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Abstract

Mitochondria have been increasingly recognized as a central regulatory nexus for multiple

metabolic pathways, in addition to ATP production via oxidative phosphorylation

(OXPHOS). Here we show that inducing mitochondrial DNA (mtDNA) stress in Drosophila

using a mitochondrially-targeted Type I restriction endonuclease (mtEcoBI) results in

unexpected metabolic reprogramming in adult flies, distinct from effects on OXPHOS. Car-

bohydrate utilization was repressed, with catabolism shifted towards lipid oxidation, accom-

panied by elevated serine synthesis. Cleavage and translocation, the two modes of

mtEcoBI action, repressed carbohydrate rmetabolism via two different mechanisms. DNA

cleavage activity induced a type II diabetes-like phenotype involving deactivation of Akt

kinase and inhibition of pyruvate dehydrogenase, whilst translocation decreased post-trans-

lational protein acetylation by cytonuclear depletion of acetyl-CoA (AcCoA). The associated

decrease in the concentrations of ketogenic amino acids also produced downstream effects

on physiology and behavior, attributable to decreased neurotransmitter levels. We thus pro-

vide evidence for novel signaling pathways connecting mtDNA to metabolism, distinct from

its role in supporting OXPHOS.

Author summary

Mitochondria, subcellular compartments (organelles) found in virtually all eukaryotes,

contain DNA which is believed to be a remnant of an ancestral bacterial genome. They

are best known for the synthesis of the universal energy carrier ATP, but also serve as the

hub of various metabolic and signalling pathways. We report here that mtDNA integrity

is linked to a signaling system that influences metabolic fuel selection between fats and
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sugars. By disrupting mtDNA in the fruit fly we induced a strong shift towards lipid catab-

olism. This was caused both by a widespread decrease in post-translational acetylation of

proteins, as well as specific inhibition of the machinery that transports glucose into cells

across the plasma membrane. This phenomenon is very similar to the pathophysiology of

diabetes, where the inability to transport glucose to cells is considered the main hallmark

of the disease. Moreover, decreased protein acetylation was associated with lower levels of

certain neurotransmitters, causing various effects on feeding and fertility. Our discovery

reveals an unexpected role for mtDNA stability in regulating global metabolic balance and

suggests that it could be instrumental in pandemic metabolic disorders such as diabetes

and obesity.

Introduction

Mitochondria have diverse roles in cellular metabolism: hosting the TCA cycle, controlling

Ca2+ signaling, synthesizing FeS clusters and inducing cell death to name but a few. However,

their best known role is to generate ATP via oxidative phosphorylation (OXPHOS), which is

usually powered by two main substrate classes: carbohydrates and lipids. The selection of the

fuel source for ATP generation is a dynamic multi-step process that can be rearranged to meet

organismal needs. In addition to nuclear-encoded components of the electron transport chain

(ETC), the process of mitochondrial ATP production requires a small number of crucial sub-

units encoded by mitochondrial DNA (mtDNA). The classic view of mtDNA disorders is that

a lack of such subunits, or the presence of damaged subunits, leads to dysfunctional ETC com-

plexes, which in turn causes pathological changes due to decreased ATP and increased produc-

tion of damaging reactive oxygen species (ROS).

This paradigm is challenged by the large heterogeneity of pathological manifestations of

mtDNA alterations that are unlikely to be caused by OXPHOS dysfunction alone [1]. An

explanation can be provided by the various forms of mitochondrial communication with other

cellular compartements [2–4]. Although mitochondrial biogenesis is under nuclear control, a

number of retrograde pathways link mitochondrial homeostasis with other cellular functions.

Their effects vary, ranging from the elimination of dysfunctional mitochondria by mitophagy

and the induction of apoptosis, to nonlethal shifts in metabolism. Certain specific changes in

mtDNA function, for example, mutations in tRNA genes, can trigger distinct stress responses

linked to arrested translation and imbalance between nuclear- and mitochondrially encoded

ETC subunits. While several of them may eventually lead to OXPHOS defects, there is a grow-

ing view that these stress signals could be primary contributors to pathology, in at least some

mitochondrial disorders. Activating transcription factors (ATFs) are proposed to mediate this

regulation, launching programs aimed at re-establishing homeostasis that have been described

as the mitochondrial unfolded protein response (mtUPR) and the integrated stress response

(ISR) [1[. Responses to mtDNA stress can be non-cell autonomous, such as via the systemic

action of fibroblast growth factor 21 (FGF21) [5, 6]. Little is known about how these signaling

pathways are activated, although the role of TCA intermediates as second messengers has been

increasingly recognized [7], with effects on nucleic acid and protein modifications, such as

methylation and acetylation [8, 9].

mtDNA is organized in nucleoids, protein-DNA complexes that are considered to be units

of inheritance [10]. As well as factors for mtDNA transactions, they have been found to con-

tain a number of proteins linked to metabolism, although their functions in the nucleoid are

generally not known [11]. A prominent component of nucleoids is the DNA-packaging factor
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TFAM, that has a clear preference for negatively supercoiled DNA [12–14]. TFAM depletion

can induce mitochondrial stress responses [15, 16] that have hitherto been consideres to be

mediated by OXPHOS impairment [17]. Similar arguments can be applied to the „deletor”-

mouse model, where due to defective DNA helicase mtDNA deletions accumulate at a slow

rate, leading to late-onset mitochondrial dysfunction [18]. The mice manifest metabolic alter-

ations [19, 20] that are assumed to be OXPHOS related, although other types of signaling may

be involved.

Here we provide evidence for a previously unkown role of mtDNA stability in reprogram-

ming the use of metabolic pathways. We manipulated mtDNA in vivo by targeting a bacterial

Type I restriction endonuclease (RE), EcoBI, to Drosophilamitochondria. These complex

enzymes are capable of both DNA cleavage and methylation depending on the methylation

states of their target sequences [21]. In fact, partial complex consisting of only two subunits

(HsdM and HsdS) is still capable of methylating target DNA. After binding to their target

sequences, Type I REs translocate along DNA before introducing double-strand breaks

(DSBs), causing essentially random cleaveage [21]. When induced early in development, we

found that mitochondrial EcoBI (mtEcoBI) disrupted mtDNA as expected, through cleavage

and topological aberrations resulting from translocation activity. This led to severe ETC

defects and increased ROS production, with expected downstream effects on cellular homeo-

stasis and systematic lethality. However, mtDNA damage by adult-onset expression of mtE-

coBI was much more limited and did not interfere with OXPHOS. Nevertheless, it led to

major metabolic alterations, resulting in lethality within two weeks. This effect was brought

about by two distinct mechanisms: translocation activity decreased cytonuclear protein acety-

lation due to lower cytosolic AcCoA, whilst cleavage of mtDNA inactivated the Akt kinase.

Both effects converged in a multifaceted inhibition of carbohydrate catabolism, causing a shift

towards lipid oxidation. Furthermore, serine synthesis was increased, a phenomenon observed

also in other mtDNA stress conditions [20, 22, 23]. Finally, depletion of ketogenic amino acids

capable of replenishing cytosolic AcCoA caused strong effects on feeding and fertility via

decreased levels of tyrosine-derived neurotransmitters. These findings represent the first clear-

cut demonstration of the activation of a metabolic stress-response pathway by mtDNA disrup-

tion, independently of any measurable disturbance of OXPHOS.

Results

Early-onset expression of mtEcoBI induces larval lethality and

mitochondrial dysfunction

Type I REs such as EcoBI are heterotrimeric enzymes. To target EcoBI to the mitochondrial

matrix in Drosophila we therefore fused the coding sequences for each of its three subunits

(HsdM, HsdS and HsdR) to the robust mitochondrial targeting sequence from the citrate

synthase gene [24] and placed them under the control of GAL4-dependent UAS elements.

Expression of each subunit was confirmed by qRT-PCR in flies and mitochondrial localization

by immunocytochemistry in S2 cells and by western blots of subcellular protein extracts from

Drosophila tissue (S1A–S1C Fig). We generated three isoforms for the HsdR (endonuclease)

subunit: a fully functional wild-type version (func) and two others, each with single point-

mutations either in the endonuclease (D298E) or ATPase (K477R) domain, rendering the sub-

unit respectively deficient in endonuclease (endo-) and both endonuclease and translocation

(endo/trans-) functions [25]. These mutations did not alter the stability of the protein, as its

abundance remained unchanged compared to the func isoform (S1D Fig). Ubiquitous co-

expression of the mitochondrially targeted HsdM and HsdS subunits, together with the

endo/trans- HsdR isoform, using the daughterlessGAL4 (daGAL4) driver, had no effect on
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development or viability (Fig 1A). In contrast, co-expression of the func HsdR isoform

resulted in decreased larval wet weight and early larval lethality at L1/L2 stage (Fig 1A). The

endo- isoform also produced larval lethality but with increased survival into L3 stage, never-

theless with severely decreased weight gain. MtDNA integrity was detectably affected only in

the func strain, with random shearing combined with specific cleavage sites near the replica-

tion origin, the NCR border and also at the two binding sites for mTTF/mTERF5 (Fig 1B and

S2A Fig). This is consistent with the known proclivity of Type I REs to cleave DNA when they

encounter a bound protein or higher-order DNA structure inferred to be present in those

mtDNA regions [26]. The results indicate fragmention of mtDNA by mtEcoBI, without a

decrease in copy number (Fig 1C) or modification of its binding sequence (S2B Fig). Translo-

cation also resulted in a shift towards circular isoforms with decreased linking number, seen

for both the endo- and func strains (red asterisks in Fig 1D and S2C Fig). In accordance with

the expectation that this topological disturbance would affect gene expression (as described in

human cells [27]), we observed that steady-state levels of mtDNA transcripts were decreased

in larvae expressing the endo- enzyme (Fig 1E). An effect on the production of mitochond-

rially encoded proteins was consistent with decreased in-gel activity of OXPHOS complexes I

and IV (Fig 1F) and diminished respiratory chain activity both in larvae of similar size or same

chronological age (Figs 1G and S2D), independent of the substrate used. These defects in respi-

ration were accompanied by elevated ROS production as demonstrated by increased fluores-

cence of an in vivoGFP-based ROS marker (Fig 1H). Increased ROS contributed to the lethal

phenotype, since the co-expression of mitochondrial catalase (mCat) and superoxide dismut-

ase 2 (SOD2) alleviated the developmental defect while GFP did not (S2E Fig). Additional evi-

dence of elevated ROS due to mtEcoBI action comes from the overproliferation of

lamellocytes (S3A Fig), type of immunological cell that can be induced by elevated ROS pro-

duction [28]. Lamellocyte proliferation leads to the formation of melanotic nodules, as

observed in endo- larvae, but was suppressed by SOD2 overexpression or by feeding larvae

ROS scavenger N-acetylcysteine (S3B Fig).

