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Summary 22 

Capsule: Mark-recapture data suggest low apparent survival and sex- and population-specific site 23 

fidelity and territory turnover in adult Northern Goshawks Accipiter gentilis breeding in northern 24 

Europe. 25 

Aims: Understanding how species cope with global environmental change requires knowledge of 26 

variation in population demographic rates, especially from populations close to the species’ 27 

northern range limit and from keystone species such as raptors. We analyze apparent survival and 28 

breeding dispersal propensity of adult Northern Goshawks breeding in northern Europe. 29 

Methods: We used long-term mark-recapture data from two populations in Finland, northern 30 

Europe, and Cormack-Jolly-Seber models and binomial GLMs to investigate sex- and population-31 

specific variation in apparent survival, territory turnover and site fidelity.  32 

Results: We report low apparent survival (53–72%) of breeding adult goshawks. Breeding dispersal 33 

propensity was higher in females than males, especially in northern Finland, contrasting previous 34 

studies that suggest high site fidelity in both sexes. 35 

Conclusion: Low apparent survival in females may be mainly due to permanent emigration outside 36 

the study areas, whereas in males the survival rate may truly be low. Both demographic aspects may 37 

be driven by the combination of sex-specific roles related to breeding and difficult environmental 38 

conditions prevailing in northern latitudes during the non-breeding season.  39 
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Introduction 40 

Populations at the edge of their distribution often face poorer conditions, and consequently suffer 41 

from lower rates of reproduction and survival (e.g. Sexton et al. 2009, Karvonen et al. 2012). The 42 

ongoing climate change alters environments with particularly pronounced effects being expected at 43 

high latitudes and on populations living close to their northern range limit (Jetz et al. 2007, Virkkala 44 

et al. 2008). Therefore, studies investigating basic demographic rates in spatially distinct 45 

populations close to the species’ range limit are highly valuable in understanding the future impacts 46 

climate change may have (Gibson et al. 2009, Rehm et al. 2015). Unfortunately, the vast majority 47 

of species lack information on different demographic rates that are crucial for understanding 48 

population dynamics and population viability (Morris & Doak 2002). The most urgent need is for 49 

information on survival because data for them is rare and survival rates commonly have high 50 

elasticity measures implying that even small changes in survival rates may have substantial effects 51 

on population demography (Gaillard et al. 2000, Heppell et al. 2000, Saether & Bakke 2000).  52 

 53 

Understanding population dynamics of key species, such as top predators, is particularly important 54 

because they often influence abundance, distribution and behaviour of several other species across 55 

trophic levels (Sergio et al. 2008, Lima 2009). For example, raptors have a profound role in animal 56 

communities through direct predation on prey populations (Norrdahl & Korpimäki 2000, Valkama 57 

et al. 2005, Park et al. 2008) and indirect effects on the behaviour of prey and other predators 58 

(Thomson et al. 2006, Sergio & Hiraldo 2008, Lima 2009, Morosinotto et al. 2010, Michel et al. 59 

2016), potentially triggering trophic cascades including several trophic levels (Chakarov & Krüger 60 

2010). So far, research on raptor demography has concentrated on reproduction (e.g. Byholm & 61 

Kekkonen 2008, Björklund et al. 2015), and many raptor species lack even basic estimates of adult 62 

survival (Newton et al. 2016), which is unfortunate as the importance of adult survival for 63 
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population growth increases in long-lived species such as raptors (Heppell et al. 2000, Saether & 64 

Bakke 2000, Krüger 2007).  65 

 66 

The Northern Goshawk (Accipiter gentilis, hereafter goshawk) is an example of a widely 67 

distributed, relatively abundant top predator that has diverse effects on animal communities in 68 

boreal forests (Tornberg 2001, Hakkarainen et al. 2004, Mönkkönen et al. 2007, Byholm et al. 69 

2012, Tornberg et al. 2016). However, few studies have concentrated on goshawk demography in 70 

Europe or at northern latitudes close to the species' range limit. The survival estimates reported so 71 

far are based on ring recoveries (Haukioja & Haukioja 1970) or radio-telemetry methods (Kenward 72 

et al. 1999, Tornberg and Colpaert 2001). Survival and site fidelity estimates derived from mark-73 

recapture data are almost absent for European goshawks (but see Krüger 2005). Environmental 74 

conditions for goshawks are more difficult in northern latitudes both due to harsher climate (e.g. 75 

colder temperature) and lower and more variable food availability (e.g. most prey species migrate 76 

south for the winter). Both environmental aspects may affect survival, as has been observed in other 77 

northern birds of prey (Brommer et al. 2002, Hakkarainen et al. 2002, Francis & Saurola 2004). 78 

