
Atmos. Meas. Tech., 12, 3761–3776, 2019
https://doi.org/10.5194/amt-12-3761-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

A novel approach for simple statistical analysis of high-resolution
mass spectra
Yanjun Zhang1,*, Otso Peräkylä1,*, Chao Yan1, Liine Heikkinen1, Mikko Äijälä1, Kaspar R. Daellenbach1,
Qiaozhi Zha1, Matthieu Riva1,2, Olga Garmash1, Heikki Junninen1,3, Pentti Paatero1, Douglas Worsnop1,4, and
Mikael Ehn1

1Institute for Atmospheric and Earth System Research/Physics, Faculty of Science,
University of Helsinki, Helsinki, 00014, Finland
2Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, 69626, Villeurbanne, France
3Institute of Physics, University of Tartu, Tartu, 50090, Estonia
4Aerodyne Research, Inc., Billerica, MA 01821, USA
*These authors contributed equally to this work.

Correspondence: Yanjun Zhang (yanjun.zhang@helsinki.fi) and Chao Yan (chao.yan@helsinki.fi)

Received: 14 February 2019 – Discussion started: 20 March 2019
Revised: 11 June 2019 – Accepted: 14 June 2019 – Published: 11 July 2019

Abstract. Recent advancements in atmospheric mass spec-
trometry provide huge amounts of new information but at
the same time present considerable challenges for the data
analysts. High-resolution (HR) peak identification and sepa-
ration can be effort- and time-consuming yet still tricky and
inaccurate due to the complexity of overlapping peaks, es-
pecially at larger mass-to-charge ratios. This study presents
a simple and novel method, mass spectral binning combined
with positive matrix factorization (binPMF), to address these
problems. Different from unit mass resolution (UMR) analy-
sis or HR peak fitting, which represent the routine data anal-
ysis approaches for mass spectrometry datasets, binPMF di-
vides the mass spectra into small bins and takes advantage of
the positive matrix factorization’s (PMF) strength in separat-
ing different sources or processes based on different temporal
patterns. In this study, we applied the novel approach to both
ambient and synthetic datasets to evaluate its performance.
It not only succeeded in separating overlapping ions but was
found to be sensitive to subtle variations as well. Being fast
and reliable, binPMF has no requirement for a priori peak
information and can save much time and effort from conven-
tional HR peak fitting, while still utilizing nearly the full po-
tential of HR mass spectra. In addition, we identify several
future improvements and applications for binPMF and be-
lieve it will become a powerful approach in the data analysis
of mass spectra.

1 Introduction

Volatile organic compounds (VOCs) are emitted to the at-
mosphere both from biogenic and anthropogenic sources
(Guenther et al., 1995; Wei et al., 2008). After oxidation,
these gaseous species can partition to the particle phase
and contribute to atmospheric organic aerosol (OA), a major
component of tropospheric particulate matter (Zhang et al.,
2007). The chemical components, both in particulate (OA)
and gaseous phase (VOC and their oxidation products), play
important roles in many atmospheric physical and chemical
processes. They can deteriorate air quality causing adverse
health effects, and aerosol particles can influence Earth’s cli-
mate by altering the radiative balance, as well as decrease
visibility (Stocker et al., 2013; Zhang et al., 2016; Pope III et
al., 2009; Shiraiwa et al., 2017).

Recent instrumental advances in mass spectrometry have
greatly enhanced our capability to investigate the chemical
composition and evolution of aerosol particles and their pre-
cursors. The Aerodyne aerosol mass spectrometer (AMS) is
widely applied in atmospheric research (Canagaratna et al.,
2007), measuring the bulk composition and temporal behav-
ior of the nonrefractory aerosol, and has successfully iden-
tified different/unique OA sources utilizing factor analysis
(Jimenez et al., 2009; Zhang et al., 2011). With the devel-
opment of gas-phase chemical ionization mass spectrome-
try (CIMS) (Huey, 2007) and the commercially available
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time-of-flight (TOF)-CIMS (Bertram et al., 2011) and CI-
APi-TOF (chemical ionization atmospheric pressure inter-
face time-of-flight mass spectrometer; Jokinen et al., 2012),
these instruments are becoming more popular in atmospheric
chemistry research. Due to these new advances, the detection
methods for aerosol precursor vapors and the understanding
of their formation mechanisms have been greatly improved.
For example, the discovery of highly oxygenated molecules
(HOM) by the CI-APi-TOF has led to increased knowledge
regarding atmospheric oxidation pathways, with large impli-
cations on secondary organic aerosol (SOA) and new particle
formation (Ehn et al., 2014; Jokinen et al., 2015; Kirkby et
al., 2016; Yan et al., 2016). In particular, biogenic VOCs such
as monoterpenes (C10H16) promptly produce HOM upon
ozonolysis, e.g., C10H16O7 and C10H16O9.

While a mass spectrum can contain large amounts of in-
formation representing the highly complex nature of the at-
mospheric sample, it also presents considerable challenges
for the analysis and interpretation of the data. One exam-
ple of such a challenge is the identification and separation of
peaks with similar but not identical masses. A single integer
mass can contain tens of distinct ions, with mass-to-charge
ratios (m/z) close to each other. In all cases, specific spec-
tral fitting techniques are needed to resolve the overlapping
peaks at the same integer mass. Typically, a least squares
fit is made to the spectrum, using analysis software such
as Squirrel/PIKA (http://cires1.colorado.edu/jimenez-group/
ToFAMSResources/ToFSoftware/, last access: June 2019),
tofTools (Junninen et al., 2010) or Tofware (https://www.
tofwerk.com/software/tofware/, last access: June 2019).
However, these techniques require a predefined list of ions.
This makes the analysis resource-intensive, and it can easily
introduce subjective bias in determining the peak list.

Figure 1 depicts a concrete example, measured by a
nitrate-based CI-APi-TOF, where peak separation is not large
enough to allow unambiguous fitting of all the ions, and the
final result will depend on which ions the analyst chooses
to include. As the m/z increases, the number of possible
ions at a certain unit mass increases rapidly (Kroll et al.,
2011; Stark et al., 2015). Too closely overlapping peaks will
sometimes lead to ambiguously fitted peaks and arbitrarily
resolved ions, resulting in unreliable separation of signals.
Additionally, mass calibration errors can also affect correct
peak assignment or fitting. A few recent studies discuss in
more detail the uncertainties of ion identification and separa-
tion in high-resolution (HR) mass spectra (Stark et al., 2015;
Corbin et al., 2015; Cubison and Jimenez, 2015).