Adult-onset expression of mtEcoBI causes lethality without mitochondrial

OXPHOS deficiency

Since the effects of mtEcoBI expression were lethal at larval stages, we used the mifepristone

(MP)-inducible tubulin GeneSwitch driver (tubGS) to induce the expression of mtEcoBI and

determine its phenotypic effects in the adult fly. Expression of the func or endo- isoforms

again resulted in lethality, following 10 days of induction (Fig 2A), while no adverse effects

were seen in the strain expressing the endo/trans- isoform, nor that expressing only the par-

tially active methyltransferase complex (MTase) consisting of the HsdM and HsdS subunit or

those expressing these subunits individually (S4A and S4B Fig). Both the development and life-

span of the induced tubGS>mtEcoBI endo/trans- strain were broadly similar to those of the

w1118 parental strain (S4A and S4C Fig). Lethality was preceded by the onset of serious loco-

motor dysfunction on day 7 (S4D Fig). The extent of degradation of mtDNA just before death

was less than that seen in larvae (Fig 2B) even though the same preferred cleavage sites at the

mTTF/mTERF5 binding sites were detected. As during larval stage, no modification of mtEco-

BI’s binding site could be detected (S4E Fig). We tested whether mtEcoBI was specifically tar-

geting mtDNA molecules undergoing replication, since DNA synthesis requires local

unwinding that might be disrupted by mtEcoBI. However, two-dimensional neutral gel elec-

trophoresis (2DNAGE) showed qualitatively and quantitavely normal replication intermedi-

ates (RIs) (S5 Fig). Consistent with this more limited amount of damage to mtDNA, no

significant alteration in mitochondrial transcript or protein levels was observed (Fig 2C and
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2D and S6 Fig). State III respiration indicated no ETC defect, while coupled respiration from

complex I-linked substrates was in fact increased in the endo- and func mtEcoBI strains, as

was the activity of complex II (Fig 2E). Quantification of various forms of oxidative damage to

proteins (considered as markers for elevated ROS) showed no increase compared with con-

trols, even after 10 days of induction (Fig 2F). Furthermore, fly brains dissected at day 6 and

stained with dihydroethidium (DHE), a sensitive dye for detecting superoxide in vivo, showed

no evidence for any increase in ROS (S7A Fig). Overexpression of ROS scavengers SOD2 and

mCat in endo- and func mtEcoBI expressing flies did not modify the lethal phenotype (S7B

Fig), in contrast to their alleviating effect in larvae. Together these results imply that the lethal

adult phenotype is not mediated by increased ROS or OXPHOS deficiency.

Although steady-state mitochondrial transcript levels were the same as in control flies,

qRT-PCR does not reflect RNA integrity. Accumulation of truncated mRNAs could lead to

the formation of aberrant proteins that would trigger mtUPR. We therefore analyzed mRNA

and protein levels for a number of chaperones and proteases known to be upregulated when

the mtUPR is induced. None of these markers showed any upregulation (S8A Fig). Similarly,

the phosphorylation status of eIF2α was unaltered, consistent with no activation of the inte-

grated stress response (ISR) (S8B Fig).

In adults mtEcoBI induces metabolic reprogramming

The lethality of mtEcoBI expression, despite mitochondrial respiration remaining functional,

prompted us to analyze changes in metabolic footprint. Metabolomic analysis detected an

accumulation of TCA cycle intermediates along with the odd-chain fatty acid oxidation prod-

uct propanoyl-CoA and elevated AcCoA, as well as an increased AcCoA/CoA ratio (Fig 3A

and S9 Fig). This suggested an increased reliance on lipid oxidation to fuel mitochondria. Tria-

cylglycerides (TAG), a major class of energy storage molecule in Drosophila, were progres-

sively depleted starting already at day 4 after mtEcoBI induction and were decreased by 90% in

the func mtEcoBI-expressing flies just before death (Fig 3B). The depletion was less dramatic

for the endo- strain, which also had a slightly longer lifespan. No such depletion was seen in

the w1118 control strain, nor in flies expressing the MTase-competent combination of HsdM

and HsdS (S10A Fig). At the same time, total glucose was slightly elevated in the func strain

and there were no statistically significant changes in the levels of glycogen and trehalose, two

major carbohydrate storage molecules (Fig 3C and S10B Fig), whilst the glycolytic end-prod-

ucts pyruvate and lactate were decreased (Fig 3D). Consistent with a shift in catabolic fuel

source, we observed a decrease in the respiratory exchange ratio (RER) to 0.7, indicative of

complete reliance on triglycerides for energy (Fig 3E). This was accompanied by lower pyru-

vate dehydrogenase activity in the func mtEcoBI strain (Fig 3F). Importantly, we observed a

strong elevation of hemolymph glucose in the func mtEcoBI strain, accompanied by a marked

decrease in phosphorylation of Akt kinase (Fig 3G–3H and S10C Fig). Addition of the

Fig 1. Phenotype of early-onset expression of mtEcoBI isoforms. (A) Wet weight of larvae of strains expressing daGAL4-driven mtEcoBI isoforms (UAS-mtHsdM.

UAS-mtHsdS/+;UAS-mtHsdR K477R/daGAL4 (endo/trans-), UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/daGAL4 (endo-),UAS-mtHsdM.UAS-mtHsdS/+;

UAS-mtHsdR/daGAL4 (func)) from days 2 to 5 after egg laying (AEL), n = 3. Inset graph shows weight for first two days. (B) BsrGI- and NdeI-cleaved mtDNA from

the same strains isolated 2 and 3 days AEL. (C) mtDNA copy number for all three strains measured at 2 and 3 AEL. (D) Topology of uncut mtDNA treated (t) or

untreated (u) with topoisomerase I from the same strains isolated 3 days AEL and quantification of circular isoforms with reduced linking number (Lk), p<0.05 (�).

Red arrow indicates the linear forms and red asterisks mark circular forms with lower negative supercoiling than the major closed circular form (blue asterisk). (E)

Steady-state transcript levels of mitochondrial genes ND5 (mt:ND5), cox2 (mt:CoII) and cytB (mt:Cyt-b) in larvae of these strains at day 5 AEL, p<0.05 (�), n = 3. (F)

In-gel activity of ETC complexes I and IV isolated from larvae expressing daGAL4-driven mtEcoBI isoforms as indicated, at days 2, 3 and 4 AEL. (G) State III

respiration of mitochondria isolated from larvae of the indicated strains at comparable developmental stage (days 2 and 3 AEL respectively, n = 3 for day 2 and n = 7

for day 3 larvae), p<0.01 (��), p<0.0001 (����). (H) Microscopy of larvae from strains UAS-mtHsdM.UAS-mtHsdS/tub-Orp1GFP;UAS-mtHsdR K477R/daGAL4 and

UAS-mtHsdM.UAS-mtHsdS/ tub-Orp1GFP; UAS-mtHsdRD298E/daGAL4with identical recording parameters. Scale bar is 0.2 mm.

https://doi.org/10.1371/journal.pgen.1008410.g001
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Fig 2. Phenotype of adult-onset expression of mtEcoBI isoforms driven by tubGS. (A) Lifespans of tubGS>mtEcoBI func (UAS-mtHsdM.UAS-mtHsdS/

+;UAS-mtHsdR/tubGS) and endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS) strains after induction (AI) on 200 μM mifepristone (MP).

(B) Topology of BsrGI-digested mtDNA from tubGS>mtEcoBI flies, u-uninduced, i-induced for 10 days on 200 μM MP-containing food. Red arrows

indicate predicted products from cleavage at mTTF/mTERF5 binding sites. (C) Western analysis of mitochondrial proteins NDUFS3 (ND-30) and porin in
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PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008410 October 4, 2019 7 / 31

https://doi.org/10.1371/journal.pgen.1008410


antidiabetic drug metformin, which promotes glucose uptake in Drosophila tissues [29],

delayed the lethal effect of mtEcoBI expression in the func but not in the endo- strain, nor did

it alter the survival of endo/trans- or w1118 parental strain flies (Fig 3I and S10D Fig). These

metabolic changes were associated with the suppression of insulin signaling, indicated by the

induction of the markers for insulin pathway inhibition InR, ImpL3 (Ldh) and 4E-BP (S10E

Fig) [30].

To address the tissue-specificity of the observed phenotype, we induced the expression of

the mtEcoBI variants in muscle, a major catabolic tissue. The phenotype was essentially identi-

cal to that of tubGS>mtEcoBI flies: in the strain expressing func mtEcoBI in muscle, again

with adult onset, we observed lethality with the same timing as with ubiquitous expression,

accompanied by only limited mtDNA cleavage, no defect in OXPHOS but decreased triacyl-

glyceride levels and elevated hemolymph glucose (S11 Fig).

The tubGS>mtEcoBI flies also showed decreased steady-state levels of ATP (Fig 3J and

S12A Fig). Despite the evidence indicating a block on carbohydrate usage, none of the three

rate-limiting enzymes of glycolysis, phosphofructokinase (PFK), hexokinase (HX) and pyru-

vate kinase (PyK), demonstrated any decrease in activity (S12B Fig). In contrast, we noticed a

2-fold elevation in the levels of phosphoenolpyruvate (PEP) and 3-phosphoglycerate (3-PG),

but not dihydroxyacetone phosphate (DHAP) or fructose 1,6-bisphosphate (FBP) in the func

mtEcoBI strain (S13 Fig). 3-PG serves as a major branch point supplying serine synthesis,

commonly elevated in response to mitochondrial dysfunction [23]. Accordingly, serine and its

intermediate phosphoserine were elevated (Fig 3K and S13 Fig).

mtEcoBI expression causes specific amino acid and neurotransmitter

deficiency

There was a clear decrease in the endo- and func strains in three ketogenic amino acids; phe-

nylalanine, threonine and tyrosine (Fig 4A). Degradation of the first two produce fumarate, a

TCA cycle intermediate. However, this did not apply to all ketogenic amino acids, and two

anaplerotic amino acids, aspartate and glutamate, were elevated (S14 Fig). Tyrosine is also a

known source of neurotransmitters, including dopamine. Its precursor, L-DOPA, demon-

strated a similar decrease as tyrosine (Fig 4A). As dopamine regulates several aspects of Dro-
sophila locomotion and behavior [31, 32], we investigated whether tyrosine deficiency was

accompanied by any behavioral changes. Feeding intensity, which is controlled by dopamine,

was lower in endo- and func mtEcoBI strains compared to the control, while L-DOPA com-

plementation restored wild-type feeding behavior (Fig 4B). L-DOPA-supplemented food also

displayed a limited rescue of lifespan, while another tyrosine-derived neurotransmitter, octo-

pamine did not (Fig 4C). In addition, when mtEcoBI expression was induced specifically in

adult neurons, using the elavGS driver, females showed severely bloated abdomens (Fig 4D).