Consequently, survival in northern latitudes may differ from more southern areas, and thus survival 79 

estimates from northern populations are valuable in understanding goshawk demography 80 

throughout the species range. 81 

 82 

We collected mark-recapture data by capturing goshawk adults during the breeding season in two 83 

distinct geographical areas in northern Europe, where goshawks breed close (ca. 400–900 km) to 84 

their northern range limit. We estimate apparent adult survival by using open population live 85 

recapture models (Cormack-Jolly-Seber models; Lebreton et al. 1992). Because apparent survival is 86 

confounded with permanent emigration, we evaluate its impact using time since marking models 87 

and by estimating site fidelity and territory turnover rates. 88 
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 89 

 90 

Materials and methods 91 

Study species 92 

Goshawk is a holarctic, territorial, medium-sized raptor showing strong reversed sexual size 93 

dimorphism (Kenward 2006). The female incubates and defends the nest during the incubation 94 

(from late April to late May in our study areas) and the first half of the nestling period (from late 95 

May to late June), while the male is responsible for provisioning food. The female usually takes part 96 

in provisioning in the late nestling period (from late June to mid July). Diet consists of small- and 97 

medium-sized birds and mammals (Tornberg 1997, Drennan 2006). Typical nesting habitat is 98 

mature forest with large trees, high canopy closure and open understories (Penteriani 2002). The 99 

residency status of goshawks varies between populations from resident (Boal et al. 2003) to either 100 

seasonally (Squires & Ruggiero 1995) or partially migratory (Kenward et al. 1981, Underwood et 101 

al. 2006). In Finland, adult goshawks are usually resident, but may occasionally disperse hundreds 102 

of kilometres (R. Tornberg unpubl. radio telemetry data, Saurola et al. 2013). The conservation 103 

status of goshawks is ‘Near Threatened’ in Finland (abundance estimate 8600 individuals; Tiainen 104 

et al. 2016) and ‘Least Concern’ in Europe (332 000–440 000 mature individuals; BirdLife 105 

International 2016).  106 

 107 

Study areas 108 

Our study was conducted in two study areas in Finland. The northern study area (hereafter northern 109 

Finland, NF) is located around the city of Oulu (65˚N, 25˚E; ca. 2200 km
2
) and consists of coastal 110 

lowlands, including the island of Hailuoto in the Baltic sea. The area belongs to the middle boreal 111 

vegetation zone. A mosaic of forests and mostly drained bogs covers about two thirds of the area. 112 

Forests consist of managed conifer or mixed stands dominated by scots pine (Pinus sylvestris) and 113 
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Norwegian spruce (Picea abies) mixed with deciduous species (Betula sp., Populus tremula). 114 

Agricultural areas and human settlements are concentrated on the coast of the Baltic sea and river 115 

valleys. 116 

 117 

The southern study area (hereafter southern Finland, SF) consists of two subareas located southeast 118 

from the city of Pori (61˚N, 22˚E; ca. 2550 km
2
) and around the city of Turku (61˚N, 22˚E; ca. 600 119 

km
2
). The area is also coastal lowland, located in the southern boreal and hemiboreal vegetation 120 

zones ca. 500 km southwest of the NF study area. Landscape is a mixture of forests and agricultural 121 

areas. Forests consist of spruce dominated coniferous stands mixed with pine, birches and aspen. 122 

 123 

Mark-recapture data 124 

Breeding goshawk populations have been monitored since 1994 and 1993 in northern and southern 125 

Finland, respectively. A territory was defined as a cluster of alternative nest sites and surrounding 126 

area used and defended by a goshawk pair (Steenhof & Newton 2007). All known territories were 127 

visited between April and May to determine occupancy. A territory was considered occupied if 128 

fresh signs of occupation (prey remains, moulted feathers, faeces etc.) were observed near the nest 129 

sites (Steenhof & Newton 2007). If no signs were found, suitable nearby forest sites were searched 130 

for new nest site. Because majority of the forests in our study areas are too young (due to forest 131 

management) for goshawk nesting, we used aerial photographs to identify potential new nesting 132 

sites and focused our searching efforts on them. This maximized the use of limited resources 133 

available for nest searching. The total area of nest search varied depending on the amount of 134 

suitable habitat, but usually searching occurred within a kilometre from the old nest site. Nest 135 

search was performed by walking slowly within a forest patch in transects ca. 50 m apart to cover 136 

the whole patch while carefully looking for new nest structures or other signs of goshawk activity. 137 

