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Abstract  

Aim: This study used proton magnetic resonance spectroscopy (1H MRS) to evaluate 

neurochemistry of the frontal cortex in adolescents with symptoms of sleep and depression. 

Methods: 19 non-medicated adolescent boys (mean age 16.0y; n=9 clinical cases with 

depression/sleep symptoms and n=10 healthy controls) underwent 1H MRS at 3T. MR spectra 

were acquired from the anterior cingulate cortex (ACC), the dorsolateral prefrontal cortex, and 

frontal white matter.  Concentrations of N-acetyl aspartate, total creatine, choline-containing 

compounds, total glutamine plus glutamate, and myo-inositol (mI) were compared between the 

two subgroups and correlated with sleep and clinical measures in the total sample. Sleep was 

assessed with self-report questionnaires and ambulatory polysomnography recordings.  

Results: Concentrations of mI were lower in both frontal cortical regions among the depressed 

adolescents as compared to healthy controls. No statistically significant differences in other 

metabolite concentrations were observed between the subgroups. Frontal cortex mI 

concentrations correlated negatively with depression severity, subjective daytime sleepiness, 

insomnia symptoms, and the level of anxiety, and positively with total sleep time and overall 

psychosocial functioning. The correlations between mI in the ACC and total sleep time as well as 

daytime sleepiness remained statistically significant when depression severity was controlled in 

the analyses.   

Conclusion: Lower frontal cortex mI may indicate a disturbed second messenger system. Frontal 

cortical mI may thus be linked to the pathophysiology of depression and concomitant sleep 

symptoms among maturing adolescents. Short sleep and daytime sleepiness may be associated 

with frontal cortex mI independently from depression.  
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Introduction 

Depression is tightly associated with disturbed sleep: so tightly that sleep disturbance is one of the 

diagnostic criteria of major depressive disorder [1]. The presence of symptoms of disturbed sleep 

has been linked with more severe forms of depression [2-4] and poorer depression treatment 

response [5]. The underlying neurobiological links between disturbed sleep and mood remain, 

however, obscure.  

 

Adolescence is marked by increased incidence of depression and insomnia and dramatic changes 

in sleep patterns [6]. The trajectory of the maturational changes in sleep structure during 

adolescence matches temporally and topographically adolescent brain cortical maturation.  Both 

the decrease in deep slow wave sleep and cortical grey matter reduction start from the occipital 

posterior regions and occur latest in the higher-order association areas of the frontal cortex [7-9]. 

Frontal cortex developmental processes continue until adulthood [10], making the frontal cortex 

vulnerable to aberrations in development still during late adolescence [11].  

 

The prefrontal cortex (PFC), which is importantly involved in self-referential processing and 

regulation of mood states via its interactions with striatal and limbic structures, has been 

repeatedly implicated as a key brain region involved in the pathophysiology of depression across 

diverse age groups [12, 13]. In depressed adolescents, both structural and functional changes in 

the PFC have been reported: a trend towards decreased regional volumes, abnormal cortical 

thinning, and reduced activation in cognitive control and decision making tasks [13].  The structure 

and function of the PFC have likewise been observed to correlate with sleep habits [14-16], sleep 

loss [17, 18], and sleep pathologies [19-21].  
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Proton magnetic resonance spectroscopy (1H MRS) allows to detect and measure in vivo several 

neurometabolites and thus to examine distinct neurochemical processes involved in the 

pathophysiology of depression. In depressed adolescents, 1H MRS has revealed numerous but 

inconsistent findings in the frontal cortex. Both higher and lower levels of choline-containing 

compounds (Cho) have been reported in the medial frontal cortex and the left dorsolateral PFC 

(DLPFC) [22-24], higher myo-inositol (mI) levels have been observed in the DLPFC [24], and lower 

glutamate plus glutamine (Glx) and N-acetyl-aspartate (NAA) concentrations in the anterior 

cingulate cortex (ACC) have been found [13,25, 26]. The first and thus far the only attempt to 

study the link between sleep, mood, and frontal 1H MRS neurochemistry in young people with 

affective disorders found that a later sleep midpoint is associated with altered glutamatergic 

processes in the ACC, independent of depression severity [27]. In that study, diurnal rhythm and 

motor activity was measured with actigraphy from a rather heterogeneous group of 15-33 year-

old adolescents and young adults with an emerging unipolar or bipolar disorder [27].   