This was due to egg retention, as shown by the extensive accumulation of late-stage follicles in

ovaries (Fig 4E). Notably, this phenotype is associated with deficiency of two other tyrosine-

linked neutransmitters, octopamine and tyramine, which control egg deposition in Drosophila
[33, 34].

tubGS>mtEcoBI strains from days 0 to 10 AI with 200 μM MP (see S5 Fig. for normalization control). (D) Steady-state transcripts levels of cox2, cytB and

ND5 in tubGS>mtEcoBI strains 10 days after induction AI with 200 μM MP, n = 3. (E) Activities of ETC chain complexes in either state III respiration of

mitochondria (cI, cIII and cIV, n = 3–6) or according to formation of product (cII, n = 3–4) in tubGS>mtEcoBI strains 6 days AI with 200 μM MP. p<0.01

(��), p<0.001(���), p<0.0001(����). (F) Protein carbonylation levels in tubGS>mtEcoBI strains at 10 days after induction (AI) with 200 uM MP. CEL-

carboxyethyl-lysine, CML-carboxymethyl-lysine, CMC-carboxymethyl-cysteine, MDAL-malondialdehyde-lysine, n = 4.

https://doi.org/10.1371/journal.pgen.1008410.g002

MtDNA stress reprograms metabolism

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008410 October 4, 2019 8 / 31

https://doi.org/10.1371/journal.pgen.1008410.g002
https://doi.org/10.1371/journal.pgen.1008410


MtDNA stress reprograms metabolism

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008410 October 4, 2019 9 / 31

https://doi.org/10.1371/journal.pgen.1008410


Effects of mtEcoBI expression are consistent with cytosolic AcCoA

depletion

Catabolism of tyrosine, phenylalanine and threonine (via threonine aldolase), unlike other

ketogenic amino acids, produces AcCoA in the cytosol. Therefore, their deficiency suggests a

resulting effect on cytosolic AcCoA. Outside of mitochondria, the donation of acetyl groups by

this metabolite is required for de novo lipogenesis, the mevalonate pathway and protein acety-

lation. Total protein acetylation was indeed found to be significantly decreased on days 6 and

10, although mitochondrial proteins were unaffected (Fig 5A and S15A and S15B Fig). Analy-

sis of the acetylation state of histone 3 demonstrated a similar decrease (Fig 5B and S15B Fig).

Changes in acetylation were accompanied by a decrease of another post-translational modifi-

cation, poly-(ADP) ribosylation, albeit with slower kinetics (Figs 5C and S15B). The concomi-

tantly decreased NAD+/NADH ratio (S15C Fig) along with histone 3 acetylation defect

implies that decreased protein modification is due to extramitochondrial AcCoA defciency,

rather than the activation of NAD-dependent deacetylases. Providing flies with exogenous cit-

rate, in order to replenish cytosolic AcCoA, led to a marked increase in lifespan in both endo-

and func mtEcoBI strains (Fig 5D). This was accompanied by correction of the protein acetyla-

tion defect and a much slower loss of triacylglycerides (Fig 5E and 5F). Citrate-supplemented

endo- mtEcoBI flies also had significantly elevated RER on day 6 compared with those main-

tained on regular food (Fig 5G and S16A Fig). Oxaloacetate-supplemented food did not pro-

vide any benefit (S16B Fig), excluding conversion to pyruvate (see S16C Fig) as a relevant

mechanism. The findings support the idea that the metabolic changes are brought about by

decreased cytonuclear protein acetylation due to cytosolic AcCoA depletion.

Discussion

We have identified a novel, mtDNA stability-related pathway, unrelated to downstream

OXPHOS defects, as a mediator of metabolic homeostasis in adult animals. This was discov-

ered by using a novel approach to manipulate mtDNA in vivo, using a mitochondrially-tar-

geted Type I restriction endonuclease.

Cleavage of mtDNA by mtEcoBI occurred preferentially at previously identified or inferred

protein binding sites [32, 33], as typical for Type I restriction enzymes [34]. In accordance

with reported effects of Type I enzymes [35], the translocation activity of mtEcoBI inflicts a

significant torsional stress on target DNAs, disrupting their in vivo conformation, as reflected

here by the enhancement of specific abnormal topoisomers. In larvae, this was accompanied

by decreased levels of mitochondrial transcripts and OXPHOS impairment, similar to a previ-

ous report where mtDNA topology was disturbed pharmacologically [27]. This was sufficient

to significantly impair growth and arrest development, leading ultimately to larval lethality

with a quantitatively stronger effect if endonuclease activity was intact.

Fig 3. Metabolite levels and insulin pathway activity during adult-onset systemic mtEcoBI expression. (A) AcCoA and AcCoA/CoA ratio in

tubGS>mtEcoBI flies 6 days after induction (AI) with 200 μM MP, p<0.05 (�), n = 5. (B) Relative TAG (triglyceride) levels normalized to protein content

between days 0 and 10 AI with 200 μM MP, in tubGS>mtEcoBI strains, p<0.001 (���), n = 3. (C) Levels of carbohydrates (normalized to protein content) in

tubGS>mtEcoBI strains 10 days AI with 200 μM MP, p<0.05 (�), ns–not significant, n = 3. (D) Pyruvate and lactate concentrations (normalized to protein

content) in tubGS>mtEcoBI strains 6 days AI, p<0.05 (�), p<0.01 (��), n = 3. (E) RER measurements in tubGS>mtEcoBI strains 6 days AI with 200 μM MP,

p<0.0001(����), n = 9. (F) Pyruvate dehydrogenase activity in tubGS>mtEcoBI strains 6 days AI, p<0.05 (�), p<0.01 (��), n = 3. (G) Hemolymph glucose

levels in tubGS>mtEcoBI strains, 0 and 10 days AI with 200 μM MP, p<0.05 (�), n = 3. (H) Ratio of phospho-Akt to pan-Akt in tubGS>mtEcoBI strains at day

10 AI with 200 μM MP, p<0.01 (��), n = 4. (I) Lifespan of tubGS>mtEcoBI func strain on food with 200 μM MP with either 0mM, 5 mM or 20 mM

metformin (respective p-values: 1.5 x 10−8 for 5 mM vs. control and 9.7 x 10−9 for 20 mM vs. control). Lifespan on food without metformin is a replicate from

Fig 2A to provide a better comparison with metformin effect. (J) ATP levels in tubGS>mtEcoBI strains 6 days AI with 200 μM MP, p<0.001(���), n = 5. (K)

Serine levels in tubGS>mtEcoBI strains 6 days AI with 200 μM MP, p<0.01 (��), p<0.001(���), n = 5.

https://doi.org/10.1371/journal.pgen.1008410.g003
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The effect on mtDNA was much weaker in adults, yet still led to early lethality, despite the

lack of any detectable OXPHOS defect. Instead it caused an enforced switch to lipid catabolism

with suppression of glycolysis resulting in rapid depletion of triglyceride, but not carbohydrate

reserves. Strikingly, translocational activity of mtEcoBI alone was capable of decreasing acety-

lation of cytonuclear histone and nonhistone proteins. A reduced NAD+/NADH ratio pointed

towards decreased cytosolic AcCoA levels as a reason for defective acetylation, further sup-

ported by decrease in endogenous sources of cytosolic AcCoA (Tyr, Phe, Thr). Inhibition of

Fig 4. Neurotransmitter modulation during adult-onset mtEcoBI expression. (A) Relative levels of phenylalanine, tyrosine, threonine and L-DOPA in

the indicated strains when driven by tubGS, 6 days after induction (AI) with 200 μM MP, p<0.05 (�), p<0.01 (��), p<0.001 (���), p<0.0001 (����), n = 5. (B)

Relative food consumption of tubGS-driven mtEcoBI-expressing flies of the indicated strains either on regular or L-DOPA-supplemented food, 6 days AI

with 200 μM MP, p<0.05 (�), p<0.0001 (����), ns–not significant, n = 4–5. (C) Lifespans of tubGS>mtEcoBI func and endo- strains maintained either on

L-DOPA or octopamine-supplemented food. (D) Morphology of females from strains expressing mtEcoBI driven by elavGS 45 days after induction (AI)

with 200 μM MP. (E) Dissected ovaries from aged females of strains expressing mtEcoBI driven by elavGS, 50 days AI on 200 μM MP, scale bars are 0.25

mm.

https://doi.org/10.1371/journal.pgen.1008410.g004
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this common protein modification in the cytosol can have profound effects on cellular homeo-

stasis through genome instability and induction of autophagy [36, 37]. Moreover, protein acet-

ylation can affect other post-translational modifications, furthering its influence down

multiple pathways. This was indeed seen by us in case of PARylation, which levels are modu-

lated by the acetylation state of its the polymerase PARP1 [38]. Reversing protein deacetylation

with exogenous citrate also inhibited loss of triacylglycerides, prolonged lifespan and shifted

catabolism towards carbohydrate utilization. Oxaloacetate, on the other hand, was incapable

of alleviating mtEcoBI effects on lifespan, demonstrating the importance of cytosolic AcCoA

production for recovery. Previous attempts to replenish cytosolic AcCoA levels decreased due

to starvation have been effective in correcting protein acetylation defect, but do not restore

normal ATP synthesis [36]. Therefore, this metabolic inflexibility induced by translocational

activity of mtEcoBI is specifically linked to protein deacetylation caused by depletion of cyto-

solic AcCoA and is not a passive consequence of a general deprivation of nutrients by some

other mechanism.

Flies expressing the fully functional mtEcoBI with DNA cleavage activity exibited a separate

mechanism that significantly augmented the inhibition of carbohydrate catabolism. It caused

dephosphorylation of, and therefore inactivation of Akt kinase, which is the central regulator

of glucose internalization across the plasma membrane, resulting in hyperglycemia. Due to

this, the process of insulin signaling facilitating the movement of sugars into cells was quantita-

tively more repressed in the func than the endo- strain, adding to the metabolic inflexibility

caused by a drop in cytosolic AcCoA. This led to a more rapid depletion of fat reserves and

rendered the catabolism of func strain insensitive to rescue by citrate on day 6. Partial allevia-

tion by metformin in the func but not in the endo- strain adds further proof of the dual mecha-

nism of mtEcoBI action, which nevertheless leads to a broadly similar effect on catabolic fuel

switching.

The limited effect of mtEcoBI on mtDNA in adults, accompanied by profound metabolic

reprogramming aligns with findings in other mtDNA instability models [18, 20, 39]. Low-level

presence of damaged mtDNA molecules doens’t necessarily mean inefficient action by mtE-

coBI enzyme, as turnover of damaged DNA molecules can be very efficient in adult animals

[40, 41]. Nevertheless, OXPHOS was not dysfunctional, possibly because Drosophila are able

to endure substantial mtDNA damage without effects on respiration [42]. Therefore metabolic

changes must arise via a distinct stress-response pathway.

