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Abstract 

The ternary lithium aluminum fluoride Li3AlF6 is formed from two optically interesting fluorides, LiF 

and AlF3. It has been reported to have a large electronic bandgap with a reasonable lithium-ion 

conductivity at room temperature, making it a potential electrolyte material for solid-state lithium-ion 

batteries. Because of complications during attempts at direct atomic layer deposition of Li3AlF6, we 

have studied the deposition of the material using two conversion processes. In Process 1, a conversion 

reaction takes place when Al(thd)3 and TiF4 are sequentially pulsed onto LiF films. The films contained 

LiF as an impurity phase, as determined with grazing incidence X-ray diffraction (GIXRD), and a large 

amount of titanium impurity, as determined with time-of-flight elastic recoil detection analysis (ToF-

ERDA). In Process 2, AlF3 films are exposed to Lithd vapor, resulting in a conversion reaction that 

produced Li3AlF6 with some LiF. These films have also been studied with GIXRD and ToF-ERDA, 

and contained much smaller amounts of titanium and other impurities. The Li:Al metal ratios vary 

depending on the extent of Lithd exposure. Field emission scanning electron microscopy (FESEM) 

revealed that the Li3AlF6 films are quite porous.  
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1. Introduction 

 

Li3AlF6 is composed of two optically interesting fluorides, LiF and AlF3. This material is best known 

for having many crystalline phases
 
[1–7], and for being a good solid lithium-ion conductor. The 

material has been reported to have conductivities of the order of 10
-6

 S/cm both in the amorphous 

(usually written in the form of the non-equilibrium compound LiAlF4) [8–10] and crystalline form 

[11,12], which makes it competitive with more traditional solid state lithium ion battery electrolyte 

materials such as LiPON (10
-7

 S/cm) [13,14] and LiTaO3 (10
-8

 S/cm) [15]. As a compound of two 

fluorides it is no surprise that the material also has a large bandgap of ~ 12.5 eV [16], which further 

increases its potential as a solid electrolyte material for all-solid-state lithium-ion batteries.  

 

Li3AlF6 can be deposited by various methods, including the sol-gel method [17] and thermal 

evaporation [10].
 
To be applicable in all-solid-state lithium-ion batteries, a material must be deposited 

using a method which provides, among other things, good film quality and thickness control. Atomic 

layer deposition (ALD) is a thin film deposition method that can provide these properties. By 

definition, ALD is based on saturative, self-limiting surface reactions [18], and is usually realized by 

the sequential pulsing of gaseous precursors onto a substrate, with purging steps applied between the 

precursor pulses to avoid gas phase reactions. ALD is mostly used in depositing materials such as 

transition metal oxides for microelectronics and memory devices [19]. Both binary and ternary 

materials can be deposited using ALD, with the ternary deposition often done by combining binary 

material subcycles into a supercycle (Scheme 1) [20]. Despite its inherent simplicity, the subcycle 

approach can prove problematic in some cases, for example due to exchange reactions and differing 

film growth rates on changing deposition surfaces [21].  

 



 

 

Scheme 1: An example of ternary material deposition by ALD using the subcycle approach, where the cycles of binary 

materials are combined in a desired ratio (x subcycles of TiO2 before y subcycles of BaO) to deposit the ternary material 

(BaTiO3) [22].
 

 

After the first paper on ALD of lithium-containing materials was published in 2009 [23], ALD has 

gained much interest also in the field of lithium-ion batteries, and many binary and ternary lithium 

containing materials have already been deposited [24,25].
 
Despite being a fairly new addition to the 

periodic table of ALD materials, lithium has already been demonstrated to be able to defy some of the 

basic rules of ALD with its high reactivity and mobility in ALD conditions [26–28]. For example, 

lithium has been reported to be able to take part in conversion reactions in ALD conditions [27,28]. 

While often such conversion reactions can be seen as a complication in the thin film deposition 

process, with proper process design they can also be used as an advantage. For example, we have 

studied the conversion of MgF2 thin films into LiF using a Lithd precursor exposure. We found that the 

resulting LiF films were very pure and had many advantageous properties compared to LiF deposited 

with traditional ALD, including better adhesion to the silicon substrate and smaller surface roughness 

[27]. Recently, a similar vapor-solid conversion reaction has been applied for the deposition of metal-

organic frameworks from ALD zinc oxide, further proving that conversion reactions can produce high 

quality thin films [29]. 