 

MRS findings suggest that cellular health and neurotransmission might be impaired in the frontal 

cortical areas in adolescents with depression. Further, it seems possible that sleep would also 

affect the same neurometabolic processes. However, the findings still remain inconsistent for 

several reasons. Most notably, the number of subjects studied is typically small in 1H MRS studies, 

and the samples have been heterogeneous in terms of age, pubertal status, gender, psychotropic 

medication use, and the presence of other psychiatric comorbidities. Further, methodological 

approaches and brain areas studied have been variable.  
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We hypothesized that frontal cortex 1H MRS neurochemistry would be altered in depressed 

adolescents as compared to healthy controls. Further, we hypothesized that sleep symptoms 

would be associated with metabolite levels in a similar way than depressive symptoms. We 

studied this in a carefully evaluated and selected homogeneous sample of non-medicated 

adolescent boys and performed 1H MRS in two frontal cortical regions (ACC, DLPFC), and 

additionally in frontal white matter (FWM; control region with no hypothesis of altered 

metabolism) with a 3 Tesla MR imager. 

 

Materials and methods  

Participants 

A total of 20 non-medicated adolescent boys participated in the study. Ten of them were patients 

suffering from depressive and/or sleep symptoms recruited from the Helsinki University Central 

Hospital Department of Adolescent Psychiatry outpatient units, and ten were healthy controls 

recruited via advertisements for the hospital staff. Imaging data was not available for one 

adolescent in the patient group due to drop-out, leaving a total of 19 participants in the analyses 

presented. Written informed consent for study participation was received both from the 

participants and their parents or legal guardians and the study protocol was approved by the 

ethics committee of the Helsinki University Central Hospital. 

Exclusion criteria for all participants included mental retardation, insufficient knowledge of Finnish 

language, current use of medication, age over 17.5 or under 14.5 years, chronic somatic illness, 

substance abuse/dependence, principal DSM-IV diagnosis other than depressive/sleep disorder, 

and any contraindications for brain MRI. All adolescents were free of psychotropic and other 
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medication during the whole study period. No structural pathologies were found in their brain 

anatomy according to brain MRI evaluated by a neuroradiologist (N.L.), and the presence of 

somatic conditions was ruled out based on blood samples. All subjects consumed less than three 

cups of coffee daily or the equivalent amount of other caffeinated products. Detailed subject 

characteristics are described in Table 1. 

 

Psychiatric evaluation 

The present and lifetime episodes of DSM-IV axis I disorders were assessed with the Schedule for 

Affective Disorders and Schizophrenia for School-Age Children—Present and Lifetime version (K-

SADS-PL), a semi-structured diagnostic interview [28]. All interviews were performed by the same 

clinician (A.S.U.) and confirmed in a diagnostic meeting with a senior clinician (M.M.). As part of 

the DSM-IV axial diagnostic procedure, the global assessment of functioning scale (GAF; numeric 

range of 0-100) was used according to DSM-IV guidelines to assess overall psychosocial functioning 

[1]. GAF has been previously used in studies among adolescents [29, 30]. 

Depression symptom severity was assessed with two different scales: the 21-item Beck Depression 

Inventory (BDI-21), and the Hamilton Depression Rating Scale (HDRS). The BDI-21 is a standardized 

21-item self-rating questionnaire [31], which has been well studied also in adolescents [32, 33]. 

The subjects were asked to rate each of the symptoms on a 4-point scale ranging from 0 (Not at 

all) to 3 (Severely) according to the severity of the symptom (sum score range 0-63). The HDRS is a 

widely used and standardized 17-item depression severity scale, in which each of the depressive 

symptoms is rated by the clinician on a scale of 0-2 or 0-4 points (total sum score range 0-52) [34]. 
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The HDRS has been originally developed for adults, but it has previously been successfully applied 

to study adolescents (e.g. [4, 35-37]).  

To complement the psychiatric evaluation, subjects also filled in the Alcohol Use Disorder 

Identification Test (AUDIT) [38], and the Beck Anxiety Inventory (BAI) [39]. 