We also used playbacks of goshawk vocalizations to locate new breeding pairs and nest sites 138 
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(Andersen 2007). Pairs were defined as breeding if at least one egg was laid. Nestlings were ringed 139 

at age of 15–30 days. 140 

 141 

Since 1999 in NF and 2002 in SF, breeding adults have been caught at the breeding sites using a 142 

raptor net with a mounted eagle owl (Bubo bubo) as a lure. Birds were sexed on the basis of size 143 

(Kenward 2006) and marked with individually numbered aluminium leg bands. During the early 144 

and late years capture efforts or success were relatively low that could compromise survival 145 

estimation. Therefore, we restrict the survival analyses to study periods when capture efforts were 146 

highest, i.e. to 2003-2012 in NF and  2005-2011 in SF study area. Survival analysis data sets 147 

included 91 individuals and 127 captures in NF and 120 individuals and 163 captures in SF. Site 148 

fidelity and territory turnover analyses were based on the full study periods (1999-2016 in NF, 149 

2002-2016 in SF). 150 

 151 

Survival analysis 152 

We used Cormack-Jolly-Seber (CJS) models (Cormack 1964, Jolly 1965, Seber 1965, Lebreton et 153 

al. 1992) to estimate apparent survival of breeding adult goshawks. CJS models simultaneously 154 

estimate both apparent survival and recapture probability (the probability that a living individual is 155 

recaptured/encountered in the study area) and therefore account for temporary emigration of 156 

individuals (Lebreton et al. 1992). The resulting survival estimates may nevertheless be confounded 157 

with permanent emigration outside the study area, therefore the estimate is termed "apparent 158 

survival". Survival analyses included sex (male vs. female) and time since marking (TSM; newly 159 

marked individuals vs. individuals marked in previous years; Pradel et al. 1997) as categorical 160 

explanatory variables. Since the SF study area consisted of two subareas, the subarea variable 161 

(Turku vs. Pori) was included in the analysis of the SF data set. 162 

 163 
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We kept model structures simple due to small sample sizes. A maximum of three explanatory 164 

variables were simultaneously incorporated into a model (two for survival, one for recapture; except 165 

for the global models). Interactions and temporal variation were not considered. All explanatory 166 

variables were fitted both alone and additively to each of the other variables in the survival model 167 

structure. Model structure with constant survival was also applied. Recapture probability model 168 

structure included either sex or subarea, or the recapture probability was kept constant. All survival 169 

structures were fitted with all different recapture structures, resulting in the total number of 8 and 22 170 

candidate models for the NF and SF data sets, respectively (global models included). 171 

 172 

For the NF data, the global model included additive effects of sex and TSM in survival (S) and the 173 

effect of sex in recapture (p) model structures [S(Sex+TSM) p(Sex)]. For the SF data set the global 174 

model included also the additive effect of subarea in both survival and recapture model structures 175 

[S(Subarea+Sex+TSM) p(Subarea+Sex)]. Goodness of fit testing of the global models and 176 

estimation of variance inflation factors (  ) were done using the parametric bootstrap approach 177 

provided in program MARK (White & Burnham 1999, White et al. 2001). The global models fit 178 

both data sets (NF: p = 0.202; SF: p = 0.486). Slight over-dispersion was corrected for in NF data (   179 

= 1.17), but in SF data it was not necessary (   = 1.00). Ranking of the candidate models was based 180 

on Akaike’s Information Criterion corrected for small sample size, and over-dispersion in NF data, 181 

(AICc or QAICc; Akaike 1974, Burnham & Anderson 2002). We quantified the importance of 182 

different explanatory variables in explaining the variation in apparent survival and recapture 183 

probabilities using the sum of model-specific Akaike weights over all the models that included the 184 

specific variable (Burnham & Anderson 2002). In addition, since some explanatory variables were 185 

incorporated in a varying number of models, we also calculated the average Akaike weight for each 186 

variable. Apparent survival and recapture probability estimates and associated unconditional 95% 187 

confidence intervals were derived via model averaging over all relevant models (see results for 188 
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details). All survival analyses were performed in program MARK 8.0 (White & Burnham 1999, 189 

White et al. 2001).  190 

 191 

Site fidelity and territory turnover 192 

We calculated site fidelity and turnover rates with two approaches. The first approach included 193 

individuals caught in successive years. Site fidelity is the percentage of individuals that stayed on 194 

the same territory in successive years, and turnover is the percentage of observations where a 195 

breeding individual was replaced by another individual on a territory in successive years. These are 196 

the traditional approaches used to estimate site fidelity and territory turnover (see e.g. Bechard et al. 197 