 

 

Metal fluorides have been deposited by ALD since the early 1990s [30]. In the first studies HF, which 

was generated by decomposing NH4F, was used as the fluorine precursor. HF is still a popular fluorine 

source today, and both AlF3 and Li3AlF6 have been deposited using this fluorine precursor [12,31,32]. 

The Li3AlF6 deposition, reported thus far only in a conference presentation and as a part of a doctoral 

dissertation, combined HF with metal precursors TMA (trimethylaluminum) and LiHMDS (lithium 



 

 

bis(trimethylsilyl)amide, or lithium hexamethyldisilazide) [12]. Due to the hazardous nature of HF, our 

group has extensively studied the ALD of fluorides using metal fluorides, such as TiF4 and TaF5, as 

fluorine sources [27,33–39]. These halides can take part in exchange reactions with both metal-thd 

complexes and chlorides, forming a solid fluoride material and volatile side products of the type 

TiFx(thd)4-x or TiFxCl4-x with only small impurity contents in the films. 

 

In this paper, we report on the deposition of Li3AlF6 thin films. Our initial experiments on using the 

ALD subcycle approach were unsuccessful due to the facile conversion of AlF3 to LiF during the 

deposition process. Therefore, alternative deposition processes utilizing conversion reactions were 

developed: First, ALD-made LiF thin films were used as a substrate film for a deposition process 

utilizing Al(thd)3 (aluminum tris(2,2,6,6-tetramethyl-3,5-heptanedionate) and TiF4  as precursors 

(Process 1, Scheme 2). In the second, more successful approach (Process 2, Scheme 3), AlF3 thin films 

were atomic layer deposited first from AlCl3 and TiF4, and then exposed to the lithium precursor Lithd 

(lithium 2,2,6,6-tetramethyl-3,5-heptanedionate) in an ALD-reactor. This exposure led to an efficient 

conversion reaction that resulted in crystalline Li3AlF6 formation. 

 

 

Scheme 2: Process 1 utilizes Al(thd)3 and TiF4 in a conversion reaction to form Li3AlF6 out of LiF thin films. 

 

 

Scheme 3: Process 2 uses a conversion reaction between ALD-made AlF3 and the lithium precursor Lithd to deposit 

Li3AlF6. 

  



 

 

2. Experimental details 

2.1 Film deposition 

All thin film depositions and conversion reactions were conducted using an ASM Microchemistry F-

120 hot-wall flow-type ALD reactor. The AlF3 and LiF films used as starting surfaces in Processes 1 

and 2 were deposited by ALD as previously described in the literature [38,39]. The films were 

deposited onto single crystalline Si(100) wafers cut into 5 cm x 5 cm pieces. Al(thd)3 (Volatec Oy) and 

TiF4 (Strem Chemicals Inc., 98 %) were used as precursors in Process 1 and applied onto LiF films. 

Lithd (Volatec Oy) exposure on AlF3 films was used in Process 2. The pressure inside the reactor was 

of the order of 5 mbar (500 Pa) during the experiments. The precursors were evaporated inside the 

reactor from open glass boats, Lithd at 180 °C (453 K), Al(thd)3 at 113 °C (386 K), and TiF4 at 135 °C 

(408 K). The pulsing of the precursors was done by inert gas valving. N2 gas, obtained from liquid N2, 

was used as the carrier and purging gas (H2O ≤ 3 ppm, O2 ≤ 3 ppm).  

 

2.2 Film characterization 

A Hitachi U2000 spectrophotometer was used to evaluate the thickness and refractive index of the 

films. The thickness and refractive index values were determined from reflection spectra by a fitting 

program developed by Ylilammi and Ranta-aho [40]. The wavelength range was 370–1050 nm.  