Another typical analysis approach is to utilize only the
unit mass resolution, or UMR, data. As opposed to high-
resolution fitting, where the signals of individual ions are
separated from the total measured signal, in UMR analysis
all signals at a given integer mass are integrated and treated
together. This approach is more straightforward and less sub-
jective than HR fitting but loses all possible high-resolution
details in the spectrum (see Fig. 2).

Figure 1. Example of traditional HR peak fitting. Potential peak
fitting at m/z 376 Th (10 h average) in an atmospheric simulation
chamber during a monoterpene ozonolysis experiment, utilizing a
nitrate-based CI-APi-TOF (resolving power of 13 000 ThTh−1).
Even a minor shift in the mass axis calibration could cause the
signals of especially the yellow, green and blue peaks to change
dramatically. Similarly, adding or removing an ion would alter the
amount of signal attributed to the other fitted peaks.

Figure 2. Conceptual comparison of traditional methods (UMR and
HR) and binned mass spectra for PMF analysis. The raw data sig-
nal is shown in the left and contains eight ions. By UMR analysis,
the information of the eight ions is totally lost. Using an analyst-
determined peak list, HR analysis attempts to separate signals at
this mass by fitting selected ions. By binning the spectra, we utilize
the HR information without any a priori information required.

Even with perfect high-resolution peak fits, a spectrum
typically contains information of hundreds, if not thousands,
of ions, many of which come from similar sources. This
wealth of data itself presents a challenge for data analysis.
Factor analysis enables the reduction of data dimensions and
can help to apportion the signals to factors. These factors may
correspond to different sources or formation processes. Pos-
itive matrix factorization (PMF) (Paatero and Tapper, 1994)
has been widely utilized in environmental sciences, applied
to UMR and HR AMS data, succeeding in identifying multi-
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ple OA sources (Lanz et al., 2008; Ulbrich et al., 2009; Sun
et al., 2011; Zhang et al., 2011). Compared to AMS data,
PMF has been applied to CIMS data analysis much less fre-
quently. To our knowledge, only Yan et al. (2016) and Mas-
soli et al. (2018) have reported PMF analysis on nitrate-based
CI-APi-TOF, utilizing UMR and HR data, respectively.

UMR-PMF cannot utilize the full information content pro-
vided by HR mass spectrometers but is more straightforward
to apply. In contrast, accurate HR peak fitting can better pre-
serve the information content of the raw data than UMR and
thus provide more information to PMF, resulting in more
interpretable results. However, incorrectly fitted peaks can
severely disturb the PMF modeling and the factor interpre-
tation. In addition, mass spectra from iodide-adduct TOF-
CIMS (Lee et al., 2014) often contain more peaks per mass
than the NO−3 -CI-APi-TOF, making HR fitting much more
complex (or, in some cases, even unmanageable), severely
limiting the potential of HR PMF.

In this study, a novel, yet simple and reliable, data analysis
method, binned mass spectra combined with PMF (binPMF),
is proposed to try to tackle the abovementioned problems
in both HR and UMR PMF. Instead of using traditional
UMR or HR fitting techniques for the mass spectra, we
binned the mass spectra prior to PMF analysis (Fig. 2).
We applied binPMF to both ambient and synthetic datasets,
succeeding in separating the key components of different
sources/processes. Compared to UMR PMF, binPMF pre-
serves more of the high-resolution information content of
the mass spectra, without the immense effort and subjec-
tivity associated with high-resolution peak fitting. As a re-
sult, this novel method can improve our understanding of
sources/formation processes governing the particulate and
gaseous phases in more detail and in a less subjective man-
ner.

2 Methodology

We divided the mass spectra into narrow bins as presented
in Fig. 2 and carried out PMF analysis to extract more in-
formation from the dataset. Details on the data preparation
(binning the mass spectra) and error estimation for the PMF
input are discussed in the Sect. 2.2 and 2.3. To test the per-
formance of binPMF under different scenarios, we first con-
structed synthetic datasets, using a simple one-/two-mass
system (Sect. 2.4.1). In the second step, we applied binPMF
to an ambient dataset measured with a NO−3 -CI-APi-TOF in
a boreal forest site located in southern Finland (Sect. 2.4.2).

2.1 Positive matrix factorization

The PMF model was developed by Paatero and Tapper
(Paatero and Tapper, 1994) in the 1990s and has been widely
applied in the analysis of various types of environmental
data ever since (Zhang et al., 2017; Yan et al., 2016; Ul-

brich et al., 2009; Song et al., 2007). By decomposing the
observed dataset into different factors, PMF helps to simplify
the complex data matrix and extract useful information con-
tained within it. Compared to other common source appor-
tionment tools, like chemical mass balance (CMB) (Schauer
et al., 1996), PMF requires no prior knowledge of source
information as essential input. Nevertheless, as a statistical
method, PMF does require more data as input, which is typ-
ically not a problem for environmental mass spectrometry
datasets. The main distinction of PMF from other factor anal-
ysis techniques is that PMF utilizes a least squares minimiza-
tion scheme weighted with data uncertainties, as well as non-
negative constrains, to minimize the ambiguity caused by ro-
tation of the factors (Huang et al., 1999; Paatero and Tapper,
1994).

In PMF modeling, a measurement of chemical species is
assumed to be a sum of contributions from several relatively
fixed sources/processes. The measured data matrix is broken
down to two smaller matrices and a residual term as follows:

X(m×n) = TS(m×p)×MS(p×n)+R(m×n), (1)

where X represents anm×n data matrix of original measure-
ment for species n (e.g.,m/z) at time pointm, TS is them×p
time series matrix of factor contributions, MS is the p× n
matrix of factor profiles or the factor mass spectra, and R is
the residual between the modeled and the measured data. p
is the number of factors, which needs to be determined based
on the interpretability of the PMF results, among other crite-
ria. Thus, in PMF, the original data matrix is approximated
in terms of p factors, each of which has a distinct mass spec-
trum and time series.