The mtDNA is maintained in vivo within protein-DNA structures termed nucleoids. There

is ongoing debate regarding nucleoid structure and composition [43], with a core domain gen-

erally believed to be made up of factors in direct contact with mtDNA that function in packag-

ing, synthesis and transcription [11]. There is also a variable set of functionally diverse

peripheral proteins, many having roles in metabolic pathways and some possibly in direct con-

tact with mtDNA [44, 45]. This provides one speculative connection between mtDNA stability

and metabolism, as supported by earlier findings in yeast [46, 47]. Functional loss of mtDNA

maintenance proteins has been shown previously to produce metabolic defects and altered

Fig 5. Post-translational modifications and effect of citrate on mtEcoBI-induced effects. (A) Relative levels of lysine acetylation (AcK) of total and

mitochondrial proteins extracted from tubGS>mtEcoBI strains on days 6 and 10 after induction (AI) with 200 μM MP, p<0.01 (��), p<0.0001(����), n = 4. (B)

Relative acetylation levels of histone H3 in tubGS>mtEcoBI strains 10 days AI with 200 μM MP (due to high variability two technical repeats were used). (C)

Relative levels of poly-ADP-ribosylation of proteins in tubGS>mtEcoBI strains on days 6 and 10 AI with 200 μM MP p<0.05 (�), p<0.01 (��), n = 4. (D) Lifespans

of tubGS>mtEcoBI endo- and func strains on food with 200 μM MP and with or without 20 mM sodium citrate. Lifespans on food without sodium citrate are

replicates from Fig 2A to provide a better comparison with sodium citrate effects. (E) Total protein acetylation in tubGS>mtEcoBI strains on days 6 and 10 AI on

food containing 200 μM MP and 20 mM sodium citrate, p<0.05 (�), p<0.01 (��), ns—not significant, n = 4. (F). Triglyceride levels in tubGS>mtEcoBI strains on

days 6 and 10 AI on food containing 200 μM MP and 20 mM sodium citrate, p<0.05 (�), ns—not significant, n = 4–5. (G) RER of tubGS>mtEcoBI flies on day 6

after induction on food with 200 μM MP and 20 mM sodium citrate, p<0.05 (�), p<0.001(���), p<0.0001(����), n = 9–12.

https://doi.org/10.1371/journal.pgen.1008410.g005
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protein modifications, although the molecular mechanisms are unknown. For example,

mtDNA depletion in HEK293 cells caused by loss of POLG leads to collapse of the TCA cycle

and increased serine synthesis [22, 48, 49], and a mouse model of mitochondrial myopathy

caused by a defective mtDNA helicase leads to major metabolic disturbances including ele-

vated serine synthesis and disturbed one-carbon metabolism [20]. Although OXPHOS defect

is a feature of these models, it is unclear if it plays an instrumental role in these metabolic

abnormalities. Indeed, some of the phenotypes were reversed only by reconstitution of the

TCA cycle, not by facilitating OXPHOS [48]. Interestingly, we also observed an increase in ser-

ine, together with other metabolite imbalances suggestive of elevated gluconeogenesis. As gly-

colysis and gluconeogenesis are reciprocally regulated, a switch from carbohydrate breakdown

to storage could entail a shift towards lipid oxidation, as seen also in a mouse model [50].

Although a common finding in mitochondrial dysfunction models, the reason for serine accu-

mulation remains unclear, and is not obligatorily linked to defective OXPHOS [23]. Our

results suggest that increased serine biosynthesis may be a response to specific types of

mtDNA damage or structural anomalies, underlying observed metabolic changes.

The potential of mitochondria to regulate cellular homeostasis beyond OXPHOS-related

mechanisms in increasingly recognized, as several metabolites are important cofactors and

regulators of a wide array of cellular functions [7]. However, direct evidence for control over

metabolic flexibility has been absent so far. The apparent similarities between the effects of

mtEcoBI expression in Drosophila adults, and various different metabolic disorders suggests

that interference with mtDNA should be considered as a possible etiologic factor in diseases

such as diabetes, obesity and non-alcoholic fatty liver disease (NAFLD). Such a link may have

been previously overlooked due to the general assumption that mtDNA instability must be

linked to OXPHOS dysfunction, to which other patological consequences are secondary.

Although the underlying mechanisms that link metabolic disturbances to mtDNA remain to

be elucidated, the likely relevance to disease should spur further analysis using mtEcoBI and

other tools. Moreover, mtEcoBI represents a unique tool to dissect mtDNA maintenance in

general and the signaling machinery that connects it with metabolism, in particular.

Materials and methods

Statistical methods

All measures are means of three to nine biological replicates. Error bars represent standard

deviations and p values were calculated using two-way Student’s t-test, using Bonferroni cor-

rection where appropriate. Lifespans were analyzed using OASIS 2 online tool [51]. Descrip-

tive analyses were performed using Kaplan-Meier estimators while Mantel-Cox tests with

Bonferroni corrections were used for the pairwise comparisons of the survival functions.

Cloning of constructs and Drosophila transformations

An expression cassette was amplified with Pfu PCR from pUASP plasmid [52] with oligonucle-

otides (5´ to 3´) UASP5Sph (ATCCAGCATGCAATTGGCCGCTCTAGCCCCC) and

UASP3Nhe (ATCGGCTAGCGAGTACGCAAAGCTTGG) and inserted into SphI/SpeI-

digested Green H-Pelican GFP Drosophila transformation vector [53]. The resulting plasmid

carried a soma- and germline-competent GAL4-responsive expression cassette between gypsy
transcriptional insulators. All three EcoBI genes were amplified by Pfu-driven PCR from

Escherichia coli B (CGCS #2507) genomic DNA with respective chimeric primer pairs:

HsdR5Eco31I (ATCGGTCTCTAATGTTATGGGCCTTAAATATTTGG) and HsdR3Xba

(ATTCTAGATCAGGCCAGCTCGTCCCA); HsdS5Eco31I (ATCGGTCTCTAATGAGTTT

CAACTCAACATCAAAA) and HsdS3Xba (ATTCTAGATCAGAACTTTTTACGCGA); and
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HsdM5Eco31I (ATCGGTCTCTAATGAACAATAACGATCTGGTCGCG) and HsdM3Xba

(ATTCTAGATCATTCCTTCACCCCACC). Amplified products were digested with Eco31I

and XbaI and inserted by three-fragment cloning into Not/XbaI-digested pBluescript SK+

along with the Eco31I/NotI-digested fragment encoding the 40 amino acid-long MTS from

citrate synthase, which was amplified from Drosophila genomic DNA using primers CitSyn-

Cor5Not (ATGCGGCCGCATGTTCGTACGCCGTTTCGGA) and CitSynCor3Eco31 (ATC

GGTCTCTCATTCGGAATGAACTTGGAGT). From the resulting plasmids, theHsdS and

HsdM genes N-terminally fused to the MTS were subcloned into the customized transforma-

tion vector via NotI/XbaI digestion. The clonedHsdR gene was then subjected to oligonucleo-

tide-targeted mutagenesis using the Kunkel method [54] to introduce mutations D298E and

K477R. The wild-type and mutated forms ofHsdR were inserted into the pUASTattB vector

[55] via NotI/XbaI cloning. All constructs were verified by sequencing prior to use in transgen-

esis. Plasmid injections to create the transgenic lines were performed by Rainbow Transgenic

Flies, Inc. Plasmids carrying UAS-mtHsdM and UAS-mtHsdS were inserted randomly into the

w1118 genome via P element-mediated transgenesis, whilst UAS-mtHsdR was inserted into a

variant w1118 strain bearing an attP docking site in the third chromosome (Bloomington stock

number #9744). From random P-element insertions, strains were chosen that carried the

UAS-mtHsdM and UAS-mtHsdS genes both on the second chromosome, and their expression

was verified by qRT-PCR.

For experiments to determine the subcellular localization of the gene product in cultured

S2 cells, theHsdS,HsdM andHsdR genes fused to the MTS from citrate synthase were ampli-

fied from pBluescript SK+ carrying the relevant construct, using M13 Reverse and HsdSXho-

nostop (TACTCGAGGAACTTTTTACGCGAGGCTTT), HsdMXhonostop (TACTCGAGT

TCCTTCACCCCACCAAACGC) and HsdRXhonostop (TACTCGAGGGCCAGCTCGTCC

CAAATGTA) primers and inserted into NotI/XhoI-digested pMT/V5-A vector DNA to create

in-frame C-terminal fusions to the V5 epitope.

Drosophila stocks and culture

The Drosophila strains carrying UAS-mtHsdS, UAS-mtHsdM and the different versions of the

UAS-mtHsdR gene were otherwise isogenic to w1118. The UAS-mtHsdS and UAS-mtHsdM
genes were brought together on a single second chromosome by recombination, verified by

qRT-PCR after homogenizing through crossings with a CyO balancer strain. Three separate

strains were then created, each carrying, in addition to UAS-mtHsdM and UAS-mtHsdS, a dif-

ferent UAS-mtHsdR isoform: wild-type (designated func), D298E (designated endo-) and

K477R (designated endo-endo-/trans-) on chromosome 3 and expression of each HsdR iso-

form was confirmed by qRT-PCR. The presence of the three mtEcoBI binding sites was con-

firmed by Sanger sequencing mtDNA of all three strains using primers Dm3400 (GAATCG

GCCATCAATGATATTGAAGT), Dm2350 (GTTGGAATAGATGTAGATACTCGAGCT)

and Dm10800 (GTATTTACTTACATGTAGGACGAGGAA). These were then combined

with different drivers. The inducible muscle- and neuronal-specific GeneSwitch driver lines

(mhcGS and elavGS, respectively) were obtained from Bloomington Stock Centre (stock num-

bers #43641 and #43642 respectively). Other drivers used were: daughterless GAL4 (daGAL4),

carrying the P(GAL4-da.G32)UH1 insertion, inducible tubulin GeneSwitch (tubGS; kind gift

from Dr. Scott Pletcher, University of Michigan). The SOD2-overexpressing line was obtained

from Bloomington stock centre (#24494), whilst a mitochondrially targeted catalase-express-

ing strain [56] was a kind gift from Dr. Rajindar S. Sohal (USC). The ROS sensor line based on

the Orp1-GFP gene fusion [57] was a kind gift from Dr. Tobias P. Dick (University of Göt-

tingen). The hemocyte marker line expressing plasmatocyte-specific GFP and lamellocyte-
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specific mCherry markers [58] was obtained from Dr. Ines Anderl and Dr. Dan Hultmark

(University of Umeå). Specific effects of SOD2 and mCat on larval lifespan were confirmed by

using GFP co-expressing control strains (UAS-GFP/UAS-HsdM.UAS-HsdS; UAS-HsdR/+,

UAS-GFP/UAS-HsdM.UAS-HsdS; UAS-HsdRD298E/+, UAS-GFP/UAS-HsdM.UAS-HsdS;
UAS-HsdR K477R/+).