 

Assessment of sleep 

Insomnia symptoms were assessed with Athens Insomnia Scale (AIS), a validated self-report 

questionnaire designed for quantifying sleep difficulties during the past month based on the ICD-

10 criteria [40]. It consists of eight items rated on a scale of 0-3 (total sum score range 0-24) on 

sleep induction, awakenings during the night, final awakening, total sleep duration, sleep quality, 

daytime well-being, daytime functioning capacity, and sleepiness during the day.  

Daytime sleepiness symptoms were measured with the Pediatric Daytime Sleepiness Scale (PDSS) 

[41], a self-rated sleepiness scale specially designed for use among school-aged adolescents.  The 

PDSS consists of 8 items rated on a scale of 0-4 (total sum score range 0-32) related to frequency 

of falling asleep/drowsiness in class and while doing homework, daytime alertness, daytime 

tiredness/grumpiness, troubles waking up, falling back to sleep after being awakened, need for 

outside help to wake up, and thoughts of needing more sleep.  

Sleep length and sleep efficiency referred to sleep period were assessed with ambulatory 

polysomnography performed in the adolescents’ home environment for two consecutive nights. 

The recordings included electroencephalogram (EEG), electro-oculogram (EOG), and chin electro-

myogram (EMG) recordings and was performed using standard guidelines (Embla, Flaga Hf. 
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Medical devices; EEG positions according to the International 10-20 system; derivations F4-M1, 

C4-M1, O2-M1 and backup derivations F3-M2, C3-M2, and O1-M2; sampling rate 200Hz). The 

recordings were scored manually in 30-s epochs by a certified sleep technologist blinded to the 

subgroup status of the subjects using standard criteria [42] and total sleep time and sleep 

efficiency (time asleep relative to sleep period) were calculated from the scorings. The average 

values of the two nights were used in the analyses.  

 

Magnetic Resonance Spectroscopy 

Proton Magnetic Resonance Spectroscopy (1H MRS) was performed at 3.0 T clinical imager (Verio, 

Siemens, Erlangen, Germany) in the morning after the two nights of polysomnographic recordings, 

starting between 10:30 and 12 am. Patients lay in a supine position, and a 32 channel head coil 

was used in data collection. T2 weighted turbo spin echo images (repetition time (TR) of 3630 and 

echo time (TE) of 96 ms) were collected in transaxial, sagittal, and coronal planes in order to 

enable a careful positioning of MRS voxel and to screen possible anomalies. Automatic 

preparation and shimming procedure was followed by manual shimming before data acquisition. 

PRESS localization technique with TR of 10000/2000 ms, TE of 30/30 ms and 2/96 acquisitions 

were used to obtain unsuppressed reference spectra and water suppression spectra, respectively. 

Voxel sizes were kept constant for ACC (15x25x20), left DLPFC (25x15x15), and left FWM 

(15x15x15) in each subject.  

LCModel v6.3 (http://s-provencher.com/pages/lcmodel.shtml) was used to assess the 

concentrations of N-acetylaspartate (NAA), total creatine (tCr), choline containing compounds 

(Cho), total glutamine plus glutamate (Glx), and myo-inositol (mI). Also, signal-to-noise ratio (SNR) 
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and full width at half maximum (FWHM) were determined from each spectra. The typical location 

of the 1H MRS voxels and representative 1H MR spectra are shown in Fig. 1. 

 

Statistical analyses 

Statistical analyses were performed with the IBM SPSS Statistics Version 22 software. Normality of 

the data was assessed with the Kolmogorov-Smirnov test of normality. Comparisons between 

subgroups were performed with one-way analysis of variance (ANOVA) or non-parametric 

independent samples Kruskal-Wallis tests in case of non-normal distribution of the data. To assess 

correlations between mI concentrations and clinical measures (TST, sleep efficiency, BDI-21 total 

score, HDRS, BAI, AIS, PDSS, GAF), correlation analyses using the Pearson’s correlation analysis or 

the Spearman’s non-parametric correlation analysis (in case of non-normal distribution of the 

data) were performed. Findings were considered statistically significant at the p <0.05 level.  

 

Results 

Participant characteristics 

Participants were on average 16.0 ± 0.8 (mean ± SD) years old. The subgroups of cases and 

controls did not differ in terms of their age, body mass index (BMI), serum testosterone levels, 

alcohol use, or anxiety symptoms (one-way ANOVA n.s.; Table 1).   