 

The crystallinity of the films was studied by grazing incidence X-ray diffraction (GIXRD) 

measurements conducted with a PANalytical X’Pert Pro MPD X-ray diffractometer with parallel beam 

optics. In situ high temperature XRD (HT-XRD) measurements were conducted in N2 atmosphere, 

using an Anton-Paar HTK1200N oven. The morphology of the films was studied by field emission 

scanning electron microscopy (FESEM) with a Hitachi S4800 FESEM instrument. For the FESEM 



 

 

imaging, the samples were coated with approximately 2.5 nm of Au/Pd by sputtering using a 

Cressington 208HR sputter coater.  

 

The composition of the films was studied with time of flight elastic recoil detection analysis (ToF-

ERDA). The ToF-ERDA measurements were performed with 50 MeV 
127

I and 40 MeV 
79

Br beams 

from the 5 MV EGP-10-II tandem accelerator at the University of Helsinki [41]. The detection angle 

was 40° and the sample was tilted 16° relative to the beam direction.  

 

3. Results and discussion 

3.1 Process 1 

 

Process 1 utilized Al(thd)3 and TiF4 for the conversion reaction of LiF films into Li3AlF6. Although this 

precursor combination did not result in AlF3 film growth on silicon or alumina [39], pulsing them onto 

LiF resulted in a reaction. Al(thd)3 was chosen as the aluminum source, instead of AlCl3 used in our 

previously reported AlF3 process [39], to avoid the formation of LiCl as a solid reaction side product 

upon exposure of LiF to AlCl3 vapor (Appendix, Figure A.1).  

 

Figure 1 illustrates how the deposition temperature (A), aluminum precursor pulse length (B), and the 

number of ALD cycles (C) affect the crystallinity of the resulting films. It is evident from the 

diffractograms that the LiF film is reacting with the precursors, as the ternary Li3AlF6 film is forming 

during the deposition process instead of a separate AlF3 film on LiF. The efficient mixing of the 

fluorides during the deposition process is not surprising, as both LiF and Li3AlF6 are known to be quite 

good lithium-ion conductors at high temperatures [42,43]. Because longer Al(thd)3 pulse times led to 

more prominent Li3AlF6 reflections in the X-ray diffractogram (Figure 1B), it is evident that the film 



 

 

growth is not self-limiting as in conventional ALD, but rather a continuous conversion reaction is 

taking place. Based solely on the XRD results of Figure 1, it can be concluded that a large number of 

deposition cycles, with long Al(thd)3 pulse times and high temperatures, result in Li3AlF6 films with 

the smallest amount of crystalline LiF, which in this case is deemed as an impurity phase. However, 

based on a visual examination of film quality and uniformity, these same parameters result in both poor 

adhesion, flaky deposits, and overall nonuniform films (Figure 2). Therefore, intermediate temperatures 

with short precursor pulse times and relatively small cycle numbers were used in the further 

experiments (Figure 1D). 

 

 

Figure 1: X-ray diffractograms of films deposited using Al(thd)3 and TiF4 onto LiF a) at 250, 300 and 350 °C (523, 573 and 

623 K), b) with different Al(thd)3 pulse lengths, c) with different numbers of cycles at 250 and 300 °C (523 and 573 K) and 

d) using optimized parameters of 300 °C (573 K), small number of cycles and a short Al(thd)3 pulse. Solid lines denote 

monoclinic Li3AlF6 and the dashed lines indicate peaks belonging to cubic LiF. 

 

 

Figure 2: Li3AlF6 films deposited at 250 (left) and 350 °C (right) (523 and 623 K) onto LiF with 1000 cycles and using a 2 

s Al(thd)3 pulse. Despite a smaller amount of LiF impurity in the X-ray diffractogram, the sample deposited at the higher 

temperature is otherwise of much lower quality, with flaky deposits and poor adhesion. 

 

 

Establishing the exact phase of Li3AlF6 in our samples is challenging since the peak intensities are 

small and the peaks are broad. Li3AlF6 is known to show two polymorphs at room temperature
 
[1], 

namely the orthorhombic α-Li3AlF6 [5,44] and the monoclinic β-Li3AlF6 [7,45]. The peak positions of 

the most intense peaks of these two polymorphs are very close, making the distinguishing of the phases 

challenging. It has been reported that the α phase is in fact metastable and forms only after fast 

quenching from a melt. On the other hand, slow cooling of a melt leads to the monoclinic β-phase. 