All Drosophila strains were reared and maintained at 25˚C on a 12h:12h light:dark cycle on

standard medium as previously described [59]. When required, different compounds were

added to the medium after cooling below 65˚C at the following final concentrations: mifepris-

tone (MP) (Sigma M8046 200 μM), metformin (Acros Organics, Thermo Fisher Scientific 5

mM and 20 mM), sodium citrate (AppliChem 131655 20 mM), oxaloacetate (Alfa Aesar

A12739 20 mM), L-DOPA and octopamine (Alfa Aesar A11311 3 mg/ml both).

Drosophila feeding experiments

For each experiment, 150 flies were distibuted to six separate vials (25 flies per vial) with stan-

dard food and allowed to recover overnight from CO2 exposure. On the next day, flies from

three vials were transferred without gas to standard food and from the remaining three vials to

food supplemented with 1% Blue FCF dye (Acros Organics A0373695, ThermoFisher Scien-

tific). After 2 h, 20 flies were collected and lysed by grinding in a mortar and pestle in 800 μl

PBS. Debris was pelleted at 10,000 gmax for 10 min at 4˚C and 400 μl of each supernatant were

transferred to 2 wells (200 μl each) of 96-well plates. Absorbance was measured at 650 nm and

values from lysates of flies kept on food without Blue FCF were used for background

subtraction.

Climbing experiment

30 males were transferred without CO2 anesthesia to a 300 mm long glass cylinder of 25 mm

diameter. The distance travelled after collecting flies to the bottom by tapping the container

was measured after 4 seconds, from video recordings viewed in slow-motion.

Wet weight measurements

Drosophila parental strains (approximately 300 females and 150 males) were mated in bottles

for 24 h and then transferred to mating chambers (Genesee #59–101) with standard food plates

supplemented with yeast paste (yeast extract mixed with water) to facilitate egg laying. Devel-

oping embryos were collected after 2 h and 30–60 larvae depending on the developmental

stage were isolated and weighed. Data from each timepoint were obtained in three biological

replicates.

Agarose gel electrophoresis and Southern blotting

Batches of several hundred flies were homogenized in a Dounce homogenizer as previously

[60] and nucleic acid was extracted from mitochondria (omitting the sucrose-gradient centri-

fugation). For 1D DNA electrophoresis, 1 μg of mtDNA was loaded per lane in 0.5% agarose

gels run in TBE without ethidium bromide for 20 h at 0.7 V/cm. For topoisomerase treatment

1 μg of mtDNA was incubated with Topo I (New England Biolabs, M0301S) under conditions

recommended by the manufacturer. 1D gels were stained with ethidium bromide and docu-

mented, prior to blotting. For 2DNAGE, 10 μg aliquots of mtDNA digested with ClaI (4 U/μg

for 4 h at 37˚C) were eletrophoresed as previously [60]. Southern blotting and hybridization

were as described previously, using probe 12 [60]. Different topological forms were quantified

using ImageLab software from BioRad.
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qPCR and qRT-PCR

For qPCR measurement of mtDNA copy number total DNA was isolated from 20 flies using

QIAGEN DNeasy Blood and Tissue kit, following the supplementary protocol for insect

samples. For cDNA synthesis, 40 flies were homogenized on ice in 1 ml Trizol. After 5 min

incubation at room temperature, 200 μl of chloroform was added. After mixing and further

incubation at room temperature for 3 min, debris was pelleted and phases separated by centri-

fugation of 12,000 gmax for 15 min at 4˚C. 600 μl of the upper phase were decanted and mixed

with 500 μl of isopropanol. After incubation for 10 min at room temperature nucleic acids

were pelleted by centrifugation of 12,000 gmax for 10 min at 4˚C. Pellets were washed once

with 75% ethanol and resuspended in DEPC-treated water with subsequent incubation at

55˚C for 10 min. 20 μl of DNase I buffer along with 1 U of DNase I (Thermo Fisher Scientific,

EN0521) were added and samples were incubated for 1 h at 37˚C. After extraction once with

phenol:chloroform:isoamylalcohol (25:24:1) and once with chloroform, RNA was ethanol pre-

cipitated overnight at -20˚C and was recovered by centrifugation at 10,000 gmax for 10 min at

4˚C, washed once with 70% ethanol and redissolved in 100 μl of DEPC-treated water. 2 μg

were used for cDNA synthesis with random hexameric primers, using High-Capacity cDNA

Reverse Transcription Kit (Applied Biosystems) according to manufacturer’s protocol. For

quantitative PCR analysis of mtDNA copy number 10 ng of total DNA was used for reactions

that were carried out in StepOnePlus™ Real-Time PCR System with Fast SYBR Green Master

Mix kit (Applied Biosystems). Primer sequences can be found in S1 Table.

Blue-native gel electrophoresis

Larvae were collected from egg-laying plates (as for wet-weight measurement) and gently

Dounce-homogenized on ice in 600 μl of homogenization buffer (250 mM sucrose, 2 mM

EGTA, 0.1% BSA, 5 mM Tris/HCl, pH 7.4). The supernatant from centrifugation at 200 gmax
for 3 min at 4˚C was re-centrifuged at 9,000 gmax for 5 min at 4˚C. The crude mitochondrial

pellet was resuspended in homogenization buffer without BSA and protein concentration was

measured with Bradford assay. 100 μg aliquots of the lysate were centrifuged at 9,000 gmax for 5

min at 4˚C and pellets were resuspended in 25 μl of NativePAGE sample buffer (50 mM NaCl,

10% glycerol, 0.001% Ponceau S, 50 mM BisTris/HCl pH 7.2) containing 1% digitonin (D5628

Sigma) and protease inhibitor cocktail (Roche Complete Mini #11836170001). After incubat-

ing on ice for 15 min, samples were centrifuged at 16,100 gmax for 30 min at 4˚C. 25 μl of

supernatant were mixed with with 1.5 μl G-250 sample additive (Thermo Fisher Scientific),

10 μl 4 x NativePAGE sample buffer and 3.5 μl water. 30 μg aliquots of protein were loaded

onto NativePAGE BisTris gels (Invitrogen). The inner chamber of the running apparatus was

filled with 1 x dark blue cathode buffer (50 mM BisTris; 50 mM Tricine; 0.02% G-250 dye) and

the outer chamber with 1 x anode buffer (50 mM BisTris, 50 mM Tricine, pH 6.8). Samples

were run at 70 V for approximately 1 h at 4˚C until the dye front had migrated approximately

1/3 of the way through the gel, after which the cathode buffer was replaced with light blue cath-

ode buffer (50 mM BisTris; 50 mM Tricine; 0.002% G-250 dye). Samples were run for a further

21 h at 25 V and 4˚C. After the run gel was subjected to staining either for complex I or for IV

activity. Before staining, gels were equilibrated in the appropriate reaction buffers without

chromogenic agents for 10 min at room temperature. After equilibration, gels were incubated

in reaction buffers containing chromogenic agents for variable times, as follows. For complex I

staining, the reaction buffer contained 5 mM Tris/HCl (pH 7.4), 2.5 mg/ml nitrotetrazolium

blue and 0.1 mg/ml NADH. For complex IV, the reaction buffer contained 50 mM sodium

phosphate (pH 7.2), 0.05% 3.30-diaminobenzidine tetrahydrochloride and 50 mM horse-heart

cytochrome c (C2867 Sigma).
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Respirometry

For adults, 100 male flies were pooled into one food bottle and left to recover from CO2 expo-

sure for at least 24 h. For developingDrosophila, 100–200 larvae were collected from egg-laying

plates, as for wet-weight measurement. Animals were transferred into a chilled mortar and

gently Dounce-homogenized (30 strokes) on ice in 500 μl homogenization buffer (250 mM

sucrose, 2 mM EGTA, 5 mM Tris/Hcl, pH 7.4). Lysates were filtered through 200 μm nylon

mesh rinsed with a further 500 μl of homogenization buffer at 4˚C. 25 μl of larval lysate was

transferred to the chamber of an Oroboros O2K oxygraph containing 1975 μl of respiration

buffer (120 mM KCl, 1 mM EGTA, 1 mM MgCl2, 0.2% BSA, 5 mM KH2PO4, 3 mM Hepes/

KOH, pH 7.2). Oxygen consumption was measured after sequential additions of substrates

and inhibitors at the following final concentrations: proline (5 mM), pyruvate (5 mM), ADP (1

mM), rotenone (0.5 μM), glycerol-3-phosphate (20 mM), antimycin (2.5 μM), ascorbate (2

mM), N,N,N0,N0-tetramethyl-p-phenylenediamine (0.5 mM), potassium cyanide (1 mM). 25 μl

of fly lysates were assayed using a Hansatech Oxytherm respirometer containing 475 μl respi-

ration buffer, with oxygen consumption measured after sequential additions of substrates and

inhibitors at the following final concentrations: proline (10 mM), pyruvate (10 mM), ADP (1

mM), rotenone (150 nM), glycerol-3-phosphate (10 mM), antimycin (0.1 μM), ascorbate (10

mM), N,N,N0,N0-tetramethyl-p-phenylenediamine (10 mM), potassium cyanide (200 μM).

Substrate and inhibitor concentrations were pre-calibrated to fit the specific apparatuses used.

Values were normalized to protein concentration measured by the Bradford assay. RER was

calculated as a ratio of CO2 produced and O2 used by flies. For this, O2 consumption in indi-

vidual living flies was measured by coulometric respirometry in a continuous O2-compensat-

ing system at constant temperature and humidity (23˚C and 55% RH). Flies were placed into

measuring chambers and measurements were started when the flies stopped moving and the

minimum value of gas exchange was reached. CO2 levels were determined using a LI-700 dif-

ferential CO2/H2O analyzer (LiCor, Lincoln, Nebraska, USA).

Microscopy

To visualize hemocytes and GFP-based ROS signal, larvae were carefully washed in water

using a fine paint-brush, dried on tissue paper and embedded on microscope slides in a drop

of ice-cold 80% glycerol. The larvae were immobilized at -20˚C for 24 h before live imaging

using a Zeiss ApoTome.2 structured illumination microscope. For subcellular localization by

immunocytochemistry, Drosophila S2 cells were transformed with pMT/V5-His A constructs

using Fugene HD (Promega) according to manufacturer’s protocol. After induction with

500 μM Cu2SO4 for 48 h, cells were fixed and V5-tagged proteins and endogenous COXIV

were detected as described previously [61], using mouse anti-V5 (Life Technologies, 1:1000)

and rabbit anti-COXIV (Abcam, 1:300) as primary antibodies, respectively with AlexaFluor

568 goat anti-mouse IgG (H+L) and goat anti-rabbit AlexaFluor 488 IgG (H+L) (Life Technol-

ogies) as secondary antibodies (1:1000 in both cases). Samples were mounted in ProLong Gold

Antifade Mountant with DAPI (ThermoFisher Scientific, P36931), according to manufactur-

er’s protocol.