No axis-I diagnoses were found among the controls, and the cases were confirmed to suffer from 

depressive disorder (lifetime first depressive episode for 6, second episode for 2 of the subjects; 

mean length of current depressive episode 52 ± 52 weeks), except for one patient suffering only 
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from a circadian rhythm sleep disorder with minor mood symptoms. This non-depressed subject 

was discarded from the group comparisons, but his data was used in the correlational analyses of 

the total sample. None of the subjects suffered from bipolar disorder nor manifested psychotic 

features of depression. Comorbid anxiety disorder was present in one, and comorbid disruptive 

behavior disorder in one subject, while others did not have comorbid axis-I disorders.  

 

Quality of the 1H MRS spectra 

Mean signal-to-noise ratios (SNR) for ACC, DLPFC, and FWM spectra were 46 ± 7.38 ± 6, and 21 ± 

5, respectively. FWHMs for ACC, DLPFC, and FWM spectra were 4.5 ± 1.2 Hz, 5.7 ± 1.7 Hz, and 6.3 

± 2.3 Hz, respectively. There were no differences in ACC, DLPFC, and FWM spectral quality 

between control and patient groups measured by SNR or FWHM. Cramer-Rao lower bound values 

for myo-inositol quantification were 7% or below in each spectra. Because of technical failure or 

patient movement, MRS spectra could not be obtained in two cases in the DLPFC area, limiting 

total sample size to n=17 in the DLPFC, and in one case in the FWM, limiting total sample size to 

n=16 in the FWM. 

 

Subgroup comparisons of metabolite concentrations 

The concentration of myo-inositol was lower in cases vs. controls in both frontal cortical areas 

(ACC: F(1,16) = 10.026; p = 0.006; DLPFC: F(1,14) = 5.381; p = 0.036; One Way ANOVA; Fig. 2). No 

significant differences were observed in the concentrations of the other metabolites in either of 
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these two cortical brain areas or in any metabolite concentrations in FWM (One-way ANOVA or 

Independent Samples Kruskal-Wallis tests n.s.; Fig. 2).  

  

Metabolites and clinical measures 

In the total sample, myo-inositol levels in the ACC correlated negatively with depression severity 

(HDRS, BDI-21), level of anxiety (BAI), insomnia symptoms (AIS), daytime sleepiness symptoms 

(PDSS), and positively with total sleep time (TST; Fig. 3) and overall psychosocial functioning (GAF). 

Myo-inositol level in the DLPFC correlated negatively with depression severity (HDRS) and 

positively with total sleep time (TST). Other correlations of mI with clinical measures remained 

statistically non-significant. The results are presented in detail in Table 2.  

In order to examine whether the significant associations between mI and sleep measures are 

confounded by depressive symptoms, we performed additional partial correlation analyses, in 

which depression severity was controlled for (partial correlation analyses; BDI-21 total score 

without sleep item as covariate). The correlations between mI in the ACC and TST (correlation 

coefficient r = 0.582; p = 0.011), and mI in the ACC and PDSS (r = -0.543; p = 0.024) remained 

significant. The correlations between mI in the DLPFC and TST (r = 0.492; p = 0.053), and between 

mI in the ACC and AIS (r = -0.358; p = 0.145) did not remain statistically significant. 

The correlations of other metabolites with clinical measures are presented in the supplementary 

material Table 1. In summary, in these analyses tCr concentrations in the ACC correlated 

negatively with HDRS (r = -0.482; p = 0.037) and AIS (r = -0.514; p = 0.024; Pearson’s correlation), 

while tCr concentrations in the DLPFC did not correlate with clinical measures. NAA, Cho, and Glx 
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concentrations did not correlate with any of the clinical measures in either frontal cortical area. In 

FWM, metabolite concentrations did not correlate with any of the clinical measures. 

 

Discussion 

The main finding of this study was that frontal cortex myo-inositol is lower in depressed 

adolescent boys as compared to healthy controls, and also correlates with sleep length and 

daytime sleepiness symptoms when severity of depression is controlled for. This implies that both 

poor sleep and depression may be linked to similar neurometabolic pathways in the frontal cortex. 

These metabolic alterations appear specific to the cortex since they were not observed in frontal 

white matter. 