To find the solution, the PMF model utilizes uncertainty
estimates for each element in the data matrix X. These un-
certainty estimates are used to weight the residuals (R), in
order to calculate the Q value as

Qij =

m∑
i=1

n∑
j=1

(
Rij

Sij

)2

, (2)

where Sij is the estimated uncertainty of species/mass j at
time point i, and Rij is the residual of that mass at the same
time. Q is then minimized iteratively to find the mathemati-
cally optimal solution. An expected Q value (Qexp) can be
calculated as the number of non-down-weighted data val-
ues in X minus the sum of elements in TS and MS. If the
data follow the requirements of PMF, the solution with the
correct number of factors should have a Q/Qexp value near
unity. When this is true, the residuals on average fall within
the expected uncertainties for each time point and variable.
More details about uncertainty estimation will be discussed
in Sect. 2.3. The PMF analysis in this study was performed
with the toolkit of Source Finder (SoFi, v6.3) (Canonaco
et al., 2013) using the multilinear engine (ME-2) (Paatero,
1999). Masses with low signal-to-noise ratio (SNR< 0.2;
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see Sect. 2.3 on error estimation) were down-weighted by
a factor of 10, and masses with 0.2< SNR< 2 were down-
weighted by a factor of 2, as suggested by Paatero and Hopke
(2003). The down-weighting effect was considered in the
Qexp calculation. In this study, PMF was operated in robust

mode, where outliers (
∣∣∣RijSij ∣∣∣> 4) were dynamically down-

weighted (Paatero, 1997).
One of the problems in any factorization analysis is rota-

tional ambiguity, which is caused by an infinite number of
similar solutions generated by PMF (Paatero et al., 2002;
Henry, 1987). Generally, the nonnegativity constraint alone
is not sufficient for solution uniqueness. Rotating a certain
solution and assessing the rotated results is one possible way
to determine the most physically reasonable solution. Known
source profiles or source contributions can also serve as con-
strains. In addition, if there is a sufficient number of time
points when the contribution of a source is nearly zero, inde-
pendent of other sources, rotational uniqueness of solutions
can be achieved (Paatero et al., 2002). The same is true if spe-
cific variables in the profiles go to zero. Otherwise, the cor-
rect solution (correct rotation) may only be obtained by skill-
ful use of rotational tools. Ambient measurement data can
often contain zero values in most sources/processes, greatly
reducing rotational ambiguity of the PMF results. The issue
of rotational ambiguity is not explored in detail in this paper,
as it is common to all PMF approaches, and the main pur-
pose here is to illustrate the new methodology of binPMF.
All the solutions shown in this study were achieved without
considering their rotational uniqueness. Finally, we note that,
in addition to rotational ambiguity, binPMF also inherits all
other fundamental limitations and strengths of the underlying
PMF method.

2.2 binPMF data matrix preparation

Instead of UMR or HR fitting of the mass spectra, the mass
spectra were divided into small bins after mass calibration
(Figs. 2 and S1 in the Supplement). Data were first linearly
interpolated to a mass interval of 0.001 Th and then divided
into bins of 0.02 Th width. At an integer mass N , only the
signals between N − 0.2 and N + 0.3 Th (the signal region)
were binned to avoid unnecessary computation of masses
without any signal. With the binning, there were 25 data
points for each nominal mass, instead of only one signal in
UMR or several fitted peaks in HR analysis. All the parame-
ters mentioned above, e.g., bin width and signal region size,
should be adjusted to suit the mass spectrometer and the data
being analyzed. Further details on binning procedures are
discussed in Sect. 3.3.

2.3 binPMF error matrix preparation

Besides the data matrix, an error matrix describing the ex-
pected uncertainty for each element in the data matrix is also
required as input in PMF analysis. Here, the error matrix
(Polissar et al., 1998) is estimated as

Sij = σij + σnoise, (3)

where the uncertainty of mass j at time point i, Sij , is
composed of analytical uncertainty σij and instrument noise
σnoise. σij is the uncertainty arising from counting statistics
and is estimated as

σij = a×

√
I
√
ts
, (4)

in which I is the signal intensity in counts per second, ts is
the averaging time in seconds and a is an empirical parameter
incorporated to include unaccounted uncertainties (Allan et
al., 2003; Yan et al., 2016). In our study, we applied binPMF
with CI-APi-TOF data as an example, and the same a value
of 1.28 was utilized as estimated previously from laboratory
experiments in the work of Yan et al. (2016). The σnoise is
calculated as the median of the standard deviation of instru-
ment noise, calculated from the bins between two nominal
masses that should be least influenced by real signals (the
noise region), i.e., N + 0.5–N + 0.8 Th (see Fig. S1).

2.4 Data sources and description

This study utilized both ambient and synthetic datasets to test
the performance of binPMF. The ambient data were collected
at the SMEAR II station (Station for Measuring Ecosystem–
Atmosphere Relations; Hari and Kulmala, 2005) in the bo-
real forest in Hyytiälä, southern Finland. Located in a rural
forest area, the station has a wide range of continuous mea-
surements of meteorology, aerosol and gas-phase properties
year-round. There are no strong anthropogenic sources close
to the site but two sawmills 5 km to southeast and the city
of Tampere 60 km to the southwest. Detailed meteorologi-
cal parameters and concentrations of trace gases during this
campaign have been presented earlier (Zha et al., 2018). Be-
fore the application to ambient data, we constructed a simple
synthetic dataset to examine how well binPMF can separate
overlapping ions under different conditions.

2.4.1 Synthetic dataset

As a first test of the performance of binPMF, we gener-
ated a series of synthetic datasets based on two distinct
sources. Each synthetic dataset Y was created by summing
up the signals of the two sources. Each source consisted of
a constant source profile (represented as the matrix MS) and
had a unique temporal behavior (represented as the matrix
TS). Each source was the multiplication of MS (mass spec-
tra/source profile) and TS (time series). The two TS values
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Figure 3. Conceptual schematic diagram for the synthetic datasets.
Panels (a) and (b) describe experiments 1–10 in the one-mass sys-
tem; panel (c) describes experiments 11–20 in the two-mass system.
Panel (d) shows experiment 21, with peaks A2 and B2 at separate
integer masses (see text for details).

for the two sources were generated randomly and indepen-
dently from each other, as shown in Fig. S2 (correlation
coefficient R = 0.375). To avoid rotational ambiguity (see
Sect. 2.1) in these tests, we added zero values to the time
series of the two sources, independently of each other.

As shown in Fig. 3, each source profile (MS) was gener-
ated to consist of either one or two separate peaks, covering
either one or two unit masses, respectively. The peaks were
generated as Gaussians of known width and centroid posi-
tion. The peaks of the different sources/profiles were par-
tially overlapping, with the exact overlap, i.e., the distance
(m/z difference) between the overlapping peaks, being var-
ied from one experiment to another.