Western sample preparation and blotting

Batches of 30 flies were homogenized with a pestle on ice in 300 μl of western lysis buffer (PBS

with 1.5% Triton X-100) supplemented with protease and phosphatase inhibitor cocktails

(Roche Complete Mini #11836170001 and PhosSTOP #04906845001) following manufac-

turer’s protocols. For accetylation analysis inhibitors of deacetylases (10 mM sodium butyrate,

20 mM nicotinamide and 20 nM trichostatin A) were added to the lysis buffer. Lysates were
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incubated on ice for 15 min and then centrifuged at 13,000 gmax for 15 min at 4˚C to pellet

debris. Supernatant protein concentrations were measured using the Bradford assay and 50 μg

aliquots were loaded onto precast Bio-Rad Criterion 7.5% (for HsdR) or 12% acrylamide (for

eIF2α and phospho eIF2α) or BioRad AnyKD gradient gels (for other proteins). Gels were run

in ProSieve EX running buffer (Lonza). Proteins were transferred to Amersham Protran nitro-

cellulose membrane (#10600020) in ProSieve EX transfer buffer (Lonza) at 35 V for 50 min in

a BioRad Criterion Transfer chamber. Membranes were incubated in blocking and antibody

buffers with appropriate antibody concentrations as detailed in S2 Table. Secondary antibody

was always conjugated with horseradish peroxidase. Results were visualized either on autoradi-

ography film or with BioRad ChemiDoc XR detection system. For quantitation, samples from

all three strains to be compared were run on the same gel with 4 individual biological replicates

per strain. When protein amount per lane was used for normalization, membranes were

stained with Ponceau S solution (0.1% Ponceau S in 5% acetic acid), rinsed briefly with water

and documented using the BioRad ChemiDoc XR system. Signal was quantified and data ana-

lyzed with ImageQuant software. Protein signal linearity of Ponceau S-stained membranes

between 10 and 80 μg was confirmed (S14A Fig). Western blots and corresponding Ponceau

S-stained membranes used for quantifications are presented in S14B Fig. Protein sample from

E.coli B-strain bacteria used in S1D Fig was prepared using B-PER Bacterial Protein Extraction

Reagent (Thermo Fisher Scientific, 78248) following manufacturer’s protocol.

Brain DHE staining

Brains were dissected from adult flies at room temperature in Drosophila Schneider’s cell

medium (SCM) supplemented with L-glutamine, then incubated in SCM with 30 μM dihy-

droethidium (Thermo Fisher Scientific, D11347) on a nutator for 7 min in the dark. Following

a rinse with SCM, brains were washed 3 x 5 min with SCM, then placed on a glass slide

between double-sided tape strips and covered with coverglass. Vectashield mounting medium

(Vector #H-1000) was infused under the coverglass and brains were immediately scanned at

10x magnification using a Zeiss LSM 780 confocal laser-scanning microscope. Maximum

intensity projections were created with ImageJ software.

Ovary dissections

Ovaries from elavGS>mtEcoBI flies 45 d after eclosion were dissected in PBS on a depression

slide. Images were captured directly, using a Nikon SMZ745T camera at 60x total

magnification.

Lifespan and developmental time measurements

For lifespan measurements, 20 male flies were collected no later than 72 h after eclosion and

placed in food vials with at least three vials per measurement. Flies were transferred to fresh

vials three times a week and viability was recorded until the last fly had died. For developmen-

tal time measurements, 6 replicates of 20 females with 10 males were premated and then

allowed to lay eggs for 24 h, after which the eclosion day of progeny was scored.

Metabolite measurements

Pyruvate and lactate were measured using BioVision kits (#K709 and #K607) according to

modified protocols provided by the manufacturer. For pyruvate measurements, 20 flies were

homogenized in 200 μl Pyruvate Assay Buffer on ice and then centrifuged at 10,000 gmax for 10

min at 4˚C. 15 μl of supernatant was mixed with 35 μl of Pyruvate Assay buffer in a well of
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96-well microtiter plate. 50 μl of reaction mix (formulated according to manufacturer’s guide-

lines) was added to every well containing supernatant, incubated for 30 min at room tempera-

ture after which absorption was measured at 570 nm. For the standard curve, pyruvate

concentrations between 2 and 10 nM were used. Parallel background reactions were per-

formed by mixing supernatant with background mix, formulated according to manufacturers’

guidelines. For lactate measurements, 20 flies were homogenized in 100 μl PBS on ice and

incubated at 65˚C for 15 minutes. Debris was pelleted by brief centrifugation and 10 μl of

lysate was assayed according to the manufacturers’ protocol similar to pyruvate measurement.

For the lactate standard curve concentrations between 100 and 1000 pM were used. ATP con-

centration was measured using the ATP Determination Kit (ThermoFisher Scientific). 30 flies

were homogenized in ATP isolation buffer (6M guanidine-HCl, 4 mM EDTA, 100 mM Tris/

Cl pH 7.8) and snap-frozen in liquid nitrogen, followed by boiling for 5 min. Debris was pel-

leted by centrifugation at 10,000 gmax for 10 min at 4˚C. 5 μl of a 12.5-fold diluted supernatant

was added to 100 ul of ATP Reaction Mix (formulated according to manufacturers’ recom-

mendations) and values were recorded using a Tecan luminometer with Greiner polypropyl-

ene plates (#655207). Total NAD and the NAD+/NADH ratio were determined with Sigma kit

MAK037. 20 flies were homogenized in 400 μl of extraction buffer and centrifuged at 10,000

gmax for 5 min at 4˚C. Supernatants were filtered through 10 kDa Spin Columns (Abcam

ab93349) with centrifugation at 18,000 gmax for 20 min at 4˚C and divided into two equal por-

tions. One portion was heated at 60˚C for 30 min. 10 μl of the heat-treated and untreated sam-

ples were distributed to wells of a microtitre plate, Volumes were brought up to 50 μl with

reaction buffer and mixed with 100 μl of reaction mix, consisting of NAD cycling buffer and

cycling enzyme, formulated according to manufacturer’s guidelines. Reactions were incubated

at room temperature for 5 min, after which 10 μl of NADH developer was added to each well

and cycling measurement was started at OD 450 nm.

AcCoA, propanoyl-CoA, fumarate, malate, citrate, isocitrate, PEP, aspartate, glutamate,

ketogenic amino acids and L-DOPA were measured by capillary electrophoresis-mass spec-

trometry method by Human Metabolome Technologies (Japan). Flies were collected without

CO2 gas, frozen and sent to HMT on dry ice. There samples were mixed with 1,500 μl of 50%

acetonitrile in water (v/v) containing internal standards (20 μM for cation and 5 μM for anion

measurement) and homogenized. Supernatant was filtered through 5-kDa cut-off filter, con-

centrated by centrifugation and resuspended in 50 μl of water before measurement using fused

silica capillary 50 μm x 80 cm. For cationic metabolites conditions were as follows: pressure

injection: 50 mbar for 10 sec, voltage: 27 kV, ionization: positive, capillary voltage: 4,000 V,

scan range:m/z 50–1000. For anionic metabolites conditions were as follows: pressure injec-

tion: 50 mbar for 25 sec, voltage: 30 kV, ionization: negative, capillary voltage: 3,500 V, scan

range:m/z 50–1000. Peaks were extracted with MasterHands sofware ver. 2.17.1.11 and puta-

tive metabolites were assigned from HMT’s standard library with tolerance of ± 0.5 min for

migraton time and ±10 ppm form/z.

Hemolymph glucose measurements

Thoraxes of 100 flies were punctured by a 20-gauge needle and flies were transferred to 0.2 ml

Eppendorf tubes with a punctured bottom. Tubes were placed within 0.5 ml Eppendorf tubes

and centrifuged at 1,500 gmax for 5 min at 4˚C. 2 μl of supernatant was collected from the bot-

tom of each tube and mixed with 8 μl of TBS (pH 6.6) with subsequent incubation at 70˚C for 5

min. 5 mU of trehalase (T8778 Sigma) was added, followed by overmight incubation at 37˚C

and the addition of 100 μl Glucose Assay Reagent (G3293 Sigma). After incubation at 37˚C for

30 min absorbance was measured at 340 nm.
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Carbohydrate and triglyceride measurements

Carbohydrate and triglyceride measurements were performed as described previously [62].

Carbohydrate measurements. 10 flies were homogenized in 400 μl of PBS and incubated

for 5 min at 70˚C. 40 μl of lysate was transferred to four separate Eppendorf tubes with addi-

tions of 1U of amyloglycosidase from Aspergillus niger (Sigma, total glucose measurement), 2 x

PBS (free glucose and background measurement) and 5 mU of porcine kidney trehalase

(T8778 Sigma, trehalose measurement). All reactions were incubated for 2 h at 37˚C, after

which they were briefly centrifuged and 30 μl of supernatant was transferred to 96-well micro-

titer plates. 100 μl of Glucose Assay Reagent (Sigma G3293) was added to all reactions except

for one PBS-treated lysate that was mixed with 100 μl of PBS to measure background. Reac-

tions were incubated at 37˚C for 30 min, after which absorption was measured at 340 nm. Free

glucose, glycogen and trehalose were calculated by subtracting relevant backgrounds from

measured values. A glucose standard curve was generated using 1 to 20 μg of glucose (per

well).

Triglyceride measurements. 20 flies were homogenized in 800 ul of PBS with 0.1% Tween

20 and incubated for 5 min at 70˚C. 20 μl of each lysate was transferred to three separate

Eppendorf tubes with additions of 20 μl of Triglyceride Reagent (Sigma T2449, total glycerol

measurement) and 2 x 20 μl of PBS (free glycerol and background measurement). All reactions

were incubated for 30 min at 37˚C, after which they were briefly centrifuged and 30 μl of

supernatant was transferred to 96-well microtiter plates. 100 ul of Free Glycerol Reagent

(Sigma F6428) was added to all reactions except for one PBS-treated lysate that was mixed

with 100 μl of PBS to measure background. Reactions were incubated at 37˚C for 5 min, after

which absorption was measured at 540 nm. Triglycerides were calculated by subtracting free

glycerol from total glycerol measurement. A glycerol standard curve was calculated by using

0.5 μg to 3 μg of glycerol (per well).