Myo-inositol is a naturally occurring glucose isomer which has a number of known roles in the 

brain. Myo-inositol was initially found in astrocytes, and was therefore proposed as a glia-specific 

marker [43]. It has, however, also been detected in neuronal cells [44]. It acts as an organic 

osmolyte involved in maintenance of cell volume, it is required for the synthesis of cell membrane 

phospholipids, and it acts as a precursor in the phosphatidylinositol (PI) second messenger system 

[45,46]. The PI cycle is activated following ligand binding to a number of cell surface receptors, 

including those for serotonin, glutamate, histamine, and dopamine, leading to increased second 

messengers inositol triphosphate (IP3) and diacylglycerol (DAG), which initiate different cascades 

of cellular events, including mobilization of intracellular calcium and activation of protein kinase C 

(PKC), which, in turn, have multiple downstream cellular effects [45,46]. The source of neuronal mI 

is primarily the recycling of PI cycle constituents, but some of the total mI is synthesized in brain 

from glucose and some transported from blood [47]. Our findings of lower myo-inositol in 
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depressed adolescents with sleep symptoms may point towards an imbalance in the second 

messenger signaling system.  

 

Considering its widespread neurometabolic role, it is not surprising that altered myo-inositol 

concentrations have been previously detected in a variety of neurological, psychiatric and 

behavioural conditions, including e.g. head injuries, Alzheimer’s disease, attention deficit-

hyperactivity disorder (ADHD), obsessive-compulsive disorder, sleep disorders, as well as mood 

disorders in different age groups [48-55]. In particular, reduced cerebral mI concentration has been 

suggested as a neurochemical biomarker for depression: lower inositol has been reported in the 

CSF of depressed patients [56] as well as in postmortem frontal cortex of suicide victims and 

bipolar disorder patients [57]. Some 1H MRS studies have observed lower cerebral mI 

concentrations in depressed patients as compared to controls [48,58-60]. On the contrary, bipolar 

disorder may be characterized by elevated frontal cortex mI concentrations and the anti-manic 

effects of lithium may be associated with a reduction of mI [61]. Further, electro-convulsive 

treatment (ECT) may increase mI concentrations [60]. These results are not, however, unanimous, 

as some studies have reported increased or non-different mI levels in depressed patients as 

compared to healthy controls [24, 62, 63]. Inositol is widely present in a range of foods (fruits, 

plants, meats, whole-grain cereals) and available as a dietary supplement. Currently evidence is 

unclear whether or not inositol is of benefit in the treatment of depression [64].  

 

The results of the current study support earlier findings on decreased cortical myo-inositol in 

depression, particularly in the adolescent age group, and encourage further studies on the role of 

mI in depression and associated sleep symptoms. Understanding these pathophysiological 



14 

 

phenomena early in the course of depression would be crucial not only in furthering our scientific 

understanding of the links between poor sleep and mood, but also in developing targeted, 

effective, and hopefully even preventive interventions [6].  

 

Less is known on the associations between mI and sleep. In healthy older people, poorer sleep 

quality and less efficient sleep correlated with higher hippocampal mI/tCr ratios, which were 

hypothesized by the authors to associate with hippocampal glial alterations [50]. The authors also 

pointed out, however, that their findings may reflect neurodegenerative/pathophysiological 

processes in this age group, similar to those seen in Alzheimer’s disease [50, 52, 65, 66]. The 

contrast between the findings by Cross et al. (pointing towards higher mI in relation with poor 

sleep in older people) and our findings (pointing towards lower mI in relation with poor sleep in 

adolescents) may thus be at least partly explained by factors related to maturational or 

neurodegenerational processes. In addition, brain region specific factors may also contribute to 

the differences: mI concentration [46, 67] and neuronal activity during the sleep-wake cycle [68] 

differs between the hippocampi vs. frontal cortical areas. The study by Cross et al. concentrated 

on the hippocampi and did not yield results from the frontal cortex, and our study concentrated 

on frontal brain areas only. The frontal cortex (more specifically the ACC) was the region of 

interest in the study by Naismith et al. reporting an association between sleep midpoint and 

altered glutamatergic processes among young people with affective disorders. However, mI was 

not among the neurometabolites of interest in their study [27].   