Peaks in the synthetic MS profiles were first generated as
perfect smooth peaks (fine m/z interval of 0.00001 Th), with
mass resolution of 5000 ThTh−1. We define the resolution R
of a peak as R =M/1M , where M is the mass of the ion,
and 1M is the full width at half maximum signal intensity,
FWHM. As an example, with R = 5000 ThTh−1, an ion at
m/z of 300 Th will have a FWHM of 0.06 Th, correspond-
ing to 200 ppm. Multiplying the source profiles and the time
series, we generated an ideal data matrix. From this ideal ma-
trix, we sampled with a m/z interval of 0.015 Th to simulate
the real measurement data. The interval selected was close
to that typically used for the high-mass-resolution (HTOF;
Junninen et al., 2010) mass analyzer on a CI-APi-TOF. Af-
ter the sampling, Gaussian distributed noise, both from back-
ground random noise and signal-dependent noise, was added
to make up the data matrix Y′, point by point, as shown in

Eq. (6) below. The variance of the Gaussian distributed noise
was estimated as one-hundredth of the coefficient c, which is
the average value of Y.

Y= TS×MS, (5)

Y ′ij = Yij +Gaussian(0,0.01× c)

+Gaussian(0,1)×
√
Yij . (6)

Finally, randomm/z shift within±10 ppm was added to sim-
ulate mass calibration error, spectrum by spectrum. This er-
ror, resulting from inaccurate conversion of the time of flight
into the mass-to-charge ratio, is one of the main causes of
ambiguous or incorrect peak assignment or fitting. In our
study, with the bin width of 0.02 Th and the mass calibra-
tion error of 10 ppm, a maximum of 15 % of one bin’s signal
may incorrectly shift to the adjacent bin, for a mass at 300 Th
((10ppm×300Th)/0.02Th×100%= 15 %). The impact of
this mass shift will effectively be smaller, due to the high
temporal correlation of adjacent bins, as the signal from an
ion will spread to several adjacent bins (the FWHM is ∼ 3
times the bin width). In the case of HR fitting of peaks, a
10 ppm mass calibration error may cause much more dra-
matic changes than merely shifting 15 % of the signal. There
is also no reason for ions from a given source to selectively
end up at the same integer mass, meaning that the signal is
likely to be shifted to another ion from a completely different
source.

Twenty-one synthetic experiments were designed, vary-
ing the mass difference between peaks (m/z difference) and
number of unit masses included in the MS, as shown in Ta-
ble S1 in the Supplement and Fig. 3. For experiments 1–10,
each of the two source profiles consisted of one peak (A1 and
B1), both located at the same unit mass (chosen to be 310 Th
in this study), with varying separation of the peak centroids.
In experiments 11–20, we added one more peak to each pro-
file (peaks A2 and B2), in addition to peaks A1 and B1. The
additional peaks were added at another unit mass (311 Th)
and their m/z difference was fixed at 0.05 Th (161 ppm),
while the position of peak B1 was varied as in experiments 1–
10. For experiment 21, peaks A2 and B2 were added at two
different masses (311 and 312 Th), corresponding to a m/z
difference sufficiently large that there was no meaningful
overlap between them. In the MS (i.e., mass spectra profiles),
all peaks had the same intensity level initially. The variation
of the peak intensity ratio comes from variations in the time
series (Fig. S2). The same time series for each of the two
sources was used in all experiments 1–21.

With this approach of only using two masses, we purpose-
fully provide a challenging dataset for binPMF, as in most
real datasets there would be many more masses to help con-
strain the final solutions. Nevertheless, as we will show, this
simple synthetic dataset already provided a wealth of useful
information in the results attainable with binPMF and pro-
vided a good comparison to the traditional HR fitting ap-
proach.
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2.4.2 Ambient dataset

The ambient dataset was measured at ground level dur-
ing the Influence of Biosphere-Atmosphere Interactions on
the Reactive Nitrogen budget (IBAIRN) campaign (Zha
et al., 2018) in September 2016. The measurements were
conducted using a NO−3 -CI-APi-TOF that has been de-
scribed in detail elsewhere (Jokinen et al., 2012; Junninen
et al., 2010; Yan et al., 2016). Here, the ambient gas-phase
molecules clustered with the nitrate ion were measured with
about 4000 ThTh−1 mass resolving power. Data from 1 to
26 September, averaged to 1 h time resolution, in the mass
range of 300–350 Th (a typical monoterpene HOM monomer
range, Ehn et al., 2014) were utilized for the binPMF analy-
sis. A baseline subtraction was applied to the mass spectra,
which caused some small signals next to large peaks to be-
come negative. In our analysis, any m/z bin where the me-
dian signal was negative was excluded from the data matrix.

3 Results and discussion

3.1 Synthetic dataset

3.1.1 Experiment settings

As introduced in Sect. 2.4.1, the synthetic datasets were con-
structed to assess the response of binPMF to varied m/z dif-
ference, peak intensity ratios and number of masses included,
as shown in Table S1 and Fig. 3. The smaller the distance be-
tween the two peaks, the harder it is to accurately separate
them with traditional HR peak identification and fitting. In
our experiments, the m/z difference was decreased stepwise
from 0.050 Th (161 ppm) to 0.001 Th (3 ppm), in a system
where the FWHM was roughly 200 ppm.

The analysis procedure of the synthetic dataset is briefly
described here. In all cases, the parameter of interest is to see
how well binPMF is able to deconvolve the adjacent peaks
A1 and B1 at m/z 310 Th. First, binPMF was applied to the
synthetic datasets, and factors profiles (mass spectra) were
extracted. The optimal number of factors for the synthetic
dataset is two, the same as the number of sources, so only
the two-factor solution was studied with binPMF. The results
of the diagnostic parameter Q/Qexp for each experiment are
included in Table S1. Gaussian fitting was then performed on
the factor profiles to retrieve the locations of peaks A1 and
B1 and thereby assess how well binPMF was able to retrieve
the original peak positions.

In addition to applying binPMF to the synthetic datasets,
traditional HR peak fitting was also conducted as compar-
ison (by tofTools in our study). For the tofTools fits, we
constrained the peak locations and widths to those origi-
nally used for generating the data (Table S1). Peaks fitted by
tofTools and peaks fitted to the binPMF factors were com-
pared, as well as the retrieved time series correlation with the

original datasets. More details are presented and discussed in
the following sections.