2006, Reynolds & Joy 2006). 198 

 199 

However, estimates based on the traditional approaches may be biased for several reasons. First, if 200 

an individual, captured at year t, breeds in the same known territory the next year (t+1), it is more 201 

likely to be recaptured than an individual, which disperses to a new territory, possibly outside the 202 

study area or to an unknown territory within the study area. Furthermore, if it is possible to capture 203 

individuals only if they are successful in breeding (as is the case in this study) and if breeding 204 

success and dispersal propensity are interrelated (e.g. Haas 1998, Hoover 2003, Jiménez-Franco et 205 

al. 2013), it may be impossible to capture a dispersing individual in successive years even when the 206 

new territory is known. All above-mentioned possibilities support the expectation of obtaining 207 

disproportionally more data on site-faithful than on dispersing individuals, i.e. the traditional site 208 

fidelity estimates may be biased high. Turnover is based on individuals captured in the same 209 

territory, and thus is not biased by dispersal to unknown territories. However, based on our present 210 

goshawk data, if a breeding male disappears from its territory, it is rarely replaced immediately by 211 

another male. For example in the NF data, in 19 of the 28 cases where the territorial male was 212 

replaced, the territory remained unoccupied for at least one year before the new male occupied the 213 
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territory. Therefore, male turnover seldom occurs in successive years, which results in low turnover 214 

estimates if the traditional estimation approach is used. 215 

 216 

To alleviate the above-mentioned issues we also estimated site fidelity and turnover by including 217 

successive captures of individuals (site fidelity), or successive captures within territories (turnover), 218 

regardless of the number of years between the captures. These estimates may in turn be biased low 219 

(site fidelity) or high (turnover) due to the inclusion of observations with up to nine years between 220 

successive captures. The true site fidelity and turnover estimates probably lie somewhere between 221 

the two estimates. The estimates of site fidelity and turnover include only one observation per 222 

individual/territory. 223 

 224 

Generalized linear models (logit link function, binomial error distribution) were used to investigate 225 

differences in site fidelity and turnover estimates between males and females in both study areas 226 

and between the two study areas within both sexes. Site fidelity and turnover estimates based on 227 

both approaches were analysed separately. Statistical significance of the sex or area differences was 228 

evaluated by likelihood ratio tests. In the case of the estimates based on the second approach 229 

(variable number of years between the captures), the number of years between the captures was 230 

included as an additional covariate (centred to the mean; termed 'Years'). The fit of the models to 231 

the observed data (overdispersion in binomial models) was assessed by the ratio of residual 232 

deviance to the degrees of freedom of the model. If this ratio does not substantially exceed unity, 233 

the model with binomial error structure fits well to the data (Collett 2003). Program R 3.3.1 (R 234 

Development Core Team 2016) was used for the analyses. 235 

 236 

 237 

Results 238 
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Apparent adult survival 239 

In northern Finland, apparent survival of breeding adult goshawks was best explained by time since 240 

marking (TSM; Tables 1 and 2). However, when comparing the mean Akaike weights of the 241 

explanatory variables, a constant survival rate was equally supported as the TSM effect (Table 1). It 242 

is unknown whether the individuals, when they were captured for the first time, were also breeding 243 

for the first time. However, of the territories where an individual was captured for the first time, 244 

79% had contained breeding pairs for one year at the most before their capture indicating that most 245 

of the individuals captured for the first time were also breeding for their first or second time. 246 

Therefore the two TSM groups are hereafter called ‘early-career breeders’ and ‘experienced 247 

breeders’. Model averaged apparent survival probability estimates were 0.534 (95% CI [0.292, 248 

0.760]) for early-career breeders and 0.675 (95% CI [0.503, 0.810]) for experienced breeders 249 

(Figure 1; estimates based on models 1a, 2a, 5a and 7a, Table 2). Survival probability did not differ 250 

between males and females. The model averaged survival estimates were 0.533 (95% CI [0.293, 251 

0.758]) in early-career and 0.669 (95% CI [0.485, 0.812]) in experienced males, while they were 252 

