the variance in brain activation than task 

performance. We therefore interpret that our results clearly indicate a different way of processing 

associated with systemizing that goes beyond the higher task performance. This argument is further 

supported by the finding that there were no anti-correlations between these DMN-regions and the 

frontoparietal network. Previous studies have demonstrated that greater cuneal and precuneal activity 

predicts vividness of mental imagery and individual performance in a mental rotation task (Logie, Pernet, 



Buonocore, & Della Sala, 2011). Cuneus and middle occipital gyrus activations contribute, among other 

visual processing, especially to mental rotation of non-bodily/non-biological stimuli (Tomasino & Gremese, 

2016). Hence, our findings together with these earlier findings suggest that performance of the intuitive 

physics task among systemizers may rely more on mental imagery than among empathizers.    

The altered activity in the cuneus/precuneus was observed already during the cue phase of the task before 

any information about the possible solutions was given. This could mean that the systemizers began to 

simulate potential outcomes immediately after the presentation of the cue picture. This interpretation is 

supported by the finding that, in the analysis across all participants, the precuneus activity was weaker 

during the cue phase, followed by increased activity during the response phase. Furthermore, in addition to 

systemizing, cuneal/precuneal activity was modulated by response time suggesting that faster responses 

could have been associated with the use of mental simulation in the earlier stage of the task.  

Even though the current results indicate altered function of the precuneus and cuneus during the intuitive 

physics task, this study cannot fully distinguish between the various functions associated with these 

regions. Future studies could aim to segregate in greater detail among the strategies or subfunctions 

utilized in the intuitive physics tasks and examine role of cognitive effort in even greater detail. Even 

though the default-mode network activations were not associated with task performance in the present 

study, the strong functional connection between these areas (e.g., Fox et al. 2005) suggests that the 

observed DMN activity is likely to reflect some functions associated with frontoparietal networks that we 

are not able to define more accurately without knowing exactly what strategies the participants have used. 

Disentangling the functional roles of the frontoparietal and default-mode networks could have also 

benefited of a baseline obtained from a separate resting state measurement or from more detailed analysis 

of the activation-deactivation cycles that could have been done if the length of the resting period had been 

varying. The interest for studying the role of precuneus/cuneus in relation to systemizing in greater detail is 

further enhanced by the several studies linking these areas directly to systemizing (Sassa et al. 2012, Lai et 

al. 2012, Takeuchi et al. 2013, 2014a, 2014b) and because of the suggestions that the precuneus/cuneus is 



a potential neural marker of autism that is closely related to extreme systemizing (Just, Cherkassky, 

Buchweitz, Keller, & Mitchell, 2014).  

Activity in areas supporting long-term memory representation 

Together with activations in the cuneus and precuneus, systemizing was also associated with activations in 

the parahippocampal region. As part of the hippocampal system, this area plays a key role in several 

functions relying on long-term memory representations. Some examples of functions relevant to intuitive 

physics include making gist-based contextual associations (Bar, 2004; Bar & Aminoff, 2003), retrieval of 

spatial-location information, recognition of objects previously presented in a scene (Hayes, Nadel, & Ryan, 

2007; Hayes, Ryan, Schnyer, & Nadel, 2004), and episodic autobiographical imagery (Gardini, Cornoldi, De 

Beni, & Venneri, 2006). Similarly to the activations in the default-mode network, the parahippocampal 

activations were not associated with task performance, but to systemizing brain type specifically. We 

therefore suggest that the enhanced parahippocampal activity among systemizers during the intuitive 

physics task may reflect utilizing long-term spatial memory representations during the task. Our results 

further suggest that access to this system is obtained in systemizers immediately when they perceive the 

cue that triggers the system for mental simulation. Via its close links to the cuneus, as part of the system 

involved in mental imagery, the parahippocampal area may further contribute to the efficient utilization of 

mental imagery. 

Contributions to E-S theory and future directions  

Our findings showed that a higher systemizing “brain type” was associated with better performance in the 

intuitive physics task in a healthy adult population. The results are in line with the basic tenets of E-S theory 

(Baron-Cohen et al., 2005; Baron‐Cohen, 2009) and earlier empirical studies (Carrol & Chiew, 2006; Cook & 

Saucier, 2010; Lindeman & Svedholm-Häkkinen, 2016; Ling, et al., 2009; Morsanyi et al., 2012).  

 



The E-S theory suggests that systemizing and empathizing are to some extent inherited and develop already 

during the prenatal period (e.g., Baron-Cohen, 2002; Baron‐Cohen, 2009). Among adults, however, 

systemizing and empathizing are assessed with EQ and SQ self-reports that reflect subjective interests and 

only self-evaluated abilities. Therefore, an important question is to what extent the differences found in 

abilities between empathizers and systemizers are only related to different interests that have gradually 

driven systemizers, for example, to acquire better abilities in intuitive physics by learning. In other words, 

are there also other factors, on top of interests and experience, that leads to different abilities between 

empathizers and systemizers? Our results cannot comprehensively answer this question. However, because 

our results suggest the possibility that systemizers may engage in the intuitive physics task faster, with less 

cognitive effort, and begin and use the mental simulation with less information than empathizers, one 

explanation that require further examination is that systemizers have a tendency to relate to the physical 

world with the internalizing system of mental imagery and simulation. On this account, it is the use of this 

system that enhances the systemizers’ performance in intuitive physics task, which is not only related to 

higher task performance gained through greater amount of experience. However, if use of the internalizing 

system is a factor that is distinct to systemizers’ even above the superior performance on intuitive physics 

tasks, systemizers are likely able to use this system even on tasks of which they have no experience. To 

increase our understanding of these processes, future studies should control for cognitive effort and could 

examine how the performance strategies utilized by systemizers differ from those utilized by empathizers 

in novel tasks where experience can be controlled. This could be the key to understanding the fundamental 

difference between how people with a strong systemizing profile and those with an empathizing profile 

view the world: tasks and situations which, for some of us, look difficult, evoke an effortless simulation in 

others.  
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