3.1.2 Comparison of peak fitting

We examined the performance of traditional HR fitting and
binPMF by comparing their results to the original input data.
In Fig. 4, the shaded areas depict the original data, the dashed
lines the traditional HR peak fitting result and the solid lines
the binPMF factors. Red and blue represent source/factor A
and B, respectively. Panels (a)–(d) (in Fig. 4) show four sce-
narios of peak fitting results from experiments 1, 5, 10 and
20 at the 79th time point, where the two peaks had sim-
ilar signal intensities. When the two peaks were separated
by 0.05 Th (Fig. 4a), both methods captured the peak inten-
sities quite well. However, as the m/z difference narrowed,
the performance of both methods declined, with the HR fit-
ting results deteriorating faster than those from binPMF. As
m/z difference reached 0.001 Th (3 ppm), the traditional HR
fitting method completely failed to fit the two peaks (pan-
els c and d), instead attributing all the signal to just one fit-
ted mass. In panels (e)–(h), the peak fitting results at the 21st
time point are displayed, where the ratio of the two peaks was
roughly 1 : 6. Here, the traditional fitting method failed to ex-
tract the two peaks already at a m/z difference of 0.01 Th
(30 ppm), attributing all signal to peak B1 (panels g and h).
As shown in panels (d) and (h), when a second set of peaks,
separated by 0.05 Th, was introduced for the two sources in
the datasets, binPMF was able to utilize the temporal behav-
ior of peaks A2 and B2, performing much better, even in the
extremely difficult cases when them/z difference for the two
peaks was only 0.001 Th (3 ppm). It is an inherent advantage
of binPMF over traditional peak fitting methods that the tem-
poral behavior and the correlations between different vari-
ables can be utilized.

Figure 5 shows an overview of all the results of peaks fit-
ted with binPMF. Experiments 1–10 for the one-mass sys-
tem are shown with green lines and experiments 11–20 for
the two-mass system in yellow. Mass accuracy was calcu-
lated as the difference between fitted peak center mass and
the original mass, divided by the original mass, in parts per
million. When the m/z difference got smaller, the mass ac-
curacy of peaks fitted to binPMF factors declined (Fig. 5a
and c). At a m/z difference of 0.01 Th (32 ppm), the mass
accuracy was −4± 2 and 7± 2 ppm for peaks A1 and B1,
respectively. The uncertainties were estimated by repeating
the analysis with 10 different random time series for the two
sources (Brown et al., 2015). For comparison, this separation
approximately corresponds to that between C10H16O7 ·NO−3
(310.0780 Th) and C9H16N2O6 ·NO−3 (310.0892 Th). With
the m/z difference decreasing, the position of peak A1 (the
left red peak in Fig. 3), as identified by binPMF, shifted grad-
ually to the left, while peak B1 (the right blue peak) shifted
to the right. When peaks A2 and B2 were introduced to the
sources, the mass accuracy improved (< 6 ppm). The reso-
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Figure 4. Peak separation results by a traditional HR fitting method (dashed lines) and binPMF (solid lines), at the 79th time point (a–d) and
at the 21st time point (e–h) for experiment numbers 1 (a, e), 5 (b, f), 10 (c, g), and 20 (d, h). The signal intensity ratios of peaks A1 and B1
were about 1 : 1 and 1 : 6, respectively, at the 79th and the 21st time points. Panels (a)–(c) and (e)–(g) are for the one-mass system, while
panels (d) and (h) are for the two-mass system.

lution of the peaks fitted to binPMF factor profiles stayed
fairly constant but had degraded compared to the original in-
put data (5000 Th Th−1), explained at least partially by the
data binning (Fig. 5b and d). Overall, binPMF performs rela-
tively well in peak separation, with reasonable mass accuracy
and peak resolution compared to the original datasets.

3.1.3 Correlation of time series

In addition to the peak positions, we also compared the tem-
poral behavior of both the binPMF factors and the time se-
ries obtained through traditional fitting to the original time
series. When the m/z difference was larger than 0.02 Th
(65 ppm), both methods worked similarly well in reproduc-
ing the original time series (Fig. 6). As the m/z difference
decreased below 0.02 Th (65 ppm), correlations decreased
rapidly (panels a and c), with that of the traditional method
decreasing faster. However, as shown by the yellow lines,

when peaks A2 and B2 were added to each source profile,
the time series correlation coefficients between original data
and peaks extracted by binPMF were close to unity in ex-
periments 11–20. The coefficients stayed similar to that from
the experiment with a m/z difference of 0.05 Th (161 ppm),
which was the fixed m/z difference for the two new peaks
added at 311 Th in experiments 11–20. This means that the
separation of the factor time series was mainly driven by the
additional, better-separated peaks. Again, the traditional HR
fitting method could not utilize the information at 311 Th,
and therefore no improvement to the peak deconvolution at
310 Th was seen. In addition to the correlation analysis, also
the assignment of absolute signal to peaks A1 and B1 was
evaluated. This was done by a linear fit (through zero) to the
data points retrieved by the different methods as a function of
the original input data. The slopes of the fitted lines are plot-
ted in Fig. 6b and d and show that the signal was for the most
part correctly attributed to within a few percent. The largest

www.atmos-meas-tech.net/12/3761/2019/ Atmos. Meas. Tech., 12, 3761–3776, 2019



3768 Y. Zhang et al.: A novel approach for simple statistical analysis of HR mass spectra

Figure 5. Characteristics of peaks fitted to binPMF factors. Pan-
els (a) and (b) show results for peak A1 and (c) and (d) for peak B1.
In panels (a) and (c), the mass accuracy of peaks resolved by
binPMF is compared to the original data. Panels (b) and (d) de-
pict the resolution of the two fitted peaks. The original resolution of
the input data was 5000 ThTh−1.

scatter in the determined slopes was observed for binPMF
experiments with only one mass, at low peak separations.

3.1.4 Summary and discussion

Based on the results shown above, binPMF was found to be
as capable of separating different peaks as traditional peak
fitting techniques when the two peaks were separated by
more than the mass calibration uncertainty (yet still in all
cases by less than the FWHM of the peaks). As the m/z dif-
ference of the two overlapping peaks decreased, the perfor-
mance of the traditional method declined faster than that of
binPMF. This was shown for signal attribution of fitted peaks
and time series correlation with original data. When masses
with covaried temporal behavior of the targeted overlapping
peaks were introduced in the dataset, the performance of
binPMF improved significantly.