0.555 (95% CI [0.262, 0.814]) in early-career and 0.689 (95% CI [0.467, 0.849]) in experienced 253 

females (estimates based on all models, Table 2). Recapture probability was consistently explained 254 

by sex across all survival model structures (Tables 1 and 2). Model averaged recapture probability 255 

was higher for males (0.496, 95% CI [0.270, 0.724]) than females (0.207, 95% CI [0.065, 0.493]; 256 

estimates based on all models, Table 2). 257 

 258 

In southern Finland, the variable subarea received the most support in explaining apparent survival 259 

of goshawks (Table 1) being included in the top six models (Table 3). Model averaged apparent 260 

survival probability was 0.715 (95% CI [0.442, 0.888]) in the Turku subarea and 0.534 (95% CI 261 

[0.382, 0.680]) in the Pori subarea (estimates based on models 1b, 6b, 8b, 11b, 14b and 19b, Table 262 

3). Differences in survival between males and females were small; model averaged estimates were 263 
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0.741 (95% CI [0.454, 0.908]) for males and 0.661 (95% CI [0.349, 0.876]) for females in Turku, 264 

and 0.555 (95% CI [0.389, 0.709]) for males and 0.458 (95% CI [0.235, 0.700]) for females in Pori 265 

(estimates based on models 1b, 2b, 4b–6b, 8b, 10b, 11b, 12b, 14b, 17b and 19b, Table 3). TSM 266 

effect was not supported (Table 1). Sex was the most important variable explaining recapture 267 

probability (Table 1). Model averaged recapture probability was 0.359 (95% CI [0.208, 0.544]) for 268 

males and 0.249 (95% CI [0.098, 0.504]) for females (estimates based on models 1b–4b, 6b–10b, 269 

14b, 16b–18b and 22b, Table 3). 270 

 271 

Site fidelity and territory turnover 272 

Both estimation approaches indicated high site fidelity in male goshawks in both northern 273 

(approach 1: 1.000, n = 17; approach 2: 0.909, n = 22) and southern Finland (approach 1: 1.000, n = 274 

19; approach 2: 0.966, n = 29; Figure 2a). Site fidelity was lower in females than in males in 275 

northern Finland (approach 1: 0.500, n = 6; approach 2: 0.615, n = 13; Table 4, Figure 2a), but not 276 

in southern Finland (approach 1: 0.900, n = 10; approach 2: 0.938, n = 16). Female site fidelity was 277 

also lower in northern Finland compared to southern Finland (Figure 2a), though not quite 278 

significantly so for the estimation approach 1 (Table 4). 279 

 280 

Turnover rates of males were similar in northern (approach 1: 0.077, n = 13; approach 2: 0.560, n = 281 

25) and southern Finland (approach 1: 0.053, n = 19; approach 2: 0.314, n = 35; Table 4, Figure 2b). 282 

In northern Finland, turnover rate was higher in females (approach 1: 0.667, n = 9; approach 2: 283 

0.789, n = 19) than in males (Table 4, Figure 2b). Female turnover was also higher in northern 284 

Finland than in southern Finland (approach 1: 0.250, n = 12; approach 2: 0.400, n = 25; Table 4; 285 

Figure 2b), although the difference based on the approach 1 remained barely nonsignificant (Table 286 

4). Overdispersion levels were acceptable in all models (residual deviance/df ≤ 1.313).  287 

 288 
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 289 

Discussion 290 

We report the first apparent adult survival estimates based on mark-recapture data in goshawks 291 

breeding close to their northern range limit. We found relatively low adult survival with no apparent 292 

differences between northern and southern Finland or between sexes. Mean survival estimates for 293 

different sexes and areas varied between 0.46 and 0.74, a range which is at the low end reported in 294 

previous mark-recapture or radio telemetry studies (0.62–0.86; Table 5). The survival estimates in 295 

the Pori subarea in southern Finland (males 0.56, females 0.46) were especially low. The reason for 296 

the very low (potentially unrealistically low) survival estimates in Pori is currently unknown. 297 

Considering the size of goshawks (ca. 1 kg) they could be predicted to have a mean survival of 0.80 298 

(Newton et al. 2016), higher than found in this study.  299 

 300 

Recapture probabilities of goshawks were generally low, at maximum 0.50, a problem also 301 

prevalent in previous studies (DeStefano et al. 1994, Kennedy 1997, Reynolds et al. 2004). Low 302 

recapture probabilities reflect the general difficulty of capturing goshawks. Especially females are 303 

usually less aggressive than males in attacking the eagle owl lure used in capture attempts. Higher 304 

breeding dispersal probability could also result to temporary emigration, and thus further explain 305 

the low recapture probabilities of females.  306 

 307 

The relatively low adult survival estimates reflect either true survival or alternatively a higher 308 

degree of permanent emigration (Sandercock 2006). We used estimates of site fidelity and territory 309 

turnover to evaluate the possibility of permanent emigration. We found high site fidelity in males in 310 

both study areas (91–100%) and in females in southern Finland (90–94%) but lower in females in 311 

northern Finland (50–62%). Turnover rates mirrored site fidelity being particularly high in females 312 

in northern Finland (67–79%) compared to females in southern Finland (25–40%) or males in 313 
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overall (5–56%). Turnover of females in northern Finland was also remarkably high in comparison 314 

to North American goshawk populations (males 23%-25%; females 16%-30%; Detrich & 315 