Based on our analyses, all the Li3AlF6 films deposited using Al(thd)3 and TiF4 are of the monoclinic 



 

 

phase [45]. In addition to the peaks belonging to Li3AlF6, a shoulder peak residing at 2θ = 20.6° 

appears in Figure 1D. The origin of this peak could not be identified. For the low-quality film deposited 

at 350 °C (623 K) (Figure 2), the phase identification was more challenging. Based on our analyses, the 

film is most likely a distorted monoclinic Li3AlF6 phase (difference in cell dimensions +1 – +2 %). 

Comparing our results to the literature, Li3AlF6 films deposited by ALD using HF as the fluorine 

source were also crystalline, with wide peaks that were assigned to the monoclinic phase [32]. 

 

Elastic recoil detection analysis depth profiles showed that the thickness of the LiF film had a large 

effect on the elemental distribution of the forming ternary fluoride film (Figure 3). 80 nm LiF films 

were enriched with aluminum only to a certain depth, and below that only Li and F were seen. This 

explains the large LiF impurity phase seen in Figure 1. When using a 50 nm LiF film, aluminum is 

uniformly distributed in the whole film. ERDA also revealed that both Al(thd)3 and TiF4 were 

necessary for the conversion reaction to occur: without TiF4 pulsing, only negligible amounts of 

aluminum were found in the lithium fluoride film. Still, even in the best samples obtained using both 

precursors, based on both XRD and visual inspection, the amount of aluminum was very low. After 

750 cycles of Al(thd)3 and TiF4 pulsing, the originally 50 nm LiF film of Figure 3 had only 6.6 at% of 

Al and a Li : Al ratio of 4.2 : 1. In addition, the amount of titanium impurity in the film was 1.9 at%, 

resulting in an Al : Ti ratio of 3.5 : 1. It can be concluded that although Process 1 resulted in visually 

good-looking films with Li3AlF6 present in the X-ray diffractograms, the amount of aluminum is in all 

likelihood too low, and the amount of titanium too high, to result in high lithium-ion conductivities. In 

addition, all the films contain large amounts of crystalline LiF, confirming that the ALD-type 

conversion reaction was not an effective route to Li3AlF6 thin films.
 

 

 



 

 

Figure 3: ToF-ERDA depth profiles of films deposited at 300 °C (573 K) using 750 cycles of Al(thd)3 and TiF4 onto LiF 

films of a) 80 nm and b) 50 nm. With the thicker LiF film, aluminum is only found at the surface layers of the film. With the 

thinner LiF film, aluminum is more evenly dispersed into the fluoride film. 
 

 

3.2 Process 2 

In order to incorporate higher aluminum amounts in the films, Process 2 was developed. In this 

process, AlF3 films were deposited first with ALD, using AlCl3 and TiF4 as precursors [39], and then 

exposed to the lithium precursor Lithd. In this process, lithium ions do not get exposed to the aluminum 

precursor, and thus AlCl3 could be used as the aluminum source for the AlF3 deposition. The reasoning 

behind this conversion reaction was based on our earlier results on using Lithd to convert MgF2 films 

[27]. It was of our interest to study whether a similar conversion could be possible with other metal 

fluoride films and whether mixture fluorides such as Li3AlF6 could form in this manner. 
 

 

Approximately 100 nm thick AlF3 films were exposed to Lithd vapor at 250 °C (523 K). The exposure 

was done by supplying 2 s Lithd pulses onto the AlF3 films in an ALD reactor. Purge times of 4 s were 

employed after each Lithd pulse. The aluminum fluoride films were amorphous before the exposure 

experiments. Figure 4A and 4B illustrate how the number of Lithd pulses affects the crystallinity of the 

resulting film. With the smallest numbers of pulses, only little Li3AlF6 is formed due to negligible 

amounts of Li
+
 ions incorporated into the film. When the number of Lithd pulses is increase up to 100 

pulses, monoclinic Li3AlF6 becomes more pronounced, with some LiF as an impurity phase. With the 

number of pulses exceeding 100, the diffractograms show prominent peaks belonging to LiF. In 

addition to the peaks belonging to Li3AlF6, the unidentified shoulder peak at 2θ = 20.6° appears again 

in all the Li3AlF6 containing samples.  