The peak fitting principles of the traditional method and
binPMF are very different. For example, tofTools fits peaks
based on predetermined instrument parameters (e.g., peak
shape and peak width), as well as the peak location, either as
a numeric value or a chemical composition from which the
location is calculated (Junninen et al., 2010). HR peak fitting
by tofTools can be effective if the majority of the components
(peaks) are known and provided in a peak list, which is valu-
able information for peak separation that was not provided
to binPMF in this study. However, this information can be
hard to achieve due to unknown numbers and/or identities of
all the ions at a given mass, in combination with the limited

Figure 6. Comparison of time series of binPMF and HR fitting. Pan-
els (a) and (b) show results for peak A1 and (c) and (d) for peak B1.
Correlation of time series (a, c) retrieved by binPMF (green lines
for experiments 1–10, yellow for 11–20) and traditional HR fitting
(black lines) compared to original input data. Panels (b) and (d)
depict the slope K of the linear fit y = k× x, where y is the signal
retrieved from the synthetic data by either binPMF or the HR fitting,
and x is the original input signals.

mass resolving power of the mass spectrometer. HR peak fit-
ting is also sensitive to mass calibration error, increasingly so
when many ions in close proximity to each other need to be
fit. On the contrary, in binPMF, peaks are separated based on
the temporal variation of masses, which is an inherent advan-
tage of PMF, though no information of the peaks is provided
beforehand. To be more specific, a conceptual illustration is
shown in Fig. S3. The red peaks belong to source A and the
blue peaks to source B. As mentioned before, the time series
of sources A and B were totally independent and random.
The shaded areas (the tails of the peaks), e.g., red shaded area
in Fig. S3a, contained masses that only had significant signal
from peak A1 (left red peak). Similarly, the blue shaded area
in Fig. S3a was mostly from peak B1. The different temporal
behaviors of the red and blue shaded areas helped the sep-
aration and correct attribution also in the regions with over-
lapped signals. When them/z difference of peaks A1 and B1
decreased, shown in Fig. S3b, the two shaded areas also be-
came smaller. This is the main reason why the fitted masses
of binPMF had lower mass accuracy and lower correlation
coefficients compared to the original data, as the m/z differ-
ence decreased.

When peaks A2 and B2 (m/z difference of 0.05 Th) were
added in the dataset, peaks A1 and B1 were better separated
and fitted by binPMF compared to the scenarios with only
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one mass. This is because, as shown in Fig. S3c, the red and
blue shaded areas became larger due to the addition of two
more peaks. In this case, it was peaks A2 and B2 that dom-
inated the separation of sources A and B. In experiment 21,
three integer masses were included in the dataset. Though it
was still equally difficult for the traditional HR method to
separate and fit peaks A1 and B1 with a m/z difference of
0.001 Th (3 ppm), it was the easiest experiment for binPMF
out of all the experiments because of the large m/z differ-
ence of peaks A2 and B2 (1.000 Th, 3225 ppm). In exper-
iment 21, the mass accuracies for peaks A1 and B1 were
−3.2 and 2.6 ppm, respectively, and the time series corre-
lation with original data was 1.000 and 0.999, respectively.
In most real-world applications, individual sources typically
contain multiple peaks, and the correlations of these can be
utilized by binPMF.

We note once more that the results of binPMF and tradi-
tional HR peak fitting are not totally comparable. Informa-
tion about the peaks, like the exact peak centroid position,
peak width (resolution) and number of peaks, was provided
to the traditional fitting method. For binPMF, no prior in-
formation about the peaks was given, except for the optimal
number of factors, i.e., two.

3.2 Ambient dataset

With the success of binPMF for the synthetic datasets, we ap-
plied the new method to a real ambient dataset. Here we used
data collected in September 2016, from Hyytiälä in Finland.
The SMEAR II station is a forest site dominated by monoter-
pene (C10H16) emissions (Hakola et al., 2006). Previous CI-
APi-TOF measurements of HOM at the site (Ehn et al., 2014;
Yan et al., 2016) have presented bimodal distributions, with
one mode corresponding to HOM monomers (range 300–
400 Th) and the second to HOM dimers (450–650 Th). For
testing the binPMF analysis on our ambient dataset, we se-
lected the HOM monomer range of 300–350 Th. While the
synthetic dataset primarily compared binPMF to traditional
HR fitting analysis, in this section, we compare the binPMF
results with that of traditional UMR-PMF, as employed by
Yan et al. (2016). HR fitting was not performed for the am-
bient dataset, for all reasons mentioned in earlier sections,
including the difficulty and efforts of producing a proper un-
ambiguous peak list, as well the limitations of overlapping
peaks.

As mentioned above, no prior knowledge was provided
to PMF before the analysis. To determine the number of
factors for further analysis, we conducted runs with two to
eight factors. As the number of factors increased, more in-
formation could be extracted from the raw data. However,
after the optimal number of factors, the additional factors
may split the physically reasonable factors into meaningless
fragments. There have been many studies on evaluations of
PMF runs and selections of PMF factor number (Zhang et
al., 2011; Craven et al., 2012). This is an inherent challenge

in any PMF analysis, and not specific to binPMF, and there-
fore we do not put emphasis on this here. In this study, based
on commonly used mathematical parameters and physical in-
terpretation, we chose the seven-factor result, as presented
below. Our main aim with this work is to present a proof
of concept for the binPMF methodology, and we will there-
fore not provide a detailed interpretation of all the factors
(though several of the factors are easily validated based on
earlier studies). The factor evolution from two to eight fac-
tors is briefly discussed below.

From two to six factors, Q/Qexp showed a dramatic de-
crease from 6.5 to 2.7. Then for seven and eight factors,
Q/Qexp decreased to 2.3 and 2.0, respectively. The unex-
plained variation also declined from 14 % to 8.8 %, going
from two to six factors, and then reached 8.0 % for seven fac-
tors and 7.6 % for eight factors. The two-factor solution first
split the data into a daytime factor and a nighttime factor,
with very distinct mass spectral profiles. The daytime factor
was characterized by signals at 307, 311, 323, 339 Th and
other odd masses, while the nighttime factor was dominated
by 308, 325, 340 and 342 Th. The odd masses are typical
signatures of daytime monoterpene-derived organonitrates at
the site, while the even masses, and specific odd masses
e.g., a radical at 325 Th, have been identified as monoterpene
ozonolysis products (Ehn et al., 2014; Yan et al., 2016). As
the number of factors increased, the daytime factor was fur-
ther split into new daytime factors, with diurnal profiles hav-
ing various peak times around noon or early afternoon. When
the number of factors increased to seven, a clear sawtooth
shape in the diurnal trend was resolved with marker masses
at 308, 324, 325 and 339 Th. Many of the profiles resolved in
the seven-factor solution are similar to those found by Yan et
al. (2016), and separating more factors did not yield new fac-
tors that we could interpret. Therefore, we opted to use this
seven-factor result for the main discussion below, as it pro-
vided us with enough information to evaluate the binPMF
method for this dataset.