Woodbridge 1994, Bechard et al. 2006, Reynolds & Joy 2006). Site fidelity and turnover estimates 316 

are lacking for European goshawk populations, but Krüger (2005) noted that in female goshawks in 317 

Germany breeding dispersal was observed only twice (74 females followed) during the 30-year 318 

study period implying high site fidelity. 319 

 320 

Overall, it appears that at least the apparent survival estimates of females in northern Finland were 321 

confounded with permanent emigration outside the study areas. In northern Finland, survival tended 322 

to be lower for early-career breeders (53%) than for experienced breeders (68%). Given the site 323 

fidelity and turnover estimates, permanent emigration could be the prevailing explanation for the 324 

very low early-career apparent survival for females, but the same explanation appears unlikely for 325 

males. If permanent emigration is the sole explanation for the low early-career survival rates, TSM 326 

effect could be expected to be stronger for females than for males. However, we did not initially fit 327 

any interaction models and thus could not observe the potential interactive effects between sex and 328 

TSM. Post hoc fitting of sex*TSM interaction model indicated that the TSM effect might be more 329 

pronounced in females (apparent survival estimates: 0.47 in early-career and 0.67 in experienced 330 

males, and 0.41 in early-career and 0.80 in experienced females; based on model 331 

S(sex*TSM)p(sex)). The sex*TSM interaction effect was nevertheless far from significant (β=-332 

0.926, 95% CI [-4.012, 2.161]), probably due to the small sample size. 333 

 334 

An alternative explanation for the low apparent early-career survival, and perhaps the more 335 

probable one regarding males, is that breeding is such a demanding task for the new recruits that 336 

many of them die during the next non-breeding season. In goshawks, the male is almost solely 337 

responsible for providing food for both the female and nestlings (Kenward 2006). As a result, males 338 
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might be in too bad condition at the start of the potentially harsh winter conditions (cold weather, 339 

low prey availability, short day-length) to survive through to the next spring. Only the highest 340 

quality individuals may survive to breed in the next year, and in further years as suggested by the 341 

relatively higher apparent survival of experienced breeders. In addition, males probably benefit 342 

from holding the same territory year-round, because site familiarity should enhance their 343 

provisioning capabilities during breeding (Kenward 2006). That may hinder their possibilities for 344 

movements outside the territory even during the non-breeding season. Females may, in contrast, 345 

counter the difficult winter conditions by increasing their movement beyond the territory boundaries 346 

(e.g. in search of prey), and consequently they may also end up breeding in another territory. This 347 

could at least partly explain the lower site fidelity and higher turnover of females than males, 348 

especially in northern Finland where the winter conditions are even more challenging than in 349 

southern Finland (Pirinen et al. 2012). Nevertheless, we cannot exclude the possibility that also 350 

some male dispersal events resulted to permanent emigration, and thus to low apparent survival. 351 

Likewise, low female early-career survival could also partly reflect truly low survival. 352 

 353 

Yet another explanation for the difference between the early-career (or individuals captured for the 354 

first time) and experienced breeders could be that individuals dispersed from the study area due to 355 

the capture and handling per se. However, for this to be the case, the same pattern could have been 356 

expected to appear also in southern Finland (capture method was identical in both areas), but TSM 357 

did not explain apparent survival there. Hence, the differences in apparent survival in northern 358 

Finland most likely reflect natural patterns. 359 

 360 

In conclusion, apparent survival rates of goshawks in Finland were relatively low, and probably at 361 

least partly confounded with permanent emigration. Apparently the most reliable survival estimates 362 

were obtained for males, but even they were relatively low in comparison to previous studies. In 363 
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northern Finland, females apparently exhibited frequent breeding dispersal, a previously 364 

undiscovered behaviour in goshawks, despite having been frequently observed in birds in general 365 