 

To the best of our knowledge, our study is the first to demonstrate an association between 

subjective and objective sleep measures and frontal cortex myo-inositol concentrations in a 
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sample of adolescent boys. Further, while our study reveals that depressed adolescents show 

lower cortical myo-inositol concentrations as compared to healthy controls, depression does not 

fully explain the associations of mI with sleep length and daytime sleepiness. Both sleep length 

and depression may thus affect the same neurometabolic pathways in the maturing frontal cortex 

of adolescents in an additive manner.  

 

In addition to findings related to mI, we found that tCr concentrations in the ACC correlated 

negatively with depression severity and insomnia symptoms. tCr has conventionally been used as 

a reference metabolite, and very few studies with inconsistent findings have assessed tCr 

concentrations in psychiatric disorders [69]. However, tCr is not a constant compound in the brain, 

but plays a pivotal role in cell energy homeostasis, and thus lower tCr levels related to insomnia 

and depressive symptoms may indicate impaired energy metabolism [46].  The fact that no 

significant findings were detected in other MRS metabolites may be attributed to the small sample 

size, which may not allow us to detect subtle differences.  

 

Important strengths of this study include the homogeneous nature of the sample in terms of 

gender and age, the lack of psychotropic and other medication use among the subjects, the use of 

polysomnography (the gold standard of sleep research) to determine sleep length, the detailed 

psychiatric evaluation of the participants, and the inclusion of a control group. Further, the patient 

and control groups were well matched for their age and hormonal status. Since antidepressive 

medication may at least region-specifically affect the brain MRS metabolic profile [70], we find the 

lack of psychotropic medication use a particular strength of our study.  
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Limitations of the study include most importantly the small sample size, which allows us to make 

only preliminary conclusions on the results. Further studies with larger sample sizes are needed 

especially to conduct more specific multi-variable analyses in subgroups. Further, as our study was 

cross-sectional, we cannot make definite inferences on causality: are shorter sleep and depressive 

symptoms actually causing a change in myo-inositol metabolism, or are the alterations in myo-

inositol underlying the clinical phenotypes? This remains to be answered in longitudinal study 

designs. Excluding female participants from the sample on one hand limits the generalizability of 

the findings to adolescent girls, but on the other also excluded the potential effects of the 

menstrual cycle phase on sleep and brain metabolism [71, 72]. Boys and girls also differ from each 

other in terms of brain maturational changes during adolescence [73]. In addition, a limitation of 

this study is the lack of correction for partial volume effects. In theory, gray matter atrophy could 

lead to an increased CSF fraction inside the VOI and therefore decreased metabolite levels. Should 

this occur, a decrease in all metabolite levels and SNR would be expected, but we did not see 

differences between groups in any other metabolite nor SNR than mI.  

 

Conclusion 

Lower frontal cortex mI may point towards a disturbed second messenger system and be linked to 

the pathophysiology of depression and concomitant sleep symptoms among maturing 

adolescents. Short sleep and daytime sleepiness may be associated with frontal cortical mI 

independently from depression. Further studies are needed to explore the role of mI in depression 

and associated sleep symptoms in more detail. 
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Table and figure legends. 

Table 1.  

Variable  Mean SD Range 

Age (n=19)  16.0 0.8 14.7-17.3 

Cases (n=9) 15.8 0.9 14.7-17.3 

Controls (n=10) 16.2 0.7 14.8-17.2 

BMI (n=19)  20.9 2.8 16.8-27.6 

Cases (n=9) 21.4 3.7 16.8-27.6 

Controls (n=10) 20.6 1.7 17.8-23.8 

S-Testo (n=18)  19.9 3.7 15.0-27.6 

Cases (n=9) 20.4 3.9 15.0-26.3 

Controls (n=9) 19.4 3.6 15.3-27.6 

BDI-21 (n=19)  9.0 10.7 0-33 

Cases (n=9) 15.8* 11.7 1-33 

Controls (n=10) 2.8* 4.0 0-12 

HDRS (n=19)  5.8 6.9 0-19 

Cases (n=9) 11.9** 5.1 4-19 

Controls (n=10) 0.3** 0.7 0-2 

BAI (n=18)  5.3 5.2 0-18 

Cases (n=8) 7.9 5.6 1-18 

Controls (n=10) 3.2 4.1 0-13 
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GAF (n=19)  67.1 16.0 43-90 