Protein carbonylation measurements

Oxidative stress-derived protein damage markers (for protein glycoxidation (Nε-(carbox-

yethyl)-lysine [CEL]), for lipoxidation (Nε-malondialdehyde-lysine [MDAL], and for mixed

glyco-/lipoxidation (Nε-(carboxymethyl)-lysine [CML] and Nε-(carboxymethyl)-cysteine

[CMC])) were determined as trifluoroacetic acid methyl ester (TFAME) derivatives in acid

hydrolyzed, delipidated and reduced protein samples by GC/MS using a HP6890 Series II gas

chromatograph (Agilent, Barcelona, Spain) with a MSD5973A Series detector and a 7683

Series automatic injector, a HP-5MS column (30-m x 0.25-mm x 0.25-μm). The injection port

was maintained at 275˚C; the temperature program was 5 min at 110˚C, then 2˚C/min to

150˚C, then 5˚C/min to 240˚C, then 25˚C/min to 300˚C, and finally held at 300˚C for 5 min.

Quantitation was performed by internal and external standardization using standard curves

constructed from mixtures of deuterated and non-deuterated standards. Analyses were carried

out by selected ion-monitoring GC/MS (SIM-GC/MS). The ions used were: lysine and [2H8]

lysine, m/z 180 and 187, respectively; CEL and [2H4]CEL, m/z 379 and 383, respectively; CML

and [2H4]CML, m/z 392 and 396, CMC and [13C2]CMC, m/z 271 and 273, respectively;

MDAL and [2H8]MDAL, m/z 474 and 482, respectively. The amounts of product were

expressed as μmoles of CEL, CML, MDAL or CMC per mol of lysine.

Enzyme activity measurements

All enzyme activity measurements were carried out using relevant BioVision assay kits (#K776

for phosphofructokinase, #K789 for hexokinase, #K709 for pyruvate kinase) and ApexBio

assay kit for succinate dehydrogenase (#K2210).
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PFK measurements. 10 flies were homogenized in 200 μl Phosphofructokinase Assay

buffer on ice and centrifuged at 10,000 gmax for 5 min at 4˚C. Supernatants were diluted 1:10

with Phosphofructokinase Assay buffer and 1 μl was mixed with reaction mix formulated

according to manufacturers’ guidelines. Parallel background reactions were performed by

mixing supernatant with background mix according to manufacturer’s guidelines. Absorption

was measured immediately in kinetic mode for 60 min at 2 min intervals at 450 nm. An

NADH standard curve was generated using NADH concentrations from 2–10 nmol.

Hexokinase measurements. 10 flies were homogenized in 400 μl of Hexokinase Assay

buffer on ice, incubated on ice for 10 minutes and centrifuged with 10,000 x gmax for 5 min at

4˚C. 1 μl of supernatant was mixed with reaction mix formulated according to manufacturers’

guidelines. Parallel background reactions were performed by mixing supernatant with back-

ground mix formulated according to manufacturers’ guidelines. Absorption was measured

immediately with kinetic mode for 60 min with 2 minute intervals at 450 nm. An NADH stan-

dard curve was generated using NADH concentrations from from 2.5 to 12.5.

Pyruvate kinase measurements. 10 flies were homogenized in 200 μl of Pyruvate Kinase

Assay buffer on ice and centrifuged with 10,000 x gmax for 5 min at 4˚C. 1 μl of supernatant

was mixed with reaction mix formulated according to manufacturers’ guidelines. Parallel

background reactions were performed by mixing supernatant with background mix formu-

lated according to manufacturers’ guidelines. Absorption was measured immediately with

kinetic mode for 60 min with 2 min intervals at 570 nm. A pyruvate standard curve was gener-

ated using pyruvate concentrations from from 200 nmol to 1000 nmol.

Pyruvate dehydrogenase measurements. 10 flies were homogenized in 200 μl of Pyruvate

Dehydrogenase Assay buffer on ice, incubated on ice for 10 min and centrifuged with 10,000 x

gmax for 5 min at 4˚C. 10 μl of supernatant was mixed with reaction mix formulated accordign

to manufacturers’ guidelines. Parallel background reactions were performed by mixing super-

natant with background mix formulated according to manufacturers’ guidelines. Absorption

was measured immediately with kinetic mode for 60 min with 2 min intervals at 450 nm. An

NADH standard curve was generated using NADH concentrations from from 2 to 10 nmol.

Succinate dehydrogenase measurements. 10 flies were homogenized in 100 ul of Assay

buffer, incubated on ice for 10 min and then centrifuged for 5 min at 10,000 x gmax. 40 ul of

supernatant was mixed with reaction mix formulated according to manufacturers’ guidelines.

Absorption was measured immediately with kinetic mode for 30 min with 1 min intervals at

600 nm. A DCIP standard curve was generated using DCIP concentrations according to man-

ufacturers’ protocol.
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6 days either in strain carrying the methyltransferase-capable form of mtEcoBI consisting only

of HsdM and HsdS subunits (UAS-mtHsdM.UAS-mtHsdS/+;tubGS/+) or in strains carrying

the full enzyme isoforms (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/tubGS, UASmtHsdM.

UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS, UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR
K477R/tubGS). p<0.0001 (����), n = 5. (B) Subcellular localisation of HsdS fused to citrate

synthase MTS and to V5-epitope in transiently expressing S2 cells. Cells were stained for DAPI

and labeled with antibodies against COXIVand V5-epitope, followed by incubation with sec-

ondary antibodies conjugated with Alexa 568 (green) and Alexa 488 (red) respectively. Scale

bar is 5 mm. (C) Subcellular fractionation of Drosophila tissue from UAS-mtHsdM.UAS-
mtHsdS/+;UAS-mtHsdR/tubGS strain after 6 days of incubation either on regular or 200 μM

mifepristone-containing food using HsdR, Akt (cytosolic marker), NDUFS3 (mitochondrial

marker) and histone 3 (nuclear marker) antibodies, u—uninduced, i—induced. (D) Western

of Drosophila strains expressing different isoforms of HsdR subunit with antibodies against

HsdR, E.coli B-strain served as a control. Ponceau S-stained membrane was used as a loading

control.

(PDF)

S2 Fig. Schematic map of D. melanogaster mtDNA and effects of early-onset expression of

mtEcoBI. (A) Schematic map of DrosophilamtDNA showing major mtEcoBI cleavage sites

(red arrows), positions of mTTF/mTERF5 binding sites (mTTF bs1 and bs2), positions of

genes used for transcript measurements (in blue), non-coding region (NCR) and origin of rep-

lication (arrow within NCR). (B) Sequences of mtDNA regions containing mtEcoBI binding

sites TGA-(N)8-TGCT (blue arrows) in strain UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/

daGAL4 3 days after egg laying. Numbers refer to position of nucleotides in D.melanogaster
mtDNA in NCBI nucleotide databank entry NC_001709. (C) 1D gel electrophoresis of uncut

mtDNA samples from larvae of endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR
K477R/daGAL4), endo- (UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/daGAL4) and

func (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR/daGAL4) strains used for quantifications

of covalently closed (cc) forms of different linking number in Fig 1D. (D) State III respiration

of mitochondria isolated from UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/daGAL4, UAS-
mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/daGAL4, UAS-mtHsdM.UAS-mtHsdS/+;

UAS-mtHsdR K477R/daGAL4 strain larvae day 2 AEL, p<0.01 (��), n = 3. (E) Wet weight of

UAS-mtHsdM.UAS-mtHsdS/UAS-SOD2;UAS-mtHsdR/daGAL4, UASmtHsdM.UAS-mtHsdS/

UAS-SOD2;UAS-mtHsdRD298E/daGAL4, UAS-mtHsdM.UASmtHsdS/ UAS-SOD2;UAS-
mtHsdR K477R/daGAL4 and UAS-mtHsdM.UAS-mtHsdS/UASmCat; UAS-mtHsdR/daGAL4,

UAS-mtHsdM.UAS-mtHsdS/UAS-mCat;UAS-mtHsdRD298E/daGAL4, UAS-mtHsdM.UAS-
mtHsdS/UAS-mCat;UAS-mtHsdR K477R/daGAL4 and UAS-mtHsdM.UASmtHsdS/UAS-GFP;

UAS-mtHsdR/daGAL4, UAS-mtHsdM.UAS-mtHsdS/UAS-GFP;UAS-mtHsdRD298E/daGAL4,

UAS-mtHsdM.UAS-mtHsdS/UAS-GFP;UAS-mtHsdR K477R/daGAL4 larvae. Days mark time

after egg laying, n = 3.

(PDF)

S3 Fig. ROS-induced overproduction of lamellocytes. (A) Microscopy ofmo-mCherry eater-
MSNF9 GFP/FM7a;UAS-mtHsdM UASmtHsdS/+;UAS-mtHsdRD298E/daGAL4 (endo-) and

MSNF9mo-mCherry eater-GFP/FM7a;UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/

daGAL4 (endo/trans-) L3 larvae (5 days after egg laying) showing green plasmatocytes and red

lamellocyte signal. White arrows point to the red signalin larval muscle that is caused by label-

ing artefact of the given reporter system [1]. Scale bar is 0,5 mm. (B) UAS-mtHsdM.UAS-
mtHsdS/+;UAS-mtHsdRD298E/daGAL4 (endo-) larvae of L3 stage (5 days after egg laying)

showing melanotic nodules reared on regular food (left) and on food supplemented with 1,5
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mM N-acetyl cysteine. „SOD2 overexpression” refers to UAS-mtHsdM.UASmtHsdS/UAS--
SOD2;UAS-mtHsdRD298E/daGAL4 (endo-) larvae grown on regular food. Scale bar is 1 mm.

(PDF)

S4 Fig. Phenotype and mtEcoBI binding sequences of flies with adult-onset expression of

mtEcoBI variants and subunits. (A) Lifespans of tubGS>mtEcoBI endo/trans- (UAS-
mtHsdM.UAS-mtHsdS/+;UASmtHsdR K477R/tubGS) and w1118 strains on food with and

without 200 μM mifepristone. (B) Lifespans of strains expressing different combinations of

mtEcoBI subunits from tubGS driver (M+S: UAS-mtHsdM.UAS-mtHsdS/+;tubGS/+, R

(K477R): UAS-mtHsdR/tubGS, R (D298E): UAS-mtHsdRD298E/tubGS, R (wt): UAS-mtHsdR
K477R/tubGS). (C) Developmental time comparison between w1118 and endo/trans-, ns–not

significant, n = 5. (D) Climbing activities of flies from tubGS>mtEcoBI strains at days 6 and 7

after induction with 200 μM mifepristone, p<0.01 (��), p<0.0001 (����), n = 18–32. (E)

Sequences of mtDNA regions containing mtEcoBI binding sites TGA-(N) -TGCT (blue

arrows) in tubGS>mtEcoBI func strain (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/tubGS)

with or without induction with 200 μM MP for 10 days. Numbers refer to position of nucleo-

tides in D.melanogastermtDNA in NCBI nucleotide databank entry NC_001709.