 



 

 

 

Figure 4: X-ray diffractograms of films formed by pulsing Lithd over amorphous AlF3 thin films. a) 105 nm of AlF3 at 

250 °C (523 K) with different numbers of Lithd pulses (low), b) 100 nm of AlF3 at 250 °C (523 K) with different numbers 

of Lithd pulses (high), c) 56 nm of AlF3 at 250 °C (523 K) with different numbers of Lithd pulses, d) 105 nm of AlF3 at 250, 

275 and 300 °C (523, 548 and 573 K) with 40 pulses of Lithd. Solid lines denote monoclinic Li3AlF6 and the dashed lines 

indicate peaks belonging to cubic LiF. 

 

Two films made by exposing 100 nm AlF3 films to Lithd were subjected to a high temperature XRD 

measurement in N2 to determine whether the crystallinity of the films could be improved. In a film 

exposed to 50 pulses of Lithd at 250 °C (523 K), the monoclinic Li3AlF6 phase disappears above 

400 °C (673 K), with a reflection belonging to LiF becoming visible (Figure 5A). Even before this, a 

reflection at 2θ ≈ 25° is seen, which could be indexed as (110) of hexagonal AlF3. Thus, it appears that 

during the heating the ternary fluoride is decomposing to its component binary fluorides. At even 

higher temperatures lithium silicates, mainly Li2SiO3, begin to form, as Li
+
 is presumably diffusing into 

the single crystalline silicon substrate. This is seen as the three low-intensity peaks at 675 °C (948 K). 

This diffusion and reaction of lithium has previously been seen in our experiments on forming 

multicomponent lithium-containing oxides by solid state reactions between ALD-made transition metal 

oxides and Li2CO3 [46].
 
The formation of a silicate indicates that lithium ions are mobile in the fluoride 

film at least at high temperatures. Interestingly, there were no indications of the formation of the high-

temperature Li3AlF6 phases, even though these have been reported in the literature [1]. In the film 

exposed to 100 Lithd pulses no new phases emerged, with only LiF being present even at 500 °C 

(773 K) (Figure 5B). This appears to be due to the low aluminum content caused by the larger Lithd 

exposure. 

 

Figure 5: High-temperature X-ray diffractograms of a) 100 nm of AlF3 exposed to 50 Lithd pulses at 250 °C (523 K) and b) 

100 nm of AlF3 exposed to 100 Lithd pulses at 250 °C (523 K). Measurements were done in a N2 atmosphere. Solid lines 

denote monoclinic Li3AlF6 and the dashed lines indicate peaks belonging to cubic LiF. The dash-dot line corresponds to 

hexagonal AlF3. 

 



 

 

The effect of the extent of the Lithd exposure to film thickness was studied with four samples exposed 

to 40, 33, 25 and 10 pulses of Lithd. The originally 105 nm AlF3 films showed decreased thicknesses 

after exposure. The larger the exposure, the larger the difference, with the film exposed to 40 pulses 

having a thickness of approximately 90 nm, as measured with UV-Vis spectophotometry. The more 

Lithd pulses were employed, the more difficult it was to fit the UV-Vis reflectance spectra. The 

refractive index of the films was changing as well, although very subtly: a larger number of Lithd 

pulses resulted in smaller refractive indices.  For example, the refractive index changed from 1.38 in 

AlF3 to 1.34 in Li3AlF6 after 33 Lithd pulses.   

 

Approximately 100 nm AlF3 films exposed to 40 and 10 pulses of Lithd at 250 °C (523 K) were 

analyzed with ToF-ERDA. While LiF was visible in the X-ray diffractogram of the sample obtained 

with 40 pulses (Figure 4A), ERDA revealed that the amount of lithium was still somewhat low in the 

film, as the Li : Al ratio was 1.49 : 1. In the sample made with 10 pulses, the Li : Al ratio was only 0.18 

: 1. The samples showed 0.6 at% Ti and 0.3 at% Cl impurities, originating from the AlF3 deposition 

process. The conversion reaction between Lithd and AlF3 to Li3AlF6 / LiF is very clean, as illustrated 

by the low amounts of elements from the thd-ligand, namely C (0.1–0.3 at%), O (1.3 at%) and H (0.1–

0.4 at%). Similarly low impurity contents were also obtained with the MgF2-to-LiF conversion process 

[27]. Thus, our films contain as little impurities as Li3AlF6 films deposited with ALD using HF as the 

fluorine source [12].
 