Figure 7 shows the mass spectral profiles and factor time
series for the seven-factor result, while Fig. 8 displays the
diurnal trends and factor contributions to the total signal. As
shown in Fig. 8a, the seven factors separated by binPMF con-
sist of one nighttime factor (Factor 1), five daytime factors
(Factor 2, 3, 4, 5 and 7) and a sawtooth-pattern factor (Fac-
tor 6). The same dataset was also analyzed by UMR-PMF,
and the corresponding seven-factor results are also included
in Figs. 7 and 8 for comparison.

Overall, the results between UMR-PMF and binPMF are
very similar. UMR-PMF also resolved one clear nighttime
factor and additionally six daytime factors. For the night-
time factor, both binPMF and UMR-PMF showed compara-
ble temporal behavior, diurnal trend (peak at 17:00; all times
are given in Finnish winter time, UTC+2), mass spectral pro-
files (peaks at 340, 308, 325, 342 Th) and factor contribution
(∼ 20 %). This factor has been validated in both chamber and
ambient studies to be formed from monoterpene ozonolysis
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Figure 7. Comparison of binPMF and UMR-PMF for factor mass spectral profiles (a) and time series (b). The equations in each panel
describe how signals from binPMF (y) compare with the UMR-PMF solution (x). R is the correlation coefficient between the time series.

(Ehn et al., 2014; Yan et al., 2016). As shown in Fig. 7a, both
methods also resolved similar, though not identical, mass
spectral profiles for the other six factors, with mostly com-
parable time series (Fig. 7b) and peak times in the diurnal
trends (Fig. 8a).

Despite the similarities, there also existed distinct differ-
ences between the results from binPMF and UMR-PMF. As

the most distinctive dissimilarity, binPMF Factor 6 revealed
a contamination factor. This factor was found to be related
to automated instrument zeroing every 3 h, giving rise to
the distinct 3 h sawtooth pattern. The zeroing system intro-
duced some additional compounds into the sampling lines,
and the semivolatile nature of these compounds caused them
to linger, and slowly decay, in the tubing even after the in-
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Figure 8. Comparison of binPMF and UMR-PMF for (a) diurnal trend and (b) factor contribution.

strument had returned to sampling ambient air. binPMF ac-
curately retrieved the 3 h interval of the zero measurements.
However, with the same mass range (300–350 Th), UMR-
PMF failed to extract the contamination factor, regardless
of the number of factors retrieved (up to 20 factor solutions
were evaluated). Instead, these contamination signals were
always mixed into the other factors. Factor 6 from UMR-
PMF contributed almost twice as much as that estimated by
binPMF due to the inaccurate factor separation (Fig. 8b).
The time series of other factors, e.g., Factor 5 and 7 in
UMR-PMF, were clearly influenced by Factor 6. Compared
to UMR-PMF, binPMF thus showed a clear advantage in pro-
viding more information out of the data by being more sen-
sitive to subtle variations.

In addition to better resolving certain factors from the data,
the binPMF mass spectral profiles will still contain more in-
formation than visible in Fig. 7, due to the multiple bins at
each unit mass. As an example, binPMF Factor 6 showed
masses with clear negative mass defects, e.g., at 324 and
339 Th (Fig. 9). We identified many ions in this factor as dif-
ferent fluorinated carboxylic acids, which are common inter-
ference signals in negative ion CIMS, outgassing from, e.g.,
Teflon tubing (Brown et al., 2015; Ehn et al., 2012; Hein-
ritzi et al., 2016). The exact source of these products in our
setup was not established, but it is not surprising that the ad-
ditional valves, filters and/or tubing in the zeroing line could
have caused this type of signal to be introduced to the instru-
ment with the zero air. In general, this finding highlights the
usefulness of the binPMF approach, where factor separation
can be performed first, and the specific factor profiles can be
utilized in interpreting the physical meaning of the different
factors. This is in complete contrast to the more traditional
approach, where all ions need to be identified first, and only
then can HR PMF be attempted. As not all ions are going
to be observable at all times, many ions may remain uniden-
tified. For example, if peak identification would only have
been done during periods when the HOM signals were high,
as in the case shown in Fig. 9a, the fluorinated ion at 339 Th
would not have been found (contributing only 0.45 % to the
total signal at this time point), even though it on average con-

tributes nearly 10 % of the signal at this mass over the entire
campaign. binPMF, on the other hand, utilized the full dataset
for the identification and was able to separate several ions
at 339 Th. By fitting Gaussian signals to the factor profiles,
similar to the synthetic data in Sect. 3.1.2, we see that the two
major peaks were fitted with decent resolution (Fig. 9). Also
the contamination factor (Factor 6) was clearly separated and
fitted, and the resolution (3136 ThTh−1) is slightly underes-
timated by the fit, as only one Gaussian was fitted to each
profile, yet there is clearly more than one ion at 339 Th in
Factor 6. As shown in Fig. 9c, there is also a clear indication
that Factor 3 and 5, which together make up as much signal at
339 Th as the contamination Factor 6, mainly contain signals
from another molecule (C10H13O9) rather than the dominant
signals at this mass (C10H15NO8). However, further work
will be needed to validate this. Factor 1 has marginal contri-
bution to the signal at 339 Th (as seen in Fig. 9b) throughout
the campaign, and we expect it does not contain a useful sig-
nal, as is suggested by the unreasonably high resolution, i.e.,
narrow peak width, of the fitted peak. The resolving power
of the instrument was around 4000 ThTh−1, and thus any
apparent peak resolution above that will be unrealistic. How-
ever, as this factor contains signal at the outer edges of the
main peaks at thism/z, it is possible that this factor relates to
some instrumental variability affecting the peak shape. This
is highly speculative, but such a phenomenon may be worth
looking into in later studies utilizing binPMF. In summary,
resolving multiple overlapping peaks by traditional methods
is time-consuming and can be tricky and ambiguous. Here,
binPMF greatly simplified this problem by providing addi-
tional separation between the ions.