Cases (n=9) 51.6** 6.4 43-59 

Controls (n=10) 81.0** 4.6 75-90 

AIS (n=19)  5.8 5.9 0-18 

Cases (n=9) 9.9* 6.0 1-18 

Controls (n=10) 2.1* 2.2 0-7 

PDSS (n=18)  15.5 5.8 6-26 

 Cases (n=8) 18.9* 5.4 12-26 

 Controls (n=10) 12.8* 4.8 6-21 

TST (n=19)  456.6 66.0 303.0-563.0 

 Cases (n=9) 431.8 85.0 303.0-563.0 

 Controls (n=10) 479.0 33.6 412.3-528.5 

Sleep efficiency (n=19)  95.7 6.4 70.7-99.3 

Cases (n=9) 94.4 9.0 70.7-98.5 

Controls (n=10) 96.9 2.8 92.1-99.3 

 

Sample characteristics presented separately for the total sample (n=19), and the cases (n=9) and 

controls (n=10). *denotes statistically significant differences between the cases and the controls at 

a statistical threshold of p<0.05; **denotes statistically significant differences at a statistical 

threshold of p<0.001 (one-way ANOVA). BMI = Body Mass Index; S-Testo = serum testosterone 

level (nmol/l); BDI-21 = 21-item Beck Depression Inventory; HDRS = Hamilton Depression Rating 
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Scale; BAI = Beck Anxiety Inventory; GAF = Global Assessment of Functioning Scale; AIS = Athens 

Insomnia Scale; PDSS = Pediatric Daytime Sleepiness Scale, TST = total sleep time (min).  
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Table 2.  

 

    BDI-21 HDRS BAI GAF AIS PDSS TST 
Sleep 

efficiency 
mI (ACC) r 

-,573* -,622** -,552* ,690** -,658** -,576**
a
 ,599** ,103 

p ,010 ,004 ,018 ,001 ,002 ,015 ,007 ,676 
n 19 19 18 19 19 18 19 19 

mI (DLPFC) r 
-0,561* -,539* -,261 ,450 -,262 -,395

a
 ,542* ,332 

p ,012 ,026 ,329 ,070 ,309 ,130 ,025 ,193 
n 17 17 16 17 17 16 17 17 

 

 

Correlations between myo-inositol (mI) cortical concentrations and clinical measures. * denotes 

correlations significant at the p<0.05 level, ** denotes correlations significant at the p<0.01 level. a 

denotes Pearson’s correlations, all other correlations are Spearman’s non-parametric correlations. 

mI = myo-inositol; ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal cortex. BDI-21 

= 21-item Beck Depression Inventory; HDRS = Hamilton Depression Rating Scale; BAI = Beck 

Anxiety Inventory; GAF = Global Assessment of Functioning Scale; AIS = Athens Insomnia Scale; 

PDSS = Pediatric Daytime Sleepiness Scale, TST = total sleep time (min).  

 



27 

 

Figure 1. 

 

Location of the 1H MRS single voxels in a) the anterior cingulate cortex (ACC), b) in the left 

dorsolateral prefrontal cortex (DLPFC), and c) frontal white matter (FWM), and the corresponding 

spectra from d) ACC, e) DLPFC , and f) FWM. tCr = total creatine; mI = myo-inositol; Cho = choline 

containing compounds; Gln = glutamine; Glu = glutamate; NAA = N-acetyl aspartate.  
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Figure 2. 
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Metabolite concentrations in a) the anterior cingulate cortex (ACC), b) the dorsolateral prefrontal 

cortex (DLPFC), and c) frontal white matter (FWM). Results are presented separately for the 

subgroups of depressed patients (        ; n=8 for ACC, n=6 for DLPFC, and n= 7 for FWM) and 

controls (         ; n=10 for all brain areas). Errors bars indicate ± SD. NAA= N-Acetyl aspartate; tCr = 

total creatine; Cho = choline-containing compounds; Glx = total glutamate-glutamine; mI = myo-

inositol. *denotes statistically significant differences between the patients and the controls at a 

statistical threshold of p<0.05; One-Way ANOVA. 
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Figure 3. 

 

Correlation between total sleep time and myo-inositol (mI) concentrations in the anterior 

cingulate cortex (ACC) in the total sample (n=19; cases        and controls        ). The solid line 

represents a linear regression line fitted to the data, R2 0.30.   

 

  