 

Because of the relatively low amount of lithium in the samples made using approximately 100 nm AlF3 

films, thinner AlF3 films were also exposed to Lithd. As can be seen in Figure 4C, after 40 pulses of 

Lithd a 56 nm AlF3 film showed a much larger amount of crystalline LiF formed, as compared to a 100 

nm AlF3 film. Figure 6 shows the ERDA depth profiles of AlF3 films of different thickness exposed to 



 

 

40 pulses of Lithd, and corroborates the XRD results in that a much higher lithium content can be 

found in the thinner AlF3 sample. With 20 and 10 pulses, the X-ray diffraction peaks belonging to LiF 

became much less pronounced. ERDA revealed that in samples made with 40 Lithd pulses, the Li : Al 

ratio varied between 6.6 :1 and 7.9 :1, meaning that the films were highly lithium-rich. With 20 pulses 

of Lithd the metal ratio was only close to 1:1. Thus, doubling the Lithd exposure increases the amount 

of lithium 6–7 fold, indicating that the conversion is very efficient and not limited only to the very 

surface of the film. As a result, the achieved metal ratio depends not only on the number of Lithd 

pulses but also on the original AlF3 film thickness. 

 

Figure 6: ToF-ERDA depth profiles of a) 56 nm and b) 105 nm AlF3 films exposed to 40 pulses of Lithd at 250 °C (523 K). 

 

The effect of the Lithd exposure temperature was also studied. Previously we reported that higher 

exposure temperatures resulted in faster conversion of MgF2 films into LiF [27]. In the case of AlF3, 40 

Lithd pulses at 300 °C (573 K) on an approximately 100 nm AlF3 film resulted in a noncontinuous film 

that contained both LiF and Li3AlF6 (Figure 4D). At the exposure temperature of 275 °C (548 K) the 

film showed prominent XRD-peaks belonging to LiF, and the film quality was much better than at 

300 °C (573 K). For a 100 nm AlF3 film, the conversion at 275 °C (548 K) with 40 Lithd pulses 

produced a film with a Li:Al ratio of 2.1 : 1. This ratio is the closest to the correct stoichiometry of 

Li3AlF6 reached in these experiments. 

 

The ERDA measurements revealed the sensitivity of this method to the Lithd exposure conditions. 

Because the reaction is not restricted to the surface as in ALD processes, the Lithd dose is critically 

important. The dose depends on the temperature and pressure conditions where the Lithd is evaporated. 

Because these experiments were conducted using an ALD-reactor, both of these variables could be 



 

 

easily monitored, and an effort was made to keep the reactor conditions exactly the same during the 

experiments. The repeatability of the conversion reaction was reasonably good, with the Li : Al ratio 

varying only slightly in samples converted at different times (Figure 7). Moreover, the relationship 

between the lithium contents and the number of lithium pulses was close to linear. 

 

Figure 7: The cation percentage of lithium in converted AlF3 films at different temperatures as a function of the number of 

Lithd exposure pulses. Black and white symbols denote samples prepared at different times but with using same parameters 

for exposure. The solid line denotes the desired stoichiometry found in Li3AlF6. 

 

It can be concluded from the XRD and ERDA results that to achieve high lithium contents, it is better 

to expose thinner AlF3 films to Lithd. However, for easier controllability of the deposition process, 

thicker films are preferred. Higher exposure temperatures should lead to somewhat faster conversion, 

but can also pose problems related to film uniformity, similarly as was observed also for Process 1. An 

interesting aspect of these results is that although the lithium content of the films was mostly much 

smaller than desired for the stoichiometric Li3AlF6, the X-ray diffractograms regularly showed 

prominent peaks belonging to crystalline LiF. It seems that the crystallization of LiF is somewhat 

preferential to the formation of Li3AlF6 in our exposure conditions.  