(e.g. Greenwood 1980, Pakanen et al. 2015). Both the low survival rates of males and high dispersal 366 

propensity of females may be related to sex-specific roles in breeding and territorial behaviour as 367 

well as to challenging environmental conditions during winter. In other raptors and owls adverse 368 

weather conditions do affect survival (Francis & Saurola 2004, Reichert et al. 2010, Franke et al. 369 

2011), and in the goshawk harsh winters result in decreased breeding density in the next season 370 

(Tornberg et al. 2013), potentially due to weather-related variation in survival. Further 371 

investigations of weather effects on goshawk survival and dispersal propensity are warranted with 372 

data spanning for longer time periods than in our study (Grosbois et al. 2008).  373 

  374 
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Tables 561 

Table 1. Relative importance of variables in explaining apparent survival and recapture probability of 562 

Northern Goshawks in northern and southern Finland. The most important variables are in bold. 563 

Area Parameter Variable
a 

Sum of Akaike 

weights 

Mean Akaike 

weight 

Number of 

models 

Northern 

Finland 

Survival 

probability 

TSM 0.531 0.133 4 

Sex 0.307 0.077 4 

Constant 0.314 0.157 2 

Recapture 

probability 

Sex 0.866 0.217 4 

Constant 0.134 0.033 4 

Southern 

Finland 

Survival 

probability 

Subarea 0.744 0.083 9 

TSM 0.314 0.035 9 

Sex 0.405 0.045 9 

Constant 0.074 0.025 3 

Recapture 

probability 

Subarea 0.157 0.022 7 

Sex 0.519 0.074 7 

Constant 0.324 0.046 7 

a
 TSM = time since marking effect (early-career breeders vs. experienced breeders); Sex = the sex effect (males vs. 564 

females); Subarea = the subarea effect within the SF study area (Turku vs. Pori); Constant = survival/recapture 565 

probability constant between individuals. 566 

  567 
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Table 2. Models of apparent adult survival of the Northern Goshawk in northern Finland. 568 

Model
a 

QAICc ΔQAICc 

Akaike 

weight 

Model 

likelihood Parameters 

1a. S(TSM)p(Sex) 177.648 0.00 0.323 1.000 4 

2a. S(Constant)p(Sex) 
177.903 0.26 0.285 0.880 3 

3a. S(Sex)p(Sex) 179.363 1.72 0.137 0.424 4 

4a. S(Sex+TSM)p(Sex) 179.608 1.96 0.121 0.375 5 

5a. S(TSM)p(Constant) 181.172 3.52 0.056 0.172 3 

6a. S(Sex+TSM)p(Constant) 182.319 4.67 0.031 0.097 4 

7a. S(Constant)p(Constant) 
182.444 4.80 0.029 0.091 2 

8a. S(Sex)p(Constant) 
183.467 5.82 0.018 0.055 3 

a 
S() denotes the survival and p() the recapture model structure with the explanatory variables in parentheses. Sex = the 569 

sex effect (males vs. females); TSM = time since marking effect (early-career breeders vs. experienced breeders); 570 

Constant = survival/recapture probability constant between individuals. 571 

  572 
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Table 3. Models of apparent adult survival of the Northern Goshawk in southern Finland. 573 

Model
a 

AICc ΔAICc 

Akaike 

weight 

Model 

likelihood Parameters 

1b. S(Subarea)p(Sex) 246.365 0.00 0.171 1.000 4 

2b. S(Subarea+Sex)p(Constant) 246.600 0.24 0.152 0.889 4 

3b. S(Subarea+TSM)p(Sex) 246.635 0.27 0.149 0.874 5 

4b. S(Subarea+Sex)p(Sex) 248.039 1.67 0.074 0.433 5 

5b. S(Subarea+Sex)p(Subarea) 248.493 2.13 0.059 0.345 5 

6b. S(Subarea)p(Constant) 248.529 2.16 0.058 0.339 3 

7b. S(TSM)p(Sex) 249.128 2.76 0.043 0.251 4 

8b. S(Constant)p(Sex) 249.163 2.80 0.042 0.247 3 

9b. S(Subarea+TSM)p(Constant) 249.581 3.22 0.034 0.200 4 

10b. S(Sex)p(Constant) 249.934 3.57 0.029 0.168 3 

11b. S(Subarea)p(Subarea) 250.497 4.13 0.022 0.127 4 

12b. S(Sex)p(Subarea) 250.553 4.19 0.021 0.123 4 

13b. S(Subarea+Sex+TSM) 