(PDF)

S5 Fig. Two-dimensional analysis of mtDNA replication intermediates from tubGS>mtE-

coBI strains. (A) 2DNAGE of mtDNA Cla fragment (nt 7874–12951 in NC_001709) from

tubGS>mtEcoBI endo/trans- ((UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS),

endo- (UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.

UAS-mtHsdS/+;UASmtHsdR/tubGS) strains kept 10 days on food with or without 200 μM MP

(induced/uninduced). (B) Drawing detailing major replication and recombination intermedi-

ates separated on 2DNAGE on panel A.

(PDF)

S6 Fig. Ponceau S-stained membranes of porin and NDUFS3 westerns. Total protein

amount visualized with Ponceau S—staining from tubGS>mtEcoBI. endo/trans- (UAS-
mtHsdM UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;

UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM UAS-mtHsdS/+;UASmtHsdR/tubGS)

strains. AI: after induction on 200 μM MP.

(PDF)

S7 Fig. ROS levels in dissected brains and effect of SOD2/mCat overexpression on lifespans

of tubGS>mtEcoBI strains. (A) Maximum projections of dihydroethidium (DHE)-stained

brains from indicated strains after 6 days of induction with 200 μM MP. Scale bar 100 μm. (B)

Lifespans of indicated strains with co-overexpression of either SOD2 (UAS-mtHsdM.UAS-
mtHsdS/UAS-SOD2;UASmtHsdR/tubGS and UAS-mtHsdM.UAS-mtHsdS/UAS-SOD2;UAS-
mtHsdRD298E/tubGS) or mCat (UAS-mtHsdM.UAS-mtHsdS/UAS-mCat;UAS-mtHsdR/
tubGS and UAS-mtHsdM.UASmtHsdS/UAS-mCat;UAS-mtHsdRD298E/tubGS).

(PDF)

S8 Fig. Expression of mtUPR and ISR markers in tubGS>mtEcoBI strains. (A) Steady-state

mRNA levels of several mtUPR markers from tubGS>mtEcoBI endo/trans- (UAS-mtHsdM.
UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UASmtHsdM.UAS-mtHsdS/+;UAS-
mtHsdRD298E/tubGS) and func (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR/tubGS) strains

after 10 days of induction with 200 μM MP, n = 3. (B) Ratio of total eIF2a to phosphorylated

eIF2a from tubGS>mtEcoBI endo/trans- ((UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR K477R/

tubGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-
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mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/tubGS) strains after 10 days of induction with 200 μM

MP, ns—not significant, n = 4. Westerns used for quantifications are shown on the right.

(PDF)

S9 Fig. Levels of central carbon metabolites in tubGS>mtEcoBI strains. Levels of propa-

noyl-CoA and TCA intermediates from tubGS>mtEcoBI endo/trans-(UAS-mtHsdM.UAS-
mtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR
D298E/tubGS) and func (UAS-mtHsdM.UAS-mtHsdS/+;UASmtHsdR/tubGS) strains after 6

days of induction with 200 μM MP., p<0.05(�), p<0.01 (��), p<0.001 (���), p<0.0001 (����),

n = 3 or 5.

(PDF)

S10 Fig. Lipid and carbohydrate stores, Akt westerns and effect of metformin to lifespan

in tubGS>mtEcoBI strains. (A) Comparison on TAG between age-matched tubGS>MTase

((UAS-mtHsdM.UASmtHsdS/+;tubGS/+) strains and between w1118 and tubGS>mtEcoBI

endo/trans- (mtHsdS/+;UAS-mtHsdR K477R/tubGS) strains after 10 days either on regular or

MP-supplemented (200 μM) food, ns–not significant, n = 5. (B) Levels of carbohydrates from

tubGS>mtEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS),

endo- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.

UAS-mtHsdS/+;UASmtHsdR/tubGS) strains (normalized to protein content) after 6 days of

induction with 200 μM MP, p<0.05 (�), n = 5. (C) Westerns of tubGS>mtEcoBI endo/trans-

((UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UAS-
mtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.UAS-mtHsdS/+;UAS-
mtHsdR/tubGS) flies with pan-Akt and phospho-Akt antibodies after 10 days of induction

with 200 μM MP used in quantifications shown in Fig 3H. (D) Lifespans of tubGS>mtEcoBI

endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS) and endo/trans- (UAS-
mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS) strains with w1118 on 200 μM MP + var-

iable concentrations of metformin. Lifespans on food without metformin are replicates from

Fig 2A (for endo-) and S4A Fig (for endo/trans-) to provide a better comparison with metfor-

min effect. (E) Expression of insulin signalling markers 4E-BP, ImpL2 and InR in tubGS>m-

tEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;UASmtHsdR K477R/tubGS), endo- (UAS-
mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.UAS-mtHsdS/

+;UAS-mtHsdR/tubGS) strains, p<0.05 (�), p<0.01 (��), n = 3.

(PDF)

S11 Fig. Effects of adult-onset mtEcoBI expression in muscle tissue. (A) Lifespans of flies

frommhcGS>mtEcoBI endo/trans- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR K477R/

mhcGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/mhcGS) and func (UAS-
mtHsdM UAS-mtHsdS/+;UAS-mtHsdR/mhcGS) strains kept on food with 200 μM MP. (B)

BsrGI-digested mtDNA frommhcGS>mtEcoBI endo/trans- (UASmtHsdM.UAS-mtHsdS/+;

UAS-mtHsdR K477R/mhcGS), endo- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdRD298E/

mhcGS) and func (UAS-mtHsdM.UAS-mtHsdS/+;UASmtHsdR/mhcGS) strains on separate

days after induction with 200 μM MP. Red arrow points to major break points. (C) Triacylgly-

ceride levels in flies frommhcGS>mtEcoBI endo/trans- (UASmtHsdM.UAS-mtHsdS/+;UAS-
mtHsdR K477R/mhcGS), endo- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdRD298E/mhcGS)

and func (UAS-mtHsdM.UAS-mtHsdS/+;UASmtHsdR/mhcGS) strains after 9 days of induc-

tion with 200 μM MP, p<0.05 (�), p<0.0001 (����), n = 4. (D) Hemolymph glycemia in flies

frommhcGS>mtEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/

mhcGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/mhcGS) and func (UAS-
mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/mhcGS) strains after 9 days of induction with 200 μM
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MP, n = 3. (E) Respiration ofmhcGS>mtEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;

UASmtHsdR K477R/mhcGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/

mhcGS) and func (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/mhcGS) strains after 6 days of

induction with 200 μM MP, n = 3–4.

(PDF)

S12 Fig. ATP levels and activities of central regulatory glycolytic enzymes in tubGS>mtE-

coBI strains. (A) ATP amount from tubGS>mtEcoBI endo/trans- (UAS-mtHsdM.

UASmtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-
mtHsdRD298E/tubGS) and func (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/tubGS) strains

10 days after induction with 200 μM MP, p<0.001 (���), n = 5. (B) Activities of three rate-lim-

iting glycolytic enzymes from tubGS>mtEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;

UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/

tubGS) and func (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR/tubGS) strains 8 days after

induction on 200 μM MP, n = 3.

(PDF)

S13 Fig. Levels of several glycolytic metabolites and intermediates of serine synthesis in

tubGS>mtEcoBI strains. Levels of glycolysis and serine synthesis intermediates from tubGS>m-

tEcoBI (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UAS-
mtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/

tubGS) strains 6 days after induction with 200 μM MP, ns–not significant, p<0.05(�), p<0,01 (��),

n = 3–5. Dashed arrows represent more than one reaction between intermediates.

(PDF)

S14 Fig. Levels of amino acids Trp, Ile, Leu, Lys, Asp and Glu in tubGS>mtEcoBI strains.

Concentration of ketogenic amino acids Trp, Ile, Leu, Lys, Asp and Glu in tubGS>mtEcoBI

endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS), endo- (UAS-
mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.UASmtHsdS/

+;UAS-mtHsdR/tubGS) strains at day 6 after induction with 200 μM MP, ns–not significant,

p<0.05 (�), p<0.01 (��), p<0.0001 (����), n = 5.

(PDF)

S15 Fig. Validation of linearity of Ponceau S-signal, western scans used in quantifications

and NAD values. (A) Densitometry curve of Ponceau S—stained protein signal, data points

are mean of two replicates, value represents R2. (B) Antibody- and Ponceau S-stained western

membranes used in quantifications of global acetylation, H3 acetylation (rep1 and rep2 stand

for separate technical repeats), mitochondrial acetylation and global PARylation signal from

tubGS>mtEcoBI endo/trans- (UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/tubGS),

endo- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-mtHsdM.

UAS-mtHsdS/+;UASmtHsdR/tubGS) strains. Quantification areas are shown when less than a

full lane was taken for quantifications due to nonspecific signal on acetylated lysine westerns

caused by the vicinity of a protein run marker. AI—after induction with 200 μM MP. (C) Total

NAD and NAD+/NADH ratio in tubGS>mtEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/

+;UAS-mtHsdR K477R/tubGS), endo- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/

tubGS) and func (UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdR/tubGS) strains 10 days after

inducton with 200 μM MP, p<0.05 (�), p<0.0001 (����), n = 4–5.

(PDF)

S16 Fig. Comparison of RER between tubGS>mtEcoBI strains induced on food without or

with citrate supplementation, drawing of cytosolic citrate utilization and lifespans on
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oxaloacetate-complemented food. (A) Side-by-side comparison of RER (data from Figs 3E

and 5G) of tubGS>mtEcoBI endo/trans- (UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdR K477R/

tubGS), endo- (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdRD298E/tubGS) and func (UAS-
mtHsdM.UAS-mtHsdS/+;UASmtHsdR/tubGS) strains kept on regular food with 200 μM MP

or citrate-supplemented food with 200 μM MP on day 6 after induction, ns-not significant,

p<0.05 (�). (B) Lifespans tubGS>mtEcoBI endo/trans- (UAS-mtHsdM.UAS-mtHsdS/+;UAS-
mtHsdR K477R/tubGS), endo- (UASmtHsdM.UAS-mtHsdS/+;UAS-mtHsdRD298E/tubGS)

and func (UAS-mtHsdM.UASmtHsdS/+;UAS-mtHsdR/tubGS) strains on food containg

200 μM MP with or without 20 mM oxaloacetate. Lifespans on food without oxaloacetate

are replicates from Fig 2A to provide a better comparison with oxaloacetate effect. (C) Sche-

matic representation of conversion of cytosolic citrate to pyruvate, PDH—pyruvate dehydro-

genase.

(PDF)
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