 

It is interesting to compare our results on conversion reactions to the ALD of Li3AlF6 using TMA, 

LiHMDS and HF [12]. In these experiments the subcycle approach for ternary fluoride deposition was 

used, and it was reported that using one subcycle of AlF3 and one subcycle of LiF resulted in the 

deposition of a mixed fluoride with a Li : Al ratio of 2.7 : 1, as determined with ICP-MS. No mention 

was made on conversion reactions similar to what we report here. Still, it was noted that no change in 

the metal stoichiometry was achieved even if three AlF3 subcycles were used with one LiF subcycle. 

This may indicate that some conversion type reactions were taking place also in that deposition 



 

 

process. The depositions were done at 150 °C (423 K), which is much lower than the temperatures used 

in our experiments. At this low temperature conversion reactions are most likely very slow, making 

them difficult to notice especially when the effect of different LiF : AlF3 pulsing ratios were not studied 

extensively. 

 

FESEM imaging was used to compare the surface morphology of the films exposed to 10 and 40 pulses 

of Lithd at 250 °C (523 K). The AlF3 films are amorphous and therefore have featureless surfaces 

before the exposure experiments [39]. After 10 Lithd pulses, both the 100 nm and 50 nm AlF3 films 

showed very small particulates formed on the otherwise relatively smooth surface (Figure 8). In both 

samples some void formation is evident at higher magnification, with the voids being larger in the 100 

nm sample. These might be due to changes in the film volume caused by the conversion reactions. 

Such a void formation was not observed in our previous study where MgF2 films were converted to LiF 

[27].
 

 

Figure 8: FESEM images of AlF3 films exposed to Lithd at 250 °C (523 K). For A) and B), films were exposed to 10 

pulses. For C) and D), 40 pulses were used. Magnification is 100k for large images and 25k for the insets. 

 

The film morphology changes drastically when 40 pulses of Lithd are employed (Figure 8C and 8D). 

Despite the large difference in the Li : Al ratios, as discussed earlier, the film structure is similar in 

both the 100 nm and 50 nm samples. The films are clearly crystalline with small grains forming a 

porous surface. Interestingly, even though the 50 nm sample showed strong diffraction peaks belonging 

to LiF and a large Li excess in ERDA, the film morphology does not resemble that of the cubic lithium 

fluoride deposited by ALD or by conversion reactions from MgF2 [27,38]. This porous morphology can 

explain the decrease in the refractive indices of the films exposed to larger amounts of Lithd. Because 

of the morphology, attempts at depositing Pt-Li3AlF6-Pt structures for electrical characterization failed; 



 

 

the evaporated Pt top electrode seemed to short circuit to the bottom electrode. Further research is 

required to either better control the morphology of the films, or seal the porosity with a proper top 

layer. 

 

4. Conclusion 

 

We have studied the thin film deposition of Li3AlF6 using two processes. The ALD-type conversion 

reaction of LiF films using alternative pulsing of Al(thd)3 and TiF4 resulted in low aluminum contents 

and large amounts of impurities in the Li3AlF6 films. By reacting AlF3 films with Lithd vapor we were 

able to obtain films with a Li : Al ratio of 2.1 : 1. The films deposited with the conversion reaction 

were quite porous, as determined with FESEM imaging, and contained some LiF as an impurity phase, 

based on XRD measurements.   

 

In this study it was found that the tendency of Li
+
 to take part in conversion reactions during deposition 

processes, and the high stability of crystalline LiF, result in mixture fluoride films which are lithium-

deficient compared to the desired Li3AlF6, and yet contain crystalline LiF as an impurity phase. For 

future work, it would seem that depositing Li3AlF6 requires a method which does not allow Li
+
 to reach 

equilibrium. As already mentioned, thermal evaporation and fast quenching has been reported to form 

Li3AlF6 [8,10]. More work should be put into studying the conversion reactions of Li
+
 with methods 

such as EXAFS, which give information on the local structure around a particular atom. 

  



 

 

5. Appendix 

 

Figure A.1: Gibbs free energy for the reaction of LiF with AlCl3 as a function of temperature. The Gibbs free energy values were 

calculated with HSC Chemistry 5.11 software. 
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