p(Subarea+Sex) 250.768 4.40 0.019 0.111 7 

14b. S(Constant)p(Constant) 250.895 4.53 0.018 0.104 2 

15b. S(Sex+TSM)p(Subarea) 251.085 4.72 0.016 0.094 5 

16b. S(Sex+TSM)p(Constant) 251.088 4.72 0.016 0.094 4 

17b. S(Sex)p(Sex) 251.105 4.74 0.016 0.094 4 

18b. S(Sex+TSM)p(Sex) 251.267 4.90 0.015 0.086 5 

19b. S(Constant)p(Subarea) 251.576 5.21 0.013 0.074 3 

20b. S(TSM)p(Subarea) 251.630 5.26 0.012 0.072 4 

21b. S(Subarea+TSM)p(Subarea) 251.719 5.35 0.012 0.069 5 

22b. S(TSM)p(Constant) 
251.791 5.43 0.011 0.066 3 
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a 
S() denotes the survival and p() the recapture model structure with the explanatory variables in parentheses. Subarea = 574 

the subarea effect within the SF study area (Turku vs. Pori); Sex = the sex effect (males vs. females); TSM = time since 575 

marking effect (early-career breeders vs. experienced breeders); Constant = no variation in survival/recapture 576 

probability. 577 

 578 

579 
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Table 4. Model statistics of site fidelity and territory turnover rate analyses. Calculation of the response 580 

variables were based on either captures in successive years (approach 1) or all successive captures regardless 581 

of the number of years between the captures (approach 2), but controlling for the variable number of years 582 

between the captures (parameter 'Years'). 583 

Response variable Group  Parameter χ
2
Df=1 p-value 

Site fidelity Males Area 0.000 1.000 

Approach 1 Females Area 3.175 0.075 

 Northern Finland Sex 9.494 0.002 

 Southern Finland Sex 2.198 0.138 

Site fidelity  Males Area 0.514 0.473 

Approach 2  Years 1.093 0.296 

 Females Area 5.994 0.014 

  Years 2.013 0.156 

 Northern Finland Sex 4.877 0.027 

  Years 0.576 0.448 

 Southern Finland Sex 0.209 0.648 

  Years 0.038 0.845 

Turnover Males Area 0.076 0.782 

Approach 1 Females Area 3.729 0.053 

 Northern Finland Sex 9.013 0.003 

 Southern Finland Sex 2.510 0.113 

Turnover Males Area 1.421 0.233 

Approach 2  Years 50.462 <0.001 

 Females Area 7.253 0.007 

  Years 3.261 0.071 

 Northern Finland Sex 5.819 0.016 

  Years 18.272 <0.001 

 Southern Finland Sex 0.100 0.752 
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  Years 18.291 <0.001 

 584 

585 
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Table 5. Survival probabilities estimated for different populations of the Northern Goshawk. 586 

Location Survival
a 

Method
d 

Years n Reference 

Europe      

Gotland, Sweden 0.79–0.83 RT 1980–1984 78 Kenward et al. 1999 

Germany 0.62–0.79
b
 CMR

e 
1980–2003 74 Krüger 2005 

Oulu, Finland 0.80
c
 RT 1991–1994 19 Tornberg and Colpaert 2001 

Oulu, Finland 0.53–0.68 CMR 2003–2012 91 This study 

Turku, Finland 0.72 CMR 2005–2011 40 This study 

Pori, Finland 0.53 CMR 2005-2011 80 This study 

North America      

New Mexico, USA 0.86 CMR 1983–1995 45 Kennedy 1997 

Arizona, USA 0.75 CMR 1991–2000 265 Reynolds et al. 2004 

Minnesota, USA 0.74 RT 1998–2000 32 Boal et al. 2005 

a
 Survival probabilities did not differ between males and females in any of the studies (Kennedy 1997, Kenward et al. 587 

1999, Reynolds et al. 2004, this study), or they were not tested (Tornberg and Colpaert 2001, Boal et al. 2005). 588 

Therefore, overall survival estimates are reported. 589 

b
 Estimate based on females only. 590 

c
 Estimate derived only for the five winter months (November–March) 591 

d
 RT = radio telemetry, CMR = capture-mark-recapture(resight) 592 

e
 Birds were not physically captured, but the identification of individuals was based on shed feathers.  593 
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Figures 594 

 595 

 596 

Figure 1. Apparent survival probability of early-career breeders and experienced breeders in northern 597 

Finland (model averaged estimates ± unconditional SEs).  598 

 599 

 600 

Figure 2. Ranges of (a) site fidelity and (b) territory turnover rate estimates of male and female Northern 601 

Goshawks in northern (NF) and southern (SF) Finland. 602 