3.3 Future improvements and applications

The new technique for mass spectra analysis, binPMF, as
presented above, shows clear promise in utilizing HR infor-
mation while saving time and effort, as well as decreasing
ambiguity related to conventional HR peak fitting. It is also
more sensitive to subtle variation than standard UMR analy-
sis. We consider this study a successful proof of concept and
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Figure 9. binPMF factor profiles at m/z 339 Th at 12:00 on 9 September. Panels (a) and (b) show the absolute concentrations of each factor,
while in panel (c) the factor profiles are normalized to the same maximum peak heights. The fitted peak location (Th) and the apparent
resolution (ThTh−1) for each factor are given in panel (c). The contribution of different factors to the integer m/z 339 Th is shown as a
percentage. Three potential chemical compositions were marked with black vertical dashed lines.

note that several future improvements and applications are
still foreseeable. We list some of these below.

1. Varied bin width. The full width at half maximum of
an individual peak in a mass spectrometer is mass-
dependent, with peaks getting wider at higher masses.
In binning the mass spectrum with a constant bin width,
like in this study, the average number of bins per peak
increases as a function of mass. To represent the peaks
in a comparable manner, the bin width should thus be
dependent on the mass. Varying the bin width as a func-

tion of the mass, and the mass resolution of the instru-
ment, would enable a constant number of bins (e.g.,
seven) per peak. Too few bins per peak would mean
that we may lose valuable information in the binning,
and potentially risk introducing aliasing effects, while
too many points per peak would lead to an unnecessar-
ily high number of variables, without noticeable gain in
information content. This would also result in high com-
putational cost. If targeting seven bins per peak, then the
function for determining bin width based on m/z and
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resolution (R, which is mass-dependent) could be

R(m/z)=
m/z

1m

Bin width× 7= 2×1m

Bin width=
2
7
×

m/z

R(m/z)
.

1m is the full peak width at half maximum signal inten-
sity. If we consider an instrument with approximate con-
stant resolution of 5000 ThTh−1 for masses from 200
to 600 Th, the bin width at 200 and 600 Th should be
around 0.01 and 0.03 Th, respectively.

2. Optimization of binning region. Similarly to bin width,
the binning region, i.e., the signal region ([N−0.2,N+
0.3] in this study, introduced in Sect. 2.2), should also
be mass-dependent. Due to the widening of the peaks
with increasing mass, the binning region should also get
wider. In addition, the typical mass defect of measured
ions typically varies with mass. This means that the bin-
ning regions should not necessarily be defined with re-
spect to the integer masses but to some chosen mass de-
fect. Another approach would be to bin all the data and
remove the bins not meeting a certain criterion, such as
one related to the signal-to-noise ratio in that bin, after-
wards. In this case, there would be no need for a prede-
fined mass defect or region width, and one could utilize
the signals that do not fall within the expected regions.

3. Error estimation. Good error estimation is crucial to
PMF calculation. Uncertainty in PMF analyses arises
from three main causes, random errors in data values,
rotational ambiguity and modeling errors (Paatero et al.,
2014). Variations in mass calibration are one example of
a modeling error. It is common practice to increase un-
certainty values Sij specified for data values disturbed
by modeling errors. This increase does not account for
the mass calibration error in the sense that the effect
of mass calibration variation would disappear. The in-
crease simply balances residuals in different data val-
ues so that the best possible result may be obtained. In
addition to the two error estimation terms discussed in
Sect. 2.3, σij and σnoise, a third form of error, to balance
the mass calibration variation, could also be considered
for error estimation. Similarly, although generally rare
and suggestive of some instrumental problem, if the
peak shape or resolution shift over time, this would also
require an improved error estimation in order to account
for increased variability.

4. Multipeak fitting. As discussed, peak identification is
one of the most time-consuming and potentially am-
biguous tasks in HR analysis, and with binPMF this may
not always be a necessary task. However, as binPMF
often resolves several peaks (chemical components) at

each integer mass, peak identification can be made
easier if peak identification is constrained to several
binPMF factor profiles rather than just the initial HR
spectrum. The optimal approach for this will be the tar-
get of a future study.

Most likely several other improvements to the approach will
be identified in future studies, and simplicity of the analysis
remains a critical consideration. We propose that binPMF is
a good tool for initial exploration of new datasets, at which
stage optimizing all parameters is not necessarily crucial, if
the results can help guide further analysis directions. How-
ever, for maximizing the information content that can be ex-
tracted from a given dataset, optimized routines are impor-
tant.

4 Conclusions

While recent advances in mass spectrometry have greatly en-
hanced our understanding of atmospheric chemistry, the in-
creased information content in mass spectra also brings diffi-
culties and challenges to the data analysis. Peak identification
and separation can be challenging and ambiguous, as well
as extremely time-consuming and involving large uncertain-
ties. Constructing peak lists, i.e. deciding which ions to fit to
the mass spectra, and validating the results are becoming one
of the most labor-intensive parts of the entire work. In this
study, we propose a simple and reliable method, binPMF, to
try to avoid many of these problems, while still being able to
distinguish different chemical pathways/sources in the atmo-
sphere.

Different from traditional analysis, binned positive matrix
factorization (binPMF), divides the mass spectra into smaller
bins, before applying PMF to distinguish different types of
factors and behavior in the data. This method utilizes more
available information than classical UMR-PMF and requires
no prior peak information as in the case of traditional HR-
PMF. We applied binPMF successfully to both ambient and
synthetic datasets to test its usefulness under different cir-
cumstances.

Traditional HR analysis fits peaks to each mass accord-
ing to a predefined list and is not able to utilize any infor-
mation across masses or time. In our analysis of a simple
synthetic dataset with two overlapping ions at a single in-
teger mass, we found that binPMF was able to separate the
contributions of each ion even in cases where the HR analy-
sis failed completely. This was the case for overlapping ions
where binPMF had help in constraining the time series from
another integer mass. When applied to an ambient dataset of
HOM measured by a CI-APi-TOF, binPMF identified more
physically meaningful factors than UMR-PMF. Additionally,
for factors where the two PMF approaches agreed, binPMF
still contained more mass spectral information for ion identi-
fication, as compared to UMR-PMF.

www.atmos-meas-tech.net/12/3761/2019/ Atmos. Meas. Tech., 12, 3761–3776, 2019



3774 Y. Zhang et al.: A novel approach for simple statistical analysis of HR mass spectra

We provide a proof of concept for the utility of binPMF,
showing that it can outperform the two traditional analysis
approaches, UMR and HR. We identify several future im-
provements and applications for binPMF, including an ap-
proach to greatly facilitate the time-consuming process of
peak list construction. We expect binPMF to become a pow-
erful tool in the data exploration and analysis of mass spectra